Sample records for bond formation catalysed

  1. Bifunctional RuII -Complex-Catalysed Tandem C-C Bond Formation: Efficient and Atom Economical Strategy for the Utilisation of Alcohols as Alkylating Agents. (United States)

    Roy, Bivas Chandra; Chakrabarti, Kaushik; Shee, Sujan; Paul, Subhadeep; Kundu, Sabuj


    Catalytic activities of a series of functional bipyridine-based Ru II complexes in β-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional Ru II complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of β-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative Ru II system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chlorodifluoromethane-triggered formation of difluoromethylated arenes catalysed by palladium (United States)

    Feng, Zhang; Min, Qiao-Qiao; Fu, Xia-Ping; An, Lun; Zhang, Xingang


    Difluoromethylated aromatic compounds are of increasing importance in pharmaceuticals, agrochemicals and materials. Chlorodifluoromethane (ClCF2H), an inexpensive, abundant and widely used industrial raw material, represents the ideal and most straightforward difluoromethylating reagent, but introduction of the difluoromethyl group (CF2H) from ClCF2H into aromatics has not been reported. Here, we describe a direct palladium-catalysed difluoromethylation method for coupling ClCF2H with arylboronic acids and esters to generate difluoromethylated arenes with high efficiency. The reaction exhibits a remarkably broad substrate scope, including heteroarylboronic acids, and was used for difluoromethylation of a range of pharmaceuticals and biologically active compounds. Preliminary mechanistic studies revealed that a palladium difluorocarbene intermediate is involved in the reaction. Although numerous metal-difluorocarbene complexes have been prepared, the catalytic synthesis of difluoromethylated or difluoromethylenated compounds involving metal-difluorocarbene complexes has not received much attention. This new reaction therefore also opens the door to understand metal-difluorocarbene complex catalysed reactions.

  3. Lignin derivatives formation in catalysed thermal decomposition of ...

    African Journals Online (AJOL)

    Decomposition of elephant grass (Panicum maxima) lignocellulose was carried out with Pd and Ni/Pt-doped alumina as catalysts; chromic oxide was also used in some cases. For systems that contained no chromic oxide, formation of gaseous and volatile liquid products was highest for Ni/Pt, intermediate for Pd/λ- and least ...

  4. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.


    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  5. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Munk, Line; Andersen, Mogens Larsen; Meyer, Anne S.


    Laccases (EC catalyse removal of an electron and a proton from phenolic hydroxyl groups, including phenolic hydroxyls in lignins, to form phenoxy radicals during reduction of O2. We employed electron paramagnetic resonance spectroscopy (EPR) for real time measurement of such catalytic...... to suspensions of the individual lignin samples produced immediate time and enzyme dose dependent increases in intensity in the EPR signal with g-values in the range 2.0047–2.0050 allowing a direct quantitative monitoring of the radical formation and thus allowed laccase enzyme kinetics assessment on lignin...... formation than the Tv laccase on all three types of lignin substrates. When comparing the equal laccase dose rates on the three lignin substrates the enzymatic radical formation rate on the wheat straw lignin residue was consistently higher than those of the organosolv lignins. The pH-temperature optimum...

  6. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens. (United States)

    Orsburn, Benjamin C; Melville, Stephen B; Popham, David L


    Dipicolinic acid (DPA) is a major component of bacterial endospores, comprising 5-15% of the spore dry weight, and is important for spore stability and resistance properties. The biosynthetic precursor to DPA, dihydro-dipicolinic acid (DHDPA), is produced by DHDPA synthase within the lysine biosynthesis pathway. In Bacillus subtilis, and most other bacilli and clostridia, DHDPA is oxidized to DPA by the products of the spoVF operon. Analysis of the genomes of the clostridia in Cluster I, including the pathogens Clostridium perfringens, Clostridium botulinum and Clostridium tetani, has shown that no spoVF orthologues exist in these organisms. DPA synthase was purified from extracts of sporulating C. perfringens cells. Peptide sequencing identified an electron transfer flavoprotein, EtfA, in this purified protein fraction. A C. perfringens strain with etfA inactivated is blocked in late stage sporulation and produces < or = 11% of wild-type DPA levels. C. perfringens EtfA was expressed in and purified from Escherichia coli, and this protein catalysed DPA formation in vitro. The sequential production of DHDPA and DPA in C. perfringens appears to be catalysed by DHDPA synthase followed by EtfA. Genome sequence data and the taxonomy of spore-forming species suggest that this may be the ancestral mechanism for DPA synthesis.

  7. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    DEFF Research Database (Denmark)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini


    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside...... into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes......-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression...

  8. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme (United States)

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg


    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  9. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. (United States)

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg


    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.

  10. C-S Bond formation by

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by “Chan-Lam Cross-Coupling” Reaction. SATYA KARUNA PULAKHANDAM NARESH KUMAR KATARI RAVI PRAKASH REDDY MANDA. Regular Article ...

  11. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... – in such environment hydrolysis is thermodynamically favoured over condensation. However, the thermodynamic equilibrium towards condensation can be shifted even in this environment. In this poster we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA...... these conditions, most of the water is in the form of ice crystals and the other reactants are upconcentrated in the remaining liquid micro-inclusions, hence creating an environment with low water activity in which condensation reactions can occur. The ability of simple peptides to catalyse RNA synthesis could...

  12. The neurobiology of pair bond formation, bond disruption, and social buffering. (United States)

    Lieberwirth, Claudia; Wang, Zuoxin


    Enduring social bonds play an essential role in human society. These bonds positively affect psychological, physiological, and behavioral functions. Here, we review the recent literature on the neurobiology, particularly the role of oxytocin and dopamine, of pair bond formation, bond disruption, and social buffering effects on stress responses, from studies utilizing the socially monogamous prairie vole (Microtus ochrogaster). Published by Elsevier Ltd.

  13. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.


    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  14. Access to the meta position of arenes through transition metal catalysed C-H bond functionalisation: a focus on metals other than palladium. (United States)

    Mihai, Madalina T; Genov, Georgi R; Phipps, Robert J


    The elaboration of simple arenes in order to access more complex substitution patterns is a crucial endeavor for synthetic chemists, given the central role that aromatic rings play in all manner of important molecules. Classical methods are now routinely used alongside stoichiometric organometallic approaches and, most recently, transition metal catalysis in the range of methodologies that are available to elaborate arene C-H bonds. Regioselectivity is an important consideration when selecting a method and, of all those available, it is arguably those that target the meta position that are fewest in number. The rapid development of transition metal-catalysed C-H bond functionalisation over the last few decades has opened new possibilities for meta-selective C-H functionalisation through the diverse reactivity of transition metals and their compatibility with a wide range of directing groups. The pace of discovery of such processes has grown rapidly in the last five years in particular and it is the purpose of this review to examine these but in doing so to place the focus on metals other than palladium, the specific contributions of which have been very recently reviewed elsewhere. It is hoped this will serve to highlight to the reader the breadth of current strategies and mechanisms that have been used to tackle this challenge, which may inspire further progress in the field.

  15. Gold( i )-catalysed dehydrative formation of ethers from benzylic alcohols and phenols

    KAUST Repository

    Veenboer, Richard M. P.


    © The Royal Society of Chemistry 2015. We report the cross-dehydrative reaction of two alcohols to form unsymmetrical ethers using NHC-gold(i) complexes (NHC = N-heterocyclic carbene). Our progress in developing this reaction into a straightforward procedure is discussed in detail. The optimised methodology proceeds under mild reaction conditions and produces water as the sole by-product. The synthetic utility of this environmentally benign methodology is exemplified by the formation of a range of new ethers from readily available phenols bearing electron withdrawing substituents and secondary benzylic alcohols with various substituents. Finally, we present experimental results to account for the chemoselectivity obtained in these reactions.

  16. Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation. (United States)

    Shen, Chao; Zhang, Pengfei; Sun, Qiang; Bai, Shiqiang; Hor, T S Andy; Liu, Xiaogang


    The development of mild and general methods for C-S bond formation has received significant attention because the C-S bond is indispensable in many important biological and pharmaceutical compounds. Early examples for the synthesis of C-S bonds are generally limited to the condensation reaction between a metal thiolate and an organic halide. Recent chemical approaches for C-S bond formation, based upon direct C-H bond functionalization and decarboxylative reactions, not only provide new insights into the mechanistic understanding of C-S coupling reactions but also allow the synthesis of sulfur-containing compounds from more effective synthetic routes with high atom economy. This review intends to explore recent advances in C-S bond formation via C-H functionalization and decarboxylation, and the growing opportunities they present to the construction of complex chemical scaffolds for applications encompassing natural product synthesis, synthetic methodology development, and functional materials as well as nanotechnology.

  17. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig


    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  18. Enzyme mediated silicon-oxygen bond formation; the use of Rhizopus oryzae lipase, lysozyme and phytase under mild conditions. (United States)

    Abbate, Vincenzo; Bassindale, Alan R; Brandstadt, Kurt F; Lawson, Rachel; Taylor, Peter G


    The potential for expanding the variety of enzymic methods for siloxane bond formation is explored. Three enzymes, Rhizopus oryzae lipase (ROL), lysozyme and phytase are reported to catalyse the condensation of the model compound, trimethylsilanol, formed in situ from trimethylethoxysilane, to produce hexamethyldisiloxane in aqueous media at 25 °C and pH 7. Thermal denaturation and reactant inhibition experiments were conducted to better understand the catalytic role of these enzyme candidates. It was found that enzyme activities were significantly reduced following thermal treatment, suggesting a potential key-role of the enzyme active sites in the catalysis. Similarly, residue-specific modification of the key-amino acids believed to participate in the ROL catalysis also had a significant effect on the silicon bio-catalysis, indicating that the catalytic triad of the lipase may be involved during the enzyme-mediated formation of the silicon-oxygen bond. E. coli phytase was found to be particularly effective at catalysing the condensation of trimethylsilanol in a predominantly organic medium consisting of 95% acetonitrile and 5% water. Whereas the use of enzymes in silicon chemistry is still very much a developing and frontier activity, the results presented herein give some grounds for optimism that the variety of enzyme mediated reactions will continue to increase and may one day become a routine element in the portfolio of the synthetic silicon chemist.

  19. Formation of Irreversible H-bonds in Cellulose Materials (United States)

    Umesh P. Agarwal; Sally A. Ralph; Rick S. Reiner; Nicole M. Stark


    Understanding of formation of irreversible Hbonds in cellulose is important in a number of fields. For example, fields as diverse as pulp and paper and enzymatic saccharification of cellulose are affected. In the present investigation, the phenomenon of formation of irreversible H-bonds is studied in a variety of celluloses and under two different drying conditions....

  20. Protein disulfide bond formation in the cytoplasm during oxidative stress. (United States)

    Cumming, Robert C; Andon, Nancy L; Haynes, Paul A; Park, Minkyu; Fischer, Wolfgang H; Schubert, David


    The majority of disulfide-linked cytosolic proteins are thought to be enzymes that transiently form disulfide bonds while catalyzing oxidation-reduction (redox) processes. Recent evidence indicates that reactive oxygen species can act as signaling molecules by promoting the formation of disulfide bonds within or between select redox-sensitive proteins. However, few studies have attempted to examine global changes in disulfide bond formation following reactive oxygen species exposure. Here we isolate and identify disulfide-bonded proteins (DSBP) in a mammalian neuronal cell line (HT22) exposed to various oxidative insults by sequential nonreducing/reducing two-dimensional SDS-PAGE combined with mass spectrometry. By using this strategy, several known cytosolic DSBP, such as peroxiredoxins, thioredoxin reductase, nucleoside-diphosphate kinase, and ribonucleotide-diphosphate reductase, were identified. Unexpectedly, a large number of previously unknown DSBP were also found, including those involved in molecular chaperoning, translation, glycolysis, cytoskeletal structure, cell growth, and signal transduction. Treatment of cells with a wide range of hydrogen peroxide concentrations either promoted or inhibited disulfide bonding of select DSBP in a concentration-dependent manner. Decreasing the ratio of reduced to oxidized glutathione also promoted select disulfide bond formation within proteins from cytoplasmic extracts. In addition, an epitope-tagged version of the molecular chaperone HSP70 forms mixed disulfides with both beta4-spectrin and adenomatous polyposis coli protein in the cytosol. Our findings indicate that disulfide bond formation within families of cytoplasmic proteins is dependent on the nature of the oxidative insult and may provide a common mechanism used to control multiple physiological processes.

  1. Anatomy of Bond Formation. Bond Length Dependence of the Extent of Electron Sharing in Chemical Bonds

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Cooper, D.


    Roč. 727, 1-3 (2005), s. 133-138 ISSN 0166-1280 R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z40720504 Keywords : electron sharing * chemical bonds Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.045, year: 2005

  2. Aspergillus nidulans α-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Baumann, Martin; Petersen, B. O.


    The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L−1 culture) as His-tag fusion...... in Escherichia coli, catalysed efficient transglycosylation with α-(1→6) regioselectivity from 40 mm 4-nitrophenol α-d-galactopyranoside, melibiose or raffinose, resulting in a 37–74% yield of 4-nitrophenol α-d-Galp-(1→6)-d-Galp, α-d-Galp-(1→6)-α-d-Galp-(1→6)-d-Glcp and α-d-Galp-(1→6)-α-d-Galp-(1→6)-d-Glcp-(α1→β......2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol α-d-galactopyranoside (40 mm), α-(1→6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39–58%. AglC did...

  3. Late-stage formation of carbon-fluorine bonds. (United States)

    Campbell, Michael G; Ritter, Tobias


    In this account, we review work from our lab on the development of methods for carbon-fluorine bond formation, with an emphasis on late-stage fluorination of functionalized small molecules and synthesis of (18) F-labeled molecules for potential use as tracers in positron emission tomography (PET). We attempt to highlight reactions that we feel are of particular practical relevance, as well as areas of research where there is still significant room for advancement. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie


    The formation of imines by aerobic oxidative coupling of mixtures of alcohols and amines was studied using gold nanoparticles supported on titanium dioxide, TiO2, as a heterogeneous catalyst. The reactions were performed at ambient conditions (room temperature and atmospheric pressure) and occurr......-product represents a new green reaction protocol for imine formation.......The formation of imines by aerobic oxidative coupling of mixtures of alcohols and amines was studied using gold nanoparticles supported on titanium dioxide, TiO2, as a heterogeneous catalyst. The reactions were performed at ambient conditions (room temperature and atmospheric pressure) and occurred...... with excellent selectivity (above 98%) at moderate conversion under optimized conditions. The effect of catalytic amounts of different bases was studied, along with reaction temperature and time. Utilisation of a selective catalyst system that uses dioxygen as an oxidant and only produces water as by...

  5. Simultaneous bond degradation and bond formation during phenol-formaldehyde curing with wood (United States)

    Daniel J. Yelle; John Ralph


    Bonding of wood using phenol–formaldehyde adhesive develops highly durable bonds. Phenol– formaldehyde is believed to form primary bonds with wood cell wall polymers (e.g., lignin). However, it is unclear how this adhesive interacts and bonds to lignin. Through wood solubilisation methodologies, earlywood and latewood bonded assemblies were characterized using two-...

  6. Detection of bond formations by DNA-programmed chemical reactions and PCR amplification. (United States)

    Li, Yizhou; Zhang, Mingda; Zhang, Chi; Li, Xiaoyu


    A system capable of performing both DNA-templated chemical reactions and detection of bond formations is reported. Photocleavable DNA templates direct reactions. Products from bond-forming events re-ligate original templates, amplifiable by PCR, therefore distinguishing bond formation from background. This system provides a novel approach for discovering potential new chemical reactions.

  7. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet (United States)

    Ozawa, K.; Koyama, S.; shohji, I.


    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  8. Analogues of AVP modified in the N-terminal part of the molecule with Pip isomers: TFA-catalysed peptide bond hydrolysis

    Czech Academy of Sciences Publication Activity Database

    Sobolewski, D.; Prahl, A.; Kwiatkowska, A.; Slaninová, Jiřina; Lammek, B.


    Roč. 15, č. 3 (2009), s. 161-165 ISSN 1075-2617 Institutional research plan: CEZ:AV0Z40550506 Keywords : AVP * Pip * amide bond hydrolysis Subject RIV: CC - Organic Chemistry Impact factor: 1.807, year: 2009

  9. Addition of Carbon-Fluorine Bonds to a Mg(I)-Mg(I) Bond: An Equivalent of Grignard Formation in Solution


    Bakewell, C; White, AJ; Crimmin, MR


    Addition of the carbon?fluorine bond of a series of perfluorinated and polyfluorinated arenes across the Mg?Mg bond of a simple coordination complex proceeds rapidly in solution. The reaction results in the formation of a new carbon?magnesium bond and a new fluorine?magnesium bond and is analogous to Grignard formation in homogeneous solution.

  10. [Carbon-carbon bond formation based on alkenylphosphonates]. (United States)

    Nagaoka, Y


    We have been engaged in the development of asymmetric conjugate addition reactions of lithium thiolates, organolithiums and organocopper reagents under the control of external chiral ligands and we have also developed an efficient asymmetric Horner-Wadsworth-Emmons (HWE) reaction using an external chiral Ligand. We attempted to synthesize axial chiral allenes by combination of these conjugate addition reaction and HWE reaction. In the course of this study, we found that Michael-aldol reaction of alkenylphosphonates 1 using LDA and aldehydes results in the direct formation of alpha,beta-unsaturated hydroxyphosphonate 4, which was efficiently converted to allene by treatment with KH or KH-18-crown-6. Furthermore, allenes were synthesized by sequential double HWE reaction in one-flask manner starting from methylenebisphosphonate 8. The key to success is a metal exchange of intermediate lithium alkoxide 4-Li to potassium alkoxide 4-K by the addition of t-BuOK. As our continuous study of carbon-carbon bond formation based on alkenylphosphonates, a cyclization reaction of bisalkenylphosphonate 6 was developed. Although the treatment of 6 with organolithium reagents afforded a mixture of addition-cyclization product 9 and deprotonation-cyclization product 10, the treatment of 6 with LDA gave 10 selectively. These cyclization methods were applied to the synthesis of efficient chiral phosphine ligands.

  11. Bonds broken and formed during the mixed-linkage glucan : xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase. (United States)

    Simmons, Thomas J; Fry, Stephen C


    Mixed-linkage glucan∶xyloglucan endotransglucosylase (MXE) is one of the three activities of the recently characterised hetero-trans-β-glucanase (HTG), which among land plants is known only from Equisetum species. The biochemical details of the MXE reaction were incompletely understood - details that would promote understanding of MXE's role in vivo and enable its full technological exploitation. We investigated HTG's site of attack on one of its donor substrates, mixed-linkage (1→3),(1→4)-β-d-glucan (MLG), with radioactive oligosaccharides of xyloglucan as the acceptor substrate. Comparing three different MLG preparations, we showed that the enzyme favours those with a high content of cellotetraose blocks. The reaction products were analysed by enzymic digestion, thin-layer chromatography (TLC), high-pressure liquid chromatography (HPLC) and gel-permeation chromatography (GPC). Equisetum HTG consistently cleaved the MLG at the third consecutive β-(1→4)-bond following (towards the reducing terminus) a β-(1→3)-bond. It then formed a β-(1→4)-bond between the MLG and the non-reducing terminal glucose residue of the xyloglucan oligosaccharide, consistent with its xyloglucan endotransglucosylase/hydrolase subfamily membership. Using size-homogeneous barley MLG as the donor substrate, we showed that HTG does not favour any particular region of the MLG chain relative to the polysaccharide's reducing and non-reducing termini; rather, it selects its target cellotetraosyl unit stochastically along the MLG molecule. This work improves our understanding of how enzymes can exhibit promiscuous substrate specificities and provides the foundations to explore strategies for engineering novel substrate specificities into transglycanases. © 2017 The Author(s).

  12. An iron-catalysed C-C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks. (United States)

    Adams, Kirsty; Ball, Anthony K; Birkett, James; Brown, Lee; Chappell, Ben; Gill, Duncan M; Lo, P K Tony; Patmore, Nathan J; Rice, Craig R; Ryan, James; Raubo, Piotr; Sweeney, Joseph B


    Heterocyclic architectures offer powerful creative possibilities to a range of chemistry end-users. This is particularly true of heterocycles containing a high proportion of sp 3 -carbon atoms, which confer precise spatial definition upon chemical probes, drug substances, chiral monomers and the like. Nonetheless, simple catalytic routes to new heterocyclic cores are infrequently reported, and methods making use of biomass-accessible starting materials are also rare. Here, we demonstrate a new method allowing rapid entry to spirocyclic bis-heterocycles, in which inexpensive iron(III) catalysts mediate a highly stereoselective C-C bond-forming cyclization cascade reaction using (2-halo)aryl ethers and amines constructed using feedstock chemicals readily available from plant sources. Fe(acac) 3 mediates the deiodinative cyclization of (2-halo)aryloxy furfuranyl ethers, followed by capture of the intermediate metal species by Grignard reagents, to deliver spirocycles containing two asymmetric centres. The reactions offer potential entry to key structural motifs present in bioactive natural products.

  13. An iron-catalysed C-C bond-forming spirocyclization cascade providing sustainable access to new 3D heterocyclic frameworks (United States)

    Adams, Kirsty; Ball, Anthony K.; Birkett, James; Brown, Lee; Chappell, Ben; Gill, Duncan M.; Lo, P. K. Tony; Patmore, Nathan J.; Rice, Craig. R.; Ryan, James; Raubo, Piotr; Sweeney, Joseph B.


    Heterocyclic architectures offer powerful creative possibilities to a range of chemistry end-users. This is particularly true of heterocycles containing a high proportion of sp3-carbon atoms, which confer precise spatial definition upon chemical probes, drug substances, chiral monomers and the like. Nonetheless, simple catalytic routes to new heterocyclic cores are infrequently reported, and methods making use of biomass-accessible starting materials are also rare. Here, we demonstrate a new method allowing rapid entry to spirocyclic bis-heterocycles, in which inexpensive iron(III) catalysts mediate a highly stereoselective C-C bond-forming cyclization cascade reaction using (2-halo)aryl ethers and amines constructed using feedstock chemicals readily available from plant sources. Fe(acac)3 mediates the deiodinative cyclization of (2-halo)aryloxy furfuranyl ethers, followed by capture of the intermediate metal species by Grignard reagents, to deliver spirocycles containing two asymmetric centres. The reactions offer potential entry to key structural motifs present in bioactive natural products.

  14. A general approach to intermolecular carbonylation of arene C-H bonds to ketones through catalytic aroyl triflate formation (United States)

    Garrison Kinney, R.; Tjutrins, Jevgenijs; Torres, Gerardo M.; Liu, Nina Jiabao; Kulkarni, Omkar; Arndtsen, Bruce A.


    The development of metal-catalysed methods to functionalize inert C-H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel-Crafts reactions. Here we describe a new approach to palladium-catalysed C-H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C-H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.

  15. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation. (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi


    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  16. Rhodium-catalyzed direct ortho C-N bond formation of aromatic azo compounds with azides. (United States)

    Wang, Hao; Yu, Yang; Hong, Xiaohu; Tan, Qitao; Xu, Bin


    An efficient rhodium-catalyzed regioselective C-N bond formation of azo compounds in good to excellent yields through C-H bond functionalization using azides as the nitrogen source was developed. Alkyl, aryl, and sulfonyl azides could be efficiently assembled in this reaction with excellent functional group tolerance.

  17. Chemistry of aminoacylation and peptide bond formation on the 3 ...

    Indian Academy of Sciences (India)



    Oct 4, 2006 ... Introduction. There are 64 possible triplet codons which are translated into a polypeptide composed of defined sequence of twenty amino acids linked via peptide bonds. The polymerization of amino acids to form a polypeptide takes place in a sequential manner, defined by the sequence of triplet codons ...

  18. Adhesives with wood materials : bond formation and performance (United States)

    Charles R. Frihart; Christopher G. Hunt


    Adhesive bonding of wood plays an increasing role in the forest products industry and is a key factor for efficiently utilizing our timber resource. The main use of adhesives is in the manufacture of building materials, including plywood, oriented strandboard, particleboard, fiberboard, structural composite lumber, doors, windows and frames, and factory-laminated wood...

  19. Formation of a hydrogen-bonded barbiturate [2]-rotaxane. (United States)

    Tron, Arnaud; Thornton, Peter J; Rocher, Mathias; Jacquot de Rouville, Henri-Pierre; Desvergne, Jean-Pierre; Kauffmann, Brice; Buffeteau, Thierry; Cavagnat, Dominique; Tucker, James H R; McClenaghan, Nathan D


    Interlocked structures containing the classic Hamilton barbiturate binding motif comprising two 2,6-diamidopyridine units are reported for the first time. Stable [2]-rotaxanes can be accessed either through hydrogen-bonded preorganization by a barbiturate thread followed by a Cu(+)-catalyzed "click" stoppering reaction or by a Cu(2+)-mediated Glaser homocoupling reaction.

  20. Chemistry of aminoacylation and peptide bond formation on the 3 ...

    Indian Academy of Sciences (India)



    Oct 4, 2006 ... acids to form a polypeptide takes place in a sequential manner, defined by the ... the attachment of the 14C-leucine to tRNA is achieved via an ester bond to the ... P Zamecnik and coworkers at Massachusets General Hospital, Boston, demonstrated the enzymatic attachment of radioactive amino acid to ...

  1. Molecular and ionic hydrogen bond formation in fluorous solvents. (United States)

    O'Neal, Kristi L; Weber, Stephen G


    There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B.HA) whereas the 1:3 complexes are ionic (BH+.A-HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.

  2. Rhodium-Catalyzed C-C Bond Formation via Heteroatom-Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Denise; Bergman, Robert; Ellman, Jonathan


    that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.

  3. Palladium-catalysed anti-Markovnikov selective oxidative amination (United States)

    Kohler, Daniel G.; Gockel, Samuel N.; Kennemur, Jennifer L.; Waller, Peter J.; Hull, Kami L.


    In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon-nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

  4. Exploring the atmospheric chemistry of O2SO3− and assessing the maximum turnover number of ion-catalysed H2SO4 formation

    Directory of Open Access Journals (Sweden)

    N. Bork


    Full Text Available It has recently been demonstrated that the O2SO3− ion forms in the atmosphere as a natural consequence of ionizing radiation. Here, we present a density functional theory-based study of the reactions of O2SO3− with O3. The most important reactions are (a oxidation to O2SO3− and (b cluster decomposition into SO3, O2 and O3−. The former reaction is highly exothermic, and the nascent O2SO3− will rapidly decompose into SO4− and O2. If the origin of O2SO3− is SO2 oxidation by O3−, the latter reaction closes a catalytic cycle wherein SO2 is oxidized to SO3. The relative rate between the two major sinks for O2SO3− is assessed, thereby providing a measure of the maximum turnover number of ion-catalysed SO2 oxidation, i.e. how many SO2 can be oxidized per free electron. The rate ratio between reactions (a and (b is significantly altered by the presence or absence of a single water molecule, but reaction (b is in general much more probable. Although we are unable to assess the overall importance of this cycle in the real atmosphere due to the unknown influence of CO2 and NOx, we roughly estimate that ion-induced catalysis may contribute with several percent of H2SO4 levels in typical CO2-free and low NOx reaction chambers, e.g. the CLOUD chamber at CERN.

  5. Study of interface formation during diffusion bonding: compact heat exchangers application

    International Nuclear Information System (INIS)

    Bouquet, Nicolas


    Compact diffusion bonded heat exchangers are an attractive option in many fields (nuclear, (petro-)chemistry, solar..) due to their performance. This type of concept is especially intended for manufacturing the energy conversion system of the ASTRID reactor. During diffusion bonding by HIP, the problem is twofold: the channel deformation and microstructure evolution must be controlled, while at the same time, highly resistant interfaces are desired. This thesis is focused on the understanding and the control of the bonded components microstructure prepared by HIP in order to define 'process' criteria to achieve welds in agreement with specifications of components containing fluidic channels: interfaces unaffected by the process and small grain size. After a detailed characterization of their surface and microstructural evolution during heating, the behavior of AISI 316L austenitic steel sheets has been examined in a parametric study by varying the parameters related to process (diffusion bonding temperature and pressure) and welding material (thickness, surface finish..). The results show that the interface formation is driven by conventional grain growth mechanisms with an interfacial pining more or less marked depending on surface characteristics. The mechanical properties of assemblies have been tested to determine the influence of defects. Though pores are the most critical default, the influence of other heterogeneities has also been highlighted. The different steps of bond formation have been identified by performing interrupted diffusion bonding test. The interest of modeling approach by Level-Set method to simulate microstructure evolution has been finally discussed. (author) [fr

  6. Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome. (United States)

    Carrasco, Nicolas; Hiller, David A; Strobel, Scott A


    Peptide bond formation during ribosomal protein synthesis involves an aminolysis reaction between the aminoacyl α-amino group and the carbonyl ester of the growing peptide via a transition state with a developing negative charge, the oxyanion. Structural and molecular dynamic studies have suggested that the ribosome may stabilize the oxyanion in the transition state of peptide bond formation via a highly ordered water molecule. To biochemically investigate this mechanistic hypothesis, we estimated the energetic contribution to catalytic charge stabilization of the oxyanion using a series of transition state mimics that contain different charge distributions and hydrogen bond potential on the functional group mimicking the oxyanion. Inhibitors containing an oxyanion mimic that carried a neutral charge and a mimic that preserved the negative charge but could not form hydrogen bonds had less than a 3-fold effect on inhibitor binding affinity. These observations argue that the ribosome provides minimal transition state charge stabilization to the oxyanion during peptide bond formation via the water molecule. This is in contrast to the substantial level of oxyanion stabilization provided by serine proteases. This suggests that the oxyanion may be neutralized via a proton shuttle, resulting in an uncharged transition state.

  7. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.


    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within...

  8. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.


    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...

  9. Ring-opening of cyclic ethers with carbon–carbon bond formation by Grignard reagents

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert


    The ring-opening of cyclic ethers with concomitant C–C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to ∼160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained...

  10. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.


    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the

  11. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. (United States)

    Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu


    A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.

  12. Direct Mechanism of the First Carbon-Carbon Bond Formation in the Methanol-to-Hydrocarbons Process. (United States)

    Wu, Xinqiang; Xu, Shutao; Zhang, Wenna; Huang, Jindou; Li, Jinzhe; Yu, Bowen; Wei, Yingxu; Liu, Zhongmin


    In the past two decades, the reaction mechanism of C-C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C-C bond formation in the MTH process. New insights into the first C-C bond formation were provided, thus suggesting DME/methanol activation and direct C-C bond formation by an interesting synergetic mechanism, involving C-H bond breakage and C-C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures. (United States)

    Fan, Qitang; Wang, Tao; Liu, Liming; Zhao, Jin; Zhu, Junfa; Gottfried, J Michael


    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C-Br bonds and formation of C-Cu-C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  14. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation (United States)

    Bower, John F.; Krische, Michael J.


    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  15. Calculating reversible potentials for Pt-H and Pt-OH bond formation in basic solutions. (United States)

    Cai, Yu; Anderson, Alfred B


    Two redox reactions on platinum electrodes in base, the formation of underpotential deposited hydrogen, forming a Pt-H bond, and the electro-oxidation of water, forming a Pt-OH bond, were studied by two methods. The first applies a linear relationship between reaction energy in solution and standard reversible potential, an approach recently used in this lab to predict the formation potential of the surface-bonded species. This method depends on the availability of accurate surface adsorption bond strengths from measurement or theory and can be applied in two formats, the empirical model and the linear correlation model. The second method treats the reaction within the so-called double-layer model where reactants and products on the surface are well defined and are experiencing the influence of the electrolyte. When this approach is used, two coordination shells of hydrogen bonded water molecules are found necessary to sufficiently stabilize the hydroxide ion in this model, unlike acid for which past work showed only one shell around the hydronium ion is needed. The calculated reversible potentials for both reactions by the empirical and linear correlation models are in good agreement with the experimental onset potentials observed in cyclic voltammetry measurements for Pt(111) surface electrodes when empirical or accurately calculated H, OH, and H(2)O adsorption energies are used. The double layer models for these reactions also yield satisfactory results, and it is concluded that the models should be useful for studying electron-transfer reactions in base, as has already been done for forming Pt-H and Pt-OH in acid solution.

  16. C—C bond formation in the intramolecular Diels-Alder reaction of triene amides

    Directory of Open Access Journals (Sweden)

    Abdelilah Benallou


    Full Text Available The mechanism nature of the intramolecular Diels–Alder reaction has been performed; and thus, the changes of C—C bond forming/breaking along IRC are characterized in this study. Conceptual DFT analyses of the most favorable adduct fused/exo shows that the flux electronic will take place from diene to dienophile moiety. Moreover, ELF topological analysis based on the electron density predicts that C—C bond is formed by the coupling of two pseudoradical centers generated at the most significant atoms of the molecules. However, C2 vs C3, also C1 and C4 interaction comes mainly from the global electron density transfer which takes place along the reaction. Two- stage one-step is the proposed mechanism of this reaction, the first stage aims for the formation of C2—C3 σ bond while the second stage aims for C1—C4 σ bond formation. Interestingly, the observed asynchronicity of this IMDA reaction due principally to the asymmetric reorganization of electron density at the most attractive centers.

  17. Methyltrioctylammonium chloride catalysed sonochemical synthesis ...

    Indian Academy of Sciences (India)

    Methyltrioctylammonium chloride catalysed sonochemical synthesis of acridine diones. BHUPINDER KAUR and HARISH KUMAR. ∗. Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal 148 106, India e-mail: MS received 21 May 2012; revised 30 January ...

  18. Palladium-Catalysed Coupling Reactions

    NARCIS (Netherlands)

    de Vries, Johannes G.; Beller, M; Blaser, HU


    Palladium-catalysed coupling reactions have gained importance as a tool for the production of pharmaceutical intermediates and to a lesser extent also for the production of agrochemicals, flavours and fragrances, and monomers for polymers. In this review only these cases are discussed where it seems

  19. Methyltrioctylammonium chloride catalysed sonochemical synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Methyltrioctylammonium chloride catalysed sonochemical synthesis of acridine diones ... The greener, clean and efficient protocol for the synthesis of acridine diones derivatives has been achieved by reacting aromatic aldehyde, dimedone and amines ...

  20. Carbon-sulfur bond formation by reductive elimination of gold(iii) thiolates. (United States)

    Currie, Lucy; Rocchigiani, Luca; Hughes, David L; Bochmann, Manfred


    Whereas the reaction of the gold(iii) pincer complex (C^N^C)AuCl with 1-adamantyl thiol (AdSH) in the presence of base affords (C^N^C)AuSAd, the same reaction in the absence of base leads to formation of aryl thioethers as the products of reductive elimination of the Au-C and Au-S ligands (C^N^C = dianion of 2-6-diphenylpyridine or 2-6-diphenylpyrazine). Although high chemical stability is usually taken as a characteristic of pincer complexes, results show that thiols are capable of cleaving one of the pincer Au-C bonds. This reaction is not simply a function of S-H acidity, since no cleavage takes place with other more acidic X-H compounds, such as carbazole, amides, phenols and malonates. The reductive C-S elimination follows a second-order rate law, -d[1a]/dt = k[1a][AdSH]. Reductive elimination is enabled by displacement of the N-donor by thiol; this provides the conformational flexibility necessary for C-S bond formation to occur. Alternatively, reductive C-S bond formation can be induced by reaction of pre-formed thiolates (C^N^C)AuSR with a strong Brønsted acid, followed by addition of SMe2 as base. On the other hand, treatment of (C^N^C)AuR (R = Me, aryl, alkynyl) with thiols under similar conditions leads to selective C-C rather than C-S bond formation. The reaction of (C^N^C)AuSAd with H+ in the absence of a donor ligand affords the thiolato-bridged complex [{(C^N-CH)Au(μ-SAd)}2]2+ which was crystallographically characterised.

  1. Renewable Formate from C-H Bond Formation with CO2: Using Iron Carbonyl Clusters as Electrocatalysts. (United States)

    Loewen, Natalia D; Neelakantan, Taruna V; Berben, Louise A


    As a society, we are heavily dependent on nonrenewable petroleum-derived fuels and chemical feedstocks. Rapid depletion of these resources and the increasingly evident negative effects of excess atmospheric CO 2 drive our efforts to discover ways of converting excess CO 2 into energy dense chemical fuels through selective C-H bond formation and using renewable energy sources to supply electrons. In this way, a carbon-neutral fuel economy might be realized. To develop a molecular or heterogeneous catalyst for C-H bond formation with CO 2 requires a fundamental understanding of how to generate metal hydrides that selectively donate H - to CO 2 , rather than recombining with H + to liberate H 2 . Our work with a unique series of water-soluble and -stable, low-valent iron electrocatalysts offers mechanistic and thermochemical insights into formate production from CO 2 . Of particular interest are the nitride- and carbide-containing clusters: [Fe 4 N(CO) 12 ] - and its derivatives and [Fe 4 C(CO) 12 ] 2- . In both aqueous and mixed solvent conditions, [Fe 4 N(CO) 12 ] - forms a reduced hydride intermediate, [H-Fe 4 N(CO) 12 ] - , through stepwise electron and proton transfers. This hydride selectively reacts with CO 2 and generates formate with >95% efficiency. The mechanism for this transformation is supported by crystallographic, cyclic voltammetry, and spectroelectrochemical (SEC) evidence. Furthermore, installation of a proton shuttle onto [Fe 4 N(CO) 12 ] - facilitates proton transfer to the active site, successfully intercepting the hydride intermediate before it reacts with CO 2 ; only H 2 is observed in this case. In contrast, isoelectronic [Fe 4 C(CO) 12 ] 2- features a concerted proton-electron transfer mechanism to form [H-Fe 4 C(CO) 12 ] 2- , which is selective for H 2 production even in the presence of CO 2 , in both aqueous and mixed solvent systems. Higher nuclearity clusters were also studied, and all are proton reduction electrocatalysts, but none

  2. A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. (United States)

    Ping, Liyan; Büchler, Rita; Mithöfer, Axel; Svatos, Ales; Spiteller, Dieter; Dettner, Konrad; Gmeiner, Sophie; Piel, Jörn; Schlott, Bernhard; Boland, Wilhelm


    A novel type of a microbial N-acyl amino acid hydrolase (AAH) from insect gut bacteria was purified, cloned and functionally characterized. The enzyme was obtained from Microbacterium arborescens SE14 isolated from the foregut of larvae of the generalist herbivore Spodoptera exigua. The substrates of AAH are N-acyl-glutamines previously reported to elicit plant defence reactions after introduction into the leaf during feeding. The isolated AAH catalyses the hydrolysis of the amide bond (K(m) = 36 micromol l(-1)) and, less efficient, the formation (K(m) = 3 mmol l(-1)) of the elicitor active N-acyl amino acids. The AAH from M. arborescens SE14 shows no homology to known fatty acyl amidases (EC but belongs to the family of Dps proteins (DNA-binding protein from starved cell). In line with other DPS proteins AAH is a homododecamer (monomer 17 181 Da) and contains iron atoms (c. 1-16 iron atoms per subunit). Unlike genuine DPS proteins the enzyme does not significantly bind DNA. Amino acid hydrolase is the first member of the DPS family that catalyses the cleavage or formation of amide bonds. The participation of a microbial enzyme in the homeostasis of N-acyl-glutamines in the insect gut adds further complexity to the interaction between plants and their herbivores.

  3. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.


    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  4. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro


    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. (United States)

    Wang, Yanliang; Deng, Weiping; Wang, Binju; Zhang, Qinghong; Wan, Xiaoyue; Tang, Zhenchen; Wang, Ye; Zhu, Chun; Cao, Zexing; Wang, Guichang; Wan, Huilin


    The direct transformation of cellulose, which is the main component of lignocellulosic biomass, into building-block chemicals is the key to establishing biomass-based sustainable chemical processes. Only limited successes have been achieved for such transformations under mild conditions. Here we report the simple and efficient chemocatalytic conversion of cellulose in water in the presence of dilute lead(II) ions, into lactic acid, which is a high-value chemical used for the production of fine chemicals and biodegradable plastics. The lactic acid yield from microcrystalline cellulose and several lignocellulose-based raw biomasses is >60% at 463 K. Both theoretical and experimental studies suggest that lead(II) in combination with water catalyses a series of cascading steps for lactic acid formation, including the isomerization of glucose formed via the hydrolysis of cellulose into fructose, the selective cleavage of the C3-C4 bond of fructose to trioses and the selective conversion of trioses into lactic acid.

  6. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi


    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  7. {alpha}-Man monolayer formation via Si-C bond formation and protein recognition

    Energy Technology Data Exchange (ETDEWEB)

    Funato, Koji [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Shirahata, Naoto [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Miura, Yoshiko, E-mail: [School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)


    An acetylenyl-terminated saccharide was synthesized and the thin layer formation on the hydrogen-terminated silicon was investigated. The acetylenyl-terminated saccharide was synthesized by the condensation reaction of hexynoic acid and p-aminophenyl saccharide. This was reacted with hydrogen-terminated silicon (Si-H) by a photochemical reaction. The resulting saccharide modified substrate was analyzed by ellipsometry and X-ray photoelectron spectroscopy, which showed the formation of a uniform monolayer. The surface's ability to recognize proteins was analyzed by fluorescent microscopy, and showed specific interactions with sugar recognition proteins.

  8. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation. (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W


    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  9. Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C-Au Bond Formation. (United States)

    Bejarano, Francesc; Olavarria-Contreras, Ignacio Jose; Droghetti, Andrea; Rungger, Ivan; Rudnev, Alexander; Gutiérrez, Diego; Mas-Torrent, Marta; Veciana, Jaume; van der Zant, Herre S J; Rovira, Concepció; Burzurı, Enrique; Crivillers, Núria


    Organic paramagnetic and electroactive molecules are attracting interest as core components of molecular electronic and spintronic devices. Currently, further progress is hindered by the modest stability and reproducibility of the molecule/electrode contact. We report the synthesis of a persistent organic radical bearing one and two terminal alkyne groups to form Au-C σ bonds. The formation and stability of self-assembled monolayers and the electron transport through single-molecule junctions at room temperature have been studied. The combined analysis of both systems demonstrates that this linker forms a robust covalent bond with gold and a better-defined contact when compared to traditional sulfur-based linkers. Density functional theory and quantum transport calculations support the experimental observation highlighting a reduced variability of conductance values for the C-Au based junction. Our findings advance the quest for robustness and reproducibility of devices based on electroactive molecules.

  10. Formation and stability of As-H bonds in H-implanted GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Stein, H.J.


    The chemical bonding and isochronal annealing of H implanted into GaAs at 80 K has been investigated by infrared absorption measurements. Based upon the frequency shift when deuterium is substituted for H, and an equivalent band formation in InAs, assignment of a new band at 2029 cm{sup {minus}1} is made to As-H centers. Bonding of H at interstitial As of and As-vacancy pair which anneals between 150 and 250K is suggested as the structure for the defect. A previously-reported absorption band at 1834 cm{sup {minus}1} assigned to Ga-H centers in H-implanted GaAS increase in intensity when H is released from As-H centers. 15 refs., 5 figs.

  11. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state

    Energy Technology Data Exchange (ETDEWEB)

    Osterman, Ilya A.; Khabibullina, Nelli F.; Komarova, Ekaterina S.; Kasatsky, Pavel; Kartsev, Victor G.; Bogdanov, Alexey A.; Dontsova, Olga A.; Konevega, Andrey L.; Sergiev, Petr V.; Polikanov, Yury S. (InterBioScreen); (UIC); (MSU-Russia); (Kurchatov)


    The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.

  12. Bridging and bonding interactions in higher education: social capital and students' academic and professional identity formation. (United States)

    Jensen, Dorthe H; Jetten, Jolanda


    It is increasingly recognized that graduates' achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students' socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students' professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students' parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students' professional identity development.

  13. Bridging and bonding interactions in higher education: social capital and students’ academic and professional identity formation (United States)

    Jensen, Dorthe H.; Jetten, Jolanda


    It is increasingly recognized that graduates’ achievements depend in important ways on their opportunities to develop an academic and a professional identity during their studies. Previous research has shown that students’ socio-economic status (SES) and social capital prior to entering university affects their ability to obtain these identities in higher education. However, what is less well understood is whether social capital that is built during university studies shapes identity development, and if so, whether the social capital gained during university years impacts on academic and professional identity differently. In a qualitative study, we interviewed 26 Danish and 11 Australian university students about their social interaction experiences, their opportunities to develop bonding capital as well as bridging capital, and their academic and professional identity. Findings show that while bonding social capital with co-students facilitated academic identity formation, such social capital does not lead to professional identity development. We also found that the development of bridging social capital with educators facilitated students’ professional identity formation. However, bonding social capital among students stood in the way of participating in bridging interaction with educators, thereby further hindering professional identity formation. Finally, while students’ parental background did not affect the perceived difficulty of forming professional identity, there was a tendency for students from lower SES backgrounds to be more likely to make internal attributions while those from higher SES backgrounds were more likely to make external attributions for the failure to develop professional identity. Results point to the importance of creating opportunities for social interaction with educators at university because this facilitates the generation of bridging social capital, which, in turn, is essential for students’ professional identity

  14. Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Riisager, Anders; Shunmugavel, Saravanamurugan


    A new versatile method to measure rates and determine activation energies for the Brønsted acid catalysed hydrolysis of cellulose and cellobiose (and other polymeric carbohydrates) in ionic liquids is demonstrated by following the C–O stretching band of the glycoside bond with in situ ATR......-FTIR. An activation energy in excellent agreement with the literature was determined for cellulose hydrolysis, whereas a distinctly lower activation energy was determined for cellobiose hydrolysis. The methodology also allowed to independently determine activation energies for the formation of 5-hydroxymethylfurfural...

  15. Dipeptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain


    toward more peptide synthesis. In the present work we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water......-concentrated in the remaining liquid microinclusions, thus creating an environment with low water activity in which condensation reactions can occur. Successful oligomerization of RNA monomers catalysed by the SerHis dipeptide was observed in a broad range of pH, and with all four natural nucleobases. The isomeric dipeptide...... HisSer did not exhibit any catalytic properties thus indicating that the specific, spatial arrangement of amino acid residues in the SerHis structure is responsible for its catalytic activity. Establishing novel synthetic pathways to RNA polymerization is important, as to date no convincing prebiotic...

  16. Lignin Derivatives Formation In Catalysed Thermal Decomposition ...

    African Journals Online (AJOL)


    INTR. ODUCTION. Biomass in the form of household, municipal, industrial and agricultural wastes will continue to play an important role in the generation of energy, fuels and chemicals. Biomass is relatively abundant and renewable, and this makes it particularly attractive in relation to the non-renewable fossil fuels.

  17. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    International Nuclear Information System (INIS)

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun


    Highlights: ► We dissect how individual disulfide bond affects the amyloidogenicity of insulin. ► A controlled reduction system for insulin is established in this study. ► Disulfide breakage is associated with unfolding and increased amyloidogenicity. ► Breakage of A6-A11 is associated with significantly increased cytotoxicity. ► Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7-B7 induced more unfolding of the insulin structure and a higher amyloidogenicity than breakage of A6-A11, but breakage of A6

  18. [Ru(IV)(F20-TPP)Cl2] efficiently catalysed inter- and intra-molecular nitrene insertion into sp3 C-H bonds of hydrocarbons using phosphoryl azides as nitrene sources. (United States)

    Xiao, Wenbo; Wei, Jinhu; Zhou, Cong-Ying; Che, Chi-Ming


    [Ru(IV)(F20-TPP)Cl2][H2(F20-TPP) = meso-tetrakis(pentafluorophenyl)porphyrin] is an active catalyst for both inter- and intra-molecular nitrene insertion into sp(3) C-H bonds of hydrocarbons in good to high product yields using phosphoryl azides as nitrene sources.

  19. Accelerated C-N Bond Formation in Dropcast Thin Films on Ambient Surfaces (United States)

    Badu-Tawiah, Abraham K.; Campbell, Dahlia I.; Cooks, R. Graham


    The aza-Michael addition and the Mannich condensation occur in thin films deposited on ambient surfaces. The reagents for both C-N bond formation reactions were transferred onto the surface by drop-casting using a micropipette. The surface reactions were found to be much more efficient than the corresponding bulk solution-phase reactions performed on the same scale in the same acetonitrile solvent. The increase in rate of product formation in the thin film is attributed to solvent evaporation in the open air which results in reagent concentration and produces rate acceleration similar to that seen in evaporating droplets in desorption electrospray ionization. This thin film procedure has potential for the rapid synthesis of reaction products on a small scale, as well as allowing rapid derivatization of analytes to produce forms that are easily ionized by electrospray ionization. Analysis of the derivatized sample directly from the reaction surface through the use of desorption electrospray ionization is also demonstrated.

  20. Formation of III–V-on-insulator structures on Si by direct wafer bonding

    International Nuclear Information System (INIS)

    Yokoyama, Masafumi; Iida, Ryo; Ikku, Yuki; Kim, Sanghyeon; Takenaka, Mitsuru; Takagi, Shinichi; Takagi, Hideki; Yasuda, Tetsuji; Yamada, Hisashi; Ichikawa, Osamu; Fukuhara, Noboru; Hata, Masahiko


    We have studied the formation of III–V-compound-semiconductors-on-insulator (III–V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III–V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O 2 plasma-assisted DWB process with ECR sputtered SiO 2 BOX layers and a DWB process based on atomic-layer-deposition Al 2 O 3 (ALD-Al 2 O 3 ) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO 2 and ALD-Al 2 O 3 BOX layers are desorption of Ar and H 2 O gas, respectively. In order to suppress micro-void generation in the ECR-SiO 2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al 2 O 3 BOX layers to increase the deposition temperature of the ALD-Al 2 O 3 BOX layers. It is also another possible solution to deposit ALD-Al 2 O 3 BOX layers on thermally oxidized SiO 2 layers, which can absorb the desorption gas from ALD-Al 2 O 3 BOX layers. (invited paper)

  1. Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions. (United States)

    Van Duong, Tu; Reekmans, Gunter; Venkatesham, Akkaladevi; Van Aerschot, Arthur; Adriaensens, Peter; Van Humbeeck, Jan; Van den Mooter, Guy


    of crystallization inhibitors of semicrystalline polymers discovers numerous candidates that exhibit the same behavior as IMC, demonstrating a general pattern of polymer crystallization inhibition rather than a particular case. Furthermore, the crystallization inhibition effect of drugs on PEG is independent of the carrier molecular weight. These mechanistic findings on the formation and disruption of hydrogen bonds in semicrystalline dispersions can be extended to amorphous dispersions and are of significant importance for preparation of solid dispersions with consistent and reproducible physicochemical properties.

  2. Iron-catalysed tritiation of pharmaceuticals (United States)

    Pony Yu, Renyuan; Hesk, David; Rivera, Nelo; Pelczer, István; Chirik, Paul J.


    A thorough understanding of the pharmacokinetic and pharmacodynamic properties of a drug in animal models is a critical component of drug discovery and development. Such studies are performed in vivo and in vitro at various stages of the development process—ranging from preclinical absorption, distribution, metabolism and excretion (ADME) studies to late-stage human clinical trials—to elucidate a drug molecule’s metabolic profile and to assess its toxicity. Radiolabelled compounds, typically those that contain 14C or 3H isotopes, are one of the most powerful and widely deployed diagnostics for these studies. The introduction of radiolabels using synthetic chemistry enables the direct tracing of the drug molecule without substantially altering its structure or function. The ubiquity of C-H bonds in drugs and the relative ease and low cost associated with tritium (3H) make it an ideal radioisotope with which to conduct ADME studies early in the drug development process. Here we describe an iron-catalysed method for the direct 3H labelling of pharmaceuticals by hydrogen isotope exchange, using tritium gas as the source of the radioisotope. The site selectivity of the iron catalyst is orthogonal to currently used iridium catalysts and allows isotopic labelling of complementary positions in drug molecules, providing a new diagnostic tool in drug development.

  3. Iron-catalysed tritiation of pharmaceuticals. (United States)

    Yu, Renyuan Pony; Hesk, David; Rivera, Nelo; Pelczer, István; Chirik, Paul J


    A thorough understanding of the pharmacokinetic and pharmacodynamic properties of a drug in animal models is a critical component of drug discovery and development. Such studies are performed in vivo and in vitro at various stages of the development process--ranging from preclinical absorption, distribution, metabolism and excretion (ADME) studies to late-stage human clinical trials--to elucidate a drug molecule's metabolic profile and to assess its toxicity. Radiolabelled compounds, typically those that contain (14)C or (3)H isotopes, are one of the most powerful and widely deployed diagnostics for these studies. The introduction of radiolabels using synthetic chemistry enables the direct tracing of the drug molecule without substantially altering its structure or function. The ubiquity of C-H bonds in drugs and the relative ease and low cost associated with tritium ((3)H) make it an ideal radioisotope with which to conduct ADME studies early in the drug development process. Here we describe an iron-catalysed method for the direct (3)H labelling of pharmaceuticals by hydrogen isotope exchange, using tritium gas as the source of the radioisotope. The site selectivity of the iron catalyst is orthogonal to currently used iridium catalysts and allows isotopic labelling of complementary positions in drug molecules, providing a new diagnostic tool in drug development.

  4. Proline-catalysed Mannich reactions of acetaldehyde. (United States)

    Yang, Jung Woon; Chandler, Carley; Stadler, Michael; Kampen, Daniela; List, Benjamin


    Small organic molecules recently emerged as a third class of broadly useful asymmetric catalysts that direct reactions to yield predominantly one chiral product, complementing enzymes and metal complexes. For instance, the amino acid proline and its derivatives are useful for the catalytic activation of carbonyl compounds via nucleophilic enamine intermediates. Several important carbon-carbon bond-forming reactions, including the Mannich reaction, have been developed using this approach, all of which are useful for making chiral, biologically relevant compounds. Remarkably, despite attempts, the simplest of all nucleophiles, acetaldehyde, could not be used in this way. Here we show that acetaldehyde is a powerful nucleophile in asymmetric, proline-catalysed Mannich reactions with N-tert-butoxycarbonyl (N-Boc)-imines, yielding beta-amino aldehydes with extremely high enantioselectivities-desirable products as drug intermediates and in the synthesis of other biologically active molecules. Although acetaldehyde has been used as a nucleophile in reactions with biological catalysts such as aldolases and thiamine-dependent enzymes, and has also been employed indirectly, its use as an inexpensive and versatile two-carbon nucleophile in asymmetric, small-molecule catalysis will find many practical applications.

  5. Metallaphotoredox-catalysed sp3-sp3 cross-coupling of carboxylic acids with alkyl halides (United States)

    Johnston, Craig P.; Smith, Russell T.; Allmendinger, Simon; MacMillan, David W. C.


    In the past 50 years, cross-coupling reactions mediated by transition metals have changed the way in which complex organic molecules are synthesized. The predictable and chemoselective nature of these transformations has led to their widespread adoption across many areas of chemical research. However, the construction of a bond between two sp3-hybridized carbon atoms, a fundamental unit of organic chemistry, remains an important yet elusive objective for engineering cross-coupling reactions. In comparison to related procedures with sp2-hybridized species, the development of methods for sp3-sp3 bond formation via transition metal catalysis has been hampered historically by deleterious side-reactions, such as β-hydride elimination with palladium catalysis or the reluctance of alkyl halides to undergo oxidative addition. To address this issue, nickel-catalysed cross-coupling processes can be used to form sp3-sp3 bonds that utilize organometallic nucleophiles and alkyl electrophiles. In particular, the coupling of alkyl halides with pre-generated organozinc, Grignard and organoborane species has been used to furnish diverse molecular structures. However, the manipulations required to produce these activated structures is inefficient, leading to poor step- and atom-economies. Moreover, the operational difficulties associated with making and using these reactive coupling partners, and preserving them through a synthetic sequence, has hindered their widespread adoption. A generically useful sp3-sp3 coupling technology that uses bench-stable, native organic functional groups, without the need for pre-functionalization or substrate derivatization, would therefore be valuable. Here we demonstrate that the synergistic merger of photoredox and nickel catalysis enables the direct formation of sp3-sp3 bonds using only simple carboxylic acids and alkyl halides as the nucleophilic and electrophilic coupling partners, respectively. This metallaphotoredox protocol is suitable for

  6. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras


    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  7. Carbon-Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. (United States)

    Kim, Hyun-Tak; Shin, HyeonOh; Jeon, In-Yup; Yousaf, Masood; Baik, Jaeyoon; Cheong, Hae-Won; Park, Noejung; Baek, Jong-Beom; Kwon, Tae-Hyuk


    The direct formation of CN and CO bonds from inert gases is essential for chemical/biological processes and energy storage systems. However, its application to carbon nanomaterials for improved energy storage remains technologically challenging. A simple and very fast method to form CN and CO bonds in reduced graphene oxide (RGO) and carbon nanotubes (CNTs) by an ultrasonic chemical reaction is described. Electrodes of nitrogen- or oxygen-doped RGO (N-RGO or O-RGO, respectively) are fabricated via the fixation between N 2 or O 2 carrier gas molecules and ultrasonically activated RGO. The materials exhibit much higher capacitance after doping (133, 284, and 74 F g -1 for O-RGO, N-RGO, and RGO, respectively). Furthermore, the doped 2D RGO and 1D CNT materials are prepared by layer-by-layer deposition using ultrasonic spray to form 3D porous electrodes. These electrodes demonstrate very high specific capacitances (62.8 mF cm -2 and 621 F g -1 at 10 mV s -1 for N-RGO/N-CNT at 1:1, v/v), high cycling stability, and structural flexibility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)


    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  9. Effect of hydroxyl bond formation on the adhesion improvement of a polyethylene copper thin film system

    International Nuclear Information System (INIS)

    Camacho, M.; Blantocas, G.; Ramos, H.


    Formation of hydroxyl bonds on the surface of a gas plasma treated high density polyethylene (HDPE) sheets significantly enhanced the adhesion strength of the polyethylene copper thin film system. Surface treatments using oxygen gas plasmas at varying plasma parameters are applied in this study to identify the most effective plasma parameters that would promote the best adhesion strength. Analysis of gas plasma adulterated HDPE sheets showed best enhancement of polyethylene copper adhesion after an oxygen gas plasma treatment for 60 minutes at 5mA discharge current. Scanning Electron Microscopy Analysis, Fourier Transform Infrared Spectroscopy and Adhesion measurements using Pull out Force Analysis were used to measure the changes in the surface chemistry and surface topology of the HDPE sheets. (author)

  10. Stereochemistry of olefinic bond formation in defensive steroids of Acilius sulcatus (Dytiscidae). (United States)

    Chapman, J C; Lockley, W J; Rees, H H; Goodwin, T W


    The defensive secretion of Acilius sulcatus contains a number of pregnane derivates: cortexone, 20alpha-hydroxy-4-pregnen-3-one, together with the unusual delta4,6 dienes, 6,7-dehydrocortexone, 20alpha-hydroxy-4,6-pregnadien-3-one and 4,6-pregnadien-3,20-dione. The synthesis of all these steroids except cortexone is described. Complete separation of the steroids of Acilius can be achieved by high-performance liquid chromatography on the reversed-phase column system. During biosynthesis of the Acilius steroids from cholesterol, introduction of the delta4 and delta6 bonds involves elimination of the 4beta and 7beta hydrogens, respectively. Possible mechanisms of formation of the delta4,6 steroids are discussed.

  11. NMR study of poly({gamma}-glutamic acid) hydrogels prepared by {gamma}-irradiation : characterization of bond formation and scission

    Energy Technology Data Exchange (ETDEWEB)

    Han, Oc Hee [Korea Basic Science Institute, Taejon (Korea, Republic of); Choi, Hyuk Joon [Doosan Technical Center, Yongin (Korea, Republic of)


    Hydrogels were prepared from poly({gamma}-glutamic acid) (PGA) solution by {gamma}-irradiation of 90 kGy and 170 kGy. The hydrogels were more cross-linked with a higher dosage {gamma}-irradiation and completely hydrolyzed at 85.deg.C within 4 hours resulting in homogeneous solution, NMR techniques were employed to clarify chemical bond formation and scission involved during {gamma}-irradiation and hydrolysis. Characterization of these samples was carried out by taking both liquid state NMR spectra of PGA and hydrolyzed hydrogels and comparison of these spectra with the solid state NMR spectra of hydrogels. Our results indicate that complicated chemical bond formation and scission have occurred during hydrolysis and {gamma}-irradiation . The samples prepared with higher dosage of {gamma} irradiation showed more diverse chemical bond formation and scission.

  12. Anatomy of Bond Formation. Bond Length Dependence on the Extent of Electron Sharing in Chemical Bonds from the Analysis of Domain-Averaged Fermi holes.

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Cooper, D.L.


    Roč. 135, č. 7, (2007) , s. 31-41 ISSN 0301-7249 R&D Projects: GA AV ČR(CZ) IAA4072006 Institutional research plan: CEZ:AV0Z40720504 Keywords : electron sharing * chemical bonds * domain averaged fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry

  13. Affiliation, reward, and immune biomarkers coalesce to support social synchrony during periods of bond formation in humans. (United States)

    Ulmer-Yaniv, Adi; Avitsur, Ronit; Kanat-Maymon, Yaniv; Schneiderman, Inna; Zagoory-Sharon, Orna; Feldman, Ruth


    Social bonds are critical for survival and adaptation and periods of bond formation involve reorganization of neurobiological systems as mediated by social behavior. Theoretical accounts and animal studies suggest similarity between parent-infant and pair bonding, a hypothesis not yet directly tested in humans. In this study, we recruited three groups of human adults (N=189); parents who had their firstborn child in the last 4-6months, new lovers who began a romantic relationship within the past 4months, and non-attached singles. We measured plasma oxytocin (OT), beta endorphin (β-End), and interlukin-6 (IL-6), biomarkers of the affiliation, reward, and stress-response systems, and micro-coded gaze and affect synchrony between parents and infants and among new lovers during social interaction. OT significantly increased during periods of parental and romantic bonding and was highest in new lovers. In contrast, IL-6 and β-End were highest in new parents and lowest in singles. Biomarkers became more tightly coupled during periods of bond formation and inter-correlation among hormones was highest during romantic bonding. Structural equation modeling indicated that the effects of IL-6 and β-End on behavioral synchrony were mediated by their impact on OT, highlighting the integrative role of the oxytocinergic system in supporting human social affiliation. Findings suggest that periods of bond formation are accompanied by increased activity, as well as tighter cross-talk among systems underpinning affiliation, reward, and stress management and that research on the multidimensional process of bonding may shed further light on the effects of attachment on health. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hydrogenase-catalysed deposition of vivianite on mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, S. da; Basseguy, R.; Bergel, A


    A simple device was designed with two mild steel electrodes placed face to face in the same phosphate solution and coupled through an external electrical circuit. A dialysis membrane retained hydrogenase from Ralstonia eutropha in contact with one electrode only. The simultaneous measurements of the electron flux in the electrical circuit and of nicotinamide adenine dinucleotide (NADH) production catalysed by hydrogenase proved that the enzyme induced the occurrence of cathodic and anodic micro-sites on the same electrode surface. A clear galvanic current was observed, which stopped after a few hours, because of the formation of a protective film of vivianite on the electrode that was in contact with hydrogenase. Hydrogenase in phosphate solution proved to be an effective trigger of mild steel corrosion. These results may be the basis of a new and easy-to-handle hydrogenase-catalysed phosphating process, which operates under mild conditions, avoids using toxic compounds, and is quite rapid.

  15. Bond-formation versus electron transfer: C-C-coupling reactions of hydrocarbon dications with benzene. (United States)

    Roithová, Jana; Schröder, Detlef


    The bimolecular reactions of several hydrocarbon dications C(m)H(n)(2+) (m = 6-10, n = 4-9) with neutral benzene are investigated by tandem mass spectrometry using a multipole instrument. Not surprisingly, the major reaction of C(m)H(n)(2+) with benzene corresponds to electron transfer from the neutral arene to the dication resulting in the pair of monocationic products C(m)H(n)(+) + C(6)H(6)(+). In addition, also dissociative electron transfer takes place, whereas proton transfer from the C(m)H(n)(2+) dication to neutral benzene is almost negligible. Interestingly, the excess energy liberated upon electron transfer from the neutral arene to the C(m)H(n)(2+) dication is not equally partitioned in the monocationic products in that the cations arising from the dicationic precursor have a higher internal energy content than the monocations formed from the neutral reaction partner. In addition to the reactions leading to monocationic product ions, bond-forming reactions with maintenance of the two-fold charge are observed, which lead to a condensation of the C(m)H(n)(2+) dications with neutral benzene under formation of intermediate C(m+6)H(n+6)(2+) species and then undergo subsequent losses of molecular hydrogen or neutral acetylene. This reaction complements a recently proposed dicationic route for the formation of polycyclic aromatic hydrocarbons under extreme conditions such as they exist in interstellar environments.

  16. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu


    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  17. Hydrogen storage and evolution catalysed by metal hydride complexes. (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi


    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  18. Intermolecular Formation of Two C−C Bonds across Olefins Enabled by Boron-Based Relay Strategies

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich


    Roč. 56, č. 33 (2017), s. 9656-9658 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : 1,2-metalate rearrangement * C−C bond formation * radical reactions * transition metal catalysis * vinyl boronates Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 11.994, year: 2016

  19. Bond Formation in Diatomic Transition Metal Hydrides: Insights from the Analysis of Domain-Averaged Fermi Holes

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert


    Roč. 113, č. 2 (2013), s. 102-111 ISSN 0020-7608 R&D Projects: GA ČR GA203/09/0118 Institutional support: RVO:67985858 Keywords : transition metal hydrides * bond formation * analysis of domain averaged Fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.166, year: 2013

  20. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark


    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation of ...... importance for improved wood coating adhesion....

  1. Anatomy of Bond Formation: Insights from the Analysis of Domain-Averaged Fermi Holes in Momentum Space

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert


    Roč. 109, č. 11 (2009), s. 2383-2392 ISSN 0020-7608 R&D Projects: GA AV ČR IAA4072403 Institutional research plan: CEZ:AV0Z40720504 Keywords : momentum space * domain averaged fermi holes * bond formation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.315, year: 2009

  2. Electrochemical Formation of FeV (O) and Mechanism of Its Reaction with Water During O-O Bond Formation. (United States)

    Pattanayak, Santanu; Chowdhury, Debarati Roy; Garai, Bikash; Singh, Kundan K; Paul, Amit; Dhar, Basab B; Gupta, Sayam Sen


    A detailed electrochemical investigation of a series of iron complexes (biuret-modified tetraamido iron macrocycles Fe III -bTAML), including the first electrochemical generation of Fe V (O), and demonstration of their efficacy as homogeneous catalysts for electrochemical water oxidation (WO) in aqueous medium are reported. Spectroelectrochemical and mass spectral studies indicated Fe V (O) as the active oxidant, formed due to two redox transitions, which were assigned as Fe IV (O)/Fe III (OH 2 ) and Fe V (O)/Fe IV (O). The spectral properties of both of these high-valent iron oxo species perfectly match those of their chemically synthesised versions, which were thoroughly characterised by several spectroscopic techniques. The O-O bond-formation step occurs by nucleophilic attack of H 2 O on Fe V (O). A kinetic isotope effect of 3.2 indicates an atom-proton transfer (APT) mechanism. The reaction of chemically synthesised Fe V (O) in CH 3 CN and water was directly probed by electrochemistry and was found to be first-order in water. The pK a value of the buffer base plays a critical role in the rate-determining step by increasing the reaction rate several-fold. The electronic effect on redox potential, WO rates, and onset overpotential was studied by employing a series of iron complexes. The catalytic activity was enhanced by the presence of electron-withdrawing groups on the bTAML framework. Changing the substituents from OMe to NO 2 resulted in an eightfold increase in reaction rate, while the overpotential increased threefold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride. (United States)

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P


    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  4. Role of Hydrogen Bonding in the Formation of Adenine Chains on Cu(110 Surfaces

    Directory of Open Access Journals (Sweden)

    Lanxia Cheng


    Full Text Available Understanding the adsorption properties of DNA bases on metal surfaces is fundamental for the rational control of surface functionalization leading to the realisation of biocompatible devices for biosensing applications, such as monitoring of particular parameters within bio-organic environments and drug delivery. In this study, the effects of deposition rate and substrate temperature on the adsorption behavior of adenine on Cu(110 surfaces have been investigated using scanning tunneling microscopy (STM and density functional theory (DFT modeling, with a focus on the characterization of the morphology of the adsorbed layers. STM results revealed the formation of one-dimensional linear chains and ladder-like chains parallel to the [110] direction, when dosing at a low deposition rate at room temperature, followed by annealing to 490 K. Two mirror related, well-ordered chiral domains oriented at ±55° with respect to the [110] direction are formed upon deposition on a substrate kept at 490 K. The molecular structures observed via STM are rationalized and qualitatively described on the basis of the DFT modeling. The observation of a variety of ad-layer structures influenced by deposition rate and substrate temperature indicates that dynamic processes and hydrogen bonding play an important role in the self-assembly of adenine on the Cu(110 surface.

  5. Covalent bond formation between amino acids and lignin: cross-coupling between proteins and lignin. (United States)

    Cong, Fang; Diehl, Brett G; Hill, Joseph Lee; Brown, Nicole R; Tien, Ming


    The present study characterized the products formed from the reaction of amino acids and in turn, proteins, with lignin resulting in cross-coupling. When added to reaction mixtures containing coniferyl alcohol, horseradish peroxidase and H2O2, three amino acids (Cys, Tyr, and Thr) are able to form adducts. The low molecular weight products were analyzed by HPLC and from each reaction mixture, one product was isolated and analyzed by LC/MS. LC/MS results are consistent with bond formation between the polar side-chain of these amino acids with Cα. These results are consistent with the cross-coupling of Cys, Tyr and Thr through a quinone methide intermediate. In addition to the free amino acids, it was found that the cross-coupling of proteins with protolignin through Cys or Tyr residues. The findings provide a mechanism by which proteins and lignin can cross-couple in the plant cell wall. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The Intermetallic Compound Formation for the Wire Bond Between an Al Pad and Ag-xPd Alloy Wire (United States)

    Huang, Wei-Hsiang; Lin, Kwang-Lung; Lin, Yu-Wei; Cheng, Yun-Kai


    Silver-palladium alloy wire has been shown as an economical and reliable substitute for gold wire in various applications in the electronic packaging industry. The success of wire bonding relies on the formation of an interfacial intermetallic compound (IMC). This study is aimed to investigate the formation behavior of IMCs between an Al pad and Ag-Pd alloy wire with various Pd concentrations of 1.0-6.0% for the as-bonded commercial Ag/Al joint. The interfacial IMCs were investigated with scanning electron microscopy and energy-dispersive x-ray spectroscopy. The IMCs formed are separate (Ag, Pd)2Al and (Ag, Pd)3Al2 for a Ag6Pd wire bond, while (Ag, Pd)2Al and (Ag, Pd)3Al2 are mixed for the other Ag(1-4.5)Pd alloy wire bonds. The thickness of the total IMC layer varies from 0.65 μm for Ag1Pd to 0.91 μm for Ag6Pd, yet a minimum of 0.44 μm exists for Ag3.5Pd. The compound formation behavior was found to correspond with the Ag-Al phase diagram. After pressure cooker tests, a less stable IMC (Ag, Pd)3Al formed at the AgxPd/Al interface.

  7. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway.


    Kobayashi, T; Ito, K


    Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive comple...

  8. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials

    NARCIS (Netherlands)

    Jongsma, Marije A.; Pelser, Floris D. H.; van der Mei, Henny C.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.; Ren, Yijin

    OBJECTIVE: Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on

  9. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine (United States)

    Oie, T.; Loew, G. H.; Burt, S. K.; MacElroy, R. D.


    The SN2 reaction between glycine and ammonia molecules with magnesium cation Mg2+ as a catalyst has been studied as a model reaction for Mg(2+)-catalyzed peptide bond formation using the ab initio Hartree-Fock molecular orbital method. As in previous studies of the uncatalyzed and amine-catalyzed reactions between glycine and ammonia, two reaction mechanisms have been examined, i.e., a two-step and a concerted reaction. The stationary points of each reaction including intermediate and transition states have been identified and free energies calculated for all geometry-optimized reaction species to determine the thermodynamics and kinetics of each reaction. Substantial decreases in free energies of activation were found for both reaction mechanisms in the Mg(2+)-catalyzed amide bond formation compared with those in the uncatalyzed and amine-catalyzed amide bond formation. The catalytic effect of the Mg2+ cation is to stabilize both the transition states and intermediate, and it is attributed to the neutralization of the developing negative charge on the electrophile and formation of a conformationally flexible nonplanar five-membered chelate ring structure.

  10. Sequential C-Si Bond Formations from Diphenylsilane: Application to Silanediol Peptide Isostere Precursors

    DEFF Research Database (Denmark)

    Nielsen, Lone; Skrydstrup, Troels


    and the first new carbon-silicon bond. The next step is the reduction of this hydridosilane with lithium metal providing a silyl lithium reagent, which undergoes a highly diastereoselective addition to an optically active tert-butanesulfinimine, thus generating the second C-Si bond. This method allows...

  11. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens

    NARCIS (Netherlands)

    Jongsma, Marije A.; van der Mei, Henny C.; Atema-Smit, Jelly; Busscher, Henk I.; Ren, Yijin


    Retention wires permanently bonded to the anterior teeth are used after orthodontic treatment to prevent the teeth from relapsing to pre-treatment positions. A disadvantage of bonded retainers is biofilm accumulation on the wires, which produces a higher incidence of gingival recession, increased

  12. Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins. (United States)

    Go, Eden P; Cupo, Albert; Ringe, Rajesh; Pugach, Pavel; Moore, John P; Desaire, Heather


    We investigated whether there is any association between a native-like conformation and the presence of only the canonical (i.e., native) disulfide bonds in the gp120 subunits of a soluble recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein. We used a mass spectrometry (MS)-based method to map the disulfide bonds present in nonnative uncleaved gp140 proteins and native-like SOSIP.664 trimers based on the BG505 env gene. Our results show that uncleaved gp140 proteins were not homogeneous, in that substantial subpopulations (20 to 80%) contained aberrant disulfide bonds. In contrast, the gp120 subunits of the native-like SOSIP.664 trimer almost exclusively retained the canonical disulfide bond pattern. We also observed that the purification method could influence the proportion of an Env protein population that contained aberrant disulfide bonds. We infer that gp140 proteins may always contain a variable but substantial proportion of aberrant disulfide bonds but that the impact of this problem can be minimized via design and/or purification strategies that yield native-like trimers. The same factors may also be relevant to the production and purification of monomeric gp120 proteins that are free of aberrant disulfide bonds. It is widely thought that a successful HIV-1 vaccine will include a recombinant form of the Env protein, a trimer located on the virion surface. To increase yield and simplify purification, Env proteins are often made in truncated, soluble forms. A consequence, however, can be the loss of the native conformation concomitant with the virion-associated trimer. Moreover, some soluble recombinant Env proteins contain aberrant disulfide bonds that are not expected to be present in the native trimer. To assess whether these observations are linked, to determine the extent of disulfide bond scrambling, and to understand why scrambling occurs, we determined the disulfide bond profiles of two soluble Env proteins with

  13. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N-C bond formation with a terminal isocyanate. (United States)

    Semproni, Scott P; Chirik, Paul J


    Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the Mechanism of the Copper-Mediated C-S Bond Formation in the Intramolecular Disproportionation of Imine Disulfides

    Czech Academy of Sciences Publication Activity Database

    Rokob, Tibor András; Rulíšek, Lubomír; Šrogl, Jiří; Révész, Agnes; Zins, Emilie-Laure; Schröder, Detlef


    Roč. 50, č. 20 (2011), s. 9968-9979 ISSN 0020-1669 R&D Projects: GA MŠk LC512 Grant - others:European Research Council(XE) AdG HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : collision-induced dissociation * DFT calculations * C-S bond formation * Cu(I) catalysis * infrared multiphoton spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.601, year: 2011

  15. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju


    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  16. Intramolecular Fe(II)-Catalyzed N–O or N–N Bond Formation from Aryl Azides (United States)

    Stokes, Benjamin J.; Vogel, Carl V.; Urnezis, Linda K.; Pan, Minjie; Driver, Tom G.


    Iron(II) bromide catalyzes the transformation of aryl- and vinyl azides with ketone- or methyl oxime substituents into 2,1-benzisoxazoles, indazoles or pyrazoles through the formation of an N–O or N–N bond. This transformation tolerates a variety of different functional groups to facilitate access to a range of benzisoxazoles or indazoles. The unreactivity of the Z-methyloxime indicates that N-heterocycle formation occurs through a nucleophilic attack of the ketone or oxime onto an activated planar iron azide complex. PMID:20507088

  17. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols. (United States)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J


    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  18. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols (United States)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.


    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  19. Co(salen catalysed oxidation of synthetic lignin-like polymer: Co(salen effects

    Directory of Open Access Journals (Sweden)

    Liu Jing


    Full Text Available In this paper, Co(salen [salen = N, N’-bis(salicylideneethylenediamine] complex was studied as oxygen activators for the catalytic oxidation of a lignin model polymer using water as the solvent, with molecular oxygen and hydrogen peroxide as the oxidants. The effect of Co(salen on oxidation was tested by spectroscopic methods (FTIR, 13C-NMR and GC-MS. The reactions catalysed by Co(salen included Cα-alcohol oxidation, Cα-Cβ side chain cleavage, demethoxylation, aromatic ring cleavage, and β-O-4 cleavage. In addition to the mechanistic information obtained, the effect of Co(salen suggests that Co(salen can be important for the catalytic oxidation, as they affect the oxidation of lignin model polymer. The reaction performed in the presence of Co(salen was more efficient than without it. The formation of aldehyde in the catalytic oxidation, as shown by GC-MS, could be identified as the mechanism of oxidative cleavage of the β-O-4 bonds.

  20. Evaluation of Bonding Shear Performance of Ultra-High-Performance Concrete with Increase in Delay in Formation of Cold Joints

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee


    Full Text Available This study set out to derive the optimal conditions for ensuring the monolithicity of ultra-high-performance concrete (UHPC. Direct shear tests were performed to examine the influence on the bonding shear performance. The experimental variables included tamping and delay, which were set to 0, 15, 30, and 60 min. SEM and XRD analyses of the microstructure and composition were performed. The direct shear tests showed that the bonding shear strength was enhanced by the addition of tamping. For the normal-strength concrete (NSC, it is thought that a monolithicity of around 95% can be attained with a cold joint formation delay up to 60 min. In contrast, while the normalized bonding shear strength reduction of UHPC with a delay of 15 min was the lowest at around 8%, a dramatic degradation in the bonding shear performance was observed after 15 min. XRD analyses of the middle and surface sections revealed the composition of the thin film formed at the surface of the UHPC and, as a result, the main component appeared to be SiO2, which is believed to be a result of the rising of the SiO2-based filler, used as an admixture in this study, towards the surface, due to its low specific gravity.

  1. Dynamics of Plug Formation in a Circular Cylinder Under Low Bond Number Conditions: Experiment and Simulation (United States)

    Hallaby, Ghazi; Kizito, John P.


    The goal of the current study is to investigate the dynamics of two phase interface under a low Bond number condition. Silicone oil is injected into a cylinder under a Bond number of about 0.47 via a side tube forming a T-junction with the former. The time evolution of the interface of silicon oil in a cylinder is captured using a high speed camera. The volume at which the plug is formed is then determined using an image processing tool to analyze the captured images. A numerical simulation is carried out where fluid is injected into a cylinder, under a less than unity Bond number condition, via a side tube. Numerical and experimental results are then compared.

  2. Formation of aromatics in thermally induced reactions of chemically bonded RP-C18 stationary phase. (United States)

    Prus, Wojciech


    In continuation of the research on the thermally induced chemical transformation of the silica-based chemically bonded stationary phases (C18), the oxidative cleavage of the silicon-carbon bonds with hydrogen peroxide and potassium fluoride was utilized, followed by the gas chromatography coupled with mass spectrometry (GC-MS) study of the resulting products. These investigations allowed determination of the probable structures of certain thermal modification products as the various different alkyl derivatives of the phenylsilane ligands. Apart from aromatic compounds, the products with unsaturated bonds and carbonyl functionalities were found in the analyzed extracts. The analysis of the GC-MS chromatograms reveals that under the applied working conditions, the investigated process runs with relatively low yields. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  3. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters (United States)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Schweinberger, Florian F.; Heiz, Ueli; Yoon, Bokwon; Landman, Uzi


    The sensitivity, or insensitivity, of catalysed reactions to catalyst structure is a commonly employed fundamental concept. Here we report on the nature of nano-catalysed ethylene hydrogenation, investigated through experiments on size-selected Ptn (n=8–15) clusters soft-landed on magnesia and first-principles simulations, yielding benchmark information about the validity of structure sensitivity/insensitivity at the bottom of the catalyst size range. Both ethylene-hydrogenation-to-ethane and the parallel hydrogenation–dehydrogenation ethylidyne-producing route are considered, uncovering that at the hydrogenation occurs for Ptn (n≥10) clusters at T>150 K, with maximum room temperature reactivity observed for Pt13. Structure insensitivity, inherent for specific cluster sizes, is induced in the more active Pt13 by a temperature increase up to 400 K leading to ethylidyne formation. Control of sub-nanometre particle size may be used for tuning catalysed hydrogenation activity and selectivity. PMID:26817713

  4. Palladium-catalysed ortho arylation of acetanilides

    Indian Academy of Sciences (India)


    State Key Laboratory of Applied Organic Chemistry, Lanzhou 73000, P.R. China e-mail: MS received 12 January 2009; revised 20 July 2009; accepted 14 September 2009. Abstract. The palladium-catalysed direct arylation of acetanilides by using C–H activation methodo- logy has been demonstrated.

  5. Deconjugation of glucuronides catalysed by UDPglucuronyltransferase

    NARCIS (Netherlands)

    Peters, W. H.; Jansen, P. L.; Cuypers, H. T.; de Abreu, R. A.; Nauta, H.


    Evidence was found for UDPglucuronyltransferase-catalysed deconjugation of p-nitrophenol-, 4-methylumbelliferone- and phenolphthalein-glucuronides. The evidence is based on the following observations: 1, deconjugation is UDP-dependent and the reactions show Michaels-Menten kinetics with respect to

  6. Titanium-catalysed dehydrocoupling of chiral carbosilanes

    Indian Academy of Sciences (India)


    Transition metal-catalysed dehydrocoupling of organosilanes containing primary, secondary and tertiary SiH groups has been developed as an effective route to short chain oligosilanes 1. Studies have been extended using NMR spectroscopy 2 to understand the underlying stereochemistry of these oligomers.

  7. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)


    Highlights: • Natural metal-oxides, hydroxides are detected on the top surface of steel substrates we tested. • Polysilazane reacts with hydroxide functional groups on steel substrates to form Cr–O–Si and Fe–O–Si covalent bonds. • Covalent bonding between steel and polysilazane at the interface was probed using spectroscopic techniques. - Abstract: In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se{sub 2} (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me–O–Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr–O–Si and Fe–O–Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  8. Selective amine catalysed steroidal dimerization

    Indian Academy of Sciences (India)

    steroid dimers in which carbon atoms comprise a ben- zene nucleus.6 A standard colour test for the presence of cholesterol is the formation of a green colour in concentrated sulphuric acid, and this was shown to be due to a polyenyl steroidal dimer carbocation.7–9 Many dimeric and oligomeric steroids exhibit interesting.

  9. Selective amine catalysed steroidal dimerization

    Indian Academy of Sciences (India)

    of cholesterol is the formation of a green colour in concentrated sulphuric acid, and this was shown to be due to a polyenyl steroidal dimer carbocation.7–9 Many dimeric and oligomeric steroids exhibit interesting micellular, detergent and liquid crystal behaviour.10,11. Most of the steroidal dimmers are also well-known.

  10. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki


    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  11. 2-nitroveratryl as a photocleavable thiol-protecting group for directed disulfide bond formation in the chemical synthesis of insulin. (United States)

    Karas, John A; Scanlon, Denis B; Forbes, Briony E; Vetter, Irina; Lewis, Richard J; Gardiner, James; Separovic, Frances; Wade, John D; Hossain, Mohammed A


    Chemical synthesis of peptides can allow the option of sequential formation of multiple cysteines through exploitation of judiciously chosen regioselective thiol-protecting groups. We report the use of 2-nitroveratryl (oNv) as a new orthogonal group that can be cleaved by photolysis under ambient conditions. In combination with complementary S-pyridinesulfenyl activation, disulfide bonds are formed rapidly in situ. The preparation of Fmoc-Cys(oNv)-OH is described together with its use for the solid-phase synthesis of complex cystine-rich peptides, such as insulin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.


    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  13. catalysed ortho-carboxylation of acetanilide with CO

    Indian Academy of Sciences (India)

    FG=functional group) utilize carbon monoxide as a carbon source for the formation of functionalized aromatic rings with a new. C-C bond. Carbonylation reactions of vinyl halides, aryl halides, mesylates, triflates, fluorosulphonates and.

  14. Formation of hydrogen bonds precedes the rate-limiting formation of persistent structure in the folding of ACBP

    DEFF Research Database (Denmark)

    Teilum, K; Kragelund, B B; Knudsen, J


    of eight conserved hydrophobic residues at the interface between the two N and C-terminal helices. Previous mutation studies have shown that the formation of this structure is rate limiting for the final folding of ACBP. The burst phase structures observed in ACBP are different from the previously reported...

  15. A quantum-chemical validation about the formation of hydrogen bonds and secondary interactions in intermolecular heterocyclic systems

    Directory of Open Access Journals (Sweden)

    Boaz Galdino Oliveira


    Full Text Available We have performed a detailed theoretical study in order to understand the charge density topology of the C2H4O···C2H2 and C2H4S···C2H2 heterocyclic hydrogen-bonded complexes. Through the calculations derived from Quantum Theory of Atoms in Molecules (QTAIM, it was observed the formation of hydrogen bonds and secondary interactions. Such analysis was performed through the determination of optimized geometries at B3LYP/6-31G(d,p level of theory, by which is that QTAIM topological operators were computed, such as the electronic density ρ(r, Laplacian Ñ2ρ(r, and ellipticity ε. The examination of the hydrogen bonds has been performed through the measurement of ρ(r, Ñ2ρ(r and ε between (O···H—C and (S···H—C, whereas the secondary interaction between axial hydrogen atoms Hα and carbon of acetylene. In this insight, it was verified the existence of secondary interaction only in C2H4S···C2H2 complex because its structure is propitious to form multiple interactions.

  16. Palladium-catalysed ortho arylation of acetanilides

    Indian Academy of Sciences (India)

    Full Papers Volume 122 Issue 2 March 2010 pp 149-155 ... Abstract. The palladium-catalysed direct arylation of acetanilides by using C-H activation methodology has been demonstrated. Several acetanilides were coupled with aryl iodides in the presence of 10 mol% of Pd(OAc)2, 1.0 equiv of Cu(OTf)2, and 0.6 equiv of ...

  17. Mechanistic insight into benzenethiol catalyzed amide bond formations from thioesters and primary amines

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Bork, Nicolai; Strømgaard, Kristian


    in the aromatic thioester amidation reaction. Under similar conditions, cysteine-free ligation was achieved by coupling a fully side-chain protected 15 amino acid phosphopeptide thioester to the free N-terminal of a side-chain protected 9 amino acid peptide producing the corresponding 24 amino acid phosphopeptide.......The influence of arylthiols on cysteine-free ligation, i.e. the reaction between an alkyl thioester and a primary amine forming an amide bond, was studied in a polar aprotic solvent. We reacted the ethylthioester of hippuric acid with cyclohexylamine in the absence or presence of various quantities...

  18. Formation of sulfido ciobium complexes through C-S bond activation

    Directory of Open Access Journals (Sweden)

    Azevedo Nélio Pires


    Full Text Available Upon reacting (eta5-C5H52NbCl2, eta5-C5H5 = Cp, and (Ph3Sn(SPh, in THF, (eta5-C5H52Nb(Cl(mu-SSn(Ph3(Cl, 1, and (eta5-C5H52Nb(SCl, 2, were obtained. Complexes 1 and 2 were characterized by IR, ¹H-NMR, 13C-NMR, Mössbauer spectroscopies, elemental analysis as well as by atomic absorption. Hydrolysis of 1 yielded the mu-oxo species, (eta5-C5H52Nb(Cl(mu-OSn(Ph3Cl, 3, which was characterized by IR, ¹H-NMR, 13C-NMR and Mössbauer spectroscopies, elemental analysis, atomic absorption as well as by X-ray crystallography. It crystallizes in the space group Pca2(1 with a = 17.282(3, b = 18.122(4, c = 17.3269(2, V = 5426.2(16 ų, and Z = 8. Additional studies indicated that the complexes were formed as a result of the nucleophilic displacement of the niobium-chloride bond by the thiolate ligand followed by a C-S bond cleavage. The cleavage occurs with an excess of the thiolate compound equal to or greater than 2:1.

  19. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates

    DEFF Research Database (Denmark)

    Due-Hansen, Maria E; Pandey, Sunil K; Christiansen, Elisabeth


    A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed.......A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed....

  20. Solvent engineering and other reaction design methods for favouring enzyme-catalysed synthesis

    DEFF Research Database (Denmark)

    Zeuner, Birgitte

    important for FAE activity and stability in IL-buffer (15% v/v) systems. The quantum chemistry-based COSMO-RS method was applied for explaining the IL anion effect in terms of hydrogen bonding capacity. Furthermore, the usefulness of COSMO-RS and other thermodynamically based tools in solvent selection...... for FAE-catalysed acylation reactions was reviewed. FAE type A from Aspergillus niger and an FAE from a commercial preparation from Humicola insolens, Depol 740L, could not catalyse the esterification of arabinose or xylose with hydroxycinnamates in IL-buffer systems or in surfactantless microemulsion...... the biocatalytic productivity of 2.5-fold. However, the recyclability of the immobilized enzyme was low. Reusing Tr6 seven times in a membrane reactor increased the trans-sialylation yield on the limiting substrate 1.3-fold, emphasizing the importance of the continuous product removal. Furthermore...

  1. Extremely efficient catalysis of carbon-carbon bond formation using "click" dendrimer-stabilized palladium nanoparticles. (United States)

    Astruc, Didier; Ornelas, Cátia; Diallo, Abdou K; Ruiz, Jaime


    This article is an account of the work carried out in the authors' laboratory illustrating the usefulness of dendrimer design for nanoparticle palladium catalysis. The "click" synthesis of dendrimers constructed generation by generation by 1-->3 C connectivity, introduces 1,2,3-triazolyl ligands insides the dendrimers at each generation. Complexation of the ligands by Pd(II) followed by reduction to Pd(0) forms dendrimer-stabilized Pd nanoparticles (PdNPs) that are extremely reactive in the catalysis of olefin hydrogenation and C-C bond coupling reactions. The stabilization can be outer-dendritic for the small zeroth-generation dendrimer or intra-dendritic for the larger first- and second-generation dendrimers. The example of the Miyaura-Suzuki reaction that can be catalyzed by down to 1 ppm of PdNPs with a "homeopathic" mechanism (the less, the better) is illustrated here, including catalysis in aqueous solvents.

  2. Organometallic myoglobins: Formation of Fe-carbon bonds and distal pocket effects on aryl ligand conformations. (United States)

    Wang, Bing; Thomas, Leonard M; Richter-Addo, George B


    Bioorganometallic Fe-C bonds are biologically relevant species that may result from the metabolism of natural or synthetic hydrazines. The molecular structures of four new sperm whale mutant myoglobin derivatives with Fe-aryl moieties, namely H64A-tolyl-m, H64A-chlorophenyl-p, H64Q-tolyl-m, and H64Q-chlorophenyl-p, have been determined at 1.7-1.9Å resolution. The structures reveal conformational preferences for the substituted aryls resulting from attachment of the aryl ligands to Fe at the site of net -NHNH 2 release from the precursor hydrazines, and show distal pocket changes that readily accommodate these bulky ligands. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Enthalpy of Formation and O-H Bond Dissociation Enthalpy of Phenol: Inconsistency between Theory and Experiment. (United States)

    Dorofeeva, Olga V; Ryzhova, Oxana N


    Gas-phase O–H homolytic bond dissociation enthalpy in phenol, DH298°(C6H5O–H), is still disputed, despite a large number of experimental and computational studies. In estimating this value, the experimental enthalpy of formation of phenol, ΔfH298°(C6H5OH, g) = −96.4 ± 0.6 kJ/mol (Cox, J. D. Pure Appl. Chem. 1961, 2, 125−128), is often used assuming high accuracy of the experimental value. In the present work a substantially less negative value of ΔfH298°(C6H5OH, g) = −91.8 ± 2.5 kJ/mol was calculated combining G4 theory with an isodesmic reaction approach. A benchmark quality of this result was achieved by using a large number of reliable reference species in isodesmic reaction calculations. Among these are the most accurate ΔfH298° values currently available from the Active Thermochemical Tables (ATcT) for 36 species (neutral molecules, radicals, and ions), anisole with recently reassessed enthalpy of formation, and 13 substituted phenols. The internal consistency of the calculated ΔfH298°(C6H5OH, g) value with the experimental enthalpies of formation of more than 50 reference species suggests that the reported experimental enthalpy of formation of phenol is in error. Taking into account that the enthalpy of formation of phenol has not been investigated experimentally since 1961, the new measurements would be extremely valuable. Using the accurate enthalpies of formation of C6H5OH and C6H5O• calculated in the present work, we obtained DH298°(C6H5O–H) = 369.6 ± 4.0 kJ/mol. This value is in satisfactory agreement with that determined from the most precise experimental measurement.

  4. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.


    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  5. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation. (United States)

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang


    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology

  6. Carbon-carbon bond formation in cationic aryl-olefin-platinum (II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, V. [Universita del Molise, Campobasso (Italy); Renzi, A.D.; Tesauro, D.; Vitagliano, A. [Universita di Napoli (Italy)


    Cationic five-coordinate [Pt(3-R{sup 1}-4-R{sup 2}-C{sub 6}H{sub 3})(MeCN) (6-Me-py-2-CH=NPh)(C{sub 2}H{sub 4})]{sup +} complexes (R{sup 1}, R{sup 2} = H, Me, OMe) undergo an unexpected rearrangement at 0{degrees}C in chloroform solution, affording, after treatment with aqueous LiCl, the neutral four-coordinate species [Pt(2-Et-4-R{sup 1}-5-R{sup 2}-C{sub 6}H{sub 2})Cl(6-Me-py-1-CH=NPh)]. Pt-C{sub aryl} bond breaking and making is involved in the whole process, resulting in a 1,2-shift of the platinum atom to an adjacent position of the benzene ring. The same compound is obtained, together with products deriving from a typical insertion, when an equimolar amount of ethylene is added to a chloroform solution of [Pt(3-R{sub 1}-4-R{sup 2}-C{sub 6}H{sub 3})(MeCN)(6-Me-py-2-CH=NPh)]{sup +} at 0{degrees}C. When higher ethylene/Pt ratios are used, only five-coordinate [Pt(3-R{sup 1}-4-R{sup 2}-C{sub 6}H{sub 3}CH{sub 2}CH{sub 2})Cl(6-Me-py-2-CH{double_bond}NPh)(C{sub 2}H{sub 4})] complex is isolated. As the experimental data rule out the possibility of a (2-arylethyl)platinum to (2-ethylaryl)platinum rearrangement, different reaction paths are suggested for the two processes. When the two reactions are combined in a {open_quotes}one-pot{close_quotes} sequence, a regiocontrolled double alkylation of the aryl system can be obtained. The behavior substrates containing bidenate nitrogen ligands having different five-coordination stabilizing effects is examined, and data concerning the reactions of propene and styrene are reported. 13 refs., 3 tabs.

  7. Catalytic and Atom-Economic Csp3 -Csp3 Bond Formation: Alkyl Tantalum Ureates for Hydroaminoalkylation. (United States)

    DiPucchio, Rebecca C; Roşca, Sorin-Claudiu; Schafer, Laurel L


    Atom-economic and regioselective Csp3 -Csp3 bond formation has been achieved by rapid C-H alkylation of unprotected secondary arylamines with unactivated alkenes. The combination of Ta(CH 2 SiMe 3 ) 3 Cl 2 , and a ureate N,O-chelating-ligand salt gives catalytic systems prepared in situ that can realize high yields of β-alkylated aniline derivatives from either terminal or internal alkene substrates. These new catalyst systems realize C-H alkylation in as little as one hour and for the first time a 1:1 stoichiometry of alkene and amine substrates results in high yielding syntheses of isolated amine products by simple filtration and concentration. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C-C bond formations via the oxidative activation of sp3 C-H bonds (United States)

    Li, Zhiping; Bohle, D. Scott; Li, Chao-Jun


    Cu-catalyzed cross-dehydrogenative coupling (CDC) methodologies were developed based on the oxidative activation of sp3 C-H bonds adjacent to a nitrogen atom. Various sp, sp2, and sp3 C-H bonds of pronucleophiles were used in the Cu-catalyzed CDC reactions. Based on these results, the mechanisms of the CDC reactions also are discussed. C-H activation | catalysis | Baylis-Hillman reaction | Mannich reaction | Friedel-Crafts reaction

  9. σ Bond activation through tunneling: formation of the boron hydride cations BHn(+) (n = 2, 4, 6). (United States)

    Qiu, Yudong; Wu, Chia-Hua; Schaefer, Henry F; Allen, Wesley D; Agarwal, Jay


    The network of H2 additions to B(+) and subsequent insertion reactions serve as a tractable model for hydrogen storage in elementary boron-containing compounds. Here, they are investigated using state-of-the-art ab initio methods (up to CCSDTQ and cc-pCV6Z basis sets). The binding energies of H2 to HBH(+) (14.9 kcal mol(-1)) and HBH(H2)(+) (18.1 kcal mol(-1)) are determined to be much higher than those for B(H2)(+) (3.8 kcal mol(-1)), B(H2)2(+) (3.0 kcal mol(-1)), and B(H2)3(+) (2.5 kcal mol(-1)) at the CCSDTQ/CBS level of theory. These predictions are in agreement with the experiments of Kemper, Bushnell, Weis, and Bowers (J. Am. Chem. Soc., 1998, 120, 7577). Molecular orbital analyses show that the enhanced binding in HBH(H2)m(+) complexes originates from the strong interaction between the 1σu HOMO of HBH(+) and the 1σu LUMO of H2. For the insertion reactions B(H2)n(+) → HBH(H2)n-1(+), activation barriers are determined to be 58.3 kcal mol(-1) [Mk-MRCCSD(T)/CBS], 12.2 kcal mol(-1) (CCSDTQ/CBS) and 4.6 kcal mol(-1) (CCSDTQ/CBS) for n = 1, 2, and 3, respectively. After using theoretical results to remove tunneling effects from the experimental rate constants, new Arrhenius fits yield activation barriers of 4.6(3) kcal mol(-1) and 3.8(1) kcal mol(-1) for the BH6(+) and BD6(+) insertion reactions, respectively, which are in near perfect agreement with converged theoretical values (4.6 kcal mol(-1) and 3.9 kcal mol(-1)). These findings demonstrate that earlier Arrhenius fits considerably underestimate these barriers, and that quantum tunneling dominates the σ bond activation mechanism witnessed in previous experiments involving BH6(+).

  10. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin


    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  11. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa


    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  12. Palladium-catalysed electrophilic aromatic C-H fluorination (United States)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias


    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  13. Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents

    NARCIS (Netherlands)

    Mutti, Francesco G.; Orthaber, Andreas; Schrittwieser, Joerg H.; Vries, Johannes G. de; Pietschnig, Rudolf; Kroutil, Wolfgang


    An iridium catalysed oxidation was coupled concurrently to an asymmetric biocatalytic reduction in one-pot; thus it was shown for the first time that iridium- and alcohol dehydrogenase-catalysed redox reactions are compatible. As a model system racemic chlorohydrins were transformed to

  14. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)


    ted enantioselective aldol addition reactions of ace- tone and substituted acetones with aldehydes catalysed by proline. Conflicting kinetic evidence has been obtained by Agami et al9 for the participa- tion of two molecules of proline in the transition states of proline-catalysed intramolecular cycliza- tions and by Houk et al10 ...

  15. Enthalpy of formation of anisole: implications for the controversy on the O-H bond dissociation enthalpy in phenol. (United States)

    Simões, Ricardo G; Agapito, Filipe; Diogo, Hermínio P; da Piedade, Manuel E Minas


    Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

  16. From Molecules to Surfaces: Radical-Based Mechanisms of Si-S and Si-Se Bond Formation on Silicon. (United States)

    Buriak, Jillian M; Sikder, Md Delwar H


    The derivatization of silicon surfaces can have profound effects on the underlying electronic properties of the semiconductor. In this work, we investigate the radical surface chemistry of silicon with a range of organochalcogenide reagents (comprising S and Se) on a hydride-terminated silicon surface, to cleanly and efficiently produce surface Si-S and Si-Se bonds, at ambient temperature. Using a diazonium-based radical initiator, which induces formation of surface silicon radicals, a group of organochalcogenides were screened for reactivity at room temperature, including di-n-butyl disulfide, diphenyl disulfide, diphenyl diselenide, di-n-butyl sulfide, diphenyl selenide, diphenyl sulfide, 1-octadecanethiol, t-butyl disulfide, and t-butylthiol, which comprises the disulfide, diselenide, thiol, and thioether functionalities. The surface reactions were monitored by transmission mode Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ionization mass spectrometry. Calculation of Si-Hx consumption, a semiquantitative measure of yield of production of surface-bound Si-E bonds (E = S, Se), was carried out via FTIR spectroscopy. Control experiments, sans the BBD diazonium radical initiator, were all negative for any evident incorporation, as determined by FTIR spectroscopy. The functional groups that did react with surface silicon radicals included the dialkyl/diphenyl disulfides, diphenyl diselenide, and 1-octadecanethiol, but not t-butylthiol, diphenyl sulfide/selenide, and di-n-butyl sulfide. Through a comparison with the rich body of literature regarding molecular radicals, and in particular, silyl radicals, reaction mechanisms were proposed for each. Armed with an understanding of the reaction mechanisms, much of the known chemistry within the extensive body of radical-based reactivity has the potential to be harnessed on silicon and could be extended to a range of technologically relevant semiconductor

  17. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.


    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  18. Cobalt-Porphyrin-Catalysed Intramolecular Ring-Closing C-H Amination of Aliphatic Azides: A Nitrene-Radical Approach to Saturated Heterocycles

    NARCIS (Netherlands)

    Kuijpers, P.F.; Tiekink, M.J.; Breukelaar, W.B.; Broere, D.L.J.; van Leest, N.P.; van der Vlugt, J.I.; Reek, J.N.H.; de Bruin, B.


    Cobalt-porphyrin-catalysed intramolecular ring-closing C−H bond amination enables direct synthesis of various N-heterocycles from aliphatic azides. Pyrrolidines, oxazolidines, imidazolidines, isoindolines and tetrahydroisoquinoline can be obtained in good to excellent yields in a single reaction

  19. Synthetic Methods for Ester Bond Formation and Conformational Analysis of Ester-Containing Carbohydrates (United States)

    Hackbusch, Sven

    This dissertation encompasses work related to synthetic methods for the formation of ester linkages in organic compounds, as well as the investigation of the conformational influence of the ester functional group on the flexibility of inter-saccharide linkages, specifically, and the solution phase structure of ester-containing carbohydrate derivatives, in general. Stereoselective reactions are an important part of the field of asymmetric synthesis and an understanding of their underlying mechanistic principles is essential for rational method development. Here, the exploration of a diastereoselective O-acylation reaction on a trans-2-substituted cyclohexanol scaffold is presented, along with possible reasons for the observed reversal of stereoselectivity dependent on the presence or absence of an achiral amine catalyst. In particular, this work establishes a structure-activity relationship with regard to the trans-2-substituent and its role as a chiral auxiliary in the reversal of diastereoselectivity. In the second part, the synthesis of various ester-linked carbohydrate derivatives, and their conformational analysis is presented. Using multidimensional NMR experiments and computational methods, the compounds' solution-phase structures were established and the effect of the ester functional group on the molecules' flexibility and three-dimensional (3D) structure was investigated and compared to ether or glycosidic linkages. To aid in this, a novel Karplus equation for the C(sp2)OCH angle in ester-linked carbohydrates was developed on the basis of a model ester-linked carbohydrate. This equation describes the sinusoidal relationship between the C(sp2)OCH dihedral angle and the corresponding 3JCH coupling constant that can be determined from a J-HMBC NMR experiment. The insights from this research will be useful in describing the 3D structure of naturally occurring and lab-made ester-linked derivatives of carbohydrates, as well as guiding the de novo-design of

  20. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation. (United States)

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor


    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  1. Remarkably Efficient Synthesis of 2H-Indazole 1-oxides and 2H-Indazoles via Tandem Carbon–Carbon Followed by Nitrogen–Nitrogen Bond Formation (United States)

    Bouillon, Isabelle; Zajíček, Jaroslav; Pudelová, Naděžda; Krchňák, Viktor


    Synthesis of Indazoles Base-catalyzed tandem carbon–carbon followed by nitrogen–nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles. PMID:18937414

  2. A novel approach for a C-11C bond formation: synthesis of 17α-([11C]prop-1-ynyl)-3-methoxy-3,17β-estradiol

    International Nuclear Information System (INIS)

    Wuest, F.; Zessin, J.


    A novel method for a 11 C-C bond formation was developed, employing a cross-coupling reaction between a terminal acetylene and [ 11 C]methyl iodide. The method was used for the synthesis of 17α-([ 11 C]prop-1-ynyl)-3-methoxy-3,17β-estadiol. (orig.)

  3. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.


    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  4. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds. (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders


    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  5. Carenium—Calkyl Bond Making and Breaking: Key Process in the Platinum-Mediated Caryl—Calkyl Bond Formation. Analogies to Organic Electrophilic Aromatic Substitution

    NARCIS (Netherlands)

    Koten, G. van; Albrecht, M.A.; Spek, A.L.


    The reaction of cationic platinum aqua complexes 2 [Pt(C6H2{CH2NMe2}2-E-4)(OH2)](X') (X' = SO3CF3, BF4) with alkyl halides RX gave various air-stable arenium complexes 3-5 containing a new C-C bond (R = Me, 3; Et, 4; Bn, 5). Electron-releasing oxo-substituents on the aromatic ligand (E = e.g., OH,

  6. CS Bond formation by

    Indian Academy of Sciences (India)


    Feb 2, 2017 ... G, Brancale A, Hamel E, Artico M and Silvestri R. 2006 New arylthioindoles: Potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies J. Med. Chem. 49 947;. (c) Gangjee A, Zeng Y, Talreja T, McGuire J J, Kisliuk. R L and Queener S F 2007 Design and ...

  7. CS Bond formation by

    Indian Academy of Sciences (India)


    Feb 2, 2017 ... and concentrated under reduced pressure to give the crude compound. The crude compound was purified by flash col- umn chromatography (100–200 mesh silica gel), eluted at. 10–20% ethyl acetate/pet ether to afford the S-substituted quinazoline derivative. The characterization data for the compounds ...

  8. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V


    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Zn (OTf) 2-catalysed indolylation and pyrrolylation of isatins: Efficient ...

    Indian Academy of Sciences (India)

    catalysed indolylation and pyrrolylation of isatins: Efficient synthesis and biochemical assay of 3,3-di(heteroaryl)oxindoles. C Praveen S Narendiran P Dheenkumar P T Perumal. Regular Articles Volume 125 Issue 6 November 2013 pp 1543- ...

  10. Zeolite H-BEA catalysed multicomponent reaction: One-pot ...

    Indian Academy of Sciences (India)

    BEA catalysed multicomponent reaction: One-pot synthesis of amidoalkyl naphthols - Biologically active drug-like molecules. Sunil R Mistry Rikesh S Joshi Kalpana C Maheria. Volume 123 Issue 4 July 2011 pp 427-432 ...

  11. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

    International Nuclear Information System (INIS)

    McCarthy, Michael C.; Martinez, Oscar; Crabtree, Kyle N.; Martin-Drumel, Marie-Aline; McGuire, Brett A.; Stanton, John F.


    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO_2 reaction represents the final step for the production of CO_2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO_2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO_2. Using isotopically labelled precursors, the OH + C"1"8O reaction predominately yields HOC"1"8O for both isomers, but H"1"8OCO is observed as well, typically at the level of 10%-20% that of HOC"1"8O; the opposite propensity is found for the "1"8OH + CO reaction. DO + C"1"8O yields similar ratios between DOC"1"8O and D"1"8OCO as those found for OH + C"1"8O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO_2, which, at the high pressure of our gas expansion, can readily occur. The large "1"3C Fermi-contact term (a_F) for trans- and cis-HO"1"3CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.

  12. Laccase catalysed grafting of phenolic onto xylan to improve its applicability in films (United States)

    Pei, Jicheng; Wang, Bing; Zhang, Fangdong; Li, Zhongyang; Yin, Yunbei; Zhang, Dongxu


    Xylan can be tailored for various value-added applications. However, its use in aqueous systems is hampered by its complex structure, and small molecular weight. This research aimed at improving the xylan molecular weight and changing its structure. Laccase-catalysed oxidation of 4-coumaric acid (PCA), ferulic acid (FA), syringaldehyde (SD), and vanillin (VA) onto xylan was grafted to study the changes in its structure, tensile properties, and antibacterial activities. A Fourier transform infrared (FTIR) spectrum analyser was used to observe the changes in functional groups of xylan. The results showed a band at 1635 cm-1 corresponding to the stretching vibration of conjugated carbonyl carboxy hemoglobin and a benzene ring structure were strengthened; the appearance of a new band between 1200 cm-1 and 1270 cm-1 corresponding to alkyl ethers on the aryl C-O stretching vibration was due to the fact that during the grafting process, the number of benzene ring structures increased and covalent connections occurred between phenols and xylan. The reaction mechanism for the laccase-catalysed oxidation of phenol compounds onto xylan was preliminary explored by 13C-NMR. The results showed that PCA-xylan, FA-xylan graft poly onto xylan by Cγ ester bond, SD-xylan graft poly onto xylan by ether bond and an ester bond, and VD-xylan graft poly onto xylan by ether bond. The film strength of xylan derivatives has been significantly increased, especially for the PCA-xylan derivative. The increases in tensile stress at break, tensile strength, tensile yield stress, and Young's modulus were: 24.04%, 31.30%, 55.56%, and 28.21%, respectively. After laccase/phenolics were modified, xylan had a good antibacterial effect to E. coli, Corynebacterium glutamicum, and Bacillus subtilis. The SD-xylan, FA-xylan, and PCA-xylan showed a greater efficacy against E. coli, Corynebacterium glutamicum, and Bacillus subtilis, respectively.

  13. Tomographic Evaluation of Reparative Dentin Formation after Direct Pulp Capping with Ca(OH)2, MTA, Biodentine, and Dentin Bonding System in Human Teeth. (United States)

    Nowicka, Alicja; Wilk, Grażyna; Lipski, Mariusz; Kołecki, Janusz; Buczkowska-Radlińska, Jadwiga


    New materials can increase the efficiency of pulp capping through the formation of a complete reparative dentin bridge with no toxic effects. The present study involved tomographic evaluations of reparative dentin bridge formation after direct pulp capping with calcium hydroxide, mineral trioxide aggregate (MTA), Biodentine (Septodont, Saint Maur des Fossés, France), and Single Bond Universal (3M ESPE, Seefeld, Germany) in human teeth. Forty-four caries-free, intact, human third molars scheduled for extraction were subjected to mechanical pulp exposure and assigned to 1 of 4 experimental groups depending on the pulp capping agent used: calcium hydroxide, MTA, Biodentine, or Single Bond Universal. After 6 weeks, the teeth were extracted and processed for cone-beam computed tomographic imaging and histologic examination. Tomographic data, including the density and volume of formed reparative dentin bridges, were evaluated using a scoring system. The reparative dentin formed in the calcium hydroxide, MTA, and Biodentine groups was significantly superior to that formed in the Single Bond Universal group in terms of thickness and volume. The dentin bridges in the Biodentine group showed the highest average and maximum volumes. The mean density of dentin bridges was the highest in the MTA group and the lowest in the Single Bond Universal group. The volume of reparative dentin bridges formed after direct pulp capping is dependent on the material used. Biodentine and MTA resulted in the formation of bridges with a significantly higher average volume compared with Single Bond Universal, and cone-beam computed tomographic imaging allowed for the identification of the location of dentin bridges. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme: the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds. (United States)

    Xie, Jinbing; Qin, Meng; Cao, Yi; Wang, Wei


    Recently, it was reported that ultraviolet (UV) illumination could trigger the unfolding of proteins by disrupting the buried disulfide bonds. However, the consequence of such unfolding has not been adequately evaluated. Here, we report that unfolded chicken egg white lysozyme (CEWL) triggered by UV illumination can form uniform globular aggregates as confirmed by dynamic light scattering, atomic force microscopy, and transmission electron microscopy. The assembling process of such aggregates was also monitored by several other methods, such as circular dichroism, fluorescence spectroscopy, mass spectrometry based on chymotrypsin digestion, ANS-binding assay, Ellman essay, and SDS-PAGE. Our finding is that due to the dissociation of the native disulfide bonds by UV illumination, CEWL undergoes drastic conformational changes resulting in the exposure of some hydrophobic residues and free thiols. Subsequently, these partially unfolded molecules self-assemble into small granules driven by intermolecular hydrophobic interaction. With longer UV illumination or longer incubation time, these granules can further self-assemble into larger globular aggregates. The combined effects from both the hydrophobic interaction and the formation of intermolecular disulfide bonds dominate this process. Additionally, similar aggregation behavior can also be found in other three typical disulfide-bonded proteins, that is, α-lactalbumin, RNase A, and bovine serum albumin. Thus, we propose that such aggregation behavior might be a general mechanism for some disulfide-bonded proteins under UV irradiation. Copyright © 2011 Wiley-Liss, Inc.

  15. Dynamics of Radical-Mediated Enzyme Catalyses (United States)

    Warncke, Kurt


    An emergent class of enzymes harnesses the extreme reactivity of electron-deficient free radical species to perform some of the most difficult reactions in biology. The regio- and stereo-selectivity achieved by these enzymes defies long-held ideas that radical reactions are non-specific. The common primary step in these catalyses is metal- or metallocenter-assisted generation of an electron-deficient organic "initiator radical". The initiator radical abstracts a hydrogen atom from the substrate, opening a new reaction channel for rearrangement to the product. Our aim is to elucidate the detailed molecular mechanisms of the radical pair separation and radical rearrangement steps. Radical pair separation and substrate radical rearrangement are tracked by using time-resolved (10-7 to 10-3 s) techniques of pulsed-electron paramagnetic resonance spectroscopy (FT-EPR, ESEEM). Synchronous time-evolution of the reactions is attained by triggering with a visible laser pulse. Transient non-Boltzmann population of the states of the spin-coupled systems, and resultant electron spin polarization, facilitates study at or near room temperature under conditions where the enzymes are operative. The systems examined include ethanolamine deaminase, a vitamin B12 coenzyme-dependent enzyme, ribonucleotide reductase and photosynthetic reaction centers. The electronic and nuclear structural and kinetic information obtained from the pulsed-EPR studies is used to address how the initiator radicals are stabilized against deleterious recombination with the metal, and to distinguish the participation of concerted versus sequential rearrangement pathways.

  16. Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium (United States)

    Batan, A.; Mine, N.; Douhard, B.; Brusciotti, F.; De Graeve, I.; Vereecken, J.; Wenkin, M.; Piens, M.; Terryn, H.; Pireaux, J. J.; Reniers, F.


    Silane and silane-like films were deposited from bis-1,2-(triethoxysilyl)ethane by vacuum and atmospheric plasma onto aluminium. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for probing the aluminium/plasma polymer film interface. An AlOSi + fragment was identified at nominal mass m/ z = 70.9539 amu, indicating a strong chemical interaction (formation of a covalent bond) at the substrate/film interface. Until now, this strong silane-aluminium interaction has never been observed in plasma polymer BTSE films. Ageing tests in an ultrasonic water bath combined with X-ray photoelectron spectroscopy measurements allowed to indirectly confirm good adhesion, and therefore the formation of a chemical bond at the interface.

  17. O-O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O-O radical coupling. (United States)

    Shaffer, David W; Xie, Yan; Concepcion, Javier J


    In this review we discuss at the mechanistic level the different steps involved in water oxidation catalysis with ruthenium-based molecular catalysts. We have chosen to focus on ruthenium-based catalysts to provide a more coherent discussion and because of the availability of detailed mechanistic studies for these systems but many of the aspects presented in this review are applicable to other systems as well. The water oxidation cycle has been divided in four major steps: water oxidative activation, O-O bond formation, oxidative activation of peroxide intermediates, and O 2 evolution. A significant portion of the review is dedicated to the O-O bond formation step as the key step in water oxidation catalysis. The two main pathways to accomplish this step, single-site water nucleophilic attack and O-O radical coupling, are discussed in detail and compared in terms of their potential use in photoelectrochemical cells for solar fuels generation.

  18. Palladium-catalysed transannular C-H functionalization of alicyclic amines (United States)

    Topczewski, Joseph J.; Cabrera, Pablo J.; Saper, Noam I.; Sanford, Melanie S.


    Discovering pharmaceutical candidates is a resource-intensive enterprise that frequently requires the parallel synthesis of hundreds or even thousands of molecules. C-H bonds are present in almost all pharmaceutical agents. Consequently, the development of selective, rapid and efficient methods for converting these bonds into new chemical entities has the potential to streamline pharmaceutical development. Saturated nitrogen-containing heterocycles (alicyclic amines) feature prominently in pharmaceuticals, such as treatments for depression (paroxetine, amitifadine), diabetes (gliclazide), leukaemia (alvocidib), schizophrenia (risperidone, belaperidone), malaria (mefloquine) and nicotine addiction (cytisine, varenicline). However, existing methods for the C-H functionalization of saturated nitrogen heterocycles, particularly at sites remote to nitrogen, remain extremely limited. Here we report a transannular approach to selectively manipulate the C-H bonds of alicyclic amines at sites remote to nitrogen. Our reaction uses the boat conformation of the substrates to achieve palladium-catalysed amine-directed conversion of C-H bonds to C-C bonds on various alicyclic amine scaffolds. We demonstrate this approach by synthesizing new derivatives of several bioactive molecules, including varenicline.

  19. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination (United States)

    Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.


    Amines with remote stereocentres (stereocentres that are three or more bonds away from the C-N bond) are important structural elements in many pharmaceutical agents and natural products. However, previously reported methods to prepare these compounds in an enantioselective manner are indirect and require multistep synthesis. Here, we report a copper-hydride-catalysed, enantioselective synthesis of γ- or δ-chiral amines from readily available allylic alcohols, esters and ethers using a reductive relay hydroamination strategy (a net reductive process in which an amino group is installed at a site remote from the original carbon-carbon double bond). The protocol was suitable for substrates containing a wide range of functional groups and provided remote chiral amine products with high levels of regio- and enantioselectivity. Sequential amination of substrates containing several carbon-carbon double bonds could be achieved, demonstrating the high chemoselectivity of this process.

  20. First-Row Late Transition Metals for Catalytic Alkene Hydrofunctionalisation: Recent Advances in C-N, C-O and C-P Bond Formation

    Directory of Open Access Journals (Sweden)

    Sophie Bezzenine-Lafollée


    Full Text Available This review provides an outline of the most noteworthy achievements in the area of C-N, C-O and C-P bond formation by hydroamination, hydroalkoxylation, hydrophosphination, hydrophosphonylation or hydrophosphinylation reaction on unactivated alkenes (including 1,2- and 1,3-dienes promoted by first-row late transition metal catalytic systems based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2009 until mid-2017 has been covered.

  1. Nickel-Catalyzed C-S Bond Formation via Decarbonylative Thioetherification of Esters, Amides and Intramolecular Recombination Fragment Coupling of Thioesters

    KAUST Repository

    Lee, Shao-Chi


    A nickel catalyzed cross-coupling protocol for the straightforward C-S bond formation has been developed. Various mercaptans and a wide range of ester and amide substrates bearing various substituents were tolerated in this process which afforded products in good to excellent yields. Furthermore, an intramolecular protocol for the synthesis of thioethers starting from thioesters has been developed. The utility of this protocol has been demonstrated in the synthesis of benzothiophene on the bench top.

  2. Enthalpy of formation of the cyclohexadienyl radical and the C-H bond enthalpy of 1,4-cyclohexadiene: an experimental and computational re-evaluation. (United States)

    Gao, Yide; DeYonker, Nathan J; Garrett, E Chauncey; Wilson, Angela K; Cundari, Thomas R; Marshall, Paul


    A quantitative understanding of the thermochemistry of cyclohexadienyl radical and 1,4-cyclohexadiene is beneficial for diverse areas of chemistry. Given the interest in these two species, it is surprising that more detailed thermodynamic data concerning the homolytic C-H bond enthalpies of such entities have not been forthcoming. We thus undertook an experimental and computational evaluation of (a) the enthalpy of formation of cyclohexadienyl radical (C(6)H(7)), (b) the homolytic C-H bond enthalpy of 1,4-cyclohexadiene (C(6)H(8)), and (c) the enthalpy of the addition of a hydrogen atom to benzene. Using laser photolysis experiments coupled with highly accurate ab initio quantum mechanical techniques, a newly recommended enthalpy of formation for C(6)H(7) is determined to be 208.0 +/- 3.9 kJ mol(-1), leading to a homolytic bond dissociation enthalpy of 321.7 +/- 2.9 kJ mol(-1), almost 9 kJ mol(-1) higher than previously determined enthalpies that used less certain experimental values for the C(6)H(7) enthalpy of formation.

  3. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer. (United States)

    Yang, Xinzheng; Hall, Michael B


    A fully optimized resting state model with a strong Fe-H(delta-)...H(delta+)-O dihydrogen bond for the active site of the third type of hydrogenase, [Fe]-hydrogenase, is proposed from density functional theory (DFT) calculations on the reformulated active site from the recent X-ray crystal structure study of C176A (Cys176 was mutated to an alanine) mutated [Fe]-hydrogenase in the presence of dithiothreitol. The computed vibrational frequencies for this new active site model possess an average error of only +/-4.5 cm(-1) with respect to the wild-type [Fe]-hydrogenase. Based on this resting state model, a new mechanism with the following unusual aspects for hydrogen activation catalyzed by [Fe]-hydrogenase is also proposed from DFT calculations. (1) Unexpected dual pathways for H(2) cleavage with proton transfer to Cys176-sulfur or 2-pyridinol's oxygen for the formation and regeneration of the resting state with an Fe-H(delta-)...H(delta+)-O dihydrogen bond before the appearance of methenyl-H(4)MPT(+) (MPT(+)). (2) The strong dihydrogen bond in this resting state structure prevents D(2)/H(2)O exchange. (3) Only upon the arrival of MPT(+) with its strong hydride affinity can D(2)/H(2)O exchange take place as the arrival of MPT(+) triggers the breaking of the strong Fe-H(delta-)...H(delta+)-O dihydrogen bond by taking a hydride from the iron center and initiating the next H(2) (D(2)) cleavage. This new mechanism is completely different than that previously proposed (J. Am. Chem. Soc. 2008, 130, 14036) which was based on an active site model related to an earlier crystal structure. Here, Fe's role is H(2) capture and hydride formation without MPT(+) while the pyridone's special role involves the protection of the hydride by the dihydrogen bond.

  4. DNA degradation by bleomycin: evidence for 2'R-proton abstraction and for C-O bond cleavage accompanying base propenal formation

    International Nuclear Information System (INIS)

    Ajmera, S.; Wu, J.C.; Worth, L. Jr.; Rabow, L.E.; Stubbe, J.; Kozarich, J.W.


    Reaction of poly(dA-[2'S- 3 H]dU) with activated bleomycin yields [ 3 H] uracil propenal that completely retains the tritium label. In contrast, the authors have previously shown that reaction of poly(dA-[2'R- 3 H]dU) with activated bleomycin affords unlabeled uracil propenal. They have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'- 18 O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18 O content by 31 P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3-position

  5. Palladium-catalysed C-H activation of aliphatic amines to give strained nitrogen heterocycles (United States)

    McNally, Andrew; Haffemayer, Benjamin; Collins, Beatrice S. L.; Gaunt, Matthew J.


    The development of new chemical transformations based on catalytic functionalization of unactivated C-H bonds has the potential to simplify the synthesis of complex molecules dramatically. Transition metal catalysis has emerged as a powerful tool with which to convert these unreactive bonds into carbon-carbon and carbon-heteroatom bonds, but the selective transformation of aliphatic C-H bonds is still a challenge. The most successful approaches involve a `directing group', which positions the metal catalyst near a particular C-H bond, so that the C-H functionalization step occurs via cyclometallation. Most directed aliphatic C-H activation processes proceed through a five-membered-ring cyclometallated intermediate. Considering the number of new reactions that have arisen from such intermediates, it seems likely that identification of distinct cyclometallation pathways would lead to the development of other useful chemical transformations. Here we report a palladium-catalysed C-H bond activation mode that proceeds through a four-membered-ring cyclopalladation pathway. The chemistry described here leads to the selective transformation of a methyl group that is adjacent to an unprotected secondary amine into a synthetically versatile nitrogen heterocycle. The scope of this previously unknown bond disconnection is highlighted through the development of C-H amination and carbonylation processes, leading to the synthesis of aziridines and β-lactams (respectively), and is suggestive of a generic C-H functionalization platform that could simplify the synthesis of aliphatic secondary amines, a class of small molecules that are particularly important features of many pharmaceutical agents.

  6. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials. (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin


    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  7. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wen-Sheng, E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Freed, Karl F., E-mail: [James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 (United States)


    Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with

  8. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds

    International Nuclear Information System (INIS)

    Xu, Wen-Sheng; Freed, Karl F.


    Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with

  9. Formation of an Intramolecular Periplasmic Disulfide Bond in TcpP Protects TcpP and TcpH from Degradation in Vibrio cholerae. (United States)

    Morgan, Sarah J; French, Emily L; Thomson, Joshua J; Seaborn, Craig P; Shively, Christian A; Krukonis, Eric S


    TcpP and ToxR coordinately regulate transcription of toxT, the master regulator of numerous virulence factors in Vibrio cholerae. TcpP and ToxR are membrane-localized transcription factors, each with a periplasmic domain containing two cysteines. In ToxR, these cysteines form an intramolecular disulfide bond and a cysteine-to-serine substitution affects activity. We determined that the two periplasmic cysteines of TcpP also form an intramolecular disulfide bond. Disruption of this intramolecular disulfide bond by mutation of either cysteine resulted in formation of intermolecular disulfide bonds. Furthermore, disruption of the intramolecular disulfide bond in TcpP decreased the stability of TcpP. While the decreased stability of TcpP-C207S resulted in a nearly complete loss of toxT activation and cholera toxin (CT) production, the second cysteine mutant, TcpP-C218S, was partially resistant to proteolytic degradation and maintained ∼50% toxT activation capacity. TcpP-C218S was also TcpH independent, since deletion of tcpH did not affect the stability of TcpP-C218S, whereas wild-type TcpP was degraded in the absence of TcpH. Finally, TcpH was also unstable when intramolecular disulfides could not be formed in TcpP, suggesting that the single periplasmic cysteine in TcpH may assist with disulfide bond formation in TcpP by interacting with the periplasmic cysteines of TcpP. Consistent with this finding, a TcpH-C114S mutant was unable to stabilize TcpP and was itself unstable. Our findings demonstrate a periplasmic disulfide bond in TcpP is critical for TcpP stability and virulence gene expression. The Vibrio cholerae transcription factor TcpP, in conjunction with ToxR, regulates transcription of toxT, the master regulator of numerous virulence factors in Vibrio cholerae. TcpP is a membrane-localized transcription factor with a periplasmic domain containing two cysteines. We determined that the two periplasmic cysteines of TcpP form an intramolecular disulfide bond

  10. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias


    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C–N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions. PMID:27708259

  11. Asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with a new trifluoromethoxylation reagent (United States)

    Guo, Shuo; Cong, Fei; Guo, Rui; Wang, Liang; Tang, Pingping


    Fluorinated organic compounds are becoming increasingly important in pharmaceuticals, agrochemicals and materials science. The introduction of trifluoromethoxy groups into new drugs and agrochemicals has attracted much attention due to their strongly electron-withdrawing nature and high lipophilicity. However, synthesis of trifluoromethoxylated organic molecules is difficult owing to the decomposition of trifluoromethoxide anion and β-fluoride elimination from transition-metal-trifluoromethoxide complexes, and no catalytic enantioselective trifluoromethoxylation reaction has been reported until now. Here, we present an example of an asymmetric silver-catalysed intermolecular bromotrifluoromethoxylation of alkenes with trifluoromethyl arylsulfonate (TFMS) as a new trifluoromethoxylation reagent. Compared to other trifluoromethoxylation reagents, TFMS is easily prepared and thermally stable with good reactivity. In addition, this reaction is operationally simple, scalable and proceeds under mild reaction conditions. Furthermore, broad scope and good functional group compatibility has been demonstrated by application of the method to the bromotrifluoromethoxylation of double bonds in natural products and natural product derivatives.

  12. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions (United States)

    Lennon, David; Warringham, Robbie; Guidi, Tatiana; Parker, Stewart F.


    The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al2O3 catalyst. Inelastic neutron scattering studies show that the C-H stretching mode ranges from 2850 to 3063 cm-1, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al2O3 catalysts during methane reforming.

  13. Efficient and selective N-alkylation of amines with alcohols catalysed by manganese pincer complexes (United States)

    Elangovan, Saravanakumar; Neumann, Jacob; Sortais, Jean-Baptiste; Junge, Kathrin; Darcel, Christophe; Beller, Matthias


    Borrowing hydrogen (or hydrogen autotransfer) reactions represent straightforward and sustainable C-N bond-forming processes. In general, precious metal-based catalysts are employed for this effective transformation. In recent years, the use of earth abundant and cheap non-noble metal catalysts for this process attracted considerable attention in the scientific community. Here we show that the selective N-alkylation of amines with alcohols can be catalysed by defined PNP manganese pincer complexes. A variety of substituted anilines are monoalkylated with different (hetero)aromatic and aliphatic alcohols even in the presence of other sensitive reducible functional groups. As a special highlight, we report the chemoselective monomethylation of primary amines using methanol under mild conditions.

  14. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent


    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  15. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)


    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  16. Formation of two hydrogen bonds from the globin to the heme-linked oxygen molecule in Ascaris hemoglobin. (United States)

    De Baere, I; Perutz, M F; Kiger, L; Marden, M C; Poyart, C


    We have tried to find out why Ascaris hemoglobin has such an exceptionally high oxygen affinity (P50 approximately 0.004 mmHg; 1 mmHg = 133 Pa). Following Kloek et al., we have synthesized the N-terminal globin domain of Ascaris hemoglobin in Escherichia coli [Kloek, A. P., Yang, J., Mathews, F. S. & Goldberg, D. (1993) J. Biol. Chem. 268, 17669-17671]. Like Kloek et al., we found its oxygen affinity to be as high as that of native Ascaris hemoglobin. We thought that this high affinity might be due to the heme-bound oxygen molecule being stabilized by two hydrogen bonds from the globin instead of the usual one. Ascaris hemoglobin has a distal glutamine instead of the more usual histidine as one of the potential hydrogen bond donors. In addition, it contains a tyrosine at position 10 of B helix (B10) in place of the leucine generally found there in vertebrate myoglobins and hemoglobins. Following the discovery of Carver et al. that sperm whale myoglobin with the replacement of leucine B10 by phenylalanine has a raised oxygen affinity, we have replaced tyrosine B10 in the N-terminal domain of Ascaris hemoglobin by either leucine or phenylalanine [Carver, T. E., Brantley, R. E., Jr., Singleton, E. W., Arduini, R. M., Quillin, H. L., Phillips, G. N., Jr., & Olson, J. S. (1992) J. Biol. Chem. 267, 14443-14450]. Either of these replacements lowered the oxygen affinity about 100-fold, to the same level of that of human alpha-globin chains. These results are consistent with a hydrogen bond linking the tyrosine hydroxyl to the heme-linked oxygen, with a bond energy of 2.7 kcal/mol.

  17. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring. (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A


    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  18. Co-TUD-1 catalysed aerobic oxidation of cyclohexane

    NARCIS (Netherlands)

    Ramanathan, A.; Hamdy Mohamed Saad, M.S.; Parton, R.; Maschmeyer, T.; Jansen, J.C.; Hanefeld, U.


    Co-TUD-1, an amorphous sponge-like mesoporous cobalt-containing silicate, was shown to be a very active and selective catalyst for the aerobic oxidation of cyclohexane. In addition, the decomposition of cyclohexyl hydroperoxide (CHHP) was carried out over Co-TUD-1 and it catalysed complete

  19. Selenium dioxide catalysed oxidation of acetic acid hydrazide by ...

    Indian Academy of Sciences (India)

    Abstract. Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant.

  20. Lewis acidic metal catalysed organic transformations by designed ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Journal of Chemical Sciences; Volume 122; Issue 3. Lewis acidic metal catalysed organic transformations by designed multi-component structures and assemblies. Afsar Ali Amit P Singh Rajeev Gupta. Perspective Articles Volume 122 Issue 3 May 2010 pp ...

  1. Palladium-Catalysed Dimerisation of Furfural | Taljaard | South ...

    African Journals Online (AJOL)

    5,5'-Diformyl-2,2'-difuran has been synthesized in 60% yield by the palladium acetate-catalysed aryl coupling of furfural in acetonitrile in the presence of dioxygen under pressure. Various reaction conditions have been exploited, and mechanistic aspects of the reaction are discussed. South African Journal of Chemistry ...

  2. Synthesis of sugars catalysed by microgel conjugated rabbit muscle ...

    African Journals Online (AJOL)

    Microgel has been prepared and covalently conjugated to rabbit muscle aldolase and employed to catalyse reactions between dihydroxyacetone phosphate, DHAP natural and non-natural acceptors aldehydes in aqueous, aqueous – organic solvents at ambient temperature. The microgel conjugated enzyme was found to ...

  3. Phenylboronic acid catalysed synthesis of 1,5-benzodiazepines via ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 4, July 2013, pp. 745–749. c Indian Academy of Sciences. Phenylboronic acid catalysed synthesis of 1,5-benzodiazepines via cyclocondensation of ... active compounds and gaining great consideration in the field of .... thesis of this heterocycles was accomplished by con- densation reaction of ...

  4. Selenium dioxide catalysed oxidation of acetic acid hydrazide by ...

    Indian Academy of Sciences (India)

    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant.

  5. L-proline-catalysed synthesis of functionalized unsymmetrical ...

    Indian Academy of Sciences (India)

    J. Chem. Sci. Vol. 125, No. 3, May 2013, pp. 623–626. c Indian Academy of Sciences. L-proline-catalysed synthesis of functionalized unsymmetrical ... Abstract. Aromatic aldehydes have been employed in a one-pot four-component reaction with ethyl acetoace- tate, 1,3-indandione ... from a 'green chemistry' point of view.

  6. pH-optima in lipase-catalysed esterification

    NARCIS (Netherlands)

    Buthe, Andreas; Recker, Tobias; Heinemann, Matthias; Hartmeier, Winfried; Büchs, Jochen; Ansorge-Schumacher, Marion B.


    Though lipases are frequently applied in ester synthesis, fundamental information on optimal pH or substrate concentration, can almost only be found for the reverse reaction - hydrolysis. This study demonstrates that the pH-optima of lipase-catalysed esterifications differ significantly from the

  7. Activity, stability and kinetic parameters for α-chymotrypsin catalysed ...

    Indian Academy of Sciences (India)

    under the effect of nonionic and zwitterionic surfactants to obtain an in depth knowledge of enzymatic reaction in micellar media. We propose the advances in catalytic activity of α-CT with various degrees of hydration to varying AOT concentration and its stability in RM medium. The hydrolysis of PNPA catalysed by α-CT.

  8. Recyclable hydrotalcite clay catalysed Baylis-Hillman reaction

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 5. Recyclable hydrotalcite clay catalysed Baylis-Hillman reaction ... The Baylis-Hillman reaction using ionic liquid/hydrotalcite clay catalytic system has been observed to be more reactive in terms of yield and reaction rate than DABCO/acetonitrile system.

  9. Schiff base complex-catalysed enantioselective epoxidation of ...

    Indian Academy of Sciences (India)


    Chiral Ru(II) Schiff base complex-catalysed enantioselective epoxidation of styrene derivatives. R I KURESHY, N H KHAN, S H R ABDI, S T PATEL, P IYER and. R V JASRA. Silicates and Catalysis Discipline, Central Salt and Marine Chemicals. Research Institute, Bhavnagar 364 002, India. Ruthenium(II) chiral Schiff base ...

  10. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation

    NARCIS (Netherlands)

    Chikkali, S.H.; van der Vlugt, J.I.; Reek, J.N.H.


    This review aims to illustrate recent advances in the application of hybrid diphosphorus ligands for the Rh catalysed hydroformylation of alkenes, discussing the most prevalent classes of hybrid systems, i.e. phosphine-phosphinite, phosphine-phosphonite, phosphine-phosphite,

  11. catalysed indolylation and pyrrolylation of isatins: Efficient synthesis ...

    Indian Academy of Sciences (India)

    Abstract. An efficient and cheap synthetic approach to 3,3-di(indolyl)oxindoles and 3,3-di(pyrrolyl) oxindoles has been developed via Zn(OTf)2 catalysed indolylation and pyrrolylation of isatins. A preliminary biochemical assay of the synthesized molecules in rodent models were performed to estimate the serum glutamate ...

  12. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)


    Abstract. A modified template mechanism based on modelling studies of energy minimised complexes is presented for the asymmetric proline-catalysed cyclization of triketones 1, 2 and 3 to the 2S,3S-ketols. 1a, 2a and 3a respectively. The template model involves a three-point contact as favoured in enzyme– substrate ...

  13. Theoretical studies on the mechanism of palladium (II)-catalysed ...

    Indian Academy of Sciences (India)

    The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investigated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model ...

  14. Proline-catalysed asymmetric ketol cyclizations: The template ...

    Indian Academy of Sciences (India)

    A modified template mechanism based on modelling studies of energy minimised complexes is presented for the asymmetric proline-catalysed cyclization of triketones 1, 2 and 3 to the 2, 3-ketols 1a, 2a and 3a respectively. The template model involves a three-point contact as favoured in enzyme-substrate interactions.

  15. Toward Design Principles for Diffusionless Transformations: The Frustrated Formation of Co-Co Bonds in a Low-Temperature Polymorph of GdCoSi2. (United States)

    Vinokur, Anastasiya I; Fredrickson, Daniel C


    Diffusionless (or displacive) phase transitions allow inorganic materials to show exquisite responsiveness to external stimuli, as is illustrated vividly by the superelasticity, shape memory, and magnetocaloric effects exhibited by martensitic materials. In this Article, we present a new diffusionless transition in the compound GdCoSi2, whose origin in frustrated bonding points toward generalizable design principles for these transformations. We first describe the synthesis of GdCoSi2 and the determination of its structure using single crystal X-ray diffraction. While previous studies based on powder X-ray diffraction assigned this compound to the simple CeNi1-xSi2 structure type (space group Cmcm), our structure solution reveals a superstructure variant (space group Pbcm) in which the Co sublattice is distorted to create zigzag chains of Co atoms. DFT-calibrated Hückel calculations, coupled with a reversed approximation Molecular Orbital (raMO) analysis, trace this superstructure to the use of Co-Co isolobal bonds to complete filled 18 electron configurations on the Co atoms, in accordance with the 18-n rule. The formation of these Co-Co bonds is partially impeded, however, by a small degree of electron transfer from Si-based electronic states to those with Co-Co σ* character. The incomplete success of Co-Co bond creation suggests that these interactions are relatively weak, opening the possibility of them being overcome by thermal energy at elevated temperatures. In fact, high-temperature powder and single crystal X-ray diffraction data, as well as differential scanning calorimetry, indicate that a reversible Pbcm to Cmcm transition occurs at about 380 K. This transition is diffusionless, and the available data point toward it being first-order. We expect that similar cases of frustrated interactions could be staged in other rare earth-transition metal-main group phases, providing a potentially rich source of compounds exhibiting diffusionless transformations

  16. When friendship formation goes down the toilet: design features of shared accommodation influence interpersonal bonds and well-being. (United States)

    Easterbrook, Matthew J; Vignoles, Vivian L


    Despite its omnipresence, the influence of the built environment on human psychology is not well understood. In a five-wave longitudinal study, we investigated whether physical design features within shared student accommodation predicted the frequency of coincidental meetings between new flatmates, and whether these meetings predicted the strength of their interpersonal bonds and psychological well-being. Multilevel latent growth modelling on responses from 462 new university residents supported our hypotheses: Respondents living in flats with design features that encouraged the use of communal areas--a shared common area and an absence of ensuite toilets--reported unintentionally meeting their flatmates more frequently within their flats. This in turn predicted the initial strength of their interpersonal bonds with their flatmates, which in turn positively predicted their well-being. These effects were maintained throughout the 10-week study. Our findings provide an empirical basis for the development of shared housing designed to foster positive relationships and well-being among residents. © 2014 The British Psychological Society.

  17. Polymethylhydrosiloxane reduction of carbonyl function catalysed by ...

    African Journals Online (AJOL)

    However, in the reduction of the substrate with two methoxy groups in close proximity (1,2-positions), the reaction necessitated a larger amount of the titanium catalyst and a longer reaction time to complete the reduction of the carbonyl function due to a likely complex formation of titanium tetrachloride with the methoxy ...

  18. Formation Mechanism of Atmospheric Ammonium Bisulfate: Hydrogen-Bond-Promoted Nearly Barrierless Reactions of SO3 with NH3 and H2 O. (United States)

    Chen, Shunwei; Zhao, Yanling; Zhang, Ruiqin


    Particulate matter (PM) air pollution threatens the health of people and ecosystems worldwide. As the key component of PM, ammonium sulfate plays a critical role in the formation of aerosol particles; thus, there is an urgent need to know the detailed mechanisms for its formation in the atmosphere. Through a quantum chemistry study, we reveal a series of nearly barrierless reactions that may occur in clusters/droplets in the atmosphere leading to the formation of ammonium bisulfate (NH 4 HSO 4 ), the precursor of ammonium sulfate. In this mechanism, NH 4 HSO 4 is directly formed through one-step reactions of SO 3 with H 2 O and NH 3 promoted by surrounding molecule(s) that substantially lower the reaction activation barrier to ≈0 kcal mol -1 . The promoters of these reactions are found to be various common atmospheric molecules, such as water, ammonia, and sulfuric acid, which can form relatively strong hydrogen bonds with the reaction center. Our results suggest many more similar pathways that can be facilitated by other ambient molecules. Due to its one-step and barrierless reaction characteristics and the great abundance of potential reactions, this mechanism has great implications on the formation of atmospheric ammonium sulfate as well as on the growth of aerosol particles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A theoretical investigation into the strength of N-NO2 bonds, ring strain and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX. (United States)

    Wang, Bao-Guo; Ren, Fu-de; Shi, Wen-Jing


    Changes in N-NO2 bond strength, ring strain energy and electrostatic potential upon formation of intermolecular H-bonds between HF and the nitro group in nitrogen heterocyclic rings C n H2n N-NO2 (n = 2-5), RDX and HMX were investigated using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df,2p) and aug-cc-pVTZ basis sets. Analysis of electron density shifts was also carried out. The results indicate that H-bonding energy correlates well with the increment of ring strain energy. Upon complex formation, the strength of the N-NO2 trigger-bond is enhanced, suggesting reduced sensitivity, while judged by the increased ring strain energy, sensitivity is increased. However, some features of the molecular surface electrostatic potential, such as a local maximum above the N-NO2 bond and ring, σ + (2) and electrostatic balance parameter ν, remain essentially unchanged upon complex formation, and only a small change in the impact sensitivity h 50 is suggested. It is not sufficient to determine sensitivity solely on the basis of trigger bond or ring strain; as a global feature of a molecule, the molecular surface electrostatic potential is available to help judge the change of sensitivity in H-bonded complexes. Graphical Abstract The strengthened N-NO2 bond suggests reduced sensitivity, while it is reverse by theincreased ring strain energy upon the complex formation. However, the molecular surfaceelectrostatic potential (V S) shows the little change of h 50. The V S should be taken into accountin the analysis of explosive sensitivity in the H-bonded complex.

  20. Chemical signal activation of an organocatalyst enables control over soft material formation. (United States)

    Trausel, Fanny; Maity, Chandan; Poolman, Jos M; Kouwenberg, D S J; Versluis, Frank; van Esch, Jan H; Eelkema, Rienk


    Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.

  1. A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. (United States)

    Huang, Kai-Fa; Wang, Yu-Ruei; Chang, En-Cheng; Chou, Tsung-Lin; Wang, Andrew H-J


    QCs (glutaminyl cyclases; glutaminyl-peptide cyclotransferases, EC catalyse N-terminal pyroglutamate formation in numerous bioactive peptides and proteins. The enzymes were reported to be involved in several pathological conditions such as amyloidotic disease, osteoporosis, rheumatoid arthritis and melanoma. The crystal structure of human QC revealed an unusual H-bond (hydrogen-bond) network in the active site, formed by several highly conserved residues (Ser(160), Glu(201), Asp(248), Asp(305) and His(319)), within which Glu(201) and Asp(248) were found to bind to substrate. In the present study we combined steady-state enzyme kinetic and X-ray structural analyses of 11 single-mutation human QCs to investigate the roles of the H-bond network in catalysis. Our results showed that disrupting one or both of the central H-bonds, i.e., Glu(201)...Asp(305) and Asp(248)...Asp(305), reduced the steady-state catalysis dramatically. The roles of these two COOH...COOH bonds on catalysis could be partly replaced by COOH...water bonds, but not by COOH...CONH(2) bonds, reminiscent of the low-barrier Asp...Asp H-bond in the active site of pepsin-like aspartic peptidases. Mutations on Asp(305), a residue located at the centre of the H-bond network, raised the K(m) value of the enzyme by 4.4-19-fold, but decreased the k(cat) value by 79-2842-fold, indicating that Asp(305) primarily plays a catalytic role. In addition, results from mutational studies on Ser(160) and His(319) suggest that these two residues might help to stabilize the conformations of Asp(248) and Asp(305) respectively. These data allow us to propose an essential proton transfer between Glu(201), Asp(305) and Asp(248) during the catalysis by animal QCs.

  2. Radical formation in the FMN-photosensitized reactions of unsaturated fatty acids bearing double bonds at different positions. (United States)

    Nishihama, Nao; Iwahashi, Hideo


    Although the reaction mechanisms through which flavin mononucleotide works as an endogenous photosensitizer have been investigated (Baier et al., 2006; Edwards and Silva, 2001; Pajares et al., 2001; Criado et al., 2003; Massad et al., 2008) [23-27], few studies have been performed for the reactions of flavin mononucleotide with unsaturated fatty acids. To examine the reactions of flavin mononucleotide with unsaturated fatty acids bearing a double bond at different positions, an electron spin resonance, a high performance liquid chromatography-electron spin resonance and a high performance liquid chromatography-electron spin resonance-mass spectrometry were employed. The control reaction mixtures contained 25μmolL(-1) of flavin mononucleotide, 1.0mmolL(-1) of FeSO4(NH4)2SO4, 10mmolL(-1) of cholic acid, 30mmolL(-1) of phosphate buffer (pH 7.4) and 0.1molL(-1) of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone in deuterium oxide. In addition, it also contained 4.3mmolL(-1) of one of the following: (z)-11-octadecenoic acid, (z)-6-octadecenoic acid, (z)-9-octadecenoic acid or (z, z)-9, 12-octadecadienoic acid. The control reaction mixtures without FeSO4(NH4)2SO4 and α-(4-pyridyl-1-oxide)-N-tert-butylnitrone were exposed to the visible light at 436nm (7.8Jcm(-2)). After the irradiation, α-(4-pyridyl-1-oxide)-N-tert-butylnitrone was added. The reactions started from adding FeSO4(NH4)2SO4 and performed at 25°C for 1min. Electron spin resonance measurements of the control reaction mixtures showed prominent signals (α(N)=1.58mT and α(Hβ)=0.26mT). High performance liquid chromatography-electron spin resonance analyses of the control reaction mixtures showed prominent peaks at the retention times of 31.1min {(z)-6-octadecenoic acid}, 39.6min {(z)-9-octadecenoic acid}, 44.9min {(z)-11-octadecenoic acid} and 40.2min {(z, z)-9, 12-octadecadienoic acid}. High performance liquid chromatography-electron spin resonance-mass analyses of the control reaction mixtures showed that 4

  3. A potential role of substrate as a base for deprotonation pathway in Rh-catalysed C-H amination of heteroArenes: DFT insights

    KAUST Repository

    Ajitha, Manjaly John


    The possibility of direct introduction of a new functionality through C–H bond activation is an attractive strategy in covalent synthesis. Here, we investigated the mechanism of Rh-catalysed C-H amination of the hetero-aryl substrate (2-phenylpyridine) using phenyl azide as nitrogen source by density functional theory (DFT). For the deprotocyclometallation and protodecyclometallation processes of the title reaction, we propose a stepwise base-assisted mechanism (pathway I) instead of previously reported concerted mechanism (pathway II). In the new mechanism proposed here, 2-phenylpyridine acts as a base in the initial deprotonation step (C-H bond cleavage) and transports the proton towards the final protonation step. In fact, the N-H bond of the strong conjugate acid (formed during initial C-H bond cleavage) considered in pathway I (via TS4) is more acidic than the C-H bond of the neutral substrate considered in pathway II (via TS5). The higher activation barrier of TS5 mainly originates from the ring strain of the four membered cyclic transition state. The vital role of base, as disclosed here, can potentially have broader mechanistic implications for the development of reaction conditions of transition metal catalysed reactions.

  4. Paleobotany and palynology of the Bristol Hill Coal Member (Bond Formation) and Friendsville Coal Member (Mattoon Formation) of the Illinois Basin (Upper Pennsylvanian) (United States)

    Willard, D.A.; Phillips, T.L.


    Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psarnius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals. -from Authors

  5. A Novel Strategy for Biomass Upgrade: Cascade Approach to the Synthesis of Useful Compounds via C-C Bond Formation Using Biomass-Derived Sugars as Carbon Nucleophiles. (United States)

    Yamaguchi, Sho; Baba, Toshihide


    Due to the depletion of fossil fuels, biomass-derived sugars have attracted increasing attention in recent years as an alternative carbon source. Although significant advances have been reported in the development of catalysts for the conversion of carbohydrates into key chemicals (e.g., degradation approaches based on the dehydration of hydroxyl groups or cleavage of C-C bonds via retro-aldol reactions), only a limited range of products can be obtained through such processes. Thus, the development of a novel and efficient strategy targeted towards the preparation of a range of compounds from biomass-derived sugars is required. We herein describe the highly-selective cascade syntheses of a range of useful compounds using biomass-derived sugars as carbon nucleophiles. We focus on the upgrade of C2 and C3 oxygenates generated from glucose to yield useful compounds via C-C bond formation. The establishment of this novel synthetic methodology to generate valuable chemical products from monosaccharides and their decomposed oxygenated materials renders carbohydrates a potential alternative carbon resource to fossil fuels.

  6. Effect of gradual ordering of Ge/Sb atoms on chemical bonding: A proposed mechanism for the formation of crystalline Ge2Sb2Te5 (United States)

    Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.


    Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.

  7. Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. (United States)

    Bhangu, Sukhvir Kaur; Gupta, Shweta; Ashokkumar, Muthupandian


    The production of biodiesel was carried out from canola oil and methanol catalysed by lipase from Candida rugosa under different ultrasonic experimental conditions using horn (20kHz) and plate (22, 44, 98 and 300kHz) transducers. The effects of experimental conditions such as horn tip diameter, ultrasonic power, ultrasonic frequency and enzyme concentrations on biodiesel yield were investigated. The results showed that the application of ultrasound decreased the reaction time from 22-24h to 1.5h with the use of 3.5cm ultrasonic horn, an applied power of 40W, methanol to oil molar ratio of 5:1 and enzyme concentration of 0.23wt/wt% of oil. Low intensity ultrasound is efficient and a promising tool for the enzyme catalysed biodiesel synthesis as higher intensities tend to inactivate the enzyme and reduce its efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Peptide bond formation through gas-phase reactions in the interstellar medium: formamide and acetamide as prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: [Computational Chemistry Group, Departamento de Química Física, Facultad de Ciencias, Universidad de Valladolid, E-47011 Valladolid (Spain)


    A theoretical study of the reactions of NH{sub 4}{sup +} with formaldehyde and CH{sub 5}{sup +} with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.

  9. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release. (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo


    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  10. Heterobimetallic complexes of rhodium dibenzotetramethylaza[14]annulene [(tmtaa)Rh-M]: formation, structures, and bond dissociation energetics. (United States)

    Imler, Gregory H; Peters, Garvin M; Zdilla, Michael J; Wayland, Bradford B


    A rhodium(II) dibenzotetramethylaza[14]annulene dimer ([(tmtaa)Rh]2) undergoes metathesis reactions with [CpCr(CO)3]2, [CpMo(CO)3]2, [CpFe(CO)2]2, [Co(CO)4]2, and [Mn(CO)5]2 to form (tmtaa)Rh-M complexes (M = CrCp(CO)3, MoCp(CO)3, FeCp(CO)2, Co(CO)4, or Mn(CO)5). Molecular structures were determined for (tmtaa)Rh-FeCp(CO)2, (tmtaa)Rh-Co(μ-CO)(CO)3, and (tmtaa)Rh-Mn(CO)5 by X-ray diffraction. Equilibrium constants measured for the metathesis reactions permit the estimation of several (tmtaa)Rh-M bond dissociation enthalpies (Rh-Cr = 19 kcal mol(-1), Rh-Mo = 25 kcal mol(-1), and Rh-Fe = 27 kcal mol(-1)). Reactivities of the bimetallic complexes with synthesis gas to form (tmtaa)Rh-C(O)H and M-H are surveyed.

  11. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. (United States)

    Alanen, Heli I; Walker, Kelly L; Lourdes Velez Suberbie, M; Matos, Cristina F R O; Bönisch, Sarah; Freedman, Robert B; Keshavarz-Moore, Eli; Ruddock, Lloyd W; Robinson, Colin


    Numerous therapeutic proteins are expressed in Escherichia coli and targeted to the periplasm in order to facilitate purification and enable disulfide bond formation. Export is normally achieved by the Sec pathway, which transports proteins through the plasma membrane in a reduced, unfolded state. The Tat pathway is a promising alternative means of export, because it preferentially exports correctly folded proteins; however, the reducing cytoplasm of standard strains has been predicted to preclude export by Tat of proteins that contain disulfide bonds in the native state because, in the reduced state, they are sensed as misfolded and rejected. Here, we have tested a series of disulfide-bond containing biopharmaceuticals for export by the Tat pathway in CyDisCo strains that do enable disulfide bond formation in the cytoplasm. We show that interferon α2b, human growth hormone (hGH) and two antibody fragments are exported with high efficiency; surprisingly, however, they are efficiently exported even in the absence of cytoplasmic disulfide formation. The exported proteins acquire disulfide bonds in the periplasm, indicating that the normal disulfide oxidation machinery is able to act on the proteins. Tat-dependent export of hGH proceeds even when the disulfide bonds are removed by substitution of the Cys residues involved, suggesting that these substrates adopt tertiary structures that are accepted as fully-folded by the Tat machinery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Alcohol and Group Formation: A Multimodal Investigation of the Effects of Alcohol on Emotion and Social Bonding


    Sayette, Michael A.; Creswell, Kasey G.; Dimoff, John D.; Fairbairn, Catharine E.; Cohn, Jeffrey F.; Heckman, Bryan W.; Kirchner, Thomas R.; Levine, John M.; Moreland, Richard L.


    We integrated research on emotion and on small groups to address a fundamental and enduring question facing alcohol researchers: What are the specific mechanisms that underlie the reinforcing effects of drinking? In one of the largest alcohol-administration studies yet conducted, we employed a novel group-formation paradigm to evaluate the socioemotional effects of alcohol. Seven hundred twenty social drinkers (360 male, 360 female) were assembled into groups of 3 unacquainted persons each an...

  13. Synthesis of Bioactive 2-(Arylaminothiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation

    Directory of Open Access Journals (Sweden)

    Damien Hédou


    Full Text Available A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H-one derivatives (series 8, 10, 14 and 17 was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H-one (3 has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer’s disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.

  14. Zeolite and zeotype-catalysed transformations of biofuranic compounds

    DEFF Research Database (Denmark)

    Li, Hu; Yang, Song; Riisager, Anders


    ,5-furandicarboxylic acid can be obtained from hexoses and pentoses via selective dehydration and subsequent etherification, hydrogenation, oxidation reactions, which show great potential for industrial applications to replace petroleum-based chemicals and fuels. Zeolite and zeotype micro- and mesoporous materials...... introducing zeolite-catalysed hydrolysis of di-, oligo- and polysaccharides and isomerization reactions of monomeric sugars. Subsequently, the catalytic dehydration reactions of hexoses and pentoses to obtain HMF and furfural are reported. Particularly, a variety of reaction pathways towards upgrading...

  15. Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent (United States)

    Xue, Yang; Li, Ling-Po; He, Yan-Hong; Guan, Zhi


    We reported the first enzyme-catalysed, direct, three-component asymmetric Mannich reaction using protease type XIV from Streptomyces griseus (SGP) in acetonitrile. Yields of up to 92% with enantioselectivities of up to 88% e.e. and diastereoselectivities of up to 92:8 (syn:anti) were achieved under the optimised conditions. This enzyme's catalytic promiscuity expands the application of this biocatalyst and provides a potential alternative method for asymmetric Mannich reactions.

  16. Effect of curing modes of dual-curing core systems on microtensile bond strength to dentin and formation of an acid-base resistant zone. (United States)

    Li, Na; Takagaki, Tomohiro; Sadr, Alireza; Waidyasekera, Kanchana; Ikeda, Masaomi; Chen, Jihua; Nikaido, Toru; Tagami, Junji


    To evaluate the microtensile bond strength (μTBS) and acid-base resistant zone (ABRZ) of two dualcuring core systems to dentin using four curing modes. Sixty-four caries-free human molars were randomly divided into two groups according to two dual-curing resin core systems: (1) Clearfil DC Core Automix; (2) Estelite Core Quick. For each core system, four different curing modes were applied to the adhesive and core resin: (1) dual-cured and dual-cured (DD); (2) chemically cured and dual-cured (CD); (3) dual-cured and chemically cured (DC); (4) chemically cured and chemically cured (CC). The specimens were sectioned into sticks (n = 20 for each group) for the microtensile bond test. μTBS data were analyzed using two-way ANOVA and the Dunnett T3 test. Failure patterns were examined with scanning electron microscopy (SEM) to determine the proportion of each mode. Dentin sandwiches were produced and subjected to an acid-base challenge. After argon-ion etching, the ultrastructure of ABRZ was observed using SEM. For Clearfil DC Core Automix, the μTBS values in MPa were as follows: DD: 29.1 ± 5.4, CD: 21.6 ± 5.6, DC: 17.9 ± 2.8, CC: 11.5 ± 3.2. For Estelite Core Quick, they were: DD: 48.9 ±5.7, CD: 20.5 ± 4.7, DC: 41.4 ± 8.3, CC: 19.1 ± 6.0. The bond strength was affected by both material and curing mode, and the interaction of the two factors was significant (p < 0.001). Within both systems, there were significant differences among groups, and the DD group showed the highest μTBS (p < 0.05). ABRZ morphology was not affected by curing mode, but it was highly adhesive-material dependent. The curing mode of dual-curing core systems affects bond strength to dentin, but has no significant effect on the formation of ABRZ.

  17. Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System* (United States)

    Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio


    Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032

  18. Asymmetric C-C Bond-Formation Reaction with Pd: How to Favor Heterogeneous or Homogeneous Catalysis?

    DEFF Research Database (Denmark)

    Reimann, S.; Grunwaldt, Jan-Dierk; Mallat, T.


    BINAP plays a dual role: a considerable coverage of the Pd surface by the bulky compound slows down the initial reduction of the surface oxides but BINAP itself may consume surface oxygen (through its conversion to BINAPO and BINAPO(2)) and contribute to the maintenance of the active metal surface...... is a clear deviation from the behavior of the corresponding homogeneous system. In contrast, halogenated solvents are easily dehalogenated on Pd/Al2O3 and thus they favor leaching of the metal and formation of soluble compounds, analogous to classical metal corrosion in the presence of halide ions...

  19. Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase

    Directory of Open Access Journals (Sweden)

    Xiang Zhou


    Full Text Available A set of bisphosphonate ethers has been prepared through sequential phosphonylation and alkylation of monophosphonate ethers. After formation of the corresponding phosphonic acid salts, these compounds were tested for their ability to inhibit the enzyme geranylgeranyl diphosphate synthase (GGDPS. Five of the new compounds show IC50 values of less than 1 μM against GGDPS with little to no activity against the related enzyme farnesyl diphosphate synthase (FDPS. The most active compound displayed an IC50 value of 82 nM when assayed with GGDPS, and no activity against FDPS even at a 10 μM concentration.

  20. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification? (United States)

    Sun, Jingcan; Yu, Bin; Curran, Philip; Liu, Shao-Quan


    Ester synthesis was carried out in a solvent-free system of lipase, coconut oil and ethanol or fusel alcohols to ascertain the reaction mechanism. During ester formation, octanoic and decanoic acids increased initially and then decreased gradually, indicating that ester production was a two-step reaction consisting of hydrolysis and esterification, rather than alcoholysis. With ethanol as the alcohol substrate, added butyric acid inhibited ester synthesis. However, when fusel alcohols were used as the alcohol substrate, no significant inhibitory effect by butyric acid was observed. Added octanoic acid did not show any adverse effect on the synthesis of corresponding esters. The results suggest that polarity of the reactants determines lipase activity. This study provides the first evidence on the mechanism of immobilised lipase-catalysed ester synthesis in a solvent-free system involving both hydrolysis and esterification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation. (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis


    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  2. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution: The possible role of montmorillonite clays (United States)

    Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin

    The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.

  3. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nowakowski, Daniel J.; Jones, Jenny M. [Energy and Resources Research Institute, School of Process, Environmental and Materials Engineering (SPEME), University of Leeds, Leeds, LS2 9JT (United Kingdom)


    Cell-wall components (cellulose, hemicellulose (oat spelt xylan), lignin (Organosolv)), and model compounds (levoglucosan (an intermediate product of cellulose decomposition) and chlorogenic acid (structurally similar to lignin polymer units)) have been investigated to probe in detail the influence of potassium on their pyrolysis behaviours as well as their uncatalysed decomposition reaction. Cellulose and lignin were pretreated to remove salts and metals by hydrochloric acid, and this dematerialized sample was impregnated with 1% of potassium as potassium acetate. Levoglucosan, xylan and chlorogenic acid were mixed with CH{sub 3}COOK to introduce 1% K. Characterisation was performed using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In addition to the TGA pyrolysis, pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS) analysis was introduced to examine reaction products. Potassium-catalysed pyrolysis has a huge influence on the char formation stage and increases the char yields considerably (from 7.7% for raw cellulose to 27.7% for potassium impregnated cellulose; from 5.7% for raw levoglucosan to 20.8% for levoglucosan with CH{sub 3}COOK added). Major changes in the pyrolytic decomposition pathways were observed for cellulose, levoglucosan and chlorogenic acid. The results for cellulose and levoglucosan are consistent with a base catalysed route in the presence of the potassium salt which promotes complete decomposition of glucosidic units by a heterolytic mechanism and favours its direct depolymerization and fragmentation to low molecular weight components (e.g. acetic acid, formic acid, glyoxal, hydroxyacetaldehyde and acetol). Base catalysed polymerization reactions increase the char yield. Potassium-catalysed lignin pyrolysis is very significant: the temperature of maximum conversion in pyrolysis shifts to lower temperature by 70 K and catalysed polymerization reactions increase the char yield from 37% to 51%. A similar trend

  4. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G


    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  5. Synthesis of 2-aminoBODIPYs by palladium catalysed amination. (United States)

    Alnoman, Rua B; Stachelek, Patrycja; Knight, Julian G; Harriman, Anthony; Waddell, Paul G


    Palladium catalysed coupling of the 2-iodoBODIPY 3 with a range of anilines and a primary alkylamine succeeds in generating the corresponding 2-aminoBODIPYs. These 2-aminoBODIPY derivatives are non-emissive and quantum chemical calculations and electrochemistry are consistent with charge transfer from the amine substituent. Attenuation of this charge transfer pathway by conversion of the 1,2-phenylenediamine derivative 9 into the corresponding benzimidazolone 10 restores the fluorescence and has been used as the basis for a fluorescence sensor for phosgene.

  6. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Petersen, Allan Robertson; Dethlefsen, Johannes Rytter


    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates...... for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH2...... of benzyl alcohol, which is in line with the mechanism suggested by the DFT study....

  7. Group 4 metallocene catalysed full dehydrogenation of hydrazine borane. (United States)

    Thomas, Johannes; Klahn, Marcus; Spannenberg, Anke; Beweries, Torsten


    A study of the full dehydrogenation of hydrazine borane (H2N-NH2·BH3) to give H2 and N2 as gaseous products catalysed by a variety of group 4 metallocene alkyne complexes of the type CpM(L)(η(2)-Me3SiC2SiMe3) (Cp' = substituted or unsubstituted η(5)-cyclopentadienyl; M = Ti, no L; M = Zr, L = pyridine) and group 4 metallocene hydrides is presented. Volumetric data show that the amount of hydrogen released is strongly dependent on both, the metal and the cyclopentadienyl ligand.

  8. Nocardia globerula NHB-2 nitrilase catalysed biotransformation of 4-cyanopyridine to isonicotinic acid. (United States)

    Sharma, Nitya Nand; Sharma, Monica; Bhalla, Tek Chand


    Isonicotinic acid (INA) is an important pyridine derivative used in the manufacture of isoniazid (antituberculosatic drug) and other pharmaceutically important drugs. Nitrilase catalysed processes for the synthesis of pharmaceutically important acids from their corresponding nitriles are promising alternative over the cumbersome, hazardous, and energy demanding chemical processes. Nitrilase of Nocardia globerula NHB-2 (NitNHB2) is expressed in presence of isobutyronitrile in the growth medium (1.0% glucose, 0.5% peptone, 0.3% beef extract, and 0.1 % yeast extract, pH 7.5). NitNHB2 hydrolyses 4-cyanopyridine (4-CP) to INA without accumulation of isonicotinamide, which is common in the reaction catalysed via fungal nitrilases. The NitNHB2 suffers from substrate inhibition effect and hydrolysing activity up to 250 mM 4-CP was recorded. Complete conversion of 200 mM 4-CP to INA was achieved in 40 min using resting cell concentration corresponding to 10 U mL-1 nitrilase activity in the reaction. Substrate inhibition effect in the fed batch reaction (200 mM substrate feed/40min) led to formation of only 729 mM INA. In a fed batch reaction (100 mM 4-CP/20min), substrate inhibition effect was encountered after 7th feed and a total of 958 mM INA was produced in 400 min. The fed batch reaction scaled up to 1 L and 100% hydrolysis of 700 mM of 4-CP to INA at 35°C achieved in 140 min. The rate of INA production was 21.1 g h-1 mgDCW-1. This is the fastest biotransformation process ever reported for INA production with time and space productivity of 36 g L-1 h-1 using a bacterial nitrilase.

  9. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2 (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.


    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  10. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications. (United States)

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming


    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. LAMMPS Framework for Directional Dynamic Bonding

    DEFF Research Database (Denmark)


    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  12. Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates (United States)

    Schäfer, Philipp; Palacin, Thomas; Sidera, Mireia; Fletcher, Stephen P.


    Using asymmetric catalysis to simultaneously form carbon-carbon bonds and generate single isomer products is strategically important. Suzuki-Miyaura cross-coupling is widely used in the academic and industrial sectors to synthesize drugs, agrochemicals and biologically active and advanced materials. However, widely applicable enantioselective Suzuki-Miyaura variations to provide 3D molecules remain elusive. Here we report a rhodium-catalysed asymmetric Suzuki-Miyaura reaction with important partners including aryls, vinyls, heteroaromatics and heterocycles. The method can be used to couple two heterocyclic species so the highly enantioenriched products have a wide array of cores. We show that pyridine boronic acids are unsuitable, but they can be halogen-modified at the 2-position to undergo reaction, and this halogen can then be removed or used to facilitate further reactions. The method is used to synthesize isoanabasine, preclamol, and niraparib--an anticancer agent in several clinical trials. We anticipate this method will be a useful tool in drug synthesis and discovery.

  13. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.


    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  14. Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer (United States)

    Lee, Kwang Hong; Bao, Shuyu; Wang, Yue; Fitzgerald, Eugene A.; Seng Tan, Chuan


    The material properties and bonding behavior of silane-based silicon oxide layers deposited by plasma-enhanced chemical vapor deposition were investigated. Fourier transform infrared spectroscopy was employed to determine the chemical composition of the silicon oxide films. The incorporation of hydroxyl (-OH) groups and moisture absorption demonstrates a strong correlation with the storage duration for both as-deposited and annealed silicon oxide films. It is observed that moisture absorption is prevalent in the silane-based silicon oxide film due to its porous nature. The incorporation of -OH groups and moisture absorption in the silicon oxide films increase with the storage time (even in clean-room environments) for both as-deposited and annealed silicon oxide films. Due to silanol condensation and silicon oxidation reactions that take place at the bonding interface and in the bulk silicon, hydrogen (a byproduct of these reactions) is released and diffused towards the bonding interface. The trapped hydrogen forms voids over time. Additionally, the absorbed moisture could evaporate during the post-bond annealing of the bonded wafer pair. As a consequence, defects, such as voids, form at the bonding interface. To address the problem, a thin silicon nitride capping film was deposited on the silicon oxide layer before bonding to serve as a diffusion barrier to prevent moisture absorption and incorporation of -OH groups from the ambient. This process results in defect-free bonded wafers.

  15. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock


    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  16. Catalysed fusion: a very different book about CERN

    CERN Multimedia

    CERN Library


    Not many books get reviews resulting in headlines like "Steamy novel challenges CERN's serious image", "Love and death at CERN" and so on. But Francis Farley's book "Catalysed Fusion" does not leave its readers untouched.   Those of you who have been around some time will know Farley from when he worked at CERN. For "newcomers", Farley is a well-known physicist who put together the first experiment on the anomalous magnetic moment of the muon and has since taken part in all the experiments relating to this phenomenon. The back cover of his book reads: "A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest ...

  17. Carbene Transfer Reactions Catalysed by Dyes of the Metalloporphyrin Group

    Directory of Open Access Journals (Sweden)

    Mário M. Q. Simões


    Full Text Available Carbene transfer reactions are very important transformations in organic synthesis, allowing the generation of structurally challenging products by catalysed cyclopropanation, cyclopropenation, carbene C-H, N-H, O-H, S-H, and Si-H insertion, and olefination of carbonyl compounds. In particular, chiral and achiral metalloporphyrins have been successfully explored as biomimetic catalysts for these carbene transfer reactions under both homogeneous and heterogeneous conditions. In this work the use of synthetic metalloporphyrins (MPorph, M = Fe, Ru, Os, Co, Rh, Ir, Sn as homogeneous or heterogeneous catalysts for carbene transfer reactions in the last years is reviewed, almost exclusively focused on the literature since the year 2010, except when reference to older publications was deemed to be crucial.

  18. Anatomy of Bond Formation. Domain-Averaged Fermi holes as a Tool for the Study of the Nature of the Chemical Bonding in Li2, Li4 and F2

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Cooper, D.L.


    Roč. 111, č. 44 (2007), s. 11294-11301 ISSN 1089-5639 R&D Projects: GA AV ČR IAA4072403 Institutional research plan: CEZ:AV0Z40720504 Keywords : chemical bonding * domain averaged fermi hole * non-nuclear attractors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  19. Beta-lactam degradation catalysed by Cd2+ ion in methanol. (United States)

    Martínez, J H; Navarro, P G; Garcia, A A; de las Parras, P J


    Kinetic schemes are established for degradation catalysed by Cd2+ ions in methanolic medium for penicillin G, penicillin V and cephalothin, a cephalosporin. Methanolysis of penicillin V and cephalothin occurs with the formation of a single substrate-metal ion intermediate complex, SM, while degradation of penicillin G occurs with the initial formation of two complexes with different stoichiometry, SM and S2M. In each case. degradation is of first order with respect to SM with rate constant values equal to 0.079 min(-1), 0.120 min(-1) and 0.166 min(-1) at 20, 25 and 30 degrees C, respectively, for penicillin G; 0.061 min(-1) at 20 degrees C for penicillin V; and 2.0 x 10(-3) min(-1) at 20 degrees C for cephalothin. Activation energy for the decomposition process of the SM intermediate for penicillin G was calculated to be about 5.5 x 10(4) J/mol. Equilibrium constant values between SM compound and S2M at 20 degrees C (77.1 l/mol), 25 degrees C (45.3 l/mol) and at 30 degrees C (25.7 l/mol) were also calculated as well as the normal enthalpy of this equilibrium. With respect to the reaction products there is evidence that Cd2+ becomes part of their structure, forming complexes between Cd2+ and the product resulting from antibiotic methanolysis (L). Some characteristics of these complexes are discussed.

  20. Palladium-catalysed cyclisation of alkenols: Synthesis of oxaheterocycles as core intermediates of natural compounds

    Directory of Open Access Journals (Sweden)

    Miroslav Palík


    Full Text Available The study of Pd-catalysed cyclisation reactions of alkenols using different catalytic systems is reported. These transformations affect the stereoselective construction of mono- and/or bicyclic oxaheterocyclic derivatives depending on a starting alkenol. The substrate scope and proposed mechanism of Pd-catalysed cyclisation reactions are also discussed. Moreover, the diastereoselective Pd-catalysed cyclisation of appropriate alkenols to tetrahydrofurans and subsequent cyclisation provided properly substituted 2,5-dioxabicyclo[2.2.1]heptane and 2,6-dioxabicyclo[3.2.1]octane, respectively. Such bicyclic ring subunits are found in many natural products including ocellenynes and aurovertines.

  1. Bis (imino) pyridine (BIMP) Fe (II) catalyses one-pot green ...

    Indian Academy of Sciences (India)

    pyridine (BIMP) Fe(II) catalyses one-pot green condensation of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone. Saman Damavandi Reza Sandaroos. Volume 124 Issue 2 March 2012 pp 483-486 ...

  2. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.


    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  3. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability. (United States)

    Mensink, Maarten A; Van Bockstal, Pieter-Jan; Pieters, Sigrid; De Meyer, Laurens; Frijlink, Henderik W; van der Voort Maarschalk, Kees; Hinrichs, Wouter L J; De Beer, Thomas


    Sugars are often used as stabilizers of protein formulations during freeze-drying. However, not all sugars are equally suitable for this purpose. Using in-line near-infrared spectroscopy during freeze-drying, it is shown here that hydrogen bond formation during freeze-drying, under secondary drying conditions in particular, can be related to the preservation of the functionality and structure of proteins during storage. The disaccharide trehalose was best capable of forming hydrogen bonds with the model protein, lactate dehydrogenase, thereby stabilizing it, followed by the molecularly flexible oligosaccharide inulin 4kDa. The molecularly rigid oligo- and polysaccharides dextran 5kDa and 70kDa, respectively, formed the least amount of hydrogen bonds and provided least stabilization of the protein. It is concluded that smaller and molecularly more flexible sugars are less affected by steric hindrance, allowing them to form more hydrogen bonds with the protein, thereby stabilizing it better. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hydrogen bonded supramolecular materials

    CERN Document Server

    Li, Zhan-Ting


    This book is an up-to-date text covering topics in utilizing hydrogen bonding for constructing functional architectures and supramolecular materials. The first chapter addresses the control of photo-induced electron and energy transfer. The second chapter summarizes the formation of nano-porous materials. The following two chapters introduce self-assembled gels, many of which exhibit unique functions. Other chapters cover the advances in supramolecular liquid crystals and the versatility of hydrogen bonding in tuning/improving the properties and performance of materials. This book is designed

  5. Optimizing rf Power for Preferential C≡N Bond Formation in a-CNx Thin Films Prepared by rf-PECVD Technique

    International Nuclear Information System (INIS)

    Aziz, N F H; Awang, R; Ritikos, R; Kamal, S A A


    Effects of rf power on the chemical bonding in carbon nitride films deposited using radio-frequency (rf) plasma enhanced chemical vapor deposition in pure methane and nitrogen gas mixtures were investigated. The rf power was varied from 60 to 100 W. The deposition rate of the films increased constantly with increasing rf power up to 80W, before saturating with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks namely the G-peak, D-peak and C≡N triple bond. This work showed that rf power has significant effects on the chemical bonding of the a-CN x films and the optimum rf power for the high C≡N absorption intensity is 80 W.

  6. Formation of doubly and triply bonded unsaturated compounds HCN, HNC and CH2NH via N + CH4 low temperature solid state reaction: from molecular clouds to solar system objects (United States)

    Mencos, Alejandro; Krim, Lahouari


    We show in the current study carried out in solid phase at cryogenic temperatures, that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN- and three nitrogen hydrides NH, NH2 and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2 and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  7. Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. (United States)

    Gunther, William R; Wang, Yuran; Ji, Yuewei; Michaelis, Vladimir K; Hunt, Sean T; Griffin, Robert G; Román-Leshkov, Yuriy


    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes.

  8. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions (United States)

    Zhou, Zhi; Wang, Zhou-Xiang; Zhou, Yuan-Chun; Xiao, Wei; Ouyang, Qin; Du, Wei; Chen, Ying-Chun


    Building small-molecule libraries with structural and stereogenic diversity plays an important role in drug discovery. The development of switchable intermolecular cycloaddition reactions from identical substrates in different regioselective fashions would provide an attractive protocol. However, this also represents a challenge in organic chemistry, because it is difficult to control regioselectivity to afford the products exclusively and at the same time achieve high levels of stereoselectivity. Here, we report the diversified cycloadditions of α‧-alkylidene-2-cyclopentenones catalysed by cinchona-derived primary amines. An asymmetric γ,β‧-regioselective intermolecular [6+2] cycloaddition reaction with 3-olefinic (7-aza)oxindoles is realized through the in situ generation of formal 4-aminofulvenes, while a different β,γ-regioselective [2+2] cycloaddition reaction with maleimides to access fused cyclobutanes is disclosed. In contrast, an intriguing α,γ-regioselective [4+2] cycloaddition reaction is uncovered with the same set of substrates, by employing an unprecedented dual small-molecule catalysis of amines and thiols. All of the cycloaddition reactions exhibit excellent regio- and stereoselectivity, producing a broad spectrum of chiral architectures with high structural diversity and molecular complexity.


    Directory of Open Access Journals (Sweden)

    Claudia eLieberwirth


    Full Text Available Affiliative social relationships (e.g., among spouses, family members, and friends play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT and arginine vasopressin (AVP, in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.

  10. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes† †Electronic supplementary information (ESI) available: Experimental procedures, NMR and IR spectra, atomic coordinates for DFT optimized structures and computational details, and crystallographic data for 2. CCDC 1520528. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc00209b Click here for additional data file. Click here for additional data file. (United States)

    Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus; Stöger, Berthold; Peruzzini, Maurizio; Veiros, Luis F.


    The catalytic reduction of carbon dioxide is of great interest for its potential as a hydrogen storage method and to use carbon dioxide as C-1 feedstock. In an effort to replace expensive noble metal-based catalysts with efficient and cheap earth-abundant counterparts, we report the first example of Mn(i)-catalysed hydrogenation of CO2 to HCOOH. The hydride Mn(i) catalyst [Mn(PNPNH-iPr)(H)(CO)2] showed higher stability and activity than its Fe(ii) analogue. TONs up to 10 000 and quantitative yields were obtained after 24 h using DBU as the base at 80 °C and 80 bar total pressure. At catalyst loadings as low as 0.002 mol%, TONs greater than 30 000 could be achieved in the presence of LiOTf as the co-catalyst, which are among the highest activities reported for base-metal catalysed CO2 hydrogenations to date. PMID:28970889

  11. An Iterated GMM Procedure for Estimating the Campbell-Cochrane Habit Formation Model, with an Application to Danish Stock and Bond Returns

    DEFF Research Database (Denmark)

    Engsted, Tom; Møller, Stig Vinther


    We suggest an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane, and we apply the approach on annual and quarterly Danish stock and bond returns. For comparative purposes we also estimate and test the standard constant relative risk...

  12. An iterated GMM procedure for estimating the Campbell-Cochrane habit formation model, with an application to Danish stock and bond returns

    DEFF Research Database (Denmark)

    Engsted, Tom; Møller, Stig V.

    We suggest an iterated GMM approach to estimate and test the consumption based habit persistence model of Campbell and Cochrane (1999), and we apply the approach on annual and quarterly Danish stock and bond returns. For comparative purposes we also estimate and test the standard CRRA model...

  13. Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation. (United States)

    Guo, Wei; Zheng, Lv-Yin; Li, Yong-Dong; Wu, Ren-Miao; Chen, Qiang; Yang, Ding-Qiao; Fan, Xiao-Lin


    Discovery of novel topological agents against Oncomelania hupensis snails and cercariae remains a significant challenge in current Schistosomiasis control. A pseudo-ring formed from salicylanilide by an intramolecular hydrogen bond led to the discovery of 3-substituted quinazolinone derivatives which showed a potent molluscicidal and cercaricidal activities. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Chemical and quantum mechanical studies of the free radical C-C bond formation in the lipoxygenase-catalyzed dimerisation of octadeca-9,12-diynoic acid

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Nieuwenhuizen, W.F.; Lenthe, J.H. van; Blomsma, E.J.; Kerk-van Hoof, A.C. van der; Veldink, G.A.


    Triple bond analogues of poly-unsaturated fatty acids are well-known inactivators of lipoxygenases. In an earlier study we proposed that, since 11-oxo-octadeca-9,12-diynoic acid (11-oxo-ODYA) is the only oxygenated product formed during the irreversible inactivation of soybean lipoxygenase-1, the

  15. Mimicry of the regulatory role of urokinase in lamellipodia formation by introduction of a non-native interdomain disulfide bond in its receptor

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Kjærgaard, Magnus; Jacobsen, Benedikte


    -natural interdomain disulfide bond (uPAR(H47C-N259C)). The corresponding soluble receptor has 1) a smaller hydrodynamic volume, 2) a higher content of secondary structure, and 3) unaltered binding kinetics towards uPA. Most importantly, the purified uPAR(H47C-N259C) also displays a gain in affinity...

  16. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf (UC)


    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  17. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding (United States)

    Wittmaack, Klaus


    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  18. Solvent-free lipase catalysed synthesis of diacylgycerols as low-calorie food ingredients

    Directory of Open Access Journals (Sweden)

    Luis eVazquez


    Full Text Available Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short and medium chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its re-synthesis in the enterocyte and its metabolism and absorption by the enterocyte are limited in comparison with the TAG, reducing chylomicron formation. In this work these two effects were combined to synthesize short and medium chain 1,3 diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase catalysed transesterification reactions were performed between short and medium chain fatty acid ethyl esters and glycerol. Different variables were investigated such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel or the addition of lecithin. Best reaction conditions were evaluated considering the conversion intopercentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica, other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei with 52% and 60.7% of DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs 1,2-DAG were Lipozyme RM IM (39.8% and 20.9%, respectively and Lipase PLG (Alcaligenes sp. (35.9% and 19.3%, respectively. By adding 1% (w/w of lecithin to the reaction with Novozym 435 and raw glycerol the reaction rate was considerably increased from 41.7% to 52.8% DAG at 24 h.

  19. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Parra Barillas, Adriana; Montoya, Michael


    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope [es

  20. Metal-free C-N- and N-N-bond formation: synthesis of 1,2,3-triazoles from ketones, N-tosylhydrazines, and amines in one pot. (United States)

    Chen, Zhengkai; Yan, Qiangqiang; Liu, Zhanxiang; Zhang, Yuhong


    A novel synthetic approach toward 1,4-disubstituted 1,2,3-triazoles by C-N- and N-N-bond formation has been established under transition-metal-free conditions. Complete control of the regioselectivity was successfully achieved. Commercially available anilines, ketones, and N-tosylhydrazine were treated with molecular iodine in one pot to allow the regioselective generation of 1,4-disubstituted 1,2,3-triazoles in high yields without the use of azides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions. (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L


    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  2. Heterometallic Pd(II)-Ni(II) complexes with meso-substituted dibenzotetraaza[14]annulene: double C-H bond activation and formation of a rectangular tetradibenzotetraaza[14]annulene. (United States)

    Khaledi, Hamid; Olmstead, Marilyn M; Fukuda, Takamitsu; Ali, Hapipah Mohd


    Three isomeric 2[Pd(II)-Ni(II)] metal complexes, derived from indoleninyl meso-substituted dibenzotetraaza[14]annulene, were synthesized. The resulting dimers feature Ni···Ni or, alternatively, Ni···π interactions in staggered or slipped cofacial structures. A remarkable insertion of palladium into two different C-H bonds yielded a 4[Pd(II)-Ni(II)] rectangular complex with dimensions of 8.73 × 10.38 Å.

  3. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase. (United States)

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey


    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete. © 2016 The Author(s). published by Portland Press Limited on behalf of the

  4. Investigation of chemical bonding states at interface of Zn/organic materials for analysis of early stage of inorganic/organic hybrid multi-layer formation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ken, E-mail: [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Japan Science and Technology Agency, CREST (Japan); Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Japan Science and Technology Agency, CREST (Japan); Shiratani, Masaharu [Department of Electronics, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Japan Science and Technology Agency, CREST (Japan); Sekine, Makoto; Hori, Masaru [Plasma Nanotechnology Research Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Japan Science and Technology Agency, CREST (Japan)


    Interactions between Ar-O{sub 2} mixture plasmas and Zn thin film on polyethylene terephthalate (PET) were investigated using the combinatorial plasma process analyzer, on the basis of nondestructive depth analyses of chemical bonding states at Zn thin film and Zn/PET interface via hard X-ray photoelectron spectroscopy (HXPES). After the Ar-O{sub 2} plasma exposure, peak-area ratio of O 1 s to Zn 2p{sub 3/2} evaluated from the HXPES spectra is found to increase with increasing the ion saturation current Multiplication-Sign time and saturated at the value obtained from ZnO. The HXPES C 1 s spectra measured at a take-off angle (TOA) of 80 Degree-Sign showed insignificant change in oxygen functionalities (O=C-O bond and C-O bond) after the deposition of Zn thin film and the plasma exposure. Whereas, the HXPES C 1 s spectra measurement at a TOA of 20 Degree-Sign suggested that the oxygen functionalities degraded in shallower regions up to about a few nanometer from the Zn/PET interface due to deposition of Zn thin film. However, after the plasma exposure, oxidation of PET substrate at the degraded layer of Zn/PET interface was caused by oxygen radicals and/or ions, which diffused through the Zn thin film.

  5. Synthesis of amidoalkyl naphthol via Ritter-type reaction catalysed ...

    Indian Academy of Sciences (India)

    Multi-component reactions (MCRs) play an important role in organic synthesis since they generally occur in a single pot and exhibit a high atom-economy and selectivity. Ritter-type reaction is an important MCR in organic synthesis for C–N bond forming to afford. N-alkyl amide compounds, which are ubiquitous to a variety ...

  6. Controlling superstructural ordering in the clathrate-I Ba 8 M 16 P 30 (M = Cu, Zn) through the formation of metal–metal bonds

    Energy Technology Data Exchange (ETDEWEB)

    Dolyniuk, J.; Whitfield, P. S.; Lee, K.; Lebedev, O. I.; Kovnir, K.


    Order–disorder–order phase transitions in the clathrate-I Ba8Cu16P30 were induced and controlled by aliovalent substitutions of Zn into the framework. Unaltered Ba8Cu16P30 crystallizes in an ordered orthorhombic (Pbcn) clathrate-I superstructure that maintains complete segregation of metal and phosphorus atoms over 23 different crystallographic positions in the clathrate framework. The driving force for the formation of this Pbcn superstructure is the avoidance of Cu–Cu bonds. This superstructure is preserved upon aliovalent substitution of Zn for Cu in Ba8Cu16-xZnxP30 with 0 < x < 1.6 (10% Zn/Mtotal), but vanishes at greater substitution concentrations. Higher Zn concentrations (up to 35% Zn/Mtotal) resulted in the additional substitution of Zn for P in Ba8M16+yP30-y (M = Cu, Zn) with 0 ≤ y ≤ 1. This causes the formation of Cu–Zn bonds in the framework, leading to a collapse of the orthorhombic superstructure into the more common cubic subcell of clathrate-I (Pm[3 with combining macron]n). In the resulting cubic phases, each clathrate framework position is jointly occupied by three different elements: Cu, Zn, and P. Detailed structural characterization of the Ba–Cu–Zn–P clathrates-I via single crystal X-ray diffraction, joint synchrotron X-ray and neutron powder diffractions, pair distribution function analysis, electron diffraction and high-resolution electron microscopy, along with elemental analysis, indicates that local ordering is present in the cubic clathrate framework, suggesting the evolution of Cu–Zn bonds. For the compounds with the highest Zn content, a disorder–order transformation is detected due to the formation of another superstructure with trigonal symmetry and Cu–Zn bonds in the clathrate-I framework. It is shown that small changes in the composition, synthesis, and crystal structure have significant impacts on the structural and transport properties of Zn-substituted Ba8Cu16P30.

  7. Taille des particules et catalyse Particle Size and Catalysis

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.


    Full Text Available Si la catalyse hétérogène et notamment la catalyse par les métaux se préoccupe de la taille des particules et donc de la surface développée, ce n'est pas seulement pour élaborer un produit efficace à moindre coût. L'étude des relations entre les caractéristiques des catalyseurs et leurs propriétés vis-à-vis des réactions a permis d'arriver dans certains cas à une description quasi atomique du site actif spécifique de chaque réaction. Les approches de ce problème qu'ont eu les différents auteurs sont différentes : l'une a consisté à prendre en considération les propriétés cristallographiques des métaux massiques, l'autre à considérer que les petites particules n'ont ni les propriétés, ni la structure du métal massif. L'approche cristallographique a d'abord conduit à prendre en compte les paramètres des cristaux et à distinguer les différents atomes situés en coins, arêtes ou faces. Mais très vite on s'est rendu compte que les particules n'avaient pas les structures attendues. On s'est donc intéressé au calcul de l'énergie des particules considérées pour imaginer comment elles pouvaient se construire à partir d'un petit noyau. Ces calculs ne tenaient compte ni de l'atmosphère en contact avec la particule, ni de la présence d'un support, ni des perturbations apportées par la réaction. En effet selon la réaction étudiée, on a pu définir des réactions facilesou insensibles à la structure et des réactions exigeantesdont la vitesse intrinsèque varie avec la structure de surface. Beaucoup de travaux ont été effectués sur des monocristaux dont les surfaces exposées avaient des indices différents et d'autres ont tenté d'étudier ces relations avec des métaux supportés, avec tous les artefacts que cela pouvait amener. Il a été difficile de trouver une unité dans tous les résultats obtenus et ceci d'autant plus que les phénomènes d'auto empoisonnement par les réactifs (hydrocarbures ou

  8. Accumulation of β-Conglycinin in Soybean Cotyledon through the Formation of Disulfide Bonds between α′- and α-Subunits1[W][OA (United States)

    Wadahama, Hiroyuki; Iwasaki, Kensuke; Matsusaki, Motonori; Nishizawa, Keito; Ishimoto, Masao; Arisaka, Fumio; Takagi, Kyoko; Urade, Reiko


    β-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean β-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α′- and α-subunits of β-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the β-conglycinin complexes containing the disulfide-linked α′/α-subunits were complexes of more than 720 kD. The α′- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α′/α-subunits residing in different β-conglycinin hexamers, but the binding of P34 to α′- and α-subunits reduces the linkage between β-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when β-conglycinin was expressed under nonreducing conditions. PMID:22218927

  9. Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C-C bond formation - structure, spectral and magnetic properties

    Czech Academy of Sciences Publication Activity Database

    Murašková, V.; Szabó, N.; Pižl, M.; Hoskovcová, I.; Dušek, Michal; Huber, Š.; Sedmidubský, D.


    Roč. 461, May (2017), s. 111-119 ISSN 0020-1693 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : iron (III) dinuclear complex * dialkoxo bridged pyridoxal Schiff base * C-C bond * crystal structure * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.002, year: 2016

  10. Water-bridged hydrogen bond formation between 5-hydroxylmethylcytosine (5-hmC) and its 3'-neighbouring bases in A- and B-form DNA duplexes. (United States)

    Wang, Rui; Ranganathan, Srivathsan V; Valsangkar, Vibhav A; Magliocco, Stephanie M; Shen, Fusheng; Chen, Alan; Sheng, Jia


    5-Hydroxylmethylcytosine (5hmC) has been recognized as the sixth base with important biological functions in many tissues and cell types. We present here the high-resolution crystal structures and molecular simulation studies of both A-form and B-form DNA duplexes containing 5hmC. We observed that 5hmC interacts with its 3'-neighboring bases through water-bridged hydrogen bonds and these interactions may affect the further oxidation of 5hmC.

  11. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.


    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  12. C-13 isotopic studies of the surface catalysed reactions of methane

    International Nuclear Information System (INIS)

    Long, M.A.; He, S.J.X.; Adebajo, M.


    The ability of methane to methylate aromatic compounds, which are considered to be models for coal, is being studied. Related to this reaction, but at higher temperatures, is the direct formation of benzene from methane in the presence of these catalysts. Controversy exists in the literature on the former reaction, and 13 C isotope studies are being used to resolve the question. The interest in this reaction arises because the utilisation of methane, in the form of natural gas, in place of hydrogen for direct coal liquefaction would have major economic advantage. For this reason Isotope studies in this area have contributed significantly to an understanding of the methylation reactions. The paper describes experiments utilising methane 13 C, which show that methylation of aromatics such as naphthalene by the methane 13 C is catalysed by microporous, Cu-exchanged SAPO-5, at elevated pressures (6.8 MPa) and temperatures around 400 degree C. The mass spectrometric analysis and n.m.r. study of the isotopic composition of the products of the methylation reaction demonstrate unequivocally that methane provides the additional carbon atom for the methylated products. Thermodynamic calculations predict that the reaction is favourable at high methane pressures under these experimental conditions. The mechanism as suggested by the isotope study is discussed. The catalysts which show activity for the activation of methane for direct methylation of organic compounds, such as naphthalene, toluene, phenol and pyrene, are substituted aluminophosphate molecular sieves, EIAPO-5 (where El=Pb, Cu, Ni and Si) and a number of metal substituted zeolites. Our earlier tritium studies had shown that these catalysts will activate alkanes, at least as far as isotope hydrogen exchange reactions are concerned

  13. Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE. (United States)

    Lester, Jeffrey; Kichler, Sari; Oickle, Brandon; Fairweather, Spencer; Oberc, Alexander; Chahal, Jaspreet; Ratnayake, Dinath; Creuzenet, Carole


    Helicobacter pylori is a human gastric pathogen that colonizes ∼ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H. pylori's pathogenic mechanisms. H. pylori produces secreted proteins that may play a role in virulence, including the Helicobacter cysteine-rich protein HcpE (aka HP0235). We demonstrate herein that HcpE is secreted in the culture supernatant both as a soluble protein and in association with outer membrane vesicles. We show that the structure of HcpE comprises an organized array of disulfide bonds. We identify DsbK (aka HP0231) as a folding factor necessary for HcpE production and secretion in H. pylori and show that recombinant DsbK can interact with and refold unprocessed, reduced HcpE in vitro. These experiments highlight the first biologically relevant substrate for DsbK. Furthermore, we show that DsbK has disulfide bond (Dsb) forming activity on reduced lysozyme and demonstrate a DsbA-type of activity for DsbK upon expression in E. coli, despite its similarity with DsbG. Finally, we show a role of DsbK in maintaining redox homeostasis in H. pylori. © 2015 John Wiley & Sons Ltd.

  14. In situ formation of adhesive hydrogels based on PL with laterally grafted catechol groups and their bonding efficacy to wet organic substrates. (United States)

    Ye, Mingming; Jiang, Rui; Zhao, Jin; Zhang, Juntao; Yuan, Xubo; Yuan, Xiaoyan


    Adhesives with catechol moieties have been widely investigated in recent years. However, actually how much catechol groups for these mussel bio-inspired adhesives, especially in their natural form under physiological condition, is appropriate to bond with organic substrates has not been studied intensively. This study blends ε-polylysine (PL), featuring laterally grafted catechols under physiological conditions (pH 7.4), with oxidized dextran to form a hydrogel in situ via the Schiff base without introducing small cytotoxic molecules as crosslinking agents. It finds that the amount of catechol groups imposes an obvious influence on gelation time, swelling behavior, and hydrogel morphology. Both the storage modulus and adhesion strength are found to increase first and decrease afterwards with an increase of pendent catechol content. Furthermore, catechol hydrogen interactions and the decrease in the crosslink density derived from the decrease of amino groups on PL are simultaneously found to affect the storage modulus. Meanwhile, multiple hydrogen-bonding interactions of catechol with amino, hydroxyl, and carboxyl groups, which are in abundance on the surface of tissue, are mainly found to provide an adhesive force. The study finds that with more catechol, there is a greater chance that the cohesive force will weaken, making the entire adhesion strength of the hydrogel decrease. Using a cytotoxicity test, the nontoxicity of the hydrogel towards the growth of L929 cells is proven, indicating that hydrogels have potential applications in soft tissue repair under natural physiological conditions.

  15. LAMMPS Framework for Dynamic Bonding and an Application Modeling DNA

    DEFF Research Database (Denmark)

    Svaneborg, Carsten


    and bond types. When breaking bonds, all angular and dihedral interactions involving broken bonds are removed. The framework allows chemical reactions to be modeled, and use it to simulate a simplistic, coarse-grained DNA model. The resulting DNA dynamics illustrates the power of the present framework.......We have extended the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) to support directional bonds and dynamic bonding. The framework supports stochastic formation of new bonds, breakage of existing bonds, and conversion between bond types. Bond formation can be controlled...... to limit the maximal functionality of a bead with respect to various bond types. Concomitant with the bond dynamics, angular and dihedral interactions are dynamically introduced between newly connected triplets and quartets of beads, where the interaction type is determined from the local pattern of bead...

  16. Formation of a metal-to-nitrogen bond of normal length by a neutral sufonamide group within a tridentate ligand. A new approach to radiopharmaceutical bioconjugation. (United States)

    Perera, Theshini; Abhayawardhana, Pramuditha; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G


    We demonstrate that a tertiary sulfonamide group, N(SO2R)R'2, can rehybridize to form a M-N bond of normal length even when the group is in a linear tridentate ligand, such as in the new tridentate N(SO2R)dpa ligands derived from di-(2-picolyl)amine (N(H)dpa). N(SO2R)dpa ligands were used to prepare fac-[Re(CO)3(N(SO2R)dpa)](PF6 or BF4) complexes. Structural characterization of the new complexes established that the tertiary sulfonamide nitrogen atom binds to Re with concomitant sp(2)-to-sp(3) rehybridization, facilitating facial coordination. The new fac-[Re(CO)3(N(SO2R)dpa)]X structures provide the only examples for any metal with the sulfonamide as part of a noncyclic linear tridentate ligand and with a normal metal-to-nitrogen(tertiary sulfonamide) bond length. Rare previous examples of such normal M-N bonds have been found only in more constrained situations, such as with tripodal tetradentate ligands. Our long-term objectives for the new tridentate N(SO2R)dpa ligands are to develop the fundamental chemistry relevant to the eventual use of the fac-[M(I)(CO)3](+) core (M = (99m)Tc, (186/188)Re) in imaging and therapy. The sulfonamide group uniquely contributes to two of our goals: expanding ways to conjugate the fac-[M(I)(CO)3](+) core to biological molecules and also developing new symmetrical tridentate ligands that can coordinate facially to this core. Tests of our conjugation method, conducted by linking the fac-[Re(I)(CO)3](+) core to a new tetraarylporphyrin (T(N(SO2C6H4)dpa)P) as well as to a dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) group, demonstrate that large molecular fragments can be tethered via a coordinated tertiary sulfonamide linkage to this core.

  17. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3 and Ammonia (NH3 Donor-Acceptor Complex

    Directory of Open Access Journals (Sweden)

    Dulal C. Ghosh


    Full Text Available The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule

  18. Rapid carbon-carbon bond formation and cleavage revealed by carbon isotope exchange between the carboxyl carbon and inorganic carbon in hydrothermal fluids (United States)

    Glein, C. R.; Cody, G. D.


    The carbon isotopic composition of organic compounds in water-rock systems (e.g., hydrothermal vents, sedimentary basins, and carbonaceous meteorites) is generally interpreted in terms of the isotopic composition of the sources of such molecules, and the kinetic isotope effects of metabolic or abiotic reactions that generate or transform such molecules. This hinges on the expectation that the carbon isotopic composition of many organic compounds is conserved under geochemical conditions. This expectation is reasonable in light of the strength of carbon-carbon bonds (ca. 81 kcal/mol); in general, environmental conditions conducive to carbon-carbon bond cleavage typically lead to transformations of organic molecules (decarboxylation is a notable example). Geochemically relevant reactions that involve isotopic exchange between carbon atoms in organic molecules and inorganic forms of carbon with no change in molecular structure appear to be rare. Notwithstanding such rarity, there have been preliminary reports of relatively rapid carbon isotope exchange between the carboxyl group in carboxylic acids and carbon dioxide in hot water [1,2]. We have performed laboratory hydrothermal experiments to gain insights into the mechanism of this surprising reaction, using phenylacetate as a model structure. By mass spectrometry, we confirm that the carboxyl carbon undergoes facile isotopic exchange with 13C-labeled bicarbonate at moderate temperatures (i.e., 230 C). Detailed kinetic analysis reveals that the reaction rate is proportional to the concentrations of both reactants. Further experiments demonstrate that the exchange reaction only occurs if the carbon atom adjacent to the carboxyl carbon is bonded to a hydrogen atom. As an example, no carbon isotope exchange was observed for benzoate in experiments lasting up to one month. The requirement of an alpha C-H bond suggests that enolization (i.e., deprotonation of the H) is a critical step in the mechanism of the exchange

  19. Reinforcing thermoplastics with hydrogen bonding bridged inorganics

    Energy Technology Data Exchange (ETDEWEB)

    Du Mingliang, E-mail: [Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Guo Baochun, E-mail: [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu Mingxian; Cai Xiaojia; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)


    A new reinforcing strategy for thermoplastics via hydrogen bonding bridged inorganics in the matrix was proposed. The hydrogen bonds could be formed in thermoplastics matrices with the incorporation of a little organics containing hydrogen bonding functionalities. Isotactic polypropylene (PP), polyamide 6 (PA 6), and high density polyethylene (HDPE), together with specific inorganics and organics were utilized to verify the effectiveness of the strategy. The investigations suggest that the hydrogen bonding bridged inorganics led to substantially increased flexural properties. The results of attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) indicate the formation of hydrogen bonding among the inorganics and organics in the composites.

  20. Iron(III)-catalysed carbonyl-olefin metathesis (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.


    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  1. Examples of reductive azo cleavage and oxidative azo bond formation on Re2(CO)10 template: isolation and characterization of Re(III) complexes of new azo-aromatic ligands. (United States)

    Paul, Nanda D; Samanta, Subhas; Mondal, Tapan K; Goswami, Sreebrata


    A new example of simultaneous reductive azo bond cleavage and oxidative azo bond formation in an azo-aromatic ligand is introduced. The chemical transformation is achieved by the reaction of Re(2)(CO)(10) with the ligand 2-[(2-N-Arylamino)phenylazo]pyridine (HL(1)). A new and unexpected mononuclear rhenium complex [Re(L(1))(L(3))] (1) was isolated from the above reaction. The new azo-aromatic ligand, H(2)L(3) (H(2)L(3) = 2, 2'-dianilinoazobenzene) is formed in situ from HL(1). A similar reaction of Re(2)(CO)(10) and a closely related azo-ligand, 2,4-ditert-butyl-6-(pyridin-2-ylazo)-phenol (HL(2)), resulted in a seven coordinated compound [Re(L(2)){(L(4))(•-)}(2)] (2; HL(4) = 2-amino-4,6-ditert-butyl-phenol) via reductive cleavage of the azo bond. The complexes have been characterized by using a host of physical methods: X-ray crystallography, nuclear magnetic resonance (NMR), cyclic voltammetry, ultraviolet-visible (UV-vis), electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT). The experimental structures are well reproduced by density functional theory calculations and support the overall electronic structures of the above compounds. Complex 1 is a closed shell singlet, while complex 2 exemplifies a singlet diradical complex where the two partially oxidized aminophenoleto ligands are coupled to each other, yielding the observed diamagnetic ground state. Complexes 1 and 2 showed two successive one-electron redox responses. EPR spectral studies in corroboration with DFT results indicated that all of the redox processes occur at the ligand center without affecting the trivalent state of the metal ion. © 2011 American Chemical Society

  2. Catalysing Educational Development or Institutionalising External Influence? Donors, Civil Society and Educational Policy Formation in Nepal (United States)

    Rappleye, Jeremy


    Recent pronouncements on the benefits of enlisting civil society in educational development have so far not attracted adequate scholarly analyses. This paper therefore seeks to present a critical perspective on this new trend by providing a fine-grained look at three concrete cases of NGO involvement in educational policy-making in Nepal. It also…

  3. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders


    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...... a high catalytic activity for the selective conversion of fructose to ethyl levulinate (57%) and glucose to EDGP (80%) at 140 °C, whereas the disaccharide sucrose yielded a significant amount of both products. The SO3H-SBA-15 catalysts were found to be highly active compared to the zeolites under...

  4. Pd(OAc)2/DPPF-catalysed microwave-assisted cyanide-free ...

    Indian Academy of Sciences (India)

    Pd(OAc)2/DPPF-catalysed microwave-assisted cyanide-free synthesis of aryl nitriles. DINESH N SAWANT and BHALCHANDRA M BHANAGE. ∗. Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai 400 019, India e-mail: MS received 13 April 2013; revised 27 ...

  5. Francis Farley presenting his novel "Catalysed Fusion" in the CERN Library

    CERN Multimedia

    Farley, Irina


    "Catalysed Fusion" is described by its author Francis Farley, 92, as a "true-to-life fantasy woven around particle physics" set in 1980s Geneva – "the city where nations meet and particles collide". Farley presented the book in the program "Literature in Focus" on Tuesday 16th April 2013.

  6. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)


    Dedicated to the memory of the late Professor Bhaskar G Maiya. *For correspondence. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro- perbenzoic acid: Nature of reactive intermediates. A AGARWALA, V BAGCHI and D BANDYOPADHYAY*. Department of Chemistry, Indian Institute of Technology, New Delhi ...

  7. Mechanistic aspects of Os(VIII) catalysed oxidation of loop diuretic ...

    Indian Academy of Sciences (India)

    Mechanistic aspects of Os(VIII) catalysed oxidation of loop diuretic drug furosemide by Ag(III) periodate complex in aqueous alkaline medium. SHWETA J MALODEa, NAGARAJ P SHETTIb and SHARANAPPA T NANDIBEWOORa,∗. aPost-Graduate Department of Studies in Chemistry, Karnatak University, Dharwad 580 ...

  8. Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor

    NARCIS (Netherlands)

    Gitis, V.; Beerthuis, R.; Shiju, N.R.; Rothenberg, G.


    We show that gold nanoparticles catalyse the oxidation of organosilanes using water as oxidant at ambient conditions. Remarkably, monodispersions of small gold particles (3.5 nm diameter) and large ones (6-18 nm diameter) give equally good conversion rates. This is important because separating large

  9. Ancillary ligand-free copper catalysed hydrohydrazination of terminal alkynes with NH2NH2. (United States)

    Peltier, Jesse L; Jazzar, Rodolphe; Melaimi, Mohand; Bertrand, Guy


    An efficient and selective Cu-catalysed hydrohydrazination of terminal alkynes with parent hydrazine is reported. The methodology tolerates a broad range of functional groups, allows for the synthesis of symmetrical and unsymmetrical azines, and can be extended to hydrazine derivatives and amines.

  10. The role of pellet thermal stability in reactor design for heterogeneously catalysed chemical reactions

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.


    For exothermic fluid-phase reactions, a reactor which is cooled at the wall can exhibit multiplicity or parametric sensitivity. Moreover, for heterogeneously catalysed exothermic fluid-phase reactions, each of the catalytically active pellets in the reactor can exhibit multiplicity. Both forms of

  11. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager


    Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...

  12. Potash alum [KAl (SO 4) 2. 12H 2 O] catalysed esterification of ...

    Indian Academy of Sciences (India)

    A convenient and clean procedure for esterification is reported. Direct condensation of formylphenoxyaliphatic acids with low to high boiling alcohols catalysed by potash alum gave moderate to good yields. This catalyst could be recovered and reused without substantial loss in its catalytic activity and the methodology could ...

  13. Mechanism and Stereoselectivity of Zeolite-catalysed Sugar Isomerisation in Alcohols

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders; Taarning, Esben


    Glucose isomerisation to fructose can occur by different pathways and the mechanism of zeolite-catalysed glucose isomerisation in methanol has remained incompletely understood. Herein, the mechanism is studied using an 1H-13C HSQC NMR assay resolving different fructose isotopomers. We find that z...

  14. Bis(imino)pyridine (BIMP) Fe(II) catalyses one-pot green ...

    Indian Academy of Sciences (India)

    483–486. c Indian Academy of Sciences. Bis(imino)pyridine (BIMP) Fe(II) catalyses one-pot green condensation of resorcinol, malononitrile, aromatic aldehydes and cyclohexanone. SAMAN DAMAVANDIa,∗ and REZA SANDAROOSb. aDepartment of Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran.

  15. Cobalt-catalysed C-H carbonylative cyclisation of aliphatic amides. (United States)

    Williamson, Patrick; Galván, Alicia; Gaunt, Matthew J


    A cobalt-catalysed C-H carbonylation of aliphatic carboxamide derivatives is described, employing commercially available Co(ii)-salts in the presence of a silver oxidant. This operationally simple process utilises an atmospheric pressure of CO and generates a range of substituted succinimide products bearing diverse functional groups that can be successfully accessed via this methodology.

  16. On the key role of water in the allylic activation catalysed by Pd (II ...

    Indian Academy of Sciences (India)

    On the key role of water in the allylic activation catalysed by Pd (II) bisphosphinite complexes. RAKESH KUMAR SHARMA and ASHOKA G SAMUELSON*. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 e-mail: Abstract. Palladium and platinum ...

  17. Enantioselective Conjugate Addition of Diethylzinc to Chalcones Catalysed by Chiral Ni(II) Aminoalcohol Complexes

    NARCIS (Netherlands)

    Vries, André H.M. de; Jansen, Johan F.G.A.; Feringa, Bernard


    Conjugate addition of diethylzinc to chalcones is catalysed by complexes prepared in situ from Ni(acac)2 and cis-exo-N,N-dialkyl-3-aminoisoborneols or (+)-cis-endo-N,N-dimethyl-3-aminoborneol ((+)-DAB) (13b). The products are obtained with enantioselectivities up to 84 %. When scalemic

  18. Potash alum [KAl(SO4)2.12H2O] catalysed esterification of ...

    Indian Academy of Sciences (India)

    Abstract. A convenient and clean procedure for esterification is reported. Direct condensation of formylphe- noxyaliphatic acids with low to high boiling alcohols catalysed by potash alum gave moderate to good yields. This catalyst could be recovered and reused without substantial loss in its catalytic activity and the ...

  19. Brønsted acid-surfactant (BAS catalysed cyclotrimerization of aryl methyl ketone

    Directory of Open Access Journals (Sweden)

    Kiran Phatangare


    Full Text Available A brønsted acid-surfactant catalysed and simple, mild, metal catalyst free and chemo-selective method has been developed for synthesis of 1, 3, 5-triaryl benzenes from aryl methyl ketones. The advantages of this protocol subsume green and sustainable reaction medium, mild reaction conditions, easy product recovery and its good yields.

  20. Hydrolase-catalysed synthesis of peroxycarboxylic acids: Biocatalytic promiscuity for practical applications

    NARCIS (Netherlands)

    Carboni-Oerlemans, Chiara; Dominguez de Maria, Pablo; Tuin, Bernard; Bargeman, Gerrald; van der Meer, Ab; van Gemert, Robert


    The enzymatic promiscuity concept involves the possibility that one active site of an enzyme can catalyse several different chemical transformations. A rational understanding of the mechanistic reasons for this catalytic performance could lead to new practical applications. The capability of certain

  1. Mg (ClO 4) 2 catalysed preparation of 1-amidoalkyl-2-naphthols ...

    Indian Academy of Sciences (India)

    A simple, efficient, and practical procedure for the synthesis of amidoalkyl naphthols via multicomponent one-pot reaction of 2-naphthol, aldehydes and amides catalysed by Mg(ClO4)2 is described in high yields. The present work offers several advantages such as high ...

  2. Kinetics and mechanism of the base-catalysed reaction of 4 ...

    African Journals Online (AJOL)

    NPMPF) in benzene has been investigated at 27oC and in the presence of functionally similar, but structurally different addenda, namely; imidazole, pyridine and triethylamine. The reaction is catalysed by the nucleophile and imidazole in a linear ...

  3. Computing the correlation between catalyst composition and its performance in the catalysed process

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Steinfeldt, N.; Baerns, M.; Štefka, David


    Roč. 43, 10 August (2012), s. 55-67 ISSN 0098-1354 R&D Projects: GA ČR GA201/08/0802 Institutional support: RVO:67985807 Keywords : catalysed process * catalyst performance * correlation measures * estimating correlation value * analysis of variance * regression trees Subject RIV: IN - Informatics, Computer Science Impact factor: 2.091, year: 2012

  4. Gold(I)-catalysed cascade reactions in the synthesis of 2,3-fused indole derivatives. (United States)

    Gimeno, Ana; Rodríguez-Gimeno, Alejandra; Cuenca, Ana B; Ramírez de Arellano, Carmen; Medio-Simón, Mercedes; Asensio, Gregorio


    A gold(I)-catalysed hydroaminative/arylative cascade for the efficient synthesis of a variety of indole-fused skeletons has been developed. Factors controlling the catalyst loading required in these transformations involving 1,3-unsubstituted indole intermediates have been revealed, allowing isolation of an unprecedented 1,3-dimetallated 3H-indole gold complex characterized by X-ray diffraction.

  5. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiatorviaC-C σ-bond formation. (United States)

    Ahmed, Jasimuddin; P, Sreejyothi; Vijaykumar, Gonela; Jose, Anex; Raj, Manthan; Mandal, Swadhin K


    The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.

  6. tRNA-dependent peptide bond formation by the transferase PacB in biosynthesis of the pacidamycin group of pentapeptidyl nucleoside antibiotics. (United States)

    Zhang, Wenjun; Ntai, Ioanna; Kelleher, Neil L; Walsh, Christopher T


    Pacidamycins are a family of uridyl tetra/pentapeptide antibiotics with antipseudomonal activities through inhibition of the translocase MraY in bacterial cell wall assembly. The biosynthetic gene cluster for pacidamycins has recently been identified through genome mining of the producer Streptomyces coeruleorubidus, and the highly dissociated nonribosomal peptide assembly line for the uridyl tetrapeptide scaffold of pacidamycin has been characterized. In this work a hypothetical protein PacB, conserved in known uridyl peptide antibiotics gene clusters, has been characterized by both genetic deletion and enzymatic analysis of the purified protein. PacB catalyzes the transfer of the alanyl residue from alanyl-tRNA to the N terminus of the tetrapeptide intermediate yielding a pentapeptide on the thio-templated nonribosomal peptide synthetase (NRPS) assembly line protein PacH. PacB thus represents a new group of tRNA-dependent peptide bond-forming enzymes in secondary metabolite biosynthesis in addition to the recently identified cyclodipeptide synthases. The characterization of PacB completes the assembly line reconstitution of pacidamycin pentapeptide antibiotic scaffolds, bridging the primary and secondary metabolic pathways by hijacking an aminoacyl-tRNA to the antibiotic biosynthetic pathway.

  7. Cu(II) salen complex with propylene linkage: An efficient catalyst in the formation of Csbnd X bonds (X = N, O, S) and biological investigations (United States)

    Azam, Mohammad; Dwivedi, Sourabh; Al-Resayes, Saud I.; Adil, S. F.; Islam, Mohammad Shahidul; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Lee, Dong-Ung


    The catalytic property of a mononuclear Cu(II) salen complex in Chan-Lam coupling reaction with phenyl boronic acid at room temperature is reported. The studied complex is found to be potential catalyst in the preparation of carbon-heteroatom bonds with excellent yields. The studied Cu(II) salen complex is monoclinic with cell parameters, a = 9.6807(5) (α 90°), (b = 17.2504(8) (β 112.429 (2), c = 11.1403 (6) (γ = 90°), and has distorted square planar environment around Cu(II) ion. Furthermore, there is no π⋯π interactions in the reported complex due to large distance between the centroid of aromatic rings. In addition, DNA binding study of Cu(II) salen complex by fluorescence and absorption spectroscopy is also reported. Moreover, the reported Cu(II) salen complex exhibits significant anticancer activity against MCF-7 cancer cell lines, and displays potential antimicrobial biofilm activity against P. aeruginosa, suggesting antimicrobial biofilm an important tool for suppression of resistant infections caused by P. aeruginosa.

  8. Selenium dioxide catalysed oxidation of acetic acid hydrazide by ...

    Indian Academy of Sciences (India)

    Br2 or HOBr as the product of reaction but the hydrazides can be very easily oxidized by both of them in acidic solutions due to the oxidation potentials27 of. HOBr and Br2 of 1.34 and 1.07V, respectively. The test for formation of bromide ion was carried out in sulphuric acid solution instead of hydrochloric acid by.

  9. tri-n-butyltin hydride-mediated radical reaction of a 2-iodobenzamide: formation of an unexpected carbon-tin bond

    International Nuclear Information System (INIS)

    Oliveira, Marcelo T.; Alves, Rosemeire B.; Cesar, Amary; Prado, Maria Auxiliadora F.; Alves, Ricardo J.; Queiroga, Carla G.; Santos, Leonardo S.; Eberlin, Marcos N.


    The tri-n-butyltin hydride-mediated reaction of methyl 2,3-di-O-benzyl-4-O-trans-cinnamyl- 6-deoxy-6-(2-iodobenzoylamino)-α-D-galactopyranoside afforded an unexpected aryltributyltin compound. The structure of this new tetraorganotin(IV) product has been elucidated by 1 H, 13 C NMR spectroscopy, COSY and HMQC experiments and electrospray ionization mass spectrometry (ESI-MS). The formation of this new compound via a radical coupling reaction and a radical addition-elimination process is discussed. (author)

  10. Formation, Characterization, and O-O Bond Activation of a Peroxomanganese(III) Complex Supported by a Cross-Clamped Cyclam Ligand. (United States)

    Colmer, Hannah E; Howcroft, Anthony W; Jackson, Timothy A


    Although there have been reports describing the nucleophilic reactivity of peroxomanganese(III) intermediates, as well as their conversion to high-valent oxo-bridged dimers, it remains a challenge to activate peroxomanganese(III) species for conversion to high-valent, mononuclear manganese complexes. Herein, we report the generation, characterization, and activation of a peroxomanganese(III) adduct supported by the cross-clamped, macrocyclic Me2EBC ligand (4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). This ligand is known to support high-valent, mononuclear Mn(IV) species with well-defined spectroscopic properties, which provides an opportunity to identify mononuclear Mn(IV) products from O-O bond activation of the corresponding Mn(III)-peroxo adduct. The peroxomanganese(III) intermediate, [Mn(III)(O2)(Me2EBC)](+), was prepared at low-temperature by the addition of KO2 to [Mn(II)(Cl)2(Me2EBC)] in CH2Cl2, and this complex was characterized by electronic absorption, electron paramagnetic resonance (EPR), and Mn K-edge X-ray absorption (XAS) spectroscopies. The electronic structure of the [Mn(III)(O2)(Me2EBC)](+) intermediate was examined by density functional theory (DFT) and time-dependent (TD) DFT calculations. Detailed spectroscopic investigations of the decay products of [Mn(III)(O2)(Me2EBC)](+) revealed the presence of mononuclear Mn(III)-hydroxo species or a mixture of mononuclear Mn(IV) and Mn(III)-hydroxo species. The nature of the observed decay products depended on the amount of KO2 used to generate [Mn(III)(O2)(Me2EBC)](+). The Mn(III)-hydroxo product was characterized by Mn K-edge XAS, and shifts in the pre-edge transition energies and intensities relative to [Mn(III)(O2)(Me2EBC)](+) provide a marker for differences in covalency between peroxo and nonperoxo ligands. To the best of our knowledge, this work represents the first observation of a mononuclear Mn(IV) center upon decay of a nonporphyrinoid Mn(III)-peroxo center.

  11. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr


    a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...

  12. Formation versus Hydrolysis of the Peptide Bond from a Quantum-mechanical Viewpoint: The Role of Mineral Surfaces and Implications for the Origin of Life

    Directory of Open Access Journals (Sweden)


    Full Text Available The condensation (polymerization by water elimination of molecular building blocks to yield the first active biopolymers (e.g. of amino acids to form peptides during primitive Earth is an intriguing question that nowadays still remains open since these processes are thermodynamically disfavoured in highly dilute water solutions. In the present contribution, formation and hydrolysis of glycine oligopeptides occurring on a cluster model of sanidine feldspar (001 surface have been simulated by quantum mechanical methods. Results indicate that the catalytic interplay between Lewis and Brønsted sites both present at the sanidine surface, in cooperation with the London forces acting between the biomolecules and the inorganic surface, plays a crucial role to: i favour the condensation of glycine to yield oligopeptides as reaction products; ii inhibit the hydrolysis of the newly formed oligopeptides. Both facts suggest that mineral surfaces may have helped in catalyzing, stabilizing and protecting from hydration the oligopeptides formed in the prebiotic era.

  13. Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

    Directory of Open Access Journals (Sweden)

    David Porter


    Full Text Available Iron(II complexes of the tetradentate amines tris(2-pyridylmethylamine (TPA and N,N′-bis(2-pyridylmethyl-N,N′-dimethylethane-1,2-diamine (BPMEN are established catalysts of C–O bond formation, oxidising hydrocarbon substrates via hydroxylation, epoxidation and dihydroxylation pathways. Herein we report the capacity of these catalysts to promote C–N bond formation, via allylic amination of alkenes. The combination of N-Boc-hydroxylamine with either FeTPA (1 mol % or FeBPMEN (10 mol % converts cyclohexene to the allylic hydroxylamine (tert-butyl cyclohex-2-en-1-yl(hydroxycarbamate in moderate yields. Spectroscopic studies and trapping experiments suggest the reaction proceeds via a nitroso–ene mechanism, with involvement of a free N-Boc-nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+-(2R,2′R-1,1′-bis(2-pyridylmethyl-2,2′-bipyrrolidine ((R,R′-PDP.

  14. Modélisation et caractérisation des joints collés à hautes vitesses de déformation Modeling and characterization of bonded joints at high strain rates

    Directory of Open Access Journals (Sweden)

    Bourel B.


    Full Text Available Ce papier traite de la modélisation de joints collés pour les structures soumises à des sollicitations de type crash. Cette nouvelle modélisation basée sur un élément cohésif tient compte du comportement viscoplastique, de l'endommagement ainsi que de la rupture de l'adhésive. Sensible à la vitesse de déformation l'identification du critère de rupture nécessite une base expérimentale allant jusqu'à de très hautes vitesses de déformations. Un nouveau dispositif d'essais a donc été mis en place sur les barres de Hopkinson afin de solliciter des assemblages à haute vitesse et sous différents angles de chargement. This paper deals with the modeling of bonded joints for structures subjected to dynamic crash loading. This new model based on a cohesive element takes into account the viscoelastic behavior, the damage and the failure of the adhesive. Due to the strain rate sensitivity, the identification of failure criterion requires experimental tests, up to very high strain rates. A new testing device has then been set up on the Hopkinson bar in order to load the assemblies with high strain rates and with different angles.

  15. Diagraphies de cimentation : vers une analyse de la qualité du contact ciment-formation Cement Logging: Toward an Analysis of the Quality of Cement-Formation Bonding

    Directory of Open Access Journals (Sweden)

    Isambourg P.


    Full Text Available Les compagnies pétrolières ont un réel besoin d'évaluer correctement les cimentations de leurs puits : l'étanchéité entre les différentes zones est-elle assurée? Pour ce faire, les outils soniques et ultra-soniques ont été mis au point. Jusqu'à présent, la qualité du contactcasing-ciment était analysée quantitativement et celle du contactciment-formation était analysée qualitativement par les spécialistes (outil VDL. Le progrès le plus important que l'on pouvait apporter dans les logsde cimentation était de détecter les défauts à l'interface ciment-formation. C'est ce que nous avons fait dans le cadre d'un projet financé par l'ARTEP (Association de Recherche sur les Techniques d'Exploitation du Pétrole comprenant Total, Gaz de France GDF, Institut Français du Pétrole (IFP, et Elf Aquitaine Production (EAP. Les expériences laboratoires effectuées au Service Analyse FLuides de Boussens ont été conçues en injectant du ciment entre un casing et une formation-simulée avec présence, ou non, de boue d'épaisseur variable. Des formations rapides ou lentes, ainsi que des ciments, rapides ou lents, ont été utilisés. Les échos ultrasoniques, obtenus à l'aide d'une sonde CET en céramique, ont été enregistrés et analysés. La théorie, comme les expériences, ont montré que les échos ultrasoniques sont modifiés en présence de boue et/ou de gaz. Les relations entre la forme de l'onde ultrasonique et la présence de boue et de gaz entre le ciment et la formation ont été établies. Une procédure de traitement est proposée avec ses limites. Oil companies have a real need to make a correct assessment of cementing jobs in their wells. Is the seal ensured between different zones? To do this, sonic and ultrasonic logging tools have been developed. Up to now, the quality of the casing-cement contacthas been analyzed quantitatively, and that of the cement-formation contacthas been analyzed qualitatively by

  16. [Ru(TPP)CO]-catalysed intramolecular benzylic C-H bond amination, affording phenanthridine and dihydrophenanthridine derivatives. (United States)

    Intrieri, Daniela; Mariani, Matteo; Caselli, Alessandro; Ragaini, Fabio; Gallo, Emma


    Shedding light on azides: [Ru(TPP)CO] (TPP=tetraphenyl porphyrin dianion), white light and O(2) were found to be a suitable catalyst combination to perform the annulation of several biaryl azides. The high chemoselectivity of the process allows the synthesis of phenanthridines and dihydrophenanthridines in good yield and purity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intramolecular Hydroalkoxylation of Non-Activated C=C Bonds Catalysed by Zeolites: An Experimental and Theoretical Study

    Czech Academy of Sciences Publication Activity Database

    Pérez-Mayoral, E.; Matos, I.; Nachtigall, P.; Položij, M.; Fonseca, I.; Vitvarová, Dana; Čejka, Jiří


    Roč. 6, č. 6 (2013), s. 1021-1030 ISSN 1864-5631 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : cyclization * density functional calculations * heterogeneous catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.117, year: 2013

  18. Protection of iron against corrosion by coverage with ultrathin two-dimensional polymer films of a hydroxymethylbenzene self-assembled monolayer anchored by the formation of a covalent bond

    International Nuclear Information System (INIS)

    Shimura, Tadashi; Aramaki, Kunitsugu


    Ultrathin films of two-dimensional polymers were prepared on an iron electrode by modification of a p-hydroxymethylbenzene p-HOCH 2 C 6 H 4 (HOMB) self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C 2 H 5 O) 3 Si(CH 2 ) 2 Si(OC 2 H 5 ) 3 (BTESE) and alkyltriethoxysilanes C n H 2n+1 Si(OC 2 H 5 ) 3 (C n TES, n = 8 and 18). The electrode was derivatized by cathodic reduction of p-hydroxymethylbenzenediazonium tetrafluoroborate HOCH 2 C 6 H 4 N 2 BF 4 in an electrolytic acetonitrile solution below 10deg. C for 1 h to form the SAM via a covalent bond between carbon and iron atoms. The protective ability of the polymer film against iron corrosion was determined by polarization measurement of the coated electrode in an oxygenated 0.5 M NaCl solution. The protective efficiencies of the polymer films prepared by modification with BTESE plus C 8 TES and C 18 TES were 63.9% and 68.5% after immersion in 0.5 M NaCl for 1.5 h, respectively. These values were higher than those of the one-dimensional polymer films prepared with the respective C n TES. The film of the HOMB SAM modified with BTESE plus C 8 TES was characterized by contact angle measurement using a drop of water and X-ray photoelectron and FTIR reflection spectroscopies. The films of the HOMB SAM modified with BTESE plus C 8 TES and C 18 TES were persistent during immersion of the coated electrodes in 0.5 M NaCl for many hours by far as compared with the alkanethiol SAM anchored on iron by the formation of a coordinate bond

  19. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels


    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  20. Induced and catalysed mineral precipitation in the deep biosphere (United States)

    Meister, Patrick


    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  1. Titania-catalysed oxidative dehydrogenation of ethyl lactate: effective yet selective free-radical oxidation

    NARCIS (Netherlands)

    Ramos-Fernandez, E.V.; Geels, N.J.; Shiju, N.R.; Rothenberg, G.


    We research here the catalytic oxidative dehydrogenation of ethyl lactate, as an alternative route to ethyl pyruvate. Testing various solid catalysts (Fe2O3, TiO2, V2O5/MgO-Al2O3, ZrO2, CeO2 and ZnO), we find that simple and inexpensive TiO2 efficiently catalyses this reaction under mild conditions.

  2. FeCl3-catalysed Zn-mediated allylation of cyclic enol ethers in water

    Indian Academy of Sciences (India)

    FeCl3-catalysed Zn-mediated allylation of cyclic enol ethers in water. P CHAKRABORTY and ... To a stirred mixture of dihydropyran (84.2mg,. 1.0 mmol), water (5 ... 2b (syn/anti = 1:1) was prepared from dihydropyran and 1b following the procedure described for com- pound 2a. Viscous oil. Rf = 0.21 (30% ethyl acetate. 509 ...

  3. Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS

    Directory of Open Access Journals (Sweden)

    Gjergji Shore


    Full Text Available Methodology has been developed for laying down a thin gold-on-silver film on the inner surface of glass capillaries for the purpose of catalysing benzannulation reactions. The cycloaddition precursors are flowed through these capillaries while the metal film is being heated to high temperatures using microwave irradiation. The transformation can be optimized rapidly, tolerates a wide number of functional groups, is highly regioselective, and proceeds in good to excellent conversion.

  4. Rieske non-heme iron-dependent oxygenases catalyse diverse reactions in natural product biosynthesis. (United States)

    Perry, Christopher; de Los Santos, Emmanuel L C; Alkhalaf, Lona M; Challis, Gregory L


    Covering: up to the end of 2017The roles played by Rieske non-heme iron-dependent oxygenases in natural product biosynthesis are reviewed, with particular focus on experimentally characterised examples. Enzymes belonging to this class are known to catalyse a range of transformations, including oxidative carbocyclisation, N-oxygenation, C-hydroxylation and C-C desaturation. Examples of such enzymes that have yet to be experimentally investigated are also briefly described and their likely functions are discussed.

  5. Rapid assembly of functionalised spirocyclic indolines by palladium-catalysed dearomatising diallylation of indoles with allyl acetate


    Dhankher, P.; Benhamou, L.; Sheppard, T. D.


    Herein, we report the application of allyl acetate to the palladium-catalysed dearomatising diallylation of indoles. The reaction can be carried out by using a readily available palladium catalyst at room temperature, and can be applied to a wide range of substituted indoles to provide access to the corresponding 3,3-diallylindolinines. These compounds are versatile synthetic intermediates that readily undergo Ugi reactions or proline-catalysed asymmetric Mannich reactions. Alternatively, acy...

  6. Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. (United States)

    Šalić, Anita; Tušek, Ana Jurinjak; Sander, Aleksandra; Zelić, Bruno


    Although the application of microreactors in different processes has been extensively explored in recent decades, microreactors continue to be underexplored in the context of the enzyme-catalysed process for biodiesel production. Due to their numerous advantages, microreactors could become the next step in the development of a biodiesel production process characterised by sustainability, cost-effectiveness and energy efficiency. In this investigation, biodiesel production was catalysed by lipase from Thermomyces lanuginosus (Lipolase L100). Edible sunflower oil was used as a model substrate in order to investigate the process. After optimal process conditions had been determined, waste-cooking oil was used for biodiesel production to make the production process more sustainable. Three different substrate-feeding strategies were investigated and finally an optimal strategy was proposed. In all the investigated systems, fatty acids methyl esters (FAME) content was higher than 95% and obtained in a significantly shorter time (less than 2 h) compared to the batch process in which biodiesel production was catalysed by lipase (C = 95%, t = 96 h). After the optimal biodiesel production system had been proposed, an integrated system with two microchips connected in series was developed. The first microchip was used for biodiesel production and the second for simultaneous purification i.e. glycerol separation. Finally, purified biodiesel was produced with glycerol content below the detection limit. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G


    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  8. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner (United States)

    Reuther, James F.; Dees, Justine L.; Kolesnichenko, Igor V.; Hernandez, Erik T.; Ukraintsev, Dmitri V.; Guduru, Rusheel; Whiteley, Marvin; Anslyn, Eric V.


    Naturally occurring peptides and proteins often use dynamic disulfide bonds to impart defined tertiary/quaternary structures for the formation of binding pockets with uniform size and function. Although peptide synthesis and modification are well established, controlling quaternary structure formation remains a significant challenge. Here, we report the facile incorporation of aryl aldehyde and acyl hydrazide functionalities into peptide oligomers via solid-phase copper-catalysed azide-alkyne cycloaddition (SP-CuAAC) click reactions. When mixed, these complementary functional groups rapidly react in aqueous media at neutral pH to form peptide-peptide intermolecular macrocycles with highly tunable ring sizes. Moreover, sequence-specific figure-of-eight, dumbbell-shaped, zipper-like and multi-loop quaternary structures were formed selectively. Controlling the proportions of reacting peptides with mismatched numbers of complementary reactive groups results in the formation of higher-molecular-weight sequence-defined ladder polymers. This also amplified antimicrobial effectiveness in select cases. This strategy represents a general approach to the creation of complex abiotic peptide quaternary structures.

  9. X hydrogen bonds

    Indian Academy of Sciences (India)

    sigma electrons, can be hydrogen bond acceptors.11–14. The recent IUPAC report and recommendation on hydro gen bond have recognised the diverse nature of hydro- gen bond donors and acceptors.13,14. Unlike methane, hydrogen bonding by higher alkanes has not received much attention. One of the earlier works.

  10. Adhesive wafer bonding (United States)

    Niklaus, F.; Stemme, G.; Lu, J.-Q.; Gutmann, R. J.


    Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

  11. A new reaction mode of germanium-silicon bond formation: insertion reactions of H₂GeLiF with SiH₃X (X = F, Cl, Br). (United States)

    Yan, Bingfei; Li, Wenzuo; Xiao, Cuiping; Li, Qingzhong; Cheng, Jianbo


    A combined density functional and ab initio quantum chemical study of the insertion reactions of the germylenoid H2GeLiF with SiH3X (X = F, Cl, Br) was carried out. The geometries of all the stationary points of the reactions were optimized using the DFT B3LYP method and then the QCISD method was used to calculate the single-point energies. The theoretical calculations indicated that along the potential energy surface, there were one precursor complex (Q), one transition state (TS), and one intermediate (IM) which connected the reactants and the products. The calculated barrier heights relative to the respective precursors are 102.26 (X = F), 95.28 (X = Cl), and 84.42 (X = Br) kJ mol(-1) for the three different insertion reactions, respectively, indicating the insertion reactions should occur easily according to the following order: SiH3-Br > SiH3-Cl > SiH3-F under the same situation. The solvent effects on the insertion reactions were also calculated and it was found that the larger the dielectric constant, the easier the insertion reactions. The elucidations of the mechanism of these insertion reactions provided a new reaction model of germanium-silicon bond formation.

  12. Synthesis of Structurally Diverse 2,3-Fused Indoles via Microwave-Assisted AgSbF6-Catalysed Intramolecular Difunctionalization of o-Alkynylanilines (United States)

    Huang, Yuanqiong; Yang, Yan; Song, Hongjian; Liu, Yuxiu; Wang, Qingmin


    2,3-Fused indoles are found in numerous natural products and drug molecules. Although several elegant methods for the synthesis of this structural motif have been reported, long reaction times and harsh conditions are sometimes required, and the yields tend to be low. Herein, we report a microwave method for straightforward access to various types of 2,3-fused indoles via AgSbF6-catalysed intramolecular difunctionalization of o-alkynylanilines. AgSbF6 played a role in both the hydroamination step and the imine-formation step. This method, which exhibited excellent chemoselectivity (no ring-fused 1,2-dihydroquinolines were formed), was used for formal syntheses of the natural products conolidine and ervaticine and the antihistamine drug latrepirdine.

  13. IMPACT OF PHYSICAL AND CHEMICAL MUD CONTAMINATION ON WELLBORE CEMENT- FORMATION SHEAR BOND STRENGTH Authors: Arome Oyibo1 and Mileva Radonjic1 * 1. Craft and Hawkins Department of Petroleum Engineering, 2131 Patrick F. Taylor Hall, Louisiana State University, Baton Rouge, LA 70803,, (United States)

    Oyibo, A. E.


    Wellbore cement has been used to provide well integrity through zonal isolation in oil & gas wells and geothermal wells. Cementing is also used to provide mechanical support for the casing and protect the casing from corrosive fluids. Failure of cement could be caused by several factors ranging from poor cementing, failure to completely displace the drilling fluids to failure on the path of the casing. A failed cement job could result in creation of cracks and micro annulus through which produced fluids could migrate to the surface which could lead to sustained casing pressure, contamination of fresh water aquifer and blow out in some cases. In addition, cement failures could risk the release of chemicals substances from hydraulic fracturing into fresh water aquifer during the injection process. To achieve proper cementing, the drilling fluid should be completely displaced by the cement slurry. However, this is hard to achieve in practice, some mud is usually left on the wellbore which ends up contaminating the cement afterwards. The purpose of this experimental study is to investigate the impact of both physical and chemical mud contaminations on cement-formation bond strength for different types of formations. Physical contamination occurs when drilling fluids (mud) dries on the surface of the formation forming a mud cake. Chemical contamination on the other hand occurs when the drilling fluids which is still in the liquid form interacts chemically with the cement during a cementing job. We investigated the impact of the contamination on the shear bond strength and the changes in the mineralogy of the cement at the cement-formation interface to ascertain the impact of the contamination on the cement-formation bond strength. Berea sandstone and clay rich shale cores were bonded with cement cores with the cement-formation contaminated either physically or chemically. For the physically contaminated composite cores, we have 3 different sample designs: clean

  14. Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications (United States)

    Numan, Michael; Young, Larry J.


    Mother-infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occurs in ∼5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother-infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother-infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens-ventral pallidum (NA-VP) circuits are involved in both types of bond formation, and dopamine and oxytocin action within NA appears to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA-VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans. PMID:26062432

  15. The dissolution of organic ion exchange resins using iron-catalysed hydrogen peroxide

    International Nuclear Information System (INIS)

    Hawkings, N.; Horton, K.D.; Snelling, K.W.


    Feasibility studies have been made of the dissolution/partial decomposition of radioactive waste resins by means of iron-catalysed hydrogen peroxide. They have shown that the procedure is limited in its application and successfully treats only polystyrene/divinylbenzene-based resins. Evaporation of the final solution produces a solid residue which is difficult to handle and results in only a relatively small reduction in volume. It is concluded that the method could be used to dissolve specific waste resins for easier handling and disposal, but is not of general applicability. (author)

  16. Hydrogen bonds and twist in cellulose microfibrils. (United States)

    Kannam, Sridhar Kumar; Oehme, Daniel P; Doblin, Monika S; Gidley, Michael J; Bacic, Antony; Downton, Matthew T


    There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Does fluorine participate in halogen bonding? (United States)

    Eskandari, Kiamars; Lesani, Mina


    When R is sufficiently electron withdrawing, the fluorine in the R-F molecules could interact with electron donors (e.g., ammonia) and form a noncovalent bond (F⋅⋅⋅N). Although these interactions are usually categorized as halogen bonding, our studies show that there are fundamental differences between these interactions and halogen bonds. Although the anisotropic distribution of electronic charge around a halogen is responsible for halogen bond formations, the electronic charge around the fluorine in these molecules is spherical. According to source function analysis, F is the sink of electron density at the F⋅⋅⋅N BCP, whereas other halogens are the source. In contrast to halogen bonds, the F⋅⋅⋅N interactions cannot be regarded as lump-hole interactions; there is no hole in the valence shell charge concentration (VSCC) of fluorine. Although the quadruple moment of Cl and Br is mainly responsible for the existence of σ-holes, it is negligibly small in the fluorine. Here, the atomic dipole moment of F plays a stabilizing role in the formation of F⋅⋅⋅N bonds. Interacting quantum atoms (IQA) analysis indicates that the interaction between halogen and nitrogen in the halogen bonds is attractive, whereas it is repulsive in the F⋅⋅⋅N interactions. Virial-based atomic energies show that the fluorine, in contrast to Cl and Br, stabilize upon complex formation. According to these differences, it seems that the F⋅⋅⋅N interactions should be referred to as "fluorine bond" instead of halogen bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Australia's Bond Home Bias


    Anil V. Mishra; Umaru B. Conteh


    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  19. Pressure bonding molybdenum alloy (TZM) to reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Huffsmith, S.A.; Landingham, R.L.


    Topping cycles could boost the energy efficiencies of a variety of systems by using what is now waste heat. One such topping cycle uses a ceramic helical expander and would require that a reaction-bonded silicon nitride (RBSN) rotor be bonded to a shaft of TZM (Mo-0.5 wt % Ti-0.08 wt % Zr). Coupon studies show that TZM can be bonded to RBSN at 1300 0 C and 69 MPa if there is an interlayer of MoSi 2 . A layer of finely ground (10 μm) MoSi 2 facilitates bond formation and provides a thicker bond interface. The hardness and grain structure of the TZM and RBSN were not affected by the temperature and pressure required to bond the coupons

  20. Catalysed fusion

    CERN Document Server

    Farley, Francis


    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  1. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch (United States)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri


    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  2. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot


    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  3. Body of Knowledge (BOK) for Copper Wire Bonds (United States)

    Rutkowski, E.; Sampson, M. J.


    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  4. The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis. (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Pazio, Aleksandra; Makal, Anna; Woźniak, Krzysztof; Poater, Albert; Cavallo, Luigi; Wójcik, Jacek; Zdanowski, Konrad; Grela, Karol


    A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes. (United States)

    Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus; Stöger, Berthold; Peruzzini, Maurizio; Veiros, Luis F; Kirchner, Karl; Gonsalvi, Luca


    The catalytic reduction of carbon dioxide is of great interest for its potential as a hydrogen storage method and to use carbon dioxide as C-1 feedstock. In an effort to replace expensive noble metal-based catalysts with efficient and cheap earth-abundant counterparts, we report the first example of Mn(i)-catalysed hydrogenation of CO 2 to HCOOH. The hydride Mn(i) catalyst [Mn(PNP NH - i Pr)(H)(CO) 2 ] showed higher stability and activity than its Fe(ii) analogue. TONs up to 10 000 and quantitative yields were obtained after 24 h using DBU as the base at 80 °C and 80 bar total pressure. At catalyst loadings as low as 0.002 mol%, TONs greater than 30 000 could be achieved in the presence of LiOTf as the co-catalyst, which are among the highest activities reported for base-metal catalysed CO 2 hydrogenations to date.

  6. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    Directory of Open Access Journals (Sweden)

    Matthieu Jouffroy


    Full Text Available The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2.

  7. Sol-gel bonding of silicon wafers

    International Nuclear Information System (INIS)

    Barbe, C.J.; Cassidy, D.J.; Triani, G.; Latella, B.A.; Mitchell, D.R.G.; Finnie, K.S.; Short, K.; Bartlett, J.R.; Woolfrey, J.L.; Collins, G.A.


    Sol-gel bonds have been produced between smooth, clean silicon substrates by spin-coating solutions containing partially hydrolysed silicon alkoxides. The two coated substrates were assembled and the resulting sandwich fired at temperatures ranging from 60 to 600 deg. C. The sol-gel coatings were characterised using attenuated total reflectance Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, while the corresponding bonded specimens were investigated using scanning electron microscopy and cross-sectional transmission electron microscopy. Mechanical properties were characterised using both microindentation and tensile testing. Bonding of silicon wafers has been successfully achieved at temperatures as low as 60 deg. C. At 300 deg. C, the interfacial fracture energy was 1.55 J/m 2 . At 600 deg. C, sol-gel bonding provided superior interfacial fracture energy over classical hydrophilic bonding (3.4 J/m 2 vs. 1.5 J/m 2 ). The increase in the interfacial fracture energy is related to the increase in film density due to the sintering of the sol-gel interface with increasing temperature. The superior interfacial fracture energy obtained by sol-gel bonding at low temperature is due to the formation of an interfacial layer, which chemically bonds the two sol-gel coatings on each wafer. Application of a tensile stress on the resulting bond leads to fracture of the samples at the silicon/sol-gel interface

  8. Direct evidence for a coordination-insertion mechanism of ethylene oligomerization catalysed by neutral 2,6-bisiminopyridine iron monoalkyl complexes


    Cartes, M. Ángeles; Rodríguez-Delgado, Antonio; Palma, Pilar; Sánchez, Luis J.; Cámpora, Juan; CSIC - Unidad de Recursos de Información Científica para la Investigación (URICI)


    1H NMR studies on ethylene oligomerization catalysed by the neutral monoalkyl complex [Fe(Me)(iPrBIP)] allow direct observation of alkyl iron intermediates as well as reversible ethylene coordination to the metal center, providing for the first time experimental evidence for a coordination-insertion mechanism of iron-catalysed ethylene upgrade reactions. © 2014 the Partner Organisations.

  9. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation (United States)

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.


    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  10. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    Directory of Open Access Journals (Sweden)

    Richard P Laura

    Full Text Available Among the human heme-peroxidase family, myeloperoxidase (MPO has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO after it exits the endoplasmic reticulum (ER. Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  11. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation. (United States)

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A


    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  12. Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by CuO ...

    Indian Academy of Sciences (India)

    Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by. CuO–CeO2 nanocomposite in the presence of amberlite-supported azide. JALAL ALBADIa,∗, JAFAR ABBASI SHIRANb and AZAM MANSOURNEZHADc. aBehbahan Khatam Alanbia University of Technology, Behbahan 6361647189, Iran. bFaculty of Science ...

  13. Bioacetilação de álcoois catalisada por Saccharum officinarum Bioacetylation of alcohols catalysed by Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    João Carlos C. Assunção


    Full Text Available Lipase-catalysed esterifications of alcohols using immobilized enzyme system from sugar cane (Saccharum officinarum as biocatalyst afforded the corresponding esters in considerable yields (68-93%. Under optimized conditions, the material was utilized for reactions of acetylation with several advantage. It also investigated the possibility of reuse of immobilized enzymes of S. officinarum as biocatalyst under optimal reaction conditions.

  14. Isotopic effects in mechanistic studies of biotransformations of fluorine derivatives of L-alanine catalysed by L-alanine dehydrogenase

    International Nuclear Information System (INIS)

    Szymańska-Majchrzak, Jolanta; Pałka, Katarzyna; Kańska, Marianna


    Synthesis of 3-fluoro-[2- 2 H]-L-alanine (3-F-[ 2 H]-L-Ala) in reductive amination of 3-fluoropyruvic acid catalysed by L-alanine dehydrogenase (AlaDH) was described. Fluorine derivative was used to study oxidative deamination catalysed by AlaDH applied kinetic (for 3-F-L-Ala in H 2 O - KIE’s on V max : 1.1; on V max /K M : 1.2; for 3-F-L-Ala in 2 H 2 O – on V max : 1.4; on V max /K M : 2.1) and solvent isotope effect methods (for 3-F-L-Ala - SIE’s on V max : 1.0; on V max /K M : 0.87; for 3-F-[2- 2 H]-L-Ala – on V max : 1.4; on V max /K M : 1.5). Studies explain some details of reaction mechanism. - Highlights: • Synthesis of 3-fluoro-[2- 2 H]-L-alanine was performed. • The reactions were catalysed using the enzyme L-alanine dehydrogenase. • Performed reactions involved fluorinated analogues of L-alanine. • Solvent isotope effects of deuterium were determined. • Kinetic isotope effects were determined for obtained 3-fluoro-L-alanine. • The mechanism of reaction catalysed by L-alanine dehydrogenase was proposed.

  15. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid

    NARCIS (Netherlands)

    Girisuta, B.; Danon, B.; Manurung, R.; Janssen, L. P. B. M.; Heeres, H. J.


    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T = 150-175 degrees C, C-H2SO4 - 0.1-1 M, water hyacinth intake = 1-5 wt%). At high acid concentrations (>

  16. Palladium-catalysed telomerisation of isoprene with glycerol and polyethylene glycol: A facile route to new terpene derivatives

    NARCIS (Netherlands)

    Gordillo, A.; Durán Páchon, L.; de Jesus, E.; Rothenberg, G.


    We present here the first example of the telomerisation of isoprene with glycerol and polyethylene glycol (PEG-200), opening a facile route to new terpene structures, based on a combination of renewable and petroleum-based feedstocks. The reaction is catalysed by a palladium-carbene complex.

  17. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase

    DEFF Research Database (Denmark)

    Holck, Jesper; Larsen, Dorte Møller; Michalak, Malwina


    A Trypanosoma cruzi trans-sialidase (E.C. was cloned into Pichia pastoris and expressed. The pH and temperature optimum of the enzyme was determined as pH 5.7 and 30°C. Using casein glycomacropeptide (CGMP) and lactose as sialyl-donor and acceptor respectively, the optimal donor....../acceptor ratio for the trans-sialidase catalysed 3′-sialyllactose production was found to be 1:4. Quantitative amounts of 3′-sialyllactose were produced from CGMP and lactose at a yield of 40mg/g CGMP. The 3′-sialyllactose obtained exerted a stimulatory effect on selected probiotic strains, including different...

  18. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.


    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  19. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gómez-Suárez, Adrián


    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A palladium-catalysed multicomponent coupling approach to conjugated poly(1,3-dipoles) and polyheterocycles (United States)

    Leitch, David C.; Kayser, Laure V.; Han, Zhi-Yong; Siamaki, Ali R.; Keyzer, Evan N.; Gefen, Ashley; Arndtsen, Bruce A.


    Conjugated polymers have emerged over the past several decades as key components for a range of applications, including semiconductors, molecular wires, sensors, light switchable transistors and OLEDs. Nevertheless, the construction of many such polymers, especially highly substituted variants, typically involves a multistep synthesis. This can limit the ability to both access and tune polymer structures for desired properties. Here we show an alternative approach to synthesize conjugated materials: a metal-catalysed multicomponent polymerization. This reaction assembles multiple monomer units into a new polymer containing reactive 1,3-dipoles, which can be modified using cycloaddition reactions. In addition to the synthetic ease of this approach, its modularity allows easy adaptation to incorporate a range of desired substituents, all via one-pot reactions.

  1. Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling. (United States)

    Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M


    Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.

  2. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes (United States)

    Sydor, Paulina K.; Barry, Sarah M.; Odulate, Olanipekun M.; Barona-Gomez, Francisco; Haynes, Stuart W.; Corre, Christophe; Song, Lijiang; Challis, Gregory L.


    Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the biosynthesis of the antibiotics streptorubin B and metacycloprodigiosin, respectively. These reactions represent the first examples of oxidative carbocyclizations catalysed by non-haem iron-dependent oxidases and define a novel type of catalytic activity for Rieske enzymes. A better understanding of how these enzymes achieve such remarkable regio- and stereocontrol in the functionalization of unactivated hydrocarbon chains will greatly facilitate the development of selective man-made C-H activation catalysts.

  3. Real-Time Monitoring of Enzyme-Catalysed Reactions using Deep UV Resonance Raman Spectroscopy. (United States)

    Westley, Chloe; Fisk, Heidi; Xu, Yun; Hollywood, Katherine A; Carnell, Andrew J; Micklefield, Jason; Turner, Nicholas J; Goodacre, Royston


    For enzyme-catalysed biotransformations, continuous in situ detection methods minimise the need for sample manipulation, ultimately leading to more accurate real-time kinetic determinations of substrate(s) and product(s). We have established for the first time an on-line, real-time quantitative approach to monitor simultaneously multiple biotransformations based on UV resonance Raman (UVRR) spectroscopy. To exemplify the generality and versatility of this approach, multiple substrates and enzyme systems were used involving nitrile hydratase (NHase) and xanthine oxidase (XO), both of which are of industrial and biological significance, and incorporate multistep enzymatic conversions. Multivariate data analysis of the UVRR spectra, involving multivariate curve resolution-alternating least squares (MCR-ALS), was employed to effect absolute quantification of substrate(s) and product(s); repeated benchmarking of UVRR combined with MCR-ALS by HPLC confirmed excellent reproducibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang


    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment.

  5. Stereodependent and solvent-specific formation of unusual β-structure through side chain-backbone H-bonding in C4(S)-(NH2/OH/NHCHO)-L-prolyl polypeptides. (United States)

    Bansode, Nitin D; Madhanagopal, B; Sonar, Mahesh V; Ganesh, Krishna N


    It is shown that C4(S)-NH 2 /OH/NHCHO-prolyl polypeptides exhibit PPII conformation in aqueous medium, but in a relatively hydrophobic solvent trifluoroethanol (TFE) transform into an unusual β-structure. The stereospecific directing effect of H-bonding in defining the specific structure is demonstrated by the absence of β-structure in the corresponding C4(S)-guanidinyl/(NH/O)-acetyl derivatives and retention of β-structure in C4(S)-(NHCHO)-prolyl polypeptides in TFE. The distinct conformations are identified by the characteristic CD patterns and supported by Raman spectroscopic data. The solvent dependent conformational effects are interpreted in terms of intraresidue H-bonding that promotes PPII conformation in water, switching over to interchain H-bonding in TFE. The present observations add a new design principle to the growing repertoire of strategies for engineering peptide secondary structural motifs for innovative nanoassemblies and new biomaterials. © 2016 Wiley Periodicals, Inc.

  6. Structural, intramolecular hydrogen bonding and vibrational studies ...

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  7. Structural, intramolecular hydrogen bonding and vibrational studies

    Indian Academy of Sciences (India)

    An extensive theoretical study on the molecular structure and vibrational analysis of 3-amino-4- methoxy benzamide (3A4MBA) was undertaken using density functional theoretical (DFT) method. The possibility of formation of intramolecular hydrogen bonding was identified from structural parameter analysis and confirmed ...

  8. Shape Bonding method (United States)

    Pontius, James T. (Inventor)


    The present invention is directed to a method of bonding at least two surfaces together. The methods step of the present invention include applying a strip of adhesive to a first surface along a predefined outer boundary of a bond area and thereby defining a remaining open area there within. A second surface, or gusset plate, is affixed onto the adhesive before the adhesive cures. The strip of adhesive is allowed to cure and then a second amount of adhesive is applied to cover the remaining open area and substantially fill a void between said first and second surfaces about said bond area. A stencil may be used to precisely apply the strip of adhesive. When the strip cures, it acts as a dam to prevent overflow of the subsequent application of adhesive to undesired areas. The method results in a precise bond area free of undesired shapes and of a preferred profile which eliminate the drawbacks of the prior art bonds.

  9. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael


    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... to think in alternative ways such as issuing corporate bonds. A market for corporate bonds exists in countries such as Norway, Germany, France, the United Kingdom and the United States, while Denmark is still behind in this trend. Some large Danish corporations have instead used foreign corporate bonds...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...

  10. Corporate Bonds in Denmark

    DEFF Research Database (Denmark)

    Tell, Michael


    Corporate financing is the choice between capital generated by the corporation and capital from external investors. However, since the financial crisis shook the markets in 2007–2008, financing opportunities through the classical means of financing have decreased. As a result, corporations have...... markets. However, NASDAQ OMX has introduced the First North Bond Market in December 2012 and new regulatory framework came into place in 2014, which may contribute to a Danish based corporate bond market. The purpose of this article is to present the regulatory changes in Denmark in relation to corporate...... bonds. The purpose is further to analyse the tax consequences of issuing bonds in both a direct issue of bonds and through securitization....

  11. Influence of hydrogen bonding on the generation and stabilization of ...

    Indian Academy of Sciences (India)

    Keywords. Hydrogen bonding; polymer liquid crystals; smectic; thermal properties; polymer. ... The occurrence of the smectic phases in some of the polymers indicated possibly self-assembly through the formation of hetero intermolecular hydrogen bonded networks. A smectic polymorphism and in addition, ...

  12. Transversely Compressed Bonded Joints

    DEFF Research Database (Denmark)

    Hansen, Christian Skodborg; Schmidt, Jacob Wittrup; Stang, Henrik


    The load capacity of bonded joints can be increased if transverse pressure is applied at the interface. The transverse pressure is assumed to introduce a Coulomb-friction contribution to the cohesive law for the interface. Response and load capacity for a bonded single-lap joint was derived using...... non-linear fracture mechanics. The results indicated a good correlation between theory and tests. Furthermore, the model is suggested as theoretical base for determining load capacity of bonded anchorages with transverse pressure, in externally reinforced concrete structures....

  13. A gold-catalysed imine-propargylamine cascade sequence: synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. (United States)

    Alcaide, Benito; Almendros, Pedro; Alonso, José M; Fernández, Israel; Gómez-Campillos, Gonzalo; Torres, M Rosario


    The gold-catalysed coupling reaction between propargylamine-derived imines and propargylamine exclusively afforded pyrazines. Besides, in order to understand the mechanism of this sequence, deuterium labeling and computational studies have been performed.

  14. Coordinence en catalyse hétèrogène appliquée Coordination in Applied Heterogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Montarnal R.


    Full Text Available L'exposé concerne l'activation des paraffines et des oléfines en présence d'hydrogène sur les métaux du groupe VIII. L'activation des paraffines fait intervenir les voies d'hydrogénolyse, d'isomérisation et de cyclisation. La profondeur d'hydrogénolyse permet de proposer un classement des métaux selon l'ordre croissant de la force de la liaison, paraffine chimisorbée-métal Pd-Pt-Ir-Rh-Ru-Os-Ni-Co-Fe L'activité spécifique d'hydrogénolyse, portée alors en fonction de la force de cette liaison, passe par un maximum autour de la position de Rh - Ru - Os. Les activités d'isomérisation et de cyclisation passent, par un maximum, pour la position de Pt. On retrouve ainsi la notion de force optimale de chimisorption pour catalyser une transformation précise. Sur la base des notions développées par Pearson, on peut alors considérer que la paraffine chimisorbée intervient plutôt en qualité de base «dure» de telle façon que la force de la liaison paraffine métal, augmente avec le caractère «dur» du métal. L'effet des ligands dans la sphère de coordination du site catalytique est ensuite analysé, en distinguant les ligands introduits lors de la préparation du catalyseur et ceux amenés par la phase réactionnelle. Les modifications ainsi apportées au caractère « dur ou mou » du site catalytique, conduisent à prévoir le sens de variation de l'activité d'hdrogénolyse ou de cyclisation. L'expérience confirme en gros les prévisions. L'étude de l'activation des oléfines est limitée au cas de l'éthylène, pour lequel on examine l'activité de l'hydrogénation et de l'échange éthylène-deutérium. La valeur de la multiplicité de cet échange permet de proposer un classement des métaux selon l'ordre croissant de la force de la liaison oléfine-métal Fe - Co-Ni-Ru-Rh-Os-Ir-Pt L'activité d'hydrogénation portée alors en fonction de la force de cette liaison, passe par un maximum autour (également de la position

  15. Chemisorption bonding and catalysis

    International Nuclear Information System (INIS)

    Danese, J.B.; Schrieffer, J.R.


    The general features of the LCAO--MO, Green's function, and multiple-scattering chi α methods and their applications to surfaces and surface-related problems are discussed. Emphasis is placed on the localization of bonding in surface complexes

  16. Tile-bonding tool (United States)

    Haynie, C. C.; Holt, J. W.


    Device applies uniform, constant, precise pressure to hold tiles in place during bonding. Tool consists of pressure bladders supported by adjustable pole. Pole can accomodate single or multiple bladders. Tiles can be flat or contoured.

  17. Bond markets in Africa

    Directory of Open Access Journals (Sweden)

    Yibin Mu


    Full Text Available African bond markets have been steadily growing in recent years, but nonetheless remain undeveloped. African countries would benefit from greater access to financing and deeper financial markets. This paper compiles a unique set of data on government securities and corporate bond markets in Africa. It then applies an econometric model to analyze the key determinants of African government securities market and corporate bond market capitalization. Government securities market capitalization is directly related to better institutions and interest rate volatility, and inversely related to smaller fiscal deficits, higher interest rate spreads, exchange rate volatility, and current and capital account openness. Corporate bond market capitalization is directly linked to economic size, the level of development of the economy and financial markets, better institutions, and interest rate volatility, and inversely related to higher interest rate spreads and current account openness. Policy implications follow.

  18. Silver-catalysed azide-alkyne cycloaddition (AgAAC): assessing the mechanism by density functional theory calculations (United States)

    Banerji, Biswadip; Chandrasekhar, K.; Killi, Sunil Kumar; Pramanik, Sumit Kumar; Uttam, Pal; Sen, Sudeshna; Maiti, Nakul Chandra


    `Click reactions' are the copper catalysed dipolar cycloaddition reaction of azides and alkynes to incorporate nitrogens into a cyclic hydrocarbon scaffold forming a triazole ring. Owing to its efficiency and versatility, this reaction and the products, triazole-containing heterocycles, have immense importance in medicinal chemistry. Copper is the only known catalyst to carry out this reaction, the mechanism of which remains unclear. We report here that the `click reactions' can also be catalysed by silver halides in non-aqueous medium. It constitutes an alternative to the well-known CuAAC click reaction. The yield of the reaction varies on the type of counter ion present in the silver salt. This reaction exhibits significant features, such as high regioselectivity, mild reaction conditions, easy availability of substrates and reasonably good yields. In this communication, the findings of a new catalyst along with the effect of solvent and counter ions will help to decipher the still obscure mechanism of this important reaction.

  19. Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. (United States)

    Girisuta, B; Danon, B; Manurung, R; Janssen, L P B M; Heeres, H J


    A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T=150-175 degrees CH2SO4 = 0.1-1M, water hyacinth intake=1-5wt%). At high acid concentrations (>0.5M), LA was the major organic acid whereas at low acid concentrations (acid instead of LA was favoured. The highest yield of LA was 53mol% (35wt%) based on the amount of C6-sugars in the water hyacinth (T=175 degrees CH2SO4 =1M , water hyacinth intake=1wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained.

  20. Flavan-3-ols isolated from some medicinal plants inhibiting COX-1 and COX-2 catalysed prostaglandin biosynthesis. (United States)

    Noreen, Y; Serrano, G; Perera, P; Bohlin, L


    Extracts from the four plant species Atuna racemosa Raf. ssp. racemosa, Syzygium corynocarpum (A. Gray) C. Muell., Syzygium malaccense (L.) Merr. & Perry and Vantanea peruviana Macbr., traditionally used for inflammatory conditions, were fractionated using a cyclooxygenase-1 catalysed prostaglandin biosynthesis in vitro assay. The flavan-3-ol derivatives (+)-catechin, (+)-gallocatechin, 4'-O-Me-ent-gallocatechin, ouratea-catechin and ouratea-proanthocynidin A were isolated as active principles. The IC50 values ranged from 3.3 microM to 138 microM whilst indomethacin under the same test conditions had an IC50 value of 1.1 microM. The flavonol rhamnosides mearnsitrin, myricitrin and quercitrin were also isolated. When further tested for inhibitory effect on cyclooxygenase-2 catalysed prostaglandin biosynthesis, the five flavan-3-ol derivatives exhibited from equal to weaker inhibitory potencies, as compared to their cyclooxygenase-1 inhibitory effects. The flavonol rhamnosides were inactive towards both enzymes.

  1. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings. (United States)

    Streuff, Jan; Himmel, Daniel; Younas, Sara L


    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  2. Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.


    , and the vibrational frequency as 997 cm(-1). The chemical bond in the (3) Sigma(-) electronic ground state has triple bond character due to the formation of delocalized bonding rr and a orbitals. The chemical bond in the MoC molecule is polar with charge transfer from Mo to C, giving rise to a dipole moment of 6.15 D...

  3. Handbook of wafer bonding

    CERN Document Server

    Ramm, Peter; Taklo, Maaike M V


    Written by an author and editor team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies.In the first part, researchers from companies and institutions around the world discuss the most reliable and reproducible technologies for the production of bonded wafers. The second part is devoted to current and emerging applications, including microresonators, biosensors and precise measuring devices.

  4. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.


    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  5. A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. (United States)

    Kettle, Andrew J; Carere, Jason; Batley, Jacqueline; Benfield, Aurelie H; Manners, John M; Kazan, Kemal; Gardiner, Donald M


    The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An efficient one-pot multi component synthesis of polyhydroquinoline derivatives through Hantzsch reaction catalysed by Gadolinium triflate

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor


    Full Text Available Gadolinium(III trifluoromethanesulfonate (Gadolinium triflate Gd(OTf3 catalysed efficient Hantzsch reaction via four-component coupling reactions of aldehydes, 5,5-dimethyl-1,3-cyclohexaedione (dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature was described as the preparation of polyhydroquinoline derivatives. The process presented here is operationally simple, environmentally benign and has excellent yield. Furthermore, the catalyst can be recovered conveniently and reused efficiently.

  7. The plant cell-wall enzyme AtXTH3 catalyses covalent cross-linking between cellulose and cello-oligosaccharide (United States)

    Shinohara, Naoki; Sunagawa, Naoki; Tamura, Satoru; Yokoyama, Ryusuke; Ueda, Minoru; Igarashi, Kiyohiko; Nishitani, Kazuhiko


    Cellulose is an economically important material, but routes of its industrial processing have not been fully explored. The plant cell wall - the major source of cellulose - harbours enzymes of the xyloglucan endotransglucosylase/hydrolase (XTH) family. This class of enzymes is unique in that it is capable of elongating polysaccharide chains without the requirement for activated nucleotide sugars (e.g., UDP-glucose) and in seamlessly splitting and reconnecting chains of xyloglucan, a naturally occurring soluble analogue of cellulose. Here, we show that a recombinant version of AtXTH3, a thus far uncharacterized member of the Arabidopsis XTH family, catalysed the transglycosylation between cellulose and cello-oligosaccharide, between cellulose and xyloglucan-oligosaccharide, and between xyloglucan and xyloglucan-oligosaccharide, with the highest reaction rate observed for the latter reaction. In addition, this enzyme formed cellulose-like insoluble material from a soluble cello-oligosaccharide in the absence of additional substrates. This newly found activity (designated “cellulose endotransglucosylase,” or CET) can potentially be involved in the formation of covalent linkages between cellulose microfibrils in the plant cell wall. It can also comprise a new route of industrial cellulose functionalization.

  8. Biotransformation optimization of betulin into betulinic acid production catalysed by cultured Armillaria luteo-virens Sacc ZJUQH100-6 cells. (United States)

    Liu, J; Fu, M L; Chen, Q H


    Betulinic acid has attracted attention in terms of its important biological and pharmacological characteristics. The main objective of this work was to optimize the variables of biotransformation process in order to enhance betulinic acid production from betulin catalysed by fungus Armillaria luteo-virens Sacc ZJUQH100-6. Fractional factorial design and response surface methodology were applied to optimize the main parameters that affect betulinic acid production in the growing-cells system. Results indicated that the addition of Tween 80 and substrate concentration were identified as the significant factors on betulinic acid formation, and the central composite experimental design was then adopted to derive a statistical model for optimizing biotransformation conditions. The optimum conditions were observed at pH 6·0, 0·57% Tween 80, 15 mg l(-1) betulin and at 3 days of stage of inoculation. Under the optimized conditions, the highest productivity of betulinic acid predicted was 9·32%, which increased by 74·53% in comparison with that of the nonoptimized. The verified experiment revealed that the model can well simulate betulin biotransformation. Moreover, the bioconversion of betulin and betulin-28-monooxygenase activities was compared between the optimized and the nonoptimized conditions. Current data imply that betulinic acid production from betulin can be effectively enhanced through biotransformation optimization strategy. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  9. Appearance and distribution of regioisomers in metallo- and serine-protease-catalysed acylation of sucrose in N,N-dimethylformamide

    DEFF Research Database (Denmark)

    Lie, Aleksander; Meyer, Anne S.; Pedersen, Lars Haastrup


    The appearance and distribution of monoester regioisomers were investigated in the virtually irreversible acylation of sucrose with the enol ester, vinyl laurate, as acyl donor catalysed by serine proteases and a metalloprotease in the hydrophilic, aprotic solvent N,N-dimethylformamide. Sucrose l...... without protein in the reaction mixture appeared to be catalysed in the presence of aluminosilicate molecular sieves. Non-catalytic protein in the reaction medium seemed to lower the catalytic activity of the molecular sieves....

  10. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer. (United States)

    Pretti, Carlo; Oliva, Matteo; Mennillo, Elvira; Barbaglia, Martina; Funel, Marco; Reddy Yasani, Bhaskar; Martinelli, Elisa; Galli, Giancarlo


    Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms. © 2013 Elsevier Inc. All rights reserved.

  11. Organising nursing practice into care models that catalyse quality: A clinical nurse leader case study. (United States)

    Bender, Miriam; Spiva, LeeAnna; Su, Wei; Hites, Lisle


    To determine the power of a conceptual clinical nurse leader practice model to explain the care model's enactment and trajectory in real world settings. How nursing, organised into specific models of care, functions as an organisational strategy for quality is not well specified. Clinical nurse leader integrated care delivery is one emerging model with growing adoption. A recently validated clinical nurse leader practice model conceptualizes the care model's characteristics and hypothesizes their mechanisms of action. Pattern matching case study design and mixed methods were used to determine how the care model's constructs were operationalized in one regional United States health system that integrated clinical nurse leaders into their care delivery system in 2010. The findings confirmed the empirical presence of all clinical nurse leader practice model constructs and provided a rich description of how the health system operationalized the constructs in practice. The findings support the hypothesized model pathway from Clinical Nurse Leader structuring to Clinical Nurse Leader practice and outcomes. The findings indicate analytic generalizability of the clinical nurse leader practice model. Nursing practice organised to focus on microsystem care processes can catalyse multidisciplinary engagement with, and consistent enactment of, quality practices. The model has great potential for transferability across diverse health systems. © 2018 John Wiley & Sons Ltd.

  12. Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar (United States)

    Yoong Leong, Siew; Chong, Soo Shin; Chin, Kah Seng


    This study investigates the development of biochar catalyst from bamboo applied for biodiesel synthesis. A non-conventional biodiesel feedstock was used in the in-situ transesterification reaction. This non-conventional feedstock is obtained from an insect's fly, the Hermetia illucens fly. Biochar derived from bamboo has been investigated as a promising catalyst for biodiesel synthesis. The biochar acid catalysts were prepared by sulphonation via impregnation with concentrated sulphuric acid. The prepared catalysts were investigated for their performance to catalyse in-situ transesterification via ultra-sonication of Hermetia illucens bio-oil. The effects of carbonisation time (1 hour and 2 hour) and temperature (400°C, 500°C and 600°C) as well as catalyst loading (5-20 wt% on oil basis) on the transesterification yield were studied. Result showed that the highest yield of FAME obtained was 95.6% with catalyst loading of 15 wt% carbonized at 500°C for 2 hours. Sharp band of methyl ester functional groups were observed in the FTIR spectra at 1735-1750cm-1. The composition of this methyl ester was further deduced using gas chromatography and the fatty acid was predominantly lauric acid.

  13. Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates

    International Nuclear Information System (INIS)

    Mohamad, NurRoyhaila; Mahat, Naji Arafat; Wahab, Roswanira Abdul; Huyop, Fahrul; Aboul-Enein, Hassan Youssef


    Terpene esters of short-chain fatty acids are essential oils that have big importance in food, cosmetic and pharmaceutical industries as flavours and fragrances. Geraniol and citronellol are the most important substances. Considering the everincreasing demand for such products, their enzymatic production from natural raw materials by using environmentally friendly and economically attractive processes may prove advantageous. In this contribution, we would like to present an alternative option for the production of geranyl propionate using nanobioconjugates consisting of Candida rugosa lipase adsorbed onto multi-walled carbon nanotubes (CRL-MWCNTs). We investigated the effects of incubation time, temperature, solvent log P and substrate molar ratio, and determined the optimum conditions. The yield of geranyl propionate catalysed by CRL-MWCNTs nanobioconjugates was significantly influenced by two factors, namely, temperature and time of the reaction. Under the optimum reaction conditions of 55 C, solvent n-heptane (log P D 4.0), geraniol to propionic acid molar ratio of 5:1 and reaction time of 6 h, the use of CRL-MWCNTs resulted in 51.3% production of geranyl propionate. Therefore, the investigation revealed that geranyl propionate was successfully synthesized under mild conditions with reasonably high yield within a short period of time. The CRL-MWCNTs nanobioconjugates demonstrated a potential as economical and environmentally smarter biocatalysts for the production of geranyl propionate. Keywords: nanobioconjugates

  14. Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids (United States)

    Zhu, Yan; Chen, Xiaolan; Yuan, Chunchen; Li, Guobao; Zhang, Jingyu; Zhao, Yingsheng


    α-amino acids bearing aromatic side chains are important synthetic units in the synthesis of peptides and natural products. Although various β-C-H arylation methodologies for amino acid derivatives involving the assistance of directing groups have been extensively developed, syntheses that directly employ N-protected amino acids as starting materials remain rare. Herein, we report an N-acetylglycine-enabled Pd-catalysed carboxylate-directed β-C(sp3)-H arylation of aliphatic acids. In this way, various non-natural amino acids can be directly prepared from phthaloylalanine in one step in good to excellent yields. Furthermore, a series of aliphatic acids have been shown to be amenable to this transformation, affording β-arylated propionic acid derivatives in moderate to good yields. More importantly, this ligand-enabled direct β-C(sp3)-H arylation could be easily scaled-up to 10 g under reflux conditions, highlighting the potential utility of this synthetic method.

  15. Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate. (United States)

    North, Michael; Omedes-Pujol, Marta


    Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from ⁵¹V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane.

  16. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates (United States)

    Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry


    Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.

  17. Natural spectroscopic hydrogen isotope transfer in alcohol dehydrogenase-catalysed reduction

    International Nuclear Information System (INIS)

    Ben-Li Zhang; Pionnier, S.


    The enantiomeric purity of natural α-mono deuterated enantiomers, (R) and (S)ethanol-1-d 1 , in the alcohol produced by sugar fermentation with yeast was studied by 2 H NMR using their esters derived from optical mandelic acid. The results of isotope tracing experiments show that the transfer pathways of the two eantiotopic hydrogens of the methylene group are different. It was observed that (S)-deuterium comes only from the medium water. The (R)-deuterium transferred by NADH in alcohol dehydrogenase reduction of the acetaldehyde is complex origin. Some of them originates from carbon bound hydrogen of the sugar, especially from C(4) position of glucose and most of them comes from water. Only a small portion of the NADH deuterium is incorporated indirectly from water through enzyme catalysed exchange between the pro-S site of NADH and flavin. When a carbonyl compound (ethyl acetoacetate) was reduced under the same conditions during the alcoholic fermentation, among the NADH-transferred deuterium, only a small portion comes from water while most comes from the unexchangeable positions of the glucose. (author)

  18. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide (United States)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji


    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  19. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    International Nuclear Information System (INIS)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji


    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber

  20. Surface activated room-temperature bonding in Ar gas ambient for MEMS encapsulation (United States)

    Takagi, Hideki; Kurashima, Yuichi; Takamizawa, Akifumi; Ikegami, Takeshi; Yanagimachi, Shinya


    Surface activated room-temperature bonding of Si and sapphire wafers in high-purity inert gas ambient was examined. Although surface activated bonding has been mainly performed in high vacuum, Si and sapphire wafers were successfully bonded in Ar gas ambient up to 90 kPa, which is almost atmospheric pressure. The dicing test proved that the bonding prepared in Ar gas ambient was strong enough for MEMS packaging, although the bonding strength was slightly decreased compared with that prepared in vacuum. Transmission electron microscope observation revealed that the bonding interface prepared in Ar gas ambient is almost the same as that prepared in vacuum. It means that Ar atoms in the bonding ambient do not hamper the interatomic bond formation at the bonding interface. Room-temperature bonding in gas ambient enables hermetic packaging of MEMS devices, such as inertia sensors, MEMS switches, and Cs vapor cells for MEMS atomic clocks at various pressures.

  1. Platinum-mediated coupling of methane and small nucleophiles (H{sub 2}O, PH{sub 3}, H{sub 2}S, CH{sub 3}NH{sub 2}) as a model for C-N, C-O, C-P, and C-S bond formation in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Broenstrup, M.; Schroeder, D.; Schwarz, H. [Technischen Univ. Berlin (Germany). Inst. fuer Organische Chemie


    The reactions of Pt{sup +} and PtCH{sub 2}{sup +} with the nucleophiles H{sub 2}O, PH{sub 3}, H{sub 2}S, HCl, CH{sub 3}NH{sub 2}, and CH{sub 3}OH are studied by Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. In the reactions of PtCH{sub 2}{sup +}, carbon-heteroatom bond formation can be accomplished for all substrates except CH{sub 3}OH and HCl. The reaction of PtCH{sub 2}{sup +} with two molecules of water yields Pt(CO)(H{sub 2}O){sup +} and constitutes a gas-phase model for the platinum-mediated generation of water gas according to CH{sub 4} + H{sub 2}O {r_arrow} CO + 3H{sub 2}. In the reactions with PH{sub 3} and H{sub 2}S, carbon-phosphorus and carbon-sulfur bond formation to PtCPH{sup +} and PtCS{sup +} competes with demethanation and dehydrogenation of the substrates to yield PtS{sub n}{sup +} (n = 1--4) and PtP{sub n}H{sub m}{sup +} (n = 1--6; m = 0--3) compounds, respectively. For organic nucleophiles such as CH{sub 3}NH{sub 2} and CH{sub 3}OH, C-N and C-O coupling is much less efficient than platinum-mediated C-H bond activation of the substrates.

  2. Fundamentals of fiber bonding in thermally point-bonded nonwovens (United States)

    Chidambaram, Aparna

    Thermal point bonding (TPB) uses heat and pressure to bond a web of fibers at discrete points imparting strength to the manufactured fabric. This process significantly reduces the strength and elongation of the bridging fibers between bond points while strengthening the web. Single fiber experiments were performed with four structurally different polypropylene fibers to analyze the inter-relationships between fiber structure, fiber properties and bonding process. Two fiber types had a low birefringence sheath or surface layer while the remaining had uniform birefringence profiles through their thickness. Bonds were formed between isolated pairs of fibers by subjecting the fibers to a calendering process and simulating TPB process conditions. The dependence of bond strength on bonding temperature and on the type of fiber used was evaluated. Fiber strengths before and after bonding were measured and compared to understand the effect of bonding on fiber strength. Additionally, bonded fiber strength was compared to the strength of single fibers which had experienced the same process conditions as the bonded pairs. This comparison estimated the effect of mechanical damage from pressing fibers together with steel rolls while creating bonds in TPB. Interfiber bond strength increased with bonding temperature for all fiber types. Fiber strength decreased with increasing bonding temperature for all fiber types except for one type of low birefringent sheath fibers. Fiber strength degradation was unavoidable at temperatures required for successful bonding. Mechanical damage from compression of fibers between rolls was an insignificant factor in this strength loss. Thermal damage during bonding was the sole significant contributor to fiber strength degradation. Fibers with low birefringence skins formed strong bonds with minimal fiber strength loss and were superior to fibers without such surface layers in TPB performance. A simple model to predict the behavior of a two-bond

  3. 46 CFR Sec. 10 - Bonds. (United States)


    ... open penalty type. (e) No repair voucher (progress or final) where bond coverage is required shall be... awarded work and the furnishing of the performance and payment bonds required by Article 14 of the NSA...) shall be used. (b) In compliance with the perform- ance bond and payment bond requirements of Article 14...

  4. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.


    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  5. Electron transfer and bond breaking: Recent advances (United States)

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel


    After a reminder of concerted/stepwise mechanistic dichotomy and other basic concepts and facts in the field, a series of recent advances is discussed. Particular emphasis is laid on the interactions between the fragments formed upon bond cleavage. These interactions may persist even in polar solvents and have important consequences on dissociative electron transfer kinetics and on the competition between concerted and stepwise pathways. Cleavage of ion radicals and its reverse reaction are examples of single electron transfer reactions concerted with bond cleavage and bond formation, respectively. The case of aromatic carbon-heteroatom bonds is particularly worth examination since symmetry restrictions impose circumventing a conical intersection. Reductive dehalogenases are involved in 'dehalorespiration' of anaerobic bacteria in which the role of dioxygen in aerobic organisms is played by major polychloride pollutants such as tetrachloroethylene. They offer an interesting illustration of how the coupling of electron transfer with bond breaking may be an important issue in natural processes. Applications of dissociative electron transfer concepts and models to mechanistic analysis in this class of enzymes will be discussed.

  6. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui


    there is evidence of bond formation [6]. Hydrogen bonds in the solid state fall into the classification of strong, moderate, and weak hydrogen bonds [7]. In molecular systems like H2O (vs. H2S) or NH3 (vs. PH3), strong hydrogen bonds lead to higher melting points. However, in organic salts, the situation may......There are three main types of interactions inside organic salts - electrostatic interaction, hydrogen bonding and van der Waals force [1-4]. While van der Waals force is relatively weak, it is hydrogen bonding and particularly electrostatic interaction that determine the lattice energies of ionic...

  7. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur

    DEFF Research Database (Denmark)

    Du, Lin; Tang, Shanshan; Hansen, Anne Schou


    complexes are more stable and form stronger hydrogen bonds compared to complexes with MeOH and EtOH, which are comparable, and only for the stronger hydrogen bond donor (TFE) are the small differences in acceptor molecules highlighted. The equilibrium constant for complex formation was determined from......The Osingle bondH⋯O and Osingle bondH⋯S hydrogen bonds were investigated by gas phase FTIR spectroscopy of alcohol–dimethylether and alcohol–dimethylsulfide complexes, with alcohols of increasing hydrogen bond donor strength; methanol (MeOH), ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE). The TFE...

  8. The Lausanne Institutional Biobank: a new resource to catalyse research in personalised medicine and pharmaceutical sciences. (United States)

    Mooser, Vincent; Currat, Christine


    Breakthrough technologies which now enable the sequencing of individual genomes will irreversibly modify the way diseases are diagnosed, predicted, prevented and treated. For these technologies to reach their full potential requires, upstream, access to high-quality biomedical data and samples from large number of properly informed and consenting individuals and, downstream, the possibility to transform the emerging knowledge into a clinical utility. The Lausanne Institutional Biobank was designed as an integrated, highly versatile infrastructure to harness the power of these emerging technologies and catalyse the discovery and development of innovative therapeutics and biomarkers, and advance the field of personalised medicine. Described here are its rationale, design and governance, as well as parallel initiatives which have been launched locally to address the societal, ethical and technological issues associated with this new bio-resource. Since January 2013, inpatients admitted at Lausanne CHUV University Hospital have been systematically invited to provide a general consent for the use of their biomedical data and samples for research, to complete a standardised questionnaire, to donate a 10-ml sample of blood for future DNA extraction and to be re-contacted for future clinical trials. Over the first 18 months of operation, 14,459 patients were contacted, and 11,051 accepted to participate in the study. This initial 18-month experience illustrates that a systematic hospital-based biobank is feasible; it shows a strong engagement in research from the patient population in this University Hospital setting, and the need for a broad, integrated approach for the future of medicine to reach its full potential.

  9. Kinetics of acyl transfer reactions in organic media catalysed by Candida antarctica lipase B. (United States)

    Martinelle, M; Hult, K


    The acyl transfer reactions catalysed by Candida antartica lipase B in organic media followed a bi-bi ping-pong mechanism, with competitive substrate inhibition by the alcohols used as acyl acceptors. The effect of organic solvents on Vm and Km was investigated. The Vm values in acetonitrile was 40-50% of those in heptane. High Km values in acetonitrile compared to those in heptane could partly be explained by an increased solvation of the substrates in acetonitrile. Substrate solvation caused a 10-fold change in substrate specificity, defined as (Vm/Km)ethyl octanoate/(Vm/Km)octanoic acid, going from heptane to acetonitrile. Deacylation was the rate determining step for the acyl transfer in heptane with vinyl- and ethyl octanoate as acyl donors and (R)-2-octanol as acyl acceptor. With 1-octanol, a rate determining deacylation step in heptane was indicated using the same acyl donors. Using 1-octanol as acceptor in heptane, S-ethyl thiooctanoate had a 25- to 30-fold lower Vm/Km value and vinyl octanoate a 4-fold higher Vm/Km value than that for ethyl octanoate. The difference showed to be a Km effect for vinyl octanoate and mainly a Km effect for S-ethyl thiooctanoate. The Vm values of the esterification of octanoic acid with different alcohols was 10-30-times lower than those for the corresponding transesterification of ethyl octanoate. The low activity could be explained by a low pH around the enzyme caused by the acid or a withdrawing of active enzyme by nonproductive binding by the acid.

  10. Catalyse homogène supportée Supported Homogeneous Catalysis

    Directory of Open Access Journals (Sweden)

    Commereuc D.


    Full Text Available Les catalyseurs complexes de coordination en phase homogène offrent des performances d'activité et de sélectivité en général meilleures que celles des catalyseurs hétérogènes obtenus par les méthodes plus classiques de dépôt par voie thermique. Ils posent cependant, en raison de leur valeur plus élevée, des problèmes de récupération ou de recyclage. Le coût de la voie homogène entraîne alors bien souvent le choix de la méthode hétérogène classique, au détriment de performances plus séduisantes. On envisage ici les solutions offertes par la catalyse homogène supportée, ainsi que les difficultés rencontrées lors de la synthèse et de l'utilisation de ce type nouveau de catalyseur. Complex homogeneous-phase coordination catalysts generally have better activity and selectivity performances than those of heterogeneous catalysts produced by more conventional methods of thermal depositing. However, because of their higher value they raise problems of recovery or recycling. The cost of homogeneous catalysis thus often leads to the choice of the conventional heterogeneous method, to the detriment of more attractive performances. This article takes up the solutions offered by supported homogeneous catalysis as well as the difficulties encountered during the synthesis and use of this new type of catalyst.

  11. Creating a climate that catalyses healthcare innovation in the United Kingdom - learning lessons from international innovators. (United States)

    Cresswell, Kathrin; Cunningham-Burley, Sarah; Sheikh, Aziz


    The United Kingdom (UK) lags behind other high-income countries in relation to technological innovation in healthcare. In order to inform UK strategy on how to catalyse innovation, we sought to understand what national strategies can help to promote a climate for innovation in healthcare settings by extracting lessons for the UK from international innovators. We undertook a series of qualitative semi-structured interviews with senior international innovators from a range of health related policy, care/service delivery, commercial and academic backgrounds. Thematic analysis helped to explore how different stakeholder groups could facilitate/inhibit innovation at individual, organisational, and wider societal levels. We conducted 14 interviews and found that a conducive climate for healthcare innovation comprised of national/regional strategies stimulating commercial competition, promoting public/private relationships, and providing central direction (e.g. incentives for adoption and regulation through standards) without being restrictive. Organisational attitudes with a willingness to experiment and to take risks were also seen as important, but a bottom-up approach to innovation, based on the identification of clinical need, was seen as a crucial first step to construct relevant national policies.  There is now a need to create mechanisms through which frontline National Health Service staff in relation can raise ideas/concerns and suggest opportunities for improvement, and then build national innovation environments that seek to address these needs. This should be accompanied by creating competitive health technology markets to stimulate a commercial environment that attracts high-quality health information technology experts and innovators working in partnership with staff and patients.

  12. Oxytocin and mutual communication in mother-infant bonding

    Directory of Open Access Journals (Sweden)

    Miho eNagasawa


    Full Text Available Mother-infant bonding is universal to all mammalian species. In this review, we describe the manner in which reciprocal communication between the mother and infant leads to mother-infant bonding in rodents. In rats and mice, mother-infant bond formation is reinforced by various social stimuli, such as tactile stimuli and ultrasonic vocalizations from the pups to the mother, and feeding and tactile stimulation from the mother to the pups. Some evidence suggests that mother and infant can develop a cross-modal sensory recognition of their counterpart during this bonding process. Neurochemically, oxytocin in the neural system plays a pivotal role in each side of the mother-infant bonding process, although the mechanisms underlying bond formation in the brains of infants has not yet been clarified. Impairment of mother-infant bonding, that is, deprivation of social stimuli from the mother, strongly influences offspring sociality, including maternal behavior toward their own offspring in their adulthood, implying a non-genomic transmission of maternal environment, even in rodents. The comparative understanding of cognitive functions between mother and infants, and the biological mechanisms involved in mother-infant bonding may help us understand psychiatric disorders associated with mother-infant relationships.

  13. Microstructure of plastic bonded nickel electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kulcsar, S.; Agh, J.; Fazekas, A.; Vigh, J.; Bujdoso, Z.


    Structure is of great importance in the characteristics of plastic bonded nickel electrodes. On the basis of SEM tests it has been established that in pressed Ni electrodes some tenth of a millimetre-long PTFE fibres can be found with a diameter smaller than 500 nm. These form a net-like structure in the electrode which holds the active material together without any decrease in the conductivity. The formation and arrangement of this structure can be influenced by technological parameters.

  14. Cytotoxicity of dentin bonding agents. (United States)

    Cal, Ebru; Guneri, Pelin; Atay, Ayse; Cetintas, Vildan Bozok


    This study sought to evaluate the cytotoxicity of 5 dentin bonding agents (Admira Bond, Adper Single Bond Plus, Clearfil SE Bond, Clearfil S3 Bond, and Heliobond) by XTT assay using human gingival fibroblast cells. Samples of dentin bonding agents were prepared on a black 96-well microplate, and the cytotoxicity of each bonding material was measured every 24 hours for 7 days, then on Days 14, 21, and 28. One-way ANOVA and Bonferroni post hoc tests were used for statistical analyses. All 5 materials were evaluated as severely cytotoxic (P agents showed severe cytotoxicity with viability results exception of Adper Single Bond Plus, toxicity continued to Day 28 for all compounds. The utmost care must be considered during the clinical utilization of dentin bonding agents to keep them within the area of restoration and prevent their contact with adjacent tissues.

  15. Photochemical tissue bonding (United States)

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA


    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  16. B-doping of vapour-liquid-solid grown Au-catalysed and Al-catalysed Si nanowires: effects of B2H6 gas during Si nanowire growth and B-doping by a post-synthesis in situ plasma process

    International Nuclear Information System (INIS)

    Whang, S-J; Lee, S; Chi, D-Z; Yang, W-F; Cho, B-J; Liew, Y-F; Kwong, D-L


    In this study, B-doping of vapour-liquid-solid (VLS) grown Si nanowires was studied. First, the different effects of B 2 H 6 gas on nanowire structures during VLS growth of both Au-catalysed and Al-catalysed Si nanowires were investigated. While Au-catalysed Si nanowires grown with B 2 H 6 gas reveal significant morphological changes, resulting in cone-shaped nanowires, structures comparable to un-doped nanowires were observed from Al-catalysed Si nanowires, which may be explained by thermodynamic properties of Au and Al catalyst in the presence of boron. In addition, successful incorporation of boron and controllability of its concentration in Si nanowires, maintaining the structural quality of the nanowires, was achieved by a post-synthesis in situ plasma B 2 H 6 doping process

  17. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    KAUST Repository

    Guo, Hao


    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  18. Scope and limitations of chiral bis(oxazoline) ligands in the copper-catalysed asymmetric cyclopropanation of trisubstituted alkenes

    DEFF Research Database (Denmark)

    Østergaard, N.; Jensen, Jakob Feldthusen; Tanner, David Ackland


    A series of derivatives of 3-methyl-2-buten-1-ol has been used to test the scope and limitations of the copper-catalysed asymmetric cyclopropanation of trisubstituted alkenes by ethyl diazoacetate in the presence of C-2-symmetric bis(oxazoline) ligands. In the best case, a trans/cis ratio of 91......:9, with 92% ee for the major isomer, was obtained from the reaction of the p-methoxybenzoate derivative. The highest ee was 95%, for the trans isomer of a 80:20 diastereomer mixture (acetate derivative)....

  19. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar


    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  20. Formation of an Ion-Pair Molecule with a Single NH+...Cl- Hydrogen Bond: Raman spectra of 1,1,3,3-Tetramethylguanidinium chloride in the solid state, in solution and in the vapor phase

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Riisager, Anders; Fehrmann, Rasmus


    Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry of this compo......Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry...... and the dimeric chloride ion-pair salt converged to give geometries near the established crystal structure of [TMGH]Cl. The structures and their binding energies are given as well as calculated vibrational harmonic normal modes (IR and Raman band wavenumbers and intensities). Experimentally obtained Raman...... scattering spectra are presented and assigned, by comparing to the quantum mechanical calculations. It is concluded that dimeric molecular ion pairs with four N-H+ · · · Cl- hydrogen bonds probably exist in the solutions and are responsible for the relatively high solubility of the “salt” in ethanol...

  1. New results for the formation of a muoniated radical in the Mu + Br2 system: a van der Waals complex or evidence for vibrational bonding in Br-Mu-Br? (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Macrae, Roderick M


    New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ∼3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.

  2. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. (United States)

    Miyashita, Yo; Dolferus, Rudy; Ismond, Kathleen P; Good, Allen G


    Alanine aminotransferase (AlaAT) catalyses the reversible transfer of an amino group from glutamate to pyruvate to form 2-oxoglutarate and alanine. The regulation of AlaAT in several plant species has been studied in response to low-oxygen stress, light and nitrogen application. In this study, induction of Arabidopsis AlaAT1 and AlaAT2 during hypoxia was observed at the transcriptional level, and an increase in enzyme activity was detected in hypoxically treated roots. In addition, the tissue-specific expression of AlaAT1 and AlaAT2 was analysed using promoter:GUS fusions. The GUS staining patterns indicated that both AlaAT genes are expressed predominantly in vascular tissues. We manipulated AlaAT expression to determine the relative importance of this enzyme in low-oxygen stress tolerance and nitrogen metabolism. This was done by analysing T-DNA mutants and over-expressing barley AlaAT in Arabidopsis. The AlaAT1 knockout mutant (alaat1-1) showed a dramatic reduction in AlaAT activity, suggesting that AlaAT1 is the major AlaAT isozyme in Arabidopsis. Over-expression of barley AlaAT significantly increased the AlaAT activity in the transgenic plants. These plants were analysed for metabolic changes over a period of hypoxic stress and during their subsequent recovery. The results showed that alaat1-1 plants accumulate more alanine than wild-type plants during the early phase of hypoxia, and the decline in accumulated alanine was delayed in the alaat1-1 line during the post-hypoxia recovery period. When alanine was supplied as the nitrogen source, alaat1-1 plants utilized alanine less efficiently than wild-type plants did. These results indicate that the primary role of AlaAT1 is to break down alanine when it is in excess. Therefore, AlaAT appears to be crucial for the rapid conversion of alanine to pyruvate during recovery from low-oxygen stress.

  3. Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins (United States)

    Hu, Jiefeng; Wang, Minyan; Pu, Xinghui; Shi, Zhuangzhi


    Amide and olefins are important synthetic intermediates with complementary reactivity which play a key role in the construction of natural products, pharmaceuticals and manmade materials. Converting the normally highly stable aliphatic amides into olefins directly is a challenging task. Here we show that a Ni/NHC-catalytic system has been established for decarbonylative elimination of aliphatic amides to generate various olefins via C-N and C-C bond cleavage. This study not only overcomes the acyl C-N bond activation in aliphatic amides, but also encompasses distinct chemical advances on a new type of elimination reaction called retro-hydroamidocarbonylation. This transformation shows good functional group compatibility and can serve as a powerful synthetic tool for late-stage olefination of amide groups in complex compounds.

  4. Bond yield curve construction

    Directory of Open Access Journals (Sweden)

    Kožul Nataša


    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  5. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds. (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika


    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  6. Safe and Liquid Mortgage Bonds

    DEFF Research Database (Denmark)

    Dick-Nielsen, Jens; Gyntelberg, Jacob; Lund, Jesper

    eliminates credit risk from the investor's perspective. Similar to other safe bonds, funding liquidity becomes the main driver of mortgage bond liquidity and this creates commonality in liquidity across markets and countries. These findings have implications for how to design a robust mortgage bond system...

  7. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David


    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  8. Comparison between water and ethanol wet bonding of resin composite to root canal dentin. (United States)

    Sauro, Salvatore; Di Renzo, Simona; Castagnola, Raffaella; Grande, Nicola M; Plotino, Gianluca; Foschi, Federico; Mannocci, Francesco


    To evaluate the bond strength of resin dentin interfaces created with adhesives applied on root dentin using the water wet or ethanol wet bonding technique. The morphology of resin dentin interfaces was evaluated using confocal microscopy. Four experimental resin adhesives (R#A to R#D) and one commercial three-step/etch and rinse adhesive were applied to the root canal dentin of endodontically treated single canal incisors using the water (control) or ethanol wet bonding technique. The ethanol wet bonding substrate was achieved by keeping the root canal immersed in absolute ethanol (100%) for 3 minutes. The root dentin bonded specimens were sectioned into beams, stored in distilled water (24 hours) and finally tested for microtensile bond strengths (tTBS). Additional dentin surfaces were conditioned and bonded as previously described. They were prepared for the microscopy study and finally observed using confocal microscopy. The ethanol wet bonding technique gave higher bond strength values for all the adhesives tested: in Group 1 (water wet bonding technique) no significant difference was found between the resins tested; the only exception being the most hydrophilic Resin #4 showing the highest bond strength values (P < 0.05). In Group 2 (ethanol wet bonding technique) no statistical differences were present between Resin #A and Resin #D. Resin #C showed the highest bond strength values. Confocal microscopy showed better resin diffusion and hybrid layer formation when the ethanol wet bonding was used.

  9. An assessment of bonding characteristics of a newly introduced bonding agent: "beauty ortho bond"

    Directory of Open Access Journals (Sweden)

    Padmashree Veeramachineni


    Conclusion: Although Transbond XT had higher bond strength, the BOB and FOLC showed clinically acceptable bond strengths. However, clean-up after debonding would be easier with the two latter materials.

  10. Oxytocin promotes social bonding in dogs. (United States)

    Romero, Teresa; Nagasawa, Miho; Mogi, Kazutaka; Hasegawa, Toshikazu; Kikusui, Takefumi


    Recent evidence suggests that enduring social bonds have fitness benefits. However, very little is known about the neural circuitry and neurochemistry underlying the formation and maintenance of stable social bonds outside reproductive contexts. Oxytocin (OT), a neuropeptide synthetized by the hypothalamus in mammals, regulates many complex forms of social behavior and cognition in both human and nonhuman animals. Animal research, however, has concentrated on monogamous mammals, and it remains unknown whether OT also modulates social bonds in nonreproductive contexts. In this study we provide behavioral evidence that exogenous OT promotes positive social behaviors in the domestic dog toward not only conspecifics but also human partners. Specifically, when sprayed with OT, dogs showed higher social orientation and affiliation toward their owners and higher affiliation and approach behaviors toward dog partners than when sprayed with placebo. Additionally, the exchange of socio-positive behaviors with dog partners triggered the release of endogenous OT, highlighting the involvement of OT in the development of social relationships in the domestic dog. These data provide new insight into the mechanisms that facilitate the maintenance of close social bonds beyond immediate reproductive interest or genetic ties and complement a growing body of evidence that identifies OT as one of the neurochemical foundations of sociality in mammalian species.

  11. Production of uranium hexafluoride by the catalysed fluorox process: pilot plant and supporting bench-scale studies

    International Nuclear Information System (INIS)

    Janov, J.; Charlton, B.G.; LePage, A.H.; Vilkaitis, V.K.


    The feasibility of producing UF 6 by the catalysed reaction of UF 4 with oxygen (the Fluorox process) was investigated in a 150 mm diameter fluidised bed reactor and in supporting bench-scale experiments. The rate of the Fluorox reaction in batch experiments was increased by an order of magnitude with 1 to 5 per cent catalyst (containing 3 to 4 per cent platinum on alumina). The maximum UF 6 production rate at 650 deg. C was 0.9 kg h -1 . However, the platinum catalyst was completely poisoned after production of only 1 and 20 kg UF 6 per kg of catalyst when using respectively French and British UF 4 . Regeneration of the catalyst was demonstrated to be technically feasible by washing with water or ammonium oxalate solution or treating with hydrogen and hydrogen fluoride at 350-650 deg. C. However, since the very fast rate of poisoning would necessitate higher catalyst concentrations and/or frequent regeneration, the catalysed Fluorox process in unlikely to be economically competitive with the direct fluorination of UF 4

  12. Rapid assembly of functionalised spirocyclic indolines by palladium-catalysed dearomatising diallylation of indoles with allyl acetate. (United States)

    Dhankher, Persis; Benhamou, Laure; Sheppard, Tom D


    Herein, we report the application of allyl acetate to the palladium-catalysed dearomatising diallylation of indoles. The reaction can be carried out by using a readily available palladium catalyst at room temperature, and can be applied to a wide range of substituted indoles to provide access to the corresponding 3,3-diallylindolinines. These compounds are versatile synthetic intermediates that readily undergo Ugi reactions or proline-catalysed asymmetric Mannich reactions. Alternatively, acylation of the 3,3-diallylindolinines with an acid chloride or a chloroformate, followed by treatment with aluminium chloride, enables 2,3-diallylindoles to be prepared. By using ring-closing metathesis, functionalised spirocyclic indoline scaffolds can be accessed from the Ugi products, and a dihydrocarbazole can be prepared from the corresponding 2,3-diallylindole. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...... opportunities consist of a risky reference fund, a risk-free asset and a structured bond. Key model elements are the trading strategy and utility function of the investor. Our numerical results indicate structured bonds do have basis for consideration in the optimal portfolio. The product holdings...

  14. Mechanistic aspects of Os(VIII) catalysed oxidation of loop diuretic ...

    Indian Academy of Sciences (India)

    flow accessory with UV-visible spectroscopy is an effective method to detect the .... The formation of free Ag. + in solution was detected by adding KCl solution to the reaction mixture, which produced white turbidity due to the formation of AgCl.

  15. Multicomponent Synthesis of Isoindolinone Frameworks via RhIII -Catalysed in situ Directing Group-Assisted Tandem Oxidative Olefination/Michael Addition. (United States)

    Wang, Liang; Liu, Xi; Liu, Jian-Biao; Shen, Jun; Chen, Qun; He, Ming-Yang


    A Rh III -catalysed three-component synthesis of isoindolinone frameworks via direct assembly of benzoyl chlorides, o-aminophenols and activated alkenes has been developed. The process involves in situ generation of o-aminophenol (OAP)-based bidentate directing group (DG), Rh III -catalysed tandem ortho C-H olefination and subsequent cyclization via aza-Michael addition. This protocol exhibits good chemoselectivity and functional group tolerance. Computational studies showed that the presence of hydroxyl group on the N-aryl ring could enhance the chemoselectivity of the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrogen bonding characterization in water and small molecules (United States)

    Silvestrelli, Pier Luigi


    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  17. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper


    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  18. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.


    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  19. 26 CFR 1.144-1 - Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. (United States)


    ... student loan bonds, and qualified redevelopment bonds. (a) Overview. Interest on a private activity bond... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Qualified small issue bonds, qualified student loan bonds, and qualified redevelopment bonds. 1.144-1 Section 1.144-1 Internal Revenue INTERNAL...

  20. La catalyse enzymatique en milieu organique Enzymatic Catalysis in Organic Media

    Directory of Open Access Journals (Sweden)

    Monot F.


    Full Text Available L'environnement naturel des enzymes étant de nature aqueuse, leurs applications industrielles se sont en général limitées à des réactions mettant en jeu des substrats solubles dans l'eau. Depuis quelques années, la possibilité de faire fonctionner des enzymes dans des milieux hydrophobes (hydrocarbures, solvants organiques a été mise en évidence, engendrant ainsi de nombreux travaux visant, d'une part à mieux comprendre les mécanismes permettant aux enzymes de rester actives dans un tel environnement et, d'autre part à explorer les nouvelles applications envisageables. Les produits pétroliers constituant par excellence le domaine des molécules hydrophobes, le présent article se propose de faire le point sur ces deux aspects, compréhension et intérêt de la catalyse enzymatique en milieu organique. Nous détaillerons ainsi les vues actuelles sur le fonctionnement des enzymes dans des solvants organiques, les différents modes de mise en oeuvre possibles et, à travers une revue de leurs applications potentielles, les principaux systèmes enzymatiques utilisés. The extension of enzymatic catalysis, classically carried out in aqueous media, to organic media can be first ascribed to the possibility of using substrates that are poorly soluble or insoluble in water. In biphasic media consisting of an aqueous phase containing the enzyme in solution and of a non water-miscible organic solvent, the enzyme is kept in a suitable aqueous environment. A variant biphasic system consists in creating reverse micelles by the addition of a surfactant in order to increase the interfacial area and thus to improve the transfers between the aqueous phase where the enzyme is located and the organic phase. In these two cases, the partition coefficient of the different reactants plays a crucial role by governing the rates and yields of reaction. Microaqueous media constitute a new system for biocatalysis in organic media. In this case, a solid enzyme

  1. Neutral iodotriazoles as scaffolds for stable halogen-bonded assemblies in solution. (United States)

    Maugeri, Leonardo; Asencio-Hernández, Julia; Lébl, Tomáš; Cordes, David B; Slawin, Alexandra M Z; Delsuc, Marc-André; Philp, Douglas


    The halogen bond (XB) donor properties of neutral 1,4-diaryl-5-iodo-1,2,3-triazoles are explored using a combination of computational and experimental results and are shown to be competitive in halogen bonding efficiency with the classic pentafluoroiodobenzene XB donor. The S N Ar reactivity of these donors permits the facile assembly of an iodotriazole functionalised with a 3-oxypyridine XB acceptor, thus generating a molecular scaffold capable of undergoing dimerisation through the formation of two halogen bonds. The formation of this halogen-bonded dimer is demonstrated by 1 H and DOSY NMR experiments and a plausible structure generated using DFT calculations.

  2. Pd(II)-catalysed meta-C–H functionalizations of benzoic acid derivatives (United States)

    Li, Shangda; Cai, Lei; Ji, Huafang; Yang, Long; Li, Gang


    Benzoic acids are highly important structural motifs in drug molecules and natural products. Selective C–H bond functionalization of benzoic acids will provide synthetically useful tools for step-economical organic synthesis. Although direct ortho-C–H functionalizations of benzoic acids or their derivatives have been intensely studied, the ability to activate meta-C–H bond of benzoic acids or their derivatives in a general manner via transition-metal catalysis has been largely unsuccessful. Although chelation-assisted meta-C–H functionalization of electron-rich arenes was reported, chelation-assisted meta-C–H activation of electron-poor arenes such as benzoic acid derivatives remains a formidable challenge. Herein, we report a general protocol for meta-C–H olefination of benzoic acid derivatives using a nitrile-based sulfonamide template. A broad range of benzoic acid derivatives are meta-selectively olefinated using molecular oxygen as the terminal oxidant. The meta-C–H acetoxylation, product of which is further transformed at the meta-position, is also reported. PMID:26813919

  3. Solder extrusion pressure bonding process and bonded products produced thereby (United States)

    Beavis, Leonard C.; Karnowsky, Maurice M.; Yost, Frederick G.


    Production of soldered joints which are highly reliable and capable of surviving 10,000 thermal cycles between about C. and C. Process involves interposing a thin layer of a metal solder composition between the metal surfaces of members to be bonded and applying heat and up to about 1000 psi compression pressure to the superposed members, in the presence of a reducing atmosphere, to extrude the major amount of the solder composition, contaminants including fluxing gases and air, from between the members being bonded, to form a very thin, strong intermetallic bonding layer having a thermal expansion tolerant with that of the bonded members.

  4. Photochemical studies of (η5-C5H5)Ru(PPh3)2Cl and (η5-C5H5)Ru(PPh3)2Me: formation of Si-H and C-H bond activation products. (United States)

    Clark, Johnathan L; Duckett, Simon B


    Studies examining the photochemical reactivity of CpRu(PPh3)2Cl and CpRu(PPh3)2Me towards the two electron donor ligands PEt3, C2H4, DMSO, the CH bond activatable reagents tetrahydrofuran, toluene, and pyridine, and the SiH bond activatable reagents HSiEt3 and HSi(Me)2CH=CH2) are presented. Broadband UV irradiation of CpRu(PPh3)2Cl leads to the formation of mono-substitution products such as CpRu(PPh3)(PEt3)Cl which are inert to further photochemical reaction, although thermally bis-substituted products such as CpRu(PEt3)2Cl can be formed. Room temperature irradiation of the related complex CpRu(PPh3)2Me with L = PEt3, C2H4, and DMSO also produces CpRu(PPh3)(L)Me. However, when these reactions are followed by in situ laser irradiation (325 nm source) at low temperature, three solvent activated isomers (ortho, meta and para) of CpRu(PPh3)2(C6H4Me) are detected in toluene in addition to η(1)- and η(3)-coordinated benzyl species. Furthermore, photolysis in THF leads to both the C-D bond activation product CpRu(PPh3)2(OC4D7) and the labile coordination complex CpRu(PPh3)(THF)Me. Now CH4 rather than CH3D is liberated which suggests the involvement of an orthometallated species. The photochemically driven reaction of CpRu(PPh3)2Me with HSiEt3 at 198 K generates CpRu(κ(2)-2-C6H4PPh2)(SiEt3)H and thereby confirms a role for an orthometallated complex is this process. Irradiation in cyclohexane produces the known orthometallated complex, CpRu(κ(2)-2-C6H4PPh2)(PPh3), and CH4 in accordance with this reactivity.

  5. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.


    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  6. Better Bonded Ethernet Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Gabler, Jason


    When a High Performance Storage System's mover shuttles large amounts of data to storage over a single Ethernet device that single channel can rapidly become saturated. Using Linux Ethernet channel bonding to address this and similar situations was not, until now, a viable solution. The various modes in which channel bonding could be configured always offered some benefit but only under strict conditions or at a system resource cost that was greater than the benefit gained by using channel bonding. Newer bonding modes designed by various networking hardware companies, helpful in such networking scenarios, were already present in their own switches. However, Linux-based systems were unable to take advantage of those new modes as they had not yet been implemented in the Linux kernel bonding driver. So, except for basic fault tolerance, Linux channel bonding could not positively combine separate Ethernet devices to provide the necessary bandwidth.

  7. Characterization of Dentine to Assess Bond Strength of Dental Composites

    Directory of Open Access Journals (Sweden)

    Saad Liaqat


    Full Text Available This study was performed to develop alternating dentine adhesion models that could help in the evaluation of a self-bonding dental composite. For this purpose dentine from human and ivory was characterized chemically and microscopically before and after acid etching using Raman and SEM. Mechanical properties of dentine were determined using 3 point bend test. Composite bonding to dentine, with and without use of acid pre-treatment and/or the adhesive, were assessed using a shear bond test. Furthermore, micro gap formation after restoration of 3 mm diameter cavities in dentine was assessed by SEM. Initial hydroxyapatite level in ivory was half that in human dentine. Surface hydroxyapatites decreased by approximately half with every 23 s of acid etch. The human dentine strength (56 MPa was approximately double that of ivory, while the modulus was almost comparable to that of ivory. With adhesive use, average shear bond strengths were 30 and 26 MPa with and without acid etching. With no adhesive, average bond strength was 6 MPa for conventional composites. This, however, increased to 14 MPa with a commercial flowable “self–bonding” composite or upon addition of low levels of an acidic monomer to the experimental composite. The acidic monomer additionally reduced micro-gap formation with the experimental composite. Improved bonding and mechanical properties should reduce composite failures due to recurrent caries or fracture respectively.

  8. What is a hydrogen bond?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is a hydrogen bond? Precise definition of a hydrogen bond is still elusive!1. Several criteria are listed usually for X-H•••Y, X and Y initially thought to be F, O and N only1. Structural: The X-Y bond length is less than the sum of their van der Waals radii. X-H•••Y is ...

  9. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)


    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  10. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    International Nuclear Information System (INIS)

    Ozkanlar, Abdullah; Zhou, Tiecheng; Clark, Aurora E.


    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed

  11. A simplified indirect bonding technique

    Directory of Open Access Journals (Sweden)

    Radha Katiyar


    Full Text Available With the advent of lingual orthodontics, indirect bonding technique has become an integral part of practice. It involves placement of brackets initially on the models and then their transfer to teeth with the help of transfer trays. Problems encountered with current indirect bonding techniques used are (1 the possibility of adhesive flash remaining around the base of the brackets which requires removal (2 longer time required for the adhesive to gain enough bond strength for secure tray removal. The new simplified indirect bonding technique presented here overcomes both these problems.

  12. Wafer bonding applications and technology

    CERN Document Server

    Gösele, Ulrich


    During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

  13. Ruthenium(II)-catalysed remote C-H alkylations as a versatile platform to meta-decorated arenes (United States)

    Li, Jie; Korvorapun, Korkit; de Sarkar, Suman; Rogge, Torben; Burns, David J.; Warratz, Svenja; Ackermann, Lutz


    The full control of positional selectivity is of prime importance in C-H activation technology. Chelation assistance served as the stimulus for the development of a plethora of ortho-selective arene functionalizations. In sharp contrast, meta-selective C-H functionalizations continue to be scarce, with all ruthenium-catalysed transformations currently requiring difficult to remove or modify nitrogen-containing heterocycles. Herein, we describe a unifying concept to access a wealth of meta-decorated arenes by a unique arene ligand effect in proximity-induced ruthenium(II) C-H activation catalysis. The transformative nature of our strategy is mirrored by providing a step-economical entry to a range of meta-substituted arenes, including ketones, acids, amines and phenols--key structural motifs in crop protection, material sciences, medicinal chemistry and pharmaceutical industries.

  14. Développement de cathodes microbiennes catalysant la réduction du dioxygène


    Debuy, Sandra


    Depuis 2002 a émergé le concept de « catalyse électromicrobienne ». Cette même année, une équipe du LGC a démontré un phénomène de transfert d’électrons entre un biofilm aérobie marin et une cathode d’acier inoxydable. A partir de ces biofilms a été isolée une souche bactérienne, Algoriphagus yeomjeoni, pouvant former un biofilm électroactif monoespèce. Les objectifs de ce travail ont été de rechercher cette capacité à réduire du dioxygène chez des bactéries marines mais également chez une so...

  15. Synthesis of a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser) catalysed by the industrial protease alcalase. (United States)

    Hou, Rui-Zhen; Yang, Yan; Li, Gang; Huang, Yi-Bing; Wang, Hua; Liu, Yun-Jia; Xu, Li; Zhang, Xue-Zhong


    Synthesis of Bz-Arg-Gly-NH(2) (N-benzoylargininylglycinamide) [a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser)] catalysed by protease in water/organic co-solvent systems was studied. Starting substrates were N-benzoyl-L-arginine ethyl ester hydrochloride (acyl donor) and glycinamide (nucleophile). Acetonitrile was selected as the organic solvent. Alcalase, an industrial alkaline protease, was applied to the synthesis of the target dipeptide. The conditions of the synthesis reaction were optimized by examining the effects of several factors, including water content, temperature, pH, molar ratio of the substrates and reaction time, on the yield of Bz-Arg-Gly-NH(2). The optimum conditions were established to be pH 10.0, 45 degrees C, in acetonitrile/0.1 M Na(2)CO(3)/NaHCO(3) buffer system (90:10, v/v) for 1 h with a dipeptide yield of 82.9%.

  16. Human Bond Communication

    DEFF Research Database (Denmark)

    Prasad, Ramjee


    Modern dexterous communication technology is progressively enabling humans to communicate their information through them with speech (aural) and media (optical) as underpinning essence. Humans realize this kind of aural and optical information by their optical and auditory senses. However, due...... to certain constraints, the ability to incorporate the other three sensory features namely, olfactory, gustatory, and tactile are still far from reality. Human bond communication is a novel concept that incorporates olfactory, gustatory, and tactile that will allow more expressive and holistic sensory...... information exchange through communication techniques for more human sentiment centric communication. This concept endorses the need of inclusion of other three senses and proposes an innovative approach of holistic communication for future communication network....

  17. Formation of [Cu 2 O 2 ] 2+ and [Cu 2 O] 2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Bahar; Wulfers, Matthew J.; Kim, Hacksung [Department; Chemical; Göltl, Florian; Hermans, Ive; Smith, Joseph P.; Booksh, Karl S.; Brown, Craig M. [Center; Lobo, Raul F.


    Cu-exchanged small-pore zeolites (CHA and AEI) form methanol from methane (>95% selectivity) using a 3-step cyclic procedure (Wulfers et al. Chem. Commun. 2015, 51, 4447-4450) with methanol amounts higher than Cu-ZSM-5 and Cu-mordenite on a per gram and per Cu basis. Here, the CuxOy species formed on Cu-SSZ-13 and Cu-SSZ-39 following O2 or He activation at 450 °C are identified as trans-μ-1,2-peroxo dicopper(II) ([Cu2O2]2+) and mono-(μ-oxo) dicopper(II) ([Cu2O]2+) using synchrotron X-ray diffraction, in situ UV–vis, and Raman spectroscopy and theory. [Cu2O2]2+ and [Cu2O]2+ formed on Cu-SSZ-13 showed ligand-to-metal charge transfer (LMCT) energies between 22,200 and 35,000 cm–1, Cu–O vibrations at 360, 510, 580, and 617 cm–1 and an O–O vibration at 837 cm–1. The vibrations at 360, 510, 580, and 837 cm–1 are assigned to the trans-μ-1,2-peroxo dicopper(II) species, whereas the Cu–O vibration at 617 cm–1 (Δ18O = 24 cm–1) is assigned to a stretching vibration of a thermodynamically favored mono-(μ-oxo) dicopper(II) with a Cu–O–Cu angle of 95°. On the basis of the intensity loss of the broad LMCT band between 22,200 and 35,000 cm–1 and Raman intensity loss at 571 cm–1 upon reaction, both the trans-μ-1,2-peroxo dicopper(II) and mono-(μ-oxo) dicopper(II) species are suggested to take part in methane activation at 200 °C with the trans-μ-1,2-peroxo dicopper(II) core playing a dominant role. A relationship between the [Cu2Oy]2+ concentration and Cu(II) at the eight-membered ring is observed and related to the concentration of [CuOH]+ suggested as an intermediate in [Cu2Oy]2+ formation.

  18. Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2. (United States)

    Anderson, Heather J; Vonarx, Edward J; Pastushok, Landon; Nakagawa, Mayu; Katafuchi, Atsushi; Gruz, Petr; Di Rubbo, Antonio; Grice, Desma M; Osmond, Megan J; Sakamoto, Ayako N; Nohmi, Takehiko; Xiao, Wei; Kunz, Bernard A


    Upon blockage of chromosomal replication by DNA lesions, Y-family polymerases interact with monoubiquitylated proliferating cell nuclear antigen (PCNA) to catalyse translesion synthesis (TLS) and restore replication fork progression. Here, we assessed the roles of Arabidopsis thaliana POLH, which encodes a homologue of Y-family polymerase eta (Poleta), PCNA1 and PCNA2 in TLS-mediated UV resistance. A T-DNA insertion in POLH sensitized the growth of roots and whole plants to UV radiation, indicating that AtPoleta contributes to UV resistance. POLH alone did not complement the UV sensitivity conferred by deletion of yeast RAD30, which encodes Poleta, although AtPoleta exhibited cyclobutane dimer bypass activity in vitro, and interacted with yeast PCNA, as well as with Arabidopsis PCNA1 and PCNA2. Co-expression of POLH and PCNA2, but not PCNA1, restored normal UV resistance and mutation kinetics in the rad30 mutant. A single residue difference at site 201, which lies adjacent to the residue (lysine 164) ubiquitylated in PCNA, appeared responsible for the inability of PCNA1 to function with AtPoleta in UV-treated yeast. PCNA-interacting protein boxes and an ubiquitin-binding motif in AtPoleta were found to be required for the restoration of UV resistance in the rad30 mutant by POLH and PCNA2. These observations indicate that AtPoleta can catalyse TLS past UV-induced DNA damage, and links the biological activity of AtPoleta in UV-irradiated cells to PCNA2 and PCNA- and ubiquitin-binding motifs in AtPoleta.

  19. Butterflyfishes as a System for Investigating Pair Bonding

    KAUST Repository

    Nowicki, Jessica


    For many animals, affiliative relationships such as pair bonds form the foundation of society, and are highly adaptive. Animal systems amenable for comparatively studying pair bonding are important for identifying underlying biological mechanisms, but mostly exist in mammals. Better establishing fish systems will enable comparison of pair bonding mechanisms across taxonomically distant lineages that may reveal general underlying principles. We examined the utility of wild butterflyfishes (f: Chaetodontidae; g: Chaetodon) for comparatively studying pair bonding. Stochastic character mapping inferred that within the family, pairing is ancestral, with at least seven independent transitions to group formation and seven transition to solitary behavior from the late Miocene to recent. In six sympatric and wide-spread species representing a clade with one ancestrally reconstructed transition from paired to solitary grouping, we then verified social systems at Lizard Island, Australia. In situ observations confirmed that Chaetodon baronessa, C. lunulatus, and C. vagabundus are predominantly pair bonding, whereas C. rainfordi, C. plebeius, and C. trifascialis are predominantly solitary. Even in the predominantly pair bonding species, C. lunulatus, a proportion of adults (15 %) are solitary. Importantly, inter- and intra-specific differences in social systems do not co-vary with other previously established attributes (geographic occurrence, parental care, diet, or territoriality). Hence, the proposed butterflyfish populations are promising for comparative analyses of pair bonding and its mechanistic underpinnings. Avenues for further developing the system are proposed, including determining whether the utility of these species applies across their geographic disruptions.

  20. Comparison between FSW and bonded lap joints - A preliminary investigation (United States)

    Lertora, Enrico; Campanella, Davide; Mandolfino, Chiara; Gambaro, Carla; Fratini, Livan; Buffa, Gianluca


    Difficult to weld aluminium alloys can be effectively joined by different alternative processes. Friction Stir Welding (FSW), among the solid-state processes and adhesive bonding represent two very attractive techniques. They allow the production of highly resistant joints avoiding the formation of the typical fusion weld defects. The aim of this work is to identify, analyse and compare the mechanical properties of AA6016 aluminium alloy joints made out of 1 mm thick sheets. FSW lap joints were and epoxy bonded joints were produced. Using the FSW results as benchmark, the overlap required in the bonded joint was identified to ensure the same static strength. Once the geometric configurations of the joints are known, the static and dynamic resistance of welds and bonding have been compared.

  1. Morphology, topography, and hardness of diffusion bonded sialon to AISI 420 at different bonding time (United States)

    Ibrahim, Nor Nurulhuda Md.; Hussain, Patthi; Awang, Mokhtar


    Sialon and AISI 420 martensitic stainless steel were diffusion bonded in order to study the effect of bonding time on reaction layer's growth. Joining of these materials was conducted at 1200°C under a uniaxial pressure of 17 MPa in a vacuum ranging from 5.0 to 8.0×10-6 Torr with bonding time varied for 0.5, 2, and 3 h. Thicker reaction layer was formed in longer bonded sample since the elements from sialon could diffuse further into the steel. Sialon retained its microstructure but it was affected at the initial contact with the steel to form the new interface layer. Diffusion layer grew toward the steel and it was segregated with the parent steel as a result of the difference in properties between these regions. The segregation formed a stream-like structure and its depth decreased when the bonding time was increased. The microstructure of the steel transformed into large grain size with precipitates. Prolonging the bonding time produced more precipitates in the steel and reduced the steel thickness as well. Interdiffusions of elements occurred between the joined materials and the concentrations were decreasing toward the steel and vice versa. Silicon easily diffused into the steel because it possessed lower ionization potential compared to nitrogen. Formation of silicide and other compounds such as carbides were detected in the interface layer and steel grain boundary, respectively. These compounds were harmful due to silicide brittleness and precipitation of carbides in the grain boundary might cause intergranular corrosion cracking. Sialon retained its hardness but it dropped very low at the interface layer. The absence of crack at the joint in all samples could be contributed from the ductility characteristic of the reaction layer which compensated the residual stress that was formed upon the cooling process.

  2. 30 CFR 281.33 - Bonds and bonding requirements. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Bonds and bonding requirements. 281.33 Section 281.33 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE LEASING OF MINERALS OTHER THAN OIL, GAS, AND SULPHUR IN THE OUTER CONTINENTAL SHELF Financial Considerations § 281.33...

  3. New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

    Directory of Open Access Journals (Sweden)

    Pavel Nagorny


    Full Text Available Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.

  4. How to bond to root canal dentin (United States)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan


    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  5. Breaking Rules – Making Bonds

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | January 2016. GENERAL | ARTICLE. Breaking Rules – Making Bonds. A G Samuelson. Boron-containing molecules discovered recently have new types of dative bonds between carbenes and borylenes. At the same time, they show that traditional thumb rules regarding acids and bases are no longer valid.

  6. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore,. Karnataka 560 012, India e-mail: ... Lewis succeeded in explaining the 'chemical bonds' that held the neutral molecules together. The covalent bonding has dominated chemistry so much over the last century and most chemists appear ...

  7. O hydrogen bonds in alkaloids

    Indian Academy of Sciences (India)

    An overview of general classification scheme, medicinal importance and crystal structure analysis with emphasis on the role of hydrogen bonding in some alkaloids is presented in this paper. The article is based on a general kind of survey while crystallographic analysis and role of hydrogen bonding are limited to only ...

  8. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  9. Why are Hydrogen Bonds Directional?

    Indian Academy of Sciences (India)

    for an interaction to be characterized as a hydro- gen bond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topol- ogy for common hydrogen bond donors HF, HCl, ...

  10. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.


    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  11. Binding of reactive organophosphate by oximes via hydrogen bond

    Indian Academy of Sciences (India)

    In this contribution, the ability of simple oximes to bind a well-known nerve agent simulant (dimethylmethylphosphonate, DMMP) via hydrogen bond is reported. UV/Vis measurements indicate the formation of 1:1 complexes. 1H-, 31P-NMR titrations and T-ROESY experiments confirm that oximes bind the organophosphate ...

  12. Silver plating ensures reliable diffusion bonding of dissimilar metals (United States)


    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  13. Alternation and tunable composition in hydrogen bonded supramolecular copolymers. (United States)

    Felder, Thorsten; de Greef, Tom F A; Nieuwenhuizen, Marko M L; Sijbesma, Rint P


    Sequence control in supramolecular copolymers is limited by the selectivity of the associating monomer end groups. Here we introduce the use of monomers with aminopyrimidinone and aminohydroxynaphthyridine quadruple hydrogen bonding end groups, which both homodimerize, but form even stronger heterodimers. These features allow the formation of supramolecular copolymers with a tunable composition and a preference for alternating sequences.

  14. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)


    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  15. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Breen, J.P.; Burch, R.; Coleman, H.M. [School of Chemistry, Queen' s University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG N. Ireland (United Kingdom)


    A range of oxide-supported metal catalysts have been investigated for the steam reforming of ethanol/water mixtures for the production of hydrogen. Alumina-supported catalysts are very active at lower temperatures for the dehydration of ethanol to ethene which, at higher temperatures, is converted into H{sub 2}, CO, and CO{sub 2} as the major products and CH{sub 4} as a minor product. The order of activity of the metals is Rh>Pd>Ni=Pt. With ceria/zirconia-supported catalysts, the formation of ethene is not observed and the order of activity at higher temperatures is Pt{>=}Rh>Pd. By using combinations of a ceria/zirconia-supported metal catalyst with the alumina support it is shown that the formation of ethene does not inhibit the steam reforming reaction at higher temperatures. It is concluded that the support plays a significant role in the steam reforming of ethanol.

  16. CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics




    PUBLISHED First principles calculations using density functional theory with corrections for on-site Coulomb interactions (DFT + U) are presented in which we compute the energy for the conversion of CO to CO2, NO2 to NO and NO to N2 over ceria surfaces. The surface sensitivity is discussed on the basis of the vacancy formation energies We acknowledge funding from the Petroleum Research Fund administered by the American Chemical Society, Enterprise Ireland (SC/2001/233), Science Fo...

  17. Self-assembly of a [2 x 2] hydrogen bonded grid

    NARCIS (Netherlands)

    Lipkowski, P.R.; Bielejewska, A.G.; Kooijman, Huub; Spek, Anthony L.; Timmerman, P.; Reinhoudt, David


    Formation of 24 cooperative hydrogen bonds drives the spontaneous assembly of a rigid bifunctional trimelamine and bis(barbituric acid) to give selectively the [2 × 2] hydrogen-bonded grid, in preference to the corresponding [1 × 1] or polymeric assemblies.

  18. Enthalpy Costs of Making and Breaking Bonds: A Game of Generating Molecules with Proper Lewis Structures (United States)

    Bell, Peter T.; Adkins, Alyssa D.; Gamble, Rex J.; Schultz, Linda D.


    "Enthalpy Costs" is a simple card game created to assist students in developing proper Lewis structure drawing skills. Score keeping is accomplished by tracking the enthalpy changes associated with bond-making and bond-breaking processes during formation of molecules represented by proper Lewis structures. Playing the game requires the student to…

  19. Dentin-bonding agents

    Directory of Open Access Journals (Sweden)

    João Carlos Gomes


    Full Text Available New dental restorative materials have been developed to meet not only the functional demands, but esthetics as well, and in the last few years an enormous range of new materials has appeared for use in dentistry. Among them, several adhesive systems, and different operative techniques for each group materials. Therefore, is indispensable for the professional to know about the properties, characteristics, and association of these materials with the dental structures, in order to select and use them correctly. Should conventional self-etching adhesive systems be used? This question encouraged this literature review to be conducted, with the aim of comparing the conventional adhesive systems with the self-etching systems and to look for scientific data that would help professionals to choose which adhesive system to use. When compared to conventional systems, it was noted that the self-etching systems show less sensitivity to technique, especially as regards errors the operator could commit. The self-etching systems, particularly the 2-step type, have shown equivalent values of bond strength, marginal microleakage and performance, therefore, will be an option for direct composite resin restorations in posterior teeth.

  20. Genes for selenium dependent and independent formate dehydrogenase in the gut microbial communities of three lower, wood-feeding termites and a wood-feeding roach


    Zhang, Xinning; Matson, Eric G.; Leadbetter, Jared R.


    The bacterial Wood-Ljungdahl pathway for CO_2-reductive acetogenesis is important for the nutritional mutualism occurring between wood-feeding insects and their hindgut microbiota. A key step in this pathway is the reduction of CO_2 to formate, catalysed by the enzyme formate dehydrogenase (FDH). Putative selenocysteine- (Sec) and cysteine- (Cys) containing paralogues of hydrogenase-linked FDH (FDH_H) have been identified in the termite gut acetogenic spirochet...