WorldWideScience

Sample records for bond selective chemistry

  1. Bond selective chemistry beyond the adiabatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Butler, L.J. [Univ. of Chicago, IL (United States)

    1993-12-01

    One of the most important challenges in chemistry is to develop predictive ability for the branching between energetically allowed chemical reaction pathways. Such predictive capability, coupled with a fundamental understanding of the important molecular interactions, is essential to the development and utilization of new fuels and the design of efficient combustion processes. Existing transition state and exact quantum theories successfully predict the branching between available product channels for systems in which each reaction coordinate can be adequately described by different paths along a single adiabatic potential energy surface. In particular, unimolecular dissociation following thermal, infrared multiphoton, or overtone excitation in the ground state yields a branching between energetically allowed product channels which can be successfully predicted by the application of statistical theories, i.e. the weakest bond breaks. (The predictions are particularly good for competing reactions in which when there is no saddle point along the reaction coordinates, as in simple bond fission reactions.) The predicted lack of bond selectivity results from the assumption of rapid internal vibrational energy redistribution and the implicit use of a single adiabatic Born-Oppenheimer potential energy surface for the reaction. However, the adiabatic approximation is not valid for the reaction of a wide variety of energetic materials and organic fuels; coupling between the electronic states of the reacting species play a a key role in determining the selectivity of the chemical reactions induced. The work described below investigated the central role played by coupling between electronic states in polyatomic molecules in determining the selective branching between energetically allowed fragmentation pathways in two key systems.

  2. Towards bond selective chemistry from first principles: methane on metal surfaces.

    Science.gov (United States)

    Shen, X J; Lozano, A; Dong, W; Busnengo, H F; Yan, X H

    2014-01-31

    Controlling bond-selective chemical reactivity is of great importance and has a broad range of applications. Here, we present a molecular dynamics study of bond selective reactivity of methane and its deuterated isotopologues (i.e., CH(4-x)D(x), x=0,1,2,3,4) on Ni(111) and Pt(111) from first principles calculations. Our simulations allow for reproducing the full C-H bond selectivity recently achieved experimentally via mode-specific vibrational excitation and explain its origin. Moreover, we also predict the hitherto unexplored influence of the molecular translational energy on such a selectivity as well as the conditions under which the full selectivity can be realized for the a priori less active C-D bond.

  3. Computational Chemistry of Adhesive Bonds

    Science.gov (United States)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  4. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  5. Bonding, structure and solid-state chemistry

    CERN Document Server

    Ladd, Mark

    2016-01-01

    This book is aimed at undergraduate students in both chemistry and those degree subjects in which chemistry forms a significant part. It does not reflect any particular academic year, and so finds a place during the normal span of degree studies in the physical sciences. An A-level standard in science and mathematics is presumed; additional mathematical treatments are discussed in Appendices. An introductory first chapter leads into the main subject matter, which is treated through four chapters in terms of the principle bonding forces of cohesion in the solid state; a further chapter discusses nanosize materials. Important applications of the study topics are interspersed at appropriate points within the text. Each chapter is provided with a set of problems of varying degrees of difficulty, so as to assist the reader in gaining a facility with the subject matter and its applications. The problems are supplemented by detailed tutorial solutions, some of which present additional relevant material that indicate...

  6. Discovering Chemistry With Natural Bond Orbitals

    CERN Document Server

    Weinhold, Frank

    2012-01-01

    This book explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies which are relevant in reactivity problems. It offers the first book on conceptual quantum chemistry, a key area for understanding chemical principles and predicting chemical properties. It presents NBO mathematical algorithms embedded in a well-tested and widely used computer program (currently, NBO 5.9). While encouraging a "look under the hood" (Appendix A), this book mainly enables students to gain proficiency in using the NBO program to re-express complex wavefunctions in terms of intui

  7. Intramolecular hydrogen bonding in medicinal chemistry.

    Science.gov (United States)

    Kuhn, Bernd; Mohr, Peter; Stahl, Martin

    2010-03-25

    The formation of intramolecular hydrogen bonds has a very pronounced effect on molecular structure and properties. We study both aspects in detail with the aim of enabling a more rational use of this class of interactions in medicinal chemistry. On the basis of exhaustive searches in crystal structure databases, we derive propensities for intramolecular hydrogen bond formation of five- to eight-membered ring systems of relevance in drug discovery. A number of motifs, several of which are clearly underutilized in drug discovery, are analyzed in more detail by comparing small molecule and protein-ligand X-ray structures. To investigate effects on physicochemical properties, sets of closely related structures with and without the ability to form intramolecular hydrogen bonds were designed, synthesized, and characterized with respect to membrane permeability, water solubility, and lipophilicity. We find that changes in these properties depend on a subtle balance between the strength of the hydrogen bond interaction, geometry of the newly formed ring system, and the relative energies of the open and closed conformations in polar and unpolar environments. A number of general guidelines for medicinal chemists emerge from this study.

  8. Bond additivity corrections for quantum chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    C. F. Melius; M. D. Allendorf

    1999-04-01

    In the 1980's, the authors developed a bond-additivity correction procedure for quantum chemical calculations called BAC-MP4, which has proven reliable in calculating the thermochemical properties of molecular species, including radicals as well as stable closed-shell species. New Bond Additivity Correction (BAC) methods have been developed for the G2 method, BAC-G2, as well as for a hybrid DFT/MP2 method, BAC-Hybrid. These BAC methods use a new form of BAC corrections, involving atomic, molecular, and bond-wise additive terms. These terms enable one to treat positive and negative ions as well as neutrals. The BAC-G2 method reduces errors in the G2 method due to nearest-neighbor bonds. The parameters within the BAC-G2 method only depend on atom types. Thus the BAC-G2 method can be used to determine the parameters needed by BAC methods involving lower levels of theory, such as BAC-Hybrid and BAC-MP4. The BAC-Hybrid method should scale well for large molecules. The BAC-Hybrid method uses the differences between the DFT and MP2 as an indicator of the method's accuracy, while the BAC-G2 method uses its internal methods (G1 and G2MP2) to provide an indicator of its accuracy. Indications of the average error as well as worst cases are provided for each of the BAC methods.

  9. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  10. Allenes and computational chemistry: from bonding situations to reaction mechanisms.

    Science.gov (United States)

    Soriano, Elena; Fernández, Israel

    2014-05-07

    The present review is focused on the application of computational/theoretical methods to the wide and rich chemistry of allenes. Special emphasis is made on the interplay and synergy between experimental and computational methodologies, rather than on recent developments in methods and algorithms. Therefore, this review covers the state-of-the-art applications of computational chemistry to understand and rationalize the bonding situation and vast reactivity of allenes. Thus, the contents of this review span from the most fundamental studies on the equilibrium structure and chirality of allenes to recent advances in the study of complex reaction mechanisms involving allene derivatives in organic and organometallic chemistry.

  11. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    Science.gov (United States)

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.

  12. The roles of dihydrogen bonds in amine borane chemistry.

    Science.gov (United States)

    Chen, Xuenian; Zhao, Ji-Cheng; Shore, Sheldon G

    2013-11-19

    A dihydrogen bond (DHB) is an electrostatic interaction between a protonic hydrogen and a hydridic hydrogen. Over the past two decades, researchers have made significant progress in the identification and characterization of DHBs and their properties. In comparison with conventional hydrogen bonds (HBs), which have been widely used in catalysis, molecular recognition, crystal engineering, and supramolecular synthesis, chemists have only applied DHBs in very limited ways. Considering that DHBs and conventional HBs have comparable strength, DHBs could be more widely applied in chemistry. Over the past several years, we have explored the impact of DHBs on amine borane chemistry and the syntheses and characterization of amine boranes and ammoniated metal borohydrides for hydrogen storage. Through systematic computational and experimental investigations, we found that DHBs play a dominant role in dictating the reaction pathways (and thus different products) of amine boranes where oppositely charged hydrogens coexist for DHB formation. Through careful experiments, we observed, for the first time, a long-postulated reaction intermediate, ammonia diborane (AaDB), whose behavior is essential to mechanistic understanding of the formation of the diammoniate of diborane (DADB) in the reaction of ammonia (NH3) with tetrahydrofuran borane (THF·BH3). The formation of DADB has puzzled the boron chemistry community for decades. Mechanistic insight enabled us to develop facile syntheses of aminodiborane (ADB), ammonia borane (AB), DADB, and an inorganic butane analog NH3BH2NH2BH3 (DDAB). Our examples, together with those in the literature, reinforce the fact that DHB formation and subsequent molecular hydrogen elimination are a viable approach for creating new covalent bonds and synthesizing new materials. We also review the strong effects of DHBs on the stability of conformers and the hydrogen desorption temperatures of boron-nitrogen compounds. We hope that this Account will

  13. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    OpenAIRE

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-01-01

    The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control gr...

  14. The EPOS Automated Selective Chemistry Analyzer evaluated.

    Science.gov (United States)

    Moses, G C; Lightle, G O; Tuckerman, J F; Henderson, A R

    1986-01-01

    We evaluated the analytical performance of the EPOS (Eppendorf Patient Oriented System) Automated Selective Chemistry Analyzer, using the following tests for serum analytes: alanine and aspartate aminotransferases, lactate dehydrogenase, creatine kinase, gamma-glutamyltransferase, alkaline phosphatase, and glucose. Results from the EPOS correlated well with those from comparison instruments (r greater than or equal to 0.990). Precision and linearity limits were excellent for all tests; linearity of the optical and pipetting systems was satisfactory. Reagent carryover was negligible. Sample-to-sample carryover was less than 1% for all tests, but only lactate dehydrogenase was less than the manufacturer's specified 0.5%. Volumes aspirated and dispensed by the sample and reagent II pipetting systems differed significantly from preset values, especially at lower settings; the reagent I system was satisfactory at all volumes tested. Minimal daily maintenance and an external data-reduction system make the EPOS a practical alternative to other bench-top chemistry analyzers.

  15. Enhancing prospective chemistry teachers cognitive structures in the topics of bonding and hybridization by internet-assisted chemistry applications

    Directory of Open Access Journals (Sweden)

    Özge Özyalçın Oskay, Sinem Dinçol

    2011-08-01

    Full Text Available The purpose of this study is to determine the effects of internet-assisted chemistry applications on prospective chemistry teachers’ cognitive structures in the topics of bonding and hybridization. The sample of the study consisted of 36 prospective chemistry teachers attending Hacettepe University, Faculty of Education, the Department of Chemistry Education in 2010-2011 academic year and taking Basic Chemistry I lesson. In the study, students were separated into experimental and control groups according to their pre-cognitive structures. Students were requested to answer two open ended questions. Answers by each student were gathered and evaluated by flow map method. “Bonding and hybridization” topics were taught to control group with traditional teaching method and to experimental group besides traditional method internet-assisted applications were conducted. The same open-ended questions were given to both groups and their cognitive structures were examined once more. The differences between control and experimental groups’ cognitive structures were examined. A significant difference was identified in favour of experimental group (p<0, 05. The mean score of the Experimental group was X=19.94, and the mean score of the Control group was X=13.88. In addition, subsequent to internet assisted chemistry applications differences in terms of concepts and descriptions in prospective chemistry teachers’ in experimental and control group cognitive structure have been determined. When post flow maps of prospective chemistry teachers in experimental group, on whom internet assisted chemistry applications were made, are formed, it has been determined that there are more statements about hybridization, hybridization types, molecule geometry and bond angles compared to control grou

  16. Gap measurement and bond strength of five selected adhesive systems bonded to tooth structure.

    Science.gov (United States)

    Arbabzadeh, F; Gage, J P; Young, W G; Shahabi, S; Swenson, S M

    1998-06-01

    The ability of a restorative material to bond and seal the interface with tooth structure is perhaps the most significant factor in determining resistance to marginal caries. Thus, the quality and durability of marginal seal and bond strength are major considerations in the selection of restorative materials. The purpose of this study was to compare the bond strength and marginal discrepancies of five adhesive systems: All-Bond 2, Clearfil Liner Bond, KB 200, ProBond and AELITE Bond. Twenty-five buccal and 25 lingual cavities were prepared in 25 caries-free extracted molar teeth, giving 10 cavities for each of the 5 adhesive systems. All teeth were restored with the resin composite Pertac Hybrid, or PRISMA Total Performance Hybrid with their appropriate adhesive systems. After restoration, the teeth were thermocycled, were stained with a 1.5% aqueous solution of a procion dye (reactive orange 14) and sectioned coronally with a saw microtome. Three sections of 200 microns thickness were prepared from each restoration which were then examined microscopically to measure marginal gap widths using a confocal tandem microscope. Shear bond strength measurements were carried out on the dentine bond using a universal testing machine. The All-Bond 2 adhesive system was found to have higher shear bond strength and to have the least gap width at the cementodentinal margin.

  17. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-01-18

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field.

  18. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    Science.gov (United States)

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  19. Selected new developments in computational chemistry.

    Science.gov (United States)

    Darden, T A; Bartolotti, L; Pedersen, L G

    1996-01-01

    Molecular dynamics is a general technique for simulating the time-dependent properties of molecules and their environments. Quantum mechanics, as applied to molecules or clusters of molecules, provides a prescription for predicting properties exactly (in principle). It is reasonable to expect that both will have a profound effect on our understanding of environmental chemistry in the future. In this review, we consider several recent advances and applications in computational chemistry. Images Figure 1. PMID:8722111

  20. An Iron-Catalyzed Bond-Making/Bond-Breaking Cascade Merges Cycloisomerization and Cross-Coupling Chemistry.

    Science.gov (United States)

    Echeverria, Pierre-Georges; Fürstner, Alois

    2016-09-05

    Treatment of readily available enynes with alkyl-Grignard reagents in the presence of catalytic amounts of Fe(acac)3 engenders a remarkably facile and efficient reaction cascade that results in the net formation of two new C-C bonds while a C-Z bond in the substrate backbone is broken. Not only does this new manifold lend itself to the extrusion of heteroelements (Z=O, NR), but it can even be used for the cleavage of activated C-C bonds. The reaction likely proceeds via metallacyclic intermediates, the iron center of which gains ate character before reductive elimination occurs. The overall transformation represents a previously unknown merger of cycloisomerization and cross-coupling chemistry. It provides ready access to highly functionalized 1,3-dienes comprising a stereodefined tetrasubstituted alkene unit, which are difficult to make by conventional means.

  1. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    Science.gov (United States)

    2015-06-23

    spectroscopy, complemented by computational quantum chemistry. Recent experiments have investigated the carbonyl complexes of Ti, Zr, Hf , Sc, Y and...16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT unlimited 18. NUMBER OF PAGES 9 19a. NAME OF RESPONSIBLE PERSON Michael A. Duncan a...information. 15. SUBJECT TERMS. Key words or phrases identifying major concepts in the report. 16. SECURITY CLASSIFICATION. Enter security classification in

  2. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Søren

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...

  3. Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2013-01-01

    Density functional theory (DFT) is today the unchallenged tool for routinely obtaining molecular information on chemical stability, reactivity, and electronic structure across the Periodic Table. The chemical bond is the fundamental unit of molecular structure and reactivity, and thus, large-scal......-blocks. Physical effects and ingredients in functionals, their systematic errors, and approaches to deal with them are discussed, in order to identify broadly applicable methods for inorganic chemistry.......-scale DFT studies of inorganic systems in catalysis and bioinorganic chemistry rely directly on the ability to balance correlation effects in the involved bonds across the s-, p-, and d-blocks. This review concerns recent efforts to describe such bonds accurately and consistently across the s-, p-, and d...

  4. Selective host molecules obtained by dynamic adaptive chemistry.

    Science.gov (United States)

    Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D

    2014-02-17

    Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry.

  5. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple.

    Science.gov (United States)

    Guo, Hua; Jiang, Bin

    2014-12-16

    CONSPECTUS: Mode specificity is defined by the differences in reactivity due to excitations in various reactant modes, while bond selectivity refers to selective bond breaking in a reaction. These phenomena not only shed light on reaction dynamics but also open the door for laser control of reactions. The existence of mode specificity and bond selectivity in a reaction indicates that not all forms of energy are equivalent in promoting the reactivity, thus defying a statistical treatment. They also allow the enhancement of reactivity and control product branching ratio. As a result, they are of central importance in chemistry. This Account discusses recent advances in our understanding of these nonstatistical phenomena. In particular, the newly proposed sudden vector projection (SVP) model and its applications are reviewed. The SVP model is based on the premise that the collision in many direct reactions is much faster than intramolecular vibrational energy redistribution in the reactants. In such a sudden limit, the coupling of a reactant mode with the reaction coordinate at the transition state, which dictates its ability to promote the reaction, is approximately quantified by the projection of the former onto the latter. The SVP model can be considered as a generalization of the venerable Polanyi's rules, which are based on the location of the barrier. The SVP model is instead based on properties of the saddle point and as a result capable of treating the translational, rotational, and multiple vibrational modes in reactions involving polyatomic reactants. In case of surface reactions, the involvement of surface atoms can also be examined. Taking advantage of microscopic reversibility, the SVP model has also been used to predict product energy disposal in reactions. This simple yet powerful rule of thumb has been successfully demonstrated in many reactions including uni- and bimolecular reactions in the gas phase and gas-surface reactions. The success of the SVP

  6. Two-pulse laser control of bond-selective fragmentation

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1996-01-01

    We elaborate on a two-pulse (pump-pump) laser control scheme for selective bond-breaking in molecules [Amstrup and Henriksen, J. Chem. Phys. 97, 8285 (1992)]. We show, in particular, that with this scheme one can overcome the obstacle of intramolecular vibrational relaxation. As an example, we co...

  7. Theoretical Chemistry Study of the Hydrogen-bonded Interaction between Acylamine and Chloromethane Compounds

    Institute of Scientific and Technical Information of China (English)

    GE Qing-Yu; WANG Hai-Jun; CHEN Jian-Hua

    2005-01-01

    The hydrogen-bonded interaction between acylamine and chloromethane was studied using theoretical calculation methods. Looking the interaction system as a hydrogen-bonded complex, the geometric optimization of the interaction system was performed with HF and B3LYP methods at 6-311++G** level. Stable structures of these complexes were obtained. Binding energies and some other physical chemistry parameters of them were computed and compared. According to the calculation results, it can be identified that DMA (DMF or DEF) can form stable complex with chloromethane by the hydrogen-bonded interaction between them. The stable orders of these hydrogen-bonded complexes were obtained and described as: DMF-CHCl3>DMF-CH2Cl2>DMF-CH3Cl, DEF-CHCl3>DEF-CH2Cl2>DEF-CH3Cl, DMA-CHCl3>DMA-CH2Cl2>DMA-CH3Cl, respectively.

  8. Site-selective and stereoselective functionalization of unactivated C-H bonds

    Science.gov (United States)

    Liao, Kuangbiao; Negretti, Solymar; Musaev, Djamaladdin G.; Bacsa, John; Davies, Huw M. L.

    2016-05-01

    The laboratory synthesis of complex organic molecules relies heavily on the introduction and manipulation of functional groups, such as carbon-oxygen or carbon-halogen bonds; carbon-hydrogen bonds are far less reactive and harder to functionalize selectively. The idea of C-H functionalization, in which C-H bonds are modified at will instead of the functional groups, represents a paradigm shift in the standard logic of organic synthesis. For this approach to be generally useful, effective strategies for site-selective C-H functionalization need to be developed. The most practical solutions to the site-selectivity problem rely on either intramolecular reactions or the use of directing groups within the substrate. A challenging, but potentially more flexible approach, would be to use catalyst control to determine which site in a particular substrate would be functionalized. Here we describe the use of dirhodium catalysts to achieve highly site-selective, diastereoselective and enantioselective C-H functionalization of n-alkanes and terminally substituted n-alkyl compounds. The reactions proceed in high yield, and functional groups such as halides, silanes and esters are compatible with this chemistry. These studies demonstrate that high site selectivity is possible in C-H functionalization reactions without the need for a directing or anchoring group present in the molecule.

  9. Fine Control over Site and Substrate Selectivity in Hydrogen Atom Transfer-Based Functionalization of Aliphatic C-H Bonds.

    Science.gov (United States)

    Salamone, Michela; Carboni, Giulia; Bietti, Massimo

    2016-10-07

    The selective functionalization of unactivated aliphatic C-H bonds over intrinsically more reactive ones represents an ongoing challenge of synthetic chemistry. Here we show that in hydrogen atom transfer (HAT) from the aliphatic C-H bonds of alkane, ether, alcohol, amide, and amine substrates to the cumyloxyl radical (CumO(•)) fine control over site and substrate selectivity is achieved by means of acid-base interactions. Protonation of the amines and metal ion binding to amines and amides strongly deactivates the C-H bonds of these substrates toward HAT to CumO(•), providing a powerful method for selective functionalization of unactivated or intrinsically less reactive C-H bonds. With 5-amino-1-pentanol, site-selectivity has been drastically changed through protonation of the strongly activating NH2 group, with HAT that shifts to the C-H bonds that are adjacent to the OH group. In the intermolecular selectivity studies, trifluoroacetic acid, Mg(ClO4)2, and LiClO4 have been employed in a orthogonal fashion for selective functionalization of alkane, ether, alcohol, and amide (or amine) substrates in the presence of an amine (or amide) one. Ca(ClO4)2, that promotes deactivation of amines and amides by Ca(2+) binding, offers, moreover, the opportunity to selectively functionalize the C-H bonds of alkane, ether, and alcohol substrates in the presence of both amines and amides.

  10. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  11. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon–hydrogen bonds

    KAUST Repository

    Wang, Liang

    2015-04-22

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen.

  12. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, D., E-mail: atmol1@tifr.res.in; Dharmadhikari, A. K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Dota, K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); Dey, D.; Tiwari, A. K. [Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 (India); Dharmadhikari, J. A. [Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); De, S. [Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata 700 064 (India); Vasa, P. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O–H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD{sup +}, and HOD{sup 2+} and explorations of the dissociation limits resulting from either O–H or O–D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  13. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses.

    Science.gov (United States)

    Mathur, D; Dota, K; Dey, D; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; De, S; Vasa, P

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD(+), and HOD(2+) and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  14. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    Science.gov (United States)

    Mathur, D.; Dota, K.; Dey, D.; Tiwari, A. K.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; De, S.; Vasa, P.

    2015-12-01

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD+, and HOD2+ and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  15. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  16. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  17. A HYDROGEN BONDING ASSISTED CATALYST SCREENED OUT VIA COMBINATORIAL CHEMISTRY STRATEGY

    Institute of Scientific and Technical Information of China (English)

    XUMancai; OUZhize; 等

    2000-01-01

    Possibilities for enhancement of catalytic reaction rate by combining phase transfer catalysis and hydrogen bonding of the catalyst with the substrate and reagent were studied.A phase transfer catalyst library with sixty polystyrene-supported quaternary ammonium salt catalysts was synthesized.The reduction of acetophenone by NaBH4 was used as the probing reaction to select out the ost active catalyst in the library by using iterative method.which was the gel-type triethanolamine aminsating strongly asic anion exchange resin with the crosslinking degeree of 2% A hydrogen bonding assisted catalytic mechanism was proposed to explain the high catalytic activity of the catalyst.

  18. Unstable, metastable, or stable halogen bonding interaction involving negatively charged donors? A statistical and computational chemistry study.

    Science.gov (United States)

    Yang, Zhuo; Xu, Zhijian; Liu, Yingtao; Wang, Jinan; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang

    2014-12-11

    The noncovalent halogen bonding could be attributed to the attraction between the positively charged σ-hole and a nucleophile. Quantum mechanics (QM) calculation indicated that the negatively charged organohalogens have no positively charged σ-hole on their molecular surface, leading to a postulation of repulsion between negatively charged organohalogens and nucleophiles in vacuum. However, PDB survey revealed that 24% of the ligands with halogen bonding geometry could be negatively charged. Moreover, 36% of ionizable drugs in CMC (Comprehensive Medicinal Chemistry) are possibly negatively charged at pH 7.0. QM energy scan showed that the negatively charged halogen bonding is probably metastable in vacuum. However, the QM calculated bonding energy turned negative in various solvents, suggesting that halogen bonding with negatively charged donors should be stable in reality. Indeed, QM/MM calculation on three crystal structures with negatively charged ligands revealed that the negatively charged halogen bonding was stable. Hence, we concluded that halogen bonding with negatively charged donors is unstable or metastable in vacuum but stable in protein environment, and possesses similar geometric and energetic characteristics as conventional halogen bonding. Therefore, negatively charged organohalogens are still effective halogen bonding donors for medicinal chemistry and other applications.

  19. Selectivity in analytical chemistry: two interpretations for univariate methods.

    Science.gov (United States)

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-01-01

    Selectivity is extremely important in analytical chemistry but its definition is elusive despite continued efforts by professional organizations and individual scientists. This paper shows that the existing selectivity concepts for univariate analytical methods broadly fall in two classes: selectivity concepts based on measurement error and concepts based on response surfaces (the response surface being the 3D plot of the univariate signal as a function of analyte and interferent concentration, respectively). The strengths and weaknesses of the different definitions are analyzed and contradictions between them unveiled. The error based selectivity is very general and very safe but its application to a range of samples (as opposed to a single sample) requires the knowledge of some constraint about the possible sample compositions. The selectivity concepts based on the response surface are easily applied to linear response surfaces but may lead to difficulties and counterintuitive results when applied to nonlinear response surfaces. A particular advantage of this class of selectivity is that with linear response surfaces it can provide a concentration independent measure of selectivity. In contrast, the error based selectivity concept allows only yes/no type decision about selectivity.

  20. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia

    CERN Document Server

    Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik

    2003-01-01

    The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...

  1. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    Science.gov (United States)

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions.

  2. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-03-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 predictions generally agree better with the observed data than the CB05TU predictions. RACM2 enhances ozone for all ambient levels leading to higher bias at low (70 ppbv concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. While RACM2 enhances ozone and secondary aerosols by relatively large margins, control strategies developed for ozone or fine particles using the two mechanisms do not differ appreciably.

  3. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-10-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.

  4. Organic chemistry. Functionalization of C(sp3)-H bonds using a transient directing group.

    Science.gov (United States)

    Zhang, Fang-Lin; Hong, Kai; Li, Tuan-Jie; Park, Hojoon; Yu, Jin-Quan

    2016-01-15

    Proximity-driven metalation has been extensively exploited to achieve reactivity and selectivity in carbon-hydrogen (C-H) bond activation. Despite the substantial improvement in developing more efficient and practical directing groups, their stoichiometric installation and removal limit efficiency and, often, applicability as well. Here we report the development of an amino acid reagent that reversibly reacts with aldehydes and ketones in situ via imine formation to serve as a transient directing group for activation of inert C-H bonds. Arylation of a wide range of aldehydes and ketones at the β or γ positions proceeds in the presence of a palladium catalyst and a catalytic amount of amino acid. The feasibility of achieving enantioselective C-H activation reactions using a chiral amino acid as the transient directing group is also demonstrated.

  5. Investigation of hydrogen bonded molecular solids by diffraction, spectroscopy, and computational chemistry

    Science.gov (United States)

    Hudson, Matthew R.

    The nature of hydrogen-bonding interactions in the solid state is examined through the investigation of molecular crystals by incoherent inelastic neutron scattering (INS) spectroscopy, Raman spectroscopy, X-ray and neutron diffraction, and computational chemistry. The molecular solids studied range from small organic molecules to larger inorganic acid salts. Hydrogen bonding is the primary mode of interaction in the solid state for each of the systems studied. INS spectra were collected at 25 K for each molecular solid and the motions of the hydrogen atoms assigned. Raman spectra were collected at 78 and 298 K to aid in the molecular mode assignments of the INS spectra and to examine possible phase changes as a function of temperature. Neutron diffraction was employed, when possible, to accurately locate the hydrogen atom positions, and X-ray diffraction was performed to obtain accurate unit cell dimensions and to obtain initial characterizations of the samples. The diffraction structures served as the basis for solid-state density functional theory (DFT) calculations. DFT simulations were used to aid in the vibrational normal mode assignments, to investigate possible solid-phase transitions, and as a test of the limits of basis sets and the available DFT theory. Of the six molecular solids studied, several important observations were made: (1) the determination of a structural phase transition in L-alanine alaninium nitrate by both spectroscopic and theoretical methods, (2) the structure of picolinic acid was elucidated at 25 K and room-temperature by the combination of INS and theory, (3) glycine lithium sulfate was found to be a useful test of DFT to accurately optimize the structure and calculate the normal modes of a complex 3D network of hydrogen-bonding interactions, (4) nicotinic acid was found to be a useful test of one dimensional hydrogen-bonding interactions with pi-stacking interactions dominating the orthogonal directions, and (5) parabanic acid

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. Bias-controlled selective excitation of vibrational modes in molecular junctions: a route towards mode-selective chemistry.

    Science.gov (United States)

    Volkovich, Roie; Härtle, Rainer; Thoss, Michael; Peskin, Uri

    2011-08-28

    We show that individual vibrational modes in single-molecule junctions with asymmetric molecule-lead coupling can be selectively excited by applying an external bias voltage. Thereby, a non-statistical distribution of vibrational energy can be generated, that is, a mode with a higher frequency can be stronger excited than a mode with a lower frequency. This is of particular interest in the context of mode-selective chemistry, where one aims to break specific (not necessarily the weakest) chemical bond in a molecule. Such mode-selective vibrational excitation is demonstrated for two generic model systems representing asymmetric molecular junctions and/or scanning tunneling microscopy experiments. To this end, we employ two complementary theoretical approaches, a nonequilibrium Green's function approach and a master equation approach. The comparison of both methods reveals good agreement in describing resonant electron transport through a single-molecule contact, where differences between the approaches highlight the role of non-resonant transport processes, in particular co-tunneling and off-resonant electron-hole pair creation processes.

  8. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    Science.gov (United States)

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  9. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    Energy Technology Data Exchange (ETDEWEB)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.; Li, Wei-Li; Romanescu, Constantin; Wang, Lai S.; Boldyrev, Alexander I.

    2014-04-15

    /C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  10. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  11. Template-Directed meta-Selective Olefination of Aryl C–H Bonds

    OpenAIRE

    2015-01-01

    Authors: Jinquan Yu ### Abstract The most common bond in many organic compounds is the C–H bond. Hence, it is a great challenge to selectively cleave a particular C–H bond in the presence of multiple ones. One of most widely used approach to this problem is the use of -chelating directing groups (1). However, the insertion of the transition metal is strictly restricted to the ortho-C–H bond through a six- or seven-membered cyclic pre-transition state (TS). Although many strategies ha...

  12. The chemistry of simple alkene molecules on Si(100)c(4 × 2): The mechanism of cycloaddition and their selectivities

    Science.gov (United States)

    Akagi, Kazuto; Yoshinobu, Jun

    2016-10-01

    The chemistry of simple alkene molecules on the Si(100) surface is reviewed with the newly-produced visual presentation by theoretical calculations. The early pioneering studies by the Kyoto Group and Pittsburgh group reported the di-σ bond formation and the precursor-mediated chemisorption for acetylene and ethylene on Si(100), respectively. Thereafter, these studies have been stimulating various studies of organic molecules on Si surfaces. Our recent studies have observed the precursor states for alkene chemisorption and elucidated the microscopic mechanisms of the di-σ bond formation (cycloaddition) with the help of theoretical calculations; the site-, stereo- and regio-selective chemisorption of simple alkene molecules on Si(100)c(4 × 2) has been established.

  13. Rocky Mountain snowpack chemistry at selected sites for 2001

    Science.gov (United States)

    Ingersoll, George P.; Mast, M. Alisa; Clow, David W.; Nanus, Leora; Campbell, Donald H.; Handran, Heather

    2003-01-01

    Because regional-scale atmospheric deposition data in the Rocky Mountains are sparse, a program was designed by the U.S. Geological Survey, in cooperation with the National Park Service, U.S. Department of Agriculture Forest Service, and other agencies, to more thoroughly determine the chemical composition of precipitation and to identify sources of atmospherically deposited contaminants in a network of high-elevation sites. Samples of seasonal snowpacks at 57 geographically distributed sites, in a regional network from New Mexico to Montana, were collected and analyzed for major ions (including ammonium, nitrate, and sulfate), alkalinity, and dissolved organic carbon during 2001. Sites selected in this report have been sampled annually since 1993, enabling identification of increases or decreases in chemical concentrations from year to year. Spatial patterns in snowpack-chemical data for concentrations of ammonium, nitrate, and sulfate indicate that concentrations of these acid precursors in less developed areas of the region are lower than concentrations in the heavily developed areas. Results for the 2001 snowpack-chemistry analyses, however, indicate increases in concentrations of ammonium and nitrate in particular at sites where past concentrations typically were lower. Since 1993, concentrations of nitrate and sulfate were highest from snowpack samples in northern Colorado that were collected from sites adjacent to the Denver metropolitan area to the east and the coal-fired powerplants to the west. In 2001, relatively high concentrations of nitrate (12.3 to 23.0 microequivalents per liter (?eq/L) and sulfate (7.7 to 12.5 ?eq/L) were detected in Montana and Wyoming. Ammonium concentrations were highest in north-central Colorado (14.5 to 16.9 ?eq/L) and southwestern Montana (12.8 to 14.2 ?eq/L).

  14. Solutions to selected exercise problems in quantum chemistry and spectroscopy

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162).......Suggested solutions to a number of problems from the collection "Exercise Problems in Quantum Chemistry and Spectroscopy", previously published on ResearchGate (DOI: 10.13140/RG.2.1.4024.8162)....

  15. Mode specificity in bond selective reactions F + HOD → HF + OD and DF + OH

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2015-05-07

    The influence of vibrational excitations in the partially deuterated water (HOD) reactant on its bond selective reactions with F is investigated using a full-dimensional quantum wave packet method on an accurate global potential energy surface. Despite the decidedly early barrier of the F + H{sub 2}O reaction, reactant vibrational excitation in each local stretching mode of HOD is found to significantly enhance the reaction which breaks the excited bond. In the mean time, excitation of the HOD bending mode also enhances the reaction, but with much lower efficacy and weaker bond selectivity. Except for low collision energies, all vibrational modes are more effective in promoting the bond selective reactions than the translational energy. These results are compared with the predictions of the recently proposed sudden vector projection model.

  16. Understanding The Role of Mate Selection Processes in Couples' Pair-Bonding Behavior.

    Science.gov (United States)

    Horwitz, Briana N; Reynolds, Chandra A; Walum, Hasse; Ganiban, Jody; Spotts, Erica L; Reiss, David; Lichtenstein, Paul; Neiderhiser, Jenae M

    2016-01-01

    Couples are similar in their pair-bonding behavior, yet the reasons for this similarity are often unclear. A common explanation is phenotypic assortment, whereby individuals select partners with similar heritable characteristics. Alternatively, social homogamy, whereby individuals passively select partners with similar characteristic due to shared social backgrounds, is rarely considered. We examined whether phenotypic assortment and/or social homogamy can contribute to mate similarity using a twin-partner design. The sample came from the Twin and Offspring Study in Sweden, which included 876 male and female monozygotic and same-sex dizygotic twins plus their married or cohabitating partners. Results showed that variance in pair-bonding behavior was attributable to genetic and nonshared environmental factors. Furthermore, phenotypic assortment accounted for couple similarity in pair-bonding behavior. This suggests that individuals' genetically based characteristics are involved in their selection of mates with similar pair-bonding behavior.

  17. Mode specificity in bond selective reactions F + HOD → HF + OD and DF + OH

    Science.gov (United States)

    Song, Hongwei; Guo, Hua

    2015-05-01

    The influence of vibrational excitations in the partially deuterated water (HOD) reactant on its bond selective reactions with F is investigated using a full-dimensional quantum wave packet method on an accurate global potential energy surface. Despite the decidedly early barrier of the F + H2O reaction, reactant vibrational excitation in each local stretching mode of HOD is found to significantly enhance the reaction which breaks the excited bond. In the mean time, excitation of the HOD bending mode also enhances the reaction, but with much lower efficacy and weaker bond selectivity. Except for low collision energies, all vibrational modes are more effective in promoting the bond selective reactions than the translational energy. These results are compared with the predictions of the recently proposed sudden vector projection model.

  18. Molecular bond selective x-ray scattering for nanoscale analysisof soft matter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E.; Koprinarov, I.; Landes, B.G.; Lyons, J.; Kern,B.J.; Devon, M.J.; Gullikson, E.M.; Kortright, J.B.

    2005-05-26

    We introduce a new technique using resonant soft x-ray scattering for characterizing heterogeneous chemical structure at nanometer length scales in polymers, biological material, and other soft matter. Resonant enhancements bring new contrast mechanisms and increased sensitivity to bridge a gap between bond-specific contrast in chemical sensitive imaging and the higher spatial resolution of traditional small-angle scattering techniques. We illustrate sensitivity to chemical bonding with the resonant scattering near the carbon K edge from latex spheres of differing chemistry and sizes. By tuning to x-ray absorption resonances associated with particular carbon-carbon or carbon-oxygen bonds we can isolate the scattering from different phases in a 2-phase mixture. We then illustrate this increased scattering contrast with a study of the templating process to form nanometer scale pores in 100 nm thick polymer films.

  19. Investigating Hydrogen Bonding in Phenol Using Infrared Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Fedor, Anna M.; Toda, Megan J.

    2014-01-01

    The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…

  20. Principles and applications of halogen bonding in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Wilcken, Rainer; Zimmermann, Markus O; Lange, Andreas; Joerger, Andreas C; Boeckler, Frank M

    2013-02-28

    Halogen bonding has been known in material science for decades, but until recently, halogen bonds in protein-ligand interactions were largely the result of serendipitous discovery rather than rational design. In this Perspective, we provide insights into the phenomenon of halogen bonding, with special focus on its role in drug discovery. We summarize the theoretical background defining its strength and directionality, provide a systematic analysis of its occurrence and interaction geometries in protein-ligand complexes, and give recent examples where halogen bonding has been successfully harnessed for lead identification and optimization. In light of these data, we discuss the potential and limitations of exploiting halogen bonds for molecular recognition and rational drug design.

  1. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.

    Science.gov (United States)

    Zhang, Xinhao; Chung, Lung Wa; Wu, Yun-Dong

    2016-06-21

    With new advances in theoretical methods and increased computational power, applications of computational chemistry are becoming practical and routine in many fields of chemistry. In organic chemistry, computational chemistry plays an indispensable role in elucidating reaction mechanisms and the origins of various selectivities, such as chemo-, regio-, and stereoselectivities. Consequently, mechanistic understanding improves synthesis and assists in the rational design of new catalysts. In this Account, we present some of our recent works to illustrate how computational chemistry provides new mechanistic insights for improvement of the selectivities of several organic reactions. These examples include not only explanations for the existing experimental observations, but also predictions which were subsequently verified experimentally. This Account consists of three sections discuss three different kinds of selectivities. The first section discusses the regio- and stereoselectivities of hydrosilylations of alkynes, mainly catalyzed by [Cp*Ru(MeCN)3](+) or [CpRu(MeCN)3](+). Calculations suggest a new mechanism that involves a key ruthenacyclopropene intermediate. This mechanism not only explains the unusual Markovnikov regio-selectivity and anti-addition stereoselectivity observed by Trost and co-workers, but also motivated further experimental investigations. New intriguing experimental observations and further theoretical studies led to an extension of the reaction mechanism. The second section includes three cases of meta-selective C-H activation of aryl compounds. In the case of Cu-catalyzed selective meta-C-H activation of aniline, a new mechanism that involves a Cu(III)-Ar-mediated Heck-like transition state, in which the Ar group acts as an electrophile, was proposed. This mechanism predicted a higher reactivity for more electron-deficient Ar groups, which was supported by experiments. For two template-mediated, meta-selective C-H bond activations catalyzed by

  2. Topic Sequence and Emphasis Variability of Selected Organic Chemistry Textbooks

    Science.gov (United States)

    Houseknecht, Justin B.

    2010-01-01

    Textbook choice has a significant effect upon course success. Among the factors that influence this decision, two of the most important are material organization and emphasis. This paper examines the sequencing of 19 organic chemistry topics, 21 concepts and skills, and 7 biological topics within nine of the currently available organic textbooks.…

  3. Variable selectivity of the Hitachi chemistry analyzer chloride ion-selective electrode toward interfering ions.

    Science.gov (United States)

    Wang, T; Diamandis, E P; Lane, A; Baines, A D

    1994-02-01

    Chloride measurements by ion-selective electrodes are vulnerable to interference by anions such as iodide, thiocyanate, nitrate, and bromide. We have found that the degree of interference of these anions on the Hitachi chemistry analyzer chloride electrode varies from electrode to electrode and this variation can even occur within the same lot of membrane. This variation is not dependent upon the length of time the cartridge has been in the analyzer because no correlation existed between the usage time and the electrode response to interfering ions. Neither is this variation due to the deterioration of the electrode because all electrodes tested had calibration slopes within the manufacturer's specification. Our study, however, showed that even after repeated exposure to a plasma sample containing 2 mM thiocyanate, the chloride electrode was still able to accurately measure the chloride in plasma without thiocyanate, thus confirming that a carryover effect does not exist from a previous thiocyanate-containing sample.

  4. Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group

    Science.gov (United States)

    Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin

    2016-09-01

    The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.

  5. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  6. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with Forecaster, a novel platform for drug discovery.

    Science.gov (United States)

    Therrien, Eric; Englebienne, Pablo; Arrowsmith, Andrew G; Mendoza-Sanchez, Rodrigo; Corbeil, Christopher R; Weill, Nathanael; Campagna-Slater, Valérie; Moitessier, Nicolas

    2012-01-23

    As part of a large medicinal chemistry program, we wish to develop novel selective estrogen receptor modulators (SERMs) as potential breast cancer treatments using a combination of experimental and computational approaches. However, one of the remaining difficulties nowadays is to fully integrate computational (i.e., virtual, theoretical) and medicinal (i.e., experimental, intuitive) chemistry to take advantage of the full potential of both. For this purpose, we have developed a Web-based platform, Forecaster, and a number of programs (e.g., Prepare, React, Select) with the aim of combining computational chemistry and medicinal chemistry expertise to facilitate drug discovery and development and more specifically to integrate synthesis into computer-aided drug design. In our quest for potent SERMs, this platform was used to build virtual combinatorial libraries, filter and extract a highly diverse library from the NCI database, and dock them to the estrogen receptor (ER), with all of these steps being fully automated by computational chemists for use by medicinal chemists. As a result, virtual screening of a diverse library seeded with active compounds followed by a search for analogs yielded an enrichment factor of 129, with 98% of the seeded active compounds recovered, while the screening of a designed virtual combinatorial library including known actives yielded an area under the receiver operating characteristic (AU-ROC) of 0.78. The lead optimization proved less successful, further demonstrating the challenge to simulate structure activity relationship studies.

  7. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  8. Bond selectivity in electron-induced reaction due to directed recoil on an anisotropic substrate

    Science.gov (United States)

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C.

    2016-12-01

    Bond-selective reaction is central to heterogeneous catalysis. In heterogeneous catalysis, selectivity is found to depend on the chemical nature and morphology of the substrate. Here, however, we show a high degree of bond selectivity dependent only on adsorbate bond alignment. The system studied is the electron-induced reaction of meta-diiodobenzene physisorbed on Cu(110). Of the adsorbate's C-I bonds, C-I aligned `Along' the copper row dissociates in 99.3% of the cases giving surface reaction, whereas C-I bond aligned `Across' the rows dissociates in only 0.7% of the cases. A two-electronic-state molecular dynamics model attributes reaction to an initial transition to a repulsive state of an Along C-I, followed by directed recoil of C towards a Cu atom of the same row, forming C-Cu. A similar impulse on an Across C-I gives directed C that, moving across rows, does not encounter a Cu atom and hence exhibits markedly less reaction.

  9. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    Science.gov (United States)

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  10. NMR Determination of Hydrogen Bond Thermodynamics in a Simple Diamide: A Physical Chemistry Experiment

    Science.gov (United States)

    Morton, Janine G.; Joe, Candice L.; Stolla, Massiel C.; Koshland, Sophia R.; Londergan, Casey H.; Schofield, Mark H.

    2015-01-01

    Variable temperature NMR spectroscopy is used to determine the ?H° and ?S° of hydrogen bond formation in a simple diamide. In this two- or three-day experiment, students synthesize N,N'-dimethylmalonamide, dimethylsuccinamide, dimethylglutaramide, or dimethyladipamide from methylamine and the corresponding diester (typically in 50% recrystallized…

  11. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family.

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    Full Text Available Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C, and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution.

  12. The C–F bond as a conformational tool in organic and biological chemistry

    Science.gov (United States)

    2010-01-01

    Summary Organofluorine compounds are widely used in many different applications, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. It has been recognised for many years that fluorine substitution can confer useful molecular properties such as enhanced stability and hydrophobicity. Another impact of fluorine substitution is to influence the conformations of organic molecules. The stereoselective introduction of fluorine atoms can therefore be exploited as a conformational tool for the synthesis of shape-controlled functional molecules. This review will begin by describing some general aspects of the C–F bond and the various conformational effects associated with C–F bonds (i.e. dipole–dipole interactions, charge–dipole interactions and hyperconjugation). Examples of functional molecules that exploit these conformational effects will then be presented, drawing from a diverse range of molecules including pharmaceuticals, organocatalysts, liquid crystals and peptides. PMID:20502650

  13. The C–F bond as a conformational tool in organic and biological chemistry

    Directory of Open Access Journals (Sweden)

    Luke Hunter

    2010-04-01

    Full Text Available Organofluorine compounds are widely used in many different applications, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. It has been recognised for many years that fluorine substitution can confer useful molecular properties such as enhanced stability and hydrophobicity. Another impact of fluorine substitution is to influence the conformations of organic molecules. The stereoselective introduction of fluorine atoms can therefore be exploited as a conformational tool for the synthesis of shape-controlled functional molecules. This review will begin by describing some general aspects of the C–F bond and the various conformational effects associated with C–F bonds (i.e. dipole–dipole interactions, charge–dipole interactions and hyperconjugation. Examples of functional molecules that exploit these conformational effects will then be presented, drawing from a diverse range of molecules including pharmaceuticals, organocatalysts, liquid crystals and peptides.

  14. Charge-assisted triel bonding interactions in solid state chemistry: A combined computational and crystallographic study

    Science.gov (United States)

    Bauzá, Antonio; García-Llinás, Xavier; Frontera, Antonio

    2016-12-01

    A combined energetic and geometric study of a series of triel bond complexes involving haloborane salts has been carried out at the M06-2X/def2-QZVPD level of theory. We have used 1-(dihaloboranyl)pyridin-1-ium compounds Py+BX2 (X = Cl, Br and I) as triel bond donors and Cl-, Br-, HCO2-, BF4- and ClO4- as electron donor moieties. In addition we have used Bader's theory of 'atoms in molecules' to further characterize the noncovalent interactions described herein. Finally, several examples were retrieved from the CSD (Cambridge Structural Database) in order to provide experimental support to the results presented in this work.

  15. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  16. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  17. Scandium(iii) triflate-promoted serine/threonine-selective peptide bond cleavage.

    Science.gov (United States)

    Ni, Jizhi; Sohma, Youhei; Kanai, Motomu

    2017-02-01

    The site-selective cleavage of peptide bonds is an important chemical modification that is useful not only for the structural determination of peptides, but also as an artificial modulator of peptide/protein function and properties. Here we report site-selective hydrolysis of peptide bonds at the Ser and Thr positions with a high conversion yield. This chemical cleavage relies on Sc(iii)-promoted N,O-acyl rearrangement and subsequent hydrolysis. The method is applicable to a broad scope of polypeptides with various functional groups, including a post-translationally modified peptide that is unsuitable for enzymatic hydrolysis. The system was further extended to site-selective cleavage of a native protein, Aβ1-42, which is closely related to the onset of Alzheimer's disease.

  18. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  19. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    Science.gov (United States)

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  20. Engineering novel cell surface chemistry for selective tumor cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bertozzi, C.R. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    A common feature of many different cancers is the high expression level of the two monosaccharides sialic acid and fucose within the context of cell-surface associated glycoconjugates. A correlation has been made between hypersialylation and/or hyperfucosylation and the highly metastatic phenotype. Thus, a targeting strategy based on sialic acid or fucose expression would be a powerful tool for the development of new cancer cell-selective therapies and diagnostic agents. We have discovered that ketone groups can be incorporated metabolically into cell-surface associated sialic acids. The ketone is can be covalently ligated with hydrazide functionalized proteins or small molecules under physiological conditions. Thus, we have discovered a mechanism to selectively target hydrazide conjugates to highly sialylated cells such as cancer cells. Applications of this technology to the generation of novel cancer cell-selective toxins and MRI contrast reagents will be discussed, in addition to progress towards the use of cell surface fucose residues as vehicles for ketone expression.

  1. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    Science.gov (United States)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-03

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.

  2. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    Science.gov (United States)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  3. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues.

    Science.gov (United States)

    Schapiro, Igor

    2016-05-19

    The effect of different conformations and substitutions on the photoisomerization of a retinal protonated Schiff base model is investigated by nonadiabatic molecular dynamics simulations. Three groups of retinal analogues are studied: (i) conformational isomers, (ii) methyl-substituted retinals, and (iii) C11-C12 bond locked retinals. In total 259 trajectories are calculated in the gas phase starting from different initial conditions. The effect on bond selectivity, the directionality of the isomerization, excited-state lifetime, and product distribution is derived from the ensemble of trajectories. Among the group of four isomers (9-, 11-, 13-cis, and all-trans) the 11-cis analogue is the most selective in terms of isomerizing double bond, while the other three produce a mixture of isomers. However, there is no preference for isomerization directionality and the product formation for the 11-cis isomer. In the group of analogues with different methylation patterns, it is found that a methyl group at position C10 can introduce unidirectionality. This methyl group also speeds the photoisomerization. In case of the analogue that is demethylated at the positions C10 and C13, all trajectories isomerize successfully from cis to trans conformation. The three C11-C12 bond locked retinals are found to have very different properties, which depend on the number of methylene units bridging this bond. The five-membered ring imposes a too-large restriction; hence, all trajectories remain on the excited state in the simulation time of 300 fs. The seven-membered ring is more flexible with preference for isomerization of the C9-C10 bond. Interestingly, the eight-membered ring leads to the fastest isomerization time and full directionality of C11-C12 bond isomerization. The trends observed in these simulations can help to understand whether the effects are intrinsic to the chromophore or are induced by the protein environment, by comparing to the trends from experiment. Furthermore

  4. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves.

    Science.gov (United States)

    Hui, Jie; Li, Rui; Phillips, Evan H; Goergen, Craig J; Sturek, Michael; Cheng, Ji-Xin

    2016-03-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  5. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui

    2016-03-01

    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  6. Design and synthesis of multidentate ligands via metal promoted C-N bond formation processes and their coordination chemistry

    Indian Academy of Sciences (India)

    Kunal K Kamar; Amrita Saha; Sreebrata Goswami

    2002-08-01

    This presentation reports some novel examples of organic ring amination reactions via metal mediation. The organic transformations are highly regioselective and can be controlled by the proper selection of the mediator complex. The two isomeric organic ligands viz. HL1 and HL2 were isolated in their pure states by the removal of the metal ions. These were fully characterized. The ligand HL1 has low , 8.5. Upon deprotonation, it behaves as a potential bis chelating N,N,N-donors. The coordination chemistry of the HL1 ligand involving some 3-metal ions is described. Two unusual low-spin complexes of manganese(II) and iron(III) are reported. The ferric complex displayed a rhombic EPR while, the corresponding manganese compound showed a complex pattern due to hyperfine coupling. All the complexes displayed large number of redox responses. A brief mention about the future projection of this work is noted.

  7. Selective Access to Heterocyclic Sulfonamides and Sulfonyl Fluorides via a Parallel Medicinal Chemistry Enabled Method.

    Science.gov (United States)

    Tucker, Joseph W; Chenard, Lois; Young, Joseph M

    2015-11-09

    A sulfur-functionalized aminoacrolein derivative is used for the efficient and selective synthesis of heterocyclic sulfonyl chlorides, sulfonyl fluorides, and sulfonamides. The development of a 3-step parallel medicinal chemistry (PMC) protocol for the synthesis of pyrazole-4-sulfonamides effectively demonstrates the utility of this reagent. This reactivity was expanded to provide rapid access to other heterocyclic sulfonyl fluorides, including pyrimidines and pyridines, whose corresponding sulfonyl chlorides lack suitable chemical stability.

  8. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  9. Intrinsic Folding Proclivities in Cyclic β-Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformer-Selective Spectroscopy and Quantum Chemistry.

    Science.gov (United States)

    Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J

    2015-11-09

    This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.

  10. Determining the Energetics of the Hydrogen Bond through FTIR: A Hands-On Physical Chemistry Lab Experiment

    Science.gov (United States)

    Guerin, Abby C.; Riley, Kristi; Rupnik, Kresimir; Kuroda, Daniel G.

    2016-01-01

    Hydrogen bonds are very important chemical structures that are responsible for many unique and important properties of solvents, such as the solvation power of water. These distinctive features are directly related to the stabilization energy conferred by hydrogen bonds to the solvent. Thus, the characterization of hydrogen bond energetics has…

  11. Chemistry of selected cyclic P(III) compounds possessing a P-Cl bond

    Indian Academy of Sciences (India)

    K C Kumara Swamy; Sudha Kumaraswamy; Praveen Kommana; N Satish Kumar; K Senthil Kumar

    2002-08-01

    The compounds [CH2(6--Bu-4-Me-C6H2O)2]PCl (1), (OCH2CMe2CH2O)-PCl (2), and [ClPN(-Bu)]2 (3) have been utilized as precursors in the synthesis of (i) new pentacoordinate phosphorus compounds [e.g. CH2(6--Bu-4-Me-C6H2O)2 P(NRR')(O2C6Cl4), CH2(6--Bu-4-Me-C6H2O)2PX[OC(O--Pr)N=N(C(O)O--Pr)], (ii) cyclic phosphates and their complexes [e.g. {imidazolium}+{CH2(6--Bu-4-Me-C6H2O)2PO2}-.MeOH], (iii) new cycloaddition products [e.g. {CH2(6--Bu-4-Me-C6H2O)2}P{C(CO2Me)C(CO2Me)C(O)N}, (iv) macrocyclic compounds [e.g. {[(-BuN)P]2[-OCH2CMe2CH2O-]}2] and (v) phosphonates [e.g. (OCH2CMe2CH2O)P (O)CH2C(CN)=CHC5H4FeC5H5]. The synthetic and structural aspects of these new products are discussed.

  12. The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C-C bonds.

    Science.gov (United States)

    Kelsen, Vinciane; Wendt, Bianca; Werkmeister, Svenja; Junge, Kathrin; Beller, Matthias; Chaudret, Bruno

    2013-04-28

    The performance of well-defined ultrasmall iron(0) nanoparticles (NPs) as catalysts for the selective hydrogenation of unsaturated C-C and C=X bonds is reported. Monodisperse iron nanoparticles of about 2 nm size are synthesized by the decomposition of {Fe(N[Si(CH3)3]2)2}2 under dihydrogen. They are found to be active for the hydrogenation of various alkenes and alkynes under mild conditions and weakly active for C=O bond hydrogenation.

  13. Evaluation of Questions in General Chemistry Textbooks According to the Form of the Questions and the Question-Answer Relationship (QAR): The Case of Intra-and Intermolecular Chemical Bonding

    Science.gov (United States)

    Pappa, Eleni T.; Tsaparlis, Georgios

    2011-01-01

    One way of checking to what extent instructional textbooks achieve their aim is to evaluate the questions they contain. In this work, we analyze the questions that are included in the chapters on chemical bonding of ten general chemistry textbooks. We study separately the questions on intra- and on intermolecular bonding, with the former…

  14. Stability and Characteristics of the Halogen Bonding Interaction in an Anion-Anion Complex: A Computational Chemistry Study.

    Science.gov (United States)

    Wang, Guimin; Chen, Zhaoqiang; Xu, Zhijian; Wang, Jinan; Yang, Yang; Cai, Tingting; Shi, Jiye; Zhu, Weiliang

    2016-02-04

    Halogen bonding is the noncovalent interaction between the positively charged σ-hole of organohalogens and nucleophiles. In reality, both the organohalogen and nucleophile could be deprotonated to form anions, which may lead to the vanishing of the σ-hole and possible repulsion between the two anions. However, our database survey in this study revealed that there are halogen bonding-like interactions between two anions. Quantum mechanics calculations with small model complexes composed of halobenzoates and propiolate indicated that the anion-anion halogen bonding is unstable in vacuum but attractive in solvents. Impressively, the QM optimized halogen bonding distance between the two anions is shorter than that in a neutral system, indicating a possibly stronger halogen bonding interaction, which is verified by the calculated binding energies. Furthermore, natural bond orbital and quantum theory of atoms in molecule analyses also suggested stronger anion-anion halogen bonding than that of the neutral one. Energy decomposition by symmetry adapted perturbation theory revealed that the strong binding might be attributed to large induction energy. The calculations on 4 protein-ligand complexes from PDB by the QM/MM method demonstrated that the anion-anion halogen bonding could contribute to the ligands' binding affinity up to ∼3 kcal/mol. Therefore, anion-anion halogen bonding is stable and applicable in reality.

  15. The Novel Selective Reduction of the C-C Triple Bond

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel reduction system is reported here in which the compounds with terminal C-C triple bond and disubstituted C-C triple bond react with NaBH4/Pd(PPh3)4 in a base condition and only terminal C-C triple bond is reduced.

  16. Conceptual chemistry approach towards the support effect in supported vanadium oxides : Valence bond calculations on the ionicity of vanadium catalysts

    NARCIS (Netherlands)

    Fievez, Tim; De Proft, Frank; Geerlings, Paul; Weckhuysen, Bert M.; Havenith, Remco W. A.

    2011-01-01

    The concept of bond ionicity, obtained via a valence bond analysis, is invoked in the interpretation of the catalytic activity of supported vanadium oxides, in analogy with previous work conducted within the framework of conceptual DFT. For a set of model clusters representing the vanadium oxide sup

  17. Building chemistry one atom at a time: An investigation of the effects of two curricula in students' understanding of covalent bonding and atomic size

    Science.gov (United States)

    Bull, Barbara Jeanne

    Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four

  18. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry.

    Science.gov (United States)

    Loerbroks, Claudia; Rinaldi, Roberto; Thiel, Walter

    2013-11-25

    The molecular understanding of the chemistry of 1,4-β-glucans is essential for designing new approaches to the conversion of cellulose into platform chemicals and biofuels. In this endeavor, much attention has been paid to the role of hydrogen bonding occurring in the cellulose structure. So far, however, there has been little discussion about the implications of the electronic nature of the 1,4-β-glycosidic bond and its chemical environment for the activation of 1,4-β-glucans toward acid-catalyzed hydrolysis. This report sheds light on these central issues and addresses their influence on the acid hydrolysis of cellobiose and, by analogy, cellulose. The electronic structure of cellobiose was explored by DFT at the BB1 K/6-31++G(d,p) level. Natural bond orbital (NBO) analysis was performed to grasp the key bonding concepts. Conformations, protonation sites, and hydrolysis mechanisms were examined. The results for cellobiose indicate that cellulose is protected against hydrolysis not only by its supramolecular structure, as currently accepted, but also by its electronic structure, in which the anomeric effect plays a key role.

  19. Enhanced Control of PWR Primary Coolant Water Chemistry Using Selective Separation Systems for Recovery and Recycle of Enriched Boric Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ken Czerwinski; Charels Yeamans; Don Olander; Kenneth Raymond; Norman Schroeder; Thomas Robison; Bryan Carlson; Barbara Smit; Pat Robinson

    2006-02-28

    The objective of this project is to develop systems that will allow for increased nuclear energy production through the use of enriched fuels. The developed systems will allow for the efficient and selective recover of selected isotopes that are additives to power water reactors' primary coolant chemistry for suppression of corrosion attack on reactor materials.

  20. Atmospheric chemistry of Z- and E-CF3CH[double bond, length as m-dash]CHCF3.

    Science.gov (United States)

    Østerstrøm, Freja F; Andersen, Simone Thirstrup; Sølling, Theis I; Nielsen, Ole John; Sulbaek Andersen, Mads P

    2016-12-21

    The atmospheric fates of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 have been studied, investigating the kinetics and the products of the reactions of the two compounds with Cl atoms, OH radicals, OD radicals, and O3. FTIR smog chamber experiments measured: k(Cl + Z-CF3CH[double bond, length as m-dash]CHCF3) = (2.59 ± 0.47) × 10(-11), k(Cl + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.36 ± 0.27) × 10(-11), k(OH + Z-CF3CH[double bond, length as m-dash]CHCF3) = (4.21 ± 0.62) × 10(-13), k(OH + E-CF3CH[double bond, length as m-dash]CHCF3) = (1.72 ± 0.42) × 10(-13), k(OD + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.94 ± 1.25) × 10(-13), k(OD + E-CF3CH[double bond, length as m-dash]CHCF3) = (5.61 ± 0.98) × 10(-13), k(O3 + Z-CF3CH[double bond, length as m-dash]CHCF3) = (6.25 ± 0.70) × 10(-22), and k(O3 + E-CF3CH[double bond, length as m-dash]CHCF3) = (4.14 ± 0.42) × 10(-22) cm(3) molecule(-1) s(-1) in 700 Torr of air/N2/O2 diluents at 296 ± 2 K. E-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give CF3CHClC(O)CF3 in a yield indistinguishable from 100%. Z-CF3CH[double bond, length as m-dash]CHCF3 reacts with Cl atoms to give (95 ± 10)% CF3CHClC(O)CF3 and (7 ± 1)% E-CF3CH[double bond, length as m-dash]CHCF3. CF3CHClC(O)CF3 reacts with Cl atoms to give the secondary product CF3C(O)Cl in a yield indistinguishable from 100%, with the observed co-products C(O)F2 and CF3O3CF3. The main atmospheric fate for Z- and E-CF3CH[double bond, length as m-dash]CHCF3 is reaction with OH radicals. The atmospheric lifetimes of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 are estimated as 27 and 67 days, respectively. IR absorption cross sections are reported and the global warming potentials (GWPs) of Z- and E-CF3CH[double bond, length as m-dash]CHCF3 for the 100 year time horizon are calculated to be GWP100 = 2 and 7, respectively. This study provides a comprehensive description of the atmospheric fate and impact of Z- and E

  1. Selection of crucible oxides in molten titanium and titanium aluminum alloys by thermo-chemistry calculations

    Directory of Open Access Journals (Sweden)

    Kostov A.

    2005-01-01

    Full Text Available Titanium and its alloys interstitially dissolve a large amount of impurities such as oxygen and nitrogen, which degrade the mechanical and physical properties of alloys. On the other hand crucible oxides based on CaO, ZrO2 Y2O3, etc., and their spinels (combination of two or more oxides can be used for melting titanium and its alloys. However, the thermodynamic behavior of calcium, zirconium, yttrium on the one side, and oxygen on the other side, in molten Ti and Ti-Al alloys have not been made clear and because of that, it is very interesting for research. Owing of literature data, as well as these crucibles are cheaper than standard crucibles for melting titanium and titanium alloys, in this paper will be presented the results of selection of thermo-chemistry analysis with the aim to determine the crucible oxide stability in contact with molten titanium and titanium-aluminum alloys.

  2. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes.

    Science.gov (United States)

    Majumdar, Amit

    2014-06-28

    A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.

  3. AN AZERBAIDZHAN SSR. INSTITUTE OF ADDITIVE CHEMISTRY ADDITIVES TO LUBRICATING OILS. PROBLEMS OF SYNTHESIS, INVESTIGATION AND USE OF OIL ADDITIVES; FUELS AND POLYMER MATERIALS (SELECTED ARTICLES),

    Science.gov (United States)

    An Azerbaidzhan SSR. Institute of additive chemistry additives to lubricating oils . Problems of synthesis, investigation and use of oil additives; fuels and polymer materials (Selected articles)--Translation.

  4. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  5. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    Science.gov (United States)

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks.

  6. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    Science.gov (United States)

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  7. Crystal chemistry of sartorite homologues and related sulfosalts

    DEFF Research Database (Denmark)

    Berlepsch, Peter; Makovicky, Emil; Balic-Zunic, Tonci

    2001-01-01

    sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains......sartorite homologues, sulfosalt, crystal chemistry, coordination polyhedra, bond-pairs, crankshaft chains...

  8. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting

    Science.gov (United States)

    Lawaf, Shirin; Nasermostofi, Shahbaz; Afradeh, Mahtasadat

    2017-01-01

    PURPOSE Considering the importance of metal-ceramic bond, the present study aimed to compare the bond strength of ceramics to cobalt-chrome (Co-Cr) alloys made by casting and selective laser melting (SLM). MATERIALS AND METHODS In this in-vitro experimental study, two sample groups were prepared, with one group comprising of 10 Co-Cr metal frameworks fabricated by SLM method and the other of 10 Co-Cr metal frameworks fabricated by lost wax cast method with the dimensions of 0.5 × 3 × 25 mm (following ISO standard 9693). Porcelain with the thickness of 1.1 mm was applied on a 3 × 8-mm central rectangular area of each sample. Afterwards, bond strengths of the samples were assessed with a Universal Testing Machine. Statistical analysis was performed with Kolmogorov-Smirnov test and T-test. RESULTS Bond strength in the conventionally cast group equaled 74.94 ± 16.06 MPa, while in SLM group, it equaled 69.02 ± 5.77 MPa. The difference was not statistically significant (P ≤ .05). CONCLUSION The results indicated that the bond strengths between ceramic and Co-Cr alloys made by casting and SLM methods were not statistically different. PMID:28243392

  9. Selective control of reformed composition of n-heptane via plasma chemistry

    KAUST Repository

    Manoj Kumar Reddy, P.

    2016-08-23

    This paper presents experimental results for reforming n-heptane in a temperature-controlled dielectric barrier discharge reactor to show detailed chemical composition in the products and to propose a potential method to control the product composition. Reformed products of n-heptane and water mixture in an inert Ar feed could be identified as hydrogen, carbon monoxide, oxygenates, and various hydrocarbons, having a wide range of carbon numbers. To selectively increase production of short-chain hydrocarbons, Ar was replaced by CH4. An increased pool of methyl radicals, via plasma chemistry of CH4, might facilitate to stabilize intermediate alkyls (R) into RCH3, which successfully increased short-chain hydrocarbon concentration. When CO2 was supplied instead of Ar (to provide enriched OH and O radicals), significantly higher oxygenate concentrations were obtained through the stabilization of alkyls as ROH (alcohol), and RC([Formula presented])R′ (ketone). The use of methane and carbon dioxide as feed to tailor the products of plasma-assisted reforming of n-heptane with methyl (CH3), or O radicals, is successfully demonstrated in the presence of water vapor. Detailed product analysis, such as product selection, rates and energy efficiency using a gas chromatograph and a gas chromatography mass spectrometer, will be elaborated upon. © 2016 Elsevier Ltd

  10. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  11. Infrared and Raman spectroscopy and quantum chemistry calculation studies of C H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoate

    Science.gov (United States)

    Sato, Harumi; Dybal, Jiří; Murakami, Rumi; Noda, Isao; Ozaki, Yukihiro

    2005-06-01

    This review paper reports infrared (IR) and Raman spectroscopy and quantum chemistry calculation studies of C-H⋯O hydrogen bondings and thermal behavior of biodegradable polyhydroxyalkanoates. IR and Raman spectra were measured for poly(3-hydroxybutyrate) (PHB) and a new type of bacterial copolyester, poly(3-hydroxybutyrate- co-3-hydroxyhexanoate), P(HB- co-HHx) (HHx=12 mol%) over a temperature range of 20 °C to higher temperatures (PHB, 200 °C; HHx=12 mol%, 140 °C) to explore their structure and thermal behavior. One of bands due to the CH 3 asymmetric stretching modes appears near 3010 cm -1 in the IR and Raman spectra of PHB and P(HB- co-HHx) at 20 °C. These frequencies of IR and Raman CH 3 asymmetric stretching bands are much higher than usual. These anomalous frequencies of the CH 3 asymmetric stretching bands together with the X-ray crystallographic structure of PHB have suggested that there is an inter- or intra-molecular C-H⋯O hydrogen bond between the C dbnd6 O group in one helical structure and the CH 3 group in the other helical structure in PHB and P(HB- co-HHx). The quantum chemical calculation of model compounds of PHB also has suggested the existence of C-H⋯O hydrogen bonds in PHB and P(HB- co-HHx). It is very likely that a chain of C-H⋯O hydrogen bond pairs link two parallel helical structures in the crystalline parts. The temperature-dependent IR and Raman spectral variations have revealed that the crystallinity of P(HB- co-HHx) (HHx=12 mol%) decreases gradually from a fairly low temperature (about 60 °C), while the crystallinity of PHB remains almost unchanged until just below its melting temperature. It has also been found from the IR and Raman studies that for both PHB and P(HB- co-HHx) the weakening of the C-H⋯O hydrogen bonds starts from just above room temperature, but the deformation of helical structures occurs after the weakening of the C-H⋯O hydrogen bonds advances to some extent.

  12. Selective Bifunctional Modification of a Non-catenated Metal-Organic Framework Material via 'Click' Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.; Nguyen, SonBinh T.; NWU

    2009-12-01

    A noncatenated, Zn-based metal-organic framework (MOF) material bearing silyl-protected acetylenes was constructed and postsynthetically modified using 'click' chemistry. Using a solvent-based, selective deprotection strategy, two different organic azides were 'clicked' onto the MOF crystals, resulting in a porous material whose internal and external surfaces are differently functionalized.

  13. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds.

    Science.gov (United States)

    Paula, Amauri J; Stéfani, Diego; Souza Filho, Antonio G; Kim, Yoong Ahm; Endo, Morinobu; Alves, Oswaldo L

    2011-03-07

    The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

  14. Environmental carbonate chemistry selects for phenotype of recently isolated strains of Emiliania huxleyi

    Science.gov (United States)

    Rickaby, Rosalind E. M.; Hermoso, Michaël; Lee, Renee B. Y.; Rae, Benjamin D.; Heureux, Ana M. C.; Balestreri, Cecilia; Chakravarti, Leela; Schroeder, Declan C.; Brownlee, Colin

    2016-05-01

    Coccolithophorid algae, particularly Emiliania huxleyi, are prolific biomineralisers that, under many conditions, dominate communities of marine eukaryotic plankton. Their ability to photosynthesise and form calcified scales (coccoliths) has placed them in a unique position in the global carbon cycle. Contrasting reports have been made with regards to the response of E. huxleyi to ocean acidification. Therefore, there is a pressing need to further determine the fate of this key organism in a rising CO2 world. In this paper, we investigate the phenotype of newly isolated, genetically diverse, strains of E. huxleyi from UK Ocean Acidification Research Programme (UKOA) cruises around the British Isles, the Arctic, and the Southern Ocean. We find a continuum of diversity amongst the physiological and photosynthetic parameters of different strains of E. huxleyi morphotype A under uniform, ambient conditions imposed in the laboratory. This physiology is best explained by adaptation to carbonate chemistry in the former habitat rather than being prescribed by genetic fingerprints such as the coccolithophore morphology motif (CMM). To a first order, the photosynthetic capacity of each strain is a function of both aqueous CO2 availability, and calcification rate, suggestive of a link between carbon concentrating ability and calcification. The calcification rate of each strain is related linearly to the natural environmental [CO32-] at the site of isolation, but a few exceptional strains display low calcification rates at the highest [CO32-] when calcification is limited by low CO2 availability and/or a lack of a carbon concentrating mechanism. We present O2-electrode measurements alongside coccolith oxygen isotopic composition and the uronic acid content (UAC) of the coccolith associated polysaccharide (CAP), that act as indirect tools to show the differing carbon concentrating ability of the strains. The environmental selection revealed amongst our recently isolated strain

  15. Coupling of C(sp(3))-H bonds with C(sp(2))-O electrophiles: mild, general and selective.

    Science.gov (United States)

    Gui, Yong-Yuan; Liao, Li-Li; Sun, Liang; Zhang, Zhen; Ye, Jian-Heng; Shen, Guo; Lu, Zhi-Peng; Zhou, Wen-Jun; Yu, Da-Gang

    2017-01-17

    Herein is reported the mild and general coupling of amine/ether C(sp(3))-H bonds with various kinds of C(sp(2))-O electrophiles with high selectivity and efficiency. Valuable allylic/benzylic amines are generated in moderate to excellent yields. The utility of this transformation is demonstrated by a broad substrate scope (>50 examples), good functional group tolerance and facile product modification.

  16. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  17. Effect of Si-H bond on the gas-phase chemistry of trimethylsilane in the hot wire chemical vapor deposition process.

    Science.gov (United States)

    Shi, Y J; Li, X M; Toukabri, R; Tong, L

    2011-09-22

    The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane.

  18. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    Science.gov (United States)

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  19. Interface chemistry and molecular bonding of functional ethoxysilane-based self-assembled monolayers on magnesium surfaces.

    Science.gov (United States)

    Killian, Manuela S; Seiler, Steffen; Wagener, Victoria; Hahn, Robert; Ebensperger, Christina; Meyer, Bernd; Schmuki, Patrik

    2015-05-06

    The modification of magnesium implants with functional organic molecules is important for increasing the biological acceptance and for reducing the corrosion rate of the implant. In this work, we evaluated by a combined experimental and theoretical approach the adsorption strength and geometry of a functional self-assembled monolayer (SAM) of hydrolyzed (3-aminopropyl)triethoxysilane (APTES) molecules on a model magnesium implant surface. In time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS), only a minor amount of reverse attachment was observed. Substrate-O-Si signals could be detected, as well as other characteristic APTES fragments. The stability of the SAM upon heating in UHV was investigated additionally. Density-functional theory (DFT) calculations were used to explore the preferred binding mode and the most favorable binding configuration of the hydrolyzed APTES molecules on the hydroxylated magnesium substrate. Attachment of the molecules via hydrogen bonding or covalent bond formation via single or multiple condensation reactions were considered. The impact of the experimental conditions and the water concentration in the solvent on the thermodynamic stability of possible APTES binding modes is analyzed as a function of the water chemical potential of the environment. Finally, the influence of van der Waals contributions to the adsorption energy will be discussed.

  20. Amide-mediated hydrogen bonding at organic crystal/water interfaces enables selective endotoxin binding with picomolar affinity.

    Science.gov (United States)

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Thirumoorthi, Navanita; Gagnon, Pete

    2013-05-22

    Since the discovery of endotoxins as the primary toxic component of Gram-negative bacteria, researchers have pursued the quest for molecules that detect, neutralize, and remove endotoxins. Selective removal of endotoxins is particularly challenging for protein solutions and, to this day, no general method is available. Here, we report that crystals of the purine-derived compound allantoin selectively adsorb endotoxins with picomolar affinity through amide-mediated hydrogen bonding in aqueous solutions. Atom force microscopy and chemical inhibition experiments indicate that endotoxin adsorption is largely independent from hydrophobic and ionic interactions with allantoin crystals and is mediated by hydrogen bonding with amide groups at flat crystal surfaces. The small size (500 nm) and large specific surface area of allantoin crystals results in a very high endotoxin-binding capacity (3 × 10(7) EU/g) which compares favorably with known endotoxin-binding materials. These results provide a proof-of-concept for hydrogen bond-based molecular recognition processes in aqueous solutions and establish a practical method for removing endotoxins from protein solutions.

  1. Students' Visualization of Metallic Bonding and the Malleability of Metals

    Science.gov (United States)

    Cheng, Maurice M. W.; Gilbert, John K.

    2014-01-01

    This study investigated the mental representations of metallic bonding and the malleability of metals held by three male students aged 14-15 (Year 10) who were attending a Hong Kong school. One student was selected by their chemistry teacher as representing each of the highest, the medium, and the lowest level of attainment in chemistry in a…

  2. Two different hydrogen bond donor ligands together: a selectivity improvement in organometallic {Re(CO)3} anion hosts.

    Science.gov (United States)

    Ion, Laura; Nieto, Sonia; Pérez, Julio; Riera, Lucía; Riera, Víctor; Díaz, Jesús; López, Ramón; Anderson, Kirsty M; Steed, Jonathan W

    2011-09-05

    Rhenium(I) compounds [Re(CO)(3)(Hdmpz)(2)(ampy)]BAr'(4) and [Re(CO)(3)(N-MeIm)(2)(ampy)]BAr'(4) (Hdmpz = 3,5-dimethylpyrazole, N-MeIm = N-methylimidazole, ampy = 2-aminopyridine or 3-aminopyridine) have been prepared stepwise as the sole reaction products in good yields. The cationic complexes feature two different types of hydrogen bond donor ligands, and their anion binding behavior has been studied both in solution and in the solid state. Compounds with 2-ampy ligands are labile in the presence of nearly all of the anions tested. The X-ray structure of the complex [Re(CO)(3)(Hdmpz)(2)(ampy)](+) (2) shows that the 2-ampy ligand is metal-coordinated through the amino group, a fact that can be responsible for its labile character. The 3-ampy derivatives (coordinated through the pyridinic nitrogen atom) are stable toward the addition of several anions and are more selective anion hosts than their tris(pyrazole) or tris(imidazole) counterparts. This selectivity is higher for compound [Re(CO)(3)(N-MeIm)(2)(MeNA)]BAr'(4) (5·BAr'(4), MeNA = N-methylnicotinamide) that features an amido moiety, which is a better hydrogen bond donor than the amino group. Some of the receptor-anion adducts have been characterized in the solid state by X-ray diffraction, showing that both types of hydrogen bond donor ligands of the cationic receptor participate in the interaction with the anion hosts. DFT calculations suggest that coordination of the ampy ligands is more favorable through the amino group only for the cationic complex 2, as a consequence of the existence of a strong intramolecular hydrogen bond. In all other cases, the pyridinic coordination is clearly favored.

  3. Adhesive dentistry: the development of immediate dentin sealing/selective etching bonding technique.

    Science.gov (United States)

    Helvey, Gregg A

    2011-01-01

    A major objective of dental research over the past 60 years has been a search for the "dream-team" of dental adhesives. In fact, a recent Medline search produced more than 6,500 papers on dentin bonding and its techniques. Adhesive systems are designed to retain direct and indirect restorations, minimize leakage at the margin, and be simple to place while producing consistent results. The development of materials and techniques has an interesting history; some have recirculated from the past and are being used in some form today. Buonocore used the etchant phosphoric acid at the beginning of the adhesive revolution. Though not accepted for many years it eventually became the "gold standard" for etching enamel. Technique sensitivity moved it out of favor and, through the development of self-etching acidic primers, was eliminated from some adhesive systems. Although these primers may have successfully addressed postoperative sensitivity, adhesion was compromised. The bond strength of these systems has now been improved with the incorporation of phosphoric acid-etch to condition enamel prior to using the adhesive system. This article will trace the history of adhesive techniques and materials and how it has led to the creation of a new technique that combines two bonding methods.

  4. Combining Chemistry and Music to Engage Student Interest: Using Songs to Accompany Selected Chemical Topics

    Science.gov (United States)

    Last, Arthur M.

    2009-01-01

    The use of recorded music to add interest to a variety of lecture topics is described. Topics include the periodic table, the formation of ionic compounds, thermodynamics, carbohydrates, nuclear chemistry, and qualitative analysis. (Contains 1 note.)

  5. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaithilingam, Jayasheelan, E-mail: Jayasheelan.Vaithilingam@nottingham.ac.uk [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Prina, Elisabetta [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Goodridge, Ruth D.; Hague, Richard J.M. [Additive Manufacturing and 3D Printing Research Group, EPSRC Centre for Innovative Manufacturing in Additive Manufacturing, School of Engineering, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Edmondson, Steve [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Rose, Felicity R.A.J. [School of Pharmacy, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Christie, Steven D.R. [Department of Chemistry, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM–AF surface was observed to be porous with an average surface roughness (Ra) of 17.6 ± 3.7 μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour. - Highlights: • Surface chemistry of selective laser melted (SLM) Ti6Al4V parts was compared with conventionally forged Ti6Al4V parts. • The surface elemental compositions of the SLM as-fabricated surfaces were significantly different to the forged surface. • Surface oxide-layer of the SLM as-fabricated was thicker than the polished SLM surfaces and the forged Ti6Al4V surfaces.

  6. Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and OH groups.

    Science.gov (United States)

    Tomishige, Keiichi; Nakagawa, Yoshinao; Tamura, Masazumi

    2014-01-01

    Hydrogenolysis of C-O bonds is becoming more and more important for the production of biomass-derived chemicals. Since substrates originated from biomass usually have high oxygen content and various kinds of C-O bonds, selective hydrogenolysis is required. Rhenium or molybdenum oxide modified rhodium and iridium metal catalysts (Rh-ReO(x), Rh-MoO(x), and Ir-ReO(x)) have been reported to be effective for selective hydrogenolysis. This review introduces the catalytic performance and reaction kinetics of Rh-ReO(x), Rh-MoO(x), and Ir-ReO(x) in the hydrogenolysis of various substrates, where selectivity is especially characteristic. Based the model structure of the catalysts and the reaction mechanism, the role of the oxide components is to make the interaction between the OH groups in the substrates and the catalyst surface, and the role of metal components is to dissociate hydrogen molecule heterolytically to give hydride and proton.

  7. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    Science.gov (United States)

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  8. Regio-selectivity of the Oxidative C-S Bond Formation in Ergothioneine and Ovothiol Biosyntheses

    Science.gov (United States)

    Song, Heng; Leninger, Maureen; Lee, Norman

    2014-01-01

    Ergothioneine (5) and ovothiol (8) are two novel thiol-containing natural products. Their C-S bonds are formed by oxidative coupling reactions catalyzed by EgtB and OvoA enzymes, respectively. In this work, it was discovered that besides catalyzing the oxidative coupling between histidine and cysteine (1 → 6 conversion), OvoA can also catalyze a direct oxidative coupling between hercynine (2) and cysteine (2 → 4 conversion), which can shorten the ergothioneine biosynthetic pathway by two steps. PMID:24016264

  9. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications.

    Science.gov (United States)

    Vaithilingam, Jayasheelan; Prina, Elisabetta; Goodridge, Ruth D; Hague, Richard J M; Edmondson, Steve; Rose, Felicity R A J; Christie, Steven D R

    2016-10-01

    Selective laser melting (SLM) has previously been shown to be a viable method for fabricating biomedical implants; however, the surface chemistry of SLM fabricated parts is poorly understood. In this study, X-ray photoelectron spectroscopy (XPS) was used to determine the surface chemistries of (a) SLM as-fabricated (SLM-AF) Ti6Al4V and (b) SLM fabricated and mechanically polished (SLM-MP) Ti6Al4V samples and compared with (c) traditionally manufactured (forged) and mechanically polished Ti6Al4V samples. The SLM-AF surface was observed to be porous with an average surface roughness (Ra) of 17.6±3.7μm. The surface chemistry of the SLM-AF was significantly different to the FGD-MP surface with respect to elemental distribution and their existence on the outermost surface. Sintered particles on the SLM-AF surface were observed to affect depth profiling of the sample due to a shadowing effect during argon ion sputtering. Surface heterogeneity was observed for all three surfaces; however, vanadium was witnessed only on the mechanically polished (SLM-MP and FGD-MP) surfaces. The direct and indirect 3T3 cell cytotoxicity studies revealed that the cells were viable on the SLM fabricated Ti6Al4V parts. The varied surface chemistry of the SLM-AF and SLM-MP did not influence the cell behaviour.

  10. Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics.

    Science.gov (United States)

    Gresh, Nohad; Sponer, Judit E; Devereux, Mike; Gkionis, Konstantinos; de Courcy, Benoit; Piquemal, Jean-Philip; Sponer, Jiri

    2015-07-30

    Until now, atomistic simulations of DNA and RNA and their complexes have been executed using well calibrated but conceptually simple pair-additive empirical potentials (force fields). Although such simulations provided many valuable results, it is well established that simple force fields also introduce errors into the description, underlying the need for development of alternative anisotropic, polarizable molecular mechanics (APMM) potentials. One of the most abundant forces in all kinds of nucleic acids topologies is base stacking. Intra- and interstrand stacking is assumed to be the most essential factor affecting local conformational variations of B-DNA. However, stacking also contributes to formation of all kinds of noncanonical nucleic acids structures, such as quadruplexes or folded RNAs. The present study focuses on 14 stacked cytosine (Cyt) dimers and the doubly H-bonded dimer. We evaluate the extent to which an APMM procedure, SIBFA, could account quantitatively for the results of high-level quantum chemistry (QC) on the total interaction energies, and the individual energy contributions and their nonisotropic behaviors. Good agreements are found at both uncorrelated HF and correlated DFT and CCSD(T) levels. Resorting in SIBFA to distributed QC multipoles and to an explicit representation of the lone pairs is essential to respectively account for the anisotropies of the Coulomb and of the exchange-repulsion QC contributions.

  11. Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments

    Science.gov (United States)

    Huseby, B.; Ocampo, R.

    1997-09-01

    High amounts of nickel mono- and di-acid porphyrins were released from Messel oil shale kerogen (Eocene, Germany) by selective chemical degradation (acid and base hydrolysis). The released porphyrin fractions were quantified (UV-vis) and their constituents isolated and characterized at the molecular level (UV-vis, MS, NMR). The mono-acid porphyrin fraction released contained four compounds of similar abundance which arise from an obvious chlorophyll or bacteriochlorophyll precursor. The di-acid porphyrin fraction was, however, dominated by far by one compound, mesoporphyrin IX, which must have originated from heme-like precursors (heme, cytochromes, etc.). These results show unambigously that the released mono- and di-acid porphyrins were linked to the macromolecular kerogen network via ester bonds and suggest that precursor heme-like pigments could be selectively and/or more readily incorporated into the macromolecular kerogen network than precursor chlorophylls and bacteriochlorophylls.

  12. An evaluation of the performance of chemistry transport models, Part 2: detailed comparison with two selected campaigns

    Directory of Open Access Journals (Sweden)

    D. Brunner

    2004-11-01

    Full Text Available This is the second part of a rigorous model evaluation study involving five global Chemistry-Transport and two Chemistry-Climate Models operated by different groups in Europe. Simulated trace gas fields were interpolated to the exact times and positions of the observations to account for the actual weather conditions and hence for the specific histories of the sampled air masses. In this part of the study we focus on a detailed comparison with two selected campaigns, PEM-Tropics A and SONEX, contrasting the clean environment of the tropical Pacific with the more polluted North Atlantic region. The study highlights the different strengths and weaknesses of the models in accurately simulating key processes in the UT/LS region including stratosphere-troposphere-exchange, rapid convective transport, lightning emissions, radical chemistry and ozone production. Model simulated Radon, which was used as an idealized tracer for continental influence, was occasionally much better correlated with measured CO than simulated CO pointing towards deficiencies in the used biomass burning emission fields. The abundance and variability of HOx radicals is in general well represented in the models as inferred directly from the comparison with measured OH and HO2 and indirectly from the comparison with hydrogen peroxide concentrations. Components of the NOy family such as PAN, HNO3 and NO were found to compare less favorably. Interestingly, models showing good agreement with observations in the case of PEM-Tropics A often failed in the case of SONEX and vice versa. A better description of NOx and NOy emissions, chemistry and sinks is thought to be key to future model improvements with respect to the representation of chemistry in the UT/LS region.

  13. Bond-selective fragmentation of water molecules with intense, ultrafast, carrier envelope phase stabilized laser pulses

    CERN Document Server

    Mathur, D; Dharmadhikari, J A; Dharmadhikari, A K

    2013-01-01

    Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^+$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.

  14. Selecting parameters for the environmental interpretation of peat molecular chemistry - A pyrolysis-GC-MS study

    NARCIS (Netherlands)

    Schellekens, J.F.P.; Buurman, P.; Pontevedra Pombal, X.

    2009-01-01

    A number of samples from a deep peat bog in Tierra del Fuego were analyzed using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in order to extract parameters that might be used to interpret the peat chemistry in terms of vegetation change, anaerobic and aerobic decomposition, and fire in

  15. Selected chapters from general chemistry in physics teaching with the help of e - learning

    Science.gov (United States)

    Feszterová, Melánia

    2017-01-01

    Education in the field of natural disciplines - Mathematics, Physics, Chemistry, Ecology and Biology takes part in general education at all schools on the territory of Slovakia. Its aim is to reach the state of balanced development of all personal characteristics of pupils, to teach them correctly identify and analyse problems, propose solutions and above all how to solve the problem itself. High quality education can be reached only through the pedagogues who have a good expertise knowledge, practical experience and high level of pedagogical abilities. The teacher as a disseminator of natural-scientific knowledge should be not only well-informed about modern tendencies in the field, but he/she also should actively participate in project tasks This is the reason why students of 1st year of study (bachelor degree) at the Department of Physics of Constantine the Philosopher University in Nitra attend lectures in the frame of subject General Chemistry. In this paper we present and describe an e - learning course called General Chemistry that is freely accessible to students. One of the aims of this course is to attract attention towards the importance of cross-curricular approach which seems to be fundamental in contemporary natural-scientific education (e.g. between Physics and Chemistry). This is why it is so important to implement a set of new topics and tasks that support development of abilities to realise cross-curricular goals into the process of preparation of future teachers of Physics.

  16. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  17. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry

    NARCIS (Netherlands)

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P.; Permentier, Hjalmar P.; Bischoff, Rainer

    2016-01-01

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp r

  18. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    Science.gov (United States)

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  19. Fundamental chemistry and materials science of americium in selected immobilization glasses

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G. [Oak Ridge National Lab., TN (United States); Stump, N.A. [Winston-Salem State Univ., NC (United States). Dept. of Physical Sciences

    1996-12-01

    We have pursued some of the fundamental chemistry and materials science of Am in 3 glass matrices, two being high-temperature (850 and 1400 C mp) silicate-based glasses and the third a sol-gel glass. Optical spectroscopy was the principal tool. One aspect of this work was to determine the oxidation state exhibited by Am in these matrices, as well as factors that control or may alter this state. A correlation was noted between the oxidation state of the f-elements in the two high-temperature glasses with their high-temperature oxide chemistries. One exception was Am: although AmO{sub 2} is the stable oxide encountered in air, when this dioxide was incorporated into the high-temperature glasses, only trivalent Am was found in the products. When Am(III) was used to prepare the sol-gel glasses at ambient temperature, and after these products were heated in air to 800 C, only Am(III) was observed. Potential explanations for the unexpected Am behavior is offered in the context of its basic chemistry. Experimental spectra, spectroscopic assignments, etc. are discussed.

  20. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; Mangiacapra, Livia; Bietti, Massimo

    2015-01-16

    A laser flash photolysis study on the role of solvent effects on hydrogen atom transfer (HAT) from the C-H bonds of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-formylpyrrolidine (FPRD), and N-acetylpyrrolidine (APRD) to the cumyloxyl radical (CumO(•)) was carried out. From large to very large increases in the HAT rate constant (kH) were measured on going from MeOH and TFE to isooctane (kH(isooctane)/kH(MeOH) = 5-12; kH(isooctane)/kH(TFE) > 80). This behavior was explained in terms of the increase in the extent of charge separation in the amides determined by polar solvents through solvent-amide dipole-dipole interactions and hydrogen bonding, where the latter interactions appear to play a major role with strong HBD solvents such as TFE. These interactions increase the electron deficiency of the amide C-H bonds, deactivating these bonds toward HAT to an electrophilic radical such as CumO(•), indicating that changes in solvent polarity and hydrogen bonding can provide a convenient method for deactivation of the C-H bond of amides toward HAT. With DMF, a solvent-induced change in HAT selectivity was observed, suggesting that solvent effects can be successfully employed to control the reaction selectivity in HAT-based procedures for the functionalization of C-H bonds.

  1. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-03

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling.

  2. Water chemistry in 179 randomly selected Swedish headwater streams related to forest production, clear-felling and climate.

    Science.gov (United States)

    Löfgren, Stefan; Fröberg, Mats; Yu, Jun; Nisell, Jakob; Ranneby, Bo

    2014-12-01

    From a policy perspective, it is important to understand forestry effects on surface waters from a landscape perspective. The EU Water Framework Directive demands remedial actions if not achieving good ecological status. In Sweden, 44 % of the surface water bodies have moderate ecological status or worse. Many of these drain catchments with a mosaic of managed forests. It is important for the forestry sector and water authorities to be able to identify where, in the forested landscape, special precautions are necessary. The aim of this study was to quantify the relations between forestry parameters and headwater stream concentrations of nutrients, organic matter and acid-base chemistry. The results are put into the context of regional climate, sulphur and nitrogen deposition, as well as marine influences. Water chemistry was measured in 179 randomly selected headwater streams from two regions in southwest and central Sweden, corresponding to 10 % of the Swedish land area. Forest status was determined from satellite images and Swedish National Forest Inventory data using the probabilistic classifier method, which was used to model stream water chemistry with Bayesian model averaging. The results indicate that concentrations of e.g. nitrogen, phosphorus and organic matter are related to factors associated with forest production but that it is not forestry per se that causes the excess losses. Instead, factors simultaneously affecting forest production and stream water chemistry, such as climate, extensive soil pools and nitrogen deposition, are the most likely candidates The relationships with clear-felled and wetland areas are likely to be direct effects.

  3. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  4. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-01

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations.

  5. Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography

    Science.gov (United States)

    Steinheimer, T.R.; Ondrus, M.G.

    1986-01-01

    A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.

  6. Selected constants oxydo-reduction potentials tables of constants and numerical data affiliated to the International Union of Pure and Applied Chemistry, v.8

    CERN Document Server

    Charlot, G

    1958-01-01

    Selected Constants: Oxydo-Reduction Potentials contains Tables of the most probable value of the normal oxidation-reduction potential, or of the formal or apparent potential, of a given oxidation-reduction system. This book is prepared under the sponsorship of the Commission on Electrochemical Data of the Section of Analytical Chemistry of the International Union of Pure and Applied Chemistry. It is included in a general program of the Section of Analytical Chemistry. Entry items are classified in alphabetical order. This book will be of value to specialized and non-specialized chemists, teach

  7. Two-Dimensional Micro-TLC Phenolic Fingerprints of Selected Mentha sp. on Cyano-Bonded Polar Stationary Phase.

    Science.gov (United States)

    Hawrył, Mirosław A; Niemiec, Małgorzata A; Słomka, Kamil; Waksmundzka-Hajnos, Monika; Szymczak, Grażyna

    2016-01-01

    Micro-thin-layer chromatography in two-dimensional (2D-mTLC) mode in normal- (NP) and reversed-phase (RP) systems by use of cyanopropyl-bonded stationary phases was applied to make fingerprints of 11 species of Mentha genus and two finished pharmaceutical products. Non-aqueous eluents were used in the NP systems. Mixtures of acetonitrile with water and methanol with water were used in the RP chromatographic systems. Optimization of one-dimensional systems was performed by determining RM vs. composition of mobile phase dependencies for standards occurring in various Mentha sp. On the basis of these dependencies, the most selective chromatographic systems for each run were chosen. Then most selective eluents were applied to optimize two-dimensional systems by creating RF in NP systems vs. RF in RP systems correlations. The best two-dimensional systems were chosen on the basis of R(2) values for RF vs. RF correlations (the lowest values of R(2) coefficients). The 2D-mTLC optimized systems were applied to separate phenolic compounds and make fingerprints of the examined plant materials.

  8. From prebiotic chemistry to cellular metabolism--the chemical evolution of metabolism before Darwinian natural selection.

    Science.gov (United States)

    Meléndez-Hevia, Enrique; Montero-Gómez, Nancy; Montero, Francisco

    2008-06-07

    It is generally assumed that the complex map of metabolism is a result of natural selection working at the molecular level. However, natural selection can only work on entities that have three basic features: information, metabolism and membrane. Metabolism must include the capability of producing all cellular structures, as well as energy (ATP), from external sources; information must be established on a material that allows its perpetuity, in order to safeguard the goals achieved; and membranes must be able to preserve the internal material, determining a selective exchange with external material in order to ensure that both metabolism and information can be individualized. It is not difficult to understand that protocellular entities that boast these three qualities can evolve through natural selection. The problem is rather to explain the origin of such features under conditions where natural selection could not work. In the present work we propose that these protocells could be built by chemical evolution, starting from the prebiotic primordial soup, by means of chemical selection. This consists of selective increases of the rates of certain specific reactions because of the kinetic or thermodynamic features of the process, such as stoichiometric catalysis or autocatalysis, cooperativity and others, thereby promoting their prevalence among the whole set of chemical possibilities. Our results show that all chemical processes necessary for yielding the basic materials that natural selection needs to work may be achieved through chemical selection, thus suggesting a way for life to begin.

  9. Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry.

    Science.gov (United States)

    Pilo, Alice L; Zhao, Feifei; McLuckey, Scott A

    2016-09-01

    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located.

  10. Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction.

    Science.gov (United States)

    Bagheri, Habib; Piri-Moghadam, Hamed; Ahdi, Tayebeh

    2012-09-12

    To evaluate the selectivity and efficiency of solid phase microextraction (SPME) fiber coatings, synthesized by sol-gel technology, roles of precursors and coating polymers were extensively investigated. An on-line combination of capillary microextraction (CME) technique and high performance liquid chromatography (HPLC) was set up to perform the investigation. Ten different fiber coatings were synthesized in which five of them contained only the precursor and the rests were prepared using both the precursor and coating polymer. All the coatings were chemically bonded to the inner surface of copper tubes, intended to be used as the CME device and already functionalized by self-assembly monolayers of 3-(mercaptopropyl)trimethoxysilane (3MPTMOS). The selected precursors included tetramethoxysilane (TMOS), 3-(trimethoxysilyl)propylmethacrylate (TMSPMA), 3-(triethoxysilyl)-propylamine (TMSPA), 3MPTMOS, [3-(2,3-epoxypropoxy)-propyl]-trimethoxysilane (EPPTMOS) while poly(ethyleneglycol) (PEG) was chosen as the coating polymer. The effects of different precursors on the extraction efficiency and selectivity, was studied by selecting a list of compounds ranging from non-polar to polar ones, i.e. polycyclic aromatic hydrocarbon, herbicides, estrogens and triazines. The results from CME-HPLC analysis revealed that there is no significant difference between precursors, except TMOS, in which has the lowest extraction efficiency. Most of the selected precursors have rather similar interactions toward the selected analytes which include Van der Walls, dipole-dipole and hydrogen bond while TMOS has only dipole-dipole interaction and therefore the least efficiency. TMOS is silica but the other sorbents are organically modified silica (ORMOSIL). Our investigation revealed that it is rather impossible to prepare a selective coating using conventional sol-gel methodologies. The comparison study performed among the fiber coatings contained only a precursor and those synthesized by a

  11. Solution chemistry of a water-soluble eta2-H2 ruthenium complex: evidence for coordinated H2 acting as a hydrogen bond donor.

    Science.gov (United States)

    Szymczak, Nathaniel K; Zakharov, Lev N; Tyler, David R

    2006-12-13

    The ability of an eta2-H2 ligand to participate in intermolecular hydrogen bonding in solution has long been an unresolved issue. Such species are proposed to be key intermediates in numerous important reactions such as the proton-transfer pathway of H2 production by hydrogenase enzymes. We present the synthesis of several new water-soluble ruthenium coordination complexes including an eta2-H2 complex that is surprisingly inert to substitution by water. The existence of dihydrogen hydrogen bonding (DHHB) was experimentally probed by monitoring the chemical shift of H-bonded Ru-(H2) complexes using NMR spectroscopy, by UV-visible spectroscopy, and by monitoring the rotational dynamics of a hydrogen-bonding probe molecule. The results provide strong evidence that coordinated H2 can indeed participate in intermolecular hydrogen bonding to bulk solvent and other H-bond acceptors.

  12. Selective androgen receptor modulators in drug discovery: medicinal chemistry and therapeutic potential.

    Science.gov (United States)

    Cadilla, Rodolfo; Turnbull, Philip

    2006-01-01

    Modulation of the androgen receptor has the potential to be an effective treatment for hypogonadism, andropause, and associated conditions such as sarcopenia, osteoporosis, benign prostatic hyperplasia, and sexual dysfunction. Side effects associated with classical anabolic steroid treatments have driven the quest for drugs that demonstrate improved therapeutic profiles. Novel, non-steroidal compounds that show tissue selective activity and improved pharmacokinetic properties have been developed. This review provides an overview of current advances in the development of selective androgen receptor modulators (SARMs).

  13. The effects of plant nutritional chemistry on food selection of Mexican black howler monkeys (Alouatta pigra): The role of lipids.

    Science.gov (United States)

    Righini, Nicoletta; Garber, Paul A; Rothman, Jessica M

    2017-04-01

    Understanding the nutritional basis of food selection is fundamental to evaluate dietary patterns and foraging strategies in primates. This research describes the phytochemical composition of the foods consumed by two groups of Mexican black howler monkeys (Alouatta pigra) during a 15-month field study, and examines how plant nutritional chemistry affected food choice. Based on indices of selectivity that reflected seasonal changes in the amount of different phenophases of the most consumed plant species and their availability in the environment, we found that, in general, howlers did not preferentially select food items based on their concentrations of protein, sugar, energy, or their protein-to-fiber ratio. During only one season of the year, the nortes (October-January), there was evidence for selectivity. During this period, selectivity indices correlated positively with the lipid content of foods ingested. However, a strategy of selecting fruits high in lipids (21-41% dry matter) coincided with the consumption of a leaf-based diet (based on estimates of the dry weight of food ingested), suggesting that during this season howlers interchanged lipids with sugars to obtain energy and possibly to balance the higher protein intake obtained by the increased leaf consumption. Overall, these data did not support the prediction that food choice in this howler population was strongly correlated with particular nutrients, and suggest that balancing a suite of nutrients by consuming plants that vary widely in their composition may be an important strategy for howler monkeys. Am. J. Primatol. 79:e22524, 2017. © 2015 Wiley Periodicals, Inc.

  14. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2at room temperature

    KAUST Repository

    Li, Peng

    2014-11-13

    Self-assembly of a trigonal building subunit with diaminotriazines (DAT) functional groups leads to a unique rod-packing 3D microporous hydrogen-bonded organic framework (HOF-3). This material shows permanent porosity and demonstrates highly selective separation of C2H2/CO2 at ambient temperature and pressure.

  15. Comparison of the single channel and multichannel (multivariate) concepts of selectivity in analytical chemistry.

    Science.gov (United States)

    Dorkó, Zsanett; Verbić, Tatjana; Horvai, George

    2015-07-01

    Different measures of selectivity are in use for single channel and multichannel linear analytical measurements, respectively. It is important to understand that these two measures express related but still distinctly different features of the respective measurements. These relationships are clarified by introducing new arguments. The most widely used selectivity measure of multichannel linear methods (which is based on the net analyte signal, NAS, concept) expresses the sensitivity to random errors of a determination where all bias from interferents is computationally eliminated using pure component spectra. The conventional selectivity measure of single channel linear measurements, on the other hand, helps to estimate the bias caused by an interferent in a biased measurement. In single channel methods expert knowledge about the samples is used to limit the possible range of interferent concentrations. The same kind of expert knowledge allows improved (lower mean squared error, MSE) analyte determinations also in "classical" multichannel measurements if those are intractable due to perfect collinearity or to high noise inflation. To achieve this goal bias variance tradeoff is employed, hence there remains some bias in the results and therefore the concept of single channel selectivity can be extended in a natural way to multichannel measurements. This extended definition and the resulting selectivity measure can also be applied to the so-called inverse multivariate methods like partial least squares regression (PLSR), principal component regression (PCR) and ridge regression (RR).

  16. Tuning reactivity and selectivity in hydrogen atom transfer from aliphatic C-H bonds to alkoxyl radicals: role of structural and medium effects.

    Science.gov (United States)

    Salamone, Michela; Bietti, Massimo

    2015-11-17

    Hydrogen atom transfer (HAT) is a fundamental reaction that takes part in a wide variety of chemical and biological processes, with relevant examples that include the action of antioxidants, damage to biomolecules and polymers, and enzymatic and biomimetic reactions. Moreover, great attention is currently devoted to the selective functionalization of unactivated aliphatic C-H bonds, where HAT based procedures have been shown to play an important role. In this Account, we describe the results of our recent studies on the role of structural and medium effects on HAT from aliphatic C-H bonds to the cumyloxyl radical (CumO(•)). Quantitative information on the reactivity and selectivity patterns observed in these reactions has been obtained by time-resolved kinetic studies, providing a deeper understanding of the factors that govern HAT from carbon and leading to the definition of useful guidelines for the activation or deactivation of aliphatic C-H bonds toward HAT. In keeping with the electrophilic character of alkoxyl radicals, polar effects can play an important role in the reactions of CumO(•). Electron-rich C-H bonds are activated whereas those that are α to electron withdrawing groups are deactivated toward HAT, with these effects being able to override the thermodynamic preference for HAT from the weakest C-H bond. Stereoelectronic effects can also influence the reactivity of the C-H bonds of ethers, amines, and amides. HAT is most rapid when these bonds can be eclipsed with a lone pair on an adjacent heteroatom or with the π-system of an amide functionality, thus allowing for optimal orbital overlap. In HAT from cyclohexane derivatives, tertiary axial C-H bond deactivation and tertiary equatorial C-H bond activation have been observed. These effects have been explained on the basis of an increase in torsional strain or a release in 1,3-diaxial strain in the HAT transition states, with kH(eq)/kH(ax) ratios that have been shown to exceed one order of

  17. Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2009-12-01

    Full Text Available This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone–phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing.

  18. Effects of fenbendazole administration on hematology, clinical chemistries and selected hormones in the white Pekin duck.

    Science.gov (United States)

    Pedersoli, W M; Spano, J S; Krista, L M; Whitesides, J F; Ravis, W R; Kemppainen, R J; Young, D W

    1989-06-01

    The effects of single i.v. and p.o. doses (5 mg/kg) of fenbendazole, were evaluated on thyroxine, tri-iodothyronine, corticosterone, hematology, clinical chemistries, and serum proteins in 10 white Pekin ducks. Fenbendazole was administered i.v. (n = 5) as a 3% dimethyl sulfoxide solution and p.o. (n = 5) as a 10% commercial suspension. Serum enzyme concentrations, total protein and protein fractions, glucose, cholesterol, uric acid, sodium, and potassium were unchanged from baseline values. Serum triglycerides decreased consistently in the i.v.-treated group but remained unchanged in the p.o.-treated group. Serum chloride was consistently elevated above baseline values for both i.v.- and p.o.-treated ducks, while inorganic phosphate was consistently decreased only in the i.v.-treated group. Hemoglobin and hematocrit values generally were below baseline values. Leukocyte values varied considerably and were not significantly different from baseline values. Serum thyroxine and tri-iodothyronine values in both the i.v.- and p.o.-treated groups were not changed significantly from baseline values. Serum corticosterone values were not changed in the i.v.-treated groups but they were decreased at various times in the p.o.-treated group. Although there were some sporadic significant changes in the parameters measured versus baseline values all values remained within the physiologic limits for ducks. The safety of fenbendazole has been previously demonstrated for several species.

  19. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  20. Modifying the chemistry of graphene with substrate selection: A study of gold nanoparticle formation

    Energy Technology Data Exchange (ETDEWEB)

    Zaniewski, Anna M.; Trimble, Christie J.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85281 (United States)

    2015-03-23

    Graphene and metal nanoparticle composites are a promising class of materials with unique electronic, optical, and chemical properties. In this work, graphene is used as a reducing surface to grow gold nanoparticles out of solution-based metal precursors. The nanoparticle formation is found to strongly depend upon the graphene substrate selection. The studied substrates include diamond, p-type silicon, aluminum oxide, lithium niobate, and copper. Our results indicate that the chemical properties of graphene depend upon this selection. For example, for the same reaction times and concentration, the reduction of gold chloride to gold nanoparticles on graphene/lithium niobate results in 3% nanoparticle coverage compared to 20% coverage on graphene/silicon and 60% on graphene/copper. On insulators, nanoparticles preferentially form on folds and edges. Energy dispersive X-ray analysis is used to confirm the nanoparticle elemental makeup.

  1. Anion Receptor Design: Exploiting Outer-Sphere Coordination Chemistry To Obtain High Selectivity for Chloridometalates over Chloride.

    Science.gov (United States)

    Carson, Innis; MacRuary, Kirstian J; Doidge, Euan D; Ellis, Ross J; Grant, Richard A; Gordon, Ross J; Love, Jason B; Morrison, Carole A; Nichol, Gary S; Tasker, Peter A; Wilson, A Matthew

    2015-09-01

    High anion selectivity for PtCl6(2-) over Cl(-) is shown by a series of amidoamines, R(1)R(2)NCOCH2CH2NR(3)R(4) (L1 with R(1) = R(4) = benzyl and R(2) = R(3) = phenyl and L3 with R(1) = H, R(2) = 2-ethylhexyl, R(3) = phenyl and R(4) = methyl), and amidoethers, R(1)R(2)NCOCH2CH2OR(3) (L5 with R(1) = H, R(2) = 2-ethylhexyl and R(3) = phenyl), which provide receptor sites which extract PtCl6(2-) preferentially over Cl(-) in extractions from 6 M HCl solutions. The amidoether receptor L5 was found to be a much weaker extractant for PtCl6(2-) than its amidoamine analogues. Density functional theory calculations indicate that this is due to the difficulty in protonating the amidoether to generate a cationic receptor, LH(+), rather than the latter showing weaker binding to PtCl6(2-). The most stable forms of the receptors, LH(+), contain a tautomer in which the added proton forms an intramolecular hydrogen bond to the amide oxygen atom to give a six-membered proton chelate. Dispersion-corrected DFT calculations appear to suggest a switch in ligand conformation for the amidoamine ligands to an open tautomer state in the complex, such that the cationic N-H or O-H groups are also readily available to form hydrogen bonds to the PtCl6(2-) ion, in addition to the array of polarized C-H bonds. The predicted difference in energies between the proton chelate and nonchelated tautomer states for L1 is small, however, and the former is found in the X-ray crystal structure of the assembly [(L1H)2PtCl6]. The DFT calculations and the X-ray structure indicate that all LH(+) receptors present an array of polarized C-H groups to the large, charge diffuse PtCl6(2-) anion resulting in high selectivity of extraction of PtCl6(2-) over the large excess of chloride.

  2. Effect of Electronic Factor in Ru-phosphine-diamine Complexes on Selective Hydrogenation of C=C and C-O Bonds

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu; Yu,Xiaojun; YU,Changbin; XIA,Yuqing; LI,Ruixiang; CHEN,Hua; LI,Xianjun

    2009-01-01

    A series of ruthenium complexes bearing different phosphines and diamines were synthesized and their compo-nents and structures were characterized by NMR spectra and elemental analyses. The catalytic properties of these complexes for the hydrogenation of benzylideneacetone and the mixture of acetophenone and styrene were investi-gated. The results showed that the basicity increase of phosphine or diamine dramatically facilitates the hydrogena-tion activity and selectivity to C=O double bond. On the contrary, the basicity decrease of phosphine or diamine not only slows down the catalytic activity, but also significantly suppresses the hydrogenation selectivity to C=O double bond. Based on the effect of electron factors of these complexes on the hydrogenation activity and selectiv-ity of benzylideneacetone and the mixture of styrene and acetophenone, the activation mechanism of dihydrogen in ruthenium-phosphine-diamine system was proposed.

  3. Nobel Prize in Chemistry

    Science.gov (United States)

    2000-01-01

    The Royal Swedish Academy has awarded the 1999 Nobel Prize in Chemistry to Ahmed H. Zewail (California Institute of Technology, Pasadena, CA) "for his studies of the transition states of chemical reactions using femtosecond spectroscopy". Zewail's work has taken the study of the rates and mechanisms of chemical reactions to the ultimate degree of detail - the time scale of bond making and bond breaking.

  4. Effects of selected water chemistry variables on copper pitting propagation in potable water

    Energy Technology Data Exchange (ETDEWEB)

    Ha Hung, E-mail: hmh2n@virginia.edu [Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA (United States); Taxen, Claes [SWEREA-KIMAB, Stockholm (Sweden); Williams, Keith [Department of Physics, University of Virginia, Charlottesville, VA (United States); Scully, John [Center for Electrochemical Science and Engineering, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA (United States)

    2011-07-01

    Highlights: > The effects of water composition on pit propagation kinetics on Cu were separated from pit initiation and stabilization using the artificial pit method in a range of dilute HCO{sub 3}{sup -}, SO{sub 4}{sup 2-} and Cl{sup -}-containing waters. > The effective polarization and Ohmic resistance of pits were lower in SO4{sup 2-}-containing solutions and greater in Cl{sup -}-containing solutions. > Relationship between the solution composition and the corrosion product identity and morphology were found. > These, in turn controlled the corrosion product Ohmic resistance and subsequently the pit growth rate. - Abstract: The pit propagation behavior of copper (UNS C11000) was investigated from an electrochemical perspective using the artificial pit method. Pit growth was studied systematically in a range of HCO{sub 3}{sup -}, SO{sub 4}{sup 2-} and Cl{sup -} containing-waters at various concentrations. Pit propagation was mediated by the nature of the corrosion products formed both inside and over the pit mouth (i.e., cap). Certain water chemistry concentrations such as those high in sulfate were found to promote fast pitting that could be sustained over long times at a fixed applied potential but gradually stifled in all but the lowest concentration solutions. In contrast, Cl{sup -} containing waters without sulfate ions resulted in slower pit growth and eventual repassivation. These observations were interpreted through understanding of the identity, amount and porosity of corrosion products formed inside and over pits. These factors controlled their resistive nature as characterized using electrochemical impedance spectroscopy. A finite element model (FEM) was developed which included copper oxidation kinetics, transport by migration and diffusion, Cu(I) and Cu(II) solid corrosion product formation and porosity governed by equilibrium thermodynamics and a saturation index, as well as pit current and depth of penetration. The findings of the modeling were

  5. Highly selective deuteration of pharmaceutically relevant nitrogen-containing heterocycles: a flow chemistry approach.

    Science.gov (United States)

    Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc

    2011-08-01

    A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.

  6. Site-selective protein-modification chemistry for basic biology and drug development

    Science.gov (United States)

    Krall, Nikolaus; da Cruz, Filipa P.; Boutureira, Omar; Bernardes, Gonçalo J. L.

    2016-02-01

    Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

  7. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  8. Novel trends in electrocatalysis: Extended Brewer hypo-hyper-d-interionic bonding theory and selective interactive grafting of composite bifunctional electrocatalysts for simultaneous anodic hydrogen

    Directory of Open Access Journals (Sweden)

    Neophytides S.G.

    2003-01-01

    Full Text Available Novel Trends in Electrocatalysis: Extended Brewer Hypo-Hyper-d-lnterionic Bonding Theory and Selective Interactive Grafting of Composite Bifunctional Electrocatalysts for Simultaneous Anodic Hydrogen and CO OxidationThe Extended Brewer Interactive Interionic Bonding Theory (EBIIBT has been developed to show the equivalence of interatomic and interionic bonding features, and for their mutual combinations, as well as its effect upon electrocatalytic properties for the hydrogen electrode reactions (HELR. The equivalence of interionic hypo-hyper-d-interelectronic interaction in both metallic and any other ionic state and its effect upon electrocatalytic properties for hydrogen electrode reactions (HELR has been proved and inferred. TG (Thermal Gravimetry analysis of TPR (Temperature Programmed Reduction of mixed hypc-hyper-d-electronic oxides of transition elements was broadly employed to prove the EBIIBT effect as reflected in dramatically decreased individual temperatures of their mutual reduction into intermetallic phases. The same interionic Brewer (and/or intermetallic bonding effect has been confirmed both by UPD of hyper-d-upon hypo-d-electronic substrates and vice versa, and by the shift of bonding peaks in XPS analysis.

  9. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation.

    Science.gov (United States)

    Gogoi, Anupal; Guin, Srimanta; Rajamanickam, Suresh; Rout, Saroj Kumar; Patel, Bhisma K

    2015-09-18

    The higher propensity of C-N over C-S bond forming ability was demonstrated, through formal C-H functionalization during the construction of 4,5-disubstituted 1,2,4-triazole-3-thiones from arylidenearylthiosemicarbazides catalyzed by Cu(II). However, steric factors imparted by the o-disubstituted substrates tend to change the reaction path giving thiodiazole as the major or an exclusive product. Upon prolonging the reaction time, the in situ generated thiones are transformed to 4,5-disubstituted 1,2,4-triazoles via a desulfurization process. Two classes of heterocycles viz. 4,5-disubstituted 1,2,4-triazole-3-thiones and 4,5-disubstituted 1,2,4-triazoles can be synthesized from arylidenearylthiosemicarbazides by simply adjusting the reaction time. Desulfurization of 1,2,4-triazole-3-thiones is assisted by thiophilic Cu to provide 1,2,4-triazoles with concomitant formation of CuS and polynuclear sulfur anions as confirmed from scanning electron microscope and energy dispersive X-ray spectroscopy measurements. A one-pot synthesis of an antimicrobial compound has been successfully achieved following this strategy.

  10. Food selection in relation to nutritional chemistry of Cao Vit gibbons in Jingxi, China.

    Science.gov (United States)

    Ma, Changyong; Liao, Jiancun; Fan, Pengfei

    2017-01-01

    The Cao Vit gibbon (Nomascus nasutus) has only one population with about 110 individuals living in a degraded karst forest along the China-Vietnam border. Investigation of food choice in relation to chemical nutrition will offer important insights into its conservation. We studied the food choice of two groups of Cao Vit gibbons using instantaneous scan sampling in Bangliang National Nature Reserve, Guangxi, China, over 4 years, and analyzed the chemical components (total nitrogen, TN; water-soluble sugar, WSS; crude fat, CF; neutral detergent fiber, NDF; acid detergent fiber, ADF; acid detergent lignin, ADL; condensed tannin, CT; and ash) of 48 food plant parts and 22 non-food plant parts. Fruits and figs that are rich in sugar are important food resources for gibbons. For other food types, flowers are a good source of total nitrogen and carbohydrates, and leaves and buds provide sources of protein and minerals. Cao Vit gibbons selected fruits that contain less total nitrogen, less acid detergent fiber and more water-soluble sugar than non-food fruits. Several food species that were heavily consumed by Cao Vit gibbons are suggested as potential tree species for ongoing habitat restoration.

  11. Polymer-pendant ligand chemistry. 1. Reactions of organoarsonic acids and arsenic acid with catechol ligands bonded to polystryene-divinylbenzene and regeneration of the ligand site by a simple hydrolysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Fish, R.H.; Tannous, R.S.

    1985-12-18

    A novel method is reported for reactions of organoarsonic acids and arsenic acid, known to be present in oil shale and its pyrolysis products, with catechol ligands bonded to either 2% or 20% cross-linked methylated polystyrene-divinylbenzene (PS-DVB) resins. A previous study with catechol-bonded ligands on PS-DVB resins dealt with their reactions with metal ions in aqueous solution and showed a selectivity toward Hg/sup 2 +/ ions. As far as we have been able to determine, reactions of this polymer-supported ligand with organometallic compounds or inorganic anions have not been reported. 9 references, 2 figures, 1 table.

  12. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry.

    Science.gov (United States)

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-06-04

    Metal oxides such as ferric or aluminum oxides can play an important role in the retention of bacteria in granular aquatic environments; however, their role in bacterial inactivation is not well understood. Herein, we examined the role of water chemistry and surface chemistry on the short-term inactivation rates of three bacteria when adhered to surfaces. To evaluate the role of water chemistry on the inactivation of attached bacteria, the loss in membrane integrity of bacteria attached to an iron oxide (Fe2O3) surface was measured over a range of water ionic strengths of either monovalent or divalent salts in the absence of a growth substrate. The influence of surface chemistry on the inactivation of attached bacteria was examined by measuring the loss in membrane integrity of cells attached to three surfaces (SiO2, Fe2O3, and Al2O3) at a specific water chemistry (10 mM KCl). Bacteria were allowed to attach onto the SiO2 or metal oxide coated slides mounted in a parallel-plate flow cell, and their inactivation rate (loss in membrane integrity) was measured directly without removing the cells from the surface and without disturbing the system. X-ray photoelectron spectroscopy analysis revealed a high correlation between the amounts of C-metal or O-metal bonds and the corresponding bacterial inactivation rates for each surface. Finally, for all three surfaces, a consistent increase in inactivation rate was observed with the type of bacterium in the order: Enterococcus faecalis, Escherichia coli O157:H7, and Escherichia coli D21f2.

  13. Polymer pendant ligand chemistry. 3. A biomimetic approach to selective metal ion removal and recovery from aqueous solution with polymer-supported sulfonated catechol and linear catechol amide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Song-Ping; Li, Wei; Franz, K.J.; Albright, R.L.; Fish, R.H. [Univ. of California, Berkeley, CA (United States)

    1995-05-24

    The design of organic ligands to selectively remove and recover metal ions from aqueous solution is a new and important area of environmental inorganic chemistry. One approach to designing organic ligands for these purposes is to use biological systems as examples for selective metal ion complexation. Thus, the authors report results on the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis(catechol) linear amide (PS-2-6-LICAMS), and sulfonated 3.3-linear tris(catechol) amide (PS-3,3-LICAMS) ligands that are chemically bonded to modified 6% cross-linked macroporous polystyrene-divinylbenzene beads (PS-DVB) for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity was dramatically shown for PS-CATS, PS-2-6-LICAMS and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1-3, while metal ion selectivity could be changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). Rates of removal and recovery of the Fe{sup 3+} ion with the PS-CATS, PS-2-6LICAMS and PS-3,3-LICAMS polymer beads were also studied as well as relative equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies.

  14. Substituent-controlled selective synthesis of N-acyl 2-aminothiazoles by intramolecular Zwitterion-mediated C-N bond cleavage.

    Science.gov (United States)

    Wang, Yang; Zhao, Fei; Chi, Yue; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-11-21

    The cleavage of C-N bonds is an interesting and challenging subject in modern organic synthesis. We have achieved the first zwitterion-controlled C-N bond cleavage in the MCR reaction among lithium alkynethiolates, bulky carbodiimides, and acid chlorides to construct N-acyl 2-aminothiazoles. This is a simple, highly efficient, and general method for the preparation of N-acyl 2-aminothiazoles with a broad range of substituents. The selective synthesis of N-acyl 2-aminothiazoles significantly depends on the steric hindrance of carbodiimides. The result is in striking contrast with our previous convergent reaction giving 5-acyl-2-iminothiazolines via 1,5-acyl migration. It is indeed interesting that the slight change of the substituents on the carbodiimides can completely switch the product structure. Experimental and theoretical results demonstrate the reason why the C-N bond cleavage in the present system is prior to the acyl migration. The intramolecular hydrogen relay via unprecedented Hofmann-type elimination is essential for this totally new zwitterion-controlled C-N bond cleavage.

  15. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Hong Liu; Yue-Tong Qian; Song Zhu; Su-Qian Zhao

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested:(i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts:DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (a50.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts.

  16. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    A scheme for controlling the outcome of a photodissociation process is studied. It involves two lasers—one intense laser in the infrared region which is supposed to excite a particular bond in the electronic ground state, and a second short laser pulse in the ultraviolet region which, at the righ...

  17. Organic chemistry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Seok Sik

    2005-02-15

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  18. Gas phase chemistry in gallium nitride CVD: Theoretical determination of the Arrhenius parameters for the first Ga-C bond homolysis of trimethylgallium.

    Science.gov (United States)

    Schmid, Rochus; Basting, Daniel

    2005-03-24

    Experimental evidence suggests that the energy of activation for the first homolytic Ga-C bond fission of GaMe3 of Ea = 249 kJ/mol, measured by Jacko and Price in a hot-wall tube reactor, is affected by surface catalytic effects. In this contribution, the rate constant for this crucial step in the gas-phase pyrolysis of GaMe3 has been calculated by variational transition state theory. By a basis set extrapolation on the MP2/cc-pVXZ level and a correlation correction from CCSD(T)/cc-pVDZ level, a theoretical "best estimate" for the bond energy of Delta H(289K) = 327.2 kJ/mol was derived. For the VTST calculation on the B3LYP/cc-pVDZ level, the energies were corrected to reproduce this bond energy. Partition functions of the transitional modes were approximated by a hindered rotor approximation to be valid along the whole reaction coordinate defined by the Ga-C bond length. On the basis of the canonical transition state theory, reaction rates were determined using the maxima of the free energy Delta G++. An Arrhenius-type rate law was fitted to these rate constants, yielding an apparent energy of activation of Ea = 316.7 kJ/mol. The preexponential factor A = 3.13 x 10(16) 1/s is an order of magnitude larger than the experimental results because of a larger release of entropy at the transition state as compared to that of the unknown surface catalyzed mechanism.

  19. Structural Criteria for the Rational Design of Selective Ligands: Convergent Hydrogen Bonding Sites for the Nitrate Anion

    Energy Technology Data Exchange (ETDEWEB)

    Hay, Benjamin P.; Gutowski, Maciej S.; Dixon, David A.; Garza , Jorge; Vargas, Rubicelia; Moyer, Bruce A.

    2004-06-30

    Molecular hosts for anion complexation are often constructed by combining two or more hydrogen bonding functional groups, D–H. The deliberate design of complementary host architectures requires knowledge of the optimal geometry for the hydrogen bonds formed between the host and the guest. Herein, we present a detailed study of the structural aspects of hydrogen bonding interactions with the NO3– anion. A large number of crystal structures are analyzed to determine the number of hydrogen bond contacts per anion and to further characterize the structural aspects of these interactions. Electronic structure calculations are used to determine stable geometries and interaction energies for NO3– complexes with several simple molecules possessing D–H groups, including water, methanol, N-methylformamide, and methane. Theoretical results are reported at several levels of density functional theory, including BP86/DN**, B3LYP/TZVP, and B3LYP/TZVP+, and at MP2/aug-cc-pVDZ. In addition, MP2 binding energies for these complexes were obtained at the complete basis set limit by extrapolating from single point energies obtained with larger correlation-consistent basis sets. The results establish that NO3– has an intrinsic hydrogen bonding topography in which there are six optimal sites for proton location. The structural features observed in crystal structures and in the optimized geometries of complexes are explained by a preference to locate the D–H protons in these positions. For the strongest hydrogen bonding interactions, the N–O•••H angle is bent at an angle of 115 ± 10°, and the hydrogen atom lies in the NO3– plane giving O–N–O•••H dihedral angles of 0 and 180°. In addition, the D-H vector points towards the oxygen atom, giving D–H•••O angles that are near linear, 170 ± 10°. Due to steric hindrance, simple alcohol O–H and amide N–H donors form 3:1 complexes with NO3–, with H•••O distances of 1.85 ± 0.5 Å. Thus, the

  20. Effects of Architecture and Surface Chemistry of Three-Dimensionally Ordered Macroporous Carbon Solid Contacts on Performance of Ion-Selective Electrodes

    OpenAIRE

    2010-01-01

    The effects of the architecture and surface chemistry of three-dimensionally ordered macroporous (3DOM) carbon solid contacts on the properties of ion-selective electrodes (ISEs) were examined. Infiltration of the plasticized PVC membrane into the pores of the carbon created a large interfacial area between the sensing membrane and the solid contact, as shown by cryo-SEM and elemental analysis. This large interfacial area, along with the high capacitance of the 3DOM carbon solid contacts (as ...

  1. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  2. Synthesis of triple-bond-containing 1-hydroxy-1,1-bisphosphonic acid derivatives to be used as precursors in "click" chemistry: two examples.

    Science.gov (United States)

    Turhanen, Petri A

    2014-07-03

    The synthesis of novel (ω-alkynyl-1-hydroxy-1,1-diyl)bisphosphonic acid tetramethyl esters (1a-c), their P,P'-dimethyl esters (2a-c), and two trimethyl ester derivatives (3a and 3b) is reported. The prepared compounds can be attached to many kinds of molecules containing azide (-N3) functionalities using a "click" chemistry approach. As an example, bisphosphonate trimethyl ester 3a and P,P'-dimethyl ester 2b were attached to triethylene glycol to form triethylene glycol-bisphosphonate conjugates 4 and 5 as model compounds for further studies in, for example, nanoparticle targeting.

  3. Effect of chromatographic conditions on retention behavior and system efficiency for HPTLC of selected psychotropic drugs on chemically bonded stationary phases.

    Science.gov (United States)

    Petruczynik, Anna; Wróblewski, Karol; Waksmundzka-Hajnos, Monika

    2015-01-01

    Selected psychotropic drug standards have been chromatographed on RP18, CN and diol layers with a variety of aqueous and nonaqueous mobile phases. The effect of buffers at acidic or basic pH, acetic acid, ammonia and diethylamine (DEA) in aqueous mobile phases on retention, efficiency and peak symmetry was examined. Improved peak symmetry and separation selectivity for investigated compounds were observed when ammonia or DEA were used as mobile phase additives. The effect of diethylamine concentration in aqueous eluents on retention, peak symmetry and theoretical plate number obtained on CN plates was also investigated. Because of the strong retention of these basic drugs on stationary phases bonded on silica matrix, nonaqueous eluents containing medium polar diluents, strongly polar modifiers and silanol blockers (ammonia or diethylamine) were applied. Aqueous and nonaqueous eluent systems with the best selectivity and efficiency were used for separate psychotropic drug standards' mixture on CN layer by 2D TLC.

  4. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.

    Science.gov (United States)

    Hansen, D Flemming; Vallurupalli, Pramodh; Kay, Lewis E

    2008-07-02

    Relaxation dispersion NMR spectroscopy has become a valuable probe of millisecond dynamic processes in biomolecules that exchange between a ground (observable) state and one or more excited (invisible) conformers, in part because chemical shifts of the excited state(s) can be obtained that provide insight into the conformations that are sampled. Here we present a pair of experiments that provide additional structural information in the form of residual dipolar couplings of the excited state. The new experiments record (1)H spin-state selective (13)CO and (13)C(alpha) dispersion profiles under conditions of partial alignment in a magnetic field from which two-bond (1)HN-(13)CO and one-bond (1)H(alpha)-(13)C(alpha) residual dipolar couplings of the invisible conformer can be extracted. These new dipolar couplings complement orientational restraints that are provided through measurement of (1)HN-(15)N residual dipolar couplings and changes in (13)CO chemical shifts upon alignment that have been measured previously for the excited-state since the interactions probed here are not collinear with those previously investigated. An application to a protein-ligand binding reaction is presented, and the accuracies of the extracted excited-state dipolar couplings are established. A combination of residual dipolar couplings and chemical shifts as measured by relaxation dispersion will facilitate a quantitative description of excited protein states.

  5. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  6. The Application of SCC-DV-Xα Computational Method of Quantum Chemistry in Cement Chemistry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It has been explored why quantum chemistry is applied to the research field of cement chemistry. The fundamental theory of SCC-DV-Xα computational method of quantum chemistry is synopsized. The results obtained by computational quantum chemistry method in recent years of valence-bond structures and hydration activity of some cement clinker minerals, mechanical strength and stabilization of some hydrates are summarized and evaluated. Finally the prospects of the future application of quantum chemistry to cement chemistry are depicted.

  7. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  8. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  9. Interfacial bonding enhancement of reel-to-reel selective electrodeposition of copper stabilizer on a multifilamentary second-generation high-temperature superconductor tape

    Science.gov (United States)

    Cai, Xinwei; Li, Wei; Bose, Anima; Selvamanickam, Venkat

    2016-10-01

    A reel-to-reel copper selective electrodeposition process over a multifilamentary second-generation high-temperature superconductor (2G-HTS) has been demonstrated in our previous work. If the interfacial bonding between the deposited copper layer and the underlying silver overlayer is weak, it might lead to delamination in applications including magnets, motors and generators. In this study, two approaches have been used to improve the copper-silver bonding without the degradation of superconductor performance. The first approach is acidifying the electrolyte by adding sulfuric acid, by which the kinetics of copper electrodeposition is enhanced, resulting in finer microstructure at the copper-silver interface and thus, improved interfacial bonding strength. The second approach consists of blocking the electrolyte outflow at the entrance of the reel-to-reel electroplating cell, by which the occurrence of large copper seeds on the tape caused by the heavy turbulence flow is effectively prevented. With these two improvements together deployed in the process, the peeling strength between the copper and silver layers of the 2G-HTS tape has been improved from 2 N in 90° peeling and from 3.0 N in 180° peeling, without any degradation on the superconducting performance.

  10. Selectivity of Chemisorbed Oxygen in C–H Bond Activation and CO Oxidation and Kinetic Consequences for CH₄–O₂ Catalysis on Pt and Rh Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Ya-Huei; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-06

    Rate measurements, density functional theory (DFT) within the framework of transition state theory, and ensemble-averaging methods are used to probe oxygen selectivities, defined as the reaction probability ratios for O* reactions with CO and CH₄, during CH₄–O₂ catalysis on Pt and Rh clusters. CO₂ and H₂O are the predominant products, but small amounts of CO form as chemisorbed oxygen atoms (O*) are depleted from cluster surfaces. Oxygen selectivities, measured using ¹²CO–¹³CH₄–O₂ reactants, increase with O₂/ CO ratio and O* coverage and are much larger than unity at all conditions on Pt clusters. These results suggest that O* reacts much faster with CO than with CH₄, causing any CO that forms and desorbs from metal cluster surfaces to react along the reactor bed with other O* to produce CO₂ at any residence time required for detectable extents of CH₄ conversion. O* selectivities were also calculated by averaging DFTderived activation barriers for CO and CH₄ oxidation reactions over all distinct surface sites on cubo-octahedral Pt clusters (1.8 nm diameter, 201 Pt atoms) at low O* coverages, which are prevalent at low O₂ pressures during catalysis. CO oxidation involves non-activated molecular CO adsorption as the kinetically relevant step on exposed Pt atoms vicinal of chemisorbed O* atoms (on *–O* site pairs). CH₄ oxidation occurs via kinetically relevant C–H bond activation on *–* site pairs involving oxidative insertion of a Pt atom into one of the C–H bonds in CH₄, forming a three-centered HC₃–Pt–H transition state. C–H bond activation barriers reflect the strength of Pt–CH₃ and Pt–H interactions at the transition state, which correlates, in turn, with the Pt coordination and with CH₃ * binding energies. Ensemble-averaged O* selectivities increase linearly with O₂/CO ratios, which define the O* coverages, via a proportionality constant. The proportionality constant is given by the ratio of rate

  11. Influence of the LED curing source and selective enamel etching on dentin bond strength of self-etch adhesives in class I composite restorations.

    Science.gov (United States)

    Souza-Junior, Eduardo José; Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Paulillo, Luís Alexandre Maffei Sartini

    2012-11-01

    The aim of this study was to evaluate the influence of the LED curing unit and selective enamel etching on dentin microtensile bond strength (μTBS) for self-etch adhesives in class I composite restorations. On 96 human molars, box-shaped class I cavities were made maintaining enamel margins. Self-etch adhesives (Clearfil SE - CSE and Clearfil S(3) - S3) were used to bond a microhybrid composite. Before adhesive application, half of the teeth were enamel acid-etched and the other half was not. Adhesives and composites were cured with the following light curing units (LCUs): one polywave (UltraLume 5 - UL) and two single-peak (FlashLite 1401 - FL and Radii Cal - RD) LEDs. The specimens were then submitted to thermomechanical aging and longitudinally sectioned to obtain bonded sticks (0.9 mm(2)) to be tested in tension at 0.5 mm/min. The failure mode was then recorded. The μTBS data were submitted to a three-way ANOVA and Tukey's (α = 0.05). For S3, the selective enamel-etching provided lower μTBS values (20.7 ± 2.7) compared to the non-etched specimens (26.7 ± 2.2). UL yielded higher μTBS values (24.1 ± 3.2) in comparison to the photoactivation approach with FL (18.8 ±3.9) and RD (19.9 ±1.8) for CSE. The two-step CSE was not influenced by the enamel etching (p ≥ 0.05). Enamel acid etching in class I composite restorations affects the dentin μTBS of the one-step self-etch adhesive Clearfil S(3), with no alterations for Clearfil SE bond strength. The polywave LED promoted better bond strength for the two-step adhesive compared to the single-peak ones.

  12. Selected Contributions of the 4th European Meeting on Solar Chemistry and Photocatalysis. Environmental Applications (SPEA 4)

    Energy Technology Data Exchange (ETDEWEB)

    Malato Rodriguez, S.; Gernjak, W.; Pereze Pena, J.; Dona Rodriguez, J.M. (eds.)

    2007-11-15

    In developed countries, the importance of water as a resource and problems derived from its scarcity has led to growing social and legislative demands. As a consequence, in the last 30 years, new fields of research have opened in a search for more efficient water treatment methods. This is the case of the advanced oxidation techniques (AOTs) and their application to nonbiodegradable contaminants, which can otherwise be removed from water, but not eliminated. Fast development of research in this field has encouraged chemists, chemical engineers and related professionals to meet and debate their findings and plan new strategies for the future, working toward evermore efficient methods of wastewater treatment wherever needed. The same can be said of gaseous effluents, as emission limits for organic air pollution become stricter. Volatile organic compounds (VOCs) pose an environmental and health threat, which can be treated by adsorption, incineration, condensation, etc., or be completely destroyed by chemical methods, such as the very promising gas-phase photocatalytic air pollution treatment. The SPEA Meetings have been held against this background, particularly this fourth one, where scientists assembled to present and debate their latest achievements in low-cost treatment technologies for wastewater, gaseous effluents and polluted soils. This Special Issue of Catalysis Today was compiled from the scientific reports generated by the congress, and includes a selection of some of the most interesting work presented at the meeting. The 34-member Scientific Committee were from 11 different countries (Argentina, Chile, Finland, France, Germany, Greece, Italy, Slovakia, Spain, Switzerland, and the USA). One hundred and thirty-five delegates from 22 different countries attended the congress (representing 368 authors). One hundred and thirty-eight communications were presented, 45 oral presentations and 93 posters. Three plenary lectures, one round table and two poster

  13. Hydroacylation of N=N bonds via aerobic C-H activation of aldehydes, and reactions of the products thereof

    OpenAIRE

    Akhbar, A. R.

    2014-01-01

    The development of methods to construct new chemical bonds efficiently and selectively whilst minimising energy usage and waste production is of high importance in organic chemistry. Many current methods employ inefficient, costly and often toxic multi step protocols to generate new chemical bonds. The hydroacylation reaction is one method of reducing such inefficiencies. The development of an aerobic hydroacylation protocol in the Caddick group has recently allowed the functionalisation of a...

  14. Selective reduction of C=C double bonds in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of microcystins.

    Science.gov (United States)

    Deleuze, Christelle; De Pauw, Edwin; Quinton, Loic

    2010-01-01

    Cyanobacteria are photosynthetic bacteria encountered in various aquatic environments. Some of them are able to produce powerful toxins called cyanotoxins. Among cyanotoxins, microcystins (MCs) constitute a group of closely related cyclic heptapeptides. Their sequences are made up of classical amino acids as well as post- translational modified ones. Interestingly, in vivo metabolism of microcystins seems to be greatly dependent on various minor structural differences and particularly those of the seventh amino acid, which can be either dehydroalanine (or a derivative), dehydroaminobutyric acid (or a derivative), serine or alanine. As a consequence, microcystins have been classified on the basis of the nature of this singular amino acid. A major difficulty in the classification of such toxins is that some of them share the same molecular masses and the same molecular formulas. Consequently, a simple mass measurement is not sufficient to determine the structure and the class of a toxin of interest. Heavy and expensive techniques are used to classify them, such as multi-dimensional nuclear magnetic resonance and amino acid analysis. In this work, a new matrix-assisted laser desorption/ionization time-of-flight method leading to an easy classification of MCs is proposed. The methodology relies on the reductive properties of the matrix 1,5-diaminonaphtalene (1,5-DAN) which appears to be able to selectively reduce the double carbon-carbon bond belonging to the seventh amino acid. Moreover, the yield of reduction seems to be influenced by the degree of substitution of this double bond, allowing a discrimination between dehydroalanine and dehydroaminobutyric acid. This selective reduction was confirmed by the study of three synthetic peptides by mass spectrometry and tandem mass spectrometry. According to these results, the use of reductive matrices seems to be promising in the study of microcystins and in their classification. More generally, 1,5-DAN allows the selective

  15. Probing the structures and chemical bonding of boron-boronyl clusters using photoelectron spectroscopy and computational chemistry: B4(BO)(n)- (n = 1-3).

    Science.gov (United States)

    Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2012-07-28

    The electronic and structural properties of a series of boron oxide clusters, B(5)O(-), B(6)O(2)(-), and B(7)O(3)(-), are studied using photoelectron spectroscopy and density functional calculations. Vibrationally resolved photoelectron spectra are obtained, yielding electron affinities of 3.45, 3.54, and 4.94 eV for the corresponding neutrals, B(5)O, B(6)O(2), and B(7)O(3), respectively. Structural optimizations show that these oxide clusters can be formulated as B(4)(BO)(n)(-) (n = 1-3), which involve boronyls coordinated to a planar rhombic B(4) cluster. Chemical bonding analyses indicate that the B(4)(BO)(n)(-) clusters are all aromatic species with two π electrons.

  16. Probing the structures and chemical bonding of boron-boronyl clusters using photoelectron spectroscopy and computational chemistry: B4(BO)n- (n = 1-3)

    Science.gov (United States)

    Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian; Wang, Lai-Sheng

    2012-07-01

    The electronic and structural properties of a series of boron oxide clusters, B5O-, B6O2-, and B7O3-, are studied using photoelectron spectroscopy and density functional calculations. Vibrationally resolved photoelectron spectra are obtained, yielding electron affinities of 3.45, 3.54, and 4.94 eV for the corresponding neutrals, B5O, B6O2, and B7O3, respectively. Structural optimizations show that these oxide clusters can be formulated as B4(BO)n- (n = 1-3), which involve boronyls coordinated to a planar rhombic B4 cluster. Chemical bonding analyses indicate that the B4(BO)n- clusters are all aromatic species with two π electrons.

  17. The Effect of Using Concept Maps on Student Achievement in Selected Topics in Chemistry at Tertiary Level

    Science.gov (United States)

    Singh, Indra Sen; Moono, Karren

    2015-01-01

    The performance in chemistry at tertiary level in Zambia has not been as expected. It has therefore been a matter of concern. There has been a continuous focus on exploring new teaching strategies to improve the understanding of this difficult subject. This study investigated the effectiveness of composite use of concept maps and traditional…

  18. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  19. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  20. Secondary Vocational Chemistry Experiment Teaching Mode Selection Policy Research%中职化学实验教学模式选择策略研究

    Institute of Scientific and Technical Information of China (English)

    胡文丽

    2014-01-01

    Secondary vocational chemistry experiment has an important position in chemistry teaching, vocational training students to better adapt to future production, management and service skills-based first-line operational capacity, has import-ant practical significance. Therefore, in carrying out chemical experiments in teaching vocational students, combined with the characteristics of vocational students to select scientific and effective experimental teaching model, to stimulate students' interest in learning chemistry experiments, experimental skills upgrading has important practical significance.%中职化学实验在化学教学中处于重要位置,对培养中职生更好适应未来生产、管理、服务的一线技能型操作能力,具有重要的现实意义。因此,在开展中职生化学实验教学时,结合中职生特点,选取科学有效的实验教学模式,激发学生化学实验学习兴趣,提升实验技能具有重要的现实意义。

  1. Selected clinical chemistry analytes correlate with the pathogenesis of inclusion body hepatitis experimentally induced by fowl aviadenoviruses.

    Science.gov (United States)

    Matos, Miguel; Grafl, Beatrice; Liebhart, Dieter; Schwendenwein, Ilse; Hess, Michael

    2016-10-01

    In the present study, clinical chemistry was applied to assess the pathogenesis and progression of experimentally induced inclusion body hepatitis (IBH). For this, five fowl aviadenovirus (FAdV) strains from recent IBH field outbreaks were used to orally inoculate different groups of day-old specific pathogen-free chickens, which were weighed, sampled and examined during necropsy by sequential killing. Mortalities of 50% and 30% were recorded in two groups between 6 and 9 days post-infection (dpi), along with a decreased weight of 23% and 20%, respectively, compared to the control group. Macroscopical changes were seen in the liver and kidney between 6 and 10 dpi, with no lesions being observed in the other organs. Histological lesions were observed in the liver and pancreas during the same period. Plasma was collected from killed birds of each group at each time point and the following clinical chemistry analytes were investigated: aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), bile acids, total protein, albumin, uric acid and lipase. Plasma protein profile, AST and GLDH, together with bile acids values paralleled the macroscopical and histopathological lesions in the liver, while plasma lipase activity levels coincided with lesions observed in pancreas. In agreement with the histology and clinical chemistry, viral load in the target organs, liver and pancreas, was highest at 7 dpi. Thus, clinical chemistry was found to be a valuable tool in evaluating and monitoring the progression of IBH in experimentally infected birds, providing a deeper knowledge of the underlying pathophysiological mechanisms of a FAdV infection in chickens.

  2. Substituent Directed Phototransformations of BN-Heterocycles: Elimination vs Isomerization via Selective B-C Bond Cleavage.

    Science.gov (United States)

    Yang, Deng-Tao; Mellerup, Soren K; Peng, Jin-Bao; Wang, Xiang; Li, Quan-Song; Wang, Suning

    2016-09-14

    Electron-rich and -poor BN-heterocycles with benzyl-pyridyl backbones and two bulky aryls on the boron (Ar = tipp, BN-1, Ar = MesF, BN-2) have been found to display distinct molecular transformations upon irradiation by UV light. BN-1 undergoes an efficient photoelimination reaction forming a BN-phenanthrene with ΦPE = 0.25, whereas BN-2 undergoes a thermally reversible, stereoselective, and quantitative isomerization to a dark colored BN-1,3,5-cyclooctatriene (BN-1,3,5-COT, BN-2a). This unusual photoisomerization persists for other BN-heterocycles with electron-deficient aryls such as BN-3 with a benzyl-benzothiazolyl backbone and Mes(F) substituents or BN-4 with a benzyl-pyridyl backbone and two C6F5 groups on the boron. The photoisomerization of BN-4 goes beyond BN-1,3,5-COT (BN-4a), forming a new species (BN-1,3,6-COT, BN-4b) via C-F bond cleavage and [1,3]-F atom sigmatropic migration. Computational studies support that BN-4a is an intermediate in the formation of BN-4b. This work establishes that steric and electronic factors can effectively control the transformations of BN-heterocycles, allowing access to important and previously unknown BN-embedded species.

  3. Transition metal chemistry of cyclodiphosphanes containing phosphine and amide-phosphine functionalities: formation of a stable dipalladium(II) complex containing a Pd-P σ-bond.

    Science.gov (United States)

    Balakrishna, Maravanji S; Venkateswaran, Ramalingam; Mague, Joel T

    2010-12-14

    Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment

  4. Reactions of the cumyloxyl and benzyloxyl radicals with tertiary amides. Hydrogen abstraction selectivity and the role of specific substrate-radical hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; Milan, Michela; DiLabio, Gino A; Bietti, Massimo

    2013-06-21

    A time-resolved kinetic study in acetonitrile and a theoretical investigation of hydrogen abstraction reactions from N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. CumO(•) reacts with both substrates by direct hydrogen abstraction. With DMF, abstraction occurs from the formyl and N-methyl C-H bonds, with the formyl being the preferred abstraction site, as indicated by the measured kH/kD ratios and by theory. With DMA, abstraction preferentially occurs from the N-methyl groups, whereas abstraction from the acetyl group represents a minor pathway, in line with the computed C-H BDEs and the kH/kD ratios. The reactions of BnO(•) with both substrates were best described by the rate-limiting formation of hydrogen-bonded prereaction complexes between the BnO(•) α-C-H and the amide oxygen, followed by intramolecular hydrogen abstraction. This mechanism is consistent with the very large increases in reactivity measured on going from CumO(•) to BnO(•) and with the observation of kH/kD ratios close to unity in the reactions of BnO(•). Our modeling supports the different mechanisms proposed for the reactions of CumO(•) and BnO(•) and the importance of specific substrate/radical hydrogen bond interactions, moreover providing information on the hydrogen abstraction selectivity.

  5. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays.

    Science.gov (United States)

    Zhang, Shuchen; Hu, Yue; Wu, Juanxia; Liu, Dan; Kang, Lixing; Zhao, Qiuchen; Zhang, Jin

    2015-01-28

    For the application of single-walled carbon nanotubes (SWNTs) to electronic and optoelectronic devices, techniques to obtain semiconducting SWNT (s-SWNT) arrays are still in their infancy. We have developed herein a rational approach for the preferential growth of horizontally aligned s-SWNT arrays on a ST-cut quartz surface through the selective scission of C-O and C-C bonds of ethanol using bimetal catalysts, such as Cu/Ru, Cu/Pd, and Au/Pd. For a common carbon source, ethanol, a reforming reaction occurs on Cu or Au upon C-C bond breakage and produces C(ads) and CO, while a deoxygenating reaction occurs on Ru or Pd through C-O bond breaking resulting in the production of O(ads) and C2H4. The produced C2H4 by Ru or Pd can weaken the oxidative environment through decomposition and the neutralization of O(ads). When the bimetal catalysts with an appropriate ratio were used, the produced C(ads) and C2H4 can be used as carbon source for SWNT growth, and O(ads) promotes a suitable and durable oxidative environment to inhibit the formation of metallic SWNTs (m-SWNTs). Finally, we successfully obtained horizontally aligned SWNTs on a ST-cut quartz surface with a density of 4-8 tubes/μm and an s-SWNT ratio of about 93% using an Au/Pd (1:1) catalyst. The synergistic effects in bimetallic catalysts provide a new mechanism to control the growth of s-SWNTs.

  6. Probing the presence of multiple metal-metal bonds in technetium chlorides by X-ray absorption spectroscopy: implications for synthetic chemistry.

    Science.gov (United States)

    Poineau, Frederic; Johnstone, Erik V; Forster, Paul M; Ma, Longzou; Sattelberger, Alfred P; Czerwinski, Kenneth R

    2012-09-03

    The cesium salts of [Tc(2)X(8)](3-) (X = Cl, Br), the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) in THF, and the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C have been characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. For the [Tc(2)X(8)](3-) anions, the Tc-Tc separations found by EXAFS spectroscopy (2.12(2) Å for both X = Cl and Br) are in excellent agreement with those found by single-crystal X-ray diffraction (SCXRD) measurements (2.117[4] Å for X = Cl and 2.1265(1) Å for X = Br). The Tc-Tc separation found by EXAFS in these anions is slightly shorter than those found in the [Tc(2)X(8)](2-) anions (2.16(2) Å for X = Cl and Br). Spectroscopic and SCXRD characterization of the reduction product of (n-Bu(4)N)[TcOCl(4)] with (n-Bu(4)N)BH(4) are consistent with the presence of dinuclear species that are related to the [Tc(2)Cl(8)](n-) (n = 2, 3) anions. From these results, a new preparation of (n-Bu(4)N)(2)[Tc(2)Cl(8)] was developed. Finally, EXAFS characterization of the product obtained from reaction of Tc(2)(O(2)CCH(3))(4)Cl(2) with HCl(g) at 300 °C indicates the presence of amorphous α-TcCl(3). The Tc-Tc separation (i.e., 2.46(2) Å) measured in this compound is consistent with the presence of Tc═Tc double bonds in the [Tc(3)](9+) core.

  7. Uranium triamidoamine chemistry.

    Science.gov (United States)

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-01

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  8. Activation of C-H bonds of arenes: selectivity and reactivity in bis(pyridyl) platinum(II) complexes.

    Science.gov (United States)

    Zhang, Fenbao; Kirby, Christopher W; Hairsine, Douglas W; Jennings, Michael C; Puddephatt, Richard J

    2005-10-19

    The reaction of [PtMe2(NN)] and B(C6F5)3/H2O in CF3CH2OH with arenes Ar-H gives [PtAr{HOB(C6F5)3}(LL)] if the bis(pyridyl) ligand NN forms a six-membered, but not five-membered, chelate ring; methyl-substituted arenes give selectivity for metalation of meta > para > ortho, but methoxy-substituted arenes give ortho > meta, para.

  9. Free-Radical Triggered Ordered Domino Reaction: An Approach to C-C Bond Formation via Selective Functionalization of α-Hydroxyl-(sp(3))C-H in Fluorinated Alcohols.

    Science.gov (United States)

    Xu, Zhengbao; Hang, Zhaojia; Liu, Zhong-Quan

    2016-09-16

    A free-radical mediated highly ordered radical addition/cyclization/(sp(3))C-C(sp(3)) formation domino reaction is developed. Three new C-C bonds are formed one by one in a mixed system. Furthermore, it represents the first example of cascade C-C bond formation via selective functionalization of α-hydroxyl-C(sp(3))-H in fluorinated alcohols.

  10. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  11. 谷胱甘肽键合柱对蛋白的选择性研究%Selectivity Research of Glutathione Bonded Column for Proteins

    Institute of Scientific and Technical Information of China (English)

    柯从玉; 孙妩娟; 张群正; 郑莉

    2012-01-01

    The multifunctional stationary phase with the properties of weak cation exchange(WCX),hydrophobic and hydrogen bonding interaction was synthesized by bonded the glutathione(GSH) to the silica surface.Five standard proteins myoglobin(Myo),ribonuclease(RNase),cytochrome(Cyt-C),α-Chymotrypsin(α-Chy) and lysozyme(Lys) were selected to evaluate the column efficiency.The experiments show that the stationary phase has the good separation performance for proteins both in hydrophobic interaction chromatography(HIC) and ion exchange chromatography(IEC).More importantly,the proteins separation in both HIC and IEC mode can be accomplished only by a single column and a kind of mobile phase.In order to compare the resolution of multifunctional column with other column,two popular commercial columns of TSKgel Ether-5PW in HIC mode and TSKgel CM-5PW in IEC mode were tested under optimum condition.It was found that the multifunctional column has a good resolution both in IEC and HIC mode compared with commercial TSKgel columns.The eluted order of five proteins were the same on multifunctional and TSKgel CM-5PW column in IEC mode,but there is a big different between multifunctional column and TSKgel Ether-5PW column in HIC mode,the eluted order of Myo and RNase as well as α-Chy and Lys are changed completely.This indicates that the selectivity of the multifunctional column is significantly better than that of the TSKgel columns.The chromatographic retention behaviors and mechanisms for proteins in glutathione bonded column were studied.The results demonstrate that there are two retention mechanisms for a basic protein,at a low salt concentration,the retention time of proteins is decreased with the increasing of salt concentration and the proteins were separated by electrostatic force,while in high salt concentration the retention time of proteins is increased with the increasing of salt concentration and proteins were separated by hydrogen

  12. Visible-Light-Induced Click Chemistry.

    Science.gov (United States)

    Mueller, Jan O; Schmidt, Friedrich G; Blinco, James P; Barner-Kowollik, Christopher

    2015-08-24

    A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.

  13. Beauty in chemistry

    Directory of Open Access Journals (Sweden)

    Peter Atkins

    2006-03-01

    Full Text Available Though hard going for the general reader and highly personal in its selectivity, Elegant Solutions: Ten Beautiful Experiments in Chemistry provides reflections of a thoughtful author that will delight chemists

  14. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  15. Activation of B-H, Si-H, and C-F bonds with Tp'Rh(PMe3) complexes: kinetics, mechanism, and selectivity.

    Science.gov (United States)

    Procacci, Barbara; Jiao, Yunzhe; Evans, Meagan E; Jones, William D; Perutz, Robin N; Whitwood, Adrian C

    2015-01-28

    The photochemical reactions of Tp'Rh(PMe3)H2 (1) and thermal reactions of Tp'Rh(PMe3)(CH3)H (1a, Tp' = tris(3,5-dimethylpyrazolyl)borate) with substrates containing B-H, Si-H, C-F, and C-H bonds are reported. Complexes 1 and 1a are known activators of C-H bonds, including those of alkanes. Kinetic studies of reactions with HBpin and PhSiH3 show that photodissociation of H2 from 1 occurs prior to substrate attack, whereas thermal reaction of 1a proceeds by bimolecular reaction with the substrate. Complete intramolecular selectivity for B-H over C-H activation of HBpin (pin = pinacolate) leading to Tp'Rh(PMe3)(Bpin)H is observed. Similarly, the reaction with Et2SiH2 shows a strong preference for Si-H over C-H activation, generating Tp'Rh(PMe3)(SiEt2H)H. The Rh(Bpin)H and Rh(SiEt2H)H products were stable to heating in benzene in accord with DFT calculations that showed that reaction with benzene is endoergic. The intramolecular competition with PhSiH3 yields a ∼1:4 mixture of Tp'Rh(PMe3)(C6H4SiH3)H and Tp'Rh(PMe3)(SiPhH2)H, respectively. Reaction with pentafluoropyridine generates Tp'Rh(PMe3)(C5NF4)F, while reaction with 2,3,5,6-tetrafluoropyridine yields a mixture of C-H and C-F activated products. Hexafluorobenzene proves unreactive. Crystal structures are reported for B-H, Si-H, and C-F activated products, but in the latter case a bifluoride complex Tp'Rh(PMe3)(C5NF4)(FHF) was crystallized. Intermolecular competition reactions were studied by photoreaction of 1 in C6F6 with benzene and another substrate (HBpin, PhSiH3, or pentafluoropyridine) employing in situ laser photolysis in the NMR probe, resulting in a wide-ranging map of kinetic selectivities. The mechanisms of intramolecular and intermolecular selection are analyzed.

  16. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2015-12-01

    The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.

  17. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  18. Experimental bond critical point and local energy density properties determined for Mn-O, Fe-O, and Co-O bonded interactions for tephroite, Mn2SiO4, fayalite, Fe2SiO4, and Co2SiO4 olivine and selected organic metal complexes: comparison with properties calculated for non-transition and transition metal M-O bonded interactions for silicates and oxides.

    Science.gov (United States)

    Gibbs, G V; Downs, R T; Cox, D F; Rosso, K M; Ross, N L; Kirfel, A; Lippmann, T; Morgenroth, W; Crawford, T D

    2008-09-18

    Bond critical point (bcp) and local energy density properties for the electron density (ED) distributions, calculated with first-principle quantum mechanical methods for divalent transition metal Mn-, Co-, and Fe-containing silicates and oxides are compared with experimental model ED properties for tephroite, Mn 2SiO 4, fayalite, Fe 2SiO 4, and Co 2SiO 4 olivine, each determined with high-energy synchrotron single-crystal X-ray diffraction data. Trends between the experimental bond lengths, R(M-O), (M = Mn, Fe, Co), and the calculated bcp properties are comparable with those observed for non-transition M-O bonded interactions. The bcp properties, local total energy density, H( r c), and bond length trends determined for the Mn-O, Co-O, and Fe-O interactions are also comparable. A comparison is also made with model experimental bcp properties determined for several Mn-O, Fe-O, and Co-O bonded interactions for selected organometallic complexes and several oxides. Despite the complexities of the structures of the organometallic complexes, the agreement between the calculated and model experimental bcp properties is fair to good in several cases. The G( r c)/rho( r c) versus R(M-O) trends established for non-transition metal M-O bonded interactions hold for the transition metal M-O bonded interactions with G( r c)/rho( r c) increasing in value as H( r c) becomes progressively more negative in value, indicating an increasing shared character of the interaction as G( r c)/rho( r c) increases in value. As observed for the non-transition metal M-O bonded interactions, the Laplacian, nabla (2)rho( r c), increases in value as rho( r c) increases and as H( r c) decreases and becomes progressive more negative in value. The Mn-O, Fe-O, and Co-O bonded interactions are indicated to be of intermediate character with a substantial component of closed-shell character compared with Fe-S and Ni-S bonded interactions, which show greater shared character based on the | V( r c)|/ G( r c

  19. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  20. Upper Secondary Teachers' Knowledge for Teaching Chemical Bonding Models

    Science.gov (United States)

    Bergqvist, Anna; Drechsler, Michal; Chang Rundgren, Shu-Nu

    2016-01-01

    Researchers have shown a growing interest in science teachers' professional knowledge in recent decades. The article focuses on how chemistry teachers impart chemical bonding, one of the most important topics covered in upper secondary school chemistry courses. Chemical bonding is primarily taught using models, which are key for understanding…

  1. Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: a case study in a folivorous lemur (Propithecus verreauxi).

    Science.gov (United States)

    Simmen, Bruno; Tarnaud, Laurent; Marez, André; Hladik, Annette

    2014-06-01

    Folivorous primate biomass has been shown to positively correlate with the average protein-to-fiber ratio in mature leaves of tropical forests. However, studies have failed to explain the mismatch between dietary selection and the role of the protein-to-fiber ratio on primate biomass; why do not folivores always favor mature leaves or leaves with the highest protein-to-fiber ratio? We examined the effect of leaf chemical characteristics and plant abundance (using transect censuses; 0.37 ha, 233 trees) on food choices and nutrient/toxin consumption in a folivorous lemur (Propithecus verreauxi) in a gallery forest in southern Madagascar. To assess the nutritional quality of the habitat, we calculated an abundance-weighted chemical index for each chemical variable. Food intake was quantified using a continuous count of mouthfuls during individual full-day follows across three seasons. We found a significant positive correlation between food ranking in the diet and plant abundance. The protein-to-fiber ratio and most other chemical variables tested had no statistical effect on dietary selection. Numerous chemical characteristics of the sifaka's diet were essentially by-products of generalist feeding and "low energy input/low energy crop" strategy. The examination of feeding behavior and plant chemistry in Old World colobines and folivorous prosimians in Madagascar suggests that relative lack of feeding selectivity and high primate biomass occur when the average protein-to-fiber ratio of mature leaves in the habitat exceeds a threshold at 0.4.

  2. Photoinduced hydrogen-bonding dynamics.

    Science.gov (United States)

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water.

  3. Organic chemistry: No double bond left behind

    Science.gov (United States)

    Sarlah, David

    2016-03-01

    Alkenyl halides are some of the most useful building blocks for synthesizing small organic molecules. A catalyst has now allowed their direct preparation from widely available alkenes using the cross-metathesis reaction. See Article p.459

  4. Direct evidence for preferential {beta} C-H bond cleavage resulting from 248 nm photolysis of the n-propyl radical using selectively-deuterated 1-bromopropane precursors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Mathews, M.G.; Koplitz, B. [Tulane Univ., New Orleans, LA (United States)

    1995-05-04

    A series of selectively deuterated 1-bromopropane precursors have been used to study site-specific photolysis in the n-propyl radical. A two-color photolysis approach (222 nm followed by 248 nm radiation) is used to create an intermediate photofragment and produce an H or a D atom, which is detected by 1 + 1 resonance ionization through Lyman-{alpha}. Target precursors are BrCH{sub 2}CD{sub 2}CD{sub 3}, BrCD{sub 2}CH{sub 2}CD{sub 3}, and BrCD{sub 2}CD{sub 2}CH{sub 3} as well as BrCD{sub 2}CH{sub 2}CH{sub 3}, BrCH{sub 2}CD{sub 2}CH{sub 3}, and BrCH{sub 2}CH{sub 2}CD{sub 3}. The `enhanced` H (or D) atom signals clearly demonstrate that C-H (or C-D) bond cleavage at the {beta} position is strongly favored. The net enhancement process undoubtedly involves photolysis of an intermediate, almost certainly the n-propyl radical. A comparison with systems involving ethyl and isopropyl radical photolysis is also presented. 14 refs., 4 figs.

  5. Hydrogen atom abstraction selectivity in the reactions of alkylamines with the benzyloxyl and cumyloxyl radicals. The importance of structure and of substrate radical hydrogen bonding.

    Science.gov (United States)

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2011-10-19

    A time-resolved kinetic study on the hydrogen abstraction reactions from a series of primary and secondary amines by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out. The results were compared with those obtained previously for the corresponding reactions with tertiary amines. Very different hydrogen abstraction rate constants (k(H)) and intermolecular selectivities were observed for the reactions of the two radicals. With CumO(•), k(H) was observed to decrease on going from the tertiary to the secondary and primary amines. The lowest k(H) values were measured for the reactions with 2,2,6,6-tetramethylpiperidine (TMP) and tert-octylamine (TOA), substrates that can only undergo N-H abstraction. The opposite behavior was observed for the reactions of BnO(•), where the k(H) values increased in the order tertiary < secondary < primary. The k(H) values for the reactions of BnO(•) were in all cases significantly higher than those measured for the corresponding reactions of CumO(•), and no significant difference in reactivity was observed between structurally related substrates that could undergo exclusive α-C-H and N-H abstraction. This different behavior is evidenced by the k(H)(BnO(•))/k(H)(CumO(•)) ratios that range from 55-85 and 267-673 for secondary and primary alkylamines up to 1182 and 3388 for TMP and TOA. The reactions of CumO(•) were described in all cases as direct hydrogen atom abstractions. With BnO(•) the results were interpreted in terms of the rate-determining formation of a hydrogen-bonded prereaction complex between the radical α-C-H and the amine lone pair wherein hydrogen abstraction occurs. Steric effects and amine HBA ability play a major role, whereas the strength of the substrate α-C-H and N-H bonds involved appears to be relatively unimportant. The implications of these different mechanistic pictures are discussed.

  6. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  7. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  8. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  9. Biophysical chemistry.

    Science.gov (United States)

    Häussinger, Daniel; Pfohl, Thomas

    2010-01-01

    Biophysical chemistry at the Department of Chemistry, University of Basel, covers the NMR analysis of protein-protein interaction using paramagnetic tags and sophisticated microscopy techniques investigating the dynamics of biological matter.

  10. Heterocyclic chemistry

    OpenAIRE

    Hemming, Karl

    2011-01-01

    Recent progress in the synthesis of heterocyclic compounds is presented\\ud 2010 offered highlights in pericyclic chemistry, particularly 1,3-dipolar cycloaddition chemistry, asymmetric synthesis, gold catalysis, organocatalysis, hydroamination, C–H activation and multicomponent reactions.

  11. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  12. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  13. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  14. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  15. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  16. Predictive Modeling in Actinide Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  17. Forensic chemistry.

    Science.gov (United States)

    Bell, Suzanne

    2009-01-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  18. Reactivity and selectivity patterns in hydrogen atom transfer from amino acid C-H bonds to the cumyloxyl radical: polar effects as a rationale for the preferential reaction at proline residues.

    Science.gov (United States)

    Salamone, Michela; Basili, Federica; Bietti, Massimo

    2015-04-03

    Absolute rate constants for hydrogen atom transfer (HAT) from the C-H bonds of N-Boc-protected amino acids to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. With glycine, alanine, valine, norvaline, and tert-leucine, HAT occurs from the α-C-H bonds, and the stability of the α-carbon radical product plays a negligible role. With leucine, HAT from the α- and γ-C-H bonds was observed. The higher kH value measured for proline was explained in terms of polar effects, with HAT that predominantly occurs from the δ-C-H bonds, providing a rationale for the previous observation that proline residues represent favored HAT sites in the reactions of peptides and proteins with (•)OH. Preferential HAT from proline was also observed in the reactions of CumO(•) with the dipeptides N-BocProGlyOH and N-BocGlyGlyOH. The rate constants measured for CumO(•) were compared with the relative rates obtained previously for the corresponding reactions of different hydrogen-abstracting species. The behavior of CumO(•) falls between those observed for the highly reactive radicals Cl(•) and (•)OH and the significantly more stable Br(•). Taken together, these results provide a general framework for the description of the factors that govern reactivity and selectivity patterns in HAT reactions from amino acid C-H bonds.

  19. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds

    Directory of Open Access Journals (Sweden)

    Cicero L. T. Chang

    2013-01-01

    Full Text Available Diabetes mellitus has been recognized since antiquity. It currently affects as many as 285 million people worldwide and results in heavy personal and national economic burdens. Considerable progress has been made in orthodox antidiabetic drugs. However, new remedies are still in great demand because of the limited efficacy and undesirable side effects of current orthodox drugs. Nature is an extraordinary source of antidiabetic medicines. To date, more than 1200 flowering plants have been claimed to have antidiabetic properties. Among them, one-third have been scientifically studied and documented in around 460 publications. In this review, we select and discuss blood glucose-lowering medicinal herbs that have the ability to modulate one or more of the pathways that regulate insulin resistance, β-cell function, GLP-1 homeostasis, and glucose (reabsorption. Emphasis is placed on phytochemistry, anti-diabetic bioactivities, and likely mechanism(s. Recent progress in the understanding of the biological actions, mechanisms, and therapeutic potential of compounds and extracts of plant origin in type 2 diabetes is summarized. This review provides a source of up-to-date information for further basic and clinical research into herbal therapy for type 2 diabetes. Emerging views on therapeutic strategies for type 2 diabetes are also discussed.

  20. Summer Course Promotes Polymer Chemistry for Small Colleges.

    Science.gov (United States)

    Stinson, Stephen

    1989-01-01

    Describes a three-week summer program teaching selected chemistry faculty how to incorporate polymer chemistry into chemistry courses. In addition to lectures, the program conducted many experiments and provided a trip to industry laboratories. (YP)

  1. Crack path selection and shear toughening effects due to mixed mode loading and varied surface properties in beam-like adhesively bonded joints

    OpenAIRE

    Guan, Youliang

    2014-01-01

    Structural adhesives are widely used with great success, and yet occasional failures can occur, often resulting from improper bonding procedures or joint design, overload or other detrimental service situations, or in response to a variety of environmental challenges. In these situations, cracks can start within the adhesive layer or debonds can initiate near an interface. The paths taken by propagating cracks can affect the resistance to failure and the subsequent service lives of the bond...

  2. Facile fabrication of magnetically recyclable metal-organic framework nanocomposites for highly efficient and selective catalytic oxidation of benzylic C-H bonds.

    Science.gov (United States)

    Chen, Yifa; Huang, Xianqiang; Feng, Xiao; Li, Jikun; Huang, Yingyu; Zhao, Jingshu; Guo, Yuexin; Dong, Xinmei; Han, Ruodan; Qi, Pengfei; Han, Yuzhen; Li, Haiwei; Hu, Changwen; Wang, Bo

    2014-08-07

    HKUST-1@Fe3O4 chemically bonded core-shell nanoparticles have been prepared by growing HKUST-1 thin layers joined by carboxyl groups onto Fe3O4 nanospheres. These magnetic core-shell MOF nanostructures show exceptional catalytic activity for the oxidation of benzylic C-H bonds and they can be recovered by magnetic separation and reused without losing any activity.

  3. Copper-Catalyzed Redox-Triggered Remote C-H Functionalization: Highly Selective Formation of C-CF3 and C-O Bonds

    Institute of Scientific and Technical Information of China (English)

    Taotao Li; Peng Yu; Jin-Shun Lin; Yonggang Zhi; Xin-Yuan Liu

    2016-01-01

    A Cu-catalyzed remote sp3 C-H/unactivated alkenes functionalization reaction for the concomitant construction ofC-CF3 and C-O bonds was described.An 1,5-H radical transfer involving an sp3 C-H bond adjacent to a nitrogen atom and an α-CF3-alkyl radical intermediate derived from unactivated alkenes was observed and demonstrated to proceed via the radical process.

  4. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  5. Electrode-selective deposition/etching processes using an SiF4/H2/Ar plasma chemistry excited by sawtooth tailored voltage waveforms

    Science.gov (United States)

    Wang, J. K.; Johnson, E. V.

    2017-01-01

    We report on the electrode-selective deposition and etching of hydrogenated silicon thin films using a plasma enhanced chemical vapour deposition process excited by sawtooth-shaped tailored voltage waveforms (TVWs). The slope asymmetry of such waveforms leads to a different rate of sheath expansion and contraction at each electrode, and therefore different electron power absorption near each electrode. This effect was employed with an SiF4/H2/Ar plasma chemistry, as the surface processes that result from this gas mixture depend strongly on the local balance between multiple precursors. For a specific gas flow ratio, a deposition rate of 0.82 Å s-1 on one electrode and an etching rate of 1.2 Å s-1 on the other were achieved. Moreover, this deposition/etching balance is controlled by the H2 flow rate, which limits the deposition rate at low flows. When the H2 injection is sufficiently high, the processes are then limited by the dissociation of SiF4, and the relative rate of the surface processes on the two electrodes are reversed, i.e. a higher net deposition rate is observed on the electrode where the fast sheath contraction occurs due to the electronegative character of the plasma.

  6. Glucocerebrosidase enhancers for selected Gaucher disease genotypes by modification of α-1-C-substituted imino-D-xylitols (DIXs) by click chemistry.

    Science.gov (United States)

    Serra-Vinardell, Jenny; Díaz, Lucía; Casas, Josefina; Grinberg, Daniel; Vilageliu, Lluïsa; Michelakakis, Helen; Mavridou, Irene; Aerts, Johannes M F G; Decroocq, Camille; Compain, Philippe; Delgado, Antonio

    2014-08-01

    A series of hybrid analogues was designed by combination of the iminoxylitol scaffold of parent 1C9-DIX with triazolylalkyl side chains. The resulting compounds were considered potential pharmacological chaperones in Gaucher disease. The DIX analogues reported here were synthesized by CuAAC click chemistry from scaffold 1 (α-1-C-propargyl-1,5-dideoxy-1,5-imino-D-xylitol) and screened as imiglucerase inhibitors. A set of selected compounds were tested as β-glucocerebrosidase (GBA1) enhancers in fibroblasts from Gaucher patients bearing different genotypes. A number of these DIX compounds were revealed as potent GBA1 enhancers in genotypes containing the G202R mutation, particularly compound DIX-28 (α-1-C-[(1-(3-trimethylsilyl)propyl)-1H-1,2,3-triazol-4-yl)methyl]-1,5-dideoxy-1,5-imino-D-xylitol), bearing the 3-trimethylsilylpropyl group as a new surrogate of a long alkyl chain, with approximately threefold activity enhancement at 10 nM. Despite their structural similarities with isofagomine and with our previously reported aminocyclitols, the present DIX compounds behaved as non-competitive inhibitors, with the exception of the mixed-type inhibitor DIX-28.

  7. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide.

    Science.gov (United States)

    Khan, Musammir; Yang, Jing; Shi, Changcan; Lv, Juan; Feng, Yakai; Zhang, Wencheng

    2015-07-01

    Surface tailoring is an attractive approach to enhancing selective endothelialization, which is a prerequisite for current vascular prosthesis applications. Here, we modified polycarbonate urethane (PCU) surface with both poly(ethylene glycol) and Cys-Ala-Gly-peptide (CAG) for the purpose of creating a hydrophilic surface with targeting adhesion of endothelial cells (ECs). In the first step, PCU-film surface was grafted with poly(ethylene glycol) methacrylate (PEGMA) to covalently tether hydrophilic polymer brushes via surface initiated atom transfer radical polymerization (SI-ATRP), followed by grafting of an active monomer pentafluorophenyl methacrylate (PFMA) by a second ATRP. The postpolymerization modification of the terminal reactive groups with allyl amine molecules created pendant allyl groups, which were subsequently functionalized with cysteine terminated CAG-peptide via photo-initiated thiol-ene click chemistry. The functionalized surfaces were characterized by water contact angle and XPS analysis. The growth and proliferation of human ECs or human umbilical arterial smooth muscle cells on the functionalized surfaces were investigated for 1, 3 and 7 day/s. The results indicated that these peptide functionalized surfaces exhibited enhanced EC adhesion, growth and proliferation. Furthermore, they suppressed platelet adhesion in contact with platelet-rich plasma for 2h. Therefore, these surfaces with EC targeting ligand could be an effective anti-thrombogenic platform for vascular tissue engineering application.

  8. Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 1999-2000

    Science.gov (United States)

    Ball, James W.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Holloway, JoAnn M.; Verplanck, Philip L.; Sturtevant, Sabin A.

    2002-01-01

    Sixty-seven water analyses are reported for samples collected from 44 hot springs and their overflow drainages and two ambient-temperature acid streams in Yellowstone National Park (YNP) during 1990-2000. Thirty-seven analyses are reported for 1999, 18 for June of 2000, and 12 for September of 2000. These water samples were collected and analyzed as part of research investigations in YNP on microbially mediated sulfur oxidation in stream water, arsenic and sulfur redox speciation in hot springs, and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. Most samples were collected from sources in the Norris Geyser Basin. Two ambient-temperature acidic stream systems, Alluvium and Columbine Creeks and their tributaries in Brimstone Basin, were studied in detail. Analyses were performed at or near the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability of the constituent and whether or not it could be preserved effectively. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity, acidity, and F were determined within a few days of sample collection by titration with acid, titration with base, and ion-selective electrode or ion chromatography (IC), respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by IC. Concentrations of Br, Cl, NH4, NO2, NO3, SO4, Fe(II), and Fe(total) were determined within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li and K were determined by flame atomic absorption spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), K, Li, Mg, Mn, Na, Ni, Pb, Se, Si, Sr, V, and Zn were determined by inductively-coupled plasma-optical emission spectrometry. Trace concentrations of Cd, Cr, Cu, Pb, and Sb were

  9. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface....... The method has been applied for anchoring of the chelating agent nitrilotriacetic acid (NTA) on the conductive polymer. The chelating linkage ability of NTA on the surface was investigated through a sandwich ELISA study confirming the selective bonding of a histidine tagged protein....

  10. HYDROGEN BONDING IN POLYMERIC ADSORBENTS BASED ADSORPTION AND SEPARATION

    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等

    2000-01-01

    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  11. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  12. Ultrafast laser control of vibrational dynamics for a two-dimensional model of HONO 2 in the ground electronic state: separation of conformers, control of the bond length, selective preparation of the discrete and the continuum states

    Science.gov (United States)

    Oppel, M.; Paramonov, G. K.

    1998-06-01

    Selective excitation of the vibrational bound and the continuum states, controlled by subpicosecond infrared (IR) laser pulses, is simulated within the Schrödinger wave function formalism for a two-dimensional model of the HONO 2 molecule in the ground electronic state. State-selective excitation of the OH bond is achieved by single optimal laser pulses, with the probability being 97% for the bound states and more than 91% for the resonances. Stable, long-living continuum states are prepared with more than 96% probability by two optimal laser pulses, with the expectation energy of the molecule being well above the dissociation threshold of the ON single bond, and its life-time being at least 100 ps. The length of the ON single bond can be controlled selectively: stretching and contraction by about 45% of its equilibrium length are demonstrated. Laser separation of spatial conformers of HONO 2 in inhomogeneous conditions occurring on an anisotropic surface or created by a direct current (DC) electric field is analysed. The relative yields of target conformers may be very high, ranging from 10 to 10 8, and the absolute yields of up to 40% and more are calculated.

  13. Geologic, water-chemistry, and hydrologic data from multiple-well monitoring sites and selected water-supply wells in the Santa Clara Valley, California, 1999-2003

    Science.gov (United States)

    Newhouse, M.W.; Hanson, R.T.; Wentworth, C.M.; Everett, Rhett; Williams, C.F.; Tinsley, J.C.; Noce, T.E.; Carkin, B.A.

    2004-01-01

    core samples indicate an average primary-wave velocity of about 5,515 feet per second, a bimodal distribution of density between 2.19 and 2.32 grams per cubic centimeter with an average of 2.16 grams per cubic centimeter, and a magnetic susceptibility that generally ranged between 9 and 40 with an average of 22. Water-chemistry data indicate that the ground water in the alluvial aquifers generally is low in total dissolved solids and chloride and of good quality. Isotopic data indicate that water from artificial recharge is present throughout the shallower parts of the aquifer system but may not be present toward the center of the valley. The percentage of water from artificial recharge present in ground water ranges from 0 to 61 percent for water-supply wells. The age of most shallow ground water is less than 2,000 years before present, and the age of deeper ground water is as much as 39,900 years before present, as determined from carbon age dates. Initial water-level data from the multiple-well monitoring sites indicate seasonal water-level fluctuations as great as 60 feet and water-level differences between aquifers as great as 10 feet. The water-level hydrographs indicate different water-level changes and relations between aquifers in different parts of the basin. However, most of these hydrographs indicate the potential for downward water-level gradients, with lower hydraulic heads in the deeper monitoring wells. Hydraulic properties of selected new monitoring wells indicate that horizontal hydraulic conductivities range from 0.1 to 583 feet per day. Hydraulic testing of selected core samples yielded vertical hydraulic conductivity values ranging from 8 x 10-4 to 0.3 feet per day, and effective porosity values ranging from 0.21 to 0.4. Geomechanical properties estimated from one-dimensional consolidation tests of selected core samples resulted in geometric mean inelastic and elastic specific storage values of 1.5 x 10-

  14. Problems in structural inorganic chemistry

    CERN Document Server

    Li, Wai-Kee; Mak, Thomas Chung Wai; Mak, Kendrew Kin Wah

    2013-01-01

    This book consists of over 300 problems (and their solutions) in structural inorganic chemistry at the senior undergraduate and beginning graduate level. The topics covered comprise Atomic and Molecular Electronic States, Atomic Orbitals, Hybrid Orbitals, Molecular Symmetry, Molecular Geometry and Bonding, Crystal Field Theory, Molecular Orbital Theory, Vibrational Spectroscopy, and Crystal Structure. The central theme running through these topics is symmetry, molecular or crystalline. The problems collected in this volume originate in examination papers and take-home assignments that have been part of the teaching of the book's two senior authors' at The Chinese University of Hong Kong over the past four decades. The authors' courses include Chemical Bonding, Elementary Quantum Chemistry, Advanced Inorganic Chemistry, X-Ray Crystallography, etc. The problems have been tested by generations of students taking these courses.

  15. Computational chemistry

    OpenAIRE

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  16. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  17. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  18. Financial planning working capital ventures using software «analyzer bdds» sold on the basis of selection of optimal bond portfolio

    Directory of Open Access Journals (Sweden)

    N.J. Timofeeva

    2011-05-01

    Full Text Available This article examines the financial planning of working capital organizations, in particular presented a software implementation of the algorithm analyzes the budget forecast working capital, identify and take advantage of temporarily free money using a model of a decision on the choice of the optimal bond portfolio, consistent with the free flow of liquidity of the enterprise.

  19. Chemistry with methane: concepts rather than recipes.

    Science.gov (United States)

    Schwarz, Helmut

    2011-10-17

    Four seemingly simple transformations related to the chemistry of methane will be addressed from mechanistic and conceptual points of view: 1) metal-mediated dehydrogenation to form metal carbene complexes, 2) the hydrogen-atom abstraction step in the oxidative dimerization of methane, 3) the mechanisms of the CH(4)→CH(3)OH conversion, and 4) the initial bond scission (C-H vs. O-H) as well as the rate-limiting step in the selective CH(3)OH→CH(2)O oxidation. State-of-the-art gas-phase experiments, in conjunction with electronic-structure calculations, permit identification of the elementary reactions at a molecular level and thus allow us to unravel detailed mechanistic aspects. Where appropriate, these results are compared with findings from related studies in solution or on surfaces.

  20. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  1. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  2. The correlation theory of the chemical bond

    CERN Document Server

    Szalay, Szilárd; Szilvási, Tibor; Veis, Libor; Legeza, Örs

    2016-01-01

    The notion of chemical bond is a very useful concept in chemistry. It originated at the beginning of chemistry, it is expressive for the classically thinking mind, and the errors arising from the approximative nature of the concept can often be ignored. In the first half of the twentieth century, however, we learned that the proper description of the microworld is given by quantum mechanics. Quantum mechanics gives more accurate results for chemical systems than any preceding model, however, it is very inexpressive for the classically thinking mind. The quantum mechanical description of the chemical bond is given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localized orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent...

  3. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  4. Electronic structure of selected thiazydes by means of {sup 35}Cl NQR and quantum chemistry calculation methods; Struktura elektronowa wybranych tiazydow badana metoda {sup 35}Cl - NQR oraz metodami obliczeniowymi chemii kwantowej

    Energy Technology Data Exchange (ETDEWEB)

    Latosinska, J.N.; Kasprzak, J.; Mazurek, P.; Nogaj, B. [Inst. Fizyki, Univ. A. Mickiewicza, (Poland); Latosinska, M. [Politechnika Poznanska, Poznan (Poland)

    1995-12-31

    The {sup 35}Cl NQR as well as MNDO and INDO quantum chemistry calculation methods have been used for determination of electronic structure of selected benzo ditiazine derivatives. The most probable molecular conformation has been taken into account. Also molecular dynamics has been studied for hydro chloro thiazole. The resonant frequency temperature dependence has been measured in the range of 77 - 300 K. 7 refs, 6 figs, 3 tabs.

  5. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan

    2010-05-13

    Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach

  6. Pauling bond strength, bond length and electron density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.

    2014-01-18

    A power law regression equation, = 1.46(<ρ(rc)>/r)-0.19, connecting the average experimental bond lengths, , with the average accumulation of the electron density at the bond critical point, <ρ(rc)>, between bonded metal M and oxygen atoms, determined at ambient conditions for oxide crystals, where r is the row number of the M atom, is similar to the regression equation R(M-O) = 1.39(ρ(rc)/r)-0.21 determined for three perovskite crystals for pressures as high as 80 GPa. The two equations are also comparable with those, = 1.43(/r)-0.21, determined for a large number of oxide crystals at ambient conditions and = 1.39(/r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ρ(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, σ, power law expression σ = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, <ρ(rc)> = r[(1.41)/]4.76, demonstrating that the bond valence for a bonded interaction is likewise closely connected to the accumulation of the electron density between the bonded atoms. Unlike the Brown-Shannon expression, it is universal in that it holds for the M

  7. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  8. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  9. Chemistry in microelectronics

    CERN Document Server

    Le Tiec, Yannick

    2013-01-01

    Microelectronics is a complex world where many sciences need to collaborate to create nano-objects: we need expertise in electronics, microelectronics, physics, optics and mechanics also crossing into chemistry, electrochemistry, as well as biology, biochemistry and medicine. Chemistry is involved in many fields from materials, chemicals, gases, liquids or salts, the basics of reactions and equilibrium, to the optimized cleaning of surfaces and selective etching of specific layers. In addition, over recent decades, the size of the transistors has been drastically reduced while the functionalit

  10. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  11. Targeting bacteria via iminoboronate chemistry of amine-presenting lipids.

    Science.gov (United States)

    Bandyopadhyay, Anupam; McCarthy, Kelly A; Kelly, Michael A; Gao, Jianmin

    2015-03-12

    Synthetic molecules that target specific lipids serve as powerful tools for understanding membrane biology and may also enable new applications in biotechnology and medicine. For example, selective recognition of bacterial lipids may give rise to novel antibiotics, as well as diagnostic methods for bacterial infection. Currently known lipid-binding molecules primarily rely on noncovalent interactions to achieve lipid selectivity. Here we show that targeted recognition of lipids can be realized by selectively modifying the lipid of interest via covalent bond formation. Specifically, we report an unnatural amino acid that preferentially labels amine-presenting lipids via iminoboronate formation under physiological conditions. By targeting phosphatidylethanolamine and lysylphosphatidylglycerol, the two lipids enriched on bacterial cell surfaces, the iminoboronate chemistry allows potent labelling of Gram-positive bacteria even in the presence of 10% serum, while bypassing mammalian cells and Gram-negative bacteria. The covalent strategy for lipid recognition should be extendable to other important membrane lipids.

  12. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  13. Nuclear Chemistry.

    Science.gov (United States)

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  14. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  15. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  16. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  17. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  18. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  19. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber

    Directory of Open Access Journals (Sweden)

    Cristina Mottillo

    2017-01-01

    Full Text Available Controlling the formation of coordination bonds is pivotal to the development of a plethora of functional metal-organic materials, ranging from coordination polymers, metal-organic frameworks (MOFs to metallodrugs. The interest in and commercialization of such materials has created a need for more efficient, environmentally-friendly routes for making coordination bonds. Solid-state coordination chemistry is a versatile greener alternative to conventional synthesis, offering quantitative yields, enhanced stoichiometric and topological selectivity, access to a wider range of precursors, as well as to molecules and materials not readily accessible in solution or solvothermally. With a focus on mechanochemical, thermochemical and “accelerated aging” approaches to coordination polymers, including pharmaceutically-relevant materials and microporous MOFs, this review highlights the recent advances in solid-state coordination chemistry and techniques for understanding the underlying reaction mechanisms.

  20. Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies.

    Science.gov (United States)

    Lipovsek, Dasa; Lippow, Shaun M; Hackel, Benjamin J; Gregson, Melissa W; Cheng, Paul; Kapila, Atul; Wittrup, K Dane

    2007-05-11

    The 10th human fibronectin type III domain ((10)Fn3) is one of several protein scaffolds used to design and select families of proteins that bind with high affinity and specificity to macromolecular targets. To date, the highest affinity (10)Fn3 variants have been selected by mRNA display of libraries generated by randomizing all three complementarity-determining region -like loops of the (10)Fn3 scaffold. The sub-nanomolar affinities of such antibody mimics have been attributed to the extremely large size of the library accessible by mRNA display (10(12) unique sequences). Here we describe the selection and affinity maturation of (10)Fn3-based antibody mimics with dissociation constants as low as 350 pM selected from significantly smaller libraries (10(7)-10(9) different sequences), which were constructed by randomizing only 14 (10)Fn3 residues. The finding that two adjacent loops in human (10)Fn3 provide a large enough variable surface area to select high-affinity antibody mimics is significant because a smaller deviation from wild-type (10)Fn3 sequence is associated with a higher stability of selected antibody mimics. Our results also demonstrate the utility of an affinity-maturation strategy that led to a 340-fold improvement in affinity by maximizing sampling of sequence space close to the original selected antibody mimic. A striking feature of the highest affinity antibody mimics selected against lysozyme is a pair of cysteines on adjacent loops, in positions 28 and 77, which are critical for the affinity of the (10)Fn3 variant for its target and are close enough to form a disulfide bond. The selection of this cysteine pair is structurally analogous to the natural evolution of disulfide bonds found in new antigen receptors of cartilaginous fish and in camelid heavy-chain variable domains. We propose that future library designs incorporating such an interloop disulfide will further facilitate the selection of high-affinity, highly stable antibody mimics from

  1. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  2. An alternative picture of alkali-metal-mediated metallation: cleave and capture chemistry.

    Science.gov (United States)

    Mulvey, Robert E

    2013-05-21

    This perspective article takes an alternative look at alkali-metal-mediated chemistry (exchange of a relatively inert C-H bond for a more reactive C-metal bond by a multicomponent reagent usually containing an alkali metal and a less electropositive metal such as magnesium or zinc). It pictures that the cleavage of selected C-H bonds can be accompanied by the capturing of the generated anion by the multi (Lewis acid)-(Lewis base) character of the residue of the bimetallic base. In this way small atoms or molecules (hydrides, oxygen-based anions) as well as sensitive organic anions (of substituted aromatic compounds, ethers or alkenes) can be captured. Cleave and capture reactions which occur in special positions on the organic substrate are also included.

  3. (14)N NQR, (1)H NMR and DFT/QTAIM study of hydrogen bonding and polymorphism in selected solid 1,3,4-thiadiazole derivatives.

    Science.gov (United States)

    Seliger, Janez; Zagar, Veselko; Latosińska, Jolanta N

    2010-10-28

    The 1,3,4-thiadiazole derivatives (2-amino-1,3,4-thiadiazole, acetazolamide, sulfamethizole) have been studied experimentally in the solid state by (1)H-(14)N NQDR spectroscopy and theoretically by Density Functional Theory (DFT). The specific pattern of the intra and intermolecular interactions in 1,3,4-thiadiazole derivatives is described within the QTAIM (Quantum Theory of Atoms in Molecules)/DFT formalism. The results obtained in this work suggest that considerable differences in the NQR parameters permit differentiation even between specific pure association polymorphic forms and indicate that the stronger hydrogen bonds are accompanied by the larger η and smaller ν(-) and e(2)Qq/h values. The degree of π-electron delocalization within the 1,3,4-thiadiazole ring and hydrogen bonds is a result of the interplay between the substituents and can be easily observed as a change in NQR parameters at N atoms. In the absence of X-ray data NQR parameters can clarify the details of crystallographic structure revealing information on intermolecular interactions.

  4. Supramolecular analytical chemistry.

    Science.gov (United States)

    Anslyn, Eric V

    2007-02-02

    A large fraction of the field of supramolecular chemistry has focused in previous decades upon the study and use of synthetic receptors as a means of mimicking natural receptors. Recently, the demand for synthetic receptors is rapidly increasing within the analytical sciences. These classes of receptors are finding uses in simple indicator chemistry, cellular imaging, and enantiomeric excess analysis, while also being involved in various truly practical assays of bodily fluids. Moreover, one of the most promising areas for the use of synthetic receptors is in the arena of differential sensing. Although many synthetic receptors have been shown to yield exquisite selectivities, in general, this class of receptor suffers from cross-reactivities. Yet, cross-reactivity is an attribute that is crucial to the success of differential sensing schemes. Therefore, both selective and nonselective synthetic receptors are finding uses in analytical applications. Hence, a field of chemistry that herein is entitled "Supramolecular Analytical Chemistry" is emerging, and is predicted to undergo increasingly rapid growth in the near future.

  5. Recommendations of the American Chemical Society Chemistry Education Task Force.

    Science.gov (United States)

    Yankwich, Peter E.; And Others

    1984-01-01

    Presents selected recommendations from the American Chemical Society Chemistry Education Task Force's list of 39 principal and 52 supplementary recommendations. Those listed focus on all levels of education, elementary school science, high school chemistry and science, two-year college chemistry, college/university chemistry and science, chemistry…

  6. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  7. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    2002-01-01

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic F-18-fluorination

  8. Selective activation of C-F and C-H bonds with iron complexes, the relevant mechanism study by DFT calculations and study on the chemical properties of hydrido iron complex.

    Science.gov (United States)

    Xu, Xiaofeng; Jia, Jiong; Sun, Hongjian; Liu, Yuxia; Xu, Wengang; Shi, Yujie; Zhang, Dongju; Li, Xiaoyan

    2013-03-14

    The reactions of (2,6-difluorophenyl)phenylmethanone (2,6-F(2)C(6)H(3)-C(=O)-C(6)H(5)) (1) and (2,6-difluorophenyl)phenylmethanimine (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(5)) (3) with Fe(PMe(3))(4) afforded different selective C-F/C-H bond activation products. The reaction of 1 with Fe(PMe(3))(4) gave rise to bis-chelate iron(II) complex [C(6)H(5)-C(=O)-3-FC(6)H(3))Fe(PMe(3))](2) (2) via C-F bond activation. The reaction of 3 with Fe(PMe(3))(4) delivered chelate hydrido iron(II) complex 2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(PMe(3))(3) (4) through C-H bond activation. The DFT calculations show the detailed elementary steps of the mechanism of formation of hydrido complex 4 and indicate 4 is the kinetically preferred product. Complex 4 reacted with HCl, CH(3)Br and CH(3)I delivered the chelate iron halides (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(PMe(3))(3)X (X = Cl (5); Br (6); I (7)). A ligand (PMe(3)) replacement by CO of 4 was observed giving (2,6-F(2)C(6)H(3)-C(=NH)-C(6)H(4))Fe(H)(CO)(PMe(3))(2) (8). The chelate ligand exchange occurred through the reaction of 4 with salicylaldehydes. The reaction of 4 with Me(3)SiC[triple bond, length as m-dash]CH afforded (2,6-F(2)C(6)H(3)-C([double bond, length as m-dash]N)-C(6)H(5))Fe(C≡C-SiMe(3))(PMe(3))(3) (11). A reaction mechanism from 4 to 11 was discussed with the support of IR monitoring. The molecular structures of complexes 2, 4, 6, 7, 10 and 11 were determined by X-ray diffraction.

  9. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. II. Selection of direct Kjeldahl analysis and its preliminary performance parameters.

    Science.gov (United States)

    Vinklárková, Bára; Chromý, Vratislav; Šprongl, Luděk; Bittová, Miroslava; Rikanová, Milena; Ohnútková, Ivana; Žaludová, Lenka

    2015-01-01

    To select a Kjeldahl procedure suitable for the determination of total protein in reference materials used in laboratory medicine, we reviewed in our previous article Kjeldahl methods adopted by clinical chemistry and found an indirect two-step analysis by total Kjeldahl nitrogen corrected for its nonprotein nitrogen and a direct analysis made on isolated protein precipitates. In this article, we compare both procedures on various reference materials. An indirect Kjeldahl method gave falsely lower results than a direct analysis. Preliminary performance parameters qualify the direct Kjeldahl analysis as a suitable primary reference procedure for the certification of total protein in reference laboratories.

  10. Green chemistry: development trajectory

    Science.gov (United States)

    Moiseev, I. I.

    2013-07-01

    Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.

  11. Bonds and bands in semiconductors

    CERN Document Server

    Phillips, Jim

    2009-01-01

    This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s

  12. Direct bonded space maintainers.

    Science.gov (United States)

    Santos, V L; Almeida, M A; Mello, H S; Keith, O

    1993-01-01

    The aim of this study was to evaluate clinically a bonded space maintainer, which would reduce chair-side time and cost. Sixty appliances were fabricated from 0.7 mm stainless steel round wire and bonded using light-cured composite to the two teeth adjacent to the site of extraction of a posterior primary tooth. Twenty males and sixteen females (age range 5-9-years-old) were selected from the Pedodontic clinic of the State University of Rio de Janeiro. The sixty space maintainers were divided into two groups according to the site in which they were placed: a) absent first primary molar and b) absent second primary molar. Impressions and study models were obtained prior to and 6 months after bonding the appliances. During this period only 8.3% of failures were observed, most of them from occlusal or facial trauma. Student t-test did not show statistically significant alterations in the sizes of the maintained spaces during the trial period.

  13. Catalysis and sustainable (green) chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Centi, Gabriele; Perathoner, Siglinda [Dipartimento di Chimica Industriale ed Ingegneria dei Materiali, University of Messina, Salita Sperone 31, 98166 Messina (Italy)

    2003-01-15

    Catalysis is a key technology to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and a brief assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry is discussed and illustrated via an analysis of some selected and relevant examples. Emphasis is also given to the concept of catalytic technologies for scaling-down chemical processes, in order to develop sustainable production processes which reduce the impact on the environment to an acceptable level that allows self-depuration processes of the living environment.

  14. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  15. Polynitrogen Chemistry

    Science.gov (United States)

    2013-09-24

    assembled all the required hardware and the spectrometer for matrix isolation spectroscopy. This will allow us to repeat the Radziszewski experiments 11,12...Nitrogen Atoms,” Inorg. Chem., p. 7124, vol. 35 (1996). 15. M. I. Eremets, A. G. Gavriliuk, I. A. Trojan , D. A. Dzivenko, R. Boehler, “Single-bonded

  16. Hydrogen bond dynamics in bulk alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S., E-mail: Maxim.Pchenitchnikov@RuG.nl [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics–quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid—alcohols—has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  17. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  18. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    Science.gov (United States)

    Walker, J.F.

    1993-01-01

    Although considerable effort has been expended during the past two decades to control nonpoint-source contamination of streams and lakes in urban and rural watersheds, little has been published on the effectiveness of various management practices at the watershed scale. This report presents a discussion of several parametric and nonparametric statistical techniques for detecting changes in water-chemistry data. The need for reducing the influence of natural variability was recognized and accomplished through the use of regression equations. Traditional analyses have focused on fixed-frequency instantaneous concentration data; this report describes the use of storm load data as an alternative.

  19. Study on the selection and arrangement of figures in American chemistry textbooks%美国化学教科书的配图研究

    Institute of Scientific and Technical Information of China (English)

    何穗; 王祖浩

    2008-01-01

    本文以美国高中化学教科书(Chemistry:Concepts and Applications)为研究对象,运用统计方法分析该教科书配图的形式、内容及其功能特点,并在比较我国和美国化学教科书配图差异的基础上,提出我国化学教科书配图编排的若干建议.

  20. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    Science.gov (United States)

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  1. Dithioacetal Exchange: A New Reversible Reaction for Dynamic Combinatorial Chemistry.

    Science.gov (United States)

    Orrillo, A Gastón; Escalante, Andrea M; Furlan, Ricardo L E

    2016-05-10

    Reversibility of dithioacetal bond formation is reported under acidic mild conditions. Its utility for dynamic combinatorial chemistry was explored by combining it with orthogonal disulfide exchange. In such a setup, thiols are positioned at the intersection of both chemistries, constituting a connecting node between temporally separated networks.

  2. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  3. π-Bond Screening in Benzonorbornadienes: The Role of 7-Substituents in Governing the Facial Selectivity for the Diels-Alder Reaction of Benzonorbornadienes with 3,6-Di(2-pyridyl-s-Tetrazine

    Directory of Open Access Journals (Sweden)

    Peter A. Harrison

    2001-03-01

    Full Text Available Benzonorbornadiene 21, 7-spirocyclopropylbenzonorbornadiene 23, 7,7-dimethylbenzonorbornadiene 25, and 7-spirocyclopentylbenzonorbornadiene 27 have been reacted with 3,6-di(2-pyridyl-s-tetrazine (rate: 21>23>25=27 to form symmetrical 4,5-dihydropyridazines which are stable towards fragmentation but rearrange with varying facility to their 1,4 isomers. The facial selectivity of attack on the π-bond changes from exo-attack for 21 and 23 to endo-attack for 25 and 27. The 7-spirocyclopropyl benzonorbornadiene 23 typically forms a mixture of dihydropyridazines with exo-stereochemistry, which undergo further stereochemical isomerisation to an exo-fused product upon acetylation (acetyl chloride in hot pyridine. Oxidation with DDQ of the dihydropyridazines individually or as mixtures gives the corresponding fused 3,6-di(2-pyridylpyridazines.

  4. The importance of green chemistry in process research and development.

    Science.gov (United States)

    Dunn, Peter J

    2012-02-21

    Green Chemistry or Sustainable Chemistry is defined by the Environmental Protection Agency as "the design of chemical products that reduce or eliminate the use of hazardous substances" In recent years there is a greater societal expectation that chemists and chemical engineers should produce greener and more sustainable chemical processes and it is likely that this trend will continue to grow over the next few decades. This tutorial review gives information on solvents and solvent selection, basic environmental metrics collection and three industrial case histories. All three case histories involve enzymatic chemistry. Pregabalin (Lyrica®) is produced using a lipase based resolution and is extremely unusual in that all four manufacturing steps to make pregabalin are performed in water. Sitagliptin (Januvia®) uses a transaminase in the final chemical step. Finally a rosuvastatin (Crestor®) intermediate is produced using a deoxy ribose aldolase (DERA) enzyme in which two carbon-carbon bonds and two chiral centres are formed in the same process step.

  5. Development of ultra-high sensitive and selective electrochemiluminescent sensor for copper(II) ions: a novel strategy for modification of gold electrode using click chemistry.

    Science.gov (United States)

    Qiu, Suyan; Gao, Sen; Zhu, Xi; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-04-21

    A promising and highly sensitive electrochemiluminescence (ECL) sensor for the detection of Cu(2+) based on Cu(+)-catalyzed click reaction is described in this paper. Firstly, 1-azidoundecan-11-thiol was assembled on the Au electrode surface via a simple thiol-Au reaction, then the propargyl-functionalized Ru(bpy)(3)(2+)-doped SiO(2) nanoparticles (Ru-SNPs) ECL probe was covalently coupled on the electrode surfaces via click chemistry. Cu(+), the catalyst for click chemistry, is derived from the electrolytic reduction of Cu(2+)via the Bulk Electrolysis with coulometry (BE) technique and without any reductants. It is found that the ECL intensity detected from the electrode surface has a linear relationship with the logarithm of Cu(2+) concentration in the range of 1.0 × 10(-15) to 1.0 × 10(-11) M with a detection limit of 1.0 × 10(-16) M. Also, the method is highly specific even in the presence of high concentrations of other metal cations. It has been applied to detect trace Cu(2+) in complex samples (hepatoma cell) without sample treatment.

  6. Organic chemistry: Precision pruning of molecules

    Science.gov (United States)

    Yang, Kin S.; Engle, Keary M.

    2016-05-01

    If organic molecules were trees, then the numerous carbon-hydrogen bonds within them would be leaves. A catalyst that targets one 'leaf' out of many similar other ones looks set to be a huge leap for synthetic chemistry. See Letter p.230

  7. Isolating Site-Specific Spectral Signatures of Individual Water Molecules in H-Bonded Networks with Isotopomer-Selective Ir-Ir Double Resonance Vibrational Predissociation Spectroscopy

    Science.gov (United States)

    Wolke, Conrad T.; Johnson, Mark

    2016-06-01

    We will discuss an experimental method that directly yields the embedded correlations between the two OH stretches and the intramolecular bending modes associated with a single H2O water molecule embedded in an otherwise all-D isotopologue. This is accomplished using isotopomer-selective IR-IR hole-burning on the Cs+(D2O)5(H2O) clusters formed by gas-phase exchange of a single, intact H2O molecule for D2O in the Cs+(D2O)6 ion. The OH stretching pattern of the Cs+(H2O)6 isotopologue is accurately recovered by superposition of the isotopomer spectra, thus establishing that the H2O incorporation is random and that the OH stretching manifold is largely due to contributions from decoupled water molecules. This behavior enables a powerful new way to extract structural information from vibrational spectra of size-selected clusters by explicitly identifying the local environments responsible for specific infrared features. Extension of this method to address the degree to which OH stretches are decoupled in the protonated water clusters will also be discussed.

  8. Routes to Hydrogen Bonding Chain-End Functionalized Polymers.

    Science.gov (United States)

    Bertrand, Arthur; Lortie, Frédéric; Bernard, Julien

    2012-12-21

    The contribution of supramolecular chemistry to polymer science opens new perspectives for the design of polymer materials exhibiting valuable properties and easier processability due to the dynamic nature of non-covalent interactions. Hydrogen bonding polymers can be used as supramolecular units for yielding larger assemblies that possess attractive features, arising from the combination of polymer properties and the responsiveness of hydrogen bonds. The post-polymerization modification of reactive end-groups is the most common procedure for generating such polymers. Examples of polymerizations mediated by hydrogen bonding-functionalized precursors have also recently been reported. This contribution reviews the current synthetic routes toward hydrogen bonding sticker chain-end functionalized polymers.

  9. Characterization of the hydrology, water chemistry, and aquatic communities of selected springs in the St. Johns River Water Management District, Florida, 2004

    Science.gov (United States)

    Phelps, G.G.; Walsh, Stephen J.; Gerwig, Robert M.; Tate, William B.

    2006-01-01

    The hydrology, water chemistry, and aquatic communities of Silver Springs, De Leon Spring, Gemini Springs, and Green Spring in the St. Johns River Water Management District, Florida, were studied in 2004 to provide a better understanding of each spring and to compile data of potential use in future water-management decisions. Ground water that discharges from these and other north-central Florida springs originates from the Upper Floridan aquifer of the Floridan aquifer system, a karstic limestone aquifer that extends throughout most of the State's peninsula. This report summarizes data about flow, water chemistry, and aquatic communities, including benthic invertebrates, fishes, algae, and aquatic macrophytes collected by the U.S. Geological Survey, the St. Johns River Water Management District, and the Florida Department of Environmental Protection during 2004, as well as some previously collected data. Differences in water chemistry among these springs reflect local differences in water chemistry in the Upper Floridan aquifer. The three major springs sampled at the Silver Springs group (the Main Spring, Blue Grotto, and the Abyss) have similar proportions of cations and anions but vary in nitrate and dissolved oxygen concentrations. Water from Gemini Springs and Green Spring has higher proportions of sodium and chloride than the Silver Springs group. Water from De Leon Spring also has higher proportions of sodium and chloride than the Silver Springs group but lower proportions of calcium and bicarbonate. Nitrate concentrations have increased over the period of record at all of the springs except Green Spring. Compounds commonly found in wastewater were found in all the springs sampled. The most commonly detected compound was the insect repellant N,N'-diethyl-methyl-toluamide (DEET), which was found in all the springs sampled except De Leon Spring. The pesticide atrazine and its degradate 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT) were detected in water

  10. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  11. 2012 ORGANOMETALLIC CHEMISTRY GRC/GRS, JULY 7-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, Gregory

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  12. Selective enamel etching: effect on marginal adaptation of self-etch LED-cured bond systems in aged Class I composite restorations.

    Science.gov (United States)

    Souza-Junior, E J; Prieto, L T; Araújo, C T P; Paulillo, L A M S

    2012-01-01

    The aim of this study was to evaluate the influence of previous enamel etch and light emitting diode (LED) curing on gap formation of self-etch adhesive systems in Class I composite restorations after thermomechanical aging (TMA). Thus, on 192 human molars, a box-shaped Class I cavity was prepared maintaining enamel margins. Self-etch adhesives (Clearfil SE and Clearfil S3) were used to restore the preparation with a microhybrid composite. Before application of the adhesives, half of the teeth were enamel etched for 15 seconds with 37% phosphoric acid; the other half were not etched. For the photoactivation of the adhesives and composite, three light-curing units (LCUs) were used: one polywave (Ultra-Lume LED 5, UL) and two single-peak (FlashLite 1401, FL and Radii-cal, RD) LEDs. After this, epoxy resin replicas of the occlusal surface were made, and the specimens were submitted to TMA. New replicas were made from the aged specimens for marginal adaptation analysis by scanning electron microscopy. Data were submitted to Kruskal-Wallis and Wilcoxon tests (α=0.05). Before TMA, when enamel was etched before the application of S3, no gap formation was observed; however, there were gaps at the interface for the other tested conditions, with a statistical difference (p≤0.05). After TMA, the selective enamel etching previous to the S3 application, regardless of the LCU, promoted higher marginal adaptation compared to the other tested groups (p≤0.05). Prior to TMA, higher marginal integrity was observed, in comparison with specimens after TMA (p≤0.05). With regard to Clearfil SE and Clearfil Tri-S cured with FL, no differences of gap formation were found between before and after aging (5.3 ± 3.8 and 7.4 ± 7.5, respectively), especially when the Clearfil Tri-S was used in the conventional protocol. When cured with RD or UL and not etched, Clearfil Tri-S presented the higher gap formation. In conclusion, additional enamel etching promoted better marginal integrity

  13. 选区激光熔化钴铬合金金-瓷结合强度初探%Metal-ceramic bond strength of Co-Cr alloy processed by selective laser melting

    Institute of Scientific and Technical Information of China (English)

    刘洁; 刘洋; 孙荣; 战德松; 王彦岩

    2013-01-01

    Objective To eveluate the metal-ceramic bond strength of a selective laser melting Co-Cr alloy.Methods Twelve Co-Cr metal bars were prepared according to the ISO 9693 standard with Vita porcelain fused onto the centre of each bar.Then the sample bars were devided into two groups of six each.The control group was made by traditional cast process(cast group),and the experimental group was processed by selective laser melting (SLM) technology (SLM group).Metal-ceramic bonding strength and fracture mode were assessed using three-point bending test.Fracture mode analysis was determined by scanning electronic microscope/energy dispersive spectroscopy.Student's t-test was used to analyze the data in SPSS 13.0.Results The metal-ceramic bond strength value of the cast group was (33.45 ±2.34) MPa,and that of the SLM group was (31.62 ± 2.34) MPa (t =0.79,P > 0.05).A mixed fracture mode on the debonding interface of all specimens was observed,while little porcelain was reserved.Conclusions The metal-ceramic system processed by SLM exhibited a bonding strength that satisfies the requirement of clinical application.%目的 采用三点弯曲法评价选区激光熔化钴铬合金金-瓷结合强度,以期为修复临床提供参考.方法 依据ISO 9693标准,分别用铸造法(铸造组)和选区激光熔化法(选区激光熔化组)制作钴铬合金试件,每组6个,试件中间区域熔附瓷粉.三点弯曲法测试金-瓷结合强度,采用SPSS 13.0软件进行t检验,分析两组金-瓷结合强度差异;扫描电镜和能谱仪进行金-瓷结合界面分析.结果 铸造组和选区激光熔化组金-瓷结合强度分别为(33.45 ±2.34)和(31.62 ±2.34) MPa,两组差异无统计学意义(t =0.79,P>0.05).两组试件断裂类型均为混合断裂,仅微量瓷残余.结论 选区激光熔化钴铬合金修复体可满足临床对金-瓷结合强度的要求.

  14. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    Science.gov (United States)

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  15. Single Molecule Junctions: Probing Contact Chemistry and Fundamental Circuit Laws

    Energy Technology Data Exchange (ETDEWEB)

    Hybertsen M. S.

    2013-04-11

    By exploiting selective link chemistry, formation of single molecule junctions with reproducible conductance has become established. Systematic studies reveal the structure-conductance relationships for diverse molecules. I will draw on experiments from my collaborators at Columbia University, atomic-scale calculations and theory to describe progress in two areas. First, I will describe a novel route to form single molecule junctions, based on SnMe3 terminated molecules, in which gold directly bonds to carbon in the molecule backbone resulting in near ideal contact resistance [1]. Second, comparison of the conductance of junctions formed with molecular species containing either one backbone or two backbones in parallel allows demonstration of the role of quantum interference in the conductance superposition law at the molecular scale [2].

  16. Science Update: Inorganic Chemistry

    Science.gov (United States)

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  17. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  18. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  19. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  20. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    Science.gov (United States)

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  1. Photoredox Catalysis in Organic Chemistry.

    Science.gov (United States)

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds.

  2. The magnehydrogen in hadronic chemistry

    Science.gov (United States)

    Zodape, Sangesh P.; Bhalekar, Anil A.

    2013-10-01

    In this paper we have described in brief one of the great achievements accomplished by the Italian-American scientist Ruggero Maria Santilli [1], namely the isochemical model and magnehydrogen that form the subject matter of the hadronic Chemistry. This new chemical species of magnehydrogen consist of individual hydrogen atom bonded together and form stable clusters under a new internal attractive forces originating from the toroidal polarization of orbitals of atomic electrons when placed in strong magnetic fields. These magnecules are used as pollution free fuel and for other applications because there is no cracking involved while using the stored magnetic energy.

  3. Photoredox Catalysis in Organic Chemistry

    Science.gov (United States)

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  4. C-H fluorination: U can fluorinate unactivated bonds

    Science.gov (United States)

    Neumann, Constanze N.; Ritter, Tobias

    2016-09-01

    Introducing C-F bonds into organic molecules is a challenging task, particularly through C-H activation methods. Now, a uranium-based photocatalyst turns traditional selectivity rules on their heads and fluorinates unfunctionalized alkane Csp3-H bonds, even in the presence of C-H bonds that are typically more reactive.

  5. Cross-coupling of C(sp)-H Bonds with Organometallic Reagents via Pd(II)/Pd(0) Catalysis**

    Science.gov (United States)

    Wasa, Masayuki; Engle, Keary M; Yu, Jin-Quan

    2010-12-01

    Palladium-catalyzed C-H activation/C-C bond-forming reactions have emerged as a promising class of synthetic tools in organic chemistry. Among the many different means of forging C-C bonds using Pd-mediated C-H activation, a new horizon in this field is Pd(II)-catalyzed cross-coupling of C-H bonds with organometallic reagents via a Pd(II)/Pd(0) catalytic cycle. While this type of reaction has proven to be effective for the selective functionalization of aryl C(sp(2))-H bonds, the focus of this review is on Pd(II)-catalyzed C(sp(3))-H activation/C-C cross-coupling, a topic of particular importance because reactions of this type enable fundamentally new methods for bond construction. Since our laboratory's initial report on cross-coupling of C-H bonds in 2006, this area has expanded rapidly, and the unique ability of Pd(II) catalysts to cleave and functionalize alkyl C(sp(3))-H bonds has been exploited to develop protocols for forming an array of C(sp(3))-C(sp(2)) and C(sp(3))-C(sp(3)) bonds. Furthermore, enantioselective C(sp(3))-H activation/C-C cross-coupling has been achieved through the use of chiral amino acid-derived ligands, offering a novel technique for producing enantioenriched molecules. Although this nascent field remains at an early stage of development, further investigations hold the potential to revolutionalize the way in which chiral molecules are synthesized in industrial and academic laboratories.

  6. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratory The Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  7. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  8. Bonding with Your Baby

    Science.gov (United States)

    ... in infant massage in your area. Breastfeeding and bottle-feeding are both natural times for bonding. Infants respond ... activities include: participating together in labor and delivery feeding ( breast or bottle ); sometimes dad forms a special bond with baby ...

  9. Interface nanochemistry effects on stainless steel diffusion bonding

    Science.gov (United States)

    Cox, M. J.; Carpenter, R. W.; Kim, M. J.

    2002-02-01

    The diffusion-bonding behavior of single-phase austenitic stainless steel depends strongly on the chemistry of the surfaces to be bounded. We found that very smooth (0.5 nm root-mean-square (RMS) roughness), mechanically polished and lapped substrates would bond completely in ultrahigh vacuum (UHV) in 1 hour at 1000 °C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion-beam cleaning, as shown by in-situ Auger analysis. No voids were observed in these bonded interfaces by transmission electron microscopy (TEM), and the strength was equal to that of the unbounded bare material. No bond formed between the substrates if in-situ ion cleaning was not used. The rougher cleaned substrates partially bonded, indicating that roughness, as well as native oxides, reduced the bonding kinetics.

  10. Environmental control technology survey of selected US strip mining sites. Volume 2A: Ohio: water quality impacts and overburden chemistry of Ohio study site

    Energy Technology Data Exchange (ETDEWEB)

    Bogner, J E; Henricks, J D; Olsen, R D; Schubert, J P; Sobek, A A; Wilkey, M L; Johnson, D O

    1979-05-01

    An intensive study of water, overburden, and coal chemistry was conducted at a large surface mine in Ohio from May 1976 through July 1977. Sampling sites were chosen to include the final mine effluent at the outflow of a large settling pond and chemically-treated drainage from a coal storage pile. Samples were collected semimonthly and analyzed for total dissolved solids, total suspended solids, alkalinity, acidity, sulfate, chloride, and 16 metals. Field measurements included pH, flow rate, dissolved oxygen, and specific conductance. The final effluent, where sampled, generally complied with Office of Surface Mining reclamation standards for pH, iron, and total suspended solids. Comparison of the final effluent with water quality of an unnamed tributary above the mine suggested that elevated values for specific conductance, total dissolved solids, sulfate, calcium, magnesium, manganese, and zinc were attributable to the mine operation. In general, there were observable seasonal variations in flow rates that correlated positively to suspended solids concentrations and negatively to concentrations of dissolved constituents in the final effluent. Drainage from the coal storage pile contained elevated levels of acidity and dissolved metals which were not reduced significantly by the soda ash treatment. The storage pile drainage was diluted, however, by large volumes of alkaline water in the settling pond. Analysis of overburden and coal indicated that the major impact of mine drainage was pyrite oxidation and hydrolysis in the Middle Kittanning Coal and in the Lower Freeport Shale overlying the coal. However, the presence of a calcite-cemented section in the Upper Freeport Sandstone contributed substantial self-neutralizing capacity to the overburden section, resulting in generally alkaline drainage at this site.

  11. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  12. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  13. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  14. Part 6: The Literature of Inorganic Chemistry, Revised.

    Science.gov (United States)

    Douville, Judith A.

    2002-01-01

    Presents a list of resources on inorganic chemistry that includes general surveys, nomenclature, dictionaries, handbooks, compilations, and treatises. Selected for use by academic and student chemists. (DDR)

  15. 糖化学中锡介入的选择性反应%Tin-mediated selective reaction in carbohydrate chemistry

    Institute of Scientific and Technical Information of China (English)

    楼鑫; Seamas Cassidy

    2011-01-01

    The structure of complex of dibutylstannylene acetal with sugar revealed the reasons for selective reaction. And the application of method in the various types of chemical reactions such as acylation,alkylation,oxidation,sulfonation and the performance of the selectivity were discussed in detail.%本文从糖锡络合物结构出发,揭示了锡介入方法进行选择性反应的原因.并对该方法在糖化学各类不同类型的反应如酰化,烃化,氧化,磺化所表现的选择性进行了详细的论述.

  16. Oxidative addition of the C-I bond on aluminum nanoclusters

    Science.gov (United States)

    Sengupta, Turbasu; Das, Susanta; Pal, Sourav

    2015-07-01

    Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly sensitive to the geometrical shapes and electronic structures of the clusters rather than their size, imposing the fact that comprehensive studies on aluminum clusters can be beneficial for nanoscience and nanotechnology. To understand the possible reaction mechanism in detail, the reaction pathway is investigated with the ab initio Born Oppenheimer Molecular Dynamics (BOMD) simulation and the Natural Bond Orbital (NBO) analysis. In short, our theoretical study highlights the thermodynamic and kinetic details of C-I bond dissociation on aluminum clusters for future endeavors in cluster chemistry.Energetics and the in-depth reaction mechanism of the oxidative addition step of the cross-coupling reaction are studied in the framework of density functional theory (DFT) on aluminum nanoclusters. Aluminum metal in its bulk state is totally inactive towards carbon-halogen bond dissociation but selected Al nanoclusters (size ranging from 3 to 20 atoms) have shown a significantly lower activation barrier towards the oxidative addition reaction. The calculated energy barriers are lower than the gold clusters and within a comparable range with the conventional and most versatile Pd catalyst. Further investigations reveal that the activation energies and other reaction parameters are highly

  17. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    OpenAIRE

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with in...

  18. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    OpenAIRE

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with int...

  19. Cryogenic ion chemistry and spectroscopy.

    Science.gov (United States)

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  20. Green chemistry oriented organic synthesis in water.

    Science.gov (United States)

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective.

  1. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology.

  2. Gas-Phase Covalent And Non-Covalent Ion/ion Chemistry Of Biological Macromolecules

    OpenAIRE

    Stutzman, John Robert

    2013-01-01

    Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry. The work de...

  3. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination.

    Science.gov (United States)

    Grushin, Vladimir V

    2010-01-19

    Although springing from two established fields, organometallic chemistry and fluorine chemistry, organometallic fluorine chemistry is still in its early stages. However, developments in this area are expected to provide new tools for the synthesis of selectively fluorinated organic compounds that have been in high demand. Selectively fluorinated organic molecules currently account for up to 40% of all agrochemicals and 20% of all pharmaceuticals on the market. Our research efforts have been focused on the development of new organometallic and catalytic methods for the selective introduction of fluorine and the CF(3) group into the aromatic ring. Monofluorinated and trifluoromethylated aromatic compounds are still made by the old technologies that employ stoichiometric quantities of hazardous and costly materials. In this Account, we describe our studies toward the development of safe, catalytic alternatives to these methods. We have synthesized, characterized, and studied the reactivity of the first aryl palladium(II) fluoride complexes. We have demonstrated for the first time that a Pd-F bond can be formed in a soluble and isolable molecular complex: this bond is more stable than previously thought. Toward the goal of fluoroarene formation via Ar-F reductive elimination, we have studied a number of sigma-aryl Pd(II) fluorides stabilized by various P, N, and S ligands. It has been established that numerous conventional tertiary phosphine ligands, most popular in Pd catalysis, are unlikely to be useful for the desired C-F bond formation at the metal center because of the competing, kinetically preferred P-F bond-forming reaction. A metallophosphorane mechanism has been demonstrated for the P-F bond-forming processes at Rh(I) and Pd(II), which rules out the possibility of controlling these reactions by varying the amount of phosphine in the system, a most common and often highly efficient technique in homogeneous catalysis. The novel F/Ph rearrangement of the fluoro

  4. The Unique Gas-Phase Chemistry of the [AuO](+) /CH4 Couple: Selective Oxygen-Atom Transfer to, Rather than Hydrogen-Atom Abstraction from, Methane.

    Science.gov (United States)

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-08-26

    The thermal reaction of [AuO](+) with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously studied congener [CuO](+) , and to [AgO](+) , [AuO](+) reacts with CH4 exclusively via oxygen-atom transfer to form CH3 OH, and a novel mechanistic scenario for this selective oxidation process has been revealed. Also, the origin of the inertness of the [AgO](+) /CH4 couple has been addressed computationally.

  5. Extraordinarily Long 2-Electron - 4-Center (2e-/4c) 2.9-Å Carbon-Carbon Bonds - What is a Chemical Bond?

    OpenAIRE

    Miller, Joel S.

    2014-01-01

    Carbon-carbon (CC) bonding is a key essence of organic and biochemistry. The length of a CC bond, i.e. 1.54 Å found in the diamond allotrope of carbon and ethane, is among the essential information learned by all chemistry students. This is the length of a single bond () between sp3-hybridized carbons and is the longest of all common CC bonds. Our studies of the [TCNE]22- (TCNE = tetracyanoethylene) dimers reveal that 2.89 ± 0.05 Å 2 electron/4 center (2e-/4c) CC bonds are present. Struc...

  6. PEROXYNITRITE CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Lymar, S.V.

    2000-11-29

    This century old area of research has been experiencing a renaissance during the last decade, with the annual number of publications on the subject increasing from only one in 1990 to nearly 200 in the late-1990s. This renewed interest is stimulated by the discovery of biological roles of nitric oxide, distinguished by the 1998 Nobel prize, and the recognition that the conversion of nitric oxide into peroxynitrite may play major roles in human diseases associated with oxidative stress and in cellular defense against invading pathogens. Peroxynitrite (ONOO{sup {minus}})is a structural isomer of nitrate (NO{sub 3}{sup {minus}}) that contains a peroxo bond. The physiological route to ONOO{sup {minus}} is provided by the combination of nitric oxide ({center_dot}NO) with superoxide ({center_dot}O{sub 2}{sup {minus}}), an extremely rapid reaction occurring upon every encounter of these radicals (the upper dot denotes radical species). Both {center_dot}NO and {center_dot}O{sub 2}{sup {minus}} are the oxygen metabolic products simultaneously generated in a number of cell types within a human body. Compared to its precursors, peroxynitrite is a much stronger oxidant capable of oxidizing proteins, nucleic acids, and lipids.

  7. Structure, chemistry, and properties of mineral nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Waychunas, G.A.; Zhang, H.; Gilbert, B.

    2008-12-02

    Nanoparticle properties can depart markedly from their bulk analog materials, including large differences in chemical reactivity, molecular and electronic structure, and mechanical behavior. The greatest changes are expected at the smallest sizes, e.g. 10 nm and below, where surface effects are expected to dominate bonding, shape and energy considerations. The precise chemistry at nanoparticle interfaces can have a profound effect on structure, phase transformations, strain, and reactivity. Certain phases may exist only as nanoparticles, requiring transformations in chemistry, stoichiometry and structure with evolution to larger sizes. In general, mineralogical nanoparticles have been little studied.

  8. Response of Stream Chemistry During Base Flow to Gradients of Urbanization in Selected Locations Across the Conterminous United States, 2002-04

    Science.gov (United States)

    Sprague, Lori A.; Harned, Douglas A.; Hall, David W.; Nowell, Lisa H.; Bauch, Nancy J.; Richards, Kevin D.

    2007-01-01

    During 2002-2004, the U.S. Geological Survey's National Water-Quality Assessment Program conducted a study to determine the effects of urbanization on stream water quality and aquatic communities in six environmentally heterogeneous areas of the conterminous United States--Atlanta, Georgia; Raleigh-Durham, North Carolina; Milwaukee-Green Bay, Wisconsin; Dallas-Fort Worth, Texas; Denver, Colorado; and Portland, Oregon. This report compares and contrasts the response of stream chemistry during base flow to urbanization in different environmental settings and examines the relation between the exceedance of water-quality benchmarks and the level of urbanization in these areas. Chemical characteristics studied included concentrations of nutrients, dissolved pesticides, suspended sediment, sulfate, and chloride in base flow. In three study areas where the background land cover in minimally urbanized basins was predominantly forested (Atlanta, Raleigh-Durham, and Portland), urban development was associated with increased concentrations of nitrogen and total herbicides in streams. In Portland, there was evidence of mixed agricultural and urban influences at sites with 20 to 50 percent urban land cover. In two study areas where agriculture was the predominant background land cover (Milwaukee-Green Bay and Dallas-Fort Worth), concentrations of nitrogen and herbicides were flat or decreasing as urbanization increased. In Denver, which had predominantly shrub/grass as background land cover, nitrogen concentrations were only weakly related to urbanization, and total herbicide concentrations did not show any clear pattern relative to land cover - perhaps because of extensive water management in the study area. In contrast, total insecticide concentrations increased with increasing urbanization in all six study areas, likely due to high use of insecticides in urban applications and, for some study areas, the proximity of urban land cover to the sampling sites. Phosphorus

  9. Organometallic frustrated Lewis pair chemistry.

    Science.gov (United States)

    Erker, Gerhard

    2011-08-07

    Frustrated Lewis pairs are playing an increasingly important role in organometallic chemistry. Examples are presented and discussed where organometallic systems themselves serve as the Lewis base or Lewis acid components in frustrated Lewis pair chemistry, mostly through their attached functional groups. Activation of dihydrogen takes place easily in many of these systems. This may lead to the generation of novel catalyst systems but also in many cases to the occurrence of specific reactions at the periphery of the organometallic frameworks. Increasingly, FLP reactions are used to carry out functional group conversions in organometallic systems under mild reaction conditions. The limits of typical FLP reactivity are explored with selected organometallic examples, a discussion that points toward new developments, such as the discovery of facile new 1,1-carboboration reactions. Learning more and more about the broad spectrum of frustrated Lewis pair chemistry helps us to find novel reactions and applications.

  10. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  11. Distributed scaffolding: Wiki collaboration among Latino high school chemistry students

    Science.gov (United States)

    O'Sullivan, Edwin Duncan, Jr.

    The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first research question asked if there is a difference in academic achievement between a treatment and control group on selected concepts from the topics of bonding, physical changes, and chemical changes, when Latino high school chemistry students collaborate on a quasi-natural wiki project. Overall results for all three activities (Bonding, Physical Changes, and Chemical Changes) indicated no significant difference between the wiki and control group. However, students performing the chemical changes activity did significantly better than their respective control group. Furthermore, there was a significant association, with large effect size, between group membership and ability to overcome the misconception that aqueous ionic reactants in precipitation reactions exist as molecular pairs of ions. Qualitative analysis of classroom and computer lab dialogue, discussion board communication, student focus groups, teacher interviews, and wiki content attributes the better performance of the chemical changes wiki group to favorable differences in intersubjectivity and calibrated assistance, as well as learning about submicroscopic representations of precipitation reactions in multiple contexts. Furthermore, the nonsignificant result overall points to an aversion to peer editing as a possible cause. Drawing considerably on Vygotsky and Piaget, the results are discussed within the context of how distributed scaffolding facilitated medium levels of cognitive conflict. The second research question asked what the characteristics of distributed metacognitive scaffolding are when Latino high school chemistry students collaborate on a quasi

  12. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  13. Influence of Selected Alkoxysilanes on Dispersive Properties and Surface Chemistry of Titanium Dioxide and TiO2–SiO2 Composite Material

    Directory of Open Access Journals (Sweden)

    Katarzyna Siwińska-Stefańska

    2012-01-01

    Full Text Available The paper reports on characterisation of titanium dioxide and coprecipitated TiO2–SiO2 composite material functionalised with selected alkoxysilanes. Synthetic composite material was obtained by an emulsion method with cyclohexane as the organic phase, titanium sulfate as titanium precursor, and sodium silicate solution as precipitating agent were applied. Structures of titania and composite material samples were studied by the wide angle X-ray scattering method. The chemical composition of TiO2–SiO2 composite material precipitated was evaluated based on the energy dispersive X-ray spectroscopy technique. The functionalised TiO2 and TiO2–SiO2 composite material were thoroughly characterised to determine the yield of functionalisation with silanes. The characterisation included determination of dispersion and morphology of the systems (particle size distribution, scanning electron microscope images, adsorption properties (nitrogen adsorption isotherms, and electrokinetic properties (zeta potential.

  14. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography.

    Science.gov (United States)

    Khater, S; West, C; Lesellier, E

    2013-12-06

    Sub-2-microns particles employed as supporting phases are known to favor column efficiency. Recently a set of columns based on sub-2-microns particles for use with supercritical fluid mobile phases have been introduced by Waters. Five different stationary phase chemistries are available: BEH silica, BEHEthyl-pyridine, X Select CSH Fluorophenyl, HSS C18 SB and BEH Shield RP18. This paper describes the characterization of 15 stationary phases, the five different chemistries, and three particle sizes, 1.7 (or 1.8), 3.5 and 5 microns, with the same carbon dioxide–methanol mobile phase and a set of more than a hundred compounds. The interactions established in the 15 different chromatographic systems used in supercritical fluid chromatography (SFC) are assessed with linear solvation energy relationships (LSERs).The results show the good complementarity of the five column chemistries, and their comparative location inside a classification map containing today around 70 different commercial phases. Among the five different chemistries, the HSS C18 SB phase displays a rather unusual behavior in regards of classical C18 phases, as it displays significant hydrogen–bonding interactions. Besides, it appears, as expected, that the BEH Ethyl–pyridine phase has weak interactions with basic compounds. The effect of particle size was studied because smaller particles induce increased inlet and internal pressure. For compressible fluids,this pressure change modifies the fluid density, i.e. the apparent void volume and the eluting strength.These changes could modify the retention and the selectivity of compounds in the case of method trans-fer, by using different particle sizes, from 5 down to 1.7 m. A hierarchical cluster analysis shows that stationary phase clusters were based on the phase chemistry rather than on the particle size, meaning that method transfer from 5 to 1.7 microns can be achieved in the subcritical domain i.e. by using a weakly compressible fluid.

  15. Structural transition metal chemistry

    CERN Document Server

    Anderson, K M

    2002-01-01

    This thesis is divided up into five chapters as outlined below. Chapter 1 gives the background to the techniques used in this thesis including X-ray structure determination and ab initio methods. An overview of some recent studies using ab initio methods to study transition metal complexes is also given. Chapter 2 investigates structural trans influence in a number of transition metal and p-block complexes. The database and ab initio studies showed that the classical trans influence model based on Pt(II) chemistry does not always hold. For some systems (eg. d sup 1 sup 0 s sup 0 for Sb sup V and Sn sup I sup V) the cis influence is of similar magnitude to the trans influence. For other systems (d sup 0), the trans influence is not as powerful as usually assumed. Chapter 3 is an investigation into the bridging chloride unit. A database study was performed on three systems (M-CI-M', M-CI...H and M-CI...Li/Na/K). Reaction pathway analysis was carried out for the M-CI-M' case and showed that bond order is not con...

  16. Organic chemistry on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhen; Zaera, Francisco [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2006-07-15

    Chemistry on solid surfaces is central to many areas of practical interest such as heterogeneous catalysis, tribology, electrochemistry, and materials processing. With the development of many surface-sensitive analytical techniques in the past decades, great advances have been possible in our understanding of such surface chemistry at the molecular level. Earlier studies with model systems, single crystals in particular, have provided rich information about the adsorption and reaction kinetics of simple inorganic molecules. More recently, the same approach has been expanded to the study of the surface chemistry of relatively complex organic molecules, in large measure in connection with the selective synthesis of fine chemicals and pharmaceuticals. In this report, the chemical reactions of organic molecules and fragments on solid surfaces, mainly on single crystals of metals but also on crystals of metal oxides, carbides, nitrides, phosphides, sulfides and semiconductors as well as on more complex models such as bimetallics, alloys, and supported particles, are reviewed. A scheme borrowed from the organometallic and organic chemistry literature is followed in which key examples of representative reactions are cited first, and general reactivity trends in terms of both the reactants and the nature of the surface are then identified to highlight important mechanistic details. An attempt has been made to emphasize recent advances, but key earlier examples are cited as needed. Finally, correlations between surface and organometallic and organic chemistry, the relevance of surface reactions to applied catalysis and materials functionalization, and some promising future directions in this area are briefly discussed. (author)

  17. Spectroscopic properties of the triple bond carotenoid alloxanthin

    Science.gov (United States)

    West, Robert; Keşan, Gürkan; Trsková, Eliška; Sobotka, Roman; Kaňa, Radek; Fuciman, Marcel; Polívka, Tomáš

    2016-06-01

    Alloxanthin, which has two triple bonds within its backbone, was studied by steady-state and femtosecond transient absorption spectroscopies. Alloxanthin demonstrates an S2 energy comparable to its non-triple bond homolog, zeaxanthin, while the S1 lifetime of 19 ps is markedly longer than that of zeaxanthin (9 ps). Along with corroborating quantum chemistry calculations, the results show that the long-lived S1 state of alloxanthin, which typically corresponds to the dynamic of a shorter carotenoid backbone, implies the triple bond isolates the conjugation of the backbone, increasing the S1 state energy and diminishing the S1-S2 energy gap.

  18. Halogen Bonding or Hydrogen Bonding between 2,2,6,6-Tetramethyl-piperidine-noxyl Radical and Trihalomethanes CHX3 (X=Cl, Br, I)

    Institute of Scientific and Technical Information of China (English)

    Xiao-ran Zhao; Xue Pang; Xiao-qing Yan; Wei-jun Jin

    2013-01-01

    The halogen and hydrogen bonding complexes between 2,2,6,6-tetramethylpiperidine-noxyl and trihalomethanes (CHX3,X=Cl,Br,I) are simulated by computational quantum chemistry.The molecular electrostatic potentials,geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained.The results indicate that both halogen and hydrogen bonding interactions obey the order Cl<Br<I,and hydrogen bonding is stronger than the corresponding halogen bond ing.So,hydrogen bonding complexes should be dominant in trihalomethanes.However,it is possible that halogen bonding complex is competitive,even preponderant,in triiodomethane due to the similar interaction energy.This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.

  19. A Química Quântica na compreensão de teorias de Química Orgânica The Quantum Chemistry in the understanding of theories of Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Régis Casimiro Leal

    2010-01-01

    Full Text Available Quantum chemical calculations were performed in order to obtain molecular properties such as electronic density, dipole moment, atomic charges, and bond lengths, which were compared to qualitative results based on the theories of the organic chemistry. The quantum chemistry computational can be a useful tool to support the main theories of the organic chemistry.

  20. Understanding the molecular-level chemistry of water plasmas and the effects of surface modification and deposition on a selection of oxide substrates

    Science.gov (United States)

    Trevino, Kristina J.

    2011-12-01

    This dissertation first examines electrical discharges used to study wastewater samples for contaminant detection and abatement. Two different water samples contaminated with differing concentrations of either methanol (MeOH) or methyl tert-butyl ether (MTBE) were used to follow breakdown mechanisms. Emission from CO* was used to monitor the contaminant and for molecular breakdown confirmation through actinometric OES as it can only arise from the carbon-based contaminant in either system. Detection was achieved at concentrations as low as 0.01 ppm, and molecular decomposition was seen at a variety of plasma parameters. This dissertation also explores the vibrational (thetaV), rotational (thetaR) and translational (thetaT) temperatures for a range of diatomic species in different plasma systems. For the majority of the plasma species studied, thetaV are much higher than thetaR and thetaT. This suggests that more energy is partitioned into the vibrational degrees of freedom in our plasmas. The thetaR reported are significantly lower in all the plasma systems studied and this is a result of radical equilibration to the plasma gas temperature. thetaT values show two characteristics; (1) they are less than the thetaV and higher than the theta R and (2) show varying trends with plasma parameters. Radical energetics were examined through comparison of thetaR, thetaT, and thetaV, yielding significant insight on the partitioning of internal and kinetic energies in plasmas. Correlations between energy partitioning results and corresponding radical surface scattering coefficients obtained using our imaging of radicals interacting with surfaces (IRIS) technique are also presented. Another aspect of plasma process chemistry, namely surface modification via plasma treatment, was investigated through characterization of metal oxides (SiOxNy, nat-SiO2, and dep-SiO2) following their exposure to a range of plasma discharges. Here, emphasis was placed on the surface wettability

  1. Questa baseline and pre-mining ground-water quality investigation. 20. Water chemistry of the Red River and selected seeps, tributaries, and precipitation, Taos County, New Mexico, 2000-2004

    Science.gov (United States)

    Verplanck, P.L.; McCleskey, R.B.; Nordstrom, D.K.

    2006-01-01

    As part of a multi-year project to infer the pre-mining ground-water quality at Molycorp's Questa mine site, surface-water samples of the Red River, some of its tributaries, seeps, and snow samples were collected for analysis of inorganic solutes and of water and sulfate stable isotopes in selected samples. The primary aim of this study was to document diel, storm event, and seasonal variations in water chemistry for the Red River and similar variations in water chemistry for Straight Creek, a natural analog site similar in topography, hydrology, and geology to the mine site for inferring pre-mining water-quality conditions. Red River water samples collected between 2000 and 2004 show that the largest variations in water chemistry occur during late summer rainstorms, often monsoonal in nature. Within hours, discharge of the Red River increased from 8 to 102 cubic feet per second and pH decreased from 7.80 to 4.83. The highest concentrations of metals (iron, aluminum, zinc, manganese) and sulfate also occur during such events. Low-pH and high-solute concentrations during rainstorm runoff are derived primarily from alteration 'scar' areas of naturally high mineralization combined with steep topography that exposes continually altered rock because erosion is too rapid for vegetative growth. The year 2002 was one of the driest on record, and Red River discharge reflected the low seasonal snow pack. No snowmelt peak appeared in the hydrograph record, and a late summer storm produced the highest flow for the year. Snowmelt was closer to normal during 2003 and demonstrated the dilution effect of snowmelt on water chemistry. Two diel sampling events were conducted for the Red River, one during low flow and the other during high flow, at two locations, at the Red River gaging station and just upstream from Molycorp's mill site. No discernible diel trends were observed except for dissolved zinc and manganese at the upstream site during low flow. Straight Creek drainage water

  2. Determination of the prevalence of anabolic steroids, stimulants, and selected drugs subject to doping controls among elite sport students using analytical chemistry.

    Science.gov (United States)

    Thevis, Mario; Sauer, Michael; Geyer, Hans; Sigmund, Gerd; Mareck, Ute; Schänzer, Wilhelm

    2008-08-01

    Drug abuse by adolescents has been investigated in various surveys that reported correlations between age, gender, and activity. However, none of these studies included chemical analyses to help substantiate the statements of participants. In the present study, the urine specimens of 964 students (439 females, 525 males; mean age 22.1 years, s = 1.7), who applied to study sports sciences at university, were assessed for anabolic steroids, stimulants, and selected drugs prohibited in sports. In total, 11.2% of the urine specimens provided contained drugs covered by doping controls. The most frequently detected compound was the major metabolite of tetrahydrocannabinol (9.8%) followed by various stimulants related to amphetamine and cocaine (1.0%). Indications of anabolic steroid use were found in 0.4% of urine samples but originated from contraceptives containing norethisterone. The present study provided unambiguous data on the status quo of drug (ab)use by adolescents hoping for a career related to elite sport or sports sciences. No use of anabolic steroids was detected. However, evidence for stimulants and tetrahydrocannabinol administration was obtained, although not reported by any participant, which highlights the issue of under-reporting in surveys based solely on questionnaires.

  3. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  4. From Matter to Life:Chemistry?Chemistry!

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Animate as well as inanimate matter,living organisms as well as materials,are formed of molecules and of the organized entities resulting from the interaction of molecules with each other.Chemistry provides the bridge between the molecules of inanimate matter and the highly complex molecular architectures and systems which make up living organisms. Synthetic chemistry has developed a very powerful set of methods for constructing ever more complex molecules.Supramolecular chemistry seeks to con...

  5. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  6. Understanding Rotation about a C=C Double Bond

    Science.gov (United States)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  7. Nuclear radiation as a probe of chemical bonding: the current interplay between theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Newton, M D

    1978-01-01

    After a survey of appropriate theoretical formalisms, recent confrontations of theory and experiment in the areas of neutron scattering, Moessbauer spectroscopy, and positron chemistry are discussed, with major emphasis on the degree to which simple concepts of chemical bonding can be refined by complementary use of the above experimental probes and the powerful techniques of computational quantum chemistry.

  8. Selective Preference of Parallel DNA Triplexes Is Due to the Disruption of Hoogsteen Hydrogen Bonds Caused by the Severe Nonisostericity between the G*GC and T*AT Triplets.

    Directory of Open Access Journals (Sweden)

    Gunaseelan Goldsmith

    Full Text Available Implications of DNA, RNA and RNA.DNA hybrid triplexes in diverse biological functions, diseases and therapeutic applications call for a thorough understanding of their structure-function relationships. Despite exhaustive studies mechanistic rationale for the discriminatory preference of parallel DNA triplexes with G*GC & T*AT triplets still remains elusive. Here, we show that the highest nonisostericity between the G*GC & T*AT triplets imposes extensive stereochemical rearrangements contributing to context dependent triplex destabilisation through selective disruption of Hoogsteen scheme of hydrogen bonds. MD simulations of nineteen DNA triplexes with an assortment of sequence milieu reveal for the first time fresh insights into the nature and extent of destabilization from a single (non-overlapping, double (overlapping and multiple pairs of nonisosteric base triplets (NIBTs. It is found that a solitary pair of NIBTs, feasible either at a G*GC/T*AT or T*AT/G*GC triplex junction, does not impinge significantly on triplex stability. But two overlapping pairs of NIBTs resulting from either a T*AT or a G*GC interruption disrupt Hoogsteen pair to a noncanonical mismatch destabilizing the triplex by ~10 to 14 kcal/mol, implying that their frequent incidence in multiples, especially, in short sequences could even hinder triplex formation. The results provide (i an unambiguous and generalised mechanistic rationale for the discriminatory trait of parallel triplexes, including those studied experimentally (ii clarity for the prevalence of antiparallel triplexes and (iii comprehensive perspectives on the sequence dependent influence of nonisosteric base triplets useful in the rational design of TFO's against potential triplex target sites.

  9. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. Lipase-catalyzed polyester synthesis--a green polymer chemistry.

    Science.gov (United States)

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemoenzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting 'green polymer chemistry'.

  12. Dentin-bonding agents

    Directory of Open Access Journals (Sweden)

    João Carlos Gomes

    2008-01-01

    Full Text Available New dental restorative materials have been developed to meet not only the functional demands, but esthetics as well, and in the last few years an enormous range of new materials has appeared for use in dentistry. Among them, several adhesive systems, and different operative techniques for each group materials. Therefore, is indispensable for the professional to know about the properties, characteristics, and association of these materials with the dental structures, in order to select and use them correctly. Should conventional self-etching adhesive systems be used? This question encouraged this literature review to be conducted, with the aim of comparing the conventional adhesive systems with the self-etching systems and to look for scientific data that would help professionals to choose which adhesive system to use. When compared to conventional systems, it was noted that the self-etching systems show less sensitivity to technique, especially as regards errors the operator could commit. The self-etching systems, particularly the 2-step type, have shown equivalent values of bond strength, marginal microleakage and performance, therefore, will be an option for direct composite resin restorations in posterior teeth.

  13. Water-Chemistry and On-Site Sulfur-Speciation Data for Selected Springs in Yellowstone National Park, Wyoming, 1996-1998

    Science.gov (United States)

    Ball, James W.; Nordstrom, Kirk D.; McCleskey, R. Blaine; Schoonen, Martin A.A.; Xu, Yong

    2001-01-01

    Fifty-eight water analyses are reported for samples collected from 19 hot springs and their overflow drainages and one ambient-temperature acid stream in Yellowstone National Park (YNP) during 1996-98. These water samples were collected and analyzed as part of research investigations on microbially mediated sulfur oxidation in stream waters and sulfur redox speciation in hot springs in YNP and chemical changes in overflow drainages that affect major ions, redox species, and trace elements. The research on sulfur redox speciation in hot springs is a collaboration with the State University of New York at Stony Brook, Northern Arizona University, and the U.S. Geological Survey (USGS). One ambient-temperature acidic stream system, Alluvium Creek and its tributaries in Brimstone Basin, was studied in detail. Analyses were performed adjacent to the sampling site, in an on-site mobile laboratory truck, or later in a USGS laboratory, depending on stability and preservability of the constituent. Water temperature, specific conductance, pH, Eh, dissolved oxygen (D.O.), and dissolved H2S were determined on-site at the time of sampling. Alkalinity and F were determined within a few days of sample collection by titration and by ion-selective electrode, respectively. Concentrations of S2O3 and SxO6 were determined as soon as possible (minutes to hours later) by ion chromatography (IC). Concentrations of Cl, SO4, and Br were determined by IC within a few days of sample collection. Concentrations of Fe(II) and Fe(total) were determined by ultraviolet/visible spectrophotometry within a few days of sample collection. Densities were determined later in the USGS laboratory. Concentrations of Li, Na, and K were determined by flame atomic absorption (Li) and emission (Na, K) spectrometry. Concentrations of Al, As(total), B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe(total), Mg, Mn, Ni, Pb, Si, Sr, V, and Zn were determined by inductively-coupled plasma optical emission spectrometry. Trace

  14. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  15. Upper Secondary Teachers' Knowledge for Teaching Chemical Bonding Models

    Science.gov (United States)

    Bergqvist, Anna; Drechsler, Michal; Rundgren, Shu-Nu Chang

    2016-01-01

    Researchers have shown a growing interest in science teachers' professional knowledge in recent decades. The article focuses on how chemistry teachers impart chemical bonding, one of the most important topics covered in upper secondary school chemistry courses. Chemical bonding is primarily taught using models, which are key for understanding science. However, many studies have determined that the use of models in science education can contribute to students' difficulties understanding the topic, and that students generally find chemical bonding a challenging topic. The aim of this study is to investigate teachers' knowledge of teaching chemical bonding. The study focuses on three essential components of pedagogical content knowledge (PCK): (1) the students' understanding, (2) representations, and (3) instructional strategies. We analyzed lesson plans about chemical bonding generated by 10 chemistry teachers with whom we also conducted semi-structured interviews about their teaching. Our results revealed that the teachers were generally unaware of how the representations of models they used affected student comprehension. The teachers had trouble specifying students' difficulties in understanding. Moreover, most of the instructional strategies described were generic and insufficient for promoting student understanding. Additionally, the teachers' rationale for choosing a specific representation or activity was seldom directed at addressing students' understanding. Our results indicate that both PCK components require improvement, and suggest that the two components should be connected. Implications for the professional development of pre-service and in-service teachers are discussed.

  16. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  17. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  18. The dissociative bond.

    Science.gov (United States)

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  19. The samurai bond market

    OpenAIRE

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  20. Green chemistry: A tool in Pharmaceutical Chemistry

    Directory of Open Access Journals (Sweden)

    Smita Talaviya

    2012-07-01

    Full Text Available Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceuticals is to utilize eco-friendly, non-hazardous, reproducible and efficient solvents and catalysts in synthesis of drug molecules, drug intermediates and in researches involving synthetic chemistry. Microwave synthesis is also an important tool of green chemistry by being an energy efficient process.

  1. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  2. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  3. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  4. Chemistry for Potters.

    Science.gov (United States)

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  5. CHINESE JOURNAL OF CHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Chinese Journal of Chemistry is an international journal published in English by the Chinese Chemical Society with its editorial office hosted by Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

  6. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  7. Progress in Kdo-glycoside chemistry

    Science.gov (United States)

    Kosma, Paul

    2016-01-01

    Glycosylation chemistry of 3-deoxy-D-manno-oct-2-ulosonic acid units has been considerably developed within the last decade. This review covers major achievements with respect to improved yields and anomeric selectivity as well as suppression of the elimination side reaction via selection of dedicated protecting groups and appropriate activation of the anomeric center. PMID:27274586

  8. Selective Covalent Chemistry via Gas-Phase Ion/ion Reactions: An Exploration of the Energy Surfaces Associated with N-Hydroxysuccinimide Ester Reagents and Primary Amines and Guanidine Groups

    Science.gov (United States)

    Bu, Jiexun; Fisher, Christine M.; Gilbert, Joshua D.; Prentice, Boone M.; McLuckey, Scott A.

    2016-06-01

    Selective covalent bond forming reactions (referred to as covalent reactions) can occur in gas-phase ion/ion reactions and take place via the formation of a long-lived chemical complex. The gas-phase ion/ion reactivity between sulfo- N-hydroxysuccinimide (sulfo-NHS) ester reagent anions and peptide cations containing a primary amine or guanidine group has been examined via DFT calculations and complex dissociation rate measurements. The results reveal insights regarding the roles of the barriers of competing processes within the complex. When the covalent reaction is exothermic, two prototypical cases, determined by the nature of the energy surface, are apparent. The product partitioning between covalent reaction and simple proton transfer upon dissociation of the long-lived complex is sensitive to activation conditions when the transition state barrier for covalent reaction is relatively high ( case 1) but is insensitive to activation conditions when the transition state barrier is relatively low ( case 2). Covalent reaction efficiencies are very high in case 2 scenarios, such as when the reactive site is a guanidine and the anion attachment site is a guanidinium ion. Covalent reaction efficiencies are variable, and generally low, in case 1 scenarios, such as when an amine is the reactive site and an ammonium ion is the site of anion attachment. A relatively long slow-heating step prior to the complex dissociation step, however, can dramatically increase covalent reaction yield in case 1 scenarios.

  9. Computational Chemistry Comparison and Benchmark Database

    Science.gov (United States)

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  10. Constructing Models in Teaching of Chemical Bonds: Ionic Bond, Covalent Bond, Double and Triple Bonds, Hydrogen Bond and Molecular Geometry

    Science.gov (United States)

    Uce, Musa

    2015-01-01

    Studies in chemistry education show that chemistry topics are considered as abstract, complicated and hard to understand by students. For this reason, it is important to develop new materials and use them in classes for better understanding of abstract concepts. Moving from this point, a student-centered research guided by a teacher was conducted…

  11. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    Science.gov (United States)

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  12. Bond strength of repaired amalgam restorations.

    Science.gov (United States)

    Rey, Rosalia; Mondragon, Eduardo; Shen, Chiayi

    2015-01-01

    This in vitro study investigated the interfacial flexural strength (FS) of amalgam repairs and the optimal combination of repair materials and mechanical retention required for a consistent and durable repair bond. Amalgam bricks were created, each with 1 end roughened to expose a fresh surface before repair. Four groups followed separate repair protocols: group 1, bonding agent with amalgam; group 2, bonding agent with composite resin; group 3, mechanical retention (slot) with amalgam; and group 4, slot with bonding agent and amalgam. Repaired specimens were stored in artificial saliva for 1, 10, 30, 120, or 360 days before being loaded to failure in a 3-point bending test. Statistical analysis showed significant changes in median FS over time in groups 2 and 4. The effect of the repair method on the FS values after each storage period was significant for most groups except the 30-day storage groups. Amalgam-amalgam repair with adequate condensation yielded the most consistent and durable bond. An amalgam bonding agent could be beneficial when firm condensation on the repair surface cannot be achieved or when tooth structure is involved. Composite resin can be a viable option for amalgam repair in an esthetically demanding region, but proper mechanical modification of the amalgam surface and selection of the proper bonding system are essential.

  13. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  14. Electronic bond tuning with heterocyclic carbenes

    KAUST Repository

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  15. A qualitative study of high school students' pre- and post instructional conceptions in chemical bonding

    Science.gov (United States)

    Wang, Renhong

    This study investigated high school students' understanding of chemical bonding prior to and after formal chemistry instruction. Two sets of clinical interviews were conducted prior to and after formal instructions on the topic of chemical bonding using a teacher-as-researcher protocol. Twenty-two students enrolled in a New York Regents Chemistry course were interviewed. Six students participated in the pilot study and the other sixteen were involved in the full study. Oral and pictorial data from the interviews were collected and analyzed in two parts; first, the students' conceptual understanding of chemical bonding including common themes, ideas and misconceptions were identified; second, profiles of each student were made to determine conceptual changes due to formal instruction. The findings showed that students were not familiar with the basic components and structure of atoms, especially the electrostatic properties of the sub-atomic particles. Inter-particle distance, rather than the electrostatic forces between particles, was believed to be the determining cause of the state of matter of a substance. The role of repulsive and attractive electrostatic forces in chemical bonding was not recognized. Students were unable to accurately describe the underlying scientific concepts for all types of chemical bonding and revealed a number of misconceptions, which were resistant to change by instruction. Specific areas of difficulty included the accurate descriptions of ionic bonding, covalent bonding and hydrogen bonding. Further, almost all the students could not use electrostatic forces to explain three states of water and phase changes and most students were unable to describe the energy that was released or absorbed due to bond formation or breaking. Student difficulties stemmed from a lack of understanding of some of the underlying, fundamental chemistry, such as the basic atomic structure, the particulate nature of mater and the role of electrostatic forces in

  16. Selectivity in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Zeeuw, R.A; de Jong, G.J.; Ensing, K

    1999-01-01

    This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a Chemistry and Toxicology, parti

  17. N-Heterocyclic carbene chemistry of iron: fundamentals and applications.

    Science.gov (United States)

    Ingleson, Michael J; Layfield, Richard A

    2012-04-14

    The use of N-heterocyclic carbenes (NHCs) in the chemistry of iron is stimulating important new applications of one of the most ubiquitous ligand types in modern organometallic chemistry. A series of reports has shown how the flexible and modifiable stereo-electronic properties of NHC ligands can be combined with iron in a range of oxidation states to create opportunities for studying unique structures, bonding and reactivity. Of particular interest are the roles of iron NHC complexes in: the stabilization of unusual oxidation states and coordination environments; the activation of small molecules; homogeneous catalysis; and bio-mimetic chemistry. Our feature article summarizes the key developments in the field.

  18. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    Science.gov (United States)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  19. Effect of ultrasonic power and bonding force on the bonding strength of copper ball bonds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Copper wire, serving as a cost-saving alternative to gold wire, has been used in many high-end thermosonic ball bonding applications. In this paper, the bond shear force, bond shear strength, and the ball bond diameter are adopted to evaluate the bonding quality. It is concluded that the efficient ultrasonic power is needed to soften the ball to form the copper bonds with high bonding strength. However, excessive ultrasonic power would serve as a fatigue loading to weaken the bonding. Excessive or less bonding force would cause cratering in the silicon.

  20. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  1. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik

    2012-01-01

    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  2. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  3. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  4. Click chemistry: 1,2,3-triazoles as pharmacophores.

    Science.gov (United States)

    Agalave, Sandip G; Maujan, Suleman R; Pore, Vandana S

    2011-10-04

    The copper(I)-catalyzed 1,2,3-triazole-forming reaction between azides and terminal alkynes has become the gold standard of 'click chemistry' due to its reliability, specificity, and biocompatibility. Applications of click chemistry are increasingly found in all aspects of drug discovery; they range from lead finding through combinatorial chemistry and target-templated in vitro chemistry, to proteomics and DNA research by using bioconjugation reactions. The triazole products are more than just passive linkers; they readily associate with biological targets, through hydrogen-bonding and dipole interactions. The present review will focus mainly on the recent literature for applications of this reaction in the field of medicinal chemistry, in particular on use of the 1,2,3-triazole moiety as pharmacophore.

  5. Orbital entanglement in quantum chemistry

    CERN Document Server

    Boguslawski, Katharina

    2014-01-01

    The basic concepts of orbital entanglement and its application to chemistry are briefly reviewed. The calculation of orbital entanglement measures from correlated wavefunctions is discussed in terms of reduced $n$-particle density matrices. Possible simplifications in their evaluation are highlighted in case of seniority-zero wavefunctions. Specifically, orbital entanglement allows us to dissect electron correlation effects in its strong and weak contributions, to determine bond orders, to assess the quality and stability of active space calculations, to monitor chemical reactions, and to identify points along the reaction coordinate where electronic wavefunctions change drastically. Thus, orbital entanglement represents a useful and intuitive tool to interpret complex electronic wavefunctions and to facilitate a qualitative understanding of electronic structure and how it changes in chemical processes.

  6. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V

    2011-01-01

    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  7. 2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Emilio Bunel

    2011-07-15

    Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.

  8. T. thermophila group I introns that cleave amide bonds

    Science.gov (United States)

    Joyce, Gerald F. (Inventor)

    1997-01-01

    The present invention relates to nucleic acid enzymes or enzymatic RNA molecules that are capable of cleaving a variety of bonds, including phosphodiester bonds and amide bonds, in a variety of substrates. Thus, the disclosed enzymatic RNA molecules are capable of functioning as nucleases and/or peptidases. The present invention also relates to compositions containing the disclosed enzymatic RNA molecule and to methods of making, selecting, and using such enzymes and compositions.

  9. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  10. Overview on the history of organofluorine chemistry from the viewpoint of material industry

    OpenAIRE

    Okazoe, Takashi

    2009-01-01

    Fluorine (from “le fluor”, meaning “to flow”) is a second row element of Group 17 in the periodic table. When bound to carbon it forms the strongest bond in organic chemistry to give organofluorine compounds. The scientific field treating them, organofluorine chemistry, started before elemental fluorine itself was isolated. Applying the fruits in academia, industrial organofluorine chemistry has developed over 80 years via dramatic changes during World War II. Nowadays, it provides various ma...

  11. Metal-Metal Bonds and Metal Carbon Bonds in the Chemistry of Molybdenum and Tungsten Alkoxides.

    Science.gov (United States)

    1983-02-07

    diketones , 0-keto- esters, 0-ketoamines and Schiff bases. Insertion reactions also occur with unsaturated molecules such as CO CS and ArNCO. 02P 2 The...isopropoxy and neopentoxy compounds are oligomers [MoO 2(OR)21 n of, as yet, unknown struc- 2_no, syt unkow stuc 34 tures. A clean synthesis of the latter...to green solutions containing the triangulo Mo 30(OR)to compounds (see Figure 5). A clean, direct synthesis of these compounds is by the addition of

  12. Influence of alkali promoters in the selective hydrogenation of 3-methyl-2-butenal over Ru/SiO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Waghray, A.; Wang, Jian; Oukaci, R.; Blackmond, D.G. [Univ. of Pittsburgh, PA (United States)

    1992-07-09

    The addition of potassium as a promoter to a Ru/SiO{sub 2} catalyst resulted in a striking shift in product selectivity in the hydrogenation of 3-methyl-2-butenal. The rate of hydrogenation of the C=O bond to produce the unsaturated alcohol increased concomitant with a decrease in the rate of C=C hydrogenation. IR spectroscopy showed a strong perturbation of the C=O bond for the alkali-promoted catalyst, and volumetric chemisorption and TPD results suggested that the alkali species blocked adsorption at low-coordination Ru sites. These adsorption and reaction studies suggest that polarization of the adsorbed substrate at the C=O bond is responsible for the significant shift in product selectivity upon alkali promotion. This work combines spectroscopic tools with the use of the catalytic reaction itself as a probe of catalyst surface chemistry. 40 refs., 6 figs., 3 tabs.

  13. On the Role of D Orbital Hybridization in the Chemistry Curriculum

    Science.gov (United States)

    Galbraith, John Morrison

    2007-01-01

    The role of d-orbital hybridization in the chemistry curriculum and a qualitative description of bonding in SF[subscript 6] are described. The sp[cubed]d[squared] hybridization model found to be helpful in understanding the chemical phenomenon of chemical bonding in SF[subscript 6] and are not applicable to all situations.

  14. Thioamides: versatile bonds to induce directional and cooperative hydrogen bonding in supramolecular polymers.

    Science.gov (United States)

    Mes, Tristan; Cantekin, Seda; Balkenende, Dirk W R; Frissen, Martijn M M; Gillissen, Martijn A J; De Waal, Bas F M; Voets, Ilja K; Meijer, E W; Palmans, Anja R A

    2013-06-24

    The amide bond is a versatile functional group and its directional hydrogen-bonding capabilities are widely applied in, for example, supramolecular chemistry. The potential of the thioamide bond, in contrast, is virtually unexplored as a structuring moiety in hydrogen-bonding-based self-assembling systems. We report herein the synthesis and characterisation of a new self-assembling motif comprising thioamides to induce directional hydrogen bonding. N,N',N''-Trialkylbenzene-1,3,5-tris(carbothioamide)s (thioBTAs) with either achiral or chiral side-chains have been readily obtained by treating their amide-based precursors with P2S5. The thioBTAs showed thermotropic liquid crystalline behaviour and a columnar mesophase was assigned. IR spectroscopy revealed that strong, three-fold, intermolecular hydrogen-bonding interactions stabilise the columnar structures. In apolar alkane solutions, thioBTAs self-assemble into one-dimensional, helical supramolecular polymers stabilised by three-fold hydrogen bonding. Concentration- and temperature-dependent self-assembly studies performed by using a combination of UV and CD spectroscopy demonstrated a cooperative supramolecular polymerisation mechanism and a strong amplification of supramolecular chirality. The high dipole moment of the thioamide bond in combination with the anisotropic shape of the resulting cylindrical aggregate gives rise to sufficiently strong depolarised light scattering to enable depolarised dynamic light scattering (DDLS) experiments in dilute alkane solution. The rotational and translational diffusion coefficients, D(trans) and D(rot), were obtained from the DDLS measurements, and the average length, L, and diameter, d, of the thioBTA aggregates were derived (L = 490 nm and d = 3.6 nm). These measured values are in good agreement with the value L(w) = 755 nm obtained from fitting the temperature-dependent CD data by using a recently developed equilibrium model. This experimental verification

  15. Bioinorganic Chemistry Modeled with the TPSSh Density Functional

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    In this work, the TPSSh density functional has been benchmarked against a test set of experimental structures and bond energies for 80 transition-metal-containing diatomics. It is found that the TPSSh functional gives structures of the same quality as other commonly used hybrid and nonhybrid func...... promising density functional for use and further development within the field of bioinorganic chemistry....

  16. Small but strong lessons from chemistry for nanoscience.

    Science.gov (United States)

    Hoffmann, Roald

    2013-01-02

    In a different light: In a provocative look at nanoscience, Nobel Laureate Roald Hoffmann considers the structural and electronic perplexities of dimensionality, the consequences of bond severance in nano-object formation, the implications of simple acid-base chemistry for stabilization of nanostructures, and what lessons might be learned from surface science on structural relaxation and reconstruction.

  17. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  18. Programming Surface Chemistry with Engineered Cells.

    Science.gov (United States)

    Zhang, Ruihua; Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Ruder, Warren C

    2016-09-16

    We have developed synthetic gene networks that enable engineered cells to selectively program surface chemistry. E. coli were engineered to upregulate biotin synthase, and therefore biotin synthesis, upon biochemical induction. Additionally, two different functionalized surfaces were developed that utilized binding between biotin and streptavidin to regulate enzyme assembly on programmable surfaces. When combined, the interactions between engineered cells and surfaces demonstrated that synthetic biology can be used to engineer cells that selectively control and modify molecular assembly by exploiting surface chemistry. Our system is highly modular and has the potential to influence fields ranging from tissue engineering to drug development and delivery.

  19. The open-close mechanism of M2 channel protein in influenza A virus: A computational study on the hydrogen bonds and cation-π interactions among His37 and Trp41

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; ZHU WeiLiang; WANG YanLi; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang

    2008-01-01

    The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study, the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues, and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then, quantum chemistry calculations at the MP2/6-311G** level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calculation results indicate that the binding strength of the N--H…N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1, and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1 (T-shaped interaction) or -12.3 kcal·mol-1 (parallel stacking interaction). Thus, the calculated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.

  20. The open-close mechanism of M2 channel protein in influenza A virus:A computational study on the hydrogen bonds and cation-π interactions among His37 and Trp41

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The M2 protein from influenza A virus is a tetrameric ion channel. It was reported that the permeation of the ion channel is correlated with the hydrogen bond network among His37 residues and the cation-π interactions between His37 and Trp41. In the present study,the hydrogen bonding network of 4-methyl-imidazoles was built to mimic the hydrogen bonds between His37 residues,and the cation-π interactions between 4-methyl-imidazolium and indole systems were selected to represent the interac-tions between His37 and Trp41. Then,quantum chemistry calculations at the MP2/6-311G level were carried out to explore the properties of the hydrogen bonds and the cation-π interactions. The calcula-tion results indicate that the binding strength of the N-H···N hydrogen bond between imidazole rings is up to -6.22 kcal·mol-1,and the binding strength of the strongest cation-π interaction is up to -18.8 kcal·mol-1(T-shaped interaction) or -12.3 kcal·mol-1(parallel stacking interaction). Thus,the calcu-lated binding energies indicate that it is possible to control the permeation of the M2 ion channel through the hydrogen bond network and the cation-π interactions by altering the pH values.

  1. Improved machine learning method for analysis of gas phase chemistry of peptides

    Directory of Open Access Journals (Sweden)

    Ahn Natalie

    2008-12-01

    Full Text Available Abstract Background Accurate peptide identification is important to high-throughput proteomics analyses that use mass spectrometry. Search programs compare fragmentation spectra (MS/MS of peptides from complex digests with theoretically derived spectra from a database of protein sequences. Improved discrimination is achieved with theoretical spectra that are based on simulating gas phase chemistry of the peptides, but the limited understanding of those processes affects the accuracy of predictions from theoretical spectra. Results We employed a robust data mining strategy using new feature annotation functions of MAE software, which revealed under-prediction of the frequency of occurrence in fragmentation of the second peptide bond. We applied methods of exploratory data analysis to pre-process the information in the MS/MS spectra, including data normalization and attribute selection, to reduce the attributes to a smaller, less correlated set for machine learning studies. We then compared our rule building machine learning program, DataSqueezer, with commonly used association rules and decision tree algorithms. All used machine learning algorithms produced similar results that were consistent with expected properties for a second gas phase mechanism at the second peptide bond. Conclusion The results provide compelling evidence that we have identified underlying chemical properties in the data that suggest the existence of an additional gas phase mechanism for the second peptide bond. Thus, the methods described in this study provide a valuable approach for analyses of this kind in the future.

  2. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed tec

  3. Innovations in bonding to zirconia-based materials: Part I

    NARCIS (Netherlands)

    Abou Shelib, M.N.M.; Matinlinna, J.P.; Salameh, Z.; Ounsi, H.

    2008-01-01

    Abstract Objectives Establishing a reliable bond to zirconia-based materials has proven to be difficult which is the major limitation against fabricating adhesive zirconia restorations. This bond could be improved using novel selective infiltration etching conditioning in combination with engineered

  4. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    Science.gov (United States)

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  5. Fundamentals of fiber bonding in thermally point-bonded nonwovens

    Science.gov (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  6. Modelling longevity bonds: Analysing the Swiss Re Kortis bond

    OpenAIRE

    2015-01-01

    A key contribution to the development of the traded market for longevity risk was the issuance of the Kortis bond, the world's first longevity trend bond, by Swiss Re in 2010. We analyse the design of the Kortis bond, develop suitable mortality models to analyse its payoff and discuss the key risk factors for the bond. We also investigate how the design of the Kortis bond can be adapted and extended to further develop the market for longevity risk.

  7. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  8. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  9. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    Science.gov (United States)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  10. Romanian government bond market

    Directory of Open Access Journals (Sweden)

    Cornelia POP

    2012-12-01

    Full Text Available The present paper aims to present the level of development reached by Romanian government bond market segment, as part of the country financial market. The analysis will be descriptive (the data series available for Romania are short, based on the secondary data offered by the official bodies involved in the process of issuing and trading the Romanian government bonds (Romanian Ministry of Public Finance, Romanian National Bank and Bucharest Stock Exchange, and also on secondary data provided by the Federation of European Stock Exchanges.To enhance the market credibility as a benchmark, a various combination of measures is necessary; among these measures are mentioned: the extension of the yield curve; the issuance calendars in order to improve transparency; increasing the disclosure of information on public debt issuance and statistics; holding regular meetings with dealers, institutional investors and rating agencies; introducing a system of primary dealers; establishing a repurchase (repo market in the government bond market. These measures will be discussed based on the evolution presented inside the paper.The paper conclude with the fact that, until now, the Romanian government bond market did not provide a benchmark for the domestic financial market and that further efforts are needed in order to increase the government bond market transparency and liquidity.

  11. Group theory and chemistry

    CERN Document Server

    Bishop, David M

    1993-01-01

    Group theoretical principles are an integral part of modern chemistry. Not only do they help account for a wide variety of chemical phenomena, they simplify quantum chemical calculations. Indeed, knowledge of their application to chemical problems is essential for students of chemistry. This complete, self-contained study, written for advanced undergraduate-level and graduate-level chemistry students, clearly and concisely introduces the subject of group theory and demonstrates its application to chemical problems.To assist chemistry students with the mathematics involved, Professor Bishop ha

  12. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  13. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  14. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  15. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    This paper shows that strict match pass-through funding of covered bonds provides safe and liquid mortgage bonds. Despite a 30% drop in house prices during the 2008 global crisis Danish mortgage bonds remained as liquid as most European government bonds. The Danish pass-through system effectively...... eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  16. Sulfur(IV)-mediated carbon-carbon bond formation

    OpenAIRE

    Dean, William Michael

    2016-01-01

    This thesis details the development of methods for and application of the synthesis of carbon carbon bonds using organic sulfur(IV) chemistry. More specifically, the formation of C(sp2) C(sp3) and C(sp3) C(sp3) bonds is explored in detail. The necessity for this research stems from a correlation between a high proportion of sp3 centres in drug candidates, and their success in clinical trials. By facilitating the synthesis of drug candidates with higher fractions of sp3 hybridised carbon atoms...

  17. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael

    2015-01-01

    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  18. The Trouble With Bonds

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In early June,global financial markets gyrated downwards in the wake of central banks'tough language on inflation.At one point bond prices reflected expectations of four rate hikes by the US Federal Reserve (Fed) in the next 12 months.As a result,the dollar firmed,oil prices stabilized,and yield curves flattened around the world.If all these inflation-fighting measures are real,the situation bodes well for bonds.But,I think otherwise.

  19. Cooperativity in beryllium bonds.

    Science.gov (United States)

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia

    2014-03-07

    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  20. The origin of life and the prebiotic chemistry

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2004-01-01

    Full Text Available In the present paper, a historical view from Oparin-Haldane hypothesis to prebiotic chemistry is discussed. Several aspects of prebiotic chemistry are also discussed such as: environments where the abiotic synthesis of biomolecules and biopolymers could be occurred, primitive metabolism and genetic code, selection of L-amino acids and panspermia.

  1. Reducing the Degrees of Freedom in Chemistry Classroom Conversations

    Science.gov (United States)

    Criswell, Brett A.

    2012-01-01

    Five high-school chemistry teachers were asked to enact a lesson in which they posed a problem for which students were likely to generate solutions based on reasoning that was not aligned with accepted principles of chemistry. Four teachers selected a problem related to the stoichiometry of a reaction; the fifth chose a problem associated with…

  2. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    Science.gov (United States)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  3. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  4. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  5. Physical Chemistry of Molecular

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Established in 2009, the group consists of six researchers and more than 70 research assistants and graduate students from the CAS Key Laboratory of Molecular Nanostructures and Nanotechnologies at the CAS Institute of Chemistry.Its research focuses on the physical chemistry involved in molecular assembly, molecular nanostructures, functional nanomaterials and conceptual nano-devices.

  6. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  7. Bioorganic and bioinorganic chemistry.

    Science.gov (United States)

    Constable, Edwin C; Housecroft, Catherine E; Creus, Marc; Gademann, Karl; Giese, Bernd; Ward, Thomas R; Woggon, Wolf D; Chougnet, Antoinette

    2010-01-01

    The interdisciplinary projects in bioinorganic and bioorganic chemistry of the Department of Chemistry, University of Basel led to the preparation of new systems that mimic biologically important processes and to the discovery of compounds from natural sources which are very promising with respect to medical applications. The advances in these areas are reported here.

  8. Mathematics and Chemistry

    Science.gov (United States)

    Henson, R.; Stumbles, A.

    1977-01-01

    The relationship between mathematics and chemistry has been changing rapidly in recent years. Some chemistry teachers have experienced difficulties in their teaching with the introduction of modern mathematics in the schools. Some suggestions for reinforcing the concepts and language of modern mathematics are put forth. (Author/MA)

  9. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  10. Chemistry and materials science research report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-31

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  11. Dynamics and Chemistry of Planet Construction

    Science.gov (United States)

    Taylor, G. J.

    2010-03-01

    Sophisticated calculations of how planetesimals assembled into the terrestrial planets can be tested by using models of the chemistry of the solar nebula. Jade Bond (previously at University of Arizona and now at the Planetary Science Institute, Tucson, AZ), Dante Lauretta (University of Arizona) and Dave O'Brien (Planetary Sciences Institute) combined planetary accretion simulations done by O'Brien, Alessandro Morbidelli (Observatoire de Nice, France), and Hal Levison (Southwest Research Institute, Boulder) with calculations of the solar nebula chemistry as a function of time and distance from the Sun to determine the overall chemical composition of the planets formed in the simulations. They then compared the simulated planets with the compositions of Earth and Mars. The simulated planets have chemical compositions similar to real planets, indicating that the accretion calculations are reasonable. Questions remain about the accretion of water and other highly volatile compounds, including C and N, which are essential for life.

  12. Photochemical tissue bonding

    Science.gov (United States)

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  13. Bonding in cementitious composites

    Energy Technology Data Exchange (ETDEWEB)

    Mindess, S. (British Columbia Univ., Vancouver, BC (Canada)) Shah, S.P. (Northwestern Univ., Evanston, IL (USA))

    1988-01-01

    These proceedings discuss the papers presented at the symposium on the subject of high performance cement composites. Some of the topics discussed were; calcium hydroxides treated ceramics microspheres and mechanical properties of high temperature light weight cements; microstructure and chemical variations of class F fly ash; microstructure and bond strength of cement and crack propagation as detected by laser holography and acoustic emission.

  14. Thermal Bond System.

    Science.gov (United States)

    1995-10-31

    a twill weave, a crowfoot weave, a satin weave (FIG. 2), and a leno weave. Descriptions of the various weave types can be found in " Composite ...together to define a fabric mesh having first and second opposing woven surfaces. An adhesive bond that is flowable prior to drying is used to wet and

  15. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  16. Hydrated Cations in the General Chemistry Course.

    Science.gov (United States)

    Kauffman, George B.; Baxter, John F., Jr.

    1981-01-01

    Presents selected information regarding the descriptive chemistry of the common metal ions and their compounds, including the concepts of process of solution, polar molecules, ionic size and charge, complex ions, coordination number, and the Bronsted-Lowry acid-base theory. (CS)

  17. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome.

    Science.gov (United States)

    Kuan, Seah Ling; Wang, Tao; Weil, Tanja

    2016-11-21

    The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.

  18. Nitridosilicates - a significant extension of silicate chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, W.; Huppertz, H. [Bayreuth Univ. (Germany). Lab. fuer Anorganische Chemie

    1997-05-01

    A new dimension in silicate chemistry becomes accessible through substitution of oxygen by nitrogen. Multinary nitridosilicates, such as Ln{sub 3}Si{sub 6}N{sub 11} (Ln = La, Ce, Pr, Nd, Sm) shown on the right, are built up from SiN{sub 4} tetrahedra into network structures. Owing to the stability of the covalent Si-N bonds and the high degree of condensation, the nitridosilicates show remarkable chemical and thermal stabilities, similar to Si{sub 3}N{sub 4}. (orig.) 22 refs.

  19. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  20. Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations.

    Science.gov (United States)

    Mezey, Paul G

    2014-09-16

    Conspectus Just as complete molecules have no boundaries and have "fuzzy" electron density clouds approaching zero density exponentially at large distances from the nearest nucleus, a physically justified choice for electron density fragments exhibits similar behavior. Whereas fuzzy electron densities, just as any fuzzy object, such as a thicker cloud on a foggy day, do not lend themselves to easy visualization, one may partially overcome this by using isocontours. Whereas a faithful representation of the complete fuzzy density would need infinitely many such isocontours, nevertheless, by choosing a selected few, one can still obtain a limited pictorial representation. Clearly, such images are of limited value, and one better relies on more complete mathematical representations, using, for example, density matrices of fuzzy fragment densities. A fuzzy density fragmentation can be obtained in an exactly additive way, using the output from any of the common quantum chemical computational techniques, such as Hartree-Fock, MP2, and various density functional approaches. Such "fuzzy" electron density fragments properly represented have proven to be useful in a rather wide range of applications, for example, (a) using them as additive building blocks leading to efficient linear scaling macromolecular quantum chemistry computational techniques, (b) the study of quantum chemical functional groups, (c) using approximate fuzzy fragment information as allowed by the holographic electron density theorem, (d) the study of correlations between local shape and activity, including through-bond and through-space components of interactions between parts of molecules and relations between local molecular shape and substituent effects, (e) using them as tools of density matrix extrapolation in conformational changes, (f) physically valid averaging and statistical distribution of several local electron densities of common stoichiometry, useful in electron density databank mining, for

  1. Pierre-Joseph Macquer: Chemistry in the French Enlightenment.

    Science.gov (United States)

    Lehman, Christine

    2014-01-01

    Despite recent studies of chemistry courses and of academic research at the beginning of the eighteenth century, the perception of chemistry in the French Enlightenment has often been overshadowed by Lavoisier's works. This article proposes three specific case studies selected from Pierre Joseph Macquer's (1718-84) rich career to show the continuous evolution of chemistry throughout the century: medicinal chemistry through the application of the Comte de La Garaye's metallic salt solutions, the emergence of industrial chemistry through a few of Macquer's evaluations at the Bureau du Commerce, and finally communal academic research through the experiments on diamonds using Tschirnhaus's lens. These examples attempt to illustrate the innovative, creative, dynamic, multicultural, and multifaceted chemistry of the Enlightenment.

  2. Magic, science and masculinity: marketing toy chemistry sets.

    Science.gov (United States)

    Al-Gailani, Salim

    2009-12-01

    At least since the late nineteenth century, toy chemistry sets have featured in standard scripts of the achievement of eminence in science, and they remain important in constructions of scientific identity. Using a selection of these toys manufactured in Britain and the United States, and with particular reference to the two dominant American brands, Gilbert and Chemcraft, this paper suggests that early twentieth-century chemistry sets were rooted in overlapping Victorian traditions of entertainment magic and scientific recreations. As chemistry set marketing copy gradually reoriented towards emphasising scientific modernity, citizenship, discipline and educational value, pre-twentieth-century traditions were subsumed within domestic-and specifically masculine-tropes. These developments in branding strategies point to transformations in both users' engagement with their chemistry sets and the role of scientific toys in domestic play. The chemistry set serves here as a useful tool for measuring cultural change and lay engagement with chemistry.

  3. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  4. Trading in Treasury Bond Futures Contracts and Bonds in Australia

    OpenAIRE

    Belinda Cheung

    2014-01-01

    Treasury bond futures are a key financial product in Australia, with turnover in Treasury bond futures contracts significantly larger than turnover in the market for Commonwealth Government securities (CGS). Treasury bond futures contracts provide a wide variety of market participants with the ability to hedge against, or gain exposure to, interest rate risk. This article discusses some of the features of the Treasury bond futures contract, and how the contract is used to facilitate hedging a...

  5. NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme.

    Science.gov (United States)

    Fürtig, Boris; Richter, Christian; Schell, Peter; Wenter, Philipp; Pitsch, Stefan; Schwalbe, Harald

    2008-01-01

    In order to relate the conformational dynamics of the hammerhead ribozyme to its biological function the cleavage reaction catalyzed by the hammerhead ribozyme was monitored by time-resolved nuclear magnetic resonance (NMR) spectroscopy. For this purpose, the two nucleosides around the scissile phosphodiester bond were selectively (13)C labelled in multi-step organic syntheses starting from uniformly (13)C-labelled glucose. The phosphoamidites were incorporated using phosphoamidite chemistry in the hammerhead substrate strand. In addition, the 2'-OH group on the 5'-side of the hammerhead substrate strand was labelled with a photolabile protecting group. This labelling strategy enabled a detailed characterisation of the nucleotides around the scissile phosphodiester bond in the ground state conformation of the hammerhead ribozyme in the absence and presence of Mg(2+) ions as well as of the product state. Photochemical induction of the reaction in situ was further characterized by time-resolved NMR spectroscopy. The detailed structural and dynamic investigations revealed that the conformation of the hammerhead ribozyme is significantly affected by addition of Mg(2+) leading to an ensemble of conformations where dynamic transitions between energetically similar conformations occur on the ms-timescale in the presence of Mg(2+). The dynamic transitions are localized around the catalytic core. Cleavage from this ensemble cannot be described by mono-exponential kinetics but follows bi-exponential kinetics. A model is described to take into account these experimental data.

  6. Thermochemistry and bond dissociation energies of ketones.

    Science.gov (United States)

    Hudzik, Jason M; Bozzelli, Joseph W

    2012-06-14

    Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms. A detailed evaluation of the carbon-hydrogen bond dissociation energies (C-H BDEs) is also performed for the parent ketones for the first time. Standard enthalpies of formation and bond energies are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, and G3MP2B3 levels of theory using isodesmic reactions to minimize calculation errors. Structures, moments of inertia, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropies and heat capacities. The recommended ideal gas-phase ΔH°(f 298), from the average of the CBS-QB3 and G3MP2B3 levels of theory, as well as the calculated values for entropy and heat capacity are shown to compare well with the available experimental data for the parent ketones. Bond energies for primary, secondary, and tertiary radicals are determined; here, we find the C-H BDEs on carbons in the α position to the ketone group decrease significantly with increasing substitution on these α carbons. Group additivity and hydrogen-bond increment values for these ketone radicals are also determined.

  7. Indirect bonding technique in orthodontics

    Directory of Open Access Journals (Sweden)

    Kübra Yıldırım

    2016-08-01

    Full Text Available ‘Direct Bonding Technique’ which allows the fixed orthodontic appliances to be directly bonded to teeth without using bands decreased the clinic time for bracket bonding and increased esthetics and oral hygiene during orthodontic treatment. However, mistakes in bracket positioning were observed due to decreased direct visual sight and access to posterior teeth. ‘Indirect Bonding Technique’ was developed for eliminating these problems. Initially, decreased bond strength, higher bond failure rate, periodontal tissue irritation, compromised oral hygiene and increased laboratory time were the main disadvantages of this technique when compared to direct bonding. The newly developed materials and modified techniques help to eliminate these negative consequences. Today, the brackets bonded with indirect technique have similar bond strength with brackets bonded directly. Moreover, indirect and direct bonding techniques have similar effects on periodontal tissues. However, indirect bonding technique requires more attention and precision in laboratory and clinical stage, and has higher cost. Orthodontist's preference between these two bonding techniques may differ according to time spent in laboratory and clinic, cost, patient comfort and personal opinion.

  8. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  9. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  10. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  11. Fluorine in medicinal chemistry.

    Science.gov (United States)

    Swallow, Steven

    2015-01-01

    Since its first use in the steroid field in the late 1950s, the use of fluorine in medicinal chemistry has become commonplace, with the small electronegative fluorine atom being a key part of the medicinal chemist's repertoire of substitutions used to modulate all aspects of molecular properties including potency, physical chemistry and pharmacokinetics. This review will highlight the special nature of fluorine, drawing from a survey of marketed fluorinated pharmaceuticals and the medicinal chemistry literature, to illustrate key concepts exploited by medicinal chemists in their attempts to optimize drug molecules. Some of the potential pitfalls in the use of fluorine will also be highlighted.

  12. Vacuum ultraviolet photo-physical chemistry of hydrocarbon polymers

    Science.gov (United States)

    Truica-Marasescu, Florina-Elena

    The purpose of this study has been to investigate fundamental processes involved in the vacuum ultraviolet (VUV, lambda films at atmospheric pressure, thereby alleviating the need for expensive vacuum pumps and other auxiliary equipment necessary for continuous low-pressure plasma roll-to-roll treatment of flexible substrates. Another important advantage of VUV photochemistry over plasma is that more specific surface chemistries can be achieved with monochromatic VUV radiation, due to selective (photo-) chemistries both on the solid surface and in the gas phase. The hydrocarbon polymers used for this study were well-characterized low-density polyethylene, LDPE; biaxially-oriented polypropylene, BOPP; polystyrene, PS; and poly(methylmethacrylate), PMMA. Due to the complexity of interactions between VUV photons and polymers, especially when the latter are in a reactive gas, VUV-wavelength-dependent effects on the physico-chemical properties of irradiated polymer surfaces have been investigated under two different set of conditions, namely: VUV exposure in vacuum, and in a reactive atmosphere of low-pressure ammonia, VUV/NH3. In the former case, we investigated wavelength (lambda)-dependent material ablation ("etching") by in-situ quartz crystal microbalance (QCM) measurements, as a function of the irradiation dose, D. Near-surface structural changes (the creation of unsaturation, cross-linking, etc.) and radical-creation reactions resulting from VUV-initiated bond scissions were analysed by attenuated total reflectance infrared spectroscopy (ATR-FTIR) and by X-ray photoelectron spectroscopy (XPS) following irradiation. For all polymers studied the etch rates, R(lambda), were found to correlate well with the corresponding absorption coefficients, alpha(lambda), and with the accumulation rates, K, of various (C=C)-containing groups, determined from quantitative FTIR measurements. PMMA was found to have the highest R values, and the rate of mass loss of BOPP was higher

  13. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  14. The effect of C-OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100).

    Science.gov (United States)

    Caglar, B; Olus Ozbek, M; Niemantsverdriet, J W Hans; Weststrate, C J Kees-Jan

    2016-11-21

    The adsorption and decomposition of ethanol on Rh(100) was studied as a model reaction to understand the role of C-OH functionalities in the surface chemistry of biomass-derived molecules. A combination of experimental surface science and computational techniques was used: (i) temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS), work function measurements (Kelvin Probe - KP), and density functional theory (DFT). Ethanol produces ethoxy (CH3CH2O) species via O-H bond breaking upon adsorption at 100 K. Ethoxy decomposition proceeds differently depending on the surface coverage. At low coverage, the decomposition of ethoxy species occurs viaβ-C-H cleavage, which leads to an oxometallacycle (OMC) intermediate. Decomposition of the OMC scissions (at 180-320 K) ultimately produces CO, H2 and surface carbon. At high coverage, along with the pathway observed in the low coverage case, a second pathway occurs around 140-200 K, which produces an acetaldehyde intermediate viaα-C-H cleavage. Further decomposition of acetaldehyde produces CH4, CO, H2 and surface carbon. However, even at high coverage this is a minor pathway, and methane selectivity is 10% at saturation coverage. The results suggests that biomass-derived oxygenates, which contain an alkyl group, react on the Rh(100) surface to produce synthesis gas (CO and H2), surface carbon and small hydrocarbons due to the high dehydrogenation and C-C bond scission activity of Rh(100).

  15. China-Russia Bond

    Institute of Scientific and Technical Information of China (English)

    Ji Zhiye; Ma Zongshi

    2007-01-01

    @@ Thanks to China's successful launching of the Year of Russia, 2006 will surely go down as a milestone in the history of the China-Russia bond. Furthermore, a still-warmer climate will continue to prevail in 2007 when Moscow, in its turn, hosts the Year of China, trying to outshine its next-door neighbor in this regard, as Russian President Vladimir Putin promised in the exchange of new year greetings with his Chinese counterpart, President Hu Jintao.

  16. Mapping the force-field of a hydrogen bonded assembly

    Science.gov (United States)

    Moriarty, Philip

    2014-03-01

    Hydrogen-bonding underpins the structure, properties, and dynamics of a vast array of systems spanning a wide variety of scientific fields. From the striking complexity of the phase diagram of H2O and the elegance of base pair interactions in DNA, to the directionality inherent in supramolecular self-assembly at surfaces, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the H-bond, including the magnitude of the force and binding energy, force constant, and decay length associated with the interaction, have been vigorously debated for many decades. I will discuss how dynamic force microscopy (DFM) using a qPlus sensor can quantitatively map the tip-sample force-field for naphthalene tetracarboxylic diimide (NTCDI) molecules hydrogen-bonded in 2D assemblies. A comparison of experimental images and force spectra with their simulated counterparts from density functional theory calculations shows that image contrast due to intermolecular hydrogen bonds arises fundamentally from charge density depletion due to strong tip-sample interactions. Interpretation of DFM images of hydrogen bonds therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.

  17. Triclosan Computational Conformational Chemistry Analysis for Antimicrobial Properties in Polymers.

    Science.gov (United States)

    Petersen, Richard C

    2015-03-01

    Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated

  18. Recent advances in the gold-catalyzed additions to C–C multiple bonds

    Directory of Open Access Journals (Sweden)

    He Huang

    2011-07-01

    Full Text Available C–O, C–N and C–C bonds are the most widespread types of bonds in nature, and are the cornerstone of most organic compounds, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. Cationic gold acts as a soft and carbophilic Lewis acid and is considered one of the most powerful activators of C–C multiple bonds. Consequently, gold-catalysis plays an important role in the development of new strategies to form these bonds in more convenient ways. In this review, we highlight recent advances in the gold-catalyzed chemistry of addition of X–H (X = O, N, C bonds to C–C multiple bonds, tandem reactions, and asymmetric additions. This review covers gold-catalyzed organic reactions published from 2008 to the present.

  19. Molecular Selectivity of Brown Carbon Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  20. Developing and validating a chemical bonding instrument for Korean high school students

    Science.gov (United States)

    Jang, Nak Han

    The major purpose of this study was to develop a reliable and valid instrument designed to collect and investigate on Korean high school students' understanding about concepts regarding chemical bonding. The Chemical Bonding Diagnostic Test (CBDT) was developed by the procedure by previously relevant researches (Treagust, 1985; Peterson, 1986; Tan, 1994). The final instrument consisted of 15 two-tier items. The reliability coefficient (Cronbach alpha) for the whole test was 0.74. Also, the range of values for the discrimination index was from 0.38 to 0.90 and the overall average difficulty index was 0.38. The test was administered to 716 science declared students in Korean high school. The 37 common misconceptions on chemical bonding were identified through analysis of the items from the CBDT. The grade 11 students had slightly more misconceptions than the grade 12 students for ionic bonding, covalent bonding, and hydrogen bonding while the grade 12 students had more misconceptions about octet rule and hydrogen bonding than the grade 11 students. From the analysis of ANCOVA, there was no significant difference in grades, and between grade levels and gender on the mean score of CBDT. However, there was a significant difference in gender and a significant interaction between grade levels and chemistry preference. In conclusion, Korean high school students had the most common misconception about the electron configuration on ionic bonding and the water density on hydrogen bonding. Korean students' understanding about the chemical bonding was dependent on the interaction between grade levels and the chemistry preference. Consequently, grade 12 chemistry-preferred students had the highest mean scores among student groups concerned by this study.

  1. Alkali metal mediated C-C bond coupling reaction.

    Science.gov (United States)

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  2. Students' Interdisciplinary Reasoning about "High-Energy Bonds" and ATP

    CERN Document Server

    Dreyfus, Benjamin W; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F

    2012-01-01

    Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectiv...

  3. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-02-24

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecular structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.

  4. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...

  5. Coulombic Models in Chemical Bonding.

    Science.gov (United States)

    Sacks, Lawrence J.

    1986-01-01

    Compares the coulumbic point charge model for hydrogen chloride with the valence bond model. It is not possible to assign either a nonpolar or ionic canonical form of the valence bond model, while the covalent-ionic bond distribution does conform to the point charge model. (JM)

  6. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials.

    Science.gov (United States)

    Wang, Rui; Sing, Michelle K; Avery, Reginald K; Souza, Bruno S; Kim, Minkyu; Olsen, Bradley D

    2016-12-20

    Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By

  7. Extraterrestrial Radiation Chemistry and Molecular Astronomy

    Science.gov (United States)

    Hudson, Reggie L.; Moore, Marla H.

    2009-01-01

    Astronomical observations of both solar system and interstellar regions have revealed a rich chemical inventory that includes most classes of organic molecules and selected inorganics. For example, gas-phase ethylene glycol and SOz have been observed by astronomers, while solidphase detections include OCS, H2O2 , and the cyanate anion.' All of these are found in environments that are, by earthly standards, exceedingly hostile: temperatures of 10 - 100 K, miniscule densities, and near-ubiquitous ionizing-radiation fields. Beyond the simplest chemical species, these conditions have made it difficult-to-impassible to account for the observed molecular abundances using gas-phase chemistry, suggesting solid-phase reactions play an important role. In extraterrestrial environments, cosmic rays, UV photons, and magnetospheric radiation all drive chemical reactions, even at cryogenic temperatures. To study this chemistry, radiation astrochemists conduct experiments on icy materials, frozen under vacuum and exposed to sources such as keV electrons and MeV protons. Compositional changes usually are followed with IR spectroscopy and, in selected cases, more-sensitive mass-spectral techniques. This talk will review some recent results on known and suspected extraterrestrial molecules and ions. Spectra and reaction pathways will be presented, and predictions made for interstellar chemistry and the chemistry of selected solar system objects. Some past radiation-chemical contributions, and future needs, will be explored.

  8. Introduction to Computational Chemistry: Teaching Hu¨ckel Molecular Orbital Theory Using an Excel Workbook for Matrix Diagonalization

    Science.gov (United States)

    Litofsky, Joshua; Viswanathan, Rama

    2015-01-01

    Matrix diagonalization, the key technique at the heart of modern computational chemistry for the numerical solution of the Schrödinger equation, can be easily introduced in the physical chemistry curriculum in a pedagogical context using simple Hückel molecular orbital theory for p bonding in molecules. We present details and results of…

  9. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  10. Chemistry for Kids.

    Science.gov (United States)

    Sato, Sanae; Majoros, Bela

    1988-01-01

    Reports two methods for interesting children in chemistry. Describes a method for producing large soap bubbles and films for study. Examines the use of simple stories to explain common chemical concepts with example given. Lists titles of available stories. (ML)

  11. Uncertainty in chemistry.

    Science.gov (United States)

    Menger, Fredric M

    2010-09-01

    It might come as a disappointment to some chemists, but just as there are uncertainties in physics and mathematics, there are some chemistry questions we may never know the answer to either, suggests Fredric M. Menger.

  12. Chemistry at large

    Directory of Open Access Journals (Sweden)

    Jeremy. K.M. Sanders

    2007-06-01

    Full Text Available A new book introduces young researchers to supramolecular chemistry, starting from the basics and working up to the more complicated aspects of the topic. While the text is inspiring for new graduates, it lacks a critical view.

  13. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  14. Water Chemistry: Seeking Information

    Science.gov (United States)

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  15. Forensic Chemistry Training

    OpenAIRE

    GERÇEK, Zuhal

    2012-01-01

    Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analy...

  16. Click chemistry with DNA

    OpenAIRE

    El-Sagheer, Afaf H.; Brown, Tom

    2010-01-01

    The advent of click chemistry has led to an influx of new ideas in the nucleic acids field. The copper catalysed alkyne–azide cycloaddition (CuAAC) reaction is the method of choice for DNA click chemistry due to its remarkable efficiency. It has been used to label oligonucleotides with fluorescent dyes, sugars, peptides and other reporter groups, to cyclise DNA, to synthesise DNA catenanes, to join oligonucleotides to PNA, and to produce analogues of DNA with modified nucleobases and backbone...

  17. Impact of surface chemistry

    OpenAIRE

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  18. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  19. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  20. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry