WorldWideScience

Sample records for bombesin peptide conjugate

  1. Synthesis and evaluation of a technetium-99m labeled cytotoxic bombesin peptide conjugate for targeting bombesin receptor-expressing tumors

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, Subhani M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, MBC-03, PO Box 3354, Riyadh 11211 (Saudi Arabia)], E-mail: sokarvi@kfshrc.edu.sa; Al Jammaz, Ibrahim [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, MBC-03, PO Box 3354, Riyadh 11211 (Saudi Arabia)

    2010-04-15

    Conjugation of the cytotoxic drugs to receptor-binding peptides is an attractive approach for the targeted delivery of cytotoxic peptide conjugates to tumor cells. In an attempt to develop an efficient peptide-based radiopharmaceutical for targeting bombesin (BN) receptor-expressing tumors (i.e., breast and prostate), we have prepared by solid-phase peptide synthesis, a novel BN analog derived from the universal sequence of BN and conjugated to a widely characterized antineoplastic agent, methotrexate (MTX). MTX-BN, after radiolabeling with {sup 99m}Tc via stannous-tartrate exchange, showed a good stability against cysteine and histidine transchelation as well as a high in vitro metabolic stability in human plasma. In vitro cell-binding and internalization on MDA-MB-231, MCF-7, T47-D breast cancer and PC-3 prostate cancer cell lines demonstrated high affinity and specificity of {sup 99m}Tc-MTX-BN towards both human breast and prostate cancer cells (binding affinities in nanomolar range). In addition, the radioconjugate displayed a significant internalization (values ranged between 19-35%) into the tumor cells. In vivo biodistribution and clearance kinetics in Balb/c mice are characterized by an efficient clearance from the blood and excretion mainly through the renal-urinary pathway with some elimination via the hepatobiliary system. In vivo tumor uptake in nude mice bearing MDA-MB-231 cells was 2.70{+-}0.44% ID/g at 1 h, whereas in nude mice with human epidermoid KB cells the accumulation in the tumor was found to be 1.48{+-}0.31% ID/g at 1 h post injection. The tumor uptake was always higher than in the blood and muscle, with good tumor retention and good tumor-to-blood and tumor-to-muscle ratios. The accumulation/retention in the major organs (i.e., lungs, stomach, liver, intestines, etc.) was low to moderate (<6% ID/g) in both healthy and tumor-bearing mice. However, the uptake/retention in the kidneys was rather high (up to 11.05{+-}1.80% ID/g), which is of a

  2. Enhancement of cytotoxicity of antimicrobial peptide magainin Ⅱ in tumor cells by bombesin-targeted delivery

    Institute of Scientific and Technical Information of China (English)

    Shan LIU; Hao YANG; Lin WAN; Hua-wei CAI; Sheng-fu LI; You-ping LI; Jing-qiu CHENG; Xiao-feng LU

    2011-01-01

    Aim: To investigate whether the conjugation of magainin II(MG2),an antimicrobial peptides(AMPs),to the tumor-homing peptide bombesin could enhance its cytotoxicity in tumor cells.Methods: A magainin Ⅱ-bombesin conjugate(MG2B)was constructed by attaching magainin Ⅱ(MG2)to bombesin at its N-terminus.The peptides were synthesized using Fmoc-chemistry.The in vitro cytotoxicity of the peptide in cancer cells was quantitatively determined using the CCK-8 celt counting kit.Moreover,the in vivo antitumor effect of the peptide was determined in tumor xenograft models.Results: The IC50 of MG2B for cancer cells(10-15 μmol/L)was at least 10 times lower than the IC50 of unconjugated MG2(125μmol/L).Moreover,the binding affinity of MG2B for cancer cells was higher than that of unconjugated MG2.In contrast,conjugation to a bombesin analog lacking the receptor-binding domain failed to increase the cytotoxicity of MG2,suggesting that bombesin conjugation enhances the cytotoxicity of MG2 in cancer cells through improved binding.Indeed,MG2B selectively induced cell death in cancer cells in vitro with the IC50 ranging from 10 to 15 μmol/L,which was about 6-10 times lower than the IC50 for normal cells.MG2B(20mg/kg per day,intratumorally injected for 5 d)also exhibited antitumor effects in mice bearing MCF-7 tumor grafts.The mean weights of tumor grafts in MG2B-and PBS-treated mice were 0.21±0.05 g and 0.59±0.12 g,respectively.Conclusion: The results suggest that conjugation of AMPs to bombesin might be an alternative approach for targeted cancer therapy.

  3. In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor.

    Science.gov (United States)

    Ma, Lixin; Yu, Ping; Veerendra, Bhadrasetty; Rold, Tammy L; Retzloff, Lauren; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy J; Volkert, Wynn A; Smith, Charles J

    2007-01-01

    Gastrin-releasing peptide (GRP) receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN), a 14-amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H(2)N-glycylglycylglycine-BBN[7-14]NH(2) peptide with the following general sequence: H(2)N-G-G-G-Q-W-A-V-G-H-L-M-(NH(2)). This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H(2)N-G-G-G-BBN[7-14]NH(2) in dimethylformamide (DMF). In vitro competitive binding assays, using (125)I-Tyr(4)-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 +/- 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7-14]NH(2) in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  4. In Vitro and In Vivo Evaluation of Alexa Fluor 680-Bombesin[7–14]NH2 Peptide Conjugate, a High-Affinity Fluorescent Probe with High Selectivity for the Gastrin-Releasing Peptide Receptor

    Directory of Open Access Journals (Sweden)

    Lixin Ma

    2007-05-01

    Full Text Available Gastrin-releasing peptide (GRP receptors are overexpressed on several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. Bombesin (BBN, a 14–amino acid peptide that is an analogue of human GRP, binds to GRP receptors with very high affinity and specificity. The aim of this study was to develop a new fluorescent probe based on BBN having high tumor uptake and optimal pharmacokinetics for specific targeting and optical imaging of human breast cancer tissue. In this study, solid-phase peptide synthesis was used to produce H2N-glycylglycylglycine-BBN[7–14]NH2 peptide with the following general sequence: H2N-G-G-G-Q-W-A-V-G-H-L-M-(NH2. This conjugate was purified by reversed-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectra. The fluorescent probe Alexa Fluor 680-G-G-G-BBN[7–14]NH2 conjugate was prepared by reaction of Alexa Fluor 680 succinimidyl ester to H2N-G-G-G-BBN[7–14]NH2 in dimethylformamide (DMF. In vitro competitive binding assays, using 125I-Tyr4-BBN as the radiolabeling gold standard, demonstrated an inhibitory concentration 50% value of 7.7 ± 1.4 nM in human T-47D breast cancer cells. Confocal fluorescence microscopy images of Alexa Fluor 680-G-G-G-BBN[7–14]NH2 in human T-47D breast cancer cells indicated specific uptake, internalization, and receptor blocking of the fluorescent bioprobe in vitro. In vivo investigations in SCID mice bearing xenografted T-47D breast cancer lesions demonstrated the ability of this new conjugate to specifically target tumor tissue with high selectivity and affinity.

  5. 177Lu-Dendrimer Conjugated to Folate and Bombesin with Gold Nanoparticles in the Dendritic Cavity: A Potential Theranostic Radiopharmaceutical

    Directory of Open Access Journals (Sweden)

    Héctor Mendoza-Nava

    2016-01-01

    Full Text Available 177Lu-labeled nanoparticles conjugated to biomolecules have been proposed as a new class of theranostic radiopharmaceuticals. The aim of this research was to synthesize 177Lu-dendrimer(PAMAM-G4-folate-bombesin with gold nanoparticles (AuNPs in the dendritic cavity and to evaluate the radiopharmaceutical potential for targeted radiotherapy and the simultaneous detection of folate receptors (FRs and gastrin-releasing peptide receptors (GRPRs overexpressed in breast cancer cells. p-SCN-Benzyl-DOTA was conjugated in aqueous-basic medium to the dendrimer. The carboxylate groups of Lys1Lys3(DOTA-bombesin and folic acid were activated with HATU and also conjugated to the dendrimer. The conjugate was mixed with 1% HAuCl4 followed by the addition of NaBH4 and purified by ultrafiltration. Elemental analysis (EDS, particle size distribution (DLS, TEM analysis, UV-Vis, and infrared and fluorescence spectroscopies were performed. The conjugate was radiolabeled using 177LuCl3 or 68GaCl3 and analyzed by radio-HPLC. Studies confirmed the dendrimer functionalization with high radiochemical purity (>95%. Fluorescence results demonstrated that the presence of AuNPs in the dendritic cavity confers useful photophysical properties to the radiopharmaceutical for optical imaging. Preliminary binding studies in T47D breast cancer cells showed a specific cell uptake (41.15±2.72%. 177Lu-dendrimer(AuNP-folate-bombesin may be useful as an optical and nuclear imaging agent for breast tumors overexpressing GRPR and FRs, as well as for targeted radiotherapy.

  6. Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.

    Science.gov (United States)

    Ait-Mohand, Samia; Fournier, Patrick; Dumulon-Perreault, Véronique; Kiefer, Garry E; Jurek, Paul; Ferreira, Cara L; Bénard, François; Guérin, Brigitte

    2011-08-17

    Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'''-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu-conjugates

  7. Conjugation with receptor-targeted histidine-rich peptides enhances the pharmacological effectiveness of antisense oligonucleotides.

    Science.gov (United States)

    Nakagawa, Osamu; Ming, Xin; Carver, Kyle; Juliano, Rudy

    2014-01-15

    Ineffective delivery to intracellular sites of action is one of the key limitations to the use of antisense and siRNA oligonucleotides as therapeutic agents. Here, we describe molecular scale antisense oligonucleotide conjugates that bind selectively to a cell surface receptor, are internalized, and then partially escape from nonproductive endosomal locations to reach their sites of action in the nucleus. Peptides that include bombesin sequences for receptor targeting and a run of histidine residues for endosomal disruption were covalently linked to a splice switching antisense oligonucleotide. The conjugates were tested for their ability to correct splicing and up-regulate expression of a luciferase reporter in prostate cancer cells that express the bombesin receptor. We found that trivalent conjugates that included both the targeting sequence and several histidine residues were substantially more effective than conjugates containing only the bombesin or histidine moieties. This demonstrates the potential of creating molecular scale oligonucleotide conjugates with both targeting and endosome escape capabilities.

  8. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  9. Pleiotropic effects of bombesin and neurotensin on intestinal mucosa: Not just trefoil peptides

    Institute of Scientific and Technical Information of China (English)

    Stelios F Assimakopoulos; Chrisoula D Scopa; Vassiliki N Nikolopoulou; Constantine E Vagianos

    2008-01-01

    Bombesin and neurotensin are neuropeptides which exert a wide spectrum of biological actions on gastrointestinal tissues influencing intestinal growth and adaptation, intestinal motility, blood flow, secretion, nutrient absorption and immune response. Based mainly on their well-established potent enterotrophic effect, numerous experimental studies investigated their potential positive effect on the atrophic or injured intestinal mucosa. These peptides proved to be effective mucosa-healing factors, but the potential molecular and cellular mechanisms for this action remained unresolved. In a recently published study (World J Gastroenterol 2008; 14 (8): 1222-1230), it was shown that their protective effect on the intestine in experimentally induced inflammatory bowel disease was related to anti-inflammatory, antioxidant and antiapoptotic actions. These results are in close agreement with our previous studies on jaundiced and hepatectomized rats that showed a regulatory effect of bombesin and neurotensin on critical cellular processes such as enterocyte' proliferation and death, oxidative stress and redox equilibrium, tight junctions' formation and function, and inflammatory response. The pleiotropic effects of bombesin and neurotensin on diverse types of intestinal injury may justify their consideration for clinical trials.

  10. Pyrazolyl conjugates of bombesin: a new tridentate ligand framework for the stabilization of fac-[M(CO){sub 3}]{sup +} moiety

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Susana; Correia, Joao D.G.; Santos, Isabel [Departamento de Quimica, Instituto Tecnologico e Nuclear, 2686-953 Sacavem (Portugal); Veerendra, Bhadrasetty [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Sieckman, Gary L. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Hoffman, Timothy J. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States)]|[Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)]|[Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Rold, Tammy L. [Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Figueroa, Said Daibes [Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Retzloff, Lauren [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); McCrate, Joseph [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Prasanphanich, Adam [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Smith, Charles J. [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)]|[University of Missouri Research Reactor Center, University of Missouri-Columbia, Columbia, MO 65211 (United States)]|[Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States)]|[Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)]. E-mail: smithcj@health.missouri.edu

    2006-07-15

    We have described the synthesis of tridentate pyrazolyl ligand frameworks for coordination to the fac-[*M(CO){sub 3}]{sup +} metal fragment (*M={sup 186/188}Re or {sup 99m}Tc). These ligands impart a degree of kinetic inertness on the metal center, warranting their study in biological systems. We herein report in vitro/in vivo radiolabeling investigations of a new series of pyrazolyl bombesin (BBN) conjugates radiolabeled via the Isolink kit. These new conjugates are based on the general structure [{sup 99m}Tc-pyrazolyl-X-BBN[7-14]NH{sub 2}], where X={beta}-alanine, serylserylserine or glycylglycylglycine. The pyrazolyl ligand is a tridentate ligand framework that coordinates the metal center through nitrogen donor atoms. The results of these investigations demonstrate the ability of these new conjugates to specifically target the gastrin-releasing peptide receptor subtype 2, which is overexpressed on human prostate PC-3 cancerous tissues. Therefore, these studies suggest the tridentate pyrazolyl ligand framework to be an ideal candidate for the design and development of low-valent {sup 99m}Tc-based diagnostic radiopharmaceuticals based on BBN or other targeting vectors.

  11. Does bombesin-like peptide mediate radiation-induced anorexia and satiety?

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, Y.; Franzen, L.; Henriksson, R. [Umeaa Univ. (Sweden). Dept. of Oncology; Forsgren, S.; Kjoerell, U. [Umeaa Univ. (Sweden). Dept. of Anatomy; Funegaard, U. [Umeaa Univ. (Sweden). Dept. of Cardiology

    1999-07-01

    Bombesin (BN) and its mammalian counterpart gastrin-releasing peptide (GRP) act as neuroregulatory hormones and peripheral and central satiety-inducing agents. Previously, we demonstrated that irradiation induces an increase in the expression of BN/GRP in the innervation of the salivary glands in rats. We therefore carried out a study using radioimmunoassay (RIA) analysis and immunohistochemistry to examine whether saliva contains BN and whether irradiation affects the BN release to saliva in rats. Immunoreactivity for BN was detected not only in the innervation of the parenchyma but also in the duct cells and in the lumina of the ducts, suggesting entrance of BN into saliva. The RIA analysis confirmed that rat saliva contains a BN-like peptide. The observation shows that saliva contains this peptide but that there is no significant increase following the radiation schedule used. Nevertheless, the occurrence of an enhanced expression of BN in different peripheral tissues such as the salivary and laryngeal glands should be taken into consideration when discussing the clinically important problem of reduced food intake and anorexia in cancer patients. (orig.)

  12. Therapeutic Efficacy with Treatment-related Toxicities of {sup 177}Lu-labeled Bombesin Derivative for the Peptide Receptor Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Cheong; Cho, Eun Ha; Lee, So Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The gastrin-releasing peptide receptor (GRPR) has been shown to be overexpressed in many human tumours, including breast cancer, prostate cancer, small cell lung cancer, ovarian cancers, endometrial cancers, and gastrointestinal stromal tumors. In particular, GRPR expression is high in 83 % of invasive primary prostatic carcinomas. These results suggest that {sup 177}Lu-labeled bombesin derivative has promising characteristics as a novel nuclear medicine, especially for the treatment of GRPR over-expressing prostate tumors.

  13. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours

    Energy Technology Data Exchange (ETDEWEB)

    Mansi, Rosalba; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); University of Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Wang, Xuejuan [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Forrer, Flavio [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Erasmus Medical Centre, Nuclear Medicine, Rotterdam (Netherlands); Waser, Beatrice; Cescato, Renzo; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, Berne (Switzerland); Graham, Keith; Borkowski, Sandra [Bayer Schering Pharma AG, Global Drug Discovery, Berlin (Germany)

    2011-01-15

    Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH{sub 2} via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as {sup 111}In and {sup 68}Ga. RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC{sub 50} and K{sub d} values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with {sup 111}In-RM2 and {sup 68}Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with {sup 68}Ga-RM2. RM2 and {sup 111}In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7{+-}3.3 nmol/l for RM2; 9.3{+-}3.3 nmol/l for {sup nat}In-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. {sup 68}Ga- and {sup 111}In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2{+-}4.8%IA/g at 1 h; 11.7{+-}2.4%IA/g at 4 h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6{+-}4.7%IA/g at 1 h to 1.5{+-}0.5%IA/g at 4 h. RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that {sup 111}In-RM2 and {sup 68}Ga-RM2 are ideal candidates for clinical SPECT and PET studies. (orig.)

  14. Study of the optical and dosimetric properties of the nano conjugate {sup 99m}Tc-EDDA/HYNIC-GGC-Au Np-Bombesin by effect of nano particle size; Estudio de las propiedades opticas y dosimetricas del nanoconjugado {sup 99m}Tc-EDDA/HYNIC-GGC-AUNP-Bombesina por efecto del tamano de nanoparticula

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza S, A. N.

    2011-07-01

    The receptors over-expressed on the surface of cancer cells represent promising targets for breast cancer diagnosis or therapy. The gastrin-releasing peptide receptor (GRP-r) is a seven-transmembrane G-protein coupled receptor that is over-expressed on primary prostate and breast cancer and lymph node metastases. Bombesin (Bn) is a tetradeca peptide that binds with high affinity to GRP-r. The strong, specific Bn-GRP-r binding is the basis for labelling Bn with radionuclides (i.e. {sup 99m}Tc, {sup 111}In, {sup 18}F) to obtain molecular images. The aim of this work was to develop 3 multifunctional systems of {sup 99m}Tc-labeled gold nanoparticles (Au Np) (5, 10 and 20 nm) conjugated to Lys{sup 3}-Bombesin for GRP-receptor targeting in breast cancer. The systems were characterized by Tem and UV-Vis, IR, Raman, Fluorescence and XP spectroscopy. The {sup 99m}Tc-Au Np-Lys{sup 3}-Bombesin multifunctional system (20 nm) shows in vitro and in vivo specific recognition for GRP-r and suitable properties to be used as a nuclear molecular imaging agent. Results also showed a specific Lys{sup 3}-Bombesin binding to the gold surface and higher fluorescence intensity for the 20 nm system. The Nir bands observed in the 20 nm radio conjugate indicate potential for bio imaging as dual systems. (Author)

  15. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  16. Stress and eating: A dual role for bombesin-like peptides

    Directory of Open Access Journals (Sweden)

    Zul eMerali

    2013-10-01

    Full Text Available The current obesity ‘epidemic’ in the developed world is a major health concern; over half of adult Canadians are now classified as overweight or obese. Although the reasons for high obesity rates remain unknown, an important factor appears to be the role stressors play in overconsumption of food and weight gain. In this context, increased stressor exposure and/or perceived stress may influence eating behavior and food choices. Stress-induced anorexia is often noted in rats exposed to chronic stress (e.g. repeated restraint and access to standard Chow diet; associated reduced consumption and weight loss. However, if a similar stressor exposure takes place in the presence of palatable, calorie dense food, rats often consume an increase proportion of palatable food relative to Chow, leading to weight gain and obesity. In humans, a similar desire to eat palatable or ‘comfort’ foods has been noted under stressful situations; it is thought that this response may potentially be attributable to stress-buffering properties and/or through activation of reward pathways. The complex interplay between stress-induced anorexia and stress-induced obesity is discussed in terms of the overlapping circuitry and neurochemicals that mediate feeding, stress and reward pathways. In particular, this paper draws attention to the bombesin family of peptides (BBs initially shown to regulate food intake and subsequently shown to mediate stress response as well. Evidence is presented to support the hypothesis that BBs may be involved in stress-induced anorexia under certain conditions, but that the same peptides could also be involved in stress-induced obesity. This hypothesis is based on the unique distribution of BBs in key cortico-limbic brain regions involved in food regulation, reward, incentive salience and motivationally driven behavior.

  17. The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a 68Ga-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin

    Directory of Open Access Journals (Sweden)

    Zohreh Varasteh

    2014-07-01

    Full Text Available The overexpression of gastrin-releasing peptide receptor (GRPR in cancer can be used for peptide-receptor mediated radionuclide imaging and therapy. We have previously shown that an antagonist analog of bombesin RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA via a diethyleneglycol (PEG2 spacer (NOTA-PEG2-RM26 and labeled with 68Ga can be used for imaging of GRPR-expressing tumors. In this study, we evaluated if a variation of mini-PEG spacer length can be used for optimization of targeting properties of the NOTA-conjugated RM26. A series of analogs with different PEG-length (n = 2, 3, 4, 6 was synthesized, radiolabeled and evaluated in vitro and in vivo. The IC50 values of natGa-NOTA-PEGn-RM26 (n = 2, 3, 4, 6 were 3.1 ± 0.2, 3.9 ± 0.3, 5.4 ± 0.4 and 5.8 ± 0.3 nM, respectively. In normal mice all conjugates demonstrated similar biodistribution pattern, however 68Ga-NOTA-PEG3-RM26 showed lower liver uptake. Biodistribution of 68Ga-NOTA-PEG3-RM26 was evaluated in nude mice bearing PC-3 (prostate cancer and BT-474 (breast cancer xenografts. High uptake in tumors (4.6 ± 0.6%ID/g and 2.8 ± 0.4%ID/g for PC-3 and BT-474 xenografts, respectively and high tumor-to-background ratios (tumor/blood of 44 ± 12 and 42 ± 5 for PC-3 and BT-474 xenografts, respectively were found already at 2 h p.i. of 68Ga-NOTA-PEG3-RM26. Results of this study suggest that variation in the length of the PEG spacer can be used for optimization of targeting properties of peptide-chelator conjugates. However, the influence of the mini-PEG length on biodistribution is minor when di-, tri-, tetra- and hexaethylene glycol are compared.

  18. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......Although peptide-oligonucleotide conjugates (POCs) are well-known for nucleic acids delivery and therapy, reports on internal attachment of peptides to oligonucleotides are limited in number. To develop a convenient route for preparation of internally labeled POCs with improved biomedical......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  19. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition.

    Science.gov (United States)

    Pierre, Joseph F; Neuman, Joshua C; Brill, Allison L; Brar, Harpreet K; Thompson, Mary F; Cadena, Mark T; Connors, Kelsey M; Busch, Rebecca A; Heneghan, Aaron F; Cham, Candace M; Jones, Elaina K; Kibbe, Carly R; Davis, Dawn B; Groblewski, Guy E; Kudsk, Kenneth A; Kimple, Michelle E

    2015-09-15

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis.

  20. Design and Application of Antimicrobial Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Andre Reinhardt

    2016-05-01

    Full Text Available Antimicrobial peptides (AMPs are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.

  1. Sulphonamide-based bombesin prodrug analogues for glutathione transferase, useful in targeted cancer chemotherapy.

    Science.gov (United States)

    Axarli, I; Labrou, N E; Petrou, C; Rassias, N; Cordopatis, P; Clonis, Y D

    2009-05-01

    Glutathione transferases (GSTs) are enzymes involved in cellular detoxification by catalysing the nucleophilic attack of glutathione (GSH) on the electrophilic centre of a number of toxic compounds and xenobiotics, including certain chemotherapeutic drugs. The encountered chemotherapeutic resistant of tumour cells, thus, has been associated with the increase of total GST expression. GSTs, in addition to GSH-conjugating activity, exhibit sulphonamidase activity, catalyzing the GSH-mediated hydrolysis of sulphonamide bonds. Such reactions are of interest as potential tumour-directed prodrug activation strategies. In the present work we report the design and synthesis of novel chimaeric sulphonamide derivatives of bombesin, able to be activated by the model human isoenzyme GSTA1-1 (hGSTA1-1). These derivatives bear a peptidyl-moiety (analogues of bombesin peptide: R-[Lue(13)]-bombesin, R-[Phe(13)]-bombesin and R-[Ser(3),Arg(10),Phe(13)]-bombesin, where R=C(6)H(5)SO(2)NH-) as molecular recognition element for targeting the drug selectively to tumour cells. The released S-alkyl-glutathione, after hGSTA1-1-mediated cleavage of the sulphonamide bond, provides an inhibitor of varied strength against GSTs from different sources. These prodrugs are envisaged as a plausible means to sensitize drug-resistant tumours that overexpress GSTs.

  2. 18F, 64Cu, and 68Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer

    Science.gov (United States)

    Liu, Zhaofei; Yan, Yongjun; Liu, Shuanglong; Wang, Fan; Chen, Xiaoyuan

    2010-01-01

    Radiolabeled RGD and bombesin (BBN) radiotracers that specifically target integrin αvβ3 and gastrin releasing peptide receptor (GRPR) are both promising radiopharmaceuticals for tumor imaging. We recently designed and synthesized a RGD-BBN heterodimeric peptide with both RGD and BBN motifs in one single molecule. The 18F-labeled RGD-BBN heterodimer exhibited dual integrin αvβ3 and GRPR targeting in a PC-3 prostate cancer model. In this study we investigated whether radiolabeled RGD-BBN tracers can be used to detect breast cancer by using microPET. Cell binding assay demonstrated that the high GRPR expressing breast cancer cells typically express low to moderate level of integrin αvβ3, while high integrin αvβ3 expressing breast cancer cells have negligible level of GRPR. We labeled RGD-BBN heterodimer with three positron emitting radionuclides 18F, 64Cu and 68Ga, and investigated the corresponding PET radiotracers in both orthotopic T47D (GRPR+/low integrin αvβ3) and MDA-MB-435 (GRPR−/integrin αvβ3+) breast cancer models. The three radiotracers all possessed in vitro dual integrin αvβ3 and GRPR binding affinity. The advantages of the RGD-BBN radiotracers over the corresponding BBN analogues are obvious for imaging MDA-MB-435 (GRPR−/integrin αvβ3+) tumor. 18F-FB-PEG3-RGD-BBN showed lower tumor uptake than 64Cu-NOTA-RGD-BBN and 68Ga-NOTA-RGD-BBN but was able to visualize breast cancer tumors with high contrast. Synthesis of 64Cu-NOTA-RGD-BBN and 68Ga-NOTA-RGD-BBN is much faster and easier than 18F-FB-PEG3-RGD-BBN. 64Cu-NOTA-RGD-BBN showed prolonged tumor uptake, but also higher liver retention and kidney uptake than 68Ga-NOTA-RGD-BBN and 18F-FB-PEG3-RGD-BBN. 68Ga-NOTA-RGD-BBN possessed high tumor signals, but also relatively high background uptake as compared with the other two radiotracers. In summary, the prosthetic labeling groups, chelators and isotopes all have profound effect on the tumor targeting efficacy and in vivo kinetics of the RGD

  3. Peptide conjugation: before or after nanoparticle formation?

    Science.gov (United States)

    Valetti, Sabrina; Mura, Simona; Noiray, Magali; Arpicco, Silvia; Dosio, Franco; Vergnaud, Juliette; Desmaële, Didier; Stella, Barbara; Couvreur, Patrick

    2014-11-19

    We report herein a detailed study concerning the impact of different bioconjugation and nanoformulation strategies on the in vitro targeting ability of peptide-decorated squalenoyl gemcitabine (SQdFdC) nanoparticles (NPs). NPs have been functionalized with the CKAAKN peptide, previously identified as an efficient homing device within the pancreatic pathological microenvironment. Two approaches have been followed: (i) either the CKAAKN peptide was directly conjugated at the surface of preformed SQdFdC nanoparticles (conjugation after NP formation) or (ii) it was first reacted with a maleimide squalenoyl derivative before the resulting bioconjugate was co-nanoprecipitated with SQdFdC to form the peptide-decorated NPs (conjugation before NP formation). NPs were characterized with respect to mean diameter, zeta potential, and stability over time. Then, their specific interaction with the sFRP-4 protein was evaluated by surface plasmon resonance. Although both synthetic strategies allowed us to formulate NPs able to interact with the corresponding receptor, enhanced target binding and better specific avidity were observed with CKAAKN-NPs functionalized before NP formation. These NPs displayed the highest cell uptake and cytotoxicity in an in vitro model of human MIA Paca-2 pancreatic cancer cells.

  4. Targeting the Eph System with Peptides and Peptide Conjugates.

    Science.gov (United States)

    Riedl, Stefan J; Pasquale, Elena B

    2015-01-01

    Eph receptor tyrosine kinases and ephrin ligands constitute an important cell communication system that controls development, tissue homeostasis and many pathological processes. Various Eph receptors/ephrins are present in essentially all cell types and their expression is often dysregulated by injury and disease. Thus, the 14 Eph receptors are attracting increasing attention as a major class of potential drug targets. In particular, agents that bind to the extracellular ephrin-binding pocket of these receptors show promise for medical applications. This pocket comprises a broad and shallow groove surrounded by several flexible loops, which makes peptides particularly suitable to target it with high affinity and selectivity. Accordingly, a number of peptides that bind to Eph receptors with micromolar affinity have been identified using phage display and other approaches. These peptides are generally antagonists that inhibit ephrin binding and Eph receptor/ ephrin signaling, but some are agonists mimicking ephrin-induced Eph receptor activation. Importantly, some of the peptides are exquisitely selective for single Eph receptors. Most identified peptides are linear, but recently the considerable advantages of cyclic scaffolds have been recognized, particularly in light of potential optimization towards drug leads. To date, peptide improvements have yielded derivatives with low nanomolar Eph receptor binding affinity, high resistance to plasma proteases and/or long in vivo half-life, exemplifying the merits of peptides for Eph receptor targeting. Besides their modulation of Eph receptor/ephrin function, peptides can also serve to deliver conjugated imaging and therapeutic agents or various types of nanoparticles to tumors and other diseased tissues presenting target Eph receptors.

  5. Imaging of Gastrin-Releasing Peptide Receptor-Expressing Prostate Tumor using a {sup 68}Ga-Labeled Bombesin Analog

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Cheong; Dho, So Hee; Cho, Eun Ha; Lee, So Young; Kim, Soo Yong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Although the transmissivity of cold neutrons are low comparing that of thermal neutrons, the slower neutrons are more apt to be absorbed in a target, and can increase the prompt gamma emission rate. Also the flux of both thermal and cold neutron beam is high enough to activate thick target. If the neutron beam is irradiated on the front and the reverse side of gold bar, all insides of it can be detected. The imaging efficacy of {sup 68}Ga-DOTA-gluBBN was evaluated in the PC-3- peritoneal metastasized model. These results suggest that {sup 68}Ga-labeled bombesin derivative has promising characteristics as a novel nuclear medicine, especially for the imaging of GRPR over-expressing prostate tumors. A target for irradiation was produced using 99% Ni-62 metal power concentrate. Ni-62 target of 1 g was irradiated in MARIA reactor operated in Poland for 470 hours at neutron flux of 2.5 x 10{sup 14}n/cm{sup 2}s, and estimated production of Ni-63 was calculated. Irradiated Ni-63 pellets were dissolved in HCl solution, and Ni-63 coatings were deposited by DC electroplating at current density of 20 mA/cm{sup 2}.

  6. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  7. Peptide π-Electron Conjugates: Organic Electronics for Biology?

    Science.gov (United States)

    Ardoña, Herdeline Ann M; Tovar, John D

    2015-12-16

    Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.

  8. RPM peptide conjugated bioreducible polyethylenimine targeting invasive colon cancer.

    Science.gov (United States)

    Lee, Yeong Mi; Lee, Duhwan; Kim, Jihoon; Park, Hansoo; Kim, Won Jong

    2015-05-10

    CPIEDRPMC (RPM) peptide is a peptide that specifically targets invasive colorectal cancer, which is one of the leading causes of cancer-related deaths worldwide. In this study, we exploited RPM peptide as a targeting ligand to produce a novel and efficient gene delivery system that could potentially be used to treat invasive colon cancer. In order to achieve enhanced specificity to colon cancer cells, the RPM peptide was conjugated to a bioreducible gene carrier consisting of a reducible moiety of disulfide-crosslinked low molecular weight polyethylenimine, IR820 dye, and polyethylene glycol. Here, we examined the physiochemical properties, cytotoxicity, in vitro transfection efficiency, and in vivo biodistribution of the RPM-conjugated polyplex. Our results showed that the RPM-conjugated gene carrier formed a compact polyplex with pDNA that had low toxicity. Furthermore, the RPM-conjugated polymer not only had higher cellular uptake in invasive colon cancer than the non-targeted polymer, but also showed enhanced transfection efficiency in invasive colon cancer cells in vitro and in vivo.

  9. Gastrin receptor-avid peptide conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann

    2006-12-12

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  10. Gastrin Receptor-Avid Peptide Conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Timothy J. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Li, Ning (Baltimore, MD); Sieckman, Gary (Ashland, MO); Higginbotham, Chrys-Ann (Columbia, MO)

    2005-07-26

    A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.

  11. Radiolabeled bombesin derivatives for preclinical oncological imaging

    Science.gov (United States)

    de Aguiar Ferreira, Carolina; Fuscaldi, Leonardo Lima; Townsend, Danyelle M.; Rubello, Domenico; de Barros, André Luís Branco

    2017-01-01

    Despite efforts, cancer is still one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths each year, according to the World Health Organization. Among the strategies to reduce cancer progression and improving its management, implementing early detection technologies is crucial. Based on the fact that several types of cancer cells overexpress surface receptors, small molecule ligands, such as peptides, have been developed to allow tumor identification at earlier stages. Allied with imaging techniques such as PET and SPECT, radiolabeled peptides play a pivotal role in nuclear medicine. Bombesin, a peptide of 14 amino acids, is an amphibian homolog to the mammalian gastrin-releasing peptide (GRP), that has been extensively studied as a targeting ligand for diagnosis and therapy of GRP positive tumors, such as breast, pancreas, lungs and prostate cancers. In this context, herein we provide a review of reported bombesin derivatives radiolabeled with a multitude of radioactive isotopes for diagnostic purposes in the preclinical setting. Moreover, since animal models are highly relevant for assessing the potential of clinical translation of this radiopeptides, a brief report of the currently used GRP-positive tumor-bearing animal models is described. PMID:28040598

  12. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir;

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathwa...

  13. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  14. Comparison of two peptide radiotracers for prostate carcinoma targeting

    Directory of Open Access Journals (Sweden)

    Bluma Linkowski Faintuch

    2012-01-01

    Full Text Available OBJECTIVES: Scintigraphy is generally not the first choice treatment for prostate cancer, although successful studies using bombesin analog radiopeptides have been performed. Recently, a novel peptide obtained using a phage display library demonstrated an affinity for prostate tumor cells. The aim of this study was to compare the use of a bombesin analog to that of a phage display library peptide (DUP-1 radiolabeled with technetium-99m for the treatment of prostate carcinoma. The peptides were first conjugated to S-acetyl-MAG3 with a 6-carbon spacer, namely aminohexanoic acid. METHODS: The technetium-99m labeling required a sodium tartrate buffer. Radiochemical evaluation was performed using ITLC and was confirmed by high-performance liquid chromatography. The coefficient partition was determined, and in vitro studies were performed using human prostate tumor cells. Biodistribution was evaluated in healthy animals at various time points and also in mice bearing tumors. RESULTS: The radiochemical purity of both radiotracers was greater than 95%. The DUP-1 tracer was more hydrophilic (log P = -2.41 than the bombesin tracer (log P = -0.39. The biodistribution evaluation confirmed this hydrophilicity by revealing the greater kidney uptake of DUP-1. The bombesin concentration in the pancreas was greater than that of DUP-1 due to specific gastrin-releasing peptide receptors. Bombesin internalization occurred for 78.32% of the total binding in tumor cells. The DUP-1 tracer showed very low binding to tumor cells during the in vitro evaluation, although tumor uptake for both tracers was similar. The tumors were primarily blocked by DUP1 and the bombesin radiotracer primarily targeted the pancreas. CONCLUSION: Further studies with the radiolabeled DUP-1 peptide are recommended. With further structural changes, this molecule could become an efficient alternative tracer for prostate tumor diagnosis.

  15. Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

    Science.gov (United States)

    Bhagwat, Nandita

    Peptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, alpha-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 A from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer--peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization

  16. Helical peptide-polyamine and -polyether conjugates as synthetic ionophores.

    Science.gov (United States)

    Benincasa, Monica; Francescon, Marco; Fregonese, Massimo; Gennaro, Renato; Pengo, Paolo; Rossi, Paola; Scrimin, Paolo; Tecilla, Paolo

    2015-12-01

    Two new synthetic ionophores in which the hydrophobic portion is represented by a short helical Aib-peptide (Aib=α-amino-isobutyric acid) and the hydrophilic one is a poly-amino (1a) or a polyether (1b) chain have been prepared. The two conjugates show a high ionophoric activity in phospholipid membranes being able to efficiently dissipate a pH gradient and, in the case of 1b, to transport Na(+) across the membrane. Bioactivity evaluation of the two conjugates shows that 1a has a moderate antimicrobial activity against a broad spectrum of microorganisms and it is able to permeabilize the inner and the outer membrane of Escherichia coli cells.

  17. Synthesis of Peptide-Oligonucleotide Conjugates Using a Heterobifunctional Crosslinker

    Science.gov (United States)

    Williams, Berea A.R.; Chaput, John C.

    2010-01-01

    Peptide-oligonucleotide conjugates (POCs) are molecular chimeras composed of a nucleic acid moiety covalently attached to a polypeptide moiety. POCs have been used in numerous applications from therapeutics to nanotechnology, and most recently as combinatorial agents in the assembly of bivalent protein affinity reagents. This unit describes the synthesis and purification of POC molecules using the heterobifunctional crosslinking reagent succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), which enables amine-modified oligonucleotides to become covalently linked to cysteine-modified polypeptides. This solution-based protocol consists of a two-step synthesis followed by a single purification step. PMID:20827717

  18. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates.

    Science.gov (United States)

    Sánchez, Mateo I; Vázquez, Olalla; Vázquez, M Eugenio; Mascareñas, José L

    2013-07-22

    Transcription factors (TFs) are specialized proteins that play a key role in the regulation of genetic expression. Their mechanism of action involves the interaction with specific DNA sequences, which usually takes place through specialized domains of the protein. However, achieving an efficient binding usually requires the presence of the full protein. This is the case for bZIP and zinc finger TF families, which cannot interact with their target sites when the DNA binding fragments are presented as isolated monomers. Herein it is demonstrated that the DNA binding of these monomeric peptides can be restored when conjugated to aza-bisbenzamidines, which are readily accessible molecules that interact with A/T-rich sites by insertion into their minor groove. Importantly, the fluorogenic properties of the aza-benzamidine unit provide details of the DNA interaction that are eluded in electrophoresis mobility shift assays (EMSA). The hybrids based on the GCN4 bZIP protein preferentially bind to composite sequences containing tandem bisbenzamidine-GCN4 binding sites (TCAT⋅AAATT). Fluorescence reverse titrations show an interesting multiphasic profile consistent with the formation of competitive nonspecific complexes at low DNA/peptide ratios. On the other hand, the conjugate with the DNA binding domain of the zinc finger protein GAGA binds with high affinity (KD≈12 nM) and specificity to a composite AATTT⋅GAGA sequence containing both the bisbenzamidine and the TF consensus binding sites.

  19. Evaluation and comparison of a new DOTA and DTPA-bombesin agonist in vitro and in vivo in low and high GRPR expressing prostate and breast tumor models.

    Science.gov (United States)

    Pujatti, Priscilla B; Foster, Julie M; Finucane, Ciara; Hudson, Chantelle D; Burnet, Jerome C; Pasqualoto, Kerly F M; Mengatti, Jair; Mather, Stephen J; de Araújo, Elaine B; Sosabowski, Jane K

    2015-02-01

    We evaluated and compared a new bombesin analog [Tyr-Gly5, Nle(14)]-BBN(6-14) conjugated to DOTA or DTPA and radiolabeled with In-111 in low and high GRPR expressing tumor models. Both peptides were radiolabeled with high radiochemical purity and specific activity. In vitro assays on T-47D, LNCaP and PC-3 cells showed that the affinity of peptides is similar and a higher binding and internalization of DOTA-peptide to PC-3 cells was observed. Both peptides could target PC-3 and LNCaP tumors in vivo and both tumor types could be visualized by microSPECT/CT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    Science.gov (United States)

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  1. Peptide Conjugation via CuAAC ‘Click’ Chemistry

    Directory of Open Access Journals (Sweden)

    Istvan Toth

    2013-10-01

    Full Text Available The copper (I-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC or ‘click’ reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.

  2. Role of SbmA in the Uptake of Peptide Nucleic Acid (PNA)-Peptide Conjugates in E. coli

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Vitali, Ally; Stach, James E M

    2013-01-01

    Antisense PNA oligomers targeting essential genes (acpP or ftsZ) and conjugated to the delivery peptide L((KFF)(3)K) show complete growth inhibition of wild type E. coli strain (MG1655) with submicromolar MIC. In this study we show that resistant mutants generated against such PNA......-peptide conjugates had disruptions in the region of sbmA, a gene encoding an inner membrane peptide transporter. The wild type sensitivity to the PNA conjugates was re-established in the resistance mutants by complementation with sbmA. Furthermore, deletion of sbmA in E. coli AS19, a strain that is sensitive...

  3. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency

    Directory of Open Access Journals (Sweden)

    HaiFang Yin

    2013-01-01

    Full Text Available We have recently reported that cell-penetrating peptides (CPPs and novel chimeric peptides containing CPP (referred as B peptide and muscle-targeting peptide (referred as MSP motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO and control peptide 3 (B-3-PMO and 3-B-PMO were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO, further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG, indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.

  4. Context Dependent Effects of Chimeric Peptide Morpholino Conjugates Contribute to Dystrophin Exon-skipping Efficiency.

    Science.gov (United States)

    Yin, Haifang; Boisguerin, Prisca; Moulton, Hong M; Betts, Corinne; Seow, Yiqi; Boutilier, Jordan; Wang, Qingsong; Walsh, Anthony; Lebleu, Bernard; Wood, Matthew Ja

    2013-09-24

    We have recently reported that cell-penetrating peptides (CPPs) and novel chimeric peptides containing CPP (referred as B peptide) and muscle-targeting peptide (referred as MSP) motifs significantly improve the systemic exon-skipping activity of morpholino phosphorodiamidate oligomers (PMOs) in dystrophin-deficient mdx mice. In the present study, the general mechanistic significance of the chimeric peptide configuration on the activity and tissue uptake of peptide conjugated PMOs in vivo was investigated. Four additional chimeric peptide-PMO conjugates including newly identified peptide 9 (B-9-PMO and 9-B-PMO) and control peptide 3 (B-3-PMO and 3-B-PMO) were tested in mdx mice. Immunohistochemical staining, RT-PCR and western blot results indicated that B-9-PMO induced significantly higher level of exon skipping and dystrophin restoration than its counterpart (9-B-PMO), further corroborating the notion that the activity of chimeric peptide-PMO conjugates is dependent on relative position of the tissue-targeting peptide motif within the chimeric peptide with respect to PMOs. Subsequent mechanistic studies showed that enhanced cellular uptake of B-MSP-PMO into muscle cells leads to increased exon-skipping activity in comparison with MSP-B-PMO. Surprisingly, further evidence showed that the uptake of chimeric peptide-PMO conjugates of both orientations (B-MSP-PMO and MSP-B-PMO) was ATP- and temperature-dependent and also partially mediated by heparan sulfate proteoglycans (HSPG), indicating that endocytosis is likely the main uptake pathway for both chimeric peptide-PMO conjugates. Collectively, our data demonstrate that peptide orientation in chimeric peptides is an important parameter that determines cellular uptake and activity when conjugated directly to oligonucleotides. These observations provide insight into the design of improved cell targeting compounds for future therapeutics studies.Molecular Therapy-Nucleic Acids (2013) 2, e124; doi:10.1038/mtna.2013

  5. Click chemistry for [{sup 99m}Tc(CO){sub 3}] labeling of Lys{sup 3}-bombesin

    Energy Technology Data Exchange (ETDEWEB)

    Ferro-Flores, G., E-mail: ferro_flores@yahoo.com.m [Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, C.P. 52750 (Mexico); Rivero, I.A. [Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, C.P. 52750 (Mexico); Instituto Tecnologico de Tijuana, Baja California (Mexico); Santos-Cuevas, C.L. [Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, C.P. 52750 (Mexico); Universidad Autonoma del Estado de Mexico (Mexico); Sarmiento, J.I. [Instituto Tecnologico de Tijuana, Baja California (Mexico); Arteaga de Murphy, C. [Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (Mexico); Ocampo-Garcia, B.E. [Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca S/N, La Marquesa, Ocoyoacac, Estado de Mexico, C.P. 52750 (Mexico); Garcia-Becerra, R.; Ordaz-Rosado, D. [Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (Mexico)

    2010-12-15

    {sup 99m}Tc-HYNIC labeled Lys{sup 3}-bombesin has shown specific binding to gastrin-releasing peptide receptors (GRP-r) over-expressed in cancer cells. Click chemistry offers an innovative functionalization strategy for biomolecules such as bombesin. The aim of this research was to apply a click chemistry approach for [{sup 99m}Tc(CO){sub 3}] labeling of Lys{sup 3}-bombesin and to compare the in vitro MCF7 breast cancer cell uptake and biodistribution profile in mice with that of {sup 99m}Tc-EDDA/HYNIC-Lys{sup 3}-bombesin. The results suggest a higher lipophilicity for {sup 99m}Tc(CO){sub 3}-triazole-Lys{sup 3}-bombesin which explains its higher in vivo hepatobiliary elimination. Pancreas-to-blood ratio for {sup 99m}Tc(CO){sub 3}-triazole-Lys{sup 3}-bombesin was 4.46 at 3 h and both bombesin radiopharmaceuticals showed specific recognition for GRP receptors in MCF7 cancer cells. Click chemistry is a reliable approach for [{sup 99m}Tc(CO){sub 3}] labeling of Lys{sup 3}-bombesin.

  6. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections in hospital settings, especially with immune compromised patients, and the increasing prevalence of multidrug resistant strains urges search for new drugs with novel mechanisms of action. In this study we introduce...... essential bacterial gene involved in fatty acid synthesis) of P. aeruginosa (PA01) and characterized these compounds according to their antimicrobial activity and mode of action. Four antisense PNA oligomers conjugated to the H-(R-Ahx-R)(4)-Ahx-ßala or the H-(R-Ahx)(6)-ßala peptide exhibited complete growth...

  7. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  8. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation.

    Science.gov (United States)

    Frutos, S; Jordan, J B; Bio, M M; Muir, T W; Thiel, O R; Vila-Perelló, M

    2016-10-12

    An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners.

  9. Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli.

    Science.gov (United States)

    Ghosal, Anubrata; Vitali, Ally; Stach, James E M; Nielsen, Peter E

    2013-02-15

    Antisense PNA oligomers targeting essential genes (acpP or ftsZ) and conjugated to the delivery peptide L((KFF)(3)K) show complete growth inhibition of wild type E. coli strain (MG1655) with submicromolar MIC. In this study we show that resistant mutants generated against such PNA-peptide conjugates had disruptions in the region of sbmA, a gene encoding an inner membrane peptide transporter. The wild type sensitivity to the PNA conjugates was re-established in the resistance mutants by complementation with sbmA. Furthermore, deletion of sbmA in E. coli AS19, a strain that is sensitive to unmodified PNA, resulted in resistance to PNA. Finally, PNA conjugated with the corresponding non-biological H-D((KFF)(3)K) peptide retained antibacterial activity in sbmA deletion strains, whereas the same conjugate with a protease-sensitive linker did not. These results clearly identify SbmA as a carrier of naked PNA over the inner bacterial membrane and thereby infer that the peptide is transporting the PNA conjugates over the outer membrane. Strains lacking SbmA were used to screen novel peptide-PNA carriers that were SbmA-independent. Four such PNA-peptide conjugates, H-D((KFF)(3)K), H-(RFR)(4)-Ahx-βAla, H-(R-Ahx-R)(4)-Ahx-βAla, and H-(R-Ahx)(6)-βAla, were identified that utilize an alternative uptake mechanism but retain their antimicrobial potency. In addition SbmA is the first protein identified to recognize PNA.

  10. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. [Ohio State Univ., Columbus, OH (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  11. Peptide-cellulose conjugates for protease point of care diagnostics and treatment

    Science.gov (United States)

    Peptide-cellulose conjugates containing Human Neutrophil Elastase substrate sequences with both colorimetric and fluorometric signal molecules have been synthesized on a variety of cellulosic and nanocellulosic substrates including cotton and wood nanocrystals, wood nanocomposites, cotton-based aero...

  12. Rhodium-105 Bombesin Analogs for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Silvia S. Jurisson, PhD

    2005-12-31

    Over the period of this grant (11/01/2001 to 12/31/2005), the consistent and reproducible production of Rh-105, synthesis and evaluation of three new chelate systems based on hydroxymethyl phosphines, development of a new non-hydroxymethyl phosphine N{sub 2}P{sub 2} chelate system, conjugation of two of the chelates to the bombesin peptide analog BBN[7-14]NH{sub 2}, evaluation of the bombesin conjugates and their Rh-105 complexes for stability, cell binding affinity, and in vivo biodistribution in normal mice has been developed. The BBN analogs bind to GRP receptors that are overexpressed on PC-3 prostate tumor cells. A dedicated glove box is used for the separation and isolation of {sup 105}Rh from the target ({sup 104}Ru). All tubing/connections/valves from the point of the Cl{sub 2} tank are made of Teflon to minimize/eliminate the introduction of any metal into the process (e.g., iron from stainless steel corrosion). The separation of {sup 105}Rh produced from the enriched {sup 104}Ru target involves oxidation of the enriched {sup 104}Ru metal target to ruthenium tetroxide with chlorine gas and sodium hydroxide solution to generate hypochlorite in situ. The RuO4 is removed by distillation and the {sup 105}Rh remaining in the reaction vial is converted into {sup 105}Rh-chloride by acidification with hydrochloric acid and heating. The {sup 105}Rh production process has become reproducible over the past year to consistently make 10-30 mCi of {sup 105}Rh from 1-3 mg of an enriched (99.21%) {sup 104}Ru target. The process itself involves irradiation of the enriched {sup 104}Ru target in the core of the reactor (University of Missouri Research Reactor (MURR)) for one week to yield 16-40 mCi of {sup 105}Rh. The irradiated target is processed to separate the Rh-105 in high specific activity from the {sup 104}Ru target. The irradiated target is dissolved in NaOH (2M, 3 mL) by bubbling Cl{sub 2} gas through the solution (generating NaOCl in situ) to generate RuO{sub 4

  13. Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.

    Science.gov (United States)

    Shabanpoor, Fazel; Gait, Michael J

    2013-11-11

    We describe a general methodology for fluorescent labelling of peptide conjugates of phosphorodiamidate morpholino oligonucleotides (PMOs) by alkyne functionalization of peptides, subsequent conjugation to PMOs and labelling with a fluorescent compound (Cy5-azide). Two peptide-PMO (PPMO) examples are shown. No detrimental effect of such labelled PMOs was seen in a biological assay.

  14. Solution Structure and Constrained Molecular Dynamics Study of Vitamin B12 Conjugates of the Anorectic Peptide PYY(3-36).

    Science.gov (United States)

    Henry, Kelly E; Kerwood, Deborah J; Allis, Damian G; Workinger, Jayme L; Bonaccorso, Ron L; Holz, George G; Roth, Christian L; Zubieta, Jon; Doyle, Robert P

    2016-05-06

    Vitamin B12 -peptide conjugates have considerable therapeutic potential through improved pharmacokinetic and/or pharmacodynamic properties imparted on the peptide upon covalent attachment to vitamin B12 (B12 ). There remains a lack of structural studies investigating the effects of B12 conjugation on peptide secondary structure. Determining the solution structure of a B12 -peptide conjugate or conjugates and measuring functions of the conjugate(s) at the target peptide receptor may offer considerable insight concerning the future design of fully optimized conjugates. This methodology is especially useful in tandem with constrained molecular dynamics (MD) studies, such that predictions may be made about conjugates not yet synthesized. Focusing on two B12 conjugates of the anorectic peptide PYY(3-36), one of which was previously demonstrated to have improved food intake reduction compared with PYY(3-36), we performed NMR structural analyses and used the information to conduct MD simulations. The study provides rare structural insight into vitamin B12 conjugates and validates the fact that B12 can be conjugated to a peptide without markedly affecting peptide secondary structure.

  15. Chemical conjugate TMV-peptide bivalent fusion vaccines improve cellular immunity and tumor protection.

    Science.gov (United States)

    McCormick, Alison A; Corbo, Tina A; Wykoff-Clary, Sherri; Palmer, Kenneth E; Pogue, Gregory P

    2006-01-01

    Chemical conjugation of CTL peptides to tobacco mosaic virus (TMV) has shown promise as a molecular adjuvant scaffold for augmentation of cellular immune responses to peptide vaccines. This study demonstrates the ease of generating complex multipeptide vaccine formulations using chemical conjugation to TMV for improved vaccine efficacy. We have tested a model foreign antigen target-the chicken ovalbumin-derived CTL peptide (Ova peptide), as well as mouse melanoma-associated CTL epitopes p15e and tyrosinase-related protein 2 (Trp2) peptides that are self-antigen targets. Ova peptide fusions to TMV, as bivalent formulations with peptides encoding additional T-help or cellular uptake via the integrin-receptor binding RGD peptide, showed improved vaccine potency evidenced by significantly enhanced numbers of antigen-reactive T cells measured by in vitro IFNgamma cellular analysis. We measured the biologically relevant outcome of vaccination in protection of mice from EG.7-Ova tumor challenge, which was achieved with only two doses of vaccine ( approximately 600 ng peptide) given without adjuvant. The p15e peptide alone or Trp2 peptide alone, or as a bivalent formulation with T-help or RGD uptake epitopes, was unable to stimulate effective tumor protection. However, a vaccine with both CTL peptides fused together onto TMV generated significantly improved survival. Interestingly, different bivalent vaccine formulations were required to improve vaccine efficacy for Ova or melanoma tumor model systems.

  16. Cellular uptake of antisense oligonucleotides after complexing or conjugation with cell-penetrating model peptides.

    Science.gov (United States)

    Oehlke, J; Birth, P; Klauschenz, E; Wiesner, B; Beyermann, M; Oksche, A; Bienert, M

    2002-08-01

    The uptake by mammalian cells of phosphorothioate oligonucleotides was compared with that of their respective complexes or conjugates with cationic, cell-penetrating model peptides of varying helix-forming propensity and amphipathicity. An HPLC-based protocol for the synthesis and purification of disulfide bridged conjugates in the 10-100 nmol range was developed. Confocal laser scanning microscopy (CLSM) in combination with gel-capillary electrophoresis and laser induced fluorescence detection (GCE-LIF) revealed cytoplasmic and nuclear accumulationin all cases. The uptake differences between naked oligonucleotides and their respective peptide complexes or conjugates were generally confined to one order of magnitude. No significant influence of the structural properties of the peptide components upon cellular uptake was found. Our results question the common belief that the increased biological activity of oligonucleotides after derivatization with membrane permeable peptides may be primarily due to improved membrane translocation.

  17. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.

    Science.gov (United States)

    Knapinska, Anna M; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C; Fields, Gregg B

    2015-05-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND-biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND-peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to.

  18. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    OpenAIRE

    Ives Kirk; Chao Celia; Wen Xiaodong; Hellmich Mark R

    2011-01-01

    Abstract Background Cyclooxygenase-2 (COX-2) and the bombesin (BBS)-like peptide, gastrin-releasing peptide (GRP), have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR)-positive, androgen-insensitive prostate cancer ce...

  19. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET; Marcadores moleculares derivados da bombesina para diagnostico de tumores por SPECT e PET

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2012-07-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB{sub 2} receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with {sup 11}1In and {sup 68}Ga and to evaluate their potential for BB{sub 2} positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG{sub n}-BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG{sub n} and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with

  20. Tuning the entropic spring to dictate order and functionality in polymer conjugated peptide biomaterials

    Science.gov (United States)

    Keten, Sinan

    Hybrid peptide-polymer conjugates have the potential to combine the advantages of natural proteins and synthetic polymers, resulting in biomaterials with improved stability, controlled assembly, and tailored functionalities. However, the effect of polymer conjugation on peptide structural organization and functionality, along with the behavior of polymers at the interface with biomolecules remain to be fully understood. This talk will summarize our recent efforts towards establishing a modeling framework to design entropic forces in helix-polymer conjugates and polymer-conjugated peptide nanotubes to achieve hierarchical self-assembling systems with predictable order. The first part of the talk will discuss how self-assembly principles found in biology, combined with polymer physics concepts can be used to create artificial membranes that mimic certain features of ion channels. Thermodynamics and kinetics aspects of self-assembly and how it governs the growth and stacking sequences of peptide nanotubes will be discussed, along with its implications for nanoscale transport. The second part of the talk will review advances related to modeling polymer conjugated coiled coils at relevant length and time scales. Atomistic simulations combined with sampling techniques will be presented to discuss the energy landscapes governing coiled-coil stability, revealing cascades of events governing disassembly. This will be followed by a discussion of mechanisms through which polymers can stabilize small proteins, such as shielding of solvents, and how specific peptide sequences can reciprocate by altering polymer conformations. Correlations between mechanical and thermal stability of peptides will be discussed. Finally, coarse-grained simulations will provide insight into how the location of polymer attachment changes entropic forces and higher-level organization in helix bundle assemblies. Our findings set the stage for a materials-by-design capability towards dictating complex

  1. Synthesis and evaluation of Lys{sup 1}(α, γ-Folate)Lys{sup 3}({sup 177}Lu-DOTA)-Bombesin(1-14) as a potential theranostic radiopharmaceutical for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Aranda L, L.; Ferro F, G.; Azorin V, E.; Ramirez, F. M.; Ocampo G, B.; Santos C, C.; Jimenez M, N. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, 50180 Toluca, Estado de Mexico (Mexico)

    2015-10-15

    Full text: Lutetium-177 labeled hetero bivalent molecules that interact with different targets on tumor cells have been proposed as a new class of theranostic radiopharmaceuticals. The aim of this work was to synthesize Lys{sup 1} (α,γ-Folate)-Lys{sup 3}({sup 177}Lu-DOTA)-Bombesin (1-14) ({sup 177}LuFolate-Bn), as well as to assess its in vitro and in vivo potential for molecular imaging and targeted radiotherapy of breast tumors expressing folate receptors (Fr) and gastrin releasing peptide receptors (GRPR). Lys{sup 1} Lys{sup 3} (DOTA)-Bombesin (1-14) was conjugated to the terminal carboxylic group of the folic acid and the product purified by size-exclusion HPLC. Chemical characterization was carried out by UV-vis, Ft-IR spectroscopies and MALDI-TOF mass spectrometry. {sup 177}Lu labeling was performed by reaction of {sup 177}LuCl{sub 3} with the Lys{sup 1} (α,γ-Folate)-Lys{sup 3} (DOTA)-Bombesin (Folate-Bn) conjugate. In vitro binding studies were carried out in T47D breast cancer cells (positive to Fr and GRPR). Biokinetic studies and micro-SPECT/CT images were obtained using athymic mice with T47D induced tumors. Spectroscopic studies and HPLC analyses indicated that the conjugate was obtained with high chemical and radiochemical purity (98 ± 1.3%). T47D-tumors were clearly visible with high contrast at 2 h after radiopharmaceutical administration. The {sup 177}Lu-absorbed dose delivered to tumors was 23.9 ± 2.1 Gy (74 MBq, intravenously administered) {sup 177}Lu-Folate-Bn demonstrated properties suitable as a theranostic radiopharmaceutical for breast tumors expressing Fr s and GRPR s. (Author)

  2. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild Garborg

    2017-01-01

    Utilisation of functionalized liposomes as the means of targeted delivery of therapeutics may enhance specific transport of biologically active drugs to target tissues, while avoiding or reducing undesired side effects. In the present investigation, peptide-conjugated cationic liposomes were cons....... Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells....... constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells...

  3. Molecular hydrogelators of peptoid-peptide conjugates with superior stability against enzyme digestion

    Science.gov (United States)

    Wu, Zhidan; Tan, Ming; Chen, Xuemei; Yang, Zhimou; Wang, Ling

    2012-05-01

    We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion.We report on molecular hydrogelators based on peptoid-peptide conjugates with good biocompatibility to different cells and superior stability against proteinase K digestion. Electronic supplementary information (ESI) available: Synthesis and characterization of gelators, dynamic strain sweep, cell viability, and procedure to determine the stability of compounds against proteinase K digestion. See DOI: 10.1039/c2nr30408b

  4. Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA)

    DEFF Research Database (Denmark)

    Birkedal, Henrik; Nielsen, Peter E

    2011-01-01

    Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine...... PNA conjugated to the topoisomerase I inhibitor camptothecin was found to increase the frequency of repair domain mediated gene correctional events of the EGFP reporter in an in vitro HeLa cell nuclear extract assay, whereas PNA psoralen or chlorambucil conjugates both of which form covalent and also....... Consistent with the extract experiments, treatment with adduct forming PNA conjugates (psoralen and chlorambucil) resulted in a decrease in background correction frequencies in transiently transfected cells, whereas unmodified PNA or the PNA-camptothecin conjugate had little or no effect. These results...

  5. Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates

    Science.gov (United States)

    Shu, Jessica Y.; Xu, Ting

    2016-01-01

    Coiled-coil peptide–polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide–polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formed at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide–polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation. PMID:27784156

  6. Parallel synthesis and splicing redirection activity of cell-penetrating peptide conjugate libraries of a PNA cargo

    NARCIS (Netherlands)

    Deuss, Peter J.; Arzumanov, Andrey A.; Williams, Donna L.; Gait, Michael J.

    2013-01-01

    A novel method for the parallel synthesis of peptide-biocargo conjugates was developed that utilizes affinity purification for fast isolation of the conjugates in order to avoid time consuming HPLC purification. The methodology was applied to create two libraries of cell-penetrating peptide (CPP)-PN

  7. One-pot chemical synthesis of small ubiquitin-like modifier protein-peptide conjugates using bis(2-sulfanylethyl)amido peptide latent thioester surrogates.

    Science.gov (United States)

    Boll, Emmanuelle; Drobecq, Hervé; Ollivier, Nathalie; Blanpain, Annick; Raibaut, Laurent; Desmet, Rémi; Vicogne, Jérôme; Melnyk, Oleg

    2015-02-01

    Small ubiquitin-like modifier (SUMO) post-translational modification (PTM) of proteins has a crucial role in the regulation of important cellular processes. This protocol describes the chemical synthesis of functional SUMO-peptide conjugates. The two crucial stages of this protocol are the solid-phase synthesis of peptide segments derivatized by thioester or bis(2-sulfanylethyl)amido (SEA) latent thioester functionalities and the one-pot assembly of the SUMO-peptide conjugate by a sequential native chemical ligation (NCL)/SEA native peptide ligation reaction sequence. This protocol also enables the isolation of a SUMO SEA latent thioester, which can be attached to a target peptide or protein in a subsequent step. It is compatible with 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, and it gives access to homogeneous, reversible and functional SUMO conjugates that are not easily produced using living systems. The synthesis of SUMO-peptide conjugates on a milligram scale takes 20 working days.

  8. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time.

  9. Enthalpy-driven nuclease-like activity and mechanism of peptide-chlorambucil conjugates.

    Science.gov (United States)

    Yang, Robin C K; Huang, Jonathan T B; Chen, Yu-Ling; Hung, Chia-Chun; Liao, Mokai; Yao, Wen-Chen; Chen, Chiu-Heng; Liou, Chien-Chung; Waring, Michael J; Sheh, Leung

    2014-07-21

    We report the results of attaching the anticancer drug chlorambucil (CLB) to two high-affinity DNA binding peptides: Met-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyM-10) and Gln-Hyp-Arg-Lys-(Py)4-Lys-Arg-NH2 (HyQ-10). These CLB-peptide conjugates cleave DNA very effectively and sequence-selectively without the use of chemicals, heat, or UV irradiation. Polyacrylamide gel electrophoresis identifies the sites where CLB-HyM-10 and CLB-HyQ-10 attack a complementary pair of 5'-(32)P-labeled duplexes derived from pBR322 in the absence of piperidine or other chemical additives. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has confirmed the preferential cleavage sites as well as a novel stepwise cleavage mechanism of sequence-selective DNA cleavage. Resembling restriction endonucleases, the CLB-peptide conjugates appear to be capable of producing double strand DNA breaks. Circular dichroism studies show that CLB-HyM-10 and CLB-HyQ-10 induce significant local conformational changes in DNA via the minor groove, possibly with dimeric binding stoichiometry. The energetic basis of DNA binding by these conjugates has been investigated by isothermal titration calorimetry, revealing that the binding of both the peptides and their CLB conjugates is overwhelmingly enthalpy-driven. The maintenance of a conserved negative binding free energy in DNA-conjugate interactions is a crucial feature of the universal enthalpy-entropy compensation phenomenon. The strongly enthalpy-driven binding of CLB-peptide conjugates to preferred loci in DNA furnishes the required proximity effect to generate the observed nuclease-like sequence-selective cleavage.

  10. Active Peptide-Conjugated Chitosan Matrices as an Artificial Basement Membrane

    Directory of Open Access Journals (Sweden)

    Kentaro Hozumi

    2015-02-01

    Full Text Available The basement membrane, a thin extracellular matrix, plays a critical role in tissue development and repair. Laminins are the major component of basement membrane and have diverse biological activities. We have identified various cell-adhesive peptides from laminins and their specific cell surface receptors. Polysaccharides, including chitosan, have been used as scaffolds, which regulate cellular functions for tissue engineering. We have developed laminin-derived active peptide-chitosan matrices as functional scaffolds. The biological activity of the peptides was enhanced when the peptides were conjugated to a chitosan matrix, suggesting that the peptide-chitosan matrix approach has an advantage for an active biomaterial. Further, the laminin peptide-chitosan matrices have the potential to mimic the basement membrane and are useful for tissue engineering as an artificial basement membrane.

  11. A sulfanyl-PEG derivative of relaxin-like peptide utilizable for the conjugation with KLH and the antibody production.

    Science.gov (United States)

    Katayama, Hidekazu; Mita, Masatoshi

    2016-08-15

    A small peptide-keyhole limpet hemocyanin (KLH) conjugate is generally used as an antigen for producing specific antibodies. However, preparation of a disulfide-rich heterodimeric peptide-KLH conjugates is difficult. In this study, we developed a novel method for preparation of the conjugate, and applied it to the production of specific antibodies against the relaxin-like gonad-stimulating peptide (RGP) from the starfish. In this method, a sulfanyl group necessary for the conjugation with KLH was site-specifically introduced to the peptide after regioselective disulfide bond formation reactions. Using the conjugate, we could obtain specific antibodies with a high antibody titer. This method might also be useful for the production of antibodies against other heterodimeric peptides with disulfide cross-linkages, such as vertebrate relaxins.

  12. Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes

    Science.gov (United States)

    2013-07-22

    change, (Good, 2000). In the case of MRSA, RNA polymerase σ⁷⁷ (encoded by gene rpoD) is a conserved prokaryotic factor essential for transcription...silencing technology to bacteria is the inefficient entry of PNAs into the targeted cell due to restrictions imposed by the bacterial membrane . Peptide...AMP and (RW)3, a linear hexameric peptide, both designed in our lab, interact with wall polymers and cause penetration of the cell membrane at sub

  13. Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome.

    Science.gov (United States)

    Washington, Arren Z; Benicewicz, Derek B; Canzoneri, Joshua C; Fagan, Crystal E; Mwakwari, Sandra C; Maehigashi, Tatsuya; Dunham, Christine M; Oyelere, Adegboyega K

    2014-11-21

    Despite decades of research on the bacterial ribosome, the ribosomal exit tunnel is still poorly understood. Although it has been suggested that the exit tunnel is simply a convenient route of egress for the nascent chain, specific protein sequences serve to slow the rate of translation, suggesting some degree of interaction between the nascent peptide chain and the exit tunnel. To understand how the ribosome interacts with nascent peptide sequences, we synthesized and characterized a novel class of probe molecules. These peptide-macrolide (or "peptolide") conjugates were designed to present unique peptide sequences to the exit tunnel. Biochemical and X-ray structural analyses of the interactions between these probes and the ribosome reveal interesting insights about the exit tunnel. Using translation inhibition and RNA structure probing assays, we find the exit tunnel has a relaxed preference for the directionality (N → C or C → N orientation) of the nascent peptides. Moreover, the X-ray crystal structure of one peptolide derived from a positively charged, reverse Nuclear Localization Sequence peptide, bound to the 70S bacterial ribosome, reveals that the macrolide ring of the peptolide binds in the same position as other macrolides. However, the peptide tail folds over the macrolide ring, oriented toward the peptidyl transferase center and interacting in a novel manner with 23S rRNA residue C2442 and His69 of ribosomal protein L4. These data suggest that these peptolides are viable probes for interrogating nascent peptide-exit tunnel interaction.

  14. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    Science.gov (United States)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  15. New peptide-phospholipid conjugate useful for treating or preventing atherosclerosis in subject

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides a peptide-phospholipid conjugate of Formula 1 wherein: X is selected from the group consisting of -CR1R2-, -NR3-, -O-, -S-, and -S+(R3)-; Y is selected from the group consisting of a bond, alkyl, alkenyl, alkynyl, haloalkyl, alkoxyalkyl, hydroxyalkyl, amino, ether...

  16. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    Science.gov (United States)

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  17. Conjugation with Cationic Cell-Penetrating Peptide Increases Pulmonary Absorption of Insulin

    OpenAIRE

    Patel, Leena N.; Wang, Jeffrey; Kim, Kwang-Jin; Borok, Zea; Crandall, Edward; Shen, Wei-Chiang

    2009-01-01

    In this study, we determined if cell-penetrating peptides (CPPs) can be used to enhance the absorption rate of insulin (INS) across the alveolar epithelial barrier. Using a heterobifuctional crosslinker, INS was conjugated to a series of cationic CPPs, including Tat peptide, oligoarginine (r9) or oligolysine (k9), via disulfide bridge to a D-isoform cysteine (c) present at the N-terminal of the peptide sequence, yielding INS-cTat, INS-cr9, and INS-ck9, respectively. SDS-PAGE and MALDI-TOF mas...

  18. Parallel synthesis of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy.

    Science.gov (United States)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A; Williams, Donna L; Deuss, Peter; Gait, Michael J

    2015-02-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO as cargo with both C- and N-termini unfunctionalized. The synthetic methods involve conjugation in solution phase, followed by rapid purification via biotin-streptavidin immobilization and subsequent reductive release into solution, avoiding the need for painstaking high-performance liquid chromatography purifications. The synthesis methods were applied for screening of PMO conjugates of a 16-member library of variants of a 10-residue ApoE peptide, which was suggested for blood-brain barrier crossing. In this work the conjugate library was tested in an exon skipping assay using skeletal mouse mdx cells, a model of Duchene's muscular dystrophy where higher activity peptide-PMO conjugates were identified compared with the starting peptide-PMO. The results demonstrate the power of the parallel synthesis methods for increasing the speed of optimization of peptide sequences in conjugates of PMO for therapeutic screening.

  19. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering.

    Science.gov (United States)

    Koh, Ming Liang; FitzGerald, Paul A; Warr, Gregory G; Jolliffe, Katrina A; Perrier, Sébastien

    2016-12-19

    We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell.

  20. Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature.

    Science.gov (United States)

    Mukhopadhyay, Sumitra; Barnés, Carmen M; Haskel, Ariel; Short, Sarah M; Barnes, Katie R; Lippard, Stephen J

    2008-01-01

    The integrins alpha vbeta3 and alpha vbeta5 and the membrane-spanning surface protein aminopeptidase N (APN) are highly expressed in tumor-induced angiogenesis, making them attractive targets for therapeutic intervention. Both integrins and APN recognize a broad range of peptides containing RGD (Arg-Gly-Asp) and NGR (Asn-Gly-Arg) motifs, respectively. Here, we describe the design, synthesis, and characterization of a series of mono- and difunctionalized platinum(IV) complexes in which a conjugated peptide motif, containing RGD, (CRGDC)c, (RGDfK)c, or NGR, is appended as a "tumor-homing device" to target tumor endothelial cells selectively over healthy cells. Platinum(IV)-peptide complexes with nonspecific amino acids or peptide moieties were prepared as controls. Concentration-response curves of these compounds were evaluated against primary proliferating endothelial cells and tumor cell lines and compared to those of cisplatin, a well-described platinum-based chemotherapeutic agent. The Pt(IV)-RGD conjugates were highly and specifically cytotoxic to cell lines containing alpha vbeta3 and alpha vbeta5, approaching the activity of cisplatin. The Pt(IV)-NGR complexes were less active than Pt(IV)-RGD-containing compounds but more active than nonspecific Pt-peptide controls. Integrin alpha vbeta3 mediated, at least in part, the anti-proliferative effect of a Pt(IV)-RGD conjugate, as demonstrated by a decreased inhibitory response when endothelial cells were either (1) incubated with an excess of alpha vbeta3/alpha vbeta5-specific RGD pentapeptides or (2) transfected with RNAi for beta 3, but not beta 1, integrins. These results suggest a rational approach to improved chemotherapy with Pt(IV)-peptide conjugates by selective drug delivery to the tumor compartment.

  1. Peptide Conjugation to a Polymer Coating via Native Chemical Ligation of Azlactones for Cell Culture.

    Science.gov (United States)

    Schmitt, Samantha K; Trebatoski, David J; Krutty, John D; Xie, Angela W; Rollins, Benjamin; Murphy, William L; Gopalan, Padma

    2016-03-14

    Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.

  2. Effect of Fatty Acid Conjugation on Antimicrobial Peptide Activity

    Science.gov (United States)

    2004-12-01

    killing mechanism of antimicrobial peptides makes them an interesting alternative to traditional antibiotics, as target bacteria may be less able...C14-AKK and C16-AKK to within a 7% error are 220 and 16mM respectively. Since amphipathicity is requisite for antimicrobial action KAK is not...Schnaare, 2000: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrobial Agents

  3. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes.

    Science.gov (United States)

    Blunden, Bianca M; Chapman, Robert; Danial, Maarten; Lu, Hongxu; Jolliffe, Katrina A; Perrier, Sébastien; Stenzel, Martina H

    2014-09-26

    We show for the first time how polymeric nanotubes (NTs) based on self-assembled conjugates of polymers and cyclic peptides can be used as an efficient drug carrier. RAPTA-C, a ruthenium-based anticancer drug, was conjugated to a statistical co-polymer based on poly(2-hydroxyethyl acrylate) (pHEA) and poly(2-chloroethyl methacrylate) (pCEMA), which formed the shell of the NTs. Self-assembly into nanotubes (length 200-500 nm) led to structures exhibiting high activity against cancer cells.

  4. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    Science.gov (United States)

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-04

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Preparation and biological activity of quaternized carboxymethyl chitosan conjugated with collagen peptide.

    Science.gov (United States)

    Zhu, Xiaoming; Zhou, Xiaoyu; Yi, Jiayan; Tong, Jun; Wu, Huan; Fan, Lihong

    2014-09-01

    Tissue repair is a spontaneous process which initiated on wounding. If this complex mechanism is disturbed or impaired, the use of biomaterials might increase the chance of successful healing. In this view, a water-soluble chitosan derivative, quaternized carboxymethyl chitosan (QCMC) was prepared and collagen peptides (COPs) were grafted to the backbone by carbodiimide method. The reaction conditions affecting the degree of substitution (DS) were studied including the mass ratio of collagen peptide to QCMC, reaction temperature and reaction time. The hydrogen peroxide-scavenging activity could be different by changing the DS, concentration and molecular weight. MTT assay was used to investigate the cell viability of the derivative. The results indicated that the introduction of collagen peptide into the QCMC improved its hydrogen peroxide-scavenging activity and cell viability with the DS and concentration increased. Therefore, QCMC conjugated with collagen peptides may prove beneficial to the process of the wound-healing.

  6. A Minimalist Substrate for Enzymatic Peptide and Protein Conjugation

    Science.gov (United States)

    Wollack, James W.; Silverman, Julie M.; Petzold, Christopher J.; Mougous, Joseph D.; Distefano, Mark D.

    2010-01-01

    Recently a number of non-natural prenyl groups containing alkynes and azides have been developed as handles to perform click chemistry on proteins and peptides ending in the sequence “CAAX”, where C is a cysteine that becomes alkylated, A is an aliphatic amino acid and X is any amino acid. When such molecules are modified, a tag containing a prenyl analog and the “CAAX box” sequence remains. Here we report the synthesis of an alkyne-containing substrate comprised of only nine non-hydrogen atoms. This substrate was synthesized in six steps from 3-methyl-2-buten-1-ol and has been enzymatically incorporated into both proteins and peptides using protein farnesyltransferase. After prenylation the final three amino acids required for enzymatic recognition can be removed using carboxypeptidase Y, leaving a single residue (the cysteine from the “CAAX box”) and the prenyl analog as the only modifications. We also demonstrate that this small tag minimizes the impact of the modification on the solubility of the targeted protein. Hence, this new approach should be useful for applications in which the presence of a large tag hinders the modified protein's solubility, reactivity or utility. PMID:19856367

  7. Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, Makoto [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan)], E-mail: m0720347@md.tsukuba.ac.jp; Yamamto, Tetsuya; Nakai, Kei [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan); Aburai, Kenichi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (Japan); Kawatobi, Sho [Faculty of Pharmaceutical Sciences, Toho University (Japan); Tsurubuchi, Takao; Yamamoto, Yohei [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan); Yokoyama, Yuusaku; Okuno, Hiroaki [Faculty of Pharmaceutical Sciences, Toho University (Japan); Matsumura, Akira [Department of Graduate School of Comprehensive Human Sciences, Faculty of Functional and Regulatory Medical Sciences, University of Tsukuba (Japan)

    2009-07-15

    We aimed at securing sufficient concentrations of {sup 10}B in boron neutron capture therapy (BNCT) by developing a new drug delivery system. We have designed and developed a novel lipid analog and succeeded in using it to develop the new boron component liposome. It consisted of three different kinds of amino acid derivatives and two fatty acids, and could react directly with the peptide synthesized first on resin by Fmoc solid-phase synthesis. In this study, lipid analog conjugated with HIV-TAT peptide (domain of human immunodeficiency virus TAT protein) and boronophenylalanine (BPA) was synthesized and successfully incorporated into liposomes.

  8. Synthesis and evaluation of the biostability and cell compatibility of novel conjugates of nucleobase, peptidic epitope, and saccharide

    Directory of Open Access Journals (Sweden)

    Dan Yuan

    2015-08-01

    Full Text Available This article reports the synthesis of a new class of conjugates containing a nucleobase, a peptidic epitope, and a saccharide and the evalution of their gelation, biostability, and cell compatibility. We demonstrate a facile synthetic process, based on solid-phase peptide synthesis of nucleopeptides, to connect a saccharide with the nucleopeptides for producing the target conjugates. All the conjugates themselves (1–8 display excellent solubility in water without forming hydrogels. However, a mixture of 5 and 8 self-assembles to form nanofibers and results in a supramolecular hydrogel. The proteolytic stabilities of the conjugates depend on the functional peptidic epitopes. We found that TTPV is proteolytic resistant and LGFNI is susceptible to proteolysis. In addition, all the conjugates are compatible to the mammalian cells tested.

  9. Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

    OpenAIRE

    Luo, Tianzhi; Kiick, Kristi L.

    2013-01-01

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress...

  10. Purification of noncoding RNA and bound proteins using FLAG peptide-conjugated antisense-oligonucleotides.

    Science.gov (United States)

    Adachi, Shungo; Natsume, Tohru

    2015-01-01

    To understand the function of certain RNAs, including noncoding RNAs, it is important to identify the proteins that interact with the RNAs. Here we describe the method for purification of ribonucleoprotein (RNP) complexes composed of specific cellular RNAs by pull-down with FLAG peptide-conjugated antisense oligonucleotide (ASO). Using this method, we identified a novel protein component of U7 snRNP complex.

  11. Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide

    Directory of Open Access Journals (Sweden)

    Nobuo Kimizuka

    2011-08-01

    Full Text Available Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7 via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.

  12. Biological characterization of novel nitroimidazole-peptide conjugates in vitro and in vivo.

    Science.gov (United States)

    Bergmann, Ralf; Splith, Katrin; Pietzsch, Jens; Bachmann, Michael; Neundorf, Ines

    2017-07-01

    Recently, we reported on the design of a multimodal peptide conjugate useful as delivery platform for targeting hypoxic cells. A nitroimidazole (2-(2-nitroimidazol-1-yl)acetic acid, NIA) moiety, which is selectively entrapped in hypoxic cells, was coupled to a cell-penetrating peptide serving as the transporter. Furthermore, attachment of a bifunctional linker allowed the introduction of a diagnostic or therapeutic radiometal. However, although selective tumor accumulation could be detected in vivo, a fast renal clearance of the compound was observed. The present study aims to improve the system by using the more proteolytically stable all-d version of the peptide carrier (DsC18), by attaching two NIA moieties instead of one (DsC18(NIA)2 ) to enhance the tumor uptake, and by incorporating the bifunctional chelator NODAGA instead of DOTA (NODAGA-DsC18(NIA)2 ) to optimize labeling chemistry. First, we characterized in vitro the novel all-d peptide compared with its parent l-version. Then, in order to investigate and compare the pharmacological profiles of the peptides, these were radiolabeled with (64) Cu(II) and (68) Ga(III) , and the biodistribution and kinetics were evaluated in vivo. Our results show the versatility of the d-peptide as cell-penetrating peptide and transporter. However, attaching two NIA groups modified the system in such a way that no selective tumor uptake could be observed compared with the peptide without NIA moieties. Still, this work highlights new pharmacokinetic data on the biodistribution of such compounds in vivo. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  13. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting...... splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...

  14. Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide.

    Science.gov (United States)

    Fränzel, Benjamin; Frese, Christian; Penkova, Maya; Metzler-Nolte, Nils; Bandow, Julia E; Wolters, Dirk Andreas

    2010-11-01

    Multiresistant bacteria are becoming more and more widespread. It is therefore necessary to have new compound groups in hand, such as small cationic peptides, to cope with these challenges. In this work, we present a comprehensive approach by monitoring protein expression profiles in a gram-positive bacterium (Corynebacterium glutamicum) to investigate the cellular response to such a compound, a ferrocene-conjugated arginine- and tryptophan-rich pentapeptide. To achieve this, a proteomic outline was performed where the compound-treated sample was compared with an untreated control. This study comprises more than 900 protein identifications, including numerous integral membrane proteins, and among these 185 differential expressions. Surprisingly, unregulated catalase and no elevated H(2)O(2) levels demonstrate that no oxidative stress occurs after treatment with the iron-containing compound as a consequence of the potential Fenton reaction. A sufficient iron supply is evidenced by the iron-containing protein aconitase and SufB (the latter belongs to an iron-sulfur cluster assembly system) and decreased levels of ATP-binding-cassette-type cobalamin/Fe(3+) siderophore transporters. The organometallic peptide antibiotic targets the cell membrane, which is evident by decreased levels of various integral membrane proteins, such as peptide permeases and transporters, and an altered lipid composition. Conversion to a more rigid cell membrane seems to be a relevant protective strategy of C. glutamicum against the ferrocene-conjugated antimicrobial peptide compound.

  15. FITC Conjugation Markedly Enhances Hepatic Clearance of N-Formyl Peptides.

    Science.gov (United States)

    Øie, Cristina Ionica; Snapkov, Igor; Elvevold, Kjetil; Sveinbjørnsson, Baldur; Smedsrød, Bård

    2016-01-01

    In both septic and aseptic inflammation, N-formyl peptides may enter the circulation and induce a systemic inflammatory response syndrome similar to that observed during septic shock. The inflammatory response is brought about by the binding of N-formyl peptide to formyl peptide receptors (FPRs), specific signaling receptors expressed on myeloid as well as non-myeloid cells involved in the inflammatory process. N-formyl peptides conjugated with fluorochromes, such as fluorescein isothiocyanate (FITC) are increasingly experimentally used to identify tissues involved in inflammation. Hypothesizing that the process of FITC-conjugation may transfer formyl peptide to a ligand that is efficiently cleared from the circulation by the natural powerful hepatic scavenging regime we studied the biodistribution of intravenously administered FITC-fNLPNTL (Fluorescein-isothiocyanate- N-Formyl-Nle-Leu-Phe-Nle-Tyr-Lys) in mice. Our findings can be summarized as follows: i) In contrast to unconjugated fNLPNTL, FITC-fNLPNTL was rapidly taken up in the liver; ii) Mouse and human liver sinusoidal endothelial cells (LSECs) and hepatocytes express formyl peptide receptor 1 (FRP1) on both mRNA (PCR) and protein (Western blot) levels; iii) Immunohistochemistry showed that mouse and human liver sections expressed FRP1 in LSECs and hepatocytes; and iv) Uptake of FITC-fNLPNTL could be largely blocked in mouse and human hepatocytes by surplus-unconjugated fNLPNTL, thereby suggesting that the hepatocytes in both species recognized FITC-fNLPNTL and fNLPNTL as indistinguishable ligands. This was in contrast to the mouse and human LSECs, in which the uptake of FITC-fNLPNTL was mediated by both FRP1 and a scavenger receptor, specifically expressed on LSECs. Based on these results we conclude that a significant proportion of FITC-fNLPNTL is taken up in LSECs via a scavenger receptor naturally expressed in these cells. This calls for great caution when using FITC-fNLPNTL and other chromogen-conjugated

  16. Inhibition of Growth and Gene Expression by PNA-peptide Conjugates in Streptococcus pyogenes

    Science.gov (United States)

    Patenge, Nadja; Pappesch, Roberto; Krawack, Franziska; Walda, Claudia; Mraheil, Mobarak Abu; Jacob, Anette; Hain, Torsten; Kreikemeyer, Bernd

    2013-01-01

    While Streptococcus pyogenes is consistently susceptible toward penicillin, therapeutic failure of penicillin treatment has been reported repeatedly and a considerable number of patients exhibit allergic reactions to this substance. At the same time, streptococcal resistance to alternative antibiotics, e.g., macrolides, has increased. Taken together, these facts demand the development of novel therapeutic strategies. In this study, S. pyogenes growth was inhibited by application of peptide-conjugated antisense-peptide nucleic acids (PNAs) specific for the essential gyrase A gene (gyrA). Thereby, HIV-1 Tat peptide-coupled PNAs were more efficient inhibitors of streptococcal growth as compared with (KFF)3K-coupled PNAs. Peptide-anti-gyrA PNAs decreased the abundance of gyrA transcripts in S. pyogenes. Growth inhibition by antisense interference was enhanced by combination of peptide-coupled PNAs with protein-level inhibitors. Antimicrobial synergy could be detected with levofloxacin and novobiocin, targeting the gyrase enzyme, and with spectinomycin, impeding ribosomal function. The prospective application of carrier peptide-coupled antisense PNAs in S. pyogenes covers the use as an antimicrobial agent and the employment as a knock-down strategy for the investigation of virulence factor function. PMID:24193033

  17. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    (antisense activity) is still limited by endocytotic entrapment. We have shown that this low bioavailability can be greatly improved by combining CPP-PNA conjugate administration with a photochemical internalization technique using photosensitizers such as aluminum phthalocyanine (AlPcS(2a...

  18. A bicomponent Plasmodium falciparum investigational vaccine composed of protein-peptide conjugates.

    Science.gov (United States)

    Kubler-Kielb, Joanna; Majadly, Fathy; Biesova, Zuzana; Mocca, Christopher P; Guo, Chunyan; Nussenzweig, Ruth; Nussenzweig, Victor; Mishra, Satish; Wu, Yimin; Miller, Louis H; Keith, Jerry M; Liu, Teh-Yung; Robbins, John B; Schneerson, Rachel

    2010-01-19

    There is yet no licensed vaccine against malaria, a serious human disease affecting mostly children, with an annual death rate of about one million. Plasmodia, the malaria-causing parasites, have two obligatory hosts: mammals or birds, in which they multiply asexually, and mosquitoes with sexual multiplication. The most common and serious type of malaria is caused by Plasmodium falciparum. The circumsporozoite protein (CSP), a major surface antigen of sporozoites, is a protective antigen. A unique feature of P. falciparum CSP is its large central domain composed of over 30 tetrapeptide repeats of Asn-Ala-Asn-Pro (NANP). Several NANP peptide-protein conjugates were tested clinically but elicited a low level of CSP antibodies for a short duration. To provide a CSP-based candidate vaccine, we investigated recombinant CSP and NANP conjugates of various peptide lengths, with different N-terminal amino acids, bound at different ratios to various carrier proteins. Injected into mice, CSP alone and CSP or NANP conjugates induced antibodies with booster responses and were positive by the sporozoite immunofluorescent assay. The use of the mosquito stage P. falciparum ookinete surface protein, Pfs25, cross-linked onto itself as a carrier for NANP, induced in mice high levels of uniquely long-lasting antibodies to both vaccine components with secondary biological activities, that will provide immunity to liver infection by sporozoites and block transmission by mosquitoes.

  19. Sequence selective recognition of double-stranded RNA at physiologically relevant conditions using PNA-peptide conjugates.

    Science.gov (United States)

    Muse, Oluwatoyosi; Zengeya, Thomas; Mwaura, Juddy; Hnedzko, Dziyana; McGee, Dennis W; Grewer, Christof T; Rozners, Eriks

    2013-08-16

    Conjugation of short peptide nucleic acids (PNA) with tetralysine peptides strongly enhanced triple helical binding to RNA at physiologically relevant conditions. The PNA hexamers and heptamers carrying cationic nucleobase and tetralysine modifications displayed high binding affinity for complementary double-stranded RNA without compromising sequence selectivity. The PNA-peptide conjugates had unique preference for binding double-stranded RNA, while having little, if any, affinity for double-stranded DNA. The cationic PNAs were efficiently taken up by HEK293 cells, whereas little uptake was observed for unmodified PNA.

  20. Effect of different hapten-carrier conjugation ratios and molecular orientations on antibody affinity against a peptide antigen

    DEFF Research Database (Denmark)

    Pedersen, M. K.; Sørensen, Nanna Skall; Heegaard, Peter M. H.;

    2006-01-01

    -based assay systems and in deciding whether a vaccine-induced antibody response will be protective. With ovalbumin as a carrier protein and a peptide (7.2NY) representing a 19 ammo acid sequence from the E. coli-derived Verotoxin 2e as a model hapten we investigated whether it was possible to influence...... the affinity and titre of antibodies raised against the hapten using different conjugation ratios and orientations. The peptide was coupled to ovalbumin in four Conjugation ratios and two molecular orientations - terminal and central - and the Conjugates were verified by mass spectrometry. Mice were immunised......, the molecular orientation of the Coupled peptide has a major effect on the anti-peptide antibody titres induced....

  1. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal

    2015-01-01

    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  2. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  3. Influence of bombesin, CCK, secretin and CRF on corticosterone concentration in the rat.

    Science.gov (United States)

    Sander, L D; Porter, J R

    1988-01-01

    The ingestion of food increases adrenoglucocorticoid secretion in humans and rats and influences the circadian periodicity of ACTH and corticosterone in rats fed on restricted schedules. The purpose of this study was to determine the influence of the brain-gut polypeptides CCK33 (10 U/kg), bombesin (10 micrograms/kg) and secretin (10 U/kg) on corticosterone concentrations in fed rats. The responses were compared to that of CRF (1 micrograms/kg). All experiments were begun at 10 a.m., 3 hours after the lights came on. The rats were given single, IP injections of peptide or vehicle (1 ml/kg) then sacrificed 0, 5, 10, 15, 30 or 60 minutes later. Corticosterone was measured fluorometrically. The control injection (vehicle) alone caused a mild stress response with corticosterone levels peaking between 10 and 15 minutes after the injection then returning to baseline. Both CCK33 and bombesin significantly increased corticosterone to approximately 2.5-fold above the control level in a fashion similar to that of CRF. In all three instances corticosterone levels peaked at 30 minutes post-injection. Secretin had no effect on corticosterone secretion. None of the peptides tested stimulated in vitro corticosterone output from isolated adrenal cells. These findings indicate that both CCK and bombesin cause pituitary-adrenal activation which may be related to the response of this system to food ingestion.

  4. Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid

    Directory of Open Access Journals (Sweden)

    Buddhadev Layek

    2015-12-01

    Full Text Available Gene therapy is an emerging therapeutic strategy for the cure or treatment of a spectrum of genetic disorders. Nevertheless, advances in gene therapy are immensely reliant upon design of an efficient gene carrier that can deliver genetic cargoes into the desired cell populations. Among various nonviral gene delivery systems, chitosan-based carriers have gained increasing attention because of their high cationic charge density, excellent biocompatibility, nearly nonexistent cytotoxicity, negligible immune response, and ideal ability to undergo chemical conjugation. However, a major shortcoming of chitosan-based carriers is their poor cellular uptake, leading to inadequate transfection efficiency. The intrinsic feature of cell penetrating peptides (CPPs for transporting diverse cargoes into multiple cell and tissue types in a safe manner suggests that they can be conjugated to chitosan for improving its transfection efficiency. In this review, we briefly discuss CPPs and their classification, and also the major mechanisms contributing to the cellular uptake of CPPs and cargo conjugates. We also discuss immense improvements for the delivery of nucleic acids using CPP-conjugated chitosan-based carriers with special emphasis on plasmid DNA and small interfering RNA.

  5. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus.

    Science.gov (United States)

    Lee, Kelly K; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-12-09

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens.

  6. Capturing a Fusion Intermediate of Influenza Hemagglutinin with a Cholesterol-conjugated Peptide, a New Antiviral Strategy for Influenza Virus*

    Science.gov (United States)

    Lee, Kelly K.; Pessi, Antonello; Gui, Long; Santoprete, Alessia; Talekar, Aparna; Moscona, Anne; Porotto, Matteo

    2011-01-01

    We previously described fusion-inhibitory peptides that are targeted to the cell membrane by cholesterol conjugation and potently inhibit enveloped viruses that fuse at the cell surface, including HIV, parainfluenza, and henipaviruses. However, for viruses that fuse inside of intracellular compartments, fusion-inhibitory peptides have exhibited very low antiviral activity. We propose that for these viruses, too, membrane targeting via cholesterol conjugation may yield potent compounds. Here we compare the activity of fusion-inhibitory peptides derived from the influenza hemagglutinin (HA) and show that although the unconjugated peptides are inactive, the cholesterol-conjugated compounds are effective inhibitors of infectivity and membrane fusion. We hypothesize that the cholesterol moiety, by localizing the peptides to the target cell membrane, allows the peptides to follow the virus to the intracellular site of fusion. The cholesterol-conjugated peptides trap HA in a transient intermediate state after fusion is triggered but before completion of the refolding steps that drive the merging of the viral and cellular membranes. These results provide proof of concept for an antiviral strategy that is applicable to intracellularly fusing viruses, including known and emerging viral pathogens. PMID:21994935

  7. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    Science.gov (United States)

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-08-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, "real-time" DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated.

  8. Antibacterial Peptide Nucleic Acid-Antimicrobial Peptide (PNA-AMP) Conjugates

    DEFF Research Database (Denmark)

    Hansen, Anna Mette; Bonke, Gitte; Larsen, Camilla Josephine

    2016-01-01

    Antisense peptide nucleic acid (PNA) oligomers constitute a novel class of potential antibiotics that inhibit bacterial growth via specific knockdown of essential gene expression. However, discovery of efficient, nontoxic delivery vehicles for such PNA oligomers has remained a challenge. In the p...

  9. Molecular markers derived from bombesin for tumor diagnosis by SPECT and PET; Marcadores moleculares derivados da bombesina para diagnostico de tumores por SPECT e PET

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2012-07-01

    A high number of molecules have already been identified to have high affinity to some receptors overexpressed on tumour cells and the radiolabelling of those molecules offers the possibility of new compounds for tumour diagnosis and therapy by nuclear medicine. Among of those molecules, bombesin (BBN) has become focus of interest, as its BB{sub 2} receptors are known to be overexpressed in prostate, breast, colon, pancreatic and lung tumour, as long as glioblastomas and neuroblastomas. BBN agonists and antagonists have already been described for this purpose and promising results were obtained in preclinical studies. However, most of them exhibited high abdominal accumulation, especially in pancreas and intestines, which can compromise diagnosis accuracy and cause serious adverse effects in therapy. In this context, the goal of the present work to radiolabel new BBN derivatives with {sup 11}1In and {sup 68}Ga and to evaluate their potential for BB{sub 2} positive tumors diagnosis by single photon emission tomography (SPECT) and positron emission tomography (PET). The structure of studied peptides was Q-YG{sub n}-BBN(6-14), where Q is the chelator, n is the number of glycine aminoacids in the spacer YG{sub n} and BBN(6-14) is the original bombesin sequence from the aminoacid 6 to 14. The derivative in which the last aminoacid (methionine, Met) was replaced by norleucine (Nle) was also evaluated. The experimental evaluation of the bombesin derivatives was divided into four steps: computational studies, molecular markers for SPECT, molecular markers for PET and toxicological studies. The theoretical partition (log P) and distribution (log D) coefficients were calculated for all bombesin derivatives conjugated to DTPA (diethylenetriaminepentaacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators applying computational programmes. Bombesin derivatives for SPECT were developed by radiolabelling DTPA-conjugated bombesin derivatives with

  10. PREPARATION OF CHEMICAL AND PHYSICAL CONJUGATES OF SELF-ASSEMBLING NANOPARTICLES WITH CELL-PENETRATING PEPTIDE AND DOXORUBICIN

    Directory of Open Access Journals (Sweden)

    Zhadyra Sagykyzy Shagyrova

    2015-09-01

    Full Text Available Abstract: Nano-sized carriers can help to reduce toxicity and improve clinical efficacy of drugs. Virus-like particles (VLPs are biocompatible and biodegradable self-assembling nanoparticles, which show great promise as carriers for substances for targeted delivery and controlled release. Either chemical conjugation of physical incorporation without formation of covalent bonds is possible to load substances of interest into VLPs.Objectives: To produce VLPs from recombinant viral capsid protein (HBcAg and test feasibility of methods of formation of chemical and physical conjugates of VLPs with substances of pharmacological interest.Methods: Virus-like particles composed from recombinant hepatitis B core antigen (HBcAg were produced by recombinant expression in E.coli and purified by successive centrifugation through sucrose gradients. Peptide transportan 10 was synthesized and used for carbodiimide (EDC-mediated conjugation to VLPs. Doxorubicin (DOX was loaded into the nucleic acid-containing VLPs to form physical conjugate.Results: VLPs with chemically attached moieties of cell-penetrating peptide transportan 10 were produced. The conjugate was examined in SDS-PAGE to confirm presence of conjugation products. Conjugation efficiency (molar ration peptide/protein in the conjugate reaches 0.5:1 (i.e. 50% of protein chains have one attached peptide moiety. The nucleic acid-containing VLPs can be loaded with the DOX forming stable non-covalent physical conjugate.Conclusion: Recombinantly expressed VLPs allow easy attaching of small molecules making them a convenient platform to develop drug carriers.

  11. Smart silver nanoparticles: borrowing selectivity from conjugated polymers or antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Lihong Liu

    2014-06-01

    Full Text Available Silver nanoparticles (AgNPs as novel antimicrobial agents are gaining tremendous exploration in various medical fields due to their broad spectrum activity, efficacy and low cost. The major problem associated with the AgNPs treatment is their narrow therapeutic window. To address this inherent shortcoming, significant efforts have been dedicated to reduce AgNPs cell toxicity and improve their therapeutic index. In this brief review, the emphasis would be placed on development of the combined mechanisms which can enhance the antimicrobial action of AgNPs, arising from investigating the biological differences between microbial and mammalian cells. Using one of our selected antimicrobial cell penetration peptide conjugated AgNPs as an example, we demonstrated that antimicrobial peptides (AMPs anchored AgNPs produced enhanced antimicrobial activities, possibly through multimodal mechanisms including selective binding to microorganisms and producing the intracellularly controlled Ag+ release, thus, improving the therapeutic index of AgNPs.

  12. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

    Directory of Open Access Journals (Sweden)

    Amanee D Salaam

    2014-07-01

    Full Text Available The field of nanomedicine has emerged as an approach to enhance the specificity and efficacy of cancer treatments as stand-alone therapies and in combination with standard chemotherapeutic treatment regimens. The current standard of care for metastatic cancer, doxorubicin (DOX, is presented with challenges, namely toxicity due to a lack of specificity and targeted delivery. Nano-enabled targeted drug delivery systems can provide an avenue to overcome these issues. Nanodiamonds (ND, in particular, have been researched over the past five years for use in various drug delivery systems but minimal work has been done that incorporates targeting capability. In this study, a novel targeted drug delivery system for bone metastatic prostate cancer was developed, characterized, and evaluated in vitro. NDs were conjugated with the Asp–Gly–Glu–Ala (DGEA peptide to target α2β1 integrins over-expressed in prostate cancers during metastasis. To facilitate drug delivery, DOX was adsorbed to the surface of the ND-DGEA conjugates. Successful preparation of the ND-DGEA conjugates and the ND-DGEA+DOX system was confirmed with transmission electron microscopy, hydrodynamic size, and zeta potential measurements. Since traditional DOX treatment regimens lack specificity and increased toxicity to normal tissues, the ND-DGEA conjugates were designed to distinguish between cells that overexpress α2β1 integrin, bone metastatic prostate cancers cells (PC3, and cells that do not, human mesenchymal stem cells (hMSC. Utilizing the ND-DGEA+DOX system, the efficacy of 1 µg/mL and 2 µg/mL DOX doses increased from 2.5% to 12% cell death and 11% to 34% cell death, respectively. These studies confirmed that the delivery and efficacy of DOX were enhanced by ND-DGEA conjugates. Thus, the targeted ND-DGEA+DOX system provides a novel approach for decreasing toxicity and drug doses.

  13. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Wang, Xuekun; Huang, Wenlong; Qian, Hai

    2015-07-28

    Compared with traditional therapeutics, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. In a previous study, we found that B1, an antimicrobial peptide derived from Cathelicidin-BF15, presented specific anti-tumor activity against several tumor cells. Since aliphatic chain-conjugated peptides have shown ameliorative activity and stability, we conjugated aliphatic acids with different lengths to the amino terminal of B1. All the conjugated peptides exhibited improved anti-tumor activity over B1. Further investigations revealed that the peptides were capable of disrupting the cell membrane, stimulating cytochrome c release into the cytosol, which results in apoptosis. The peptides also acted against multidrug resistant cells and had multidrug resistance-reversing effects. Additionally, conjugation of aliphatic acid enhanced the peptide stability in plasma. In summary, aliphatic acid-modified peptides might be promising anti-tumor agents in the future.

  14. A new strategy for specific imaging of neural cells based on peptide-conjugated gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Zhang E

    2015-03-01

    Full Text Available Enqi Zhang, Ailing Fu School of Pharmaceutical Sciences, Southwest University, Chongqing, People’s Republic of China Abstract: Despite the significant progress in molecular imaging technologies that has been made in recent years, the specific detection of neural cells still remains challenging. Here, we suggest the use of gold nanoclusters (AuNCs modified with a brain-targeting peptide as a potential imaging candidate for detecting neural cells in vitro and in mice. AuNCs of less than 10 nm (dynamic light scattering analysis were first prepared using the “green” synthetic approach, and then a targeting peptide, rabies virus glycoprotein derived peptide (RDP, was conjugated to the AuNCs for improving the efficiency and specificity of neural cell penetration. The conjugate’s mechanism of cellular attachment and entry into neural cells was suggested to be receptor-mediated endocytosis through clathrin-coated pits. Also, noninvasive imaging analysis and animal studies indicated that the RDP-modified nanoclusters could concentrate in the brain and locate in neural cells. This study suggests the feasibility of using targeting peptide-modified nanoclusters for noninvasive imaging brain cells in vivo. Keywords: RDP, targeted delivery, bioimaging, brain 

  15. Mitophagy induced by nanoparticle-peptide conjugates enabling an alternative intracellular trafficking route.

    Science.gov (United States)

    Zhang, Zhaolei; Zhou, Lei; Zhou, Yanqing; Liu, Jinyin; Xing, Xiaoyun; Zhong, Jun; Xu, Guoqiang; Kang, Zhenhui; Liu, Jian

    2015-10-01

    The intracellular behaviors of nanoparticles are fundamentally important for the evaluation of their biosafety and the designs of nano carrier-assisted drug delivery with high therapeutic efficacy. It is still in a great need to discover how functionalized nanoparticles are transported inside the cells, for instance, in a complicated fashion of translocation between different types of cell organelles. Here we report a new understanding of the interactions between nanoparticles and cells by the development of polyoxometalates nanoparticle-peptide conjugates and investigation of their intracellular trafficking behaviors. The as-prepared nanoparticles are featured with a unique combination of fluorescence and high contrast for synchrotron X-ray-based imaging. Functional surface modification with peptides facilitates effective delivery of the nanoparticles onto the target organelle (mitochondria) and subsequent intracellular trafficking in a dynamic mode. Interestingly, our experimental results have revealed that autophagy of mitochondria (mitophagy) can be induced by NP-peptide as a cellular response for recycling the damaged organelles, through molecular mediation associated with the change of mitochondrial membrane potential. The biological effects induced by NP-peptide reciprocally affect the distribution patterns and fates of nanoparticles in the cell metabolism by providing an alternative route of intracellular trafficking. The new understanding of the mutual activities between nanoparticles and cells will enrich our approaches in the development of nanobiotechnology and nano-medicine for disease treatments.

  16. Methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates.

    Science.gov (United States)

    Grob, Nathalie M; Behe, Martin; von Guggenberg, Elisabeth; Schibli, Roger; Mindt, Thomas L

    2017-01-01

    Radiolabelled peptides with high specificity and affinity towards receptors that are overexpressed by tumour cells are used in nuclear medicine for the diagnosis (imaging) and therapy of cancer. In some cases, the sequences of peptides under investigations contain methionine (Met), an amino acid prone to oxidation during radiolabelling procedures. The formation of oxidative side products can affect the purity of the final radiopharmaceutical product and/or impair its specificity and affinity towards the corresponding receptor. The replacement of Met with oxidation resistant amino acid analogues, for example, norleucine (Nle), can provide a solution. While this approach has been applied successfully to different radiolabelled peptides, a Met → Nle switch only preserves the length of the amino acid side chain important for hydrophobic interactions but not its hydrogen-bonding properties. We report here the use of methoxinine (Mox), a non-canonical amino acid that resembles more closely the electronic properties of Met in comparison to Nle. Specifically, we replaced Met(15) by Mox(15) and Nle(15) in the binding sequence of a radiometal-labelled human gastrin derivative [d-Glu(10) ]HG(10-17), named MG11 (d-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ). A comparison of the physicochemical properties of (177) Lu-DOTA[X(15) ]MG11 (X = Met, Nle, Mox) in vitro (cell internalization/externalization properties, receptor affinity (IC50 ), blood plasma stability and logD) showed that Mox indeed represents a suitable, oxidation-stable amino acid substitute of Met in radiolabelled peptide conjugates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  17. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    Science.gov (United States)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm; Iversen, Frank; Liu, Zhuo; Thomsen, Karen; Pedersen, Michael; Skrydstrup, Troels; Nielsen, Niels Chr.; Ploug, Michael; Kjems, Jørgen

    2013-08-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery.Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific

  18. Synthesis and characterization of Bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI

    Science.gov (United States)

    Jafari, Atefeh; Salouti, Mojtaba; Farjami Shayesteh, Saber; Heidari, Zahra; Bitarafan Rajabi, Ahmad; Boustani, Komail; Nahardani, Ali

    2015-02-01

    The targeted delivery of superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent may facilitate their accumulation in cancer cells and enhance the sensitivity of MR imaging. In this study, SPIONs coated with dextran (DSPIONs) were conjugated with bombesin (BBN) to produce a targeting contrast agent for detection of breast cancer using MRI. X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer analyses indicated the formation of dextran-coated superparamagnetic iron oxide nanoparticles with an average size of 6.0 ± 0.5 nm. Fourier transform infrared spectroscopy confirmed the conjugation of the BBN with the DSPIONs. A stability study proved the high optical stability of DSPION-BBN in human blood serum. DSPION-BBN biocompatibility was confirmed by cytotoxicity evaluation. A binding study showed the targeting ability of DSPION-BBN to bind to T47D breast cancer cells overexpressing gastrin-releasing peptide (GRP) receptors. T2-weighted and T2*-weighted color map MR images were acquired. The MRI study indicated that the DSPION-BBN possessed good diagnostic ability as a GRP-specific contrast agent, with appropriate signal reduction in T2*-weighted color map MR images in mice with breast tumors.

  19. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    Science.gov (United States)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  20. Enhancement of intracellular concentration and biological activity of PNA after conjugation with a cell-penetrating synthetic model peptide.

    Science.gov (United States)

    Oehlke, Johannes; Wallukat, Gerd; Wolf, Yvonne; Ehrlich, Angelika; Wiesner, Burkhard; Berger, Hartmut; Bienert, Michael

    2004-07-01

    In order to evaluate the ability of the cell-penetrating alpha-helical amphipathic model peptide KLALKLALKALKAALKLA-NH(2) (MAP) to deliver peptide nucleic acids (PNAs) into mammalian cells, MAP was covalently linked to the 12-mer PNA 5'-GGAGCAGGAAAG-3' directed against the mRNA of the nociceptin/orphanin FQ receptor. The cellular uptake of both the naked PNA and its MAP-conjugate was studied by means of capillary electrophoresis combined with laser-induced fluorescence detection, confocal laser scanning microscopy and fluorescence-activated cell sorting. Incubation with the fluorescein-labelled PNA-peptide conjugate led to three- and eightfold higher intracellular concentrations in neonatal rat cardiomyocytes and CHO cells, respectively, than found after exposure of the cells to the naked PNA. Correspondingly, pretreatment of spontaneously-beating neonatal rat cardiomyocytes with the PNA-peptide conjugate and the naked PNA slowed down the positive chronotropic effect elicited by the neuropeptide nociceptin by 10- and twofold, respectively. The main reasons for the higher bioavailability of the PNA-peptide conjugate were found to be a more rapid cellular uptake in combination with a lowered re-export and resistance against influences of serum.

  1. Enhanced Peptide Stability Against Protease Digestion Induced by Intrinsic Factor Binding of a Vitamin B12 Conjugate of Exendin-4.

    Science.gov (United States)

    Bonaccorso, Ron L; Chepurny, Oleg G; Becker-Pauly, Christoph; Holz, George G; Doyle, Robert P

    2015-09-08

    Peptide digestion from proteases is a significant limitation in peptide therapeutic development. It has been hypothesized that the dietary pathway of vitamin B12 (B12) may be exploited in this area, but an open question is whether B12-peptide conjugates bound to the B12 gastric uptake protein intrinsic factor (IF) can provide any stability against proteases. Herein, we describe a new conjugate of B12 with the incretin peptide exendin 4 that demonstrates picomolar agonism of the glugacon-like peptide-1 receptor (GLP1-R). Stability studies reveal that Ex-4 is digested by pancreatic proteases trypsin and chymotrypsin and by the kidney endopeptidase meprin β. Prebinding the B12 conjugate to IF, however, resulted in up to a 4-fold greater activity of the B12-Ex-4 conjugate relative to Ex-4, when the IF-B12-Ex-4 complex was exposed to 22 μg/mL of trypsin, 2.3-fold greater activity when exposed to 1.25 μg/mL of chymotrypsin, and there was no decrease in function at up to 5 μg/mL of meprin β.

  2. PEGylation of {sup 99m}Tc-labeled bombesin analogues improves their pharmacokinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Daepp, Simone; Garayoa, Elisa Garcia [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Maes, Veronique; Brans, Luc; Tourwe, Dirk A. [Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels (Belgium); Mueller, Cristina [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Schibli, Roger, E-mail: roger.schibli@psi.ch [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland)

    2011-10-15

    Introduction: Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN{sub 2}/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with {sup 99m}Tc(CO){sub 3} and evaluated them in vitro and in vivo. Methods: Derivatization of a stabilized (N{sup {alpha}H}is)Ac-BN(7-14)[Cha{sup 13},Nle{sup 14}] analogue with linear PEG molecules of various sizes [5 kDa (PEG{sub 5}), 10 kDa (PEG{sub 10}) and 20 kDa (PEG{sub 20})] was performed by PEGylation of the {epsilon}-amino group of a {beta}{sup 3}hLys-{beta}Ala-{beta}Ala spacer between the stabilized BN sequence and the (N{sup {alpha}H}is)Ac chelator. The analogues were then radiolabeled by employing the {sup 99m}Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. Results: PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN{sub 2}/GRP receptors remained high (K{sub d}<0.9 nM). However, in vitro binding kinetics of the PEGylated analogues were slower. Steady-state condition was reached after 4 h, and the total cell binding was 10 times lower than that for the non-PEGylated counterpart. Besides, PEGylation improved the stability of BN conjugates in vitro and in vivo. The BN derivative conjugated with a PEG{sub 5} molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and

  3. Optimization, biological evaluation and microPET imaging of copper-64-labeled bombesin agonists, [{sup 64}Cu-NO2A-(X)-BBN(7-14)NH{sub 2}], in a prostate tumor xenografted mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Stephanie R., E-mail: srlf36@mail.missouri.ed [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Nanda, Prasanta [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Rold, Tammy L. [Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Sieckman, Gary L. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Figueroa, Said D. [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Hoffman, Timothy J. [Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); The Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Jurisson, Silvia S. [Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211 (United States); Smith, Charles J., E-mail: smithcj@health.missouri.ed [Department of Radiology, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States); Research Division, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); University of Missouri Research Reactor Center, University of Missouri-Columbia, Columbia, MO 65211 (United States); The Radiopharmaceutical Sciences Institute, University of Missouri-Columbia School of Medicine, Columbia, MO 65211 (United States)

    2010-10-15

    Gastrin-releasing peptide receptors (GRPr) are a member of the bombesin (BBN) receptor family. GRPr are expressed in high numbers on specific human cancers, including human prostate cancer. Therefore, copper-64 ({sup 64}Cu) radiolabeled BBN(7-14)NH{sub 2} conjugates could have potential for diagnosis of human prostate cancer via positron-emission tomography (PET). The aim of this study was to produce [{sup 64}Cu-NO2A-(X)-BBN(7-14)NH{sub 2}] conjugates for prostate cancer imaging, where X=pharmacokinetic modifier (beta-alanine, 5-aminovaleric acid, 6-aminohexanoic acid, 8-aminooctanoic acid, 9-aminonanoic acid or para-aminobenzoic acid) and NO2A=1,4,7-triazacyclononane-1,4-diacetic acid [a derivative of NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid)]. Methods: [(X)-BBN(7-14)NH{sub 2}] Conjugates were synthesized by solid-phase peptide synthesis (SPPS), after which NOTA was added via manual conjugation. The new peptide conjugates were radiolabeled with {sup 64}Cu radionuclide. The receptor-binding affinity was determined in human prostate PC-3 cells, and tumor-targeting efficacy was determined in PC-3 tumor-bearing severely combined immunodeficient (SCID) mice. Whole-body maximum intensity microPET/CT images of PC-3 tumor-bearing SCID mice were obtained 18 h postinjection (pi). Results: Competitive binding assays in PC-3 cells indicated high receptor-binding affinity for the [NO2A-(X)-BBN(7-14)NH{sub 2}] and [{sup nat}Cu-NO2A-(X)-BBN(7-14)NH{sub 2}] conjugates. In vivo biodistribution studies of the [{sup 64}Cu-NO2A-(X)-BBN(7-14)NH{sub 2}] conjugates at 1, 4 and 24 h pi showed very high uptake of the tracer in GRPr-positive tissue with little accumulation and retention in nontarget tissues. High-quality, high-contrast microPET images were obtained, with xenografted tumors being clearly visible at 18 h pi. Conclusions: NO2A chelator sufficiently stabilizes copper(II) radiometal under in vivo conditions, producing conjugates with very high uptake and retention in

  4. Melphalan Alone or Conjugated to a Follicle Stimulating Hormone-β Peptide Kills Murine Testicular Cells in vitro and Transiently Suppresses Murine Spermatogenesis in vivo

    OpenAIRE

    Amory, John K.; Hong, Sungwoo; Yu, Xiaozhong; Muller, Charles H; Faustman, Elaine; Goldstein, Alex

    2014-01-01

    New approaches to sterilizing male animals are needed to control captive and wild animal populations. We sought to develop a non-surgical method of permanent sterilization for male animals by administering the gonadotoxicant melphalan conjugated to peptides derived from the β-chain of follicle stimulating hormone (FSHβ). We hypothesized that conjugating melphalan to FSHβ peptides would magnify the gonadotoxic effects of melphalan while minimizing systemic toxicity. The ability of conjugates o...

  5. Peptide-oligonucleotide conjugates as nanoscale building blocks for assembly of an artificial three-helix protein mimic

    DEFF Research Database (Denmark)

    Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte Stahl;

    2016-01-01

    formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism...

  6. Parallel Synthesis of Cell-Penetrating Peptide Conjugates of PMO Toward Exon Skipping Enhancement in Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A.; Williams, Donna L.; Deuss, Peter; Gait, Michael J.

    2015-01-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the

  7. Parallel Synthesis of Cell-Penetrating Peptide Conjugates of PMO Toward Exon Skipping Enhancement in Duchenne Muscular Dystrophy

    NARCIS (Netherlands)

    O'Donovan, Liz; Okamoto, Itaru; Arzumanov, Andrey A.; Williams, Donna L.; Deuss, Peter; Gait, Michael J.

    2015-01-01

    We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELecti

  8. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    Science.gov (United States)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-09-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.

  9. Design and construction of novel molecular conjugates for signal amplification (I): conjugation of multiple horseradish peroxidase molecules to immunoglobulin via primary amines on lysine peptide chains.

    Science.gov (United States)

    Dhawan, Subhash

    2002-12-01

    Immunoconjugates are widely used for indirect detection of analytes (such as antibodies or antigens) in a variety of immunoassays. However, the availability of functional groups such as primary amines or free sulfhydryls in an immunoglobulin molecule is the limiting factor for optimal conjugation and, therefore, determines the sensitivity of an assay. In the present study, an N-terminal bromoacetylated 20 amino acid peptide containing 20 lysine residues was conjugated to N-succinimidyl-S-acetylthioacetate (SATA)-modified IgG or free sulfhydryl groups on 2-mercaptoethylamine (2-MEA)-reduced IgG molecules via a thioether (S[bond]CH(2)CONH) linkage to introduce multiple reactive primary amines per IgG. These primary amines were then covalently coupled with maleimide-activated horseradish peroxidase (HRP). The poly-HRP-antibody conjugates thus generated demonstrated greater than 15-fold signal amplification upon reaction with orthophenyldiamine substrate. The poly-HRP-antibody conjugates efficiently detected human immunodeficiency virus (HIV)-1 antibodies in plasma specimens with significantly higher sensitivity than conventionally prepared HRP-antibody conjugates in an HIV-1 solid-phase enzyme immunoassay and Western blot analysis. The signal amplification techniques reported here could have the potential for development of highly sensitive immunodiagnostic assay systems.

  10. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles

    Science.gov (United States)

    Skaat, Hadas; Shafir, Gilead; Margel, Shlomo

    2011-08-01

    The formation of amyloid aggregates by association of peptides into ordered structures is hallmark of certain neurodegenerative disorders. Exploring the effect of specific nanoparticles on the formation of amyloid fibrils may contribute toward a mechanistic understanding of the aggregation processes, leading to design nanoparticles that modulate the formation of toxic amyloid plaques. Uniform maghemite (γ-Fe2O3) magnetic nanoparticles, containing fluorescein covalently encapsulated within (F-γ-Fe2O3), were prepared. These F-γ-Fe2O3 nanoparticles of 14.0 ± 4.0 nm were then coated with human serum albumin (HSA) via a precipitation process. Covalent conjugation of the spacer arm succinimidyl polyethylene glycol succinimidyl ester (NHS-PEG-NHS) to the F-γ-Fe2O3 HSA nanoparticles was then accomplished by interacting the primary amine groups of the HSA coating with excess NHS-PEG-NHS molecules. Covalent conjugation of the peptides amyloid-β 40 (Aβ40) or Leu-Pro-Phe-Phe-Asp (LPFFD) onto the surface of the former fluorescent nanoparticles was then performed, by interacting the terminal activated NHS groups of the PEG derivatized F-γ-Fe2O3 HSA nanoparticles with primary amino groups of the peptides. Kinetics of the Aβ40 fibrillation process in the absence and presence of varying concentrations of the Aβ40 or LPFFD conjugated nanoparticles were also elucidated. The non-peptide conjugated fluorescent nanoparticles do not affect the Aβ40 fibrillation process significantly. However, the Aβ40-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-Aβ40) accelerate the fibrillation process while the LPFFD-conjugated nanoparticles (F-γ-Fe2O3 HSA-PEG-LPFFD) inhibit it. By applying MRI and fluorescence imaging techniques simultaneously these bioactive fluorescent magnetic iron oxide nanoparticles can be used as an efficient tool to study and control the Aβ40 amyloid fibril formation process.

  11. Concise site-specific synthesis of DTPA-peptide conjugates: application to imaging probes for the chemokine receptor CXCR4.

    Science.gov (United States)

    Masuda, Ryo; Oishi, Shinya; Ohno, Hiroaki; Kimura, Hiroyuki; Saji, Hideo; Fujii, Nobutaka

    2011-05-15

    Diethylenetriaminepentaacetic acid (DTPA) is a useful chelating agent for radionuclides such as (68)Ga, (99m)Tc and (111)In, which are applicable to nuclear medicine imaging. In this study, we established a facile synthetic protocol for the production of mono-DTPA-conjugated peptide probes. A novel monoreactive DTPA precursor reagent was synthesized in two steps using the chemistry of the o-nitrobenzenesulfonyl (Ns) protecting group, and under mild conditions this DTPA precursor was incorporated onto an N(ε)-bromoacetylated Lys of a protected peptide resin. The site-specific DTPA conjugation was facilitated by using a highly acid-labile 4-methyltrityl (Mtt) protecting group for the target site of the bioactive peptide during the solid-phase synthesis. A combination of both techniques yielded peptides with disulfide bonds, such as octreotide and polyphemusin II-derived CXCR4 antagonists. DTPA-peptide conjugates were purified in a single step following cleavage from the resin and disulfide bond formation. This site-specific on-resin construction strategy was used for the design and synthesis of a novel In-DTPA-labeled CXCR4 antagonist, which exhibited highly potent inhibitory activity against SDF-1-CXCR4 binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Deferasirox-TAT(47-57) peptide conjugate as a water soluble, bifunctional iron chelator with potential use in neuromedicine.

    Science.gov (United States)

    Goswami, Dibakar; Vitorino, Hector A; Alta, Roxana Y P; Silvestre, Daniel M; Nomura, Cassiana S; Machini, M Teresa; Espósito, Breno P

    2015-10-01

    Deferasirox (DFX), an orally active and clinically approved iron chelator, is being used extensively for the treatment of iron overload. However, its water insolubility makes it cumbersome for practical use. In addition to this, the low efficacy of DFX to remove brain iron prompted us to synthesize and evaluate a DFX-TAT(47-57) peptide conjugate for its iron chelation properties and permeability across RBE4 cell line, an in vitro model of the blood-brain barrier. The water-soluble conjugate was able to remove labile iron from buffered solution as well as from iron overloaded sera, and the permeability of DFX-TAT(47-57) conjugate into RBE4 cells was not affected compared to parent deferasirox. The iron bound conjugate was also able to translocate through the cell membrane.

  13. Serine-selective aerobic cleavage of peptides and a protein using a water-soluble copper-organoradical conjugate.

    Science.gov (United States)

    Seki, Yohei; Tanabe, Kana; Sasaki, Daisuke; Sohma, Youhei; Oisaki, Kounosuke; Kanai, Motomu

    2014-06-16

    The site-specific cleavage of peptide bonds is an important chemical modification of biologically relevant macromolecules. The reaction is not only used for routine structural determination of peptides, but is also a potential artificial modulator of protein function. Realizing the substrate scope beyond the conventional chemical or enzymatic cleavage of peptide bonds is, however, a formidable challenge. Here we report a serine-selective peptide-cleavage protocol that proceeds at room temperature and near neutral pH value, through mild aerobic oxidation promoted by a water-soluble copper-organoradical conjugate. The method is applicable to the site-selective cleavage of polypeptides that possess various functional groups. Peptides comprising D-amino acids or sensitive disulfide pairs are competent substrates. The system is extendable to the site-selective cleavage of a native protein, ubiquitin, which comprises more than 70 amino acid residues.

  14. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing.

    Science.gov (United States)

    Xie, Zhiwei; Aphale, Nikhil V; Kadapure, Tejaswi D; Wadajkar, Aniket S; Orr, Sara; Gyawali, Dipendra; Qian, Guoying; Nguyen, Kytai T; Yang, Jian

    2015-12-01

    Wound healing is usually facilitated by the use of a wound dressing that can be easily applied to cover the wound bed, maintain moisture, and avoid bacterial infection. In order to meet all of these requirements, we developed an in situ forming biodegradable hydrogel (iFBH) system composed of a newly developed combination of biodegradable poly(ethylene glycol) maleate citrate (PEGMC) and poly(ethylene glycol) diacrylate (PEGDA). The in situ forming hydrogel systems are able to conform to the wound shape in order to cover the wound completely and prevent bacterial invasion. A 2(k) factorial analysis was performed to examine the effects of polymer composition on specific properties, including the curing time, Young's modulus, swelling ratio, and degradation rate. An optimized iFBH formulation was achieved from the systematic factorial analysis. Further, in vitro biocompatibility studies using adult human dermal fibroblasts (HDFs) confirmed that the hydrogels and degradation products are not cytotoxic. The iFBH wound dressing was conjugated and functionalized with antimicrobial peptides as well. Evaluation against bacteria both in vitro and in vivo in rats demonstrated that the peptide-incorporated iFBH wound dressing offered excellent bacteria inhibition and promoted wound healing. These studies indicated that our in situ forming antimicrobial biodegradable hydrogel system is a promising candidate for wound treatment.

  15. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    Science.gov (United States)

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  16. Peptide conjugation of 2'-O-methyl phosphorothioate antisense oligonucleotides enhances cardiac uptake and exon skipping in mdx mice.

    Science.gov (United States)

    Jirka, Silvana M G; Heemskerk, Hans; Tanganyika-de Winter, Christa L; Muilwijk, Daan; Pang, Kar Him; de Visser, Peter C; Janson, Anneke; Karnaoukh, Tatyana G; Vermue, Rick; 't Hoen, Peter A C; van Deutekom, Judith C T; Aguilera, Begoña; Aartsma-Rus, Annemieke

    2014-02-01

    Antisense oligonucleotide (AON)-mediated exon skipping is a promising therapeutic approach for Duchenne muscular dystrophy that is currently being tested in various clinical trials. This approach is based on restoring the open reading frame of dystrophin transcripts resulting in shorter but partially functional dystrophin proteins as found in patients with Becker muscular dystrophy. After systemic administration, a large proportion of AONs ends up in the liver and kidneys. Therefore, enhancing AON uptake by skeletal and cardiac muscle would improve the AONs' therapeutic effect. For phosphorodiamidate morpholino oligomer, AONs use nonspecific positively charged cell penetrating peptides to enhance efficacy. However, this is challenging for negatively charged 2'-O-methyl phosphorothioate oligomer. Therefore, we screened a 7-mer phage display peptide library to identify muscle and heart homing peptides in vivo in the mdx mouse model and found a promising candidate peptide capable of binding muscle cells in vitro and in vivo. Upon systemic administration in dystrophic mdx mice, conjugation of a 2'-O-methyl phosphorothioate AON to this peptide indeed improved uptake in skeletal and cardiac muscle, and resulted in higher exon skipping levels with a significant difference in heart and diaphragm. Based on these results, peptide conjugation represents an interesting strategy to enhance the therapeutic effect of exon skipping with 2'-O-methyl phosphorothioate AONs for Duchenne muscular dystrophy.

  17. Drug resistance to chlorambucil in murine B-cell leukemic cells is overcome by its conjugation to a targeting peptide.

    Science.gov (United States)

    Gellerman, Gary; Baskin, Sophia; Galia, Luboshits; Gilad, Yosef; Firer, Michael A

    2013-02-01

    Targeting drugs through small-molecule carriers with a high affinity to receptors on cancer cells can overcome the lack of target cell specificity of most anticancer drugs. These targeted carrier-drug conjugates are also capable of reversing drug resistance in cancer cells. Although many targeted drug delivery approaches are being tested, the linkage of several and different drugs to a single carrier molecule might further enhance their therapeutic efficacy, particularly if the drugs are engineered for variable time release. This report shows that murine B-cell leukemic cells previously resistant to a chemotherapeutic drug can be made sensitive to that drug as long as it is conjugated to a targeting peptide and, in particular, when the conjugate contains multiple copies of the drug. Using a 13mer peptide (VHFFKNIVTPRTP) derived from the myelin basic protein (p-MBP), dendrimer-based peptide conjugates containing one, two, or four molecules of chlorambucil were synthesized. Although murine hybridomas expressing antibodies to either p-MBP (MBP cells) or a nonrelevant antigen (BCL-1 cells) were both resistant to free chlorambucil, exposure of the cells to the p-MBP-chlorambucil conjugate completely reversed the drug resistance in MBP, but not BCL-1 cells or normal spleen cells. Moreover, at equivalent drug doses, there was significant enhancement in the cytotoxic activity of multidrug versus single-drug copy conjugates. On the basis of these results, the use of multifunctional dendrone linkers bearing several covalently bound cytotoxic agents allows the development of more effective targeted drug systems and enhances the efficacy of currently approved drugs for B-cell leukemia.

  18. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Narsireddy A

    2015-11-01

    Full Text Available Amreddy Narsireddy,1 Kurra Vijayashree,2 Mahesh G Adimoolam,1 Sunkara V Manorama,1 Nalam M Rao21CSIR – Indian Institute of Chemical Technology, 2CSIR – Centre for Cellular and Molecular Biology, Hyderabad, IndiaAbstract: Challenges in photodynamic therapy (PDT include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphine [PS] and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine dendrimer (G4 was conjugated with a PS and a nitrilotriacetic acid (NTA group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.Keywords: photodynamic therapy, dendrimers, nanoparticle, targeted delivery, Affibody, xenograft animal model

  19. Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide.

    Science.gov (United States)

    Brezden, Anna; Mohamed, Mohamed F; Nepal, Manish; Harwood, John S; Kuriakose, Jerrin; Seleem, Mohamed N; Chmielewski, Jean

    2016-08-31

    Bacterial infection caused by intracellular pathogens, such as Mycobacterium, Salmonella, and Brucella, is a burgeoning global health epidemic that necessitates urgent action. However, the therapeutic value of a number of antibiotics, including aminoglycosides, against intracellular pathogenic bacteria is compromised due to their inability to traverse eukaryotic membranes. For this significant problem to be addressed, a cleavable conjugate of the antibiotic kanamycin and a nonmembrane lytic, broad-spectrum antimicrobial peptide with efficient mammalian cell penetration, P14LRR, was prepared. This approach allows kanamycin to enter mammalian cells as a conjugate linked via a tether that breaks down in the reducing environment within cells. Potent antimicrobial activity of the P14KanS conjugate was demonstrated in vitro, and this reducible conjugate effectively cleared intracellular pathogenic bacteria within macrophages more potently than that of a conjugate lacking the disulfide moiety. Notably, successful clearance of Mycobacterium tuberculosis within macrophages was observed with the dual antibiotic conjugate, and Salmonella levels were significantly reduced in an in vivo Caenorhabditis elegans model.

  20. Development of lutetium-labeled bombesin derivates: relationship between structure and diagnostic-therapeutic activity for prostate tumor; Desenvolvimento de derivados da bombesina radiomarcados com lutecio-177: relacao estrutura e potencial diagnostico-terapeutico para tumor de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla Brunelli

    2009-07-01

    Bombesin (BBN) receptors - in particular, the gastrin-releasing peptide (GRP) receptor peptide - have been shown to be massively over expressed in several human tumors types, including prostate cancer, and could be an alternative as target for its treatment by radionuclide therapy (RNT). A large number of BBN analogs had already been synthesized for this purpose and have shown to reduce tumor growth in mice. Nevertheless, most of the studied analogs exhibit high abdominal accumulation, especially in pancreas. This abdominal accumulation may represent a problem in clinical use of radiolabeled bombesin analogs probably due to serious side effects to patients. The goal of the present work was to radiolabel a novel series of bombesin derivatives with lutetium-177 and to evaluate the relationship between their structure and diagnostic-therapeutic activity for prostate tumor. The generic structure of studied peptides is DOTA-Phe-(Gly){sub n}-BBN(6-14), where DOTA is the chelator, n is the number of glycine amino acids of Phe-(Gly){sub n} spacer and BBN(6-14) is the bombesin sequence from the amino acid 6 to the amino acid 14. Preliminary studies were done to establish the ideal labeling conditions for obtaining the highest yield of labeled bombesin derivatives, determined by instant thin layer chromatography (ITLC-SG) and high performance liquid chromatography (HPLC). The stability of the preparations was evaluated either after storing at 2-8 degree C or incubation in human serum at 37 degree C and the partition coefficient was determined in n:octanol:water. In vivo studies were performed in both healthy Balb-c and Nude mice bearing PC-3 xenografts, in order to characterize the biological properties of labeled peptides. In vitro studies involved the evaluation of cold bombesin derivatives effect in PC-3 cells proliferation. Bombesin derivatives were successfully labeled with high yield at optimized conditions and exhibited high stability at 4 degree C. The analysis of

  1. Synthesis and Evaluation of a Series of Long-Acting Glucagon-Like Peptide-1 (GLP-1) Pentasaccharide Conjugates for the Treatment of Type 2 Diabetes.

    Science.gov (United States)

    Irwin, Nigel; Patterson, Steven; de Kort, Martin; Moffett, R Charlotte; Wisse, Jeffry A J; Dokter, Wim H A; Bos, Ebo S; Miltenburg, André M M; Flatt, Peter R

    2015-08-01

    The present study details the development of a family of novel D-Ala(8) glucagon-like peptide-1 (GLP-1) peptide conjugates by site specific conjugation to an antithrombin III (ATIII) binding carrier pentasaccharide through tetraethylene glycol linkers. All conjugates were found to possess potent insulin-releasing activity. Peptides with short linkers (GLP-1 receptor (GLP-1-R) binding affinity. All D-Ala(8) GLP-1 conjugates exhibited prominent glucose-lowering action. Biological activity of the Lys(37) short-linker peptide was evident up to 72 h post-injection. In agreement, the pharmacokinetic profile of this conjugate (t1/2 , 11 h) was superior to that of the GLP-1-R agonist, exenatide. Once-daily injection of the Lys(37) short-linker peptide in ob/ob mice for 21 days significantly decreased food intake and improved HbA1c and glucose tolerance. Islet size was decreased, with no discernible change in islet number. The beneficial effects of the Lys(37) short-linker peptide were similar to or better than either exenatide or liraglutide, another GLP-1-R agonist. In conclusion, GLP-1 peptides conjugated to an ATIII binding carrier pentasaccharide have a substantially prolonged bioactive profile compatible for possible once-weekly treatment of type 2 diabetes in humans.

  2. (18)F-AmBF3-MJ9: a novel radiofluorinated bombesin derivative for prostate cancer imaging.

    Science.gov (United States)

    Pourghiasian, Maral; Liu, Zhibo; Pan, Jinhe; Zhang, Zhengxing; Colpo, Nadine; Lin, Kuo-Shyan; Perrin, David M; Bénard, François

    2015-04-01

    A novel radiofluorinated derivative of bombesin, (18)F-AmBF3-MJ9, was synthesized and evaluated for its potential to image prostate cancer by targeting the gastrin releasing peptide receptor (GRPR). AmBF3-MJ9 was prepared from an ammoniomethyl-trifluoroborate (AmBF3) conjugated alkyne 2 and azidoacetyl-MJ9 via a copper-catalyzed click reaction, and had good binding affinity for GRPR (Ki=0.5±0.1nM). The (18)F-labeling was performed via a facile one-step (18)F-(19)F isotope exchange reaction, and (18)F-AmBF3-MJ9 was obtained in 23±5% (n=3) radiochemical yield in 25min with >99% radiochemical purity and 100±32GBq/μmol specific activity. (18)F-AmBF3-MJ9 was stable in mouse plasma, and was partially (22-30%) internalized after binding to GRPR. Positron emission tomography (PET) imaging and biodistribution studies in mice showed fast renal excretion and good uptake of (18)F-AmBF3-MJ9 by GRPR-expressing pancreas and PC-3 prostate cancer xenografts. Tumor uptake was 1.37±0.25%ID/g at 1h, and 2.20±0.13%ID/g at 2h post-injection (p.i.) with low background uptake and excellent tumor visualization (tumor-to-muscle ratios of 75.4±5.5). These data suggest that (18)F-AmBF3-MJ9 is a promising PET tracer for imaging GRPR-expressing prostate cancers.

  3. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens;

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative......Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid...

  4. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    Science.gov (United States)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  5. 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline-oligonucleotide conjugates: synthesis, binding interactions, and derivatization with peptides.

    Science.gov (United States)

    Hamma, Tomoko; Miller, Paul S

    2003-01-01

    Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and

  6. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  7. Development of peptide-conjugated morpholino oligomers as pan-arenavirus inhibitors.

    Science.gov (United States)

    Neuman, Benjamin W; Bederka, Lydia H; Stein, David A; Ting, Joey P C; Moulton, Hong M; Buchmeier, Michael J

    2011-10-01

    Members of the Arenaviridae family are a threat to public health and can cause meningitis and hemorrhagic fever, and yet treatment options remain limited by a lack of effective antivirals. In this study, we found that peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) complementary to viral genomic RNA were effective in reducing arenavirus replication in cell cultures and in vivo. PPMO complementary to the Junín virus genome were designed to interfere with viral RNA synthesis or translation or both. However, only PPMO designed to potentially interfere with translation were effective in reducing virus replication. PPMO complementary to sequences that are highly conserved across the arenaviruses and located at the 5' termini of both genomic segments were effective against Junín virus, Tacaribe virus, Pichinde virus, and lymphocytic choriomeningitis virus (LCMV)-infected cell cultures and suppressed viral titers in the livers of LCMV-infected mice. These results suggest that arenavirus 5' genomic termini represent promising targets for pan-arenavirus antiviral therapeutic development.

  8. Conjugation with Acridines Turns Nuclear Localization Sequence into Highly Active Antimicrobial Peptide

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2015-12-01

    Full Text Available The emergence of multidrug-resistant bacteria creates an urgent need for alternative antibiotics with new mechanisms of action. In this study, we synthesized a novel type of antimicrobial agent, Acr3-NLS, by conjugating hydrophobic acridines to the N-terminus of a nuclear localization sequence (NLS, a short cationic peptide. To further improve the antimicrobial activity of our agent, dimeric (Acr3-NLS2 was simultaneously synthesized by joining two monomeric Acr3-NLS together via a disulfide linker. Our results show that Acr3-NLS and especially (Acr3-NLS2 display significant antimicrobial activity against gram-negative and gram-positive bacteria compared to that of the NLS. Subsequently, the results derived from the study on the mechanism of action demonstrate that Acr3-NLS and (Acr3-NLS2 can kill bacteria by membrane disruption and DNA binding. The double targets–cell membrane and intracellular DNA–will reduce the risk of bacteria developing resistance to Acr3-NLS and (Acr3-NLS2. Overall, this study provides a novel strategy to design highly effective antimicrobial agents with a dual mode of action for infection treatment.

  9. Peptide-Conjugated Quantum Dots Act as the Target Marker for Human Pancreatic Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Shuang-ling Li

    2016-03-01

    Full Text Available Background/Aims: In the present study, we describe a novel and straightforward approach to produce a cyclic- arginine-glycine-aspartic (RGD-peptide-conjugated quantum dot (QD probe as an ideal target tumor biomarker. Due to its specific structure, the probe can be used for targeted imaging of pancreatic carcinoma cells. Methods: Pancreatic carcinoma cells were routinely cultured and marked with QD-RGD probe. The QD-RGD probe on the fluorescence-labeled cancer cell was observed by fluorescence microscopy and laser confocal microscopy. Cancer cell viability was detected by MTT assay after culturing with QD-RGD probe. Results: Fluorescence microscopy and laser confocal microscopy displayed that 10nmol/L QD-RGD probe was able to effectively mark pancreatic carcinoma cells. In comparison with organic dyes and fluorescent proteins, the quantum dot-RGD probe had unique optical and electronic properties. Conclusion: QD-RGD probe has a low cytotoxicity with an excellent optical property and biocompatibility. These findings support further evaluation of QD-RGD probes for the early detection of pancreatic cancer.

  10. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    Science.gov (United States)

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  11. Modeling the tetraphenylalanine-PEG hybrid amphiphile: from DFT calculations on the peptide to molecular dynamics simulations on the conjugate.

    Science.gov (United States)

    Zanuy, David; Hamley, Ian W; Alemán, Carlos

    2011-07-21

    The conformational properties of the hybrid amphiphile formed by the conjugation of a hydrophobic peptide with four phenylalanine (Phe) residues and hydrophilic poly(ethylene glycol), have been investigated using quantum mechanical calculations and atomistic molecular dynamics simulations. The intrinsic conformational preferences of the peptide were examined using the building-up search procedure combined with B3LYP/6-31G(d) geometry optimizations, which led to the identification of 78, 78, and 92 minimum energy structures for the peptides containing one, two, and four Phe residues. These peptides tend to adopt regular organizations involving turn-like motifs that define ribbon or helical-like arrangements. Furthermore, calculations indicate that backbone···side chain interactions involving the N-H of the amide groups and the π clouds of the aromatic rings play a crucial role in Phe-containing peptides. On the other hand, MD simulations on the complete amphiphile in aqueous solution showed that the polymer fragment rapidly unfolds maximizing the contacts with the polar solvent, even though the hydrophobic peptide reduce the number of waters of hydration with respect to an individual polymer chain of equivalent molecular weight. In spite of the small effect of the peptide in the hydrodynamic properties of the polymer, we conclude that the two counterparts of the amphiphile tend to organize as independent modules.

  12. Comparative in vivo evaluation of two novel {sup 99m}Tc labelled bombesin derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Gourni, Eleni [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece); Bouziotis, Penelope [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece)]. E-mail: pennybil@yahoo.gr; Zikos, Christos [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece): Biomedica Life Sciences, S.A., 152 32, Athens (Greece); Loudos, George [National Technical University of Athens, 157 73, Athens (Greece); Xanthopoulos, Stavros [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece); Fani, Melpomeni [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece): Biomedica Life Sciences, S.A., 152 32, Athens (Greece); Archimandritis, Spyridon C. [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece); Varvarigou, Alexandra D. [National Center for Scientific Research ' Demokritos' , Institute of Radioisotopes-Radiodiagnostic Products, 153 10, Athens (Greece)

    2006-12-20

    Bombesin (BN), a 14 amino acid peptide, is an analogue of human gastrin-releasing-peptide (GRP) that binds to GRP receptors (GRP-R) with high affinity and specificity. In addition to this physiological role, GRP, through its interaction with GRP-R, promotes tumour growth in a number of human cancer cell lines. The GRP receptors are over-expressed on a variety of human cancer cells. Aim of the present work is the study of two novels BN-like peptides, by investigating the radiochemical and radiopharmacological behaviour of their complexes with metals. The derivatives under study are: Gly-Gly-Cys-Aca-BN [2-14] where Aca: 6-amino-hexanoic acid. Pyroglutamic acid in the bombesin molecule has been replaced by the chemical group Gly-Gly-Cys-Aca, which bears an amino-acid combination capable of complexing a variety of radiometals. The other derivative under study is: Gly-Gly-Cys-Aca-BN [7-14]. This moiety of the peptide has been chosen because it has been proven to be a potent GRP agonist. The peptide derivatives were synthesized by SPPS, according to the Fmoc strategy and were identified by reverse phase high performance liquid chromatography (RP-HPLC). Radiolabelling with {sup 99m}Tc was performed via the precursor {sup 99m}Tc-gluconate. The stability of the radiolabelled species was examined with time. In vivo studies of the two {sup 99m}Tc-labelled derivatives were performed, comparatively, in normal mice, attention being focused on GRP receptor-bearing organs, and in experimentally induced prostate cancer models. Experimental tumours were imaged in a small field-of-view animal gamma camera.

  13. Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse.

    Science.gov (United States)

    Akiyama, T; Nagamine, M; Davoodi, A; Iodi Carstens, M; Cevikbas, F; Steinhoff, M; Carstens, E

    2015-10-01

    Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml(-1)·min(-1)), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans.

  14. Induction of cross clade reactive specific antibodies in mice by conjugates of HGP-30 (peptide analog of HIV-1(SF2) p17) and peptide segments of human beta-2-microglobulin or MHC II beta chain.

    Science.gov (United States)

    Zimmerman, D H; Lloyd, J P; Heisey, D; Winship, M D; Siwek, M; Talor, E; Sarin, P S

    2001-09-14

    HGP-30, a 30 amino acid synthetic peptide homologous to a conserved region of HIV-1(SF2) p17 (aa86-115), has previously been shown to elicit both cellular and humoral immune responses when conjugated to KLH and adsorbed to alum. However, the free HGP-30 peptide is not immunogenic in animals. In order to improve the immunogenicity of HGP-30, peptide conjugates consisting of a modified HGP-30 sequence (m-HGP-30/aa82-111) and a peptide segment, residues 38-50, of the MHC I accessory molecule, human beta-2-microglobulin (beta-2-M), referred to as Peptide J, or a peptide from the MHC II beta chain (peptide G) were evaluated in mice. The effects of carriers and adjuvants on serum antibody titers, specificities to various HIV-1 clade peptides similar to HGP-30 and isotype patterns were examined. Peptides J or especially G conjugated to modified-HGP-30 (LEAPS 102 and LEAPS 101, respectively) generated comparable or better immune responses to modified HGP-30 than KLH conjugates as judged by the induction of: (1) similar antibody titers; (2) broader HIV clade antigen binding; and (3) antibody isotype response patterns indicative of a TH1 pathway (i.e. increased amounts of IgG2a and IgG2b antibodies). The ISA 51 and MPL(R)-SE adjuvants induced higher antibody responses than alum, with the ISA 51 being more potent. Immune responses to LEAPS 102, as compared to LEAPS 101, were weaker and slower to develop as determined by antibody titers and cross clade reactivity of the antibodies induced. Compared to KLH conjugates which induced significant anti-KLH antibody titers, minimal antibody responses were observed to peptide G, the more immunogenic conjugate, and peptide J. These results suggest that modified HGP-30 L.E.A.P.S. constructs may be useful as HIV vaccine candidates for preferential induction of TH1 directed cell mediated immune responses.

  15. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  16. Technetium Complexes of a Hydrazinonicotinamide-Conjugated Cyclic Peptide and 2-Hydrazinopyridine: Synthesis and Characterization.

    Science.gov (United States)

    Liu, Shuang; Edwards, D. Scott; Harris, Anthony R.; Heminway, Stuart J.; Barrett, John A.

    1999-03-22

    Ternary ligand technetium complexes of a hydrazinonicotinamide-conjugated cyclic peptide (HYNICtide: cyclo(D-Val-NMeArg-Gly-Asp-Mamb(5-(6-(6-hydrazinonicotinamido)hexanamide)))) and 2-hydrazinopyridine (HYPY) were prepared and characterized by various spectroscopic methods. The HPLC concordance experiments for (99m)Tc and (99)Tc analogues show clearly that the same complexes are prepared on the no-carrier-added ((99m)Tc) and the carrier-added ((99)Tc) levels. Using a chirality experiment, it was demonstrated that the presence of two radiometric peaks in the HPLC chromatograms of RP444, RP445, and RP446 is due to the resolution of diastereomers, which result from the presence of chiral cyclic peptide and the formation of two enantiomers of the technetium chelate. In a ligand challenge experiment, we found that the high solution stability of these ternary ligand [(99m)Tc]HYNICtide complexes is due to their kinetic inertness. The 1:1:1:1 composition for Tc:HYNICtide:L:tricine (L = TPPTS, TPPDS, and TPPMS) in these ternary ligand [(99)Tc]HYNICtide complexes is confirmed by (1)H NMR and FAB mass spectral data and is completely consistent with that determined on the tracer ((99m)Tc) level. In addition, the IC(50) values of RP444, RP445, and RP446 and the two isomeric forms of RP444 were determined using a platelet IIb/IIIa binding assay. Both isomeric forms of RP444 were found to have the same binding affinity (IC(50) = 13 +/- 2 nM). Complexes [(99)Tc(HYPY)(PPh(3))(2)Cl(2)] and [(99)Tc(HYPY)(PPh(3))(tricine)] were isolated from the reaction of HYPY with [n-Bu(4)N][TcOCl(4)(-)] in the presence of excess tricine and triphenylphosphine. [(99)Tc(HYPY)(PPh(3))(tricine)] serves as a model for ternary ligand [(99m)Tc]HYNICtide complexes. Both complexes have been characterized by HPLC, spectroscopic (IR, NMR, and FAB-MS) methods, and elemental analysis. The HPLC concordance for complexes [(99m)Tc(HYPY)(PPh(3))(tricine)] and [(99)Tc(HYPY)(PPh(3))(tricine)] shows that the two

  17. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tavor, John [Johns Hopkins Univ., Baltimore, MD (United States)

    2016-12-06

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are to construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.

  18. Gemcitabine Based Peptide Conjugate with Improved Metabolic Properties and Dual Mode of Efficacy.

    Science.gov (United States)

    Karampelas, Theodoros; Skavatsou, Eleni; Argyros, Orestis; Fokas, Demosthenes; Tamvakopoulos, Constantin

    2017-02-01

    Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabine's bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.

  19. A new daunomycin-peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro.

    Science.gov (United States)

    Orbán, Erika; Manea, Marilena; Marquadt, Andreas; Bánóczi, Zoltán; Csík, Gabriella; Fellinger, Erzsébet; Bosze, Szilvia; Hudecz, Ferenc

    2011-10-19

    Daunomycin (Dau) is a DNA-binding antineoplastic agent in the treatment of various types of cancer, such as osteosarcomas and acute myeloid leukemia. One approach to improve its selectivity and to decrease the side effects is the conjugation of Dau with oligopeptide carriers, which might alter the drug uptake and intracellular fate. Here, we report on the synthesis, characterization, and in vitro biological properties of a novel conjugate in which Dau is attached, via an oxime bond, to one of the cancer specific small peptides (LTVSPWY) selected from a random phage peptide library. The in vitro cytostatic effect and cellular uptake of Dau═Aoa-LTVSPWY-NH(2) conjugate were studied on various human cancer cell lines expressing different levels of ErbB2 receptor which could be targeted by the peptide. We found that the new daunomycin-peptide conjugate is highly cytostatic and could be taken up efficiently by the human cancer cells studied. However, the conjugate was less effective than the free drug itself. RP-HPLC data indicate that the conjugate is stable at least for 24 h in the pH 2.5-7.0 range of buffers, as well as in cell culture medium. The conjugate in the presence of rat liver lysosomal homogenate, as indicated by LC-MS analysis, could be degraded. The smallest, Dau-containing metabolite (Dau═Aoa-Leu-OH) identified and prepared expresses DNA-binding ability. In order to get insight on the potential mechanism of action, we compared the protein expression profile of HL-60 human leukemia cells after treatment with the free and peptide conjugated daunomycin. Proteomic analysis suggests that the expression of several proteins has been altered. This includes three proteins, whose expression was lower (tubulin β chain) or markedly higher (proliferating cell nuclear antigen and protein kinase C inhibitor protein 1) after administration of cells with Dau-conjugate vs free drug.

  20. Validation of the production process of core-equipment HYNIC-Bombesin-Sn; Validacion del proceso de produccion del nucleo-equipo HYNIC-Bombesina-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rubio C, N. I. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2008-07-01

    The validation process is establishing documented evidence that provides a high degree of assurance that a specific process consistently will produce a product that will meet specifications and quality attributes preset and, therefore, ensures the efficiency and effectiveness of a product. The radiopharmaceutical {sup 99m}Tc-HYNlC-Bombesin is part of the gastrin-releasing peptide (GRP) analogues of bombesin that are radiolabelled with technetium 99 metastable for molecular images obtention. Is obtained from freeze-dry formulations kits (core- equipment)) and has reported a very high stability in human serum, specific binding to receptors and rapid internalization. Biodistribution data in mice showed rapid blood clearance with predominant renal excretion and specific binding to tissues with positive response to GRP receptors. According to biokinetics studies performed on patients with breast cancer, breast show a marked asymmetry with increased uptake in neoplastic breast in healthy women and the uptake of radiopharmaceuticals is symmetrical in both breasts. No reported adverse reactions. In this paper, the prospective validation core-equipment HYNlC-Bombesin-Sn, which was shown consistently that the product meets the specifications and quality, attributes to preset from the obtained from the diagnostic radiopharmaceutical third generation: {sup 99m}Tc-HYNlC-Bombesin. The process was successfully validated and thereby ensuring the efficiency and effectiveness of this agent as a preliminary diagnostic for approval to be marketed. (Author)

  1. Error-prone translesion synthesis past DNA-peptide cross-links conjugated to the major groove of DNA via C5 of thymidine.

    Science.gov (United States)

    Wickramaratne, Susith; Boldry, Emily J; Buehler, Charles; Wang, Yen-Chih; Distefano, Mark D; Tretyakova, Natalia Y

    2015-01-01

    DNA-protein cross-links (DPCs) are exceptionally bulky, structurally diverse DNA adducts formed in cells upon exposure to endogenous and exogenous bis-electrophiles, reactive oxygen species, and ionizing radiation. If not repaired, DPCs can induce toxicity and mutations. It has been proposed that the protein component of a DPC is proteolytically degraded, giving rise to smaller DNA-peptide conjugates, which can be subject to nucleotide excision repair and replication bypass. In this study, polymerase bypass of model DNA-peptide conjugates structurally analogous to the lesions induced by reactive oxygen species and DNA methyltransferase inhibitors was examined. DNA oligomers containing site-specific DNA-peptide conjugates were generated by copper-catalyzed [3 + 2] Huisgen cyclo-addition between an alkyne-functionalized C5-thymidine in DNA and an azide-containing 10-mer peptide. The resulting DNA-peptide conjugates were subjected to steady-state kinetic experiments in the presence of recombinant human lesion bypass polymerases κ and η, followed by PAGE-based assays to determine the catalytic efficiency and the misinsertion frequency opposite the lesion. We found that human polymerase κ and η can incorporate A, G, C, or T opposite the C5-dT-conjugated DNA-peptide conjugates, whereas human polymerase η preferentially inserts G opposite the lesion. Furthermore, HPLC-ESI(-)-MS/MS sequencing of the extension products has revealed that post-lesion synthesis was highly error-prone, resulting in mutations opposite the adducted site or at the +1 position from the adduct and multiple deletions. Collectively, our results indicate that replication bypass of peptides conjugated to the C5 position of thymine by human translesion synthesis polymerases leads to large numbers of base substitution and frameshift mutations.

  2. A versatile method for the preparation of conjugates of peptides with DNA/PNA/analog by employing chemo-selective click reaction in water

    Science.gov (United States)

    Gogoi, Khirud; Mane, Meenakshi V.; Kunte, Sunita S.; Kumar, Vaijayanti A.

    2007-01-01

    The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ∼3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products. PMID:17981837

  3. Production of recombinant human growth hormone conjugated with a transcytotic peptide in Pichia pastoris for effective oral protein delivery.

    Science.gov (United States)

    Lee, Jun-Yeong; Kang, Sang-Kee; Li, Hui-Shan; Choi, Chang-Yun; Park, Tae-Eun; Bok, Jin-Duck; Lee, Seung-Ho; Cho, Chong-Su; Choi, Yun-Jaie

    2015-05-01

    Among the possible delivery routes, the oral administration of a protein is simple and achieves high patient compliance without pain. However, the low bioavailability of a protein drug in the intestine due to the physical barriers of the intestinal epithelia is the most critical problem that needs to be solved. To overcome the low bioavailability of a protein drug in the intestine, we aimed to construct a recombinant Pichia pastoris expressing a human growth hormone (hGH) fusion protein conjugated with a transcytotic peptide (TP) that was screened through peroral phage display to target goblet cells in the intestinal epithelia. The TP-conjugated hGH was successfully produced in P. pastoris in a secreted form at concentrations of up to 0.79 g/l. The function of the TP-conjugated hGH was validated by in vitro and in vivo assays. The transcytotic function of the TP through the intestinal epithelia was verified only in the C terminus conjugated hGH, which demonstrated the induction of IGF-1 in a HepG2 cell culture assay, a higher translocation of recombinant hGH into the ileal villi after oral administration in rats and both IGF-1 induction and higher body weight gain in rats after oral administration. The present study introduces the possibility for the development of an effective oral protein delivery system in the pharmaceutical and animal industries through the introduction of an effective TP into hGH.

  4. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    Science.gov (United States)

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron

  5. Sustained Release of Mitomycin C from Its Conjugate with Single-Walled Carbon Nanotubes Associated by Pegylated Peptide.

    Science.gov (United States)

    Ohta, Takahisa; Hashida, Yasuhiko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2016-01-01

    A novel sustained release formulation of mitomycin C (MMC) was developed by employing single-walled carbon nanotubes (SWCNTs) wrapped by designed peptide with polyethylene glycol (PEG) modification (pegylation) as a nano-scale molecular platform. The amino groups of polycationic and amphiphilic H-(-Cys-Trp-Lys-Gly-)(-Lys-Trp-Lys-Gly-)6-OH [CWKG(KWKG)6] peptide associated with SWCNTs were modified using PEG with 12 units (PEG12) to improve the dispersion stability of the composite. Then thiol groups of peptide were conjugated with MMC using N-ε-maleimidocaproic acid (EMCA) as a linker via transformation of aziridine group of MMC. The obtained SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC composites particularly that with 13.6% PEG modification extent of amino groups, showed good dispersion stability both in water and in a cell culture medium for 24 h. The release of MMC from SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC was confirmed to follow first-order kinetics being accelerated by the pH increase in good agreement with the results observed for MMC-dextran conjugate with the same conjugation structure. The SWCNTs-CWKG(KWKG)6-(PEG)12 composite exhibited a considerably low cytotoxicity against cultured human lung adenocarcinoma epithelial cell line (A549). In contrast, SWCNTs-CWKG(KWKG)6-(PEG)12-C6-MMC demonstrated delayed but relatively corresponding antitumor activity with free MMC at the same concentration. The results suggested the potential role of SWCNTs-CWKG(KWKG)6-(PEG)12 as a carrier for a controlled release drug delivery system (DDS).

  6. Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Quan Changyun; Chang Cong; Wei Hua; Chen Changsheng; Xu Xiaoding; Cheng Sixue; Zhang Xianzheng; Zhuo Renxi, E-mail: xz-zhang@whu.edu.c [Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2009-08-19

    In this paper, both arginine-glycine-aspartic acid (RGD)-containing peptide and transferrin (Tf) were conjugated to the thermosensitive poly(N-isopropylacrylamide-co-propyl acrylic acid) (poly(NIPAAm-co-PAAc)) nanogel to prepare a dual-targeting drug carrier. The obtained nanogel was characterized in terms of fluorescence spectroscopy, UV-vis spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). In order to track the dual-ligand conjugated nanogel, fluorescein isothiocyanate (FITC) was further conjugated to the nanogel. A cell internalization experiment showed that the dual-ligand conjugated nanogel exhibited obviously enhanced endocytosis by HeLa cells as compared with non-tumorous cells (COS-7 cells). The drug-loaded dual-ligand conjugated nanogel could be transported efficiently into the target tumor cells and the anti-tumor effect was enhanced significantly, suggesting that the dual-ligand conjugated nanogel has great potential as a tumor targeting drug carrier.

  7. Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR-specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. W.; Lin, W. J., E-mail: wjlin@ntu.edu.tw [National Taiwan University, Graduate Institute of Pharmaceutical Sciences, School of Pharmacy (China)

    2013-10-15

    This aim of this study was to develop peptide-conjugated nanoparticles (NPs) for systemic co-delivery of siRNA and doxorubicin to enhance chemotherapy in epidermal growth factor receptor (EGFR) high-expressed ovarian tumor bearing mice. The active targeting NPs were prepared using heptapeptide-conjugated poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol). The particle sizes of peptide-free and peptide-conjugated NPs were 159.3 {+-} 32.5 and 184.0 {+-} 52.9 nm, respectively, with zeta potential -21.3 {+-} 3.8 and -15.3 {+-} 2.8 mV. The peptide-conjugated NPs uptake were more efficient in EGFR high-expressed SKOV3 cells than in EGFR low-expressed HepG2 cells due to heptapeptide specificity. The NPs were used to deliver small molecule anticancer drug (e.g., doxorubicin) and large molecule genetic agent (e.g., siRNA). The IC{sub 50} of doxorubicin-loaded peptide-conjugated NPs (0.09 {+-} 0.06 {mu}M) was significantly lower than peptide-free NPs (5.72 {+-} 2.64 {mu}M). The similar result was observed in siRNA-loaded NPs. The peptide-conjugated NPs not only served as a nanocarrier to efficiently deliver doxorubicin and siRNA to EGFR high-expressed ovarian cancer cells but also increased the intracellular accumulation of the therapeutic agents to induce assured anti-tumor growth effect in vivo.

  8. Down-regulation of poison ivy/oak-induced contact sensitivity by treatment with a class II MHC binding peptide:hapten conjugate.

    Science.gov (United States)

    Gelber, C; Gemmell, L; McAteer, D; Homola, M; Swain, P; Liu, A; Wilson, K J; Gefter, M

    1997-03-01

    Immune regulation of contact sensitivity to the poison ivy/oak catechol was studied at the level of class II MHC-restricted T cell recognition of hapten:peptide conjugates. In this study we have shown that 1) T cells from C3H/HeN (H-2k) mice, immunized with a synthetic I-Ak binding peptide coupled to 3-pentadecyl-catechol (PDC; a representative catechol in urushiol), recognized peptides derived from syngeneic cells linked to the same catechol; 2) T cells from draining lymph nodes of C3H/HeN mice skin-painted with PDC proliferated in response to a peptide carrier:PDC conjugate only when it was linked at the 7th, but not the 4th or the 10th, position on the peptide carrier; and 3) tolerization studies confirmed down-regulation of PDC-induced delayed-type hypersensitivity following treatment with a single I-Ak binding peptide carrying PDC covalently bound to a lysine residue at the middle (7th) TCR contact position. Tolerization with peptide:PDC conjugate resulted in abrogation of hapten-specific T cell proliferative responses that correlated with diminished IL-2 secretion. On the basis of these data we propose that it may be sufficient to couple the hapten at a single, well-chosen position on a carrier peptide to target a relevant population of T cells involved in contact sensitivity.

  9. Evaluation of {sup 99m}Tc-HYNIC-βAla-Bombesin{sub (7-14)} as an agent for pancreas tumor detection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Carlesso, F.N.; Fuscaldi, L.L.; Araujo, R.S.; Teixeira, C.S.; Oliveira, M.C.; Fernandes, S.O.A.; Cassali, G.D.; Reis, D.C.; Barros, A.L.B.; Cardoso, V.N., E-mail: valbertcardoso@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2015-10-15

    Pancreatic adenocarcinoma is important in oncology because of its high mortality rate. Deaths may be avoided if an early diagnosis could be achieved. Several types of tumors overexpress gastrin-releasing peptide receptors (GRPr), including pancreatic cancer cells. Thus, a radiolabeled peptide derivative of gastrin-releasing peptide (GRP) may be useful as a specific imaging probe. The purpose of the present study was to evaluate the feasibility of using {sup 99m}Tc-HYNIC--βAla-Bombesin{sub (7-14)} as an imaging probe for Capan-1 pancreatic adenocarcinoma. Xenographic pancreatic tumor was developed in nude mice and characterized by histopathological analysis. Biodistribution studies and scintigraphic images were carried out in tumor-bearing nude mice. The two methods showed higher uptake by pancreatic tumor when compared to muscle (used as control), and the tumor-to-muscle ratio indicated that {sup 99m}Tc-HYNIC--βAla-Bombesin{sub (7-14)} uptake was four-fold higher in tumor cells than in other tissues. Scintigraphic images also showed a clear signal at the tumor site. The present data indicate that {sup 99m}Tc-HYNIC--βAla-Bombesin{sub (7-14)} may be useful for the detection of pancreatic adenocarcinoma. (author)

  10. Evaluation of 99mTc-HYNIC-βAla-Bombesin(7-14 as an agent for pancreas tumor detection in mice

    Directory of Open Access Journals (Sweden)

    F.N. Carlesso

    2015-01-01

    Full Text Available Pancreatic adenocarcinoma is important in oncology because of its high mortality rate. Deaths may be avoided if an early diagnosis could be achieved. Several types of tumors overexpress gastrin-releasing peptide receptors (GRPr, including pancreatic cancer cells. Thus, a radiolabeled peptide derivative of gastrin-releasing peptide (GRP may be useful as a specific imaging probe. The purpose of the present study was to evaluate the feasibility of using 99mTc-HYNIC-βAla-Bombesin(7-14 as an imaging probe for Capan-1 pancreatic adenocarcinoma. Xenographic pancreatic tumor was developed in nude mice and characterized by histopathological analysis. Biodistribution studies and scintigraphic images were carried out in tumor-bearing nude mice. The two methods showed higher uptake by pancreatic tumor when compared to muscle (used as control, and the tumor-to-muscle ratio indicated that 99mTc-HYNIC-βAla-Bombesin(7-14 uptake was four-fold higher in tumor cells than in other tissues. Scintigraphic images also showed a clear signal at the tumor site. The present data indicate that 99mTc-HYNIC-βAla-Bombesin(7-14 may be useful for the detection of pancreatic adenocarcinoma.

  11. New human papilloma virus E2 transcription factor mimics: a tripyrrole-peptide conjugate with tight and specific DNA-recognition.

    Directory of Open Access Journals (Sweden)

    Diana E Wetzler

    Full Text Available BACKGROUND: Human papillomavirus (HPV is the main causative agent of cervical cancer, particularly high risk strains such us HPV-16, -18 and -31. The viral encoded E2 protein acts as a transcriptional modulator and exerts a key role in viral DNA replication. Thus, E2 constitutes an attractive target for developing antiviral agents. E2 is a homodimeric protein that interacts with the DNA target through an α-helix of each monomer. However, a peptide corresponding to the DNA recognition helix of HPV-16 E2 binds DNA with lower affinity than its full-length DNA binding domain. Therefore, in an attempt to promote the DNA binding of the isolated peptide, we have designed a conjugate compound of the E2 α-helix peptide and a derivative of the antibiotic distamycin, which involves simultaneous minor- and major-groove interactions. METHODOLOGY/PRINCIPAL FINDINGS: An E2 α-helix peptide-distamycin conjugate was designed and synthesized. It was characterized by NMR and CD spectroscopy, and its DNA binding properties were investigated by CD, DNA melting and gel shift experiments. The coupling of E2 peptide with distamycin does not affect its structural properties. The conjugate improves significantly the affinity of the peptide for specific DNA. In addition, stoichiometric amounts of specific DNA increase meaningfully the helical population of the peptide. The conjugate enhances the DNA binding constant 50-fold, maintaining its specificity. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that peptide-distamycin conjugates are a promising tool to obtain compounds that bind the E2 target DNA-sequences with remarkable affinity and suggest that a bipartite major/minor groove binding scaffold can be a useful approach for therapeutic treatment of HPV infection.

  12. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment.

    Science.gov (United States)

    Betts, Corinne; Saleh, Amer F; Arzumanov, Andrey A; Hammond, Suzan M; Godfrey, Caroline; Coursindel, Thibault; Gait, Michael J; Wood, Matthew Ja

    2012-08-14

    Antisense oligonucleotides (AOs) are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD). AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs) conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO): Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg) of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD.

  13. Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment

    Directory of Open Access Journals (Sweden)

    Corinne Betts

    2012-01-01

    Full Text Available Antisense oligonucleotides (AOs are currently the most promising therapeutic intervention for Duchenne muscular dystrophy (DMD. AOs modulate dystrophin pre-mRNA splicing, thereby specifically restoring the dystrophin reading frame and generating a truncated but semifunctional dystrophin protein. Challenges in the development of this approach are the relatively poor systemic AO delivery and inefficient dystrophin correction in affected non-skeletal muscle tissues, including the heart. We have previously reported impressive heart activity including high-splicing efficiency and dystrophin restoration following a single administration of an arginine-rich cell-penetrating peptide (CPPs conjugated to a phosphorodiamidate morpholino oligonucleotide (PMO: Pip5e-PMO. However, the mechanisms underlying this activity are poorly understood. Here, we report studies involving single dose administration (12.5 mg/kg of derivatives of Pip5e-PMO, consecutively assigned as Pip6-PMOs. These peptide-PMOs comprise alterations to the central hydrophobic core of the Pip5e peptide and illustrate that certain changes to the peptide sequence improves its activity; however, partial deletions within the hydrophobic core abolish its efficiency. Our data indicate that the hydrophobic core of the Pip sequences is critical for PMO delivery to the heart and that specific modifications to this region can enhance activity further. The results have implications for therapeutic PMO development for DMD.

  14. Bombesin-like immunoreactivity in the nervous system of hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Yanaihara, N

    1981-01-01

    With immunocytochemical methods, nerve cells have been detected in Hydra attenuata containing bombesin-like immunoreactivity. These nerve cells are located in ectoderm of all body regions of the animal and are especially abundant in basal disk and tentacles. Radioimmunoassay of extracts of hydra ...

  15. Bombesin-like immunoreactivity in the nervous system of hydra

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Dockray, G J; Yanaihara, N

    1981-01-01

    With immunocytochemical methods, nerve cells have been detected in Hydra attenuata containing bombesin-like immunoreactivity. These nerve cells are located in ectoderm of all body regions of the animal and are especially abundant in basal disk and tentacles. Radioimmunoassay of extracts of hydra...

  16. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G.

    2015-08-18

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  17. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G

    2014-01-28

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  18. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  19. Cysteine-containing peptide tag for site-specific conjugation of proteins

    Science.gov (United States)

    Backer, Marina V.; Backer, Joseph M.

    2008-04-08

    The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety bound to the targeting moiety; the biological conjugate having a covalent bond between the thiol group of SEQ ID NO:2 and a functional group in the binding moiety. The present invention is directed to a biological conjugate, comprising: (a) a targeting moiety comprising a polypeptide having an amino acid sequence comprising the polypeptide sequence of SEQ ID NO:2 and the polypeptide sequence of a selected targeting protein; and (b) a binding moiety that comprises an adapter protein, the adapter protein having a thiol group; the biological conjugate having a disulfide bond between the thiol group of SEQ ID NO:2 and the thiol group of the adapter protein. The present invention is also directed to biological sequences employed in the above biological conjugates, as well as pharmaceutical preparations and methods using the above biological conjugates.

  20. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin.

    Science.gov (United States)

    Zhang, Luzhong; Li, Guicai; Gao, Ming; Liu, Xin; Ji, Bing; Hua, Ruheng; Zhou, Youlang; Yang, Yumin

    2016-08-01

    Recently, chemotherapy-based polymeric nanoparticles have been extensively investigated for solid tumor treatment. Tumor targeted nanoparticles demonstrated great potential for improved accumulation in the tumor tissue, superior anticancer activity and reduced side effects. Thus, inulin-ibuprofen polymer was synthesized by esterification between inulin and ibuprofen, and RGD targeted epirubicin (EPB) loaded nanoparticles were prepared by the self-assembly of inulin-ibuprofen polymer and in situ encapsulation of EPB. RGD conjugated EPB loaded nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The EPB release from the nanoparticles showed pH-dependent profile and accelerated by the decreased pH value, which would favor the effective drug delivery in vivo. Intracellular uptake analysis suggested that RGD conjugated nanoparticles could be easily internalized by the cancer cells. In vitro cytotoxicity revealed that RGD conjugated EPB loaded nanoparticles exhibited the better antitumor efficacy compared with non-conjugated nanoparticles. More importantly, RGD conjugated EPB loaded nanoparticles showed superior anticancer effects and reduced toxicity than free EPB and non-conjugated nanoparticles by in vivo antitumor activity, EPB biodistribution and histology analysis.

  1. Spectrophotometric determination and removal of unchelated europium ions from solutions containing Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates.

    Science.gov (United States)

    Elshan, N G R Dayan; Patek, Renata; Vagner, Josef; Mash, Eugene A

    2014-11-01

    Europium chelates conjugated with peptide ligands are routinely used as probes for conducting in vitro binding experiments. The presence of unchelated Eu ions in these formulations gives high background luminescence and can lead to poor results in binding assays. In our experience, the reported methods for purification of these probes do not achieve adequate removal of unchelated metal ions in a reliable manner. In this work, a xylenol orange-based assay for the quantification of unchelated metal ions was streamlined and used to determine levels of metal ion contamination as well as the success of metal ion removal on attempted purification. We compared the use of Empore chelating disks and Chelex 100 resin for the selective removal of unchelated Eu ions from several Eu-diethylenetriaminepentaacetic acid chelate-peptide conjugates. Both purification methods gave complete and selective removal of the contaminant metal ions. However, Empore chelating disks were found to give much higher recoveries of the probes under the conditions used. Related to the issue of probe recovery, we also describe a significantly more efficient method for the synthesis of one such probe using Rink amide AM resin in place of Tentagel S resin.

  2. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin.

    Science.gov (United States)

    Sun, Wenchao; Fletcher, David; van Heeckeren, Rolf Christiaan; Davis, Pamela B

    2012-09-01

    DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin-streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs.

  3. Computer-based design of novel HIV-1 entry inhibitors: neomycin conjugated to arginine peptides at two specific sites.

    Science.gov (United States)

    Berchanski, Alexander; Lapidot, Aviva

    2009-03-01

    Aminoglycoside-arginine conjugates (AAC and APAC) are multi-target inhibitors of human immunodeficiency virus type-1 (HIV-1). Here, we predict new conjugates of neomycin with two arginine peptide chains binding at specific sites on neomycin [poly-arginine-neomycin-poly-arginine (PA-Neo-PA)]. The rationale for the design of such compounds is to separate two short arginine peptides with neomycin, which may extend the binding region of the CXC chemokine receptor type 4 (CXCR4). We used homology models of CXCR4 and unliganded envelope glycoprotein 120 (HIV-1(IIIB) gp120) and docked PA-Neo-PAs and APACs to these using a multistep docking procedure. The results indicate that PA-Neo-PAs spread over two negatively charged patches of CXCR4. PA-Neo-PA-CXCR4 complexes are energetically more favorable than AACs/APAC-CXCR4 complexes. Notably, our CXCR4 model and docking procedure can be applied to predict new compounds that are either inhibitors of gp120-CXCR4 binding without affecting stromal cell-derived factor 1 alpha (SDF-1 alpha) chemotaxis activity, or inhibitors of SDF-1 alpha-CXCR4 binding resulting in an anti-metastasis effect. We also predict that PA-Neo-PAs and APACs can interfere with CD4-gp120 binding in unliganded conformation.

  4. Conjugation of cholesterol to HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action.

    Directory of Open Access Journals (Sweden)

    Axel Hollmann

    Full Text Available Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC, C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.

  5. Enzyme-triggered delivery of chlorambucil from conjugates based on the cell-penetrating peptide BP16.

    Science.gov (United States)

    Soler, Marta; González-Bártulos, Marta; Figueras, Eduard; Ribas, Xavi; Costas, Miquel; Massaguer, Anna; Planas, Marta; Feliu, Lidia

    2015-02-07

    The undecapeptide KKLFKKILKKL-NH2 (BP16) is a non-toxic cell-penetrating peptide (CPP) that is mainly internalized into cancer cells through a clathrin dependent endocytic mechanism and localizes in late endosomes. Moreover, this CPP is able to enhance the cellular uptake of chlorambucil (CLB) improving its cytotoxicity. In this work, we further explored the cell-penetrating properties of BP16 and those of its arginine analogue BP308. We investigated the influence on the cytotoxicity and on the cellular uptake of conjugating CLB at the N- or the C-terminal end of these undecapeptides. The effect of incorporating the cathepsin B-cleavable sequence Gly-Phe-Leu-Gly in CLB-BP16 and CLB-BP308 conjugates was also evaluated. The activity of CLB was significantly improved when conjugated at the N- or the C-terminus of BP16, or at the N-terminus of BP308. While CLB alone was not active (IC50 of 73.7 to >100 μM), the resulting conjugates displayed cytotoxic activity against CAPAN-1, MCF-7, PC-3, 1BR3G and SKMEL-28 cell lines with IC50 values ranging from 8.7 to 25.5 μM. These results were consistent with the internalization properties observed for the corresponding 5(6)-carboxyfluorescein-labeled conjugates. The presence of the tetrapeptide Gly-Phe-Leu-Gly at either the N- or the C-terminus of CLB-BP16 conjugates further increased the efficacy of CLB (IC50 of 3.6 to 16.2 μM), which could be attributed to its selective release in the lysosomal compartment. Enzymatic assays with cathepsin B showed the release of CLB-Gly-OH from these sequences within a short time. Therefore, the combination of BP16 with an enzymatic cleavable sequence can be used as a drug delivery system for the effective uptake and release of drugs in cancer cells.

  6. Conjugates of amino acids and peptides with 5-o-mycaminosyltylonolide and their interaction with the ribosomal exit tunnel.

    Science.gov (United States)

    Shishkina, Anna; Makarov, Gennady; Tereshchenkov, Andrey; Korshunova, Galina; Sumbatyan, Nataliya; Golovin, Andrey; Svetlov, Maxim; Bogdanov, Alexey

    2013-11-20

    During protein synthesis the nascent polypeptide chain (NC) extends through the ribosomal exit tunnel (NPET). Also, the large group of macrolide antibiotics binds in the nascent peptide exit tunnel. In some cases interaction of NC with NPET leads to the ribosome stalling, a significant event in regulation of translation. In other cases NC-ribosome interactions lead to pauses in translation that play an important role in cotranslational folding of polypeptides emerging from the ribosome. The precise mechanism of NC recognition in NPET as well as factors that determine NC conformation in the ribosomal tunnel are unknown. A number of derivatives of the macrolide antibiotic 5-O-mycaminosyltylonolide (OMT) containing N-acylated amino acid or peptide residues were synthesized in order to study potential sites of NC-NPET interactions. The target compounds were prepared by conjugation of protected amino acids and peptides with the C23 hydroxyl group of the macrolide. These OMT derivatives showed high although varying abilities to inhibit the firefly luciferase synthesis in vitro. Three glycil-containing derivatives appeared to be strong inhibitors of translation, more potent than parental OMT. Molecular dynamics (MD) simulation of complexes of tylosin, OMT, and some of OMT derivatives with the large ribosomal subunit of E. coli illuminated a plausible reason for the high inhibitory activity of Boc-Gly-OMT. In addition, the MD study detected a new putative site of interaction of the nascent polypeptide chain with the NPET walls.

  7. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E

    2010-01-01

    for PNA due to the (inherent) charge neutrality of PNA. However, PEI could function as an efficient scaffold for PNA via chemical conjugation. Accordingly, we modified PEI with the amine-reactive heterobifunctional linker agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) (with and without a PEG...

  8. A novel NGR-conjugated peptide targets DNA damage responses for radiosensitization.

    Science.gov (United States)

    Ma, Jinlu; Zhang, Dan; Ying, Xia; Zhao, Ying; He, Chenchen; Zhu, Qing; Han, Suxia

    2015-01-01

    Radiotherapy is one of the important treatment strategies for patients with advanced hepatocellular carcinomas. Developing novel sensitizers for radiotherapy is a key issue due to the low intrinsic radiosensitivity of hepatocellular carcinomas. It was reported the wild-type NBS1 inhibitory peptide (wtNIP) can increase radiosensitivity in several cancer cell lines by abrogating ATM-NBS1 interaction and interrupting cellular DNA damage response. Here, we developed a novel NGRconjugated peptide (NGR-sR9-wtNIP) through coupling the CNGRC angiogenic vessel-homing peptide NGR with the wtNIP peptide. Fusion peptide was tested for internalization, cytotoxicity in Hep3B cells and for tumor localization, and for toxicity in nude mice bearing human hepatocellular carcinomas xenografts. The radiosensitizing activity of NGR-sR9-wtNIP was investigated as well. We found that NGR-sR9-wtNIP can inhibit irradiation induced NBS1 phosphorylation and induce radiosensitization in Hep3B cells. When combined with IR, NGR-sR9-wtNIP suppressed tumor growth obviously in xenograft mice. In addition, the fusion peptide localized in tumor tissue specifically and barely led to any side effects on mice. Taken together, our data strongly suggest that NGRsR9- wtNIP has radiosensitizing potential for radiotherapy of hepatocellular carcinomas.

  9. Electroporation-based delivery of cell-penetrating peptide conjugates of peptide nucleic acids for antisense inhibition of intracellular bacteria.

    Science.gov (United States)

    Ma, Sai; Schroeder, Betsy; Sun, Chen; Loufakis, Despina Nelie; Cao, Zhenning; Sriranganathan, Nammalwar; Lu, Chang

    2014-10-01

    Cell penetrating peptides (CPPs) have been used for a myriad of cellular delivery applications and were recently explored for delivery of antisense agents such as peptide nucleic acids (PNAs) for bacterial inhibition. Although these molecular systems (i.e. CPP-PNAs) have shown ability to inhibit growth of bacterial cultures in vitro, they show limited effectiveness in killing encapsulated intracellular bacteria in mammalian cells such as macrophages, presumably due to difficulty involved in the endosomal escape of the reagents. In this report, we show that electroporation delivery dramatically increases the bioavailability of CPP-PNAs to kill Salmonella enterica serovar Typhimurium LT2 inside macrophages. Electroporation delivers the molecules without involving endocytosis and greatly increases the antisense effect. The decrease in the average number of Salmonella per macrophage under a 1200 V cm(-1) and 5 ms pulse was a factor of 9 higher than that without electroporation (in an experiment with a multiplicity of infection of 2 : 1). Our results suggest that electroporation is an effective approach for a wide range of applications involving CPP-based delivery. The microfluidic format will allow convenient functional screening and testing of PNA-based reagents for antisense applications.

  10. Detection of Cancer Cell Death Mediated by a Synthetic Granzyme B-like Peptide Fluorescent Conjugate and the same Peptide Binding in Bacteria.

    Science.gov (United States)

    Lo, Wai Chun Jennifer; Luther, Donald Gene

    2014-03-01

    Granzyme-mediated apoptosis, supported by pore-forming perforin, plays an important role in CD8+ T lymphocytes (CTL)-dependent cellular immunity protection against both cancer and viral infection. Quantitative and qualitative problems with CTL are potential contributing factors to disease progression. The feasibility of developing CTL-independent cellular immunity is desired but must first overcome the barrier of CTL-independent target cell recognition. Granzyme B with its strong pro-apoptotic activity in many different target cells is investigated for use in the CTL-independent cellular immunity approach, and granzyme B or its bioactive peptides without the enzymatic activity are more desirable for use. Native granzyme B with enzymatic activity is usually investigated in cancer cells for its mediation of apoptosis by detection of DNA fragmentation. Detection of cell death mediated by such peptides in cancer cells is needed to demonstrate the potential therapeutic purposes. We show with never-before-seen microscopic images using fluorescence microscopy that a synthetic granzyme B-like peptide fluorescent conjugate (GP1R) can: 1) mediate cell death of different cancer cells via membrane extrusion, 2) bind to constitutively expressed binding targets in different cancer cells and bacteria, and 3) promote bacterial phagocytosis. The putative binding targets may serve as a universal pathologic biomarker detectable by GP1R. Our data taken together demonstrate the potential applications of GP1R for use in CTL-independent target cell recognition and target cell death induction. It may lead to development of rapid targeted detection and new treatment of cancer, viral and bacterial infections. The new treatment may show mutual benefits for two or more diseases.

  11. IL-6 Antibody and RGD Peptide Conjugated Poly(amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells.

    Science.gov (United States)

    Mekuria, Shewaye Lakew; Debele, Tilahun Ayane; Chou, Hsiao-Ying; Tsai, Hsieh-Chih

    2016-01-14

    In this study, PAMAM dendrimer (G4.5) was conjugated with two targeting moieties, IL-6 antibody and RGD peptide (G4.5-IL6 and G4.5-RGD conjugates). Doxorubicin anticancer drug was physically loaded onto G4.5-IL6 and G4.5-RGD with the encapsulation efficiency of 51.3 and 30.1% respectively. The cellular internalization and uptake efficiency of G4.5-IL6/DOX and G4.5-RGD/DOX complexes was observed and compared by confocal microscopy and flow cytometry using HeLa cells, respectively. The lower IC50 value of G4.5-IL6/DOX in comparison to G4.5-RGD/DOX is indication that higher drug loading and faster drug release rate corresponded with greater cytotoxicity. The cytotoxic effect was further verified by increment in late apoptotic/necrotic cells due to delivery of drug through receptor-mediated endocytosis. On the basis of these results, G4.5-IL6 is a better suited carrier for targeted drug delivery of DOX to cervical cancer cells.

  12. E-selectin binding peptide-polymer-drug conjugates and their selective cytotoxicity against vascular endothelial cells.

    Science.gov (United States)

    Shamay, Yosi; Paulin, Denise; Ashkenasy, Gonen; David, Ayelet

    2009-11-01

    The hypothesis that E-selectin on activated endothelial cells could be exploited to selectively target drug delivery systems to tumor vasculature was investigated. HPMA copolymer-doxorubicin (DOX) conjugates displaying the high affinity E-selectin binding peptide (Esbp, primary sequence DITWDQLWDLMK) as targeting ligand were synthesized and tested for their cytotoxicity and intracellular fate in human immortalized vascular endothelial cells (IVECs). The targeted copolymers displaying multiple copies of Esbp are bound to surface-associated E-selectin with affinity at the low nano-molar range, three orders of magnitude stronger than the free Esbp. In addition, the binding affinity of the HPMA-Esbp copolymers to E-selectin expressing IVECs was found to be 10-fold superior relative to non-targeted copolymers. Once bound, E-selectin facilitated rapid internalization and lysosomal trafficking of the copolymers. This lysosomotropism of HPMA-Esbp-bound DOX copolymers was then correlated with a 150-fold higher cytotoxicity relative to non-targeted HPMA-DOX conjugates. These findings strongly support the emerging role of E-selectin as a viable target for controlled drug delivery in cancer therapy.

  13. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    Science.gov (United States)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  14. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    Science.gov (United States)

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca(2+) in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  15. A Bombesin-Shepherdin Radioconjugate Designed for Combined Extra- and Intracellular Targeting

    Directory of Open Access Journals (Sweden)

    Christiane A. Fischer

    2014-05-01

    Full Text Available Radiolabeled peptides which target tumor-specific membrane structures of cancer cells represent a promising class of targeted radiopharmaceuticals for the diagnosis and therapy of cancer. A potential drawback of a number of reported radiopeptides is the rapid washout of a substantial fraction of the initially delivered radioactivity from cancer cells and tumors. This renders the initial targeting effort in part futile and results in a lower imaging quality and efficacy of the radiotracer than achievable. We are investigating the combination of internalizing radiopeptides with molecular entities specific for an intracellular target. By enabling intracellular interactions of the radioconjugate, we aim at reducing/decelerating the externalization of radioactivity from cancer cells. Using the “click-to-chelate” approach, the 99mTc-tricarbonyl core as a reporter probe for single-photon emission computed tomography (SPECT was combined with the binding sequence of bombesin for extracellular targeting of the gastrin-releasing peptide receptor (GRP-r and peptidic inhibitors of the cytosolic heat shock 90 protein (Hsp90 for intracellular targeting. Receptor-specific uptake of the multifunctional radioconjugate could be confirmed, however, the cellular washout of radioactivity was not improved. We assume that either endosomal trapping or lysosomal degradation of the radioconjugate is accountable for these observations.

  16. Structure of Peptide Sex Pheromone Receptor PrgX and PrgX/Pheromone Complexes and Regulation of Conjugation in Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Shi,K.; Brown, C.; Gu, Z.; Kozlowicz, B.; Dunny, G.; Ohlendorf, D.; Earhart, C.

    2005-01-01

    Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone binding destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.

  17. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells.

    Science.gov (United States)

    Park, See-Hyoung; Yoon, Young Ii; Moon, Hyoungwon; Lee, Ga-Hyun; Lee, Byung-Heon; Yoon, Tae-Jong; Lee, Hak Jong

    2016-07-01

    Gas (SF6)-filled microbubbles (MBs) were prepared by emulsion and solvent-evaporation method. The prepared MBs were further conjugated with doxorubicin (Dox)-loaded nano-sized liposome and peptide ligands to interleukin-4 receptor (IL4R) for targeting brain tumor cells. The final MB-liposome (Dox)-IL4R targeting peptide ligand [MB-Lipo (Dox)-IL4RTP] had a spherical structure with the mean size of 1,500 nm. The MB-Lipo (Dox)‑IL4RTP exhibited cellular uptake in U87MG brain tumor cells (a brain tumor cell line expressing strongly IL4R) with frequency ultrasound energy suggesting that MB-Lipo (Dox)‑IL4RTP provided effective targeting ability for brain tumor cells. In addition, WST-1 assay results showed that MB-Lipo (Dox)‑IL4RTP inhibited the proliferation of U87MG cells IL4R‑dependently. This was confirmed by western blotting of γH2AX, phospho (Ser15)-p53, p53 and p21 which are signal transduction proteins involved in DNA damage response and cell cycle arrest. Taken together, these results indicate that MB-Lipo (Dox)-IL4RTP represents a promising ultrasonic contrast agent for tumor-targeting ultrasonic imaging.

  18. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery.

    Science.gov (United States)

    Lin, Wen; Xie, Xiangyang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yang

    2016-01-01

    A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment.

  19. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery

    Science.gov (United States)

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897

  20. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Science.gov (United States)

    Lopez-Abarrategui, Carlos; Figueroa-Espi, Viviana; Lugo-Alvarez, Maria B; Pereira, Caroline D; Garay, Hilda; Barbosa, João ARG; Falcão, Rosana; Jiménez-Hernández, Linnavel; Estévez-Hernández, Osvaldo; Reguera, Edilso; Franco, Octavio L; Dias, Simoni C; Otero-Gonzalez, Anselmo J

    2016-01-01

    Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely studied in biomedicine due to their physicochemical properties. The citric acid-modified manganese ferrite nanoparticles used in this study were characterized by high-resolution transmission electron microscopy, which confirmed the formation of nanocrystals of approximately 5 nm diameter. These nanoparticles were able to inhibit Candida albicans growth in vitro. The minimal inhibitory concentration was 250 µg/mL. However, the nanoparticles were not capable of inhibiting Gram-negative bacteria (Escherichia coli) or Gram-positive bacteria (Staphylococcus aureus). Finally, an antifungal peptide (Cm-p5) from the sea animal Cenchritis muricatus (Gastropoda: Littorinidae) was conjugated to the modified manganese ferrite nanoparticles. The antifungal activity of the conjugated nanoparticles was higher than their bulk counterparts, showing a minimal inhibitory concentration of 100 µg/mL. This conjugate proved to be nontoxic to a macrophage cell line at concentrations that showed antimicrobial activity. PMID:27563243

  1. Synthesis of antifungal vaccines by conjugation of β-1,2 trimannosides with T-cell peptides and covalent anchoring of neoglycopeptide to tetanus toxoid.

    Science.gov (United States)

    Cartmell, Jonathan; Paszkiewicz, Eugenia; Dziadek, Sebastian; Tam, Pui-Hang; Luu, Thanh; Sarkar, Susmita; Lipinski, Tomasz; Bundle, David R

    2015-02-11

    Selective strategies for the construction of novel three component glycoconjugate vaccines presenting Candida albicans cell wall glycan (β-1,2 mannoside) and polypeptide fragments on a tetanus toxoid carrier are described. The first of two conjugation strategies employed peptides bearing an N-terminal thiopropionyl residue for conjugation to a trisaccharide equipped with an acrylate linker and a C-terminal S-acetyl thioglycolyl moiety for subsequent linking of neoglycopeptide to bromoacetylated tetanus toxoid. Michael addition of acrylate trisaccharides to peptide thiol under mildly basic conditions gave a mixture of N- and C- terminal glyco-peptide thioethers. An adaptation of this strategy coordinated S-acyl protection with anticipated thioester exchange equilibria. This furnished a single chemically defined fully synthetic neoglycopeptide conjugate that could be anchored to a tetanus toxoid carrier and avoids the introduction of exogenous antigenic groups. The second strategy retained the N-terminal thiopropionyl residue but replaced the C-terminal S-acetate functionality with an azido group that allowed efficient, selective formation of neoglycopeptide thioethers and subsequent conjugation of these with propargylated tetanus toxoid, but introduced potentially antigenic triazole linkages.

  2. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells

    DEFF Research Database (Denmark)

    Hansen, Line; Unmack Larsen, Esben Kjær; Nielsen, Erik Holm

    2013-01-01

    Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted...... towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor...... to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient...

  3. Brain histamine mediates the bombesin-induced central activation of sympatho-adrenomedullary outflow.

    Science.gov (United States)

    Okuma, Y; Yokotani, K; Murakami, Y; Osumi, Y

    1997-01-01

    Intracerebroventricular (i.c.v.) administration of bombesin (0.3 nmol) increased plasma levels of both adrenaline and noradrenaline in urethane anesthetized rats. These bombesin-induced increases were inhibited by i.c.v. pretreatment with pyrilamine, an H1-receptor antagonist. Ranitidine, an H2-receptor antagonist also inhibited the increase of adrenaline, however, its effective dose was much larger than that of pyrilamine. Furthermore, the bombesin-induced increase of noradrenaline was not effectively inhibited by ranitidine. In the next series, turnover of histamine was assessed by measuring accumulation of tele-methylhistamine (t-MH), a major metabolite of brain histamine. I.c.v. administration of bombesin (0.3-3 nmol) increased turnover of hypothalamic histamine, while its intravenous administration was without effect. The present results suggest that the bombesin-induced central activation of sympatho-adrenomedullary outflow is probably, at least in part, mediated through brain histaminergic neurons.

  4. Interaction of bombesin and its fragments with gold nanoparticles analyzed using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Tąta, Agnieszka; Szkudlarek, Aleksandra; Kim, Younkyoo; Proniewicz, Edyta

    2017-02-01

    This work demonstrates the application of commercially available stable surface composed of gold nanograins with diameters ranging from 70 to 226 nm deposited onto silicon wafer for surface-enhanced Raman scattering investigations of biologically active compounds, such as bombesin (BN) and its fragments. BN is an important neurotransmitter involved in a complex signaling pathways and biological responses; for instance, hypertensive action, contractive on uterus, colon or ileum, locomotor activity, stimulation of gastric and insulin secretion as well as growth promotion of various tumor cell lines, including: lung, prostate, stomach, colon, and breast. It has also been shown that 8-14 BN C-terminal fragment partially retains the biological activity of BN. The SERS results for BN and its fragment demonstrated that (1) three amino acids from these peptides sequence; i.e., L-histidine, L-methionine, and L-tryptophan, are involved in the interaction with gold coated silicon wafer and (2) the strength of these interactions depends upon the aforementioned amino acids position in the peptide sequence.

  5. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Shabanpoor, Fazel; McClorey, Graham; Saleh, Amer F; Järver, Peter; Wood, Matthew J A; Gait, Michael J

    2015-01-01

    The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage ('click chemistry') in the other. The most active bi-specific CPP-PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP-PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  7. Improved Anticancer Photothermal Therapy Using the Bystander Effect Enhanced by Antiarrhythmic Peptide Conjugated Dopamine-Modified Reduced Graphene Oxide Nanocomposite.

    Science.gov (United States)

    Yu, Jiantao; Lin, Yu-Hsin; Yang, Lingyan; Huang, Chih-Ching; Chen, Liliang; Wang, Wen-Cheng; Chen, Guan-Wen; Yan, Junyan; Sawettanun, Saranta; Lin, Chia-Hua

    2017-01-01

    Despite tremendous efforts toward developing novel near-infrared (NIR)-absorbing nanomaterials, improvement in therapeutic efficiency remains a formidable challenge in photothermal cancer therapy. This study aims to synthesize a specific peptide conjugated polydopamine-modified reduced graphene oxide (pDA/rGO) nanocomposite that promotes the bystander effect to facilitate cancer treatment using NIR-activated photothermal therapy. To prepare a nanoplatform capable of promoting the bystander effect in cancer cells, we immobilized antiarrhythmic peptide 10 (AAP10) on the surface of dopamine-modified rGO (AAP10-pDA/rGO). Our AAP10-pDA/rGO could promote the bystander effect by increasing the expression of connexin 43 protein in MCF-7 breast-cancer cells. Because of its tremendous ability to absorb NIR absorption, AAP10-pDA/rGO offers a high photothermal effect under NIR irradiation. This leads to a massive death of MCF-7 cells via the bystander effect. Using tumor-bearing mice as the model, it is found that NIR radiation effectively ablates breast tumor in the presence of AAP10-pDA/rGO and inhibits tumor growth by ≈100%. Therefore, this research integrates the bystander and photothermal effects into a single nanoplatform in order to facilitate an efficient photothermal therapy. Furthermore, our AAP10-pDA/rGO, which exhibits both hyperthermia and the bystander effect, can prevent breast-cancer recurrence and, therefore, has great potential for future clinical and research applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Eysturskard, Jonhard; Nielsen, Peter E

    2010-01-01

    ABSTRACT: BACKGROUND: Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human ca...... method to evaluate the cellular function of MDM2 splice variants as well as a promising approach for discovery of mdm2 targeted anticancer drugs.......ABSTRACT: BACKGROUND: Modulation of pre-mRNA splicing by antisense molecules is a promising mechanism of action for gene therapeutic drugs. In this study, we have examined the potential of peptide nucleic acid (PNA) 9-aminoacridine conjugates to modulate the pre-mRNA splicing of the mdm2 human...

  9. Sequence-selective DNA recognition and enhanced cellular up-take by peptide-steroid conjugates.

    Science.gov (United States)

    Ruiz García, Yara; Iyer, Abhishek; Van Lysebetten, Dorien; Pabon, Y Vladimir; Louage, Benoit; Honcharenko, Malgorzata; De Geest, Bruno G; Smith, C I Edvard; Strömberg, Roger; Madder, Annemieke

    2015-12-25

    Several GCN4 bZIP TF models have previously been designed and synthesized. However, the synthetic routes towards these constructs are typically tedious and difficult. We here describe the substitution of the Leucine zipper domain of the protein by a deoxycholic acid derivative appending the two GCN4 binding region peptides through an optimized double azide-alkyne cycloaddition click reaction. In addition to achieving sequence specific dsDNA binding, we have investigated the potential of these compounds to enter cells. Confocal microscopy and flow cytometry show the beneficial influence of the steroid on cell uptake. This unique synthetic model of the bZIP TF thus combines sequence specific dsDNA binding properties with enhanced cell-uptake. Given the unique properties of deoxycholic acid and the convergent nature of the synthesis, we believe this work represents a key achievement in the field of TF mimicry.

  10. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    Science.gov (United States)

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  11. Signal transduction of bombesin-induced circular smooth muscle cell contraction in cat esophagus

    Institute of Scientific and Technical Information of China (English)

    Sung-Uk Park; Chang-Yell Shin; Jung-Su Ryu; Hyen-O La; Sun-Young Park; Hyun-Ju Song; Young-Sil Min; Dong-Seok Kim; Uy-Dong Sohn

    2006-01-01

    AIM: To investigate the mechanism of bombesin-induced circular smooth muscle cell contraction in cat esophagus.METHODS: Specific G protein or phospholipase C involved in cat esophagus contraction was identified,muscle cells were permeabilized with saponin. After permeabilization of muscle cells, the Gi3 antibody inhibited bombesin-induced smooth muscle cell contraction.RESULTS: Incubation of permeabilized circular muscle cells with PLC-β3 antibody could inhibit bombesin-induced contraction. H-7, chelerythrine (PKC inhibitor)and genistein (protein tyrosine kinase inhibitor) inhibited bombesin-induced contraction, but DAG kinase inhibitor,R59949, could not inhibit it. To examine which mitogenactivated protein kinase (MAPK) was involved in bombesin-induced contraction, the specific MAPK inhibitors (MEK inhibitor, PD98059 and p38 MAPK inhibitor, SB202190)were used. Preincubation of PD98059 blocked the contraction induced by bombesin in a concentration-dependent manner. However, SB202190 had no effects on contraction.CONCLUSION: Bombesin-induced circular muscle cell contraction in cat esophagus is madiated via a PKC or a PTK-dependent pathway or p44/p42 MAPK pathway.

  12. Sensitizing basal-like breast cancer to chemotherapy using nanoparticles conjugated with interference peptide

    Science.gov (United States)

    Sorolla, A.; Ho, D.; Wang, E.; Evans, C. W.; Ormonde, C. F. G.; Rashwan, R.; Singh, R.; Iyer, K. Swaminathan; Blancafort, P.

    2016-04-01

    Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting.Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary

  13. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    Full Text Available Feng-Ying Chen,1 Jing-Jing Yan,1 Han-Xi Yi,2 Fu-Qiang Hu,2 Yong-Zhong Du,2 Hong Yuan,2 Jian You,2 Meng-Dan Zhao1 1Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2College of Pharmaceutical Science, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Nowadays, a real challenge in cancer therapy is to design drug delivery systems that can achieve high concentrations of drugs at the target site for improved therapeutic effect with reduced side effects. In this research, we designed and synthesized a homing peptide-(TNYLFSPNGPIA, TNYL modified chitosan-g-stearate (CS polymer micelle (named T-CS for targeting delivery. The peptide displayed specific binding affinity to EphB4 which is a member of the Eph family of receptor tyrosine protein kinases. The amphiphilic polymer T-CS can gather into micelles by themselves in an aqueous environment with a low critical micelle concentration value (91.2 µg/L and nano-scaled size (82.1±2.8 nm. The drug encapsulation efficiency reached 86.43% after loading the hydrophobic drug doxorubicin (DOX. The cytotoxicity of T-CS/DOX against SKOV3 cells was enhanced by approximately 2.3-fold when compared with CS/DOX. The quantitative and qualitative analysis for cellular uptake indicated that TNYL modification can markedly increase cellular internalization in the EphB4-overexpressing SKOV3 cell line, especially with a short incubation time. It is interesting that relatively higher uptake of the T-CS/DOX micelles by SKOV3 cells (positive-EphB4 than A549 cells (negative-EphB4 was observed when the two cells were co-incubated. Furthermore, in vivo distribution experiment using a bilateral-tumor model showed that there was more fluorescence accumulation in the SKOV3 tumor than in the A549 tumor over the whole experiment. These results suggest that TNYL-modified CS micelles may be promising drug carriers as targeting therapy for the EphB4-overexpressing

  14. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Anila Mathew

    Full Text Available Alzheimer's disease is a growing concern in the modern world. As the currently available medications are not very promising, there is an increased need for the fabrication of newer drugs. Curcumin is a plant derived compound which has potential activities beneficial for the treatment of Alzheimer's disease. Anti-amyloid activity and anti-oxidant activity of curcumin is highly beneficial for the treatment of Alzheimer's disease. The insolubility of curcumin in water restricts its use to a great extend, which can be overcome by the synthesis of curcumin nanoparticles. In our work, we have successfully synthesized water-soluble PLGA coated- curcumin nanoparticles and characterized it using different techniques. As drug targeting to diseases of cerebral origin are difficult due to the stringency of blood-brain barrier, we have coupled the nanoparticle with Tet-1 peptide, which has the affinity to neurons and possess retrograde transportation properties. Our results suggest that curcumin encapsulated-PLGA nanoparticles are able to destroy amyloid aggregates, exhibit anti-oxidative property and are non-cytotoxic. The encapsulation of the curcumin in PLGA does not destroy its inherent properties and so, the PLGA-curcumin nanoparticles can be used as a drug with multiple functions in treating Alzheimer's disease proving it to be a potential therapeutic tool against this dreaded disease.

  15. Effect of Peptide Sequences on Supramolecular Interactions of Naphthaleneimide/Tripeptide Conjugates.

    Science.gov (United States)

    Yeh, Mei-Yu; Huang, Ching-Ting; Lai, Tsung-Sheng; Chen, Fang-Yi; Chu, Nien-Tzu; Tseng, Dion Tzu-Huan; Hung, Shih-Chieh; Lin, Hsin-Chieh

    2016-08-02

    In this study, we reported a significant difference in the supramolecular hydrogelation of newly discovered NI-GFF (NI-Gly-l-Phe-l-Phe) and NI-FFG (NI-l-Phe-l-Phe-Gly) on the basis of their phase diagrams. With a small difference in the peptide chain between NI-GFF and NI-FFG, we observed a significant difference in their self-assembly properties; NI-GFF formed a stable gel at neutral pH, whereas NI-FFG did not, under the same conditions. From spectroscopic and computational studies, intermolecular π-π interactions and extended hydrogen bonding interactions might reinforce the intermolecular interactions of NI-GFF, which may facilitate the formation of the self-assembled nanostructures and the hydrogel. In addition, the aggregation-induced emission (AIE)-active NI-GFF reveals relatively good biocompatibility compared with that of NI-FFG for two commonly used cell lines, suggesting that it is a promising candidate for use as a supramolecular material in biomedical applications. Our results highlight the importance of tripeptide sequences in a self-assembling hydrogel system.

  16. Sensitizing basal-like breast cancer to chemotherapy using nanoparticles conjugated with interference peptide.

    Science.gov (United States)

    Sorolla, A; Ho, D; Wang, E; Evans, C W; Ormonde, C F G; Rashwan, R; Singh, R; Iyer, K Swaminathan; Blancafort, P

    2016-04-28

    Basal-like breast cancers are highly aggressive malignancies associated with very poor prognosis. Although these cancers may initially respond to first-line treatment, they become highly resistant to standard chemotherapy in the metastatic setting. Chemotherapy resistance in basal-like breast cancers is associated with highly selective overexpression of the homeobox transcription factor Engrailed 1 (EN1). Herein, we propose a novel therapeutic strategy using poly(glycidyl methacrylate) nanoparticles decorated with poly(acrylic acid) that enable dual delivery of docetaxel and interference peptides designed to block or inhibit EN1 (EN1-iPep). We demonstrate that EN1-iPep is highly selective in inducing apoptotic cell death in basal-like cancer cells with negligible effects in a non-neoplastic human mammary epithelial cell line. Furthermore, we show that treatment with EN1-iPep results in a highly synergistic pharmacological interaction with docetaxel in inhibiting cancer cell growth. The incorporation of these two agents in a single nanoformulation results in greater anticancer efficacy than current nanoparticle-based treatments used in the clinical setting.

  17. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    Anna Lucia Tornesello

    2017-08-01

    Full Text Available Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc., produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.

  18. Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ives Kirk

    2011-07-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 and the bombesin (BBS-like peptide, gastrin-releasing peptide (GRP, have been implicated in the progression of hormone-refractory prostate cancer; however, a mechanistic link between the bioactive peptide and COX-2 expression in prostate cells has not been made. Results We report that BBS stimulates COX-2 mRNA and protein expression, and the release of prostaglandin E2 from the GRP receptor (GRPR-positive, androgen-insensitive prostate cancer cell line, PC-3. BBS-stimulated COX-2 expression is mediated, in part, by p38MAPK and PI3 kinase (PI3K/Akt pathways, and blocked by a GRPR antagonist. The PI3K/Akt pathway couples GRPR to the transcription factor, activator protein-1 (AP-1, and enhanced COX-2 promoter activity. Although BBS stimulates nuclear factor-kappaB (NF-κB in PC-3, NF-κB does not regulate GRPR-mediated COX-2 expression. The p38MAPK pathway increases BBS-stimulated COX-2 expression by slowing the degradation of COX-2 mRNA. Expression of recombinant GRPR in the androgen-sensitive cell line LNCaP is sufficient to confer BBS-stimulated COX-2 expression via the p38MAPK and PI3K/Akt pathways. Conclusions Our study establishes a mechanistic link between GRPR activation and enhanced COX-2 expression in prostate cancer cell lines, and suggests that inhibiting GRPR may, in the future, provide an effective therapeutic alternative to non-steroidal anti-inflammatory drugs for inhibiting COX-2 in patients with recurrent prostate cancer.

  19. Mechanisms underlying anorexia after microinjection of bombesin into the lateral cerebroventricle.

    Science.gov (United States)

    Tsushima, Hiromi; Mori, Mayumi

    2005-02-01

    Intracerebroventricular (i.c.v.) injections of bombesin (BN) and gastrin-releasing peptide (GRP) dose-dependently decreased food intake in male Wistar rats fasted for 17 h. Neuromedin B (NMB) did not show any effect on food intake. After BN administration, locomotor activity did not significantly change, compared with a vehicle-injected group. The anorexia induced by BN (0.3 microg) was perfectly inhibited by pretreatment with a GRP-receptor antagonist, [D-Tyr(6)]BN(6-13) methyl ester (10 microg), an NO synthase inhibitor, L-nitro-arginine (30 microg), and a PKG inhibitor, H-9 (2 microg). The cGMP concentration in the hypothalamus increased 1 h after administration when compared with the vehicle-injected group. On the other hand, an NMB-receptor antagonist, BIM23127 (10 microg), and the protein kinase (PK) C inhibitors, chelerythrine (2 microg) and Go6983 (2 microg), inhibited only the late phase of the anorexia. A PKC activator, phorbol 12, 13-dibutyrate (3 microg), injected into the ventricle decreased food intake. These findings suggest that BN suppresses food intake mainly mediated through the GRP receptor and NO-cGMP-PKG pathway, and NMB receptor and PKC is partly involved in the late phase of the anorexia.

  20. Experimental obstructive jaundice alters claudin-4 expression in intestinal mucosa: Effect of bombesin and neurotensin

    Institute of Scientific and Technical Information of China (English)

    Stelios F Assimakopoulos; Constantine E Vagianos; Aristides S Charonis; Ilias H Alexandris; Iris Spiliopoulou; Konstantinos C Thomopoulos; Vassiliki N Nikolopoulou; Chrisoula D Scopa

    2006-01-01

    AIM: To investigate the influence of experimental obstructive jaundice and exogenous bombesin (BBS) and neurotensin (NT) administration on the expression of the tight junction (TJ)-protein claudin-4 in intestinal epithelium of rats.METHODS: Forty male Wistar rats were randomly divided into five groups: Ⅰ = controls, Ⅱ = sham operated, Ⅲ = bile duct ligation (BDL), Ⅳ = BDL+BBS (30 μg/kg per d), V = BDL+NT (300 μg/kg per d). At the end of the experiment on d 10, endotoxin was measured in portal and aortic blood. Tissue sections of the terminal ileum were examined histologically and immunohistochemically for evaluation of claudin-4 expression in intestinal epithelium.RESULTS: Obstructive jaundice led to intestinal barrier failure demonstrated by significant portal and aortic endotoxemia. Claudin-4 expression was significantly increased in the upper third of the villi in jaundiced rats and an upregulation of its lateral distribution was noted.Administration of BBS or NT restored claudin-4 expression to the control state and significantly reduced portal and aortic endotoxemia.CONCLUSION: Experimental obstructive jaundice increases claudin-4 expression in intestinal epithelium,which may be a key factor contributing to the disruption of the mucosal barrier. Gut regulatory peptides BBS and NT can prevent this alteration and reduce portal and sysremic endotoxemia.

  1. Synthesis and Antibody Recognition of Cyclic Epitope Peptides, Together with Their Dimer and Conjugated Derivatives Based on Residues 9-22 of Herpes Simplex Virus Type 1 Glycoprotein D

    NARCIS (Netherlands)

    Jakab, Annamaria; Schlosser, Gitta; Feijlbrief, Matty; Welling-Wester, Sytske; Manea, Marilena; Vila-Perello, Miquel; Andreu, David; Ferenc Hudecz, [No Value; Mezo, Gabor

    2009-01-01

    The synthesis of new cyclic peptides comprising the 9-22 epitope (9)LKMADPNRFRGKDL(22) sequence derived from HSV gD-1 is reported. In addition, we describe procedures for the preparation of cyclic peptide dimers and conjugates with an oligotuftsin derivative carrier. The binding of a monoclonal anti

  2. Melphalan, alone or conjugated to an FSH-β peptide, kills murine testicular cells in vitro and transiently suppresses murine spermatogenesis in vivo.

    Science.gov (United States)

    Amory, John K; Hong, SungWoo; Yu, Xiaozhong; Muller, Charles H; Faustman, Elaine; Goldstein, Alex

    2014-07-01

    New approaches to sterilizing male animals are needed to control captive and wild animal populations. We sought to develop a nonsurgical method of permanent sterilization for male animals by administering the gonadotoxicant melphalan conjugated to peptides derived from the β-chain of FSHβ. We hypothesized that conjugating melphalan to FSHβ peptides would magnify the gonadotoxic effects of melphalan while minimizing systemic toxicity. The ability of conjugates of melphalan and FSHβ peptides to kill murine testicular cells was first tested in vitro in a three-dimensional testicular cell coculture system. In this system, melphalan caused considerable cell death as measured both by increases in lactate dehydrogenase concentrations in the culture supernatant and direct visualization of the cultures. Of the conjugates tested, melphalan conjugated to a 20-amino acid peptide derived from human FSHβ consisting of amino acids 33 to 53 (FSHβ (33-53)-melphalan) was very potent, with cell cytotoxicity and lactate dehydrogenase release roughly one-half that of melphalan. The effects of melphalan and FSHβ (33-53)-melphalan on spermatogenesis were then tested in vivo in mature C56Bl/6 male mice. Four weeks after intraperitoneal injection, all mice treated with either FSHβ (33-53)-melphalan or melphalan had approximately 75% reductions in testicular spermatid counts compared with control animals. Testicular histology revealed significant reduction in mature spermatids and spermatocytes in most tubules. However, 12 weeks after the injection, testicular spermatid counts and histology were similar to controls, except in one animal receiving FSHβ (33-53)-melphalan that had no apparent spermatogenesis. We conclude that melphalan and FSHβ (33-53)-melphalan are potent gonadotoxicants in male mice resulting in marked suppression of spermatogenesis 4 weeks after a single intraperitoneal injection. However, this effect is transient in most mice as spermatogenesis is similar to

  3. Peripheral injection of bombesin induces c-Fos in NUCB2/nesfatin-1 neurons.

    Science.gov (United States)

    Engster, Kim-Marie; Kroczek, Arthur L; Rose, Matthias; Stengel, Andreas; Kobelt, Peter

    2016-10-01

    As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (pNTS (p0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (pNTS (pNTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake.

  4. In Vivo Study of Ligament-Bone Healing after Anterior Cruciate Ligament Reconstruction Using Autologous Tendons with Mesenchymal Stem Cells Affinity Peptide Conjugated Electrospun Nanofibrous Scaffold

    Directory of Open Access Journals (Sweden)

    Jingxian Zhu

    2013-01-01

    Full Text Available Electrospinning nanofibrous scaffold was commonly used in tissue regeneration recently. Nanofibers with specific topological characteristics were reported to be able to induce osteogenic differentiation of MSCs. In this in vivo study, autologous tendon grafts with lattice-like nanofibrous scaffold wrapping at two ends of autologous tendon were used to promote early stage of ligament-bone healing after rabbit ACL reconstruction. To utilize native MSCs from bone marrow, an MSCs specific affinity peptide E7 was conjugated to nanofibrous meshes. After 3 months, H-E assessment and specific staining of collagen type I, II, and III showed direct ligament-bone insertion with typical four zones (bone, calcified fibrocartilage, fibrocartilage, and ligament in bioactive scaffold reconstruction group. Diameters of bone tunnel were smaller in nanofibrous scaffold conjugated E7 peptide group than those in control group. The failure load of substitution complex also indicated a stronger ligament-bone insertion healing using bioactive scaffold. In conclusion, lattice-like nanofibrous scaffold with specific MSCs affinity peptide has great potential in promoting early stage of ligament-bone healing after ACL reconstruction.

  5. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.

    Science.gov (United States)

    Sekar, Babitha; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai

    2017-09-04

    A biomimetic Zein polydopamine (PDA) based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide (TiO2 ) nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to TiO2 nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nano topographical stimulation of electrospun Zein PDA nanofibers were examined for its enhanced osteogenic expression of human fetal osteoblast (hFOB) cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell - biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. This article is protected by copyright. All rights reserved.

  6. Ultraviolet Resonance Raman spectroscopy used to study formulations of salmon calcitonin, a starch-peptide conjugate and TGF-β3.

    Science.gov (United States)

    Patois, E; Larmour, I A; Bell, S E J; Palais, C; Capelle, M A H; Gurny, R; Arvinte, T

    2012-06-01

    Ultraviolet Resonance Raman (UVRR) spectroscopy with excitation at 244 nm was investigated here as a possible useful tool for fast characterization of biopharmaceuticals. Studies were performed on three protein drugs: salmon calcitonin (sCT), starch-peptide conjugate, and transforming growth factor-β3 (TGF-β3) adsorbed onto solid granules of tricalcium phosphate (TCP). Secondary structure of sCT was investigated for solutions of 0.5mg/mL up to 200mg/mL, regardless of the turbidity or aggregation states. An increase in β-sheet content was detected when sCT solutions aggregated. UVRR spectroscopy also detected a small amount of residual organic solvent in a starch-peptide conjugate solution containing only 40 μg/mL of peptide. UVRR spectroscopy was then used to characterize a protein, TGF-β3, adsorbed onto solid granules of TCP at 50 and 250 μg/cm(3). This study shows that UVRR is suitable to characterize the protein formulations in a broad range of concentrations, in liquid, aggregated, and solid states.

  7. Depicting Binding-Mediated Translocation of HIV-1 Tat Peptides in Living Cells with Nanoscale Pens of Tat-Conjugated Quantum Dots

    Science.gov (United States)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2017-01-01

    Cell-penetrating peptides (CPPs) can translocate across cell membranes, and thus have great potential for the cellular delivery of macromolecular cargoes. However, the mechanism of this cellular uptake process is not yet fully understood. In this study, a time-lapse single-particle light-sheet microscopy technique was implemented to obtain a parallel visualization of the translocating process of individual human immunodeficiency virus 1 (HIV-1) transactivator of transcription (Tat) peptide conjugated quantum dots (TatP-QDs) in complex cellular terrains. Here, TatP-QDs served as nanoscale dynamic pens, which depict remarkable trajectory aggregates of TatP-QDs on the cell surface. Spectral-embedding analysis of the trajectory aggregates revealed a manifold formed by isotropic diffusion and a fraction of directed movement, possibly caused by interaction between the Tat peptides and heparan sulfate groups on the plasma membrane. Further analysis indicated that the membrane deformation induced by Tat-peptide attachment increased with the disruption of the actin framework in cytochalasin D (cyto D)-treated cells, yielding higher interactions on the TatP-QDs. In native cells, the Tat peptides can remodel the actin framework to reduce their interaction with the local membrane environment. Characteristic hot spots for interaction were detected on the membrane, suggesting that a funnel passage may have formed for the Tat-coated particles. This finding offers valuable insight into the cellular delivery of nanoscale cargo, suggesting an avenue for direct therapeutic delivery. PMID:28208588

  8. Influence of different chelators on the radiochemical properties of a 68-Gallium labelled bombesin analogue.

    Science.gov (United States)

    Asti, Mattia; Iori, Michele; Capponi, Pier C; Atti, Giulia; Rubagotti, Sara; Martin, René; Brennauer, Albert; Müller, Marco; Bergmann, Ralf; Erba, Paola A; Versari, Annibale

    2014-01-01

    The radiolabelled bombesin analogue AMBA shows high potential for diagnosis and treatment of prostate and breast cancer, but the influence of different chelators, which differ in terms of radiochemical reactivity and stability, have not been explored so far. In order to find the best suitable chelator for labelling of AMBA, we synthesized AMBA analogues linked to the most commonly used chelators DOTA, NOTA and NODAGA and compared their reactivity and stability after labelling with 68-Gallium. For the synthesis of DO3A-, NO2A- and NODAGA-AMBA, a solid-phase synthesis approach was used. The influence of concentration, pH and temperature on the radiolabelling was analysed. The in vitro stability of all complexes in saline, human serum, human whole blood and against transchelation and transmetallation was analysed. The peptides were synthesised in high yield and purity. Purity and identity of products and impurities were confirmed using UHPLC coupled to ESI-MS. Radiolabelling of these peptides was optimal at elevated temperature, although room temperature labelling was reported previously for NOTA and NODAGA chelators. The highest reactivity was observed for NODAGA-AMBA. On preparation of NO2A-AMBA, the formation of a by-product was detected with HPLC. More detailed analysis revealed the formation of an isomer with the same mass to charge ratio which led to the conclusion that a coordination isomer was formed. All complexes showed high stability in saline, human serum or when challenged with DTPA, transferrin and varying metals (Fe(3+), Cu(2+), Zn(2+)). Conversely, the stability in human blood was low, and varying metabolites were detected and identified by ESI-MS. All three precursors are available in high yields suitable for routine production. NODAGA-AMBA showed the most favoured features when labelled with 68-gallium, but a further comparison in vivo should be performed in order to confirm the superior features found in vitro. © 2013.

  9. Targeting metastatic breast cancer with ANG1005, a novel peptide-paclitaxel conjugate that crosses the blood-brain-barrier (BBB

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-03-01

    Full Text Available We devoted this short interview piece with Dr Shou-Ching Tang at Augusta University to feature some promising results from a clinical phase II trial on a novel brain-penetrating peptide-paclitaxel-conjugate, ANG1005, in treating brain metastatic breast cancer. These results were presented by Dr. Tang at the recent annual meeting of the European Society for Medical Oncology (ESMO 2016 Congress. This development heralds an important step forward towards the development of effective chemotherapeutic agents, which can cross the blood-brain-barrier and effectively treat and prevent the brain metastatic cancers.

  10. Functional endothelial cells derived from embryonic stem cells labeled with HIV transactivator peptide-conjugated superparamagnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAO Bin; FU Wei-guo; DONG Zhi-hui; FANG Zheng-dong; LIU Zhen-jie; SI Yi; ZHANG Xiang-man; WANG Yu-qi

    2011-01-01

    Background The development of regenerative therapies using derivatives of embryonic stem (ES) cells would be facilitated by a non-invasive method to monitor transplanted cells in vivo,for example,magnetic resonance imaging of cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles.Although ES cells have been labeled with SPIO particles,the potential adverse effects of the label have not been fully examined.The objective of this study was to determine whether SPIO labeling affects murine ES cell viability,proliferation,or ability to differentiate into functional endothelial cells (ECs).Methods Cross-linked iron oxide (CLIO,an SPIO) was conjugated with human immunodeficiency virus transactivator of transcription (HIV-Tat) peptides,and murine ES cells were labeled with either CLiO-Tat,CLIO,or HIV-Tat.After labeling,ES cells were cultured for 4 days and FIk-1+ ES cells identified and sorted by immunocytochemistry and fluorescence activated cell sorting (FACS).FIk-1+ cells were raplated on fibronectin-coated dishes,and ECs were obtained by culturing these for 4 weeks in endothelial cell growth medium supplemented with vascular endothelial growth factor (VEGF).ES cell viability was determined using trypan blue exclusion,and the proportion of SPIO+ cells was evaluated using Prussian blue staining and transmission electron microscopy.After differentiation,the behavior and phenotype of ECs were analyzed by reverse transcription-polymerase chain reaction,flow cytometry,immunocytochemistry,Dil-labeled acetylated low-density lipoprotein (AcLDL) uptake,and Matrigel tube formation assay.Results CLIO-Tat was a highly effective label for ES cells,with >96% of cells incorporating the particles,and it did not alter the viability of the labeled cells.ECs derived from CLIO-Tat+ ES cells were very similar to murine aortic ECs in their morphology,expression of endothelial cell markers,ability to form vascular-like channels,and scavenging of AcLDL from the culture medium

  11. Gut peptide receptors in pancreata of azaserine-treated and normal control rats

    NARCIS (Netherlands)

    Tang, C.; Biemond, I.; Appel, M.J.; Visser, C.J.T.; Woutersen, R.A.; Lamers, C.B.H.W.

    1995-01-01

    Gut peptides are involved in the growth and carcinogenesis of the exocrine pancreas of rats after treatment with azaserine. However, little is known about the influence of azaserine on expression of gut peptide receptors in the pancreas of the rat. Cholecystokinin, bombesin, somatostatin, secretin a

  12. Microwave-assisted isomerisation of lactose to lactulose and Maillard conjugation of lactulose and lactose with whey proteins and peptides.

    Science.gov (United States)

    Nooshkam, Majid; Madadlou, Ashkan

    2016-06-01

    Lactose was isomerised to lactulose by microwave heating and purified by a methanolic procedure to a product with approximately 72% lactulose content. Afterwards, lactose and the lactulose-rich product (PLu) were conjugated with either whey protein isolate (WPI) or its antioxidant hydrolysate (WPH) through microwaving. Lactose had a higher Maillard reactivity than PLu, and WPH was more reactive than WPI. The browning intensity of WPI-sugar systems was however higher than that of WPH-sugar pairs. Atomic force microscopy showed larger (up to ≈103 nm) particles for WPI-PLu conjugates compared to WPH-PLu counterparts (up to ≈39 nm). The Maillard conjugation progressively increased the radical-scavenging activity of WPI/WPH-sugar pairs with increasing conjugation time and improved the foaming properties of WPI and WPH. The WPI/WPH-sugar conjugates showed higher solubility and emulsification index than unreacted counterpart pairs. For native WPI, β-lactoglobulin was not degraded by in vitro gastric digestion, whereas for WPH-PLu conjugates degraded completely.

  13. RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-07-01

    Full Text Available Gastric cancer, a high-risk malignancy, is a genetic disease developing from a cooperation of multiple gene mutations and a multistep process. Gene therapy is a novel treatment method for treating gastric cancer. Here, we developed a novel Arg-Gly-Asp (RGD peptides conjugated copolymers nanoparticles-based gene delivery system in order to actively targeting inhibit the growth of gastric cancer cells. These transcription factor (AP-2α expression plasmids were also encapsulated into pluronic triblock copolymers nanoparticles which was constituted of poly(ethylene glycol-block-poly(propylene glycol- block-poly(ethylene glycol (PEO-block-PPO-block-PEO, P123. The size, morphology and composition of prepared nanocomposites were further characterized by nuclear magnetic resonance (NMR, transmission electron microscopy (TEM and dynamic light scattering (DLS. In MTT (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyltetrazolium bromide analysis, these nanocomposites have minor effects on the proliferation of GES-1 cells but significantly decreased the viability of MGC-803, suggesting they own low cytotoxicity but good antitumor activity. The following in vivo evaluation experiments confirmed that these nanocomposites could prevent the growth of gastric cancer cells in the tumor xenograft mice model. In conclusion, these unique RGD peptides conjugated P123 encapsulated AP-2α nanocomposites could selectively and continually kill gastric cancer cells by over-expression of AP-2α in vitro and in vivo; this exhibits huge promising applications in clinical gastric cancer therapy.

  14. Radiolabelled peptides for oncological diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Laverman, Peter; Boerman, Otto C.; Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands); Sosabowski, Jane K. [Queen Mary University of London, Centre for Molecular Oncology, Barts Cancer Institute, London (United Kingdom)

    2012-02-15

    Radiolabelled receptor-binding peptides targeting receptors (over)expressed on tumour cells are widely under investigation for tumour diagnosis and therapy. The concept of using radiolabelled receptor-binding peptides to target receptor-expressing tissues in vivo has stimulated a large body of research in nuclear medicine. The {sup 111}In-labelled somatostatin analogue octreotide (OctreoScan trademark) is the most successful radiopeptide for tumour imaging, and was the first to be approved for diagnostic use. Based on the success of these studies, other receptor-targeting peptides such as cholecystokinin/gastrin analogues, glucagon-like peptide-1, bombesin (BN), chemokine receptor CXCR4 targeting peptides, and RGD peptides are currently under development or undergoing clinical trials. In this review, we discuss some of these peptides and their analogues, with regard to their potential for radionuclide imaging of tumours. (orig.)

  15. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fanqing; Gerion, Daniele

    2004-06-14

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. However, most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells ha s not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of commonly used cell transfection techniques for qdots, we were able to introduce and retain the NLS-qdots conjugate in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS nanocrystal-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for cell nuclear processes.

  16. Fluorescent CdSe/ZnS Nanocrystal-Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Gerion, D

    2004-06-08

    One of the biggest challenges in cell biology is the imaging of living cells. For this purpose, the most commonly used visualization tool is fluorescent markers. However, conventional labels, such as organic fluorescent dyes or green fluorescent proteins (GFP), lack the photostability to allow the tracking of cellular events that happen over minutes to days. In addition, they are either toxic to cells (dyes), or difficult to construct and manipulate (GFP). We report here the use of a new class of fluorescent labels, silanized CdSe/ZnS nanocrystal-peptide conjugates, for imaging the nuclei of living cells. CdSe/ZnS nanocrystals, or so called quantum dots (qdots), are extremely photostable, and have been used extensively in cellular imaging of fixed cells. Most of the studies about living cells so far have been concerned only with particle entry into the cytoplasm or the localization of receptors on the cell membrane. Specific targeting of qdots to the nucleus of living cells has not been reported in previous studies, due to the lack of a targeting mechanism and proper particle size. Here we demonstrate for the first time the construction of a CdSe/ZnS nanocrystal-peptide conjugate that carries the SV40 large T antigen nuclear localization signal (NLS), and the transfection of the complex into living cells. By a novel adaptation of a commonly used cell transfection technique for qdots, we were able to introduce and retain the NLS-qdot conjugates in living cells for up to a week without detectable negative cellular effects. Moreover, we can visualize the movement of the CdSe/ZnS qdot-peptide conjugates from cytoplasm to the nucleus, and the accumulation of the complex in the cell nucleus, over a long observation time period. This report opens the door for using qdots to visualize long-term biological events that happen in the cell nucleus, and provides a new nontoxic, long-term imaging platform for nuclear trafficking mechanisms and cell nuclear processes.

  17. The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5

    Directory of Open Access Journals (Sweden)

    Lopez-Abarrategui C

    2016-08-01

    Full Text Available Carlos Lopez-Abarrategui,1 Viviana Figueroa-Espi,2 Maria B Lugo-Alvarez,1 Caroline D Pereira,3 Hilda Garay,4 João ARG Barbosa,5 Rosana Falcão,6 Linnavel Jiménez-Hernández,2 Osvaldo Estévez-Hernández,2,7 Edilso Reguera,8 Octavio L Franco,3,9 Simoni C Dias,3 Anselmo J Otero-Gonzalez1 1Faculty of Biology, Center for Protein Studies, 2Lab of Structural Analysis, Institute of Materials Science and Technology, Havana University, La Habana, Havana, Cuba; 3Center for Biochemical and Proteomics Analyses, Catholic University of Brasilia, Brasilia, Brazil; 4Laboratory of Peptide Analysis and Synthesis, Center of Genetic Engineering and Biotechnology, La Habana, Havana, Cuba; 5Department of Cellular Biology, Laboratory of Biophysics, Institute of Biological Science, University of Brasilia, 6Brazilian Agricultural Research Corporation (EMBRAPA, Center of Genetic Resources and Biotechnology (CENARGEN, Brasilia DF, Brazil; 7Instituto de Ciencia y Tecnología de Materiales (IMRE, Universidad de La Habana, Cuba; 8Research Center for Applied Science and Advanced Technology (CICATA, National Polytechnic Institute (IPN, Lagaria Unit, Mexico DF, Mexico; 9S-Inova Biotech, Post-Graduate in Biotechnology, Universidade Catolica Dom Bosco, Campo Grande, Brazil Abstract: Diseases caused by bacterial and fungal pathogens are among the major health problems in the world. Newer antimicrobial therapies based on novel molecules urgently need to be developed, and this includes the antimicrobial peptides. In spite of the potential of antimicrobial peptides, very few of them were able to be successfully developed into therapeutics. The major problems they present are molecule stability, toxicity in host cells, and production costs. A novel strategy to overcome these obstacles is conjugation to nanomaterial preparations. The antimicrobial activity of different types of nanoparticles has been previously demonstrated. Specifically, magnetic nanoparticles have been widely

  18. Does the histaminergic system mediate bombesin/GRP-induced suppression of food intake?

    Science.gov (United States)

    Merali, Z; Banks, K

    1994-12-01

    Bombesin (BN) and its mammalian homologue, gastrin-releasing peptide (GRP), are potent satiety agents and have been implicated in the physiological regulation of food intake. The mechanism(s) of action of this effect remains unclear. There is a functional and anatomic overlap between histamine and BN in relationship to feeding, which led us to hypothesize that BN may mediate its satiety effects through activation of the histaminergic system. To assess this contention, we examined the effects of R-alpha-methylhistamine (alpha-MH) and Imetit, selective H3-receptor agonists that inhibit the release and synthesis of histamine, on BN- or cholecystokinin (CCK)-induced satiety. In this report we present the first evidence for the role of histamine H3 receptors in the mediation of BN-elicited satiety. During the first hour of the 4-h daily feeding session, BN reduced food intake by > 50% relative to the control condition; this suppression was blocked by prior treatment with the H3-receptor agonist, alpha-MH. This blockade of BN-induced satiety was dose related and selective to BN as alpha-MH failed to attenuate sulfated CCK-8-induced satiety. When alpha-MH was administered alone, it failed to significantly affect food intake. The specificity of this effect was further supported by the demonstration that another H3 agonist, Imetit, was also able to block the feeding-suppressant effects of BN. Furthermore, thioperamide, an H3-receptor antagonist, blocked these effects of Imetit.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Sporozoite neutralizing antibodies elicited in mice and rhesus macaques immunized with a Plasmodium falciparum repeat peptide conjugated to meningococcal outer membrane protein complex

    Directory of Open Access Journals (Sweden)

    Craig ePrzysiecki

    2012-11-01

    Full Text Available Antibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP6 peptide conjugated to an outer membrane protein complex (OMPC derived from Neisseria meningitidis, a carrier protein used in a licensed H. influenzae pediatric vaccine. Mice immunized with alum-adsorbed (NANP6-OMPC, with or without Iscomatrix© as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P. berghei sporozoites that express P. falciparum CS repeats (PfPb. Inhibition of sporozoite invasion in vitro correlated with in vivo resistance to challenge by the bites of PfPb infected mosquitoes. Challenged mice had > 90% reduction of hepatic stage parasites as measured by real-time PCR, and either sterile immunity, i.e. no detectable blood stage parasites, or delayed prepatent periods which indicate neutralization of a majority, but not all, sporozoites. Rhesus macaques immunized with two doses of (NANP6-OMPC/MAA formulated with Iscomatrix© developed anti-repeat antibodies that persisted for ~2 years. A third dose of (NANP6-OMPC/MAA+ Iscomatrix© at that time elicited strong anamnestic antibody responses. Rhesus macaque immune sera obtained post second and third dose of vaccine displayed high levels of sporozoite neutralizing activity in vitro that correlated with presence of high anti-repeat antibody titers. These preclinical studies in mice of different MHC haplotypes and a non-human primate support use of CS peptide-OMPC conjugates as a highly immunogenic platform to evaluate CS protective epitopes. Potential pre-erythrocytic vaccines can be combined with sexual blood stage vaccines as a multi-antigen malaria vaccine to block invasion and transmission of Plasmodium parasites

  20. Surface-enhanced Raman difference between bombesin and its modified analogues on the colloidal and electrochemically roughen silver surfaces.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro

    2008-10-01

    In this article, surface-enhanced Raman scattering (SERS) spectra of bombesin (BN) and its six modified analogues ([D-Phe(12)]BN, [Tyr(4)]BN, [Tyr(4),D-Phe(12)]BN, [D-Phe(12),Leu(14)]BN, [Leu(13)-(R)-Leu(14)]BN, and [Lys(3)]BN) on a colloidal silver surface are reported and compared with SERS spectra of these species immobilized onto an ellectrochemically roughen silver electrode. Changes in enhancement and wavenumber of proper bands upon adsorption on different silver surfaces are consistent with BN and its analogues adsorption primarily through Trp(8). Slightly different adsorption states of these molecules are observed depending upon natural amino acids substitution. For example, the indole ring in all the peptides interacts with silver nanoparticles in a edge-on orientation. It is additionally coordinated to the silver through the N(1)--H bond for all the peptides, except [Phe(12)]BN. This is in contrary to the results obtained for the silver roughen electrode that show direct but not strong N(1)--H/Ag interaction for all peptides except [D-Phe(12),Leu(14)]BN and [Leu(13)-(R)-Leu(14)]BN. For BN only C==O is not involved in the chemical coordination with the colloidal surface. [Lys(3)]BN and BN also adsorb with the C--N bond of NH(2) group normal and horizontal, respectively, to the colloidal surface, whereas C--NH(2) in other peptides is tilted to this surface. Also, the Trp(8) --CH(2)-- moiety of only [Tyr(4)]BN, [Lys(3)]BN, and [Tyr(4),D-Phe(12)]BN coordinates to Ag, whereas the Phe(12) ring of [Phe(12)]BN, [Tyr(4),D-Phe(12)]BN, and [D-Phe(12),Leu(14)]BN assists in the peptides binding only on the colloidal silver.

  1. Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy.

    Science.gov (United States)

    Cai, Yanli; Wang, Xiaoyan; Poh, Chye Khoon; Tan, Hark Chuan; Soe, Min Tun; Zhang, Sam; Wang, Wilson

    2014-04-01

    Titanium alloys have been widely used in orthopedic practice due to their inherent bioactivity, however it is still insufficient to truly and reliably incorporate into living bone. In this work, polydopamine film was employed to induce the growth of hydroxyapatite (HA) on titanium alloy to enhance its osteoconductivity. Bone morphogenetic protein-2 (BMP2) peptide was absorbed into the HA particles for osteoinductivity. The precipitation of HA and the existence of BMP2 peptide were examined by X-ray diffraction, X-ray photoelectron spectroscopy and fluorescence microscopy. The dissolution of HA and the release of BMP2 peptide were monitored by measuring the concentrations of calcium ions and BMP2 peptide in phosphate buffered saline solution, respectively. The effect of BMP2 peptide incorporated into HA coating on bone growth was evaluated in vitro by cell culture tests, including cell attachment, alkaline phosphatase (ALP) activity, and gene expression. The results show that the HA particles grown on the substrate are mediated by the polydopamine film. The BMP2 peptide is distributed uniformly on HA-coated substrate and released in a sustained manner. Moreover, the conjunction of HA and BMP2 peptide increases cell adhesion, ALP activity and gene expression of osteogenic markers, which are potentially useful in the development of enhanced orthopedic medical devices.

  2. Conjugation with RGD Peptides and Incorporation of Vascular Endothelial Growth Factor Are Equally Efficient for Biofunctionalization of Tissue-Engineered Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Larisa V. Antonova

    2016-11-01

    Full Text Available The blend of poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV and poly(ε-caprolactone (PCL has recently been considered promising for vascular tissue engineering. However, it was shown that PHBV/PCL grafts require biofunctionalization to achieve high primary patency rate. Here we compared immobilization of arginine–glycine–aspartic acid (RGD-containing peptides and the incorporation of vascular endothelial growth factor (VEGF as two widely established biofunctionalization approaches. Electrospun PHBV/PCL small-diameter grafts with either RGD peptides or VEGF, as well as unmodified grafts were implanted into rat abdominal aortas for 1, 3, 6, and 12 months following histological and immunofluorescence assessment. We detected CD31+/CD34+/vWF+ cells 1 and 3 months postimplantation at the luminal surface of PHBV/PCL/RGD and PHBV/PCL/VEGF, but not in unmodified grafts, with the further observation of CD31+CD34−vWF+ phenotype. These cells were considered as endothelial and produced a collagen-positive layer resembling a basement membrane. Detection of CD31+/CD34+ cells at the early stages with subsequent loss of CD34 indicated cell adhesion from the bloodstream. Therefore, either conjugation with RGD peptides or the incorporation of VEGF promoted the formation of a functional endothelial cell layer. Furthermore, both modifications increased primary patency rate three-fold. In conclusion, both of these biofunctionalization approaches can be considered as equally efficient for the modification of tissue-engineered vascular grafts.

  3. Comparative study of two different Bombesin derivates labeled with {sup 111}In and biodistribution in normal mice

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ricardo S.; Alcarde, Lais F.; Correa, Beatriz L.; Massicano, Adriana V.F.; Couto, Renata M.; Mengatti, Jair; Araujo, Elaine B. de, E-mail: ricardooliveira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear medicine is a medical speciality that uses radioactive compounds (radiopharmaceuticals), consisting of a substrate and a radioactive isotope, for diagnostic. Among the peptides of interest for Nuclear Medicine, bombesin (BBN), a 14 amino acid neuropeptide analog of human gastrin-releasing peptide, is one of the highlights. This is a comparative study aiming to establish the best condition to radiolabel two BBN derivatives, (DTPA-Phe-Gly{sub 5}-BBN{sub (6-14)}) and (DTPA-Phe-Gly{sub 2}-BBN{sub (6-14})) with 111-indium. Specific objectives of this study were evaluate a good condition of radiolabelling in search excellent specific activity the bombesin derivatives and determinate the biodistribution in health mice model. Ten micrograms (10μg) of the derivative DTPA-Phe-Gly2-BBN (6-14) was labeled with 18.5 MBq (0.5 mCi) of {sup 111}InCl{sub 3} at 25°C for different times (5, 15 and 30 minutes). The best condition was applied to peptide mass variation (10, 5, 2.5, 1, 0.5, 0.25 and 0.1 μg), keeping all other parameters fixed. Finally, the influence of {sup 111}InCl{sub 3} activity in the radiolabeling process (18.5, 37, 55.5, 74, 185 MBq) was evaluated. The best conditions were repeated for the second derivate, DTPA-Phe-Gly{sub 5}-BBN{sub (6-14}). The radiochemical purity was assessed by thin layer chromatography (TLC), using 0.2 M EDTA pH 5 as solvent, and high performance liquid chromatography (HPLC) with a C18 column with linear gradient 10% A to 90% A (v/v) (A: 0,1% of TFA in CH3CN; B: 0,1% of TFA in H2O) at a flow rate of 1 mL/minute for 15 minutes. Considering the reaction time, the higher radiochemical purity was obtained when 10μg of the peptide was labeled with 18.5 MBq (0.5 mCi) of {sup 111}In for 15 minutes at 25°C (97.33 ± 0.50%, n=3). In the mass variation study, the best results of radiochemical purity were obtained when 10 μg of the peptide was employed (97.69 ± 0.4%, n = 4). Finally, the maximum specific activity of the radiolabelled

  4. Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models.

    Science.gov (United States)

    Horváti, Kata; Bacsa, Bernadett; Szabó, Nóra; Fodor, Kinga; Balka, Gyula; Rusvai, Miklós; Kiss, Éva; Mező, Gábor; Grolmusz, Vince; Vértessy, Beáta; Hudecz, Ferenc; Bősze, Szilvia

    2015-06-01

    New pyridopyrimidine derivatives were defined using a novel HTS in silico docking method (FRIGATE). The target protein was a dUTPase enzyme (EC 3.6.1.23; Rv2697) which plays a key role in nucleotide biosynthesis of Mycobacterium tuberculosis (Mtb). Top hit molecules were assayed in vitro for their antimycobacterial effect on Mtb H37Rv culture. In order to enhance the cellular uptake rate, the TB820 compound was conjugated to a peptid-based carrier and a nanoparticle type delivery system (polylactide-co-glycolide, PLGA) was applied. The conjugate had relevance to in vitro antitubercular activity with low in vitro and in vivo toxicity. In a Mtb H37Rv infected guinea pig model the in vivo efficacy of orally administrated PLGA encapsulated compound was proven: animals maintained a constant weight gain and no external clinical signs of tuberculosis were observed. All tissue homogenates from lung, liver and kidney were found negative for Mtb, and diagnostic autopsy showed that no significant malformations on the tissues occurred.

  5. Optimization of the production process of hybrid and multivalent formulation Bombesin/RGD for the opportune detection of breast cancer; Optimizacion del proceso de fabricacion de la formulacion hibrida y multivalente Bombesina/RGD para la deteccion oportuna de cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Robles M, M.

    2013-07-01

    The radiopharmaceuticals of third generation are used in nuclear medicine to obtain images of specific molecular targets, and they are unique in their capacity to detect in vivo specific biochemical sites as receptors that are over-expressed in diverse illness. In cancer cells several types of receptors are over-expressed, as the integrin s α(v)β(3) and α(v)β(5) that specifically recognize the sequence RGD (Arginine-Glycin-Ac. Aspartic) and gastrin-releasing peptide that recognizes specifically to the peptide Lys{sup 3}-Bombesin. The integrin s α(v)β(3) and α(v)β(5) are involved in the tumor angio genesis processes and the gastrin-releasing peptide is over-expressed in breast and prostate cancer. The molecular recognition of the specific receptors is the basis to be utilized as targets of the radiopharmaceuticals {sup 99m}Tc-HYNIC-Bombesin and {sup 99m}Tc-HYNIC-RGD. In this work was developed a lyophilized pharmaceutical formulation effective, stable and safe for the simultaneous obtaining of the radiopharmaceuticals {sup 99m}Tc-HYNIC-Bombesin ({sup 99m}Tc-EDDA/HYNIC-Lys{sup 3}-Bombesin) and {sup 99m}Tc-HYNIC-RGD ({sup 99m}Tc EDDA/HYNIC-E-[c(RGDfK)]{sub 2}). Later on the production process of the product HYNIC-Bombesin/RGD-Sn was optimized using a factorial design and the formulation was transferred to the production plant of radiopharmaceuticals of the Instituto Nacional de Investigaciones Nucleares (ININ). The optimized formulation is described in the following chart: HYNIC-[Lys{sup 3}]-Bombesin - 12.5 μg; HYNIC-E-c[RGDfK]{sub 2} - 12.5 μg; Stannous chloride (SnCl{sub 2}) - 20 μg; Ethylenediamine diacetic acid (EDDA) - 10 mg; N-tris(hydroxymethyl)methyl glycin (Tricine) - 20 mg; Mannitol - 50 mg. The production process was validated and were carried out the stability studies under refrigeration conditions. (Author)

  6. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism

    OpenAIRE

    Lateef, Dalya M.; Xiao, Cuiying; Brychta, Robert J.; Diedrich, Andr?; Schnermann, Jurgen; Reitman, Marc L.

    2016-01-01

    MK-5046, a bombesin-like receptor 3 (BRS-3) agonist, increases heart rate and blood pressure via increased central sympathetic tone. Brs3 null mice have a reduced resting heart rate that increases disproportionately with physical activity. BRS-3 contributes to the central regulation of heart rate and blood pressure.

  7. Development of Radiolabelled Bombesin Analogues for Imaging Prostate Cancer with SPECT and PET

    NARCIS (Netherlands)

    Yu, Zilin

    2014-01-01

    De nucleaire beeldvorming van kanker wordt steeds geavanceerder, maar de ontwikkeling van nieuwe tracers blijft belangrijk. De meest gebruikte tracer tot nu toe is 99mTC. Deze radionuclide bestaat uit meerdere elementen, waaronder een verkorte vorm van bombesine (een keten van aminozuur-eiwitten uit

  8. [The influence of immunization of rats with BSA-conjugated peptide 269-280 of type 3 melanocortin receptor on the metabolic parameters and thyroid functions].

    Science.gov (United States)

    Derkach, K V; Shpakova, E A; Zharova, O A; Bondareva, V M; Shpakov, A O

    2014-01-01

    One of the approaches to study the role of the brain hormonal signaling systems in the regulation of biochemical and physiological processes is their shutdown using the antibodies generated to peptides corresponding to extracellular regions of receptors. The brain type 3 melanocortin receptors (M3R) play an important role in the central regulation of the metabolism and the endocrine system. However, the influence of prolonged inhibition of M3R on energy metabolism, insulin resistance, and thyroid gland (TG) function is practically not studied. The aim of the study was to investigate the influence of prolonged repeated immunization of male rats with the BSA-conjugated peptide Ala-[Pro-Thr-Asn-Pro-Tyr-Cys-Ile-Cys-Thr-Thr-Ala-His269-280]-Ala (A[269- 280]A) corresponding to the third extracellular loop of M3R on their metabolic parameters and functional activity of TG. 9 months after the first immunization, the weight of rats was reduced and after 12-13 months was significantly lower than in controls. The weight of abdominal and brown adipose tissues, on the contrary, increased. At the same timeline there was an increase in the fasting glucose and insulin levels, and increase of the HOMA-IR index (by 75%) indicating that immunized animals develop insulin resistance. The rats have increased glucose utilization due to an increase of insulin production by pancreatic β-cells. 12 months after the first immunization, the increase of the triglycerides level (by 74%) and the ratio of LDL- and HDL-cholesterol (by 36%) were revealed. 13 months after the start of immunization, the levels of free and total thyroxine and total triiodothyronine significantly decreased. In the TG plasma membranes of immunized rats the weakening adenylyl cyclase stimulating effect of thyroid-stimulating hormone was detected. Thus, long-term decrease in the bra- in M3R activity due to repeated immunization of rats with BSA-conjugated peptide A[269-280]A induces the disturbances of the peripheral

  9. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects

    Science.gov (United States)

    Zhao, Shao-Jun; Wang, De-Hua; Li, Yan-Wei; Han, Lei; Xiao, Xing; Ma, Min; Wan, David Chi-Cheong; Hong, An; Ma, Yi

    2017-01-01

    A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against

  10. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    Science.gov (United States)

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  11. Receptor-targeted cytotoxic peptide-drug conjugates%受体靶向多肽载体抗肿瘤药物

    Institute of Scientific and Technical Information of China (English)

    孙立春; Coy DH

    2015-01-01

    常规化疗药物对癌细胞没有选择性,常常会导致严重的副作用。提高这些药物的靶向特异性已成为药物开发的热点方向之一。一些小分子多肽能够靶向作用于特定的受体,因而被用作癌症化疗药物的载体。化疗药物与多肽载体偶联构成新的多肽载体抗肿瘤药物。这些药物具有高特异性、高亲和力和肿瘤渗透力等优点,能够通过细胞表面的特定受体将药物送到靶向癌细胞内,提高抗癌效果、减少副作用和癌细胞的耐药性。多肽载体靶向药物被誉为新一代的靶向特异性的抗肿瘤药物之一。%Conventional cancer chemotherapy has very limited effects due to lacking speciifcity resulting in severe toxic side effects. Certain G protein-coupled receptors (GPCRs) are highly expressed in many tumor cells and tumoral blood veins, with their cognate ligands being peptides. Therefore, these peptides, especially their long-acting analogs, can be applied as drug-delivery vehicles by coupling with cytotoxic agents. These novel cytotoxic peptide-drug conjugates display more potent anti-tumor efifcacy by targeting the cognate receptors while reducing toxic side effects and overcoming multiple drug resistance. This new receptor-targeted approach may provide a promising opportunity for the improvement of cancer treatments.

  12. Molecular Modeling of Bifunctional Chelate Peptide Conjugates. 1. Copper and Indium Parameters for the AMBER Force Field

    DEFF Research Database (Denmark)

    Reichert, David E.; Norrby, Per-Ola; Welch, Michael J.

    2001-01-01

    In this work we describe the development of parameters for In(III) and Cu(II) for the AMBER* force field as found in the modeling package MacroModel. These parameters were developed using automated procedures from a combination of crystallographic structures and ab initio calculations. The new pa...... then utilized to examine the conformational effects caused by the conjugation of InDTPA (DTPA = diethylenetriaminepentaacetic acid) and CuDOTA (DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the cyclic octapeptide octreotide....

  13. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery: in vitro study.

    Science.gov (United States)

    Ouahab, Ammar; Cheraga, Nihad; Onoja, Vitus; Shen, Yan; Tu, Jiasheng

    2014-05-15

    In order to create a pH-sensitive charge-reversal system for cell penetrating peptides (CPP) to prevent non-specific internalization of the drug; and concomitantly enhance the physical stability and tumor targetability of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles, two sets of novel PEG-PLA micelles were developed. Cell penetrating decapeptide arginine-glycine (RG)5 and a pH-sensitive masking decapeptide histidine-glutamic acid (HE)5 were conjugated at the PEG free end to produce pH sensitive with peptides outside micelles (PHPO), while the pH sensitive with peptides inside micelles (PHPI) are the micelles obtained with the two peptides conjugated to the free end of the PLA block. The polymers were successfully synthesized and characterized by (1)H NMR and GPC. The mixed micelles were prepared and characterized for their loading efficiency, particle size and zeta potential. The surface charge of PHPO was greatly affected by the pH of the solution and (RG)5:(HE)5 ratio at the surface. The pH value of the solution at which the surface charge of PHPO reversed could be manipulated by the feed ratio of (RG)5-PEG-PLA (RGO) and (HE)5-PEG-PLA (HEO), hence, HEO:RGO molar ratio of 45:55 was selected for tumor targeting. Docetaxel (DTX) was sufficiently solubilized by DTX-PHPO with a loading efficiency of 90.18 ± 1.65%. At pH 7.4, DTX loaded mPEG-PLA (DTX-PM) (41.2 ± 0.3 nm), DTX-PHPO (195.3 ± 1.9 nm) and DTX-PHPI (190.9 ± 4.5 nm) showed sustained DTX release of less than 55% within 48 h. However, at pH 6.8 DTX-PHPI released 87.29 ± 0.24%, while DTX-PHPO released 70.49 ± 0.39% of the initial DTX amount within 48 h. Moreover, the physical stability of DTX-PHPO was increased due to the electrostatic interaction of the two peptides. The cellular uptake of DTX-PHPO in SGC-7901 cells and the cell killing effect tested on MCF-7 cells were enhanced by 2 folds at pH 6.8 compared to pH 7.4. Hence, DTX-PHPO is highly pH-sensitive in mildly acidic pH and exhibited

  14. Slowly on, Slowly off: Bisubstrate-Analogue Conjugates of 5-Iodotubercidin and Histone H3 Peptide Targeting Protein Kinase Haspin.

    Science.gov (United States)

    Kestav, Katrin; Viht, Kaido; Konovalov, Anton; Enkvist, Erki; Uri, Asko; Lavogina, Darja

    2017-02-09

    The atypical protein kinase Haspin serves as one of a key players in mitosis by catalysing phosphorylation of Thr3 in histone H3, and thus sustaining the normal functioning of the chromosomal passenger complex. Here, we report the development of bisubstrate-analogue inhibitors targeting Haspin. The compounds were constructed by linking 5-iodotubercidin moiety to the N-terminal sequence of histone H3. The new conjugates possessed high affinity (KD in the subnanomolar range) towards Haspin as well as slow kinetics of association and dissociation (residence time on the scale of several hours), which reflected their unique binding mode and translated into improved selectivity. The latter was confirmed in a biochemical binding/displacement assay with a panel of 10 protein kinases, in thermal shift assay with off-targets of 5-iodotubercidin represented by adenosine kinase and the Cdc2-like kinase family, as well as in assay with spiked lysates of HeLa cells.

  15. Gene delivery to brain cells with apoprotein E derived peptide conjugated to polylysine (apoEdp-PLL).

    Science.gov (United States)

    Mousazadeh, Mohammad; Palizban, Abbasali; Salehi, Rasool; Salehi, Mansoor

    2007-04-01

    A promising strategy to carry genetic material to brain cells either in vitro or in vivo is using the LDL receptor (LDLr) on blood-brain barrier. LDLr naturally help to low density lipoproteins (LDL(S)) transporting across the BBB by endocytosis. Here we present the idea of using the LDLr-mediated pathway for transporting genetic material to brain cells. A tandem dimer Sequence of apoprotein-E (apoE) (141-150) conjugated to polylysine sequence was used as a novel DNA Delivery vector for transfecting of brain cells either in vitro or in vivo. DNA condensation occurs with this vector because electrostatic interaction between DNA and polylysine. The vector favors to protection of DNA from enzymatic degradation and also helps to DNA carrying in blood stream to reach BBB and transport it to brain cells and eventually help DNA expression in target cells. These results suggest a novel gene delivery vector for gene therapy of brain disease.

  16. Radiopharmaceutical development of radiolabelled peptides

    Energy Technology Data Exchange (ETDEWEB)

    Fani, Melpomeni; Maecke, Helmut R. [University Hospital Freiburg, Department of Nuclear Medicine, Freiburg (Germany)

    2012-02-15

    Receptor targeting with radiolabelled peptides has become very important in nuclear medicine and oncology in the past few years. The overexpression of many peptide receptors in numerous cancers, compared to their relatively low density in physiological organs, represents the molecular basis for in vivo imaging and targeted radionuclide therapy with radiolabelled peptide-based probes. The prototypes are analogs of somatostatin which are routinely used in the clinic. More recent developments include somatostatin analogs with a broader receptor subtype profile or with antagonistic properties. Many other peptide families such as bombesin, cholecystokinin/gastrin, glucagon-like peptide-1 (GLP-1)/exendin, arginine-glycine-aspartic acid (RGD) etc. have been explored during the last few years and quite a number of potential radiolabelled probes have been derived from them. On the other hand, a variety of strategies and optimized protocols for efficient labelling of peptides with clinically relevant radionuclides such as {sup 99m}Tc, M{sup 3+} radiometals ({sup 111}In, {sup 86/90}Y, {sup 177}Lu, {sup 67/68}Ga), {sup 64/67}Cu, {sup 18}F or radioisotopes of iodine have been developed. The labelling approaches include direct labelling, the use of bifunctional chelators or prosthetic groups. The choice of the labelling approach is driven by the nature and the chemical properties of the radionuclide. Additionally, chemical strategies, including modification of the amino acid sequence and introduction of linkers/spacers with different characteristics, have been explored for the improvement of the overall performance of the radiopeptides, e.g. metabolic stability and pharmacokinetics. Herein, we discuss the development of peptides as radiopharmaceuticals starting from the choice of the labelling method and the conditions to the design and optimization of the peptide probe, as well as some recent developments, focusing on a selected list of peptide families, including somatostatin

  17. Synergistic bombesin and insulin stimulation of DNA synthesis in human fetal kidney in serum-free culture.

    Science.gov (United States)

    Brière, N; Chailler, P

    1993-05-01

    The respective influences of growth factors during kidney development can be directly evaluated using the chemically-defined serum-free culture system perfected in our laboratory. Since, in this culture model, conditions are minimal for growth and differentiation, DNA synthesis sharply decreases during the first 48 h. The addition of epidermal growth factor (EGF, 100 ng/ml), insulin (5 micrograms/ml) and transferrin (5 micrograms/ml) significantly restores this important cellular function. The objective of the present study was to determine the influence of bombesin, a potent mitogen, supplemented alone or in combination with insulin, transferrin and/or EGF. Cortical explants of human fetal kidneys (17-20 weeks) were maintained during 5 days in culture. When compared with 5 day controls (L-15 medium only), bombesin generated a maximal though weak effect on DNA synthesis at a concentration of 0.3 nM, corresponding to a stimulation index (SI) of 22%. When combined with either transferrin or EGF, or with transferrin plus EGF, bombesin did not alter the SI of individual factors. Insulin, in turn, greatly increased DNA synthesis (SI = 169%), while bombesin strongly potentiated this effect (SI = 275%). Transferrin also enhanced insulin SI from 169 to 240%. When added as a third factor, bombesin further potentiated the effectiveness (SI = 338%) of the combination insulin plus transferrin. These results indicate that bombesin controls cell proliferation in synergism with other regulators and hence may act as a competence growth factor during nephrogenesis.

  18. A new fluorescence/PET probe for targeting intracellular human telomerase reverse transcriptase (hTERT) using Tat peptide-conjugated IgM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung oh [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Youn, Hyewon, E-mail: hwyoun@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of); Cancer Imaging Center, Seoul National University Hospital, Seoul (Korea, Republic of); Kim, Seung Hoo [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kim, Young-Hwa [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Kang, Keon Wook [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Chung, June-Key, E-mail: jkchung@snu.ac.kr [Department of Nuclear Medicine, Seoul National University College of Medicine (Korea, Republic of); Biomedical Sciences, Seoul National University College of Medicine (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine (Korea, Republic of); Tumor Microenvironment Global Core Research Center, Seoul National University (Korea, Republic of)

    2016-08-26

    Despite an increasing need for methods to visualize intracellular proteins in vivo, the majority of antibody-based imaging methods available can only detect membrane proteins. The human telomerase reverse transcriptase (hTERT) is an intracellular target of great interest because of its high expression in several types of cancer. In this study, we developed a new probe for hTERT using the Tat peptide. An hTERT antibody (IgG or IgM) was conjugated with the Tat peptide, a fluorescence dye and {sup 64}Cu. HT29 (hTERT+) and U2OS (hTERT−) were used to visualize the intracellular hTERT. The hTERT was detected by RT-PCR and western blot. Fluorescence signals for hTERT were obtained by confocal microscopy, live cell imaging, and analyzed by Tissue-FAXS. In nude mice, tumors were visualized using the fluorescence imaging devices Maestro™ and PETBOX. In RT-PCR and western blot, the expression of hTERT was detected in HT29 cells, but not in U2OS cells. Fluorescence signals were clearly observed in HT29 cells and in U2OS cells after 1 h of treatment, but signals were only detected in HT29 cells after 24 h. Confocal microscopy showed that 9.65% of U2OS and 78.54% of HT29 cells had positive hTERT signals. 3D animation images showed that the probe could target intranuclear hTERT in the nucleus. In mice models, fluorescence and PET imaging showed that hTERT in HT29 tumors could be efficiently visualized. In summary, we developed a new method to visualize intracellular and intranuclear proteins both in vitro and in vivo. - Highlights: • We developed new probes for imaging hTERT using Tat-conjugated IgM antibodies labeled with a fluorescent dye and radioisotope. • This probes could be used to overcome limitation of conventional antibody imaging system in live cell imaging. • This system could be applicable to monitor intracellular and intranuclear proteins in vitro and in vivo.

  19. Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer.

    Science.gov (United States)

    Brom, Maarten; Joosten, Lieke; Oyen, Wim Jg; Gotthardt, Martin; Boerman, Otto C

    2012-01-27

    In single photon emission computed tomography [SPECT], high specific activity of 111In-labelled tracers will allow administration of low amounts of tracer to prevent receptor saturation and/or side effects. To increase the specific activity, we studied the effect of the buffer used during the labelling procedure: NaAc, NH4Ac, HEPES and MES buffer. The effect of the ageing of the 111InCl3 stock and cadmium contamination, the decay product of 111In, was also examined in these buffers. Escalating amounts of 111InCl3 were added to 1 μg of the diethylene triamine pentaacetic acid [DTPA]- and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid [DOTA]-conjugated compounds (exendin-3, octreotide and anti-carbonic anhydrase IX [CAIX] antibody). Five volumes of 2-(N-morpholino)ethanesulfonic acid [MES], 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES], NH4Ac or NaAc (0.1 M, pH 5.5) were added. After 20 min at 20°C (DTPA-conjugated compounds), at 95°C (DOTA-exendin-3 and DOTA-octreotide) or at 45°C (DOTA-anti-CAIX antibody), the labelling efficiency was determined by instant thin layer chromatography. The effect of the ageing of the 111InCl3 stock on the labelling efficiency of DTPA-exendin-3 as well as the effect of increasing concentrations of Cd2+ (the decay product of 111In) were also examined. Specific activities obtained for DTPA-octreotide and DOTA-anti-CAIX antibody were five times higher in MES and HEPES buffer. Radiolabelling of DTPA-exendin-3, DOTA-exendin-3 and DTPA-anti-CAIX antibody in MES and HEPES buffer resulted in twofold higher specific activities than that in NaAc and NH4Ac. Labelling of DTPA-exendin-3 decreased with 66% and 73% for NaAc and NH4Ac, respectively, at day 11 after the production date of 111InCl3, while for MES and HEPES, the maximal decrease in the specific activity was 10% and 4% at day 11, respectively. The presence of 1 pM Cd2+ in the labelling mixture of DTPA-exendin-3 in NaAc and NH4Ac markedly reduced the labelling

  20. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma

    Science.gov (United States)

    Shen, Jian-Min; Li, Xin-Xin; Fan, Lin-Lan; Zhou, Xing; Han, Ji-Min; Jia, Ming-Kang; Wu, Liang-Fan; Zhang, Xiao-Xue; Chen, Jing

    2017-01-01

    A novel nanoscale molecular probe is formulated in order to reduce toxicity and side effects of antitumor drug doxorubicin (DOX) in normal tissues and to enhance the detection sensitivity during early imaging diagnosis. The mechanism involves a specific targeting of Arg-Gly-Asp peptide (RGD)-GX1 heterogeneous dimer peptide-conjugated dendrigraft poly-l-lysine (DGL)–magnetic nanoparticle (MNP) composite by αvβ3-integrin/vasculature endothelium receptor-mediated synergetic effect. The physicochemical properties of the nanoprobe were characterized by using transmission electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering (DLS), and vibrating sample magnetometer. The average diameter of the resulting MNP–DGL–RGD-GX1–DOX nanoparticles (NPs) was ~150−160 nm by DLS under simulate physiological medium. In the present experimental system, the loading amount of DOX on NPs accounted for 414.4 mg/g for MNP–DGL–RGD-GX1–DOX. The results of cytotoxicity, flow cytometry, and cellular uptake consistently indicated that the MNP–DGL–RGD-GX1–DOX NPs were inclined to target HepG2 cells in selected three kinds of cells. In vitro exploration of molecular mechanism revealed that cell apoptosis was associated with the overexpression of Fas protein and the significant activation of caspase-3. In vivo magnetic resonance imaging and biodistribution study showed that the MNP–DGL–RGD-GX1–DOX formulation had high affinity to the tumor tissue, leading to more aggregation of NPs in the tumor. In vivo antitumor efficacy research verified that MNP–DGL–RGD-GX1–DOX NPs possessed significant antitumor activity and the tumor inhibitory rate reached 78.5%. These results suggested that NPs could be promising in application to early diagnosis and therapy in hepatocellular carcinoma as a specific nanoprobe. PMID:28243083

  1. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yumin [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)]. E-mail: yumin.zhang@mpi.com; Tung, C.-H. [Center for Molecular Imaging Research, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129 (United States); He Jiang [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Liu Ning [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Yanachkov, Ivan [GlSynthesis, Worcester, MA 01605 (United States); Liu Guozheng [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Vanderheyden, Jean-Luc [Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2006-02-15

    The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N{sub 2}S{sub 2} chelator for technetium-99m ({sup 99m}Tc) radiolabeling (N{sub 2}S{sub 2}-Tat-MORF). The radiolabeling properties and cellular kinetics of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF were measured. As hypothesized, the preparation of {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG{sub 3}) as chelator for {sup 99m}Tc ({sup 99m}Tc-MAG{sub 3}-MORF). {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while {sup 99m}Tc-MAG{sub 3}-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and {sup 99m}Tc-N{sub 2}S{sub 2}-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.

  2. Structures and bonding on a colloidal silver surface of the various length carboxyl terminal fragments of bombesin.

    Science.gov (United States)

    Podstawka, Edyta; Ozaki, Yukihiro; Proniewicz, Leonard M

    2008-10-07

    Raman (RS) and surface-enhanced Raman scattering spectra (SERS) were measured for various length carboxyl terminal fragments (X-14 of amino acid sequence) of bombesin ( BN): BN13-14, BN12-14, BN11-14, BN10-14, BN9-14, and BN8-14 in silver colloidal solutions. Density functional theory (DFT) calculations of Raman wavenumbers and intensities with extended basis sets (B3LYP/6-31++G**) were performed with the aim of providing the definitive band allocations to the normal coordinates. The proposed band assignment is consistent with the assignment for similar compounds reported in the literature. The nonadsorbed and adsorbed molecular structures were deducted by detailed spectral analysis of the RS and SERS spectra, respectively. This analysis also allowed us to propose the particular surface geometry and orientation of these peptides on silver surface, and their specific interaction with the surface. For example, a SERS spectrum of BN8-14 indicates that the interaction of a thioether atom and Trp8 with the silver surface is favorable and may dictate the orientation and conformation of adsorbed peptide. One of the most prominent and common features in all of the fragments' SERS spectra is a approximately 692 cm (-1) band due to nu(C-S) accompanied by two or three bands of different C-S conformers for all, except BN8-14, which suggests that all of the above-mentioned compounds adsorb on the silver surface through the thioether atom and that the attachment of Trp8 produces limitation in a number of possible C-S conformers adopted on this surface. Our results also show clearly that His12 and CO do not interact with the colloid surface, which supports our earlier results.

  3. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  4. In vitro and in vivo studies in Balb-c and nude mice of a new {sup 177}Lu-Bombesin analog developed for prostate tumor diagnosis and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Pujatti, Priscilla B.; Santos, Josefina S.; Couto, Renata M.; Araujo, Elaine B. de; Mengatti, Jair [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia], e-mail: priscillapujatti@yahoo.com.br; Suzuki, Miriam F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2009-07-01

    In this work we describe the radiolabeling with {sup 177}Lu and some properties of the novel bombesin analog BBNp6 - DOTA-X-BBN(6-14), where X is a spacer of six aminoacids. Bombesin (BBN) is an analog of human gastrin releasing peptide (GRP) isolated from the skin of the frog Bombina bombina in 1970. Development of radiolabeled BBN derivatives as agents for diagnostic imaging and systemic radiotherapy has increased considerable because of the observation that GRP receptors (GRPr) are over-expressed in a variety of human tumor cells, such as prostate tumor cells. {sup 177}Lu-labeled peptides are attractive due to the excellent radiophysical properties and commercial availability of the radiometal. BBNp6 was labeled with high yield after reacting with 92.5 MBq of {sup 177}LuCl3 at 90 deg C for 30 minutes and this mixture kept stable for more than 96 hours at 4 deg C and 1 hour in human plasma. In vivo studies showed a multicompartimental distribution model with fast blood clearance, mainly performed by renal pathway. In addition, {sup 177}Lu-BBNp6 showed high affinity for PC-3 tumor xenografts, but not for pancreas and intestine (GRP positive tissues), suggesting its specificity and usefulness for prostate tumor treatment. Moreover, scintigraphic images showed that this derivative can also be a tool in this tumor diagnosis. So, BBNp6 is a promising radiopharmaceutical for prostate tumor imaging and treatment. (author)

  5. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren;

    2012-01-01

    INTRODUCTION: The urokinase-type plasminogen activator receptor (uPAR) is a well-established biomarker for tumor aggressiveness and metastatic potential. DOTA-AE105 and DOTA-AE105-NH(2) labeled with (64)Cu have previously been demonstrated to be able to noninvasively monitor uPAR expression using...... positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. METHODS: Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide......, uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. RESULTS: In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated...

  6. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing.

    Science.gov (United States)

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2017-01-01

    The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.

  7. Dual receptor-targeting ⁹⁹mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging.

    Science.gov (United States)

    Xu, Jingli; Yang, Jianquan; Miao, Yubin

    2015-04-01

    The aim of this study was to examine whether the substitution of the Lys linker with the aminooctanoic acid (Aoc) and polyethylene glycol (PEG) linker could substantially decrease the non-specific renal uptake of (99m)Tc-labeled Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptides. The RGD motif {Arg-Gly-Asp-DTyr-Asp} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH₃₋₁₃ via the Aoc or PEG₂ linker to generate RGD-Aoc-(Arg(11))CCMSH and RGD-PEG-(Arg(11))CCMSH. The biodistribution results of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH were examined in M21 human melanoma-xenografted nude mice. The substitution of Lys linker with Aoc and PEG₂ linker significantly reduced the renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH by 58% and 63% at 2h post-injection. The renal uptake of (99m)Tc-RGD-Aoc-(Arg(11))CCMSH and (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH was 27.93 ± 3.98 and 22.01 ± 9.89% ID/g at 2 h post-injection. (99m)Tc-RGD-Aoc-(Arg(11))CCMSH displayed higher tumor uptake than (99m)Tc-RGD-PEG₂-(Arg(11))CCMSH (2.35 ± 0.12 vs. 1.71 ± 0.25% ID/g at 2 h post-injection). The M21 human melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RGD-Aoc-(Arg(11))CCMSH as an imaging probe. The favorable effect of Aoc and PEG₂ linker in reducing the renal uptake provided a new insight into the design of novel dual receptor-targeting radiolabeled peptides. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs.

    Science.gov (United States)

    Imanparast, Fatemeh; Faramarzi, Mohammad Ali; Vatannejad, Akram; Paknejad, Maliheh; Deiham, Behnas; Kobarfard, Farzad; Amani, Amir; Doosti, Mahmood

    2017-02-02

    Endothelial dysfunction is initial and critical step of atherosclerosis. Impaired bioavailability of endothelial nitric oxide synthase (eNOS) is one of the main reasons of endothelial dysfunction. Improving bioavailability of eNOS by increasing its expression or activity using statins is an effective therapeutic strategy in restoring endothelial dysfunction. In this study, simvastatin (SIM) as a poorly water-soluble drug was loaded in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (SIM-PLGA-NPs). NPs were then conjugated with mZD7349 peptide (mZD7349-SIM-PLGA-NPs) and directed against vascular cell adhesion molecule 1 (VCAM-1). In vitro evaluation of the NPs for targeted delivery of SIM was performed on activated Human Umbilical Cord Vascular Endothelial Cells (HUVECs) by tumor necrosis factor alpha (TNF-α). Effect of mZD7349-SIM-PLGA-NPs and SIM-PLGA-NPs was compared on eNOS phosphorylation (ser-1177). Results of western blot showed SIM post-treatment increased significantly phosphor-eNOS (Ser1177) expression but no total eNOS expression. The study showed that mZD7349-SIM-PLGA-NPs have particle size, zeta potential value, polydispersity index (PDI) and encapsulation efficacy % of 233±18nm, -9.6±1.1mV, 0.59±0.066 and 69±17.3%, respectively. Also phosphor-eNOS (Ser1177) expression in activated HUVECs treated with mZD7349-SIM-PLGA-NPs was significantly (p<0.05) better than treated cells with SIM-PLGA-NPs. The results suggest that mZD7349-SIM-PLGA-NPs may be usable as an appropriate drug carrier for restoring endothelial dysfunction.

  9. Biological evaluation of 99mTc-labeled cyclic glycoprotein IIb/IIIa receptor antagonists in the canine arteriovenous shunt and deep vein thrombosis models: effects of chelators on biological properties of [99mTc]chelator-peptide conjugates.

    Science.gov (United States)

    Barrett, J A; Damphousse, D J; Heminway, S J; Liu, S; Edwards, D S; Looby, R J; Carroll, T R

    1996-01-01

    A series of 99mTc-labeled cyclic glycoprotein IIb/IIIa receptor antagonists, [99mTcO(L1-III)]-, [99mTcO-(L6-III)]-, [99mTcO(L1-V)]-, and [99mTcO(L6-V)]-, were evaluated in a canine arteriovenous (AV) shunt model for their potential use as thrombus imaging agents. The thrombus formed consists of a platelet-rich head and a fibrin-rich tail. All four agents were incorporated into the growing thrombus under both arterial (platelet-rich) and venous (platelet-poor) conditions. The rank order for uptake was [99mTcO(L1-V)]- > [99mTcO(L6-V)]- > [99mTcO(L6-III)]- > [99mTcO(L1-III)]- (arterial range, 5.8-0.47% id/g; venous range, 0.58-0.04% id/g). The uptakes of both [99mTcO(L6-III)]- and [99mTcO-(L1-III)]- under both arterial and venous conditions were not significantly greater than that of [99mTc]-albumin and [125I]fibrinogen. In contrast, the uptakes of both [99mTcO(L1-V)]- and [99mTcO(L6-V)]- were significantly greater than those of [99mTc]albumin and [125I]fibrinogen and comparable to that of [111In]platelets under both arterial and venous conditions. All four [99mTc]chelator-peptide conjugates are cleared faster than the controls with the clearance of the conjugates of peptide III faster than that of the conjugates of peptide V. The differences in incorporation are attributable to the effect of both the cyclic peptide and the chelator. The conjugate [99mTcO(L1-V)]- was also studied using a canine DVT (deep vein thrombosis) model. [99mTcO(L1-V)]- was actively incorporated into the growing thrombus with images clearly detectable within 15 min postinjection. At 2 h postinjection, thrombus/blood and thrombus/muscle ratios [region of interest (ROI)/background] were approximately 7/1 and 10/1, respectively. This clearly demonstrated that the conjugate [99mTcO(L1-V)]- has the potential for rapid diagnosis of thrombolic events occurring under both arterial and venous conditions.

  10. Bombesin-like peptide mediates lung injury in a baboon model of bronchopulmonary dysplasia

    NARCIS (Netherlands)

    Sunday, ME; Yoder, BA; Cuttitta, F; Haley, KJ; Emanuel, RL

    1998-01-01

    The etiology of bronchopulmonary dysplasia (BPD), a chronic lung disease of infants surviving respiratory distress syndrome, remains fundamentally enigmatic. BPD is decreasing in severity but continues to be a major problem in pediatric medicine, being especially prevalent among very premature infan

  11. Endocrine cells producing regulatory peptides.

    Science.gov (United States)

    Solcia, E; Usellini, L; Buffa, R; Rindi, G; Villani, L; Zampatti, C; Silini, E

    1987-07-15

    Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.

  12. Receptor-binding, biodistribution, dosimetry, and micro-SPECT/CT imaging of 111In-[DTPA(1), Lys(3), Tyr(4)]-bombesin analog in human prostate tumor-bearing mice.

    Science.gov (United States)

    Ho, Chung-Li; Chen, Liang-Cheng; Lee, Wan-Chi; Chiu, Shu-Pei; Hsu, Wei-Chuan; Wu, Yu-Hsien; Yeh, Chung-Hsin; Stabin, Michael G; Jan, Meei-Ling; Lin, Wuu-Jyh; Lee, Te-Wei; Chang, Chih-Hsien

    2009-08-01

    Gastrin-releasing peptide receptors (GRPRs) are overexpressed on a variety of human tumors, such as prostate, breast, and lung cancer. Bombesin (BN) is a 14-amino-acid peptide with high affinity for these GRPRs. We synthesized DTPA-Q-K-Y-G-N-Q-W-A-V-G-H-L-M, a 13-amino-acid peptide chelated with diethylenetriaminepentaacetic acid (DTPA), and radiolabeled this BN analog with 111InCl(3). Biologic activity of 111In-[DTPA(1), Lys(3), Tyr(4)]-BN was evaluated in PC-3 prostate tumor-bearing severely compromised immunodeficient (SCID) mice. The purity of synthesized [DTPA(1), Lys(3), Tyr(4)]-BN was greater than 95%. The radiolabeling efficiency of 111In-[DTPA(1), Lys(3), Tyr(4)]-BN was 96.9% +/- 2.46%. The IC(50) and K(i) of [DTPA(1), Lys(3), Tyr(4)]-BN in the human bombesin 2 receptor were 1.05 +/- 0.46 and 0.83 +/- 0.36 nM, respectively. The K(d) of 111In-[DTPA(1), Lys(3), Tyr(4)]-BN in GRPR-expressing PC-3 tumor cells was 22.9 +/- 6.81 nM. Both biodistribution and micro-SPECT/CT (single-photon emission computed tomography/computed tomography) imaging studies with 111In-[DTPA(1), Lys(3), Tyr(4)]-BN demonstrated the highest uptake at 8 hours postinjection. The Pearson correlation analysis showed a positive correlation of tumor uptake between biodistribution and micro-SPECT/CT semiquantification imaging analysis (r = 0.832). Our results revealed 111In-[DTPA(1), Lys(3), Tyr(4)]-BN has high affinity with BN type 2 receptor. The results demonstrated a good uptake in the GRPR-overexpression of PC-3 tumor-bearing SCID mice. 111In-[DTPA(1), Lys(3), Tyr(4)]-BN is a potential agent for imaging GRPR-positive tumors in humans.

  13. Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine- aspartic acid peptide conjugated near-infrared quantum dots

    Directory of Open Access Journals (Sweden)

    Huang H

    2013-12-01

    Full Text Available Hao Huang, Yun-Long Bai, Kai Yang, Hong Tang, You-Wei WangDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of ChinaAbstract: Molecular imaging plays a key role in personalized medicine and tumor diagnosis. Quantum dots with near-infrared emission spectra demonstrate excellent tissue penetration and photostability, and have recently emerged as important tools for in vivo tumor imaging. Integrin αvβ3 has been shown to be highly and specifically expressed in endothelial cells of tumor angiogenic vessels in almost all types of tumors, and specifically binds to the peptide containing arginine-glycine-aspartic acid (RGD. In this study, we conjugated RGD with quantum dots with emission wavelength of 800 nm (QD800 to generate QD800-RGD, and used it via intravenous injection as a probe to image tumors in nude mice bearing head and neck squamous cell carcinoma (HNSCC. Twelve hours after the injection, the mice were still alive and were sacrificed to isolate tumors and ten major organs for ex vivo analysis to localize the probe in these tissues. The results showed that QD800-RGD was specifically targeted to integrin αvβ3 in vitro and in vivo, producing clear tumor fluorescence images after the intravenous injection. The tumor-to-background ratio and size of tumor image were highest within 6 hours of the injection and declined significantly at 9 hours after the injection, but there was still a clearly visible tumor image at 12 hours. The greatest amount of QD800-RGD was found in liver and spleen, followed by tumor and lung, and a weak fluorescence signal was seen in tibia. No detectable signal of QD800-RGD was found in brain, heart, kidney, testis, stomach, or intestine. Our study demonstrated that using integrin αvβ3 as target, it is possible to use intravenously injected QD800-RGD to generate high quality images of HNSCC, and the technique offers great potential

  14. Biokinetics and dosimetry of {sup 99m} Tc-EDDA/HYNIC-[Lys{sup 3}]-bombesin in humans: imaging of GRP receptors

    Energy Technology Data Exchange (ETDEWEB)

    Santos C, C.L.; Ferro F, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Murphy, C.A de [INCMNSZ, 14000 Mexico D.F. (Mexico); Cardena, E.; Pichardo R, P. [Departamento de Medicina Nuclear, Oncologia Centro Medico Siglo XXI, Mexico D.F. (Mexico)

    2007-07-01

    Full text: Bombesin (BN) receptor subtype 2 (GRP-r) is over-expressed on various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently we reported the {sup 99-}mTc-EDDA/HYNIC-[Lys{sup 3}]-Bombesin ({sup 99m}Tc-HYNIC-BN) complex as a new radiopharmaceutical with high stability in human serum, specific cell GRP-receptor binding and rapid internalization. The aim of this study was to evaluate the {sup 99m}Tc-HYNIC-BN biokinetics and dosimetry in 5-healthy and 3-breast cancer women. Whole-body images were acquired at 20, 90, 180 min and 24 h after {sup 99m}Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source' organs on each time frame. The same set of ROIs was used for all 8 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate {sup 99m}Tc-HYNIC-BN time activity curves in each organ, to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Images showed a rapid radiopharmaceutical blood clearance with predominantly renal excretion and minimal hepatobiliary elimination. {sup 99m}Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in breast cancer lesions and well differentiated from GRP-r expression in lungs and airways with normal GRP-r density (ratio 3:1). The equivalent doses for a study using 370 MBq were 7.38{+-}1.68, 0.59{+-}0.08, 2.07{+-}0.60, 0.58{+-}0.1, 0.75{+-}0.09 and 0.43{+-}0.07 mSv for kidneys, liver, lungs, ovaries, pancreas and red marrow respectively. The effective dose was 1.64{+-}0.25 mSv which is comparable with the doses known for most of the {sup 99m}Tc radiopharmaceutical studies in nuclear medicine. (Author)

  15. Absorbed dose at subcellular level by Monte Carlo simulation for a {sup 99m}Tc-peptide with nuclear internalization

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Ferro F, G. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Santos C, C. L., E-mail: leticia.rojas@inin.gob.m [Universidad Autonoma del Estado de Mexico, Paseo Tollocan esquina Paseo Colon s/n, Toluca 50120, Estado de Mexico (Mexico)

    2010-10-15

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of {sup 99m}Tc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. {sup 99m}Tc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total {sup 99m}Tc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of {sup 99m}Tc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB {sup 99m}Tc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound {sup 99m}Tc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. {sup 99m}Tc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of

  16. Mixed Fibronectin-Derived Peptides Conjugated to a Chitosan Matrix Effectively Promotes Biological Activities through Integrins, α4β1, α5β1, αvβ3, and Syndecan

    Directory of Open Access Journals (Sweden)

    Hozumi Kentaro

    2016-11-01

    Full Text Available Mimicking the biological function of the extracellular matrix is an approach to developing cell adhesive biomaterials. The RGD peptide, derived from fibronectin (Fn, mainly binds to integrin αvβ3 and has been widely used as a cell adhesive peptide on various biomaterials. However, cell adhesion to Fn is thought to be mediated by several integrin subtypes and syndecans. In this study, we synthesized an RGD-containing peptide (FIB1 and four integrin α4β1-binding-related motif-containing peptides (LDV, IDAPS, KLDAPT, and PRARI and constructed peptide-chitosan matrices. The FIB1-chitosan matrix promoted human dermal fibroblast (HDF attachment, and the C-terminal elongated PRARI (ePRARI-C-conjugated chitosan matrix significantly promoted HDF attachment through integrin α4β1 and syndecan binding. Next, we constructed a mixed ePRARI-C- and FIB1-chitosan matrix to develop a Fn mimetic biomaterial. The mixed ePRARI-C/FIB1-chitosan matrix promoted significantly better cell attachment and neurite outgrowth compared to those of either ePRARI-C- or FIB1-chitosan matrices. HDF adhesion to the ePRARI-C/FIB1-chitosan matrix was mediated by integrin, α4β1, α5β1, and αvβ3, similar to HDF adhesion to Fn. These data suggest that an ePRARI-C/FIB1-chitosan matrix can be used as a tool to analyze the multiple functions of Fn and can serve as a Fn-mimetic biomaterial.

  17. Glucagon-like Peptide 1 Conjugated to Recombinant Human Serum Albumin Variants with Modified Neonatal Fc Receptor Binding Properties. Impact on Molecular Structure and Half-Life

    DEFF Research Database (Denmark)

    Bukrinski, Jens T.; Sønderby, Pernille; Antunes, Filipa

    2017-01-01

    cells of blood vessels, which rescues circulating HSA from lysosomal degradation. We have conjugated GLP-1 to C34 of native sequence recombinant HSA (rHSA) and two rHSA variants; one with increased and one with decreased binding affinity to hFcRn. We have investigated the impact of conjugation on Fc......Rn binding affinities, GLP-1 potency and pharmacokinetics, combined with the solution structure of the rHSA variants and GLP-1 albumin conjugates. The solution structures, determined by small angle X-ray scattering, show the GLP-1 pointing away from the surface of rHSA. Combining the solution structures...... with the available structural information on the FcRn and GLP-1 receptor (GLP-1R) obtained from X-ray crystallography, we can explain the observed in-vitro and in-vivo behaviour. We conclude that the conjugation of GLP-1 to rHSA does not affect the interaction between rHSA and FcRn, while the observed decrease...

  18. Effect of context and adjuvant on the immunogenicity of recombinant proteins and peptide conjugates derived from the polymorphic malarial surface antigen MSA2.

    Science.gov (United States)

    Jones, G L; Spencer, L; Lord, R; Saul, A J

    1996-01-01

    We have identified a 51 kDa glycosylated myristylated merozoite surface antigen (MSA2) as the target of a number of monoclonal antibodies which inhibit in vitro invasion of the human malarial parasite Plasmodium falciparum. This antigen has been shown to exist in a limited number of strain specific forms but despite wide variation in the sequences of the internal repeat regions both N and C terminal elements of the protein are almost totally conserved. Accordingly, we prepared a large number of overlapping peptide constructs and demonstrated that one peptide SNTFINNA (E71) from the N terminus and two peptides, QHGHMHGS (G5) and NTSDSQKE (G12) from the C terminus could, when suitably conjoined to the carrier protein diphtheria toxoid (DT), elicit antibodies reactive with MSA2 from diverse strains of P. falciparum. Here we compare the immunogenicity of these peptide constructs with two recombinant proteins containing the entire amino acid sequence of MSA2 from the FCQ-27/PNG strain (1609) and the 3D7 strain (1623). We have formulated these recombinant and peptide antigens with Freund's adjuvant, Alum and Algammulin. Both recombinant and peptide antigens elicit high titre antibodies when tested by ELISA against the immunogens themselves. Although both recombinant proteins include the constant region peptide sequences E71, G5 and G12, the extent of ELISA cross reaction between antibody raised against recombinant and peptide antigen or antibody raised against peptide and recombinant antigen is small and sporadic, and depends to an extent on the adjuvant employed. Antisera against both recombinant proteins 1609 and 1623 detected either recombinant on Western blots, as well as detecting native MSA2 in whole protein extracts from both FCQ-27/PNG and 3D7 strains. Antisera against peptide construct E71 recognized recombinant 1609 but not 1623 but recognized the native MSA2 in both strains studied. Antisera against peptide construct G5 showed a similar pattern of recognition

  19. Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    M. Fani, H. R. Maecke, S. M. Okarvi

    2012-01-01

    Full Text Available Human cancer cells overexpress many peptide receptors as molecular targets. Radiolabeled peptides that bind with high affinity and specificity to the receptors on tumor cells hold great potential for both diagnostic imaging and targeted radionuclide therapy. The advantage of solid-phase peptide synthesis, the availability of different chelating agents and prosthetic groups and bioconjugation techniques permit the facile preparation of a wide variety of peptide-based targeting molecules with diverse biological and tumor targeting properties. Some of these peptides, including somatostatin, bombesin, vasoactive intestinal peptide, gastrin, neurotensin, exendin and RGD are currently under investigation. It is anticipated that in the near future many of these peptides may find applications in nuclear oncology. This article presents recent developments in the field of small peptides, and their applications in the diagnosis and treatment of cancer.

  20. Interactions of Gastrointestinal Peptides: Ghrelin and Its Anorexigenic Antagonists

    Directory of Open Access Journals (Sweden)

    Anna-Sophia Wisser

    2010-01-01

    Full Text Available Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK, bombesin, desacyl ghrelin, peptide YY (PYY, as well as glucagon-like peptide (GLP. Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite.

  1. Interactions of Gastrointestinal Peptides: Ghrelin and Its Anorexigenic Antagonists

    Science.gov (United States)

    Wisser, Anna-Sophia; Habbel, Piet; Wiedenmann, Bertram; Klapp, Burghard F.; Mönnikes, Hubert; Kobelt, Peter

    2010-01-01

    Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite. PMID:20798884

  2. Interactions of gastrointestinal peptides: ghrelin and its anorexigenic antagonists.

    Science.gov (United States)

    Wisser, Anna-Sophia; Habbel, Piet; Wiedenmann, Bertram; Klapp, Burghard F; Mönnikes, Hubert; Kobelt, Peter

    2010-01-01

    Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides in the control of appetite.

  3. Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice.

    Directory of Open Access Journals (Sweden)

    Devki D Sukhtankar

    Full Text Available Pruritus (itch is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr and neuromedin B (NMBr differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01-0.3 nmol, GRP (0.01-0.3 nmol, NMB (0.1-1 nmol or morphine (0.3-3 nmol and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03-0.1 nmol produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1-3 nmol only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of

  4. 1,3-Diamido-calix[4]arene conjugates of amino acids: recognition of -COOH side chain present in amino acids, peptides, and proteins by experimental and computational studies.

    Science.gov (United States)

    Acharya, Amitabha; Ramanujam, Balaji; Chinta, Jugun Prakash; Rao, Chebrolu P

    2011-01-01

    Lower rim 1,3-diamido conjugates of calix[4]arene have been synthesized and characterized, and the structures of some of these have been established by single crystal XRD. The amido-calix conjugates possessing a terminal -COOH moiety have been shown to exhibit recognition toward guest molecules possessing -COOH moiety, viz., Asp, Glu, and reduced and oxidized glutathione (GSH, GSSG), by switch-on fluorescence in aqueous acetonitrile and methanol solutions when compared to the control molecules via forming a 1:1 complex. The complex formed has been shown by mass spectrometry, and the structural features of the complexes were derived on the basis of DFT computations. The association constants observed for the recognition of Asp/Glu by Phe-calix conjugate, viz., 532/676 M(-1), are higher than that reported for the recognition of Val, Leu, Phe, His, and Trp (16-63 M(-1)) by a water-soluble calixarene (Arena, G., et al. Tetrahedron Lett. 1999, 40, 1597). For this recognition, there should be a free -COOH moiety from the guest molecule. AFM, SEM, and DLS data exhibited spherical particles with a hundred-fold reduction in the size of the complexes when compared to the particles of the precursors. These spherical particles have been computationally modeled to possess hexameric species reminiscent of the hexameric micellar structures shown for a Ag(+) complex of a calix[6]arene reported in the literature (Houmadi, S., et al. Langmuir 2007, 23, 4849). Both AFM and TEM studies demonstrated the formation of nanospheres in the case of GSH-capped Ag nanoparticles in interaction with the amido-calix conjugate that possesses terminal -COOH moiety. The AFM studies demonstrated in this paper have been very well applied to albumin proteins to differentiate the aggregational behavior and nanostructural features exhibited by the complexes of proteins from those of the uncomplexed ones. To our knowledge, this is the first report wherein a amido-calix[4]arene conjugate and its amino acid/peptide

  5. Investigation of multivalent interactions between conjugate of quantum dots with c-Myc peptide tag and the anti-c-Myc antibody by capillary electrophoresis with fluorescence detection.

    Science.gov (United States)

    Wang, Jianhao; Yang, Li; Liu, Li; Wu, Hao; Wang, Jianpeng; Jiang, Pengju; Jiang, Xiyuan; Qiu, Lin

    2016-12-01

    Herein, we report an assay for detecting the binding of a multivalent peptide and antibody within a capillary with the use of fluorescence coupled capillary electrophoresis. Quantum dots and a c-Myc tag containing peptide EQKLISEEDLG4 H6 were injected sequentially and formed a multivalent quantum dot-EQKLISEEDLG4 H6 assembly within the capillary. The efficiency of the quantum dot-peptide self-assembly was affected by the peptide/quantum dot molar ratio, sampling time, and interval time. Finally, the binding of the monoclonal anti-c-Myc antibody and the multivalent quantum dot-EQKLISEEDLG4 H6 ligand was studied using an in-capillary assay. The microscopic dissociation constant for the self-assembly of monoclonal anti-c-Myc antibody and quantum dot-EQKLISEEDLG4 H6 was determined to be 14.1 μM with a stoichiometry of the peptide-antibody complex of 1.7 determined after fitting this to the Hill equation. This method can be further extended to detect a wide range of biomolecule-biomolecule binding interactions.

  6. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  7. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  8. Dual Myostatin and Dystrophin Exon Skipping by Morpholino Nucleic Acid Oligomers Conjugated to a Cell-penetrating Peptide Is a Promising Therapeutic Strategy for the Treatment of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Alberto Malerba

    2012-01-01

    Full Text Available The knockdown of myostatin, a negative regulator of skeletal muscle mass may have important implications in disease conditions accompanied by muscle mass loss like cancer, HIV/AIDS, sarcopenia, muscle atrophy, and Duchenne muscular dystrophy (DMD. In DMD patients, where major muscle loss has occurred due to a lack of dystrophin, the therapeutic restoration of dystrophin expression alone in older patients may not be sufficient to restore the functionality of the muscles. We recently demonstrated that phosphorodiamidate morpholino oligomers (PMOs can be used to re-direct myostatin splicing and promote the expression of an out-of-frame transcript so reducing the amount of the synthesized myostatin protein. Furthermore, the systemic administration of the same PMO conjugated to an octaguanidine moiety (Vivo-PMO led to a significant increase in the mass of soleus muscle of treated mice. Here, we have further optimized the use of Vivo-PMO in normal mice and also tested the efficacy of the same PMO conjugated to an arginine-rich cell-penetrating peptide (B-PMO. Similar experiments conducted in mdx dystrophic mice showed that B-PMO targeting myostatin is able to significantly increase the tibialis anterior (TA muscle weight and when coadministered with a B-PMO targeting the dystrophin exon 23, it does not have a detrimental interaction. This study confirms that myostatin knockdown by exon skipping is a potential therapeutic strategy to counteract muscle wasting conditions and dual myostatin and dystrophin skipping has potential as a therapy for DMD.

  9. Spacer effects on in vivo properties of DOTA-conjugated dimeric [Tyr3]octreotate peptides synthesized by a "Cu(I)-click" and "sulfo-click" ligation method

    NARCIS (Netherlands)

    Yim, C.B.; Wildt, B. van der; Dijkgraaf, I.; Joosten, L.; Eek, A.; Versluis, C.; Rijkers, D.T.; Boerman, O.C.; Liskamp, R.M.

    2011-01-01

    We report on the SSTR2-binding properties of a series of four dimeric [Tyr3]octreotate analogues with different spacer lengths (nine, 19, 41, and 57 atoms) between the peptides. Two analogues (9 and 57 atoms) were selected as precursors for the design, synthesis, and biological evaluation of

  10. A Tat-conjugated Peptide Nucleic Acid Tat-PNA-DR Inhibits Hepatitis B Virus Replication In Vitro and In Vivo by Targeting LTR Direct Repeats of HBV RNA

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-01-01

    Full Text Available Hepatitis B virus (HBV infection is a major cause of chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma, all of which are severe threats to human health. However, current clinical therapies for HBV are limited by potential side effects, toxicity, and drug-resistance. In this study, a cell-penetrating peptide-conjugated peptide nucleic acid (PNA, Tat-PNA-DR, was designed to target the direct repeat (DR sequences of HBV. Tat-PNA-DR effectively inhibited HBV replication in HepG2.2.15 cells. Its anti-HBV effect relied on the binding of Tat-PNA-DR to the DR, whereby it suppressed the translation of hepatitis B e antigen (HBeAg, HBsAg, HBV core, hepatitis B virus x protein, and HBV reverse transcriptase (RT and the reverse transcription of the HBV genome. Furthermore, Tat-PNA-DR administered by intravenous injection efficiently cleared HBeAg and HBsAg in an acute hepatitis B mouse model. Importantly, it induced an 80% decline in HBV DNA in mouse serum, which was similar to the effect of the widely used clinical drug Lamivudine (3TC. Additionally, a long-term hydrodynamics HBV mouse model also demonstrated Tat-PNA-DR's antiviral effect. Interestingly, Tat-PNA-DR displayed low cytotoxicity, low mouse acute toxicity, low immunogenicity, and high serum stability. These data indicate that Tat-PNA-DR is a unique PNA and a promising drug candidate against HBV.

  11. Central nervous system action of peptides to influence gastrointestinal motor function.

    Science.gov (United States)

    Taché, Y; Garrick, T; Raybould, H

    1990-02-01

    The central action of peptides to influence GI motility in experimental animals is summarized in Table 1. TRH stimulates gastric, intestinal, and colonic contractility in rats and in several experimental species. A number of peptides including calcitonin, CGRP, neurotensin, NPY, and mu opioid peptides act centrally to induce a fasted MMC pattern of intestinal motility in fed animals while GRF and substance P shorten its duration. The dorsal vagal complex is site of action for TRH-, bombesin-, and somatostatin-induced stimulation of gastric contractility, and for CCK-, oxytocin- and substance P-induced decrease in gastric contractions or intraluminal pressure. The mechanisms through which TRH, bombesin, calcitonin, neurotensin, CCK, and oxytocin alter GI motility are vagally mediated. An involvement of central peptidergic neurons in the regulation of gut motility has recently been demonstrated in Aplysia, indicating that such regulatory mechanisms are important in the phylogenesis. Alterations of the pattern of GI motor activity are associated with functional changes in transit. TRH is so far the only centrally acting peptide stimulating simultaneously gastric, intestinal, and colonic transit in various animals species. Opioid peptides acting on mu receptor subtypes in the brain exert the opposite effect and inhibit concomitantly gastric, intestinal, and colonic transit. Bombesin and CRF were found to act centrally to inhibit gastric and intestinal transit and to stimulate colonic transit in the rat. The antitransit effect of calcitonin and CGRP is limited to the stomach and small intestine. The delay in GI transit is associated with reduced GI contractility for most of the peptides except central bombesin that increases GI motility. Nothing is known about brain sites through which these peptides act to alter gastric emptying and colonic transit. Regarding brain sites influencing intestinal transit, TRH-induced stimulation of intestinal transit in the rat is

  12. Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP100{sub 25–33} peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaoli [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610 (United States)

    2015-12-04

    It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleen cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.

  13. Cell Adhesion Induced Using Surface Modification with Cell-Penetrating Peptide-Conjugated Poly(ethylene glycol)-Lipid: A New Cell Glue for 3D Cell-Based Structures.

    Science.gov (United States)

    Teramura, Yuji; Asif, Sana; Ekdahl, Kristina N; Gustafson, Elisabet; Nilsson, Bo

    2017-01-11

    We synthesized a novel material, cell-penetrating peptide-conjugated poly(ethylene glycol)-lipid (CPP-PEG-lipid), that can induce the adhesion of floating cells. Firm cell adhesion with spreading could be induced by cell surface modification with the CPP-PEG-lipids. Cell adhesion was induced by CPPs but not by any other cationic short peptides we tested. Here, we demonstrated adherence using the floating cell line CCRF-CEM as well as primary human T cells, B cells, erythrocytes, and hepatocytes. As compared to cells grown in suspension, adherent cells were more rapidly induced to attach to substrates with the cell-surface modification. The critical factor for attachment was localization of CPPs at the cell membrane by PEG-lipids with PEG > 20 kDa. These cationic CPPs on PEG chains were able to interact with substrate surfaces such as polystyrene (PS) surfaces, glass surfaces, and PS microfibers that are negatively charged, inducing firm cell adhesion and cell spreading. Also, as opposed to normal cationic peptides that interact strongly with cell membranes, CPPs were less interactive with the cell surfaces because of their cell-penetrating property, making them more available for adhering cells to the substrate surface. No effects on cell viability or cell proliferation were observed after the induction of cell adhesion. With this technique, cells could be easily immobilized onto PS microfibers, an important step in fabricating 3D cell-based structures. Cells immobilized onto 3D PS microfibers were alive, and human hepatocytes showed normal production of urea and albumin on the microfibers. This method is novel in inducing firm cell adhesion via a one-step treatment.

  14. Improving the stability of peptidic radiotracers by the introduction of artificial scaffolds: which structure element is most useful?

    Science.gov (United States)

    Bacher, Lisa; Fischer, Gabriel; Litau, Shanna; Schirrmacher, Ralf; Wängler, Björn; Baller, Marko; Wängler, Carmen

    2015-08-01

    Peptidic radiotracers are highly potent substances for the specific in vivo imaging of various biological targets with Single Photon Emission Computed Tomography and Positron Emission Tomography. However, some radiolabeled peptides such as bombesin analogs were shown to exhibit only a limited stability, hampering a successful target visualization. One option to positively influence the stability of radiolabeled peptides is the introduction of certain artificial molecular scaffolds. In order to comparatively assess the influence of different structure elements on the stability of radiolabeled peptides and to identify those structure elements being most useful for peptide radiotracer stabilization, several monomeric and dimeric bombesin derivatives were synthesized, exhibiting differing molecular designs and the chelator NODAGA for (68) Ga-labeling. The radiolabeled peptides were evaluated regarding their in vitro stability in human serum to determine the influence of the introduced molecular scaffolds on the peptides' serum stabilities. The results of the evaluations showed that the introduction of scaffold structures and the overall molecular design have a substantial impact on the stabilities of the resulting peptidic radiotracers. But besides some general trends found using certain scaffold structures, the obtained results point to the necessity to empirically assess their influence on stability for each susceptible peptidic radiotracer individually.

  15. Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly(carbonate-urea)urethane polymer for use in cardiovascular bypass graft applications.

    Science.gov (United States)

    Kidane, Asmeret G; Punshon, Geoffrey; Salacinski, Henryk J; Ramesh, Bala; Dooley, Audrey; Olbrich, Michael; Heitz, Johannes; Hamilton, George; Seifalian, Alexander M

    2006-12-01

    Gly-Arg-Gly-Asp-Ser (GRGDS) was modified by conjugation to lauric acid (LA) to facilitate incorporation into the matrix of a poly(carbonate-urea)urethane (PCU) used in vascular bypass grafts. GRGDS and LA-GRGDS were synthesized using solid phase Fmoc chemistry and characterized by high performance liquid chromatography and Fourier transform infrared spectroscopy. LA-GRGDS was passively coated and incorporated as nanoparticle dispersion on the PCU films. Biocompatibility of the modified surfaces was investigated. Endothelial cells seeded on LA-GRGDS coated and incorporated PCU showed after 48 h and 72 h a significant (p < 0.05) increase in metabolism compared with unmodified PCU. The platelet adhesion and hemolysis studies showed that the modification of PCU had no adverse effect. In conclusion, LA-conjugated RGD derivatives, such as LA-GRGDS, that permit solubility into solvents used in solvent casting methodologies should have wide applicability in polymer development for use in coronary, vascular, and dialysis bypass grafts, and furthermore scaffolds utilized for tissue regeneration and tissue engineering.

  16. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  17. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH Peptide

    Directory of Open Access Journals (Sweden)

    Pooria Mansoori

    2011-07-01

    Full Text Available Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX.

  18. Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide-protein conjugate for responsive hydrogel formation

    Science.gov (United States)

    Zhang, Xiaoli; Dong, Chunming; Huang, Weiyun; Wang, Huaimin; Wang, Ling; Ding, Dan; Zhou, Hao; Long, Jiafu; Wang, Tingliang; Yang, Zhimou

    2015-10-01

    Responsive hydrogels hold great potential in controllable drug delivery, regenerative medicine, sensing, etc. We introduced in this study the first example of a photo-responsive protein for hydrogel formation. Based on the first example of the crystal structure of a photo-responsive protein, Arabidopsis thaliana protein UVR8, we designed and expressed its derived protein UVR8-1 with a hexa-peptide WRESAI. We also prepared supramolecular nanofibers with a TIP-1 protein at their surface. The simple mixing of these two components resulted in rapid hydrogel formation through the specific interactions between the protein TIP-1 and the peptide WRESAI. Since the protein could show a reversible dimer-monomer transformation, the resulting gels also showed a reversible gel-sol phase transition which was controlled by photo-irradiation. The photo-controllable gel-sol phase transition could be applied for protein delivery and cell separation.Responsive hydrogels hold great potential in controllable drug delivery, regenerative medicine, sensing, etc. We introduced in this study the first example of a photo-responsive protein for hydrogel formation. Based on the first example of the crystal structure of a photo-responsive protein, Arabidopsis thaliana protein UVR8, we designed and expressed its derived protein UVR8-1 with a hexa-peptide WRESAI. We also prepared supramolecular nanofibers with a TIP-1 protein at their surface. The simple mixing of these two components resulted in rapid hydrogel formation through the specific interactions between the protein TIP-1 and the peptide WRESAI. Since the protein could show a reversible dimer-monomer transformation, the resulting gels also showed a reversible gel-sol phase transition which was controlled by photo-irradiation. The photo-controllable gel-sol phase transition could be applied for protein delivery and cell separation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05213k

  19. A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis.

    Science.gov (United States)

    Pillai, R; Marinelli, E R; Fan, H; Nanjappan, P; Song, B; von Wronski, M A; Cherkaoui, S; Tardy, I; Pochon, S; Schneider, M; Nunn, A D; Swenson, R E

    2010-03-17

    The transition of a targeted ultrasound contrast agent from animal imaging to testing in clinical studies requires considerable chemical development. The nature of the construct changes from an agent that is chemically attached to microbubbles to one where the targeting group is coupled to a phospholipid, for direct incorporation to the bubble surface. We provide an efficient method to attach a heterodimeric peptide to a pegylated phospholipid and show that the resulting construct retains nanomolar affinity for its target, vascular endothelial growth factor receptor 2 (VEGFR2), for both the human (kinase insert domain-containing receptor - KDR) and the mouse (fetal liver kinase 1 - Flk-1) receptors. The purified phospholipid-PEG-peptide isolated from TFA-based eluents is not stable with respect to hydrolysis of the fatty ester moieties. This leads to the time-dependent formation of the lysophospholipid and the phosphoglycerylamide derived from the degradation of the product. Purification of the product using neutral eluent systems provides a stable product. Methods to prepare the lysophospholipid (hydrolysis product) are also included. Biacore binding data demonstrated the retention of binding of the lipopeptide to the KDR receptor. The phospholipid-PEG2000-peptide is smoothly incorporated into gas-filled microbubbles and provides imaging of angiogenesis in a rat tumor model.

  20. Design of a beta-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA.

    Science.gov (United States)

    Cline, Lauren L; Waters, Marcey L

    2009-11-21

    Designing receptors that bind RNA is a challenging endeavor because of the unique and sometimes complex structure of RNA. However these structural features provide regions for ligands to bind using different types of interactions. To increase specificity and binding affinity to RNA, divalent systems have been designed which incorporate more than one binding motif into one molecule. Using this approach, we have designed a two part heteroconjugate, WKWK-Int, which contains a beta-hairpin peptide covalently linked to an RNA intercalator. This heteroconjugate was designed to bind duplex RNA through intercalation and simultaneously interact with a single stranded bulge region using the side chains of the beta-hairpin peptide. We have used fluorescence anisotropy experiments to show that the heteroconjugate has an increased binding affinity over either one of the individual ligands. Additionally, RNase footprinting experiments show that the structure of the peptide is necessary for the protection of one particular base in the RNA bulge region. When tested against other RNA molecules containing a stem-bulge structure, the designed heteroconjugate was found to be specific for this RNA sequence. This work provides evidence that the covalent linkage of two weak RNA ligands can greatly increase the binding affinity and also provide specificity to the binding event.

  1. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    Science.gov (United States)

    Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.

    2006-12-01

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.

  2. RGD多肽接枝聚复合导管桥接神经缺损的实验研究%An experimental study of RGD peptide conjugated poly[LA-(Glc-Lys)] nerve conduit to bridge nerve gap

    Institute of Scientific and Technical Information of China (English)

    黄继锋; 征华勇; 李世普; 严琼娇; 徐永年; 陈庄洪

    2009-01-01

    目的 探讨RGD多肽接枝聚/β-TCP/PLA复合神经导管桥接周围神经缺损的治疗效果.方法 45只雄性成年Wister大鼠,随机分为3组,每组15只.切断右侧坐骨神经形成10 mm缺损,A组采用单纯PLA神经导管桥接缺损,B组采用RGD多肽接枝聚/β-TCP/PLA复合神经导管桥接缺损,C组采用自体神经移植.术后12周进行大体观察、电生理、小腿三头肌恢复率、组织学、超微结构等测定.结果 B组运动神经传导速度和肌肉湿重恢复率明显优于A组,差异有统计学意义(P0.05).组织学、超微结构测定发现B、C组神经再生情况明显优于A组.结论 在坐骨神经损伤修复中,RGD多肽接枝聚/β-TCP/PLA复合神经导管桥接修复效果与自体神经移植相近,可作为一种较理想的神经缺损修复材料.%Objective To investigate the effect of RGD peptide conjugated poly[ LA-(Glc-Lys) ]/βTCP/PLA nerve conduit for bridging peripheral nerve regeneration defect. Methods Forty-five male Wister rots were randomly divided into 3 groups, with 15 rats each. A 10 mm defect was created in the right sciatic nerve. In group A the gap was bridged by PLA tube. In group B RGD peptide conjugated poly[ LA-(Glc-Lys) ]/β-TCP/PLA nerve conduit was used to repair the defect. Autologous nerve graft was done in group C which served as control. Twelve weeks postoperatively nerve regeneration was evaluated by gross observation,electrophysiology, muscle weight and muscle morphometry of triceps surae, and ultrastructure of the regenerating nerve. Results Twelve weeks after the operation, nerve conduction velocity and muscle weight recovery of group B were better than those of group A. The differences were statistically significant( P 0. 05). The results of histology and ultrastructure showed that nerve regeneration in group B and group C was significantly superior to that in group A.Conclusion RGD peptide conjugated poly[LA-(Glc-Lys)]/β-TCP/PLA conduit can achieve similar

  3. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes

    Science.gov (United States)

    Liu, Lihong; Yang, Jun; Xie, Jianping; Luo, Zhentao; Jiang, Jiang; Yang, Yi Yan; Liu, Shaomin

    2013-04-01

    Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects.Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (Gram-positive Bacillus subtilis, Gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34254a

  4. Carrier peptide-mediated transepithelial permeation of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2015-01-01

    of the molar mixing ratio between the carrier peptide and the therapeutic cargo, whereas the direct conjugation approach ensures an inherent proximity of the carrier peptide to its therapeutic cargo. So far studies addressing the choice of using the co-administration approach over the conjugation approach......-34)) and the widely studied CPP penetratin were employed as therapeutic cargo and carrier peptide, respectively....

  5. Toxicity assessment of repeated intravenous injections of arginine–glycine–aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice

    Directory of Open Access Journals (Sweden)

    Wang YW

    2014-10-01

    Full Text Available You-Wei Wang, Kai Yang, Hong Tang, Dan Chen, Yun-Long Bai Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China Background: Nanotechnology-based near-infrared quantum dots (NIR QDs have many excellent optical properties, such as high fluorescence intensity, good fluorescence stability, and strong tissue-penetrating ability. Integrin αvß3 is highly and specifically expressed in tumor angiogenic vessel endothelial cells of almost all carcinomas. Recent studies have shown that NIR QDs linked to peptides containing the arginine–glycine–aspartic acid (RGD sequence (NIR QDs-RGD can specifically target integrin αvß3 expressed in endothelial cells of tumor angiogenic vessels in vivo, and they offer great potential for early cancer diagnosis, in vivo tumor imaging, and tumor individualized therapy. However, the toxicity profile of NIR QDs-RGD has not been reported. This study was conducted to investigate the toxicity of NIR QDs-RGD when intravenously administered to mice singly and repeatedly at the dose required for successful tumor imaging in vivo.Materials and methods: A NIR QDs-RGD probe was prepared by linking NIR QDs with the maximum emission wavelength of 800 nm (QD800 to the RGD peptide (QD800-RGD. QD800-RGD was intravenously injected to BALB/C mice once or twice (200 pmol equivalent of QD800 for each injection. phosphate-buffered saline solution was used as control. Fourteen days postinjection, toxicity tests were performed, including complete blood count (white blood cell, red blood cell, hemoglobin, platelets, lymphocytes, and neutrophils and serum biochemical analysis (total protein, albumin, albumin/globulin, aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen. The coefficients of liver, spleen, kidney, and lung weight to body weight were measured, as well as their oxidation and antioxidation indicators, including

  6. Peptide conjugated chitosan foam as a novel approach for capture-purification and rapid detection of hapten--example of ochratoxin A.

    Science.gov (United States)

    Soleri, R; Demey, H; Tria, S A; Guiseppi-Elie, A; Hassine, A Ibn Had; Gonzalez, C; Bazin, I

    2015-05-15

    A novel bioassay for the detection and monitoring of Ochratoxin A (OTA), a natural carcinogenic mycotoxin produced by Aspergillus and Penicillium fungi, has been developed and applied for the screening of red wine. Here we report the immobilization and orientation of NOF4, a synthetic peptide, onto 3-D porous chitosan supports using a N-terminal histidine tag to allow binding to M(++) ions that were previously adsorbed onto the high surface area biopolymer. Three divalent cations (M(++)=Zn(++), Co(++), Ni(++)) were evaluated and were found to adsorb via a Langmuir model and to have binding capacities in the order Zn(++)>Co(++)>Ni(++). Following Zn(++) saturation and washing, C-terminus vs. the N-terminus His-tagged NOF4 was evaluated. At 1000 µg L(-1) OTA the N-terminus immobilization was more efficient (2.5 times) in the capture of OTA. HRP labeled OTA was added to the antigen solutions (standards or samples) and together competitively incubated on biospecific chitosan foam. The chemiluminescence substrate luminol was then added and after 5 min of enzymatic reaction, light emission signals (λmax=425 nm) were analyzed. Calibration curves of %B/B0 vs. OTA concentration in PBS showed that half-inhibition occurred at 1.17 µg L(-1), allowing a range of discrimination of 0.25 and 25 µg L(-1). In red wine, the minimum concentration of OTA that the system can detect was 0.5 µg L(-1) and could detect up to 5 µg L(-1). Assay validation was performed against immunoaffinity column (IAC) tandem reversed-phase high pressure liquid chromatography with fluorescence detection (HPLC-FLD) and provided quite good agreement. The association of chitosan foam and specific peptide represents a new approach with potential for both purification-concentration and detection of small molecules. In the future this assay will be implemented in a solid-sate bioelectronic format.

  7. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons.

    Science.gov (United States)

    Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo

    2016-01-01

    Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  8. Inhibition of AAC(6′)-Ib-Mediated Resistance to Amikacin in Acinetobacter baumannii by an Antisense Peptide-Conjugated 2′,4′-Bridged Nucleic Acid-NC-DNA Hybrid Oligomer

    Science.gov (United States)

    Lopez, Christina; Arivett, Brock A.; Actis, Luis A.

    2015-01-01

    Multiresistant Acinetobacter baumannii, a common etiologic agent of severe nosocomial infections in compromised hosts, usually harbors aac(6′)-Ib. This gene specifies resistance to amikacin and other aminoglycosides, seriously limiting the effectiveness of these antibiotics. An antisense oligodeoxynucleotide (ODN4) that binds to a duplicated sequence on the aac(6′)-Ib mRNA, one of the copies overlapping the initiation codon, efficiently inhibited translation in vitro. An isosequential nuclease-resistant hybrid oligomer composed of 2′,4′-bridged nucleic acid-NC (BNANC) residues and deoxynucleotides (BNANC-DNA) conjugated to the permeabilizing peptide (RXR)4XB (“X” and “B” stand for 6-aminohexanoic acid and β-alanine, respectively) (CPPBD4) inhibited translation in vitro at the same levels observed in testing ODN4. Furthermore, CPPBD4 in combination with amikacin inhibited growth of a clinical A. baumannii strain harboring aac(6′)-Ib in liquid cultures, and when both compounds were used as combination therapy to treat infected Galleria mellonella organisms, survival was comparable to that seen with uninfected controls. PMID:26169414

  9. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism.

    Science.gov (United States)

    Lateef, Dalya M; Xiao, Cuiying; Brychta, Robert J; Diedrich, André; Schnermann, Jurgen; Reitman, Marc L

    2016-04-01

    Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.

  10. Oral delivery of probiotic expressing M cell homing peptide conjugated BmpB vaccine encapsulated into alginate/chitosan/alginate microcapsules.

    Science.gov (United States)

    Jiang, Tao; Singh, Bijay; Maharjan, Sushila; Li, Hui-Shan; Kang, Sang-Kee; Bok, Jin-Duck; Cho, Chong-Su; Choi, Yun-Jaie

    2014-11-01

    Oral administration of live probiotics as antigen delivery vectors is a promising approach in vaccine development. However, the low survival of probiotics in the gastrointestinal tract limits this approach. Therefore, the aim of this study was the encapsulation of probiotic expressing vaccine into alginate/chitosan/alginate (ACA) microcapsules (MCs) for efficient oral vaccine delivery. Here, recombinant Lactobacillus plantarum 25 (LP25) expressing M cell homing peptide fused BmpB protein was used as a model probiotic. The viability of LP25 in ACA MCs was more than 65% in simulated gastric fluid (SGF, pH 2.0) and 75% in simulated small intestinal fluid (SIF, pH 7.2) up to 2h. Encapsulated LP25 was completely released from ACA MCs in SIF within 12h. When stored at room temperature (RT) or 4°C, the viability of LP25 in ACA MCs was higher than free LP25. Interestingly, the viability of LP25 in ACA MCs at 4°C for 5weeks was above 58%, whereas viability of free LP25 stored at RT up to 5weeks was zero. After 4weeks from the first immunization, LP25-M-BmpB-loaded ACA MCs induced a stronger BmpB-specific IgG and IgA production in mice. Collectively, these findings suggest that encapsulation of probiotic by ACA MCs is a promising delivery system for oral administration of probiotic expressing vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Peptides and metallic nanoparticles for biomedical applications.

    NARCIS (Netherlands)

    Kogan, M.J.; Olmedo, I.; Hosta, L.; Guerrero, A.R.; Cruz Ricondo, L.J.; Albericio, F.

    2007-01-01

    In this review, we describe the contribution of peptides to the biomedical applications of metallic nanoparticles. We also discuss strategies for the preparation of peptide-nanoparticle conjugates and the synthesis of the peptides and metallic nanoparticles. An overview of the techniques used for th

  12. Structural Characterization of Peptide Antibodies

    DEFF Research Database (Denmark)

    Chailyan, Anna; Marcatili, Paolo

    2015-01-01

    The role of proteins as very effective immunogens for the generation of antibodies is indisputable. Nevertheless, cases in which protein usage for antibody production is not feasible or convenient compelled the creation of a powerful alternative consisting of synthetic peptides. Synthetic peptides...... can be modified to obtain desired properties or conformation, tagged for purification, isotopically labeled for protein quantitation or conjugated to immunogens for antibody production. The antibodies that bind to these peptides represent an invaluable tool for biological research and discovery...

  13. Preparation and in vitro evaluation of pH-sensitive TAT peptide conjugated micelles%pH敏感性的TAT肽修饰胶束的制备及其体外评价

    Institute of Scientific and Technical Information of China (English)

    陈卫; 金明姬; 高钟镐; 王丽萍; 朴海峰

    2011-01-01

    本文采用具有pH敏感性的硬脂酰磺胺甲氧嘧啶、mPEG2000-DOPE和TAT肽(transactivator oftranscription peptide)修饰的聚乙二醇化磷脂,以薄膜分散法制备了载阿霉素的聚合物胶束.pH敏感胶束在pH7.4的粒径约为20 nm,阿霉素的包封率为(99.1 4±2.1)%.流式细胞术显示,pH 7.4和pH 6.8时TAT修饰的胶束均可迅速被摄取;而pH敏感胶束在pH 7.4时进入细胞较少,pH 6.8时进入细胞增多,孵育1 h后摄取量接近TAT修饰胶束.激光共聚焦显示pH敏感胶柬在pH 6.8时肿瘤细胞摄取量显著大于pH 7.4.结果说明,该胶束具有pH敏感性,pH 7.4时屏蔽TAT肽,避免其无选择性的透膜进入细胞,而在pH 6.8时暴露出TAT肽,发挥其进入细胞的能力,介导载药胶束进入肿瘤细胞,实现特异性杀伤肿瘤细胞的目的.此pH敏感胶束是一种有前景的肿瘤靶向给药系统.%Doxorubicin loaded micelles were prepared by film-hydration method using stearyl sulfadiazine (SA-SD) which is pH sensitive, methoxy (polyethylene glycol)-2000-1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (mPEG-DOPE) and transactivator of transcription (TAT) peptide conjugated PEG-DOPE. Mean diameter of the pH-sensitive micelles was about 20 nm with a (99.1±2.1) % drug entrapment efficiency at pH 7.4. Flow cytometry studies revealed that the simple TAT micelles was taken up rapidly at the same level at pH 6.8 and pH 7.4. However, the pH-sensitive micelles entcred the tumor cell less at pH 7.4 and significantly increase at pH 6.8. After 1 h incubation at pH 6.8, the amount of the pH-sensitive micelles taken up by cancer cell 4T1 was almost similar to simple TAT micelles. The confocal microscopy indicated that the pH-sensitive micelles entered the 4T1 cells at pH 6.8 more than at pH 7.4. It was indicated that the pH-sensitive micelles could shield TAT peptide at normal pH 7.4 and deshield it at pH 6.8. Hence, TAT peptides lead the drug-loaded micelles into the tumor cells and killed them

  14. Exploiting Protected Maleimides to Modify Oligonucleotides, Peptides and Peptide Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Clément Paris

    2015-04-01

    Full Text Available This manuscript reviews the possibilities offered by 2,5-dimethylfuran-protected maleimides. Suitably derivatized building blocks incorporating the exo Diels-Alder cycloadduct can be introduced at any position of oligonucleotides, peptide nucleic acids, peptides and peptoids, making use of standard solid-phase procedures. Maleimide deprotection takes place upon heating, which can be followed by either Michael-type or Diels-Alder click conjugation reactions. However, the one-pot procedure in which maleimide deprotection and conjugation are simultaneously carried out provides the target conjugate more quickly and, more importantly, in better yield. This procedure is compatible with conjugates involving oligonucleotides, peptides and peptide nucleic acids. A variety of cyclic peptides and oligonucleotides can be obtained from peptide and oligonucleotide precursors incorporating protected maleimides and thiols.

  15. Metal coordination of ferrocene-histidine conjugates.

    Science.gov (United States)

    Ferranco, Annaleizle; Basak, Shibaji; Lough, Alan; Kraatz, Heinz-Bernhard

    2017-04-05

    This study presents a few bis(histidine) ligands working to build a small peptidic model system of zinc structural sites. Ferrocene-peptide conjugates Fc[CO-His(Trt)-His(Trt)-OMe]2 (3), Fc[CO-His(Trt)-Asp(OMe)-OMe]2 (4), and Fc[CO-His(Trt)-Glu(OMe)-OMe]2 (5) were synthesized and characterized spectroscopically. (1)H-NMR and IR spectroscopic studies reveal hydrogen bonding interactions and while more detailed circular dichroism studies show a 1,2'-P helical "Herrick conformation" for Fc-conjugates 4 and 5, we discovered M-helical chirality in Fc-peptide 3. The half-wave potentials (E1/2) of ferrocene-peptides follow the sequence 3 anodic potential shifts upon the addition of metal ions, which follow the order Cu(2+) > Zn(2+) > Ni(2+) > Cd(2+) > Mn(2+) > Mg(2+). NMR spectroscopic experiments show that the two nitrogen atoms present on each imidazole ring of His residues are the site of metal coordination. There is a strong indication that peptide conjugates 4 and 5 in the presence of Zn(2+) enforce a coordination number of four as the CD spectra of Fc-conjugates 4 and 5 exhibited a red shift which corresponds to the third and fourth coordination sites occupied by neutral carbonyl oxygen donor atoms, in addition, carbonyl amide appears downward shifted in wavenumber upon metal addition.

  16. Production and characterization of peptide antibodies

    DEFF Research Database (Denmark)

    Trier, Nicole Hartwig; Hansen, Paul Robert; Houen, Gunnar

    2012-01-01

    Proteins are effective immunogens for generation of antibodies. However, occasionally the native protein is known but not available for antibody production. In such cases synthetic peptides derived from the native protein are good alternatives for antibody production. These peptide antibodies...... are powerful tools in experimental biology and are easily produced to any peptide of choice. A widely used approach for production of peptide antibodies is to immunize animals with a synthetic peptide coupled to a carrier protein. Very important is the selection of the synthetic peptide, where factors...... such as structure, accessibility and amino acid composition are crucial. Since small peptides tend not to be immunogenic, it may be necessary to conjugate them to carrier proteins in order to enhance immune presentation. Several strategies for conjugation of peptide-carriers applied for immunization exist...

  17. Affinity-based release of polymer-binding peptides from hydrogels with the target segments of peptides.

    Science.gov (United States)

    Serizawa, Takeshi; Fukuta, Hiroki; Date, Takaaki; Sawada, Toshiki

    2016-02-01

    Peptides with affinities for the target segments of polymer hydrogels were identified by biological screening using phage-displayed peptide libraries, and these peptides exhibited an affinity-based release capability from hydrogels. The results from cell culture assays demonstrated the sustained anticancer effects of the drug-conjugated peptides that were released from the hydrogels.

  18. Synthetic peptide vaccines: palmitoylation of peptide antigens by a thioester bond increases immunogenicity

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Tesser, G.I.

    1997-01-01

    or an amide bond. It was found that these S-palmitoylated peptides were much more immunogenic than N-palmitoylated peptides and at least similar to KLH-conjugated peptides with respect to appearance and magnitude of induced antibodies (canine parvovirus) or immunocastration effect (gonadotropin...

  19. Improving Peptide Applications Using Nanotechnology.

    Science.gov (United States)

    Narayanaswamy, Radhika; Wang, Tao; Torchilin, Vladimir P

    2016-01-01

    Peptides are being successfully used in various fields including therapy and drug delivery. With advancement in nanotechnology and targeted delivery carrier systems, suitable modification of peptides has enabled achievement of many desirable goals over-riding some of the major disadvantages associated with the delivery of peptides in vivo. Conjugation or physical encapsulation of peptides to various nanocarriers, such as liposomes, micelles and solid-lipid nanoparticles, has improved their in vivo performance multi-fold. The amenability of peptides to modification in chemistry and functionalization with suitable nanocarriers are very relevant aspects in their use and have led to the use of 'smart' nanoparticles with suitable linker chemistries that favor peptide targeting or release at the desired sites, minimizing off-target effects. This review focuses on how nanotechnology has been used to improve the number of peptide applications. The paper also focuses on the chemistry behind peptide conjugation to nanocarriers, the commonly employed linker chemistries and the several improvements that have already been achieved in the areas of peptide use with the help of nanotechnology.

  20. [Bombesin-mediated non-cholinergic late slow excitatory postsynaptic potentials in guinea pig inferior mesenteric ganglion in vitro].

    Science.gov (United States)

    Kong, De-Hu; Wang, Gang; Wang, Hong-Mei; Ke, Dao-Ping; Hu, Jin-Lan; Zhu, Yan; Huang, Zhen-Xin

    2003-08-25

    The effect of bombesin (BOM) on non-cholinergic excitatory synaptic transmission of the guinea pig inferior mesenteric ganglion (IMG) was investigated by intracellular recording. Repetitive stimulation of the colon nerves (1 ms, 25 Hz, 4 s) elicited a burst of action potentials, which was followed by a long-lasting depolarization in 74.3% (52/70) of the IMG neurons. The depolarization was not blocked by nicotinic (d-tubocurarine, 100 micromol/L) and muscarinic (atropine, 1 micromol/L) antagonists, but was eliminated in a low Ca(2+)/high Mg(2+) Krebs solution, indicating that the depolarization was due to the release of non-cholinergic transmitters. Superfusing the ganglia with BOM (10 micromol/L, 1 min) induced a slow depolarization in 66.5% (109/164) neurons tested. The BOM response was not appreciably changed in low Ca(2+)/high Mg(2+) Krebs solution (n=6, P>0.05), suggesting that BOM depolarized the neurons by acting directly on the postsynaptic membrane rather than via a release of other endogenous depolarizing substances. In a total of 102 cells that exhibited late slow excitatory postsynaptic potential (ls-EPSP), superfusion of the ganglia with BOM produced a membrane depolarization in 82 neurons (80%), while the remaining 20 cells (20%) exhibited no response to BOM. In 18 neurons with ls-EPSP, 4 (22%) neurons were sensitive to both BOM and SP; 6 (33%) and 5 (28%) neurons were only sensitive to BOM and SP, respectively. The remaining 3 (17%) neurons were insensitive to both BOM and SP. Membrane resistance (Rm) had no apparent change in 47.3%, 59.5 % of the neurons tested during the ls-EPSP (n=55) and BOM depolarization (n=84), respectively, but had a marked decrease in 38.2%, 27.4%, and a marked increase in the remaining 14.5%, 13.1% of the neurons. However, when the Rm change accompanying ls-EPSP was compared with that accompanying BOM depolarization (n=20) in the same neuron, the changes in Rm were always parallel. Moreover, ls-EPSP (n=6) and BOM

  1. Imaging tumors with peptide-based radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Behr, T. M.; Gotthardt, M.; Barth, A.; Behe, M. [Philipps-University of Marburg, Dept. of Nuclear Medicine, Marburg (Germany)

    2001-06-01

    derivatives of gastrin showed excellent targeting of CCK-B receptor expressing tissues in animals and patients. A variety of further peptide-based radioligands, e.g. among many others, gastrin-releasing peptide/bombesin, neurotensin, substance-P, pan-somatostatin (somatostatin derivatives which bind to all five receptor subtypes) or glucagon-like peptide-1 (glp-1) analogs (the latter for the specific detection of insulinomas), is currently under development. Summarizing, radiolabeled regulatory peptides have opened new horizons in nuclear oncology for diagnosis (and potential internal radionuclide therapy). Future work will probably reveal a multitude of novel potentially clinically useful peptide-based radioligands.

  2. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  3. Biokinetics and dosimetry in patients of {sup 99m}Tc-HYNIC-Lys{sup 3}-Bombesin: images of GRP receptors; Biocinetica y dosimetria en humanos de {sup 99m}Tc-HYNIC-Lys{sup 3}-Bombesina: imagenes de receptores GRP

    Energy Technology Data Exchange (ETDEWEB)

    Santos C, C. L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2007-07-01

    The bombesin (BN) receptor subtype 2 (GRP-r) is expressed in several normal human tissues and is over-expressed in various human tumors including breast, prostate, small cell lung and pancreatic cancer. Recently [{sup 99m}Tc]EDDA/HYNIC-Lys{sup 3}-bombesin ({sup 99m}Tc-HYNIC-BN) was reported as a radiopharmaceutical with high stability in human serum, specific cell GRP-r binding and rapid cell internalization. The aim of this study was to evaluate the feasibility of using {sup 99m}Tc-HYNIC-BN to image GRP-r and to assess the radiopharmaceutical biokinetics and dosimetry in 4 breast cancer patients and in 7 healthy women. Methods: Whole-body images were acquired at 20, 90, 180 min and 24 h after {sup 99m}Tc-HYNIC-BN administration. Regions of interest (ROIs) were drawn around source organs on each time frame. The same set of ROIs was used for all 11 scans and the cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate {sup 99m}Tc-HYNIC-BN time-activity curves in each organ in order to calculate the total number of disintegrations (N) that occurred in the source regions, according with MIRD methodology. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. Results: Images showed a rapid radiopharmaceutical blood clearance with renal excretion as predominant route. {sup 99m}Tc-HYNIC-BN exhibited high in vivo affinity for GRP-r over-expression successfully visualized in cancer mammary glands and well differentiated from the ubiquitous GRP-r expression in normal breast, lungs and airways. There was no statistically significant difference (p > 0.05) in the radiation absorbed doses between cancer patients and healthy women. The average equivalent doses (n=11) for a study using 740 MBq were 24.8 +- 8.8 mSv (kidneys), 7.3 +- 1.8 mSv (lungs), 6.5 +- 4.0 mSv (breast) 2.0 +- 0.3 mSv (pancreas), 1.6 +- 0.3 mSv (liver), 1.2 +- 0.2 mSv (ovaries) and 1.0 +- 0.2 mSv (red

  4. The Chemistry and Biology of Oligonucleotide Conjugates

    Science.gov (United States)

    Juliano, R.L.; Ming, Xin; Nakagawa, Osamu

    2012-01-01

    CONSPECTUS Short DNA or RNA oligonucleotides have tremendous potential as therapeutic agents. Because of their ability to engage in Watson-Crick base pairing they can interact with messenger mRNA or pre-mRNA targets with high selectivity and thus offer the possibility of precise manipulation of gene expression. This possibility has engendered extensive efforts to develop oligonucleotides as drugs, with many candidates already in clinical trials. However, a major impediment to the maturation of oligonucleotide-based therapeutics is the fact that these relatively large and usually highly charged molecules have great difficulty crossing cellular membranes and thus in penetrating to their sites of action in the cytosol or nucleus. In this Account we first summarize some basic aspects of the biology of antisense and siRNA oligonucleotides and then discuss chemical conjugation as an approach to improving the intracellular delivery and therapeutic potential of these agents. Our emphasis will be on the pharmacological ramifications of oligonucleotide conjugates rather than the details of conjugation chemistry. One important approach has been conjugation with ligands designed to bind to particular receptors and thus provide specificity to the interaction of cells with oligonucleotides. Another approach has been to couple antisense or siRNA with agents such as cell penetrating peptides that are designed to provoke escape of the conjugate from intracellular vesicular compartments. Both of these approaches have enjoyed some success. However, there remains much to be learned before oligonucleotide conjugates can find an important place in human therapeutics. PMID:22353142

  5. Metal-leachate-induced conjugate protein instability.

    Science.gov (United States)

    Li, Ning; Osborne, Brandi; Singh, Satish K; Wang, Wei

    2012-08-01

    During the scale-up of an ultrafiltration/diafiltration (UF/DF) step for a protein-based conjugate vaccine, significant precipitation was observed at room temperature. It was found that a specific type of metal hosebarb fitting used in the UF/DF system, when placed in the conjugate solution, caused the precipitation. Inductively Coupled Plasma Mass Spectrometry analysis showed significant amounts of Ni(II), Zn(II), and Cu(II) present in the conjugate solution. A kinetic study showed that the concentration of these metal ions gradually increased with increasing incubation time with a corresponding decrease in conjugate concentration. Direct spiking of trace amounts of NiCl₂, ZnCl₂, and CuCl₂ into the conjugate solution also caused precipitation, and spiking studies showed that the metal ions caused precipitation of the conjugate but not of the carrier protein, antigen, or carrier protein + linker. The precipitation was found to be significantly dependent on buffer species but not solution pH and led to an irreversible loss of tertiary structure even after dissolution in and removal of guanidine hydrochloride. The precipitation is likely the result of formation of transition-metal complexes with histidine residues on the antigen peptide, which may involve both intraconjugate and interconjugate antigens. Such complexation may lead to formation of multimers that may exceed the solubility limit.

  6. Poly(Ethylene Glycol-Based Backbones with High Peptide Loading Capacities

    Directory of Open Access Journals (Sweden)

    Aoife O'Connor

    2014-10-01

    Full Text Available Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycols are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.

  7. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Marion de; Kwekkeboom, Dik; Valkema, Roelf; Krenning, Eric P. [Department of Nuclear Medicine, L2, Erasmus MC, 3015 GD, Rotterdam (Netherlands)

    2003-03-01

    On their plasma membranes, cells express receptor proteins with high affinity for regulatory peptides, such as somatostatin. Changes in the density of these receptors during disease, e.g. overexpression in many tumours, provide the basis for new imaging methods. The first peptide analogues successfully applied for visualisation of receptor-positive tumours were radiolabelled somatostatin analogues. The next step was to label these analogues with therapeutic radionuclides for peptide receptor radionuclide therapy (PRRT). Results from preclinical and clinical multicentre studies have already shown an effective therapeutic response when using radiolabelled somatostatin analogues to treat receptor-positive tumours. Infusion of positively charged amino acids reduces kidney uptake, enlarging the therapeutic window. For PRRT of CCK-B receptor-positive tumours, such as medullary thyroid carcinoma, radiolabelled minigastrin analogues are currently being successfully applied. The combination of different therapy modalities holds interest as a means of improving the clinical therapeutic effects of radiolabelled peptides. The combination of different radionuclides, such as {sup 177}Lu- and {sup 90}Y-labelled somatostatin analogues, to reach a wider tumour region of high curability, has been described. A variety of other peptide-based radioligands, such as bombesin and NPY(Y{sub 1}) analogues, receptors for which are expressed on common cancers such as prostate and breast cancer, are currently under development and in different phases of (pre)clinical investigation. Multi-receptor tumour targeting using the combination of bombesin and NPY(Y{sub 1}) analogues is promising for scintigraphy and PRRT of breast carcinomas and their lymph node metastases. (orig.)

  8. CO-releasing molecule (CORM) conjugate systems.

    Science.gov (United States)

    Kautz, Anna Christin; Kunz, Peter C; Janiak, Christoph

    2016-11-15

    The development of CORMs (CO-releasing molecules) as a prodrug for CO administration in living organisms has attracted significant attention. CORMs offer the promising possibility of a safe and controllable release of CO in low amounts triggered by light, ligands, enzymes, etc. For the targeting of specific tissues or diseases and to prevent possible side effects from metals and other residues after CO release, these CORMs are attached to biocompatible systems, like peptides, polymers, nanoparticles, dendrimers, protein cages, non-wovens, tablets, and metal-organic frameworks. We discuss in this review the known CORM carrier conjugates, in short CORM conjugates, with covalently-bound or incorporated CORMs for medicinal and therapeutic applications. Most conjugates are nontoxic, show increasing half-lives of CO release, and make use of the EPR-effect, but still show problems because of a continuous background of CO release and the absence of an on/off-switch for the CO release.

  9. Revisiting conjugate schedules.

    Science.gov (United States)

    MacAleese, Kenneth R; Ghezzi, Patrick M; Rapp, John T

    2015-07-01

    The effects of conjugate reinforcement on the responding of 13 college students were examined in three experiments. Conjugate reinforcement was provided via key presses that changed the clarity of pictures displayed on a computer monitor in a manner proportional to the rate of responding. Experiment 1, which included seven parameters of clarity change per response, revealed that responding decreased as the percentage clarity per response increased for all five participants. These results indicate that each participant's responding was sensitive to intensity change, which is a parameter of conjugate reinforcement schedules. Experiment 2 showed that responding increased during conjugate reinforcement phases and decreased during extinction phases for all four participants. Experiment 3 also showed that responding increased during conjugate reinforcement and further showed that responding decreased during a conjugate negative punishment condition for another four participants. Directions for future research with conjugate schedules are briefly discussed.

  10. Organometallic-Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications.

    Science.gov (United States)

    Albada, Bauke; Metzler-Nolte, Nils

    2016-10-12

    Peptides are important biological molecular entities in biomedical research. They can be prepared in a large variety of shapes, with a host of chemical functions, and tailored for specific applications. Organometallic medicinal chemistry is a relatively young field that explores biomedical and bioanalytical applications of organometallic complexes, that is, metal compounds with at least one direct, covalent metal-carbon bond. The conjugation of peptides to such medicinally active organometallic moieties started only about 20 years ago, and it has been very beneficial for the development of bioorganometallic chemistry in general. Similarly, the biomedical properties of peptides have been altered by their conjugation to organometallic (OM) moieties. In this review, synthetic methods by which OM moieties can be conjugated to peptides via a carbon-metal bond are described, and selected medicinal applications of such conjugates are discussed. Inorganic coordination complexes between metal ions and peptides are excluded from this review. Also, the labeling of peptides with radiometals and applications of radiolabeled peptides will not be treated herein. First, modifications of the peptide backbone (either N- or C-terminally, or both) with organometallic moieties will be described, including the insertion of OM moieties as part of the peptide backbone. Then side-chain modifications will be reported, among them the most recent strategies for chemoselective arene metalation on peptides. Finally, approaches by which multiple metalation can be achieved are explored. In each section, selected examples of biological applications are highlighted.

  11. A coupling of homology modeling with multiple molecular dynamics simulation for identifying representative conformation of GPCR structures: a case study on human bombesin receptor subtype-3.

    Science.gov (United States)

    Nowroozi, Amin; Shahlaei, Mohsen

    2017-02-01

    In this study, a computational pipeline was therefore devised to overcome homology modeling (HM) bottlenecks. The coupling of HM with molecular dynamics (MD) simulation is useful in that it tackles the sampling deficiency of dynamics simulations by providing good-quality initial guesses for the native structure. Indeed, HM also relaxes the severe requirement of force fields to explore the huge conformational space of protein structures. In this study, the interaction between the human bombesin receptor subtype-3 and MK-5046 was investigated integrating HM, molecular docking, and MD simulations. To improve conformational sampling in typical MD simulations of GPCRs, as in other biomolecules, multiple trajectories with different initial conditions can be employed rather than a single long trajectory. Multiple MD simulations of human bombesin receptor subtype-3 with different initial atomic velocities are applied to sample conformations in the vicinity of the structure generated by HM. The backbone atom conformational space distribution of replicates is analyzed employing principal components analysis. As a result, the averages of structural and dynamic properties over the twenty-one trajectories differ significantly from those obtained from individual trajectories.

  12. Development of pre-implantation porcine embryos cultured within a three-dimensional alginate hydrogel system either conjugated with Arg-Gly-Asp (RGD) peptide or supplemented with secreted phosphoprotein 1 (SPP1)

    Science.gov (United States)

    Many uterine specific factors have been shown to be increased within the uterine milieu as the porcine embryo initiates elongation. Secreted phosphoprotein 1 (SPP1) is increased during this time and contains an Arg-Gly-Asp (RGD) peptide sequence that has been shown to bind to cell surface integrins ...

  13. Synthesizing and modifying peptides for chemoselective ligation and assembly into quantum dot-peptide bioconjugates.

    Science.gov (United States)

    Algar, W Russ; Blanco-Canosa, Juan B; Manthe, Rachel L; Susumu, Kimihiro; Stewart, Michael H; Dawson, Philip E; Medintz, Igor L

    2013-01-01

    Quantum dots (QDs) are well-established as photoluminescent nanoparticle probes for in vitro or in vivo imaging, sensing, and even drug delivery. A critical component of this research is the need to reliably conjugate peptides, proteins, oligonucleotides, and other biomolecules to QDs in a controlled manner. In this chapter, we describe the conjugation of peptides to CdSe/ZnS QDs using a combination of polyhistidine self-assembly and hydrazone ligation. The former is a high-affinity interaction with the inorganic surface of the QD; the latter is a highly efficient and chemoselective reaction that occurs between 4-formylbenzoyl (4FB) and 2-hydrazinonicotinoyl (HYNIC) moieties. Two methods are presented for modifying peptides with these functional groups: (1) solid phase peptide synthesis; and (2) solution phase modification of pre-synthesized, commercial peptides. We further describe the aniline-catalyzed ligation of 4FB- and HYNIC-modified peptides, in the presence of a fluorescent label on the latter peptide, as well as subsequent assembly of the ligated peptide to water-soluble QDs. Many technical elements of these protocols can be extended to labeling peptides with other small molecule reagents. Overall, the bioconjugate chemistry is robust, selective, and modular, thereby potentiating the controlled conjugation of QDs with a diverse array of biomolecules for various applications.

  14. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.;

    2003-01-01

    A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated......, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  15. Cellular Antisense Activity of PNA-Oligo(bicycloguanidinium) Conjugates forming Self-Assembled Nano-aggregates

    DEFF Research Database (Denmark)

    Valero, Julian; Shiraishi, Takehiko; de Mendoza, Javier;

    2015-01-01

    A series of peptide nucleic acid-oligo(bicycloguanidinium) (PNA-BGn) conjugates have been synthesized and characterized in terms of cellular antisense activity using the pLuc750HeLa cell splice correction assay. PNA-BG4 conjugates exhibit low micromolar antisense activity and the cellular activit...

  16. Polymer-Peptide Nanoparticles: Synthesis and Characterization

    Science.gov (United States)

    Dong, He; Shu, Jessica Y.; Xu, Ting

    2010-03-01

    Conjugation of synthetic polymers to peptides offers an efficient way to produce novel supramolecular structures. Herein, we report an attempt to prepare synthetic micellar nanoparticles using amphiphilic peptide-polymer conjugates as molecular building blocks. Spherical nanoparticles were formed upon dissolution of peptides in PBS buffer through the segregation of hydrophobic and hydrophilic segments. Both molecular and nano- structures were thoroughly investigated by a variety of biophysical techniques, including circular dichroism (CD), dynamic light scattering (DLS), size exclusion chromatography (SEC), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The results demonstrate that structural properties of these biohybrid materials depend on both the geometry of the hydrophobic domain and the size of synthetic polymers. Given the diversity of functional peptide sequences, hydrophilic polymers and hydrophobic moieties, these materials would be expected to self-assemble into various types of nanostructures to cover a wide range of biological applications.

  17. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    G Padmanaban; S Ramakrishnan

    2003-08-01

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying excitation energies. The latter feature, especially when the chromophores are fluorescent, like in MEHPPV, makes these systems particularly interesting from the photophysics point of view. Segmented MEHPPV- samples, where x represents the mole fraction of conjugated segments, were prepared by a novel approach that utilizes a suitable precursor wherein selective elimination of one of the two eliminatable groups is affected; the uneliminated units serve as conjugation truncations. Control of the composition x of the precursor therefore permits one to prepare segmented MEHPPV- samples with varying levels of conjugation (elimination). Using fluorescence spectroscopy, we have seen that even in single isolated polymer chains, energy migration from the shorter (higher energy) chromophores to longer (lower energy) ones occurs – the extent of which depends on the level of conjugation. Further, by varying the solvent composition, it is seen that the extent of energy transfer and the formation of poorly emissive inter-chromophore excitons are greatly enhanced with increasing amounts of non-solvent. A typical S-shaped curve represents the variation of emission yields as a function of composition suggestive of a cooperative collapse of the polymer coil, reminiscent of conformational transitions seen in biological macromolecules.

  18. Protective effects of ouabain conjugated peptide from Ph. D.-7 Library on vascular endothelial cell%从噬菌体7肽库中筛选的哇巴因结合肽对血管内皮细胞的保护作用

    Institute of Scientific and Technical Information of China (English)

    徐忠伟; 徐瑞成; 陈小义; 刘英富

    2009-01-01

    AIM: To find one kind of peptide that will conjugate with ouabain and inhibit its biological function, and provide a new treatment strategy for primary hypertension. METHODS: In this study, ouabain was used as a target to screen ouabain conjugated peptide (OCP) from Ph. D. -7 phage display peptide library. After 3 rounds of bio-panning, the products were identified by ELISA and DNA electrophoresis analysis and sequencing. Peptide was synthesized and analyzed the activity by radioligand binding assay. The inhibitory ratio of cell proliferation was measured by MTT and the cell morphology changing was measured by Hoechst 33342/PI staining. The expression of Na~+-K~+-ATPase α1-subunit and β1-subunit were detected by RT-PCR and immunocytochemistry. The levels of the free intracellular Na~+ in EAhy926 cells were measured by laser confocal microscope. RESULTS: The ouabain conjugated peptide was found out, and it was occupied in 0.64(9/14). The analysis of protein showed that the obtained peptides had no homology with Na~+-K~+-ATPase. The amino acid sequence of synthesized peptide was Arg-Cys-Met-Thr-Ser-Arg-Ser. There was binding activity between OCP and ~3H-ouabain. The MTT assay showed that OCP could reverse the inhibition action of ouabain on vascular endothelial EAhy926 cells in a dose and time-dependent manner. The number of apoptotic cells had significantly decreased detected by Hoechst 33342/PI staining. The results of RT-PCR and immunocytochemistry showed that OCP could inhibit the up-regulated expression of Na~+-K~+-ATPase α1-subunit and down-regulated expression of Na~+-K~+-ATPase β1-subunit induced by ouabain in EAhy926 cells. CONCLUSION: The OCP could reverse the growth inhibition and death induction of ouabain in EAhy926 cells, which would provide the basis for studying the interaction between ouabain and Na~+-K~+-ATPase and explore novel anti-ouabain agents.%目的:寻找与哇巴因高亲和力结合并抑制其生物功能的相关小分子肽,为治

  19. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    Science.gov (United States)

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-06-03

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  20. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  1. BLOCKADE OF ROSTRAL VENTROLATERAL MEDULLA (RVLM BOMBESIN RECEPTOR TYPE 1 DECREASES BLOOD PRESSURE AND SYMPATHETIC ACTIVITY IN ANESTHETIZED SPONTANEOUSLY HYPERTENSIVE RATS

    Directory of Open Access Journals (Sweden)

    Izabella Silva De Jesus Pinto

    2016-06-01

    Full Text Available IIntrathecal injection of bombesin (BBS promoted hypertensive and sympathoexcitatory effects in normotensive (NT rats. However, the involvement of rostral ventrolateral medulla (RVLM in these responses is still unclear. In the present study, we investigated: (1 the effects of BBS injected bilaterally into RVLM on cardiorespiratory and sympathetic activity in NT and spontaneously hypertensive rats (SHR; (2 the contribution of RVLM bombesin type 1 receptors (BB1 to the maintenance of hypertension in SHR. Urethane-anesthetized rats (1.2 g · kg−1, i.v. were instrumented to record mean arterial pressure (MAP, diaphragm (DIA motor and renal sympathetic nerve activity (RSNA. In NT rats and SHR, BBS (0.3 mM nanoinjected into RVLM increased MAP (33.9 ± 6.6 mmHg and 37.1 ± 4.5 mmHg, respectively; p < 0.05 and RSNA (97.8 ± 12.9 % and 84.5 ± 18.1 %, respectively; p < 0.05. In SHR, BBS also increased DIA burst amplitude (115.3 ± 22.7 %; p < 0.05. BB1 receptors antagonist (BIM-23127; 3 mM reduced MAP (-19.9 ± 4.4 mmHg; p < 0.05 and RSNA (-17.7 ± 3.8 %; p < 0.05 in SHR, but not in NT rats (-2.5 ± 2.8 mmHg; -2.7 ± 5.6 %, respectively. These results show that BBS can evoke sympathoexcitatory and pressor responses by activating RVLM BB1 receptors. This pathway might be involved in the maintenance of high levels of arterial blood pressure in SHR.

  2. Qualidade conjugal: mapeando conceitos

    Directory of Open Access Journals (Sweden)

    Clarisse Mosmann

    2006-12-01

    Full Text Available Apesar da ampla utilização do conceito de qualidade conjugal, identifica-se falta de clareza conceitual acerca das variáveis que o compõem. Esse artigo apresenta revisão da literatura na área com o objetivo de mapear o conceito de qualidade conjugal. Foram analisadas sete principais teorias sobre o tema: Troca Social, Comportamental, Apego, Teoria da Crise, Interacionismo Simbólico. Pelos postulados propostos nas diferentes teorias, podem-se identificar três grupos de variáveis fundamentais na definição da qualidade conjugal: recursos pessoais dos cônjuges, contexto de inserção do casal e processos adaptativos. Neste sentido, a qualidade conjugal é resultado do processo dinâmico e interativo do casal, razão deste caráter multidimensional.

  3. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  4. Ameliorative effects of bombesin and neurotensin on trinitrobenzene sulphonic acid-induced colitis, oxidative damage and apoptosis in rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To investigate the effects of bombesin (BBS) and neurotensin (NTS) on apoptosis and colitis in an ulcerative colitis model. METHODS: In this study, a total of 50 rats were divided equally into 5 groups. In the control group, no colitis induction or drug administration was performed. Colitis was induced in all other groups. Following the induction of colitis, BBS, NTS or both were applied to three groups of rats. The remaining group (colitis group) received no treatment. On the 11th d after induction of colitis and drug treatment, blood samples were collected for TNF-α and IL-6 level studies. Malondialdehyde (MDA), carbonyl, myeloperoxidase (MPO) and caspase-3 activities, as well as histopathological findings, evaluated in colonic tissues. RESULTS: According to the macroscopic and microscopic findings, the study groups treated with BBS,NTS and BBS+NTS showed significantly lower damage and inflammation compared with the colitis group (macroscopic score,2.1±0.87,3.7±0.94 and 2.1±0.87 vs 7.3 ± 0.94; microscopic score,2.0 ±0.66,3.3±0.82 and 1.8±0.63 vs 5.2±0.78,P<0.01=.TNF-αand IL-6 levels were increased significantly in all groups compared with the control group. These increases were significantly smaller in the BBS,NTS and BBS+NTS groups compared with the colitis group (TNF-α levels,169.69±53.56,245.86±64.85 and 175.54 4±42.19vs 556.44±49.82; IL-6 levels,443.30±53.99,612.80±70.39 and 396.80±78.43 vs 1505.90±222.23,P<0.05=.The colonic MPO and MDA levels were significantly lower in control, BBS, NTS and BBS+NTS groups than in the colitis group (MPO levels,24.36±8.10,40.51±8.67 and 25.83±6.43 vs 161.47±38.24; MDA levels,4.70±1.41,6.55±1.12 and 4.51±0.54 vs15.60±1.88,P<0.05=.Carbonyl content and caspase-3 levels were higher in the colitis and NTS groups than in control, BBS and BBS+NTS groups (carbonyl levels,553.99±59.58and 336.26±35.72 vs 209.76±30.92,219.76±25.77and 220.34 36.95; caspase-3 levels,451.70±68.27and 216.20

  5. IRDye78 Conjugates for Near-Infrared Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Atif Zaheer

    2002-10-01

    Full Text Available The detection of human malignancies by near-infrared (NIR fluorescence will require the conjugation of cancer-specific ligands to NIR fluorophores that have optimal photoproperties and pharmacokinetics. IRDye78, a tetra-sulfonated heptamethine indocyanine NIR fluorophore, meets most of the criteria for an in vivo imaging agent, and is available as an N-hydroxysuccinimide ester for conjugation to low-molecular-weight ligands. However, IRDye78 has a high charge-to-mass ratio, complicating purification of conjugates. It also has a potentially labile linkage between fluorophore and ligand. We have developed an ion-pairing purification strategy for IRDye78 that can be performed with a standard C18 column under neutral conditions, thus preserving the stability of fluorophore, ligand, and conjugate. By employing parallel evaporative light scatter and absorbance detectors, all reactants and products are identified, and conjugate purity is maximized. We describe reversible and irreversible conversions of IRDye78 that can occur during sample purification, and describe methods for preserving conjugate stability. Using seven ligands, spanning several classes of small molecules and peptides (neutral, charged, and/or hydrophobic, we illustrate the robustness of these methods, and confirm that IRDye78 conjugates so purified retain bioactivity and permit NIR fluorescence imaging of specific targets.

  6. A palmitoyl conjugate of insect pentapeptide Yamamarin arrests cell proliferation and respiration

    OpenAIRE

    2010-01-01

    A palmitoyl conjugate of an insect pentapeptide that occurs in diapausing insects causes a reversible cell-cycle arrest and suppresses mitochondrial respiration. This peptide compound also causes growth arrest in murine leukemic cell line expressing human gene Bcr/Abl and a farnesoyl peptide induces embryonic diapause in Bombyx mori. These results demonstrate that the insect peptide compounds can lead to the understanding of a common pathway in developmental arrest in animals and may provide ...

  7. Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural regulation by proximal gut.

    Science.gov (United States)

    Fu-Cheng, X; Anini, Y; Chariot, J; Castex, N; Galmiche, J P; Rozé, C

    1997-03-01

    Peptide YY (PYY) release in anaesthetized rats was studied during the 2 h following the intraduodenal administration of a semi-liquid meal of 21 kJ. Surgical and pharmacological manipulations were performed in order to analyse the mechanisms of PYY release. Postprandial PYY release was suppressed or strongly decreased by caecocolonectomy, truncal vagotomy, tetrodotoxin, hexamethonium, sensory denervation by perivagal capsaicin, and by the NO-synthase inhibitor L-N-arginine methyl ester, while atropine, adrenergic blockers, antagonists of type-A or type-B cholecystokinin (CCK) receptors or bombesin receptors had no effect. Comparing the digestive transit of the semi-liquid meal with the amount of PYY contained in the small bowel wall showed that nutrients had not reached the area rich in cells containing PYY by 30 min, the time at which there was a large PYY release in plasma. By 120 min, the meal front had travelled 72% of the small intestine length, just beginning to reach the PYY-rich part of the ileum. We conclude that the main postprandial PYY release studied in this model comes from ileal and colonic L-cells indirectly stimulated through a neural mechanism originating in the proximal gut and involving sensory vagal fibres, nicotinic synapses and NO release, while CCK and bombesin do not seem to be physiologically involved.

  8. Effect of anchoring 4-anilidopiperidines to opioid peptides

    Science.gov (United States)

    Petrov, Ravil R.; Lee, Yeon Sun; Vardanyan, Ruben S.; Liu, Lu; Ma, Shou-wu; Davis, Peg; Lai, Josephine; Porreca, Frank; Vanderah, Todd W.; Hruby, Victor J.

    2014-01-01

    We report here the design, synthesis, and in vitro characterization of new opioid peptides featuring a 4-anilidopiperidine moiety. Despite the fact that the chemical structures of fentanyl surrogates have been found suboptimal per se for the opioid activity, the corresponding conjugates with opioid peptides displayed potent opioid activity. These studies shed an instructive light on the strategies and potential therapeutic values of anchoring the 4-anilidopiperidine scaffold to different classes of opioid peptides. PMID:23623418

  9. Progress of radiolabelled bombesin in diagnosis and treatment of prostate cancer%放射性核素标记铃蟾肽在前列腺癌诊治中的研究进展

    Institute of Scientific and Technical Information of China (English)

    邢岩; 赵晋华

    2010-01-01

    前列腺癌等多种肿瘤细胞表面能过度表达铃蟾肽受体,因此,铃蟾肽及其受体可以作为靶点进行放射性核素受体显像及靶向治疗肿瘤,并成为近年来诊治前列腺癌的研究热点.该文综述了放射性核素标记铃蟾肽在前列腺癌显像及治疗方面的研究进展.%Studies show that high expression of bombesin exist in the face of many kind of tumors such as prostate cancer, so bombesin and its receptor can be used as target in radionuclide receptor imaging and targeted therapy of tumor, and become the focus of prostate cancer research. This article reviews the progress of radiolabelled bombesin in prostate cancer imaging and therapy.

  10. Bioactive Peptides

    Directory of Open Access Journals (Sweden)

    Eric Banan-Mwine Daliri

    2017-04-01

    Full Text Available The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  11. Bioactive Peptides.

    Science.gov (United States)

    Daliri, Eric Banan-Mwine; Oh, Deog H; Lee, Byong H

    2017-04-26

    The increased consumer awareness of the health promoting effects of functional foods and nutraceuticals is the driving force of the functional food and nutraceutical market. Bioactive peptides are known for their high tissue affinity, specificity and efficiency in promoting health. For this reason, the search for food-derived bioactive peptides has increased exponentially. Over the years, many potential bioactive peptides from food have been documented; yet, obstacles such as the need to establish optimal conditions for industrial scale production and the absence of well-designed clinical trials to provide robust evidence for proving health claims continue to exist. Other important factors such as the possibility of allergenicity, cytotoxicity and the stability of the peptides during gastrointestinal digestion would need to be addressed. This review discusses our current knowledge on the health effects of food-derived bioactive peptides, their processing methods and challenges in their development.

  12. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-04-01

    Full Text Available Xiaoyan Zhang, Xiaofei Wang, Weitong Zhong, Xiaoqing Ren, Xianyi Sha, Xiaoling FangKey Laboratory of Smart Drug Delivery, Ministry of Education and People’s Liberation Army of China, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China Abstract: Since elevated expression of matrix metalloproteinase (MMP-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8 as spacer between α-tocopherol succinate (α-TOS and methoxy-polyethylene glycol molecular weight (MW 2000 Da activated by N-hydroxysuccinimide (mPEG2K-NHS, mPEG2K-GK8-α-TOS (TGK was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS and TGK (n:n =40:60, TGK micelles. mPEG2K-α-TOS (T2K was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50 of TGK and T2K micelles were similar (P>0.05 in MCF-7 cells (MMP-2/9 underexpression, the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 µg/mL, respectively, in HT1080 cells (MMP

  13. Automated solid-phase peptide synthesis to obtain therapeutic peptides

    Directory of Open Access Journals (Sweden)

    Veronika Mäde

    2014-05-01

    Full Text Available The great versatility and the inherent high affinities of peptides for their respective targets have led to tremendous progress for therapeutic applications in the last years. In order to increase the drugability of these frequently unstable and rapidly cleared molecules, chemical modifications are of great interest. Automated solid-phase peptide synthesis (SPPS offers a suitable technology to produce chemically engineered peptides. This review concentrates on the application of SPPS by Fmoc/t-Bu protecting-group strategy, which is most commonly used. Critical issues and suggestions for the synthesis are covered. The development of automated methods from conventional to essentially improved microwave-assisted instruments is discussed. In order to improve pharmacokinetic properties of peptides, lipidation and PEGylation are described as covalent conjugation methods, which can be applied by a combination of automated and manual synthesis approaches. The synthesis and application of SPPS is described for neuropeptide Y receptor analogs as an example for bioactive hormones. The applied strategies represent innovative and potent methods for the development of novel peptide drug candidates that can be manufactured with optimized automated synthesis technologies.

  14. Conjugation in "Escherichia coli"

    Science.gov (United States)

    Phornphisutthimas, Somkiat; Thamchaipenet, Arinthip; Panijpan, Bhinyo

    2007-01-01

    Bacterial conjugation is a genetic transfer that involves cell-to-cell between donor and recipient cells. With the current method used to teach students in genetic courses at the undergraduate level, the transconjugants are identified using bacterial physiology and/or antibiotic resistance. Using physiology, however, is difficult for both…

  15. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  16. Template-Directed Ligation of Peptides to Oligonucleotides

    Science.gov (United States)

    Bruick, Richard K.; Dawson, Philip E.; Kent, Stephen BH; Usman, Nassim; Joyce, Gerald F.

    1996-01-01

    Synthetic oligonucleotides and peptides have enjoyed a wide range of applications in both biology and chemistry. As a consequence, oligonucleotide-peptide conjugates have received considerable attention, most notably in the development of antisense constructs with improved pharmacological properties. In addition, oligonucleotide-peptide conjugates have been used as molecular tags, in the assembly of supramolecular arrays and in the construction of encoded combinatorial libraries. To make these chimeric molecules more accessible for a broad range of investigations, we sought to develop a facile method for joining fully deprotected oligonucleotides and peptides through a stable amide bond linkage. Furthermore, we wished to make this ligation reaction addressable, enabling one to direct the ligation of specific oligonucleotide and peptide components.To confer specificity and accelerate the rate of the reaction, the ligation process was designed to be dependent on the presence of a complementary oligonucleotide template.

  17. Multi-functional system of radiotherapy and thermal phototherapy for tumors that over-express receptors of the gastrin releasing peptide; Sistema multifuncional de radioterapia y fototerapia termica para tumores que sobre-expresan receptores del peptido liberador de gastrina

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez M, N. P.

    2014-07-01

    The aim of this research was to prepare and characterize a multifunctional system of {sup 177}Lu and {sup 99m}Tc-labelled gold nanoparticles conjugated to Tat(49 57)-Lys{sup 3} bombesin ({sup 177}Lu/{sup 99m}Tc- AuNP-Tat-Bn) and to evaluate the radiation absorbed dose in GRP receptor positive PC3 tumours induced in mice (human prostate cancer cells), as well as to evaluate the thermal effect produced by the multifunctional system in PC3 cancer cells. The preparation of the system involved the conjugation of Bn-Tat, DOTA-GGC and HYNICTOC peptides to AuNP of 20 nm or 5 nm in diameter. The radiolabeling of the system with {sup 99m}Tc was carried out through the ligand HYNIC-TOC and with the {sup 177}Lu through DOTA-GGC. The functionalization of peptides to AuNP, was accomplished through a spontaneous reaction of thiol groups. The system was characterized by spectroscopic techniques while radiochemical purity was determined by size-exclusion molecular chromatography and ultrafiltration. Various internalization trials and non-specific binding were tested to demonstrate the affinity of the system to PC3 cells. The thermal effect was evaluated incubating the system into PC3 cells and irradiating it with a Nd:YAG pulsed laser beam and monitoring the temperature; after irradiation, cell viability was measured. In the evaluation of absorbed dose in mice with induced tumours, the system was administered intratumorally and later, mice were sacrificed, relevant organs and tumor were extracted, activity was quantified and radiopharmaceutical models were obtained for each organ and tumor to be used in the accumulated activity and absorbed dose calculation by the MIRD methodology. Finally, to establish the system location at cellular level, fluorescent images of the system incubated in PC3 cells were acquired with an epi fluorescent microscope. Tem, UV-Vis, XP S and Far-IR spectroscopy techniques demonstrated that AuNPs were functionalized with peptides through interactions with

  18. Oral and parenteral immunization with synthetic retro-inverso peptides induce antibodies that cross-react with native peptides and parent antigens.

    Science.gov (United States)

    Fischer, Peter; Comis, Alfio; Tyler, Margaret; Howden, Merlin

    2007-06-01

    The objective of this study was to determine whether certain retro-inverso peptides have the potential to act as synthetic vaccines in mice, when immunized by injection or orally. Immunization of mice parenterally with conjugates of three such retro-inverso peptides and orally with the unconjugated peptides elicited generally high titres of anti-peptide antibodies. Antibodies against the same three peptides cross-reacted by binding strongly in ELISA to the native peptides and vice versa, regardless of the mode of immunization. Antibodies against a retro-inverso diphtheria peptide also reacted strongly with diphtheria toxin. Seven of 8 mice, immunized by injection of the conjugate of a retro-inverso derivative of robustoxin [a lethal spider (Atrax robustus) venom toxin] were protected from challenge involving injection with twice the minimum lethal dose of A. robustus venom containing the toxin.

  19. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  20. Identification of peptides that selectively bind to myoglobin by biopanning of phage displayed-peptide library.

    Science.gov (United States)

    Padmanaban, Guruprasath; Park, Hyekyung; Choi, Ji Suk; Cho, Yong-Woo; Kang, Woong Chol; Moon, Chan-Il; Kim, In-San; Lee, Byung-Heon

    2014-10-10

    Biopanning of phage displayed-peptide library was performed against myoglobin, a marker for the early assessment of acute myocardial infarction (AMI), to identify peptides that selectively bind to myoglobin. Using myoglobin-conjugated magnetic beads, phages that bound to myoglobin were collected and amplified for the next round of screening. A 148-fold enrichment of phage titer was observed after five rounds of screening relative to the first round. After phage binding ELISA, three phage clones were selected (3R1, 3R7 and 3R10) and the inserted peptides were chemically synthesized. The analysis of binding affinity showed that the 3R7 (CPSTLGASC) peptide had higher binding affinity (Kd=57 nM) than did the 3R1 (CNLSSSWIC) and 3R10 (CVPRLSAPC) peptide (Kd=125 nM and 293 nM, respectively). Cross binding activity to other proteins, such as bovine serum albumin, troponin I, and creatine kinase-MB, was minimal. In a peptide-antibody sandwich ELISA, the selected peptides efficiently captured myoglobin. Moreover, the concentrations of myoglobin in serum samples measured by a peptide-peptide sandwich assay were comparable to those measured by a commercial antibody-based kit. These results indicate that the identified peptides can be used for the detection of myoglobin and may be a cost effective alternative to antibodies.

  1. Identification of a novel skin penetration enhancement peptide by phage display peptide library screening.

    Science.gov (United States)

    Kumar, Sunny; Sahdev, Preety; Perumal, Omathanu; Tummala, Hemachand

    2012-05-07

    Skin is an important site for local or systemic application of drugs. However, a majority of drugs have poor permeability through the skin's topmost layer, stratum corneum (SC). The aim of this study was to identify safe and smaller peptides that could enhance the skin penetration of drug molecules. By screening phage display peptide library, we have identified a T2 peptide (LVGVFH), which enhanced the penetration of bacteriophages (~800 nm long bacterial viruses) across porcine and mouse skin. Pretreating the skin with synthetic T2 peptide at pH 4.5 resulted in significant penetration enhancement of hydrophilic drug 5-fluorouracil (5-FU) across skin. FTIR spectroscopy showed that the T2 peptide interacted with skin lipids to enhance the skin penetration. Pretreating the skin with T2 peptide enhanced the partitioning of small molecules with different lipophilicities (5-FU, fluorescein isothiocyanate, and rhodamine 123 hydrochloride) into skin. Fluorescence studies showed that T2 peptide enhanced the diffusion of these molecules into intercellular lipids of SC and thus enhanced the penetration into the skin. Histidine at the c-terminus of T2 peptide was identified to be critical for the skin penetration enhancement. T2 peptide interacted with skin lipids to cause skin penetration enhancement. The study identified a novel, safe, and noninvasive peptide to improve the skin penetration of drugs without chemical conjugation.

  2. Fullerene–biomolecule conjugates and their biomedicinal applications

    Directory of Open Access Journals (Sweden)

    Yang X

    2013-12-01

    Full Text Available Xinlin Yang,1 Ali Ebrahimi,1 Jie Li,1,2 Quanjun Cui11Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA; 2School of Materials Science, Beijing Institute of Technology, Beijing, People's Republic of ChinaAbstract: Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene–biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene–biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene–biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.Keywords: fullerene, amino acid, peptide, oligonucleotide, sugar, ester

  3. Synthesis, spectroscopic, and photophysical characterization and photosensitizing activity toward prokaryotic and eukaryotic cells of porphyrin-magainin and -buforin conjugates.

    Science.gov (United States)

    Dosselli, Ryan; Ruiz-González, Rubén; Moret, Francesca; Agnolon, Valentina; Compagnin, Chiara; Mognato, Maddalena; Sella, Valentina; Agut, Montserrat; Nonell, Santi; Gobbo, Marina; Reddi, Elena

    2014-02-27

    Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.

  4. Theory of Digitized Conjugate Surface and Solution to Conjugate Surface

    Institute of Scientific and Technical Information of China (English)

    Xiao Lai-yuan; Liao Dao-xun; Yi Chuan-yun

    2004-01-01

    In order to meet the needs of designing and processing digitized surfaces, the method to spreading digitized surface has been proposed. The key technique is to solve the problem of digitized conjugate surface. In the paper, the digitized conjugate surface was theoretically investigated, and the solution of conjugate surface based on digitized surface was also studied. The digitized conjugate surface theory was then proposed, and applied to build the model of solving conjugate surface based on digitized surface. A corresponding algorithm was developed. This paper applies the software Conjugater-1.0 that is developed by ourselves to compute the digitized conjugate surfaces of the drum-tooth surface. This study provides theoretical and technical bases for analyzing engagement of digitized surface, simulation and numerical processing technique.

  5. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    Science.gov (United States)

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-08-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape.

  6. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms

    Science.gov (United States)

    Akrami, Mohammad; Balalaie, Saeed; Hosseinkhani, Saman; Alipour, Mohsen; Salehi, Fahimeh; Bahador, Abbas; Haririan, Ismaeil

    2016-01-01

    Pro-apoptotic peptides induce intrinsic apoptosis pathway in cancer cells. However, poor cellular penetration of the peptides is often associated with limited therapeutic efficacy. In this report, a series of peptide-gold nanoparticle platforms were developed to evaluate the anticancer activity of a novel alpha-lipoic acid-peptide conjugate, LA-WKRAKLAK, with respect to size and shape of nanoparticles. Gold nanoparticles (AuNPs) were found to enhance cell internalization as well as anticancer activity of the peptide conjugates. The smaller nanospheres showed a higher cytotoxicity, morphological change and cellular uptake compared to larger nanospheres and nanorods, whereas nanorods showed more hemolytic activity compared to nanospheres. The findings suggested that the anticancer and biological effects of the peptides induced by intrinsic apoptotic pathway were tuned by peptide-functionalized gold nanoparticles (P-AuNPs) as a function of their size and shape. PMID:27491007

  7. Obese and lean Zucker rats respond similarly to intraperitoneal administration of gastrin-releasing peptides.

    Science.gov (United States)

    Washington, Martha C; Park, Karen H; Sayegh, Ayman I

    2014-08-01

    The Zucker rat is an animal model used to study obesity and the control of food intake by various satiety peptides. The amphibian peptide bombesin (Bn) reduces cumulative food intake similarly in both obese and lean weanling Zucker rats. Here, we hypothesized that intraperitoneal (i.p) administration of gastrin-releasing peptides-10, -27 and -29 (GRP-10, GRP-27, GRP-29), which are the mammalian forms of Bn, would reduce first meal size (MS, 10% sucrose) and prolong the intermeal interval (IMI, time between first and second meals) similarly in obese and lean adult Zucker rats. To test this hypothesis, we administered GRP-10, GRP-27 and GRP-29 (0, 2.1, 4.1 and 10.3 nmol/kg) i.p. to obese and lean male Zucker rats (who were deprived of overnight food but not water) and then measured the first and second MS, IMI and satiety ratio (SR, IMI/MS). We found that in both obese and lean rats, all forms of GRP reduced the first MS, and in lean rats, they also decreased the second MS. Additionally, GRP-10 and GRP-29 prolonged the IMI in both obese and lean rats, but GRP-27 only prolonged it in lean rats. Finally, we found that all forms of GRP increased the SR in both obese and lean rats. In agreement with our hypothesis, we conclude that all forms of GRP reduce food intake in obese and lean adult Zucker rats similar to Bn in weanling rats.

  8. Evolution of Antimicrobial Peptides to Self-Assembled Peptides for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Alice P. McCloskey

    2014-10-01

    Full Text Available Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.

  9. Genetic engineering and chemical conjugation of potato virus X.

    Science.gov (United States)

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  10. C-Peptide Test

    Science.gov (United States)

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities C-peptide Share this page: Was this page helpful? Also known as: Insulin C-peptide; Connecting Peptide Insulin; Proinsulin C-peptide Formal ...

  11. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs

    Directory of Open Access Journals (Sweden)

    Accardo A

    2014-03-01

    Full Text Available Antonella Accardo,1 Luigi Aloj,2 Michela Aurilio,2 Giancarlo Morelli,1 Diego Tesauro11Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB, Department of Pharmacy and Istituto di Biostrutture e Bioimmagini - Consiglio Nazionale delle Ricerche (IBB CNR, University of Naples “Federico II”, 2Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione “G. Pascale”, Napoli, ItalyAbstract: Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs; and G-protein coupled receptors (GPCRs. Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.Keywords: receptors binding peptides, drug delivery

  12. Tulane/Xavier Vaccine Peptide Program

    Science.gov (United States)

    2014-09-01

    resin bound peptide-PEG conjugate to remove copper and uncoupled PEG. After removal from the resin, MALDI-TOF MS analysis of the product...for Assembly 13 Fluorescence Micrograph of lipid coated silk microspheres . Lyophilized Powder Formulations for Aerosol delivery Finally, we...subsequently used to infect a cell monolayer. One-hour after infection of the monolayer, the virus inoculum is removed and a low-viscosity Avicel overlay

  13. Acyl lipidation of a peptide: effects on activity and epidermal permeability in vitro

    Science.gov (United States)

    Rocco, Daniel; Ross, James; Murray, Paul E; Caccetta, Rima

    2016-01-01

    Short-chain lipid conjugates can increase permeability of a small peptide across human epidermis; however, the emerging lipoaminoacid (LAA) conjugation technique is costly and can deliver mixed synthetic products of varied biological potential. LAA conjugation using a racemic mixture produces a mixture of D- and L-stereoisomers. Individual enantiomers can be produced at an extra cost. We investigated an affordable technique that produces only one synthetic product: short-chain (C7–C8) acyl lipidation. Acyl lipidation of Ala-Ala-Pro-Val, an inhibitor of human neutrophil elastase (HNE; believed to lead to abnormal tissue destruction and disease development), was investigated as an alternative to LAA conjugation. The current study aimed to assess the effects of acyl lipidation (either at the N-terminal or at the C-terminal) on neutrophil elastase activity in vitro and on transdermal delivery ex vivo. The inhibitory capacity of the acyl conjugates was compared to LAA conjugates (conjugated at the N-terminal) of the same peptide. The L-stereoisomer appears to rapidly degrade, but it represents a significantly (P<0.05) better inhibitor of HNE than the parent peptide (Ala-Ala-Pro-Val). Although the D-stereoisomer appears to permeate human epidermal skin sections in a better fashion than the L-stereoisomer, it is not a significantly better inhibitor of HNE than the parent peptide. Acyl lipidation (with a C7 lipid chain) at either end of the peptide substantially enhances the permeability of the peptide across human skin epidermis as well as significantly (P<0.005) increases its elastase inhibitory potential. Therefore, our current study indicates that acyl lipidation of a peptide is a more economical and effective alternative to LAA conjugation. PMID:27468224

  14. Induced thermal ablation with a radiofrequency field in breast cancer cells using gold nanoparticles conjugated to the peptide cycle[RGDfK(C)]; Termoablacion inducida con un campo de radiofrecuencia en celulas de cancer de mama utilizando nanoparticulas de oro conjugadas al peptido ciclo[RGDfK(C)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez H, L.

    2014-07-01

    The conjugation of peptides to gold nanoparticles (AuNP) produces biocompatible and stable multimeric systems with target-specific molecular recognition. Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been reported as high-affinity agents for the α(v)β(3) and α(v)β(v) integrin s over expressed in breast cancer cells. AuNP have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The objective of this research was to evaluate the thermo ablative effect of the AuNP-c [RGDfK(C)] system on MCF7 breast cancer cell viability after exposure to a radiofrequency field and to compare it with that produced by the laser irradiation. The effect of the 13.56 MHz RF (using a power from 0 to 200 W at intervals of 50 W) over the temperature increase in AuNP-colloidal system of 5 and 20 nm at two different concentrations was evaluated. The absorption cross sections (C{sub abs}) of the AuNP-c [RGDfK(C)] nano system when it interacts with low frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) was analyzed based on the Mi e theory. The effect on the MCF7 cell viability was assessed using two thermal conversion sources (Laser and RF) on AuNP-c [RGDfK(C)] located inside the cytoplasm of the cells. MCF7 cells were treated with AuNP-c [RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm{sup 2}). In both cases (RF and laser) the presence of nanoparticles internalized inside the cells caused a significant increase in the temperature of the medium (RF: ΔT = 29.9 ± 1.7 grades C for AuNP compared toΔT = 13.0 ± 1.4 grades C for water; laser: ΔT = 13.5 ± 0.7 grades C for AuNP compared to 3.3 ± 0.5 grades C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located

  15. Organometallic B12-DNA conjugate

    DEFF Research Database (Denmark)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander

    2014-01-01

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in hum...

  16. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide

    DEFF Research Database (Denmark)

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication...... been so far described for other enveloped viruses....

  17. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode

    DEFF Research Database (Denmark)

    Castillo, John J.; Svendsen, Winnie Edith; Rozlosnik, Noemi

    2013-01-01

    This article describes the preparation of a graphene electrode modified with a new conjugate of peptide nanotubes and folic acid for the selective detection of human cervical cancer cells over-expressing folate receptors. The functionalization of peptide nanotubes with folic acid was confirmed by...

  18. 穿膜肽纳米类脂质体包载利多卡因的透皮特性及表面麻醉效果初探%Preliminary study on transdermal characteristics and sunface anesthetic effects of lidocaine hydrochloride loaded trans-activator of transcription peptide conjugated nano-niosome in animals

    Institute of Scientific and Technical Information of China (English)

    王悦; 张连云; 李长义; 王汉杰; 李芹

    2015-01-01

    Objective To prepare a new dental topical anesthetics,lidocaine hydrochloride loaded trans-activator of transcription peptide conjugated nano-niosome(LID-TAT-N),and to evaluate its transdermal properties and topical anesthesia effects.Methods LID-TAT-N was prepared using reversephase evaporation method,and lidocaine loaded conventional liposome(LID-CL) was prepared in the same manner as positive control.The diameter,ξ potential and encapsulation efficiency of LID-TAT-N and LID-CL were measured.The skin permeation of LID-TAT-N was examined,and compared with LID-CL and lidocaine injection(LID-IJ,as negative control),using a Franz diffusion cell mounted with depilated mouse skin in vitro for 12 hours.Each experiment was repeated six times.The anesthetic effect of the new topical anesthetic was investigated on the cornea of rabbits.Results The mean diameter of LID-TAT-N was smaller than that of LID-CL[(152.7 ± 10.6) nm vs.(259.5 ± 15.5) nm,P<0.01].The 12 h cumulative permeation amount was significantly higher in LID-TAT-N group[(1 340.0±97.5) μg· cm-2] than those of LID-CL and LID-IJ groups[(1 060.6±80.2),(282.6±65.1) μg· cm-2,respectively,P<0.05].Rabbit corneal reflex results showed that LID-TAT-N had anesthetic effect and the duration of analgesia[(24.8±2.8) min] was also longer than that of LID-IJ[(14.5 ± 2.3) min,P<0.05].Conclusions LID-TAT-N had good transdermal ability,and the advanced skin penetration feature can improve its tropical anesthetic effect.%目的 研究穿膜肽纳米类脂质体包载利多卡因(lidocaine hydrochloride loaded transactivator of transcription peptide conjugated nano-niosome,LID-TAT-N)在动物体内外透皮情况及其表面麻醉效果,为研制新型口腔表面麻醉剂提供依据.方法 制备LID-TAT-N,传统脂质体包载利多卡因(lidocaine hydrochloride loaded conventional liposome,LID-CL),分别检测粒径、电势和包封率.用离体小鼠皮进行12h体外透皮实验,测定并比较LID-TAT-N组

  19. Versatile RHDV virus-like particles: incorporation of antigens by genetic modification and chemical conjugation.

    Science.gov (United States)

    Peacey, Matthew; Wilson, Sarah; Baird, Margaret A; Ward, Vernon K

    2007-12-01

    Virus-like particles have proved to be excellent molecular scaffolds, yet the individual characteristics and immune responses generated against each VLP requires the development of a wide range of capsids for use as vaccines, molecular delivery vessels, and nanoscale templates. Here we describe the development of Rabbit haemorrhagic disease virus (RHDV)-like particles as a rapidly versatile molecular workbench, overcoming limitations imposed by established genetic antigen incorporation procedures with chimeric VLP. Production of the RHDV capsid protein in a baculovirus system led to the self-assembly of VLP which were recovered at over 99% purity and manipulated both genetically and chemically. Fusion of small peptide sequences to RHDV VLP was well tolerated, forming chimeric capsids that enhanced the presentation of foreign peptide to hybridoma T helper cells 700-fold. Rapid and simple conjugation techniques employing the hetero-bifunctional chemical linker sulfo-SMCC enabled both small peptides and whole proteins to be conjugated to the surface of RHDV VLP, overcoming limitations imposed on VLP formation and yield experienced with chimeric VLP. Administration of VLP/ovalbumin conjugate provoked high titre ovalbumin-specific antibody in mice, demonstrating the immune stimulatory properties of the capsid were conferred to conjugated foreign antigen. VLP facilitated delivery of conjugated antigen to dendritic cells, eliciting proliferative responses in naïve TCR transgenic T helper cells that were at least 10-fold greater than ovalbumin antigen delivered alone.

  20. Hierarchically deflated conjugate residual

    CERN Document Server

    Yamaguchi, Azusa

    2016-01-01

    We present a progress report on a new class of multigrid solver algorithm suitable for the solution of 5d chiral fermions such as Domain Wall fermions and the Continued Fraction overlap. Unlike HDCG \\cite{Boyle:2014rwa}, the algorithm works directly on a nearest neighbour fine operator. The fine operator used is Hermitian indefinite, for example $\\Gamma_5 D_{dwf}$, and convergence is achieved with an indefinite matrix solver such as outer iteration based on conjugate residual. As a result coarse space representations of the operator remain nearest neighbour, giving an 8 point stencil rather than the 81 point stencil used in HDCG. It is hoped this may make it viable to recalculate the matrix elements of the little Dirac operator in an HMC evolution.

  1. Dihydroazulene-buckminsterfullerene conjugates

    DEFF Research Database (Denmark)

    Santella, Marco; Mazzanti, Virginia; Jevric, Martyn;

    2012-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has recently attracted interest as a molecular switch for molecular electronics. In this field, Buckminsterfullerene, C(60), has been shown to be a useful anchoring group for adhering a molecular wire to an electrode. Here we have...... combined the two units with the overall aim to elucidate how C(60) influences the DHA-VHF switching events. Efficient synthetic protocols for making covalently linked DHA-C(60) conjugates were developed, using Prato, Sonogashira, Hay, and Cadiot-Chodkiewicz reactions. These syntheses provide as well...... of DHA to its corresponding VHF. Thus, C(60) was found to significantly quench this conversion when situated closely to the DHA unit....

  2. Generalized conjugate gradient squared

    Energy Technology Data Exchange (ETDEWEB)

    Fokkema, D.R.; Sleijpen, G.L.G. [Utrecht Univ. (Netherlands)

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  3. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  4. A palmitoyl conjugate of insect pentapeptide Yamamarin arrests cell proliferation and respiration.

    Science.gov (United States)

    Sato, Yosinori; Yang, Ping; An, Ying; Matsukawa, Kazushige; Ito, Kikukatsu; Imanishi, Shigeo; Matsuda, Hirokazu; Uchiyama, Yusuke; Imai, Kunio; Ito, Shigeki; Ishida, Yoji; Suzuki, Koichi

    2010-05-01

    A palmitoyl conjugate of an insect pentapeptide that occurs in diapausing insects causes a reversible cell-cycle arrest and suppresses mitochondrial respiration. This peptide compound also causes growth arrest in murine leukemic cell line expressing human gene Bcr/Abl and a farnesoyl peptide induces embryonic diapause in Bombyx mori. These results demonstrate that the insect peptide compounds can lead to the understanding of a common pathway in developmental arrest in animals and may provide a new peptidominetic analog in the development of biopharmaceuticals and pest management.

  5. Synthesis of reagents for the construction of hypusine and deoxyhypusine peptides and their application as peptidic antigens.

    Science.gov (United States)

    Bergeron, R J; Weimar, W R; Müller, R; Zimmerman, C O; McCosar, B H; Yao, H; Smith, R E

    1998-09-24

    Two new synthetic methods which allow access to (2S)-deoxyhypusine, natural (2S,9R)-hypusine, (2S,9S)-hypusine, and deoxyhypusine- and hypusine-containing peptides are described. The methods involve both the construction of a deoxyhypusine reagent in which the alpha-nitrogen protecting group is orthogonal to the N-7 and N-12 protecting groups and an alternate synthesis of our previous hypusine reagent, a synthesis which provides for better stereochemical control at C-9. Synthetic hypusine and deoxyhypusine can be generated from these reagents. The hypusine-containing hexapeptide (Cys-Thr-Gly-Hpu-His-Gly) is conjugated to ovalbumin (OVA), keyhole limpet hemocyanin (KLH), and a bis-maleimide; KLH conjugates are also made with the deoxyhypusine- and lysine-containing hexapeptides. Monoclonal antibodies are generated to the hypusine-containing hexapeptide-OVA conjugate in mice. These are isolated and screened against the hypusine-containing hexapeptide-KLH and hypusine-containing hexapeptide-bis-maleimide conjugates, as well as against the deoxyhypusine-containing and lysine-containing hexapeptide-KLH conjugates. These antibodies may be useful in localizing intracellular hypusine-containing peptides as well as peptides containing hypusine analogues.

  6. Novel alpha-MSH peptide analogs for melanoma targeting

    Science.gov (United States)

    Flook, Adam Michael

    Skin cancer is the one of the most diagnosed cancers in the United States with increasing incidence over the past two decades. There are three major forms of skin cancer but melanoma is the deadliest. It is estimated that 76,690 new diagnoses of melanoma and 9,480 deaths will occur in 2013. Melanoma accounts for approximately 1.6% of all cancer related deaths and is the 5 th leading diagnosed cancer in the United States. The mean survival rate of patients diagnosed with metastatic melanoma is six months, with five year survival rates of less than 5%. In this project, we describe the design and characterization of novel melanoma-targeting peptide analogs for use in diagnostic imaging of both primary and metastatic melanoma lesions. Novel alpha-MSH peptide conjugates were designed to target the melanocortin-1 receptor present and over-expressed on melanoma cells. These peptides were synthesized and their in-vitro melanocortin-1 receptor binding affinities were established in murine melanoma cells. Once binding affinities were determined, the peptides were radiolabeled with 99mTc utilizing a novel direct radiolabeling technique developed in our laboratory. The peptides were purified via reverse-phase high performance liquid chromatography and in-vivo melanoma targeting and pharmacokinetic properties were determined in B16/F1 melanoma-bearing female C57BL/6 mice. Biodistribution and SPECT/CT imaging studies were performed with the promising 99m Tc-labeled peptide conjugates. All alpha-MSH peptide conjugates tested showed low nanomolar binding affinity for the melanocortin-1 receptor. All peptides were readily radiolabeld with 99mTc with greater than 95% radiochemical purity. All 99mTc-labeled peptides displayed high specific in-vivo melanoma tumor uptake while maintaining low normal organ accumulation, and were excreted through the urinary system in a timely fashion. In addition, all tested 99mTc-labeld alpha-MSH peptides demonstrated clear visualization of in

  7. Development of a specific radiopharmaceutical based on gold nanoparticles functionalized with HYNIC-peptide/mannose for the sentinel lymph node detection in breast cancer; Desarrollo de un radiofarmaco especifico basado en nanoparticulas de oro funcionalizadas con HYNIC-peptido/manosa para la deteccion de ganglio centinela en cancer de mama

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo G, B. E.

    2012-07-01

    The aim of this research was to prepare a multifunctional system of {sup 99m}Tc-labelled gold nanoparticles conjugated to HYNIC-G GC/mannose and to evaluate its biological behaviour as a potential radiopharmaceutical for sentinel lymph node detection. Hydrazino nicotinyl-Gly-Gly-Cys-NH{sub 2} (HYNIC-G GC) peptide and a thiol-triazole-mannose derivative were synthesized, characterized and conjugated to gold nanoparticles (Au-Np, 20 nm) to prepare a multifunctional system of HYNIC-G GC-Au-Np-mannose by means of spontaneous reaction of the thiol (Cys) present in HYNIC-G GC sequence and in the thiol-mannose derivative. The nano conjugate was characterized by transmission electron microscopy (Tem), IR, UV-Vis, Raman, Fluorescence and X-ray photoelectron spectroscopy (XP S). {sup 99m}Tc labelling was carried out using EDDA/tricine as co ligands and SnCl{sub 2} as reducing agent with further size-exclusion chromatography purification. Radiochemical purity was determined by size-exclusion HPLC and I TLC-Sg analyses. In vitro binding studies were carried out in rat liver homogenized tissue (mannose-receptor positive tissue). Biodistribution studies were accomplished in Wistar rats and images obtained using a micro-SPECT/CT system. Tem and the spectroscopic techniques demonstrated that Au-Np were functionalized with HYNIC-G GC and thiol-mannose through interactions with thiol groups of cysteine. Radio-chromatograms showed radiochemical purity higher than 95%. {sup 99m}Tc-EDDA/HYNIC-G GC-Au-Np-mannose ({sup 99m}Tc-Au-Np-mannose) showed specific recognition for mannose receptors in rat liver tissue. After subcutaneous administration of {sup 99m}Tc-Au-Np-mannose in rats (foot pad), radioactivity levels in the popliteal and inguinal lymph nodes revealed that 99% of the activity was extracted by the first lymph node (popliteal extraction). Biodistribution studies and in vivo micro-SPECT/CT images in Wistar rats showed an evident lymph node uptake (11.58 {+-} 1.98% Id at 1 h

  8. A noncanonical function of sortase enables site-specific conjugation of small molecules to lysine residues in proteins.

    Science.gov (United States)

    Bellucci, Joseph J; Bhattacharyya, Jayanta; Chilkoti, Ashutosh

    2015-01-07

    We provide the first demonstration that isopeptide ligation, a noncanonical activity of the enzyme sortase A, can be used to modify recombinant proteins. This reaction was used in vitro to conjugate small molecules to a peptide, an engineered targeting protein, and a full-length monoclonal antibody with an exquisite level of control over the site of conjugation. Attachment to the protein substrate occurred exclusively through isopeptide bonds at a lysine ε-amino group within a specific amino acid sequence. This reaction allows more than one molecule to be site-specifically conjugated to a protein at internal sites, thereby overcoming significant limitations of the canonical native peptide ligation reaction catalyzed by sortase A. Our method provides a unique chemical ligation procedure that is orthogonal to existing methods, supplying a new method to site-specifically modify lysine residues that will be a valuable addition to the protein conjugation toolbox.

  9. Novel cell-penetrating peptide targeting mitochondria.

    Science.gov (United States)

    Cerrato, Carmine Pasquale; Pirisinu, Marco; Vlachos, Efstathios Nikolaos; Langel, Ülo

    2015-11-01

    Cell-penetrating peptides (CPPs) are short, nontoxic peptides with cationic and/or amphipathic properties able to cross the cellular membrane. CPPs are used for the delivery of a wide variety of cargoes, such as proteins, oligonucleotides, and therapeutic molecules. The aim of the present study was to synthesize unusually small novel CPPs targeting mitochondria based on the Szeto-Schiller peptide (SS-31) to influence intramitochondrial processes and to improve the biologic effects. All the peptides used were synthesized manually using 9-fluorenylmethyloxycarbonyl chemistry. In the first part of the study, HeLa 705, U87, and bEnd.3 cells were used as in vitro delivery model. Cells were incubated for 24 h at 37°C and 5% CO2 with different concentrations of our peptides. Cell proliferation assay was performed to evaluate cell viability. Biologic effects such as mitochondrial membrane potential and antioxidant activity were evaluated. H2O2 was used as positive control. Uptake studies were performed using peptides conjugated with 5(6)-carboxyfluorescein (FAM). Fluorescent microscopy was used to determine presence and localization of peptides into the cells. Isolated mitochondria from pretreated cells and mitochondria treated after isolation were used to confirm the targeting ability of the peptide. Uptake of FAM alone was used as negative control. Microscopy studies confirmed the ability of peptides to penetrate cell. Localization analysis showed increase in uptake by 35% compared with SS-31. Mitochondrial CPP 1 (mtCPP-1) had no effect on mitochondrial membrane potential and prevented reactive oxygen species formation in bEnd.3 cells by 2-fold compared with SS-31. No cytotoxicity was observed even at high concentration (100 µM). These data suggest that mtCPP-1 is a mitochondrial CPP and protect mitochondria from oxidative damage due to its own antioxidant activities. © FASEB.

  10. Peptide pheromone signaling in Streptococcus and Enterococcus.

    Science.gov (United States)

    Cook, Laura C; Federle, Michael J

    2014-05-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.

  11. Peptide pheromone signaling in Streptococcus and Enterococcus

    Science.gov (United States)

    Cook, Laura C.; Federle, Michael J.

    2014-01-01

    Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways. PMID:24118108

  12. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Hiroko Sano

    2015-05-01

    Full Text Available The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2 acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps. A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R in insulin-producing cells (IPCs in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3, is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  13. Radionuclide conjugates of calcitonin for imaging bone disease and cancer

    Energy Technology Data Exchange (ETDEWEB)

    Greenland, William Edward Peverell

    2002-07-01

    Salmon calcitonin (sCt) is a peptide with a higher affinity for human calcitonin receptors (hCtR) than human calcitonin. It has been used for treating osteoporosis, Paget's disease and bone pain. High levels of hCtRs are expressed on osteoclasts, bone metastases and primary breast and prostate cancers. The peptide was chosen for radiolabelling as a possible imaging agent. Direct labelling with {sup 99m}Tc via simultaneous reduction of the indigenous disulfide bond and {sup 99m}TcO{sub 4}{sup -} (VII) with the water soluble phenyl phosphine (TPPDS) was performed. The radiolabelled peptide was not suitable for use as a radiopharmaceutical due to the heterogeneity of the product as observed by reverse phase HPLC and due to poor binding to the human breast cancer cell line MCF7. The electospray MS suggested a {sup 99}Tc-TPPDS (III) core instead of the expected {sup 99}Tc=O (V) core. Normal sCt has 3 conjugatible primary amines leading to a mixture of 8 possible products. A sCt analogue (sCtA) with a single primary amine was produced and conjugated to the chelator TETA to produce a single conjugated species. The sCtA-TETA was labelled with cold Cu and characterised by electospray MS. The monodentate ligand Hynic was synthesised directly into the peptide using N-{alpha}-Fmoc-N-{epsilon}-(Hynic-Boc)-Lys a novel orthogonally protected amino acid. The peptide was labelled with {sup 99m}Tc with tricine coligands. The radiolabelled peptide produced a single peak as observed by reverse phase HPLC and bound to MCF7 cell in a specific manner. The electospray MS suggested that one of the tricine coligands is lost due to the heating effect and possibly replaced by an adjacent histidine acting as a ternary ligand. The sCtLys{sup 18}-Hynic{sup 99m}Tc(tricine){sub 2} labelled peptide is the lead radiolabelled peptide and could be used for a normal biodistribution animal study, followed by clinical evaluation in humans. (author)

  14. Smart linkers in polymer-drug conjugates for tumor-targeted delivery.

    Science.gov (United States)

    Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei

    2016-01-01

    To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.

  15. Aptamer-Drug Conjugates.

    Science.gov (United States)

    Zhu, Guizhi; Niu, Gang; Chen, Xiaoyuan

    2015-11-18

    Western medicine often aims to specifically treat diseased tissues or organs. However, the majority of current therapeutics failed to do so owing to their limited selectivity and the consequent "off-target" side effects. Targeted therapy aims to enhance the selectivity of therapeutic effects and reduce adverse side effects. One approach toward this goal is to utilize disease-specific ligands to guide the delivery of less-specific therapeutics, such that the therapeutic effects can be guided specifically to diseased tissues or organs. Among these ligands, aptamers, also known as chemical antibodies, have emerged over the past decades as a novel class of targeting ligands that are capable of specific binding to disease biomarkers. Compared with other types of targeting ligands, aptamers have an array of unique advantageous features, which make them promising for developing aptamer-drug conjugates (ApDCs) for targeted therapy. In this Review, we will discuss ApDCs for targeted drug delivery in chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and photothermal therapy, primarily of cancer.

  16. Application of mimotope peptides of fumonisin b1 in Peptide ELISA.

    Science.gov (United States)

    Liu, Xing; Xu, Yang; He, Qing-hua; He, Zhen-yun; Xiong, Zheng-ping

    2013-05-22

    Anti-fumonisin B(1) (FB(1)) McAb 1D11 was used as the target for biopanning from a phage random loop-constrained heptapeptide library. After three cycles of panning, seven phages with three mimotope peptides were selected to mimic the binding of FB(1) to 1D11. After the identification of phage ELISA, the phage clone that showed the best linear range of detection was chosen for further research. One peptide with the inserted peptide sequence of the phage was synthetized, named CT-452. An indirect competitive ELISA (peptide ELISA) for detecting FB(1) was established using the CT-452-bovine serum albumin conjugate as coating antigen. The linear range of the inhibition curve was 1.77-20.73 ng/mL. The half inhibitory concentration (IC50) was 6.06 ng/mL, and the limit of detection was 1.18 ng/mL. This method was compared with conventional indirect ELISA (commercial ELISA kit) and high-performance liquid chromatography (HPLC), and the results showed the reliability of the peptide ELISA for the determination of FB(1) in cereal samples. The relationship between the CT-452 and FB(1) standard concentrations in peptide ELISA was evaluated. The results indicated that synthetic peptide CT-452 can replace the FB(1) standard to establish an immunoassay free of FB(1).

  17. Sequential measurements of conjugate observables

    Energy Technology Data Exchange (ETDEWEB)

    Carmeli, Claudio [Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Heinosaari, Teiko [Department of Physics and Astronomy, Turku Centre for Quantum Physics, University of Turku, 20014 Turku (Finland); Toigo, Alessandro, E-mail: claudio.carmeli@gmail.com, E-mail: teiko.heinosaari@utu.fi, E-mail: alessandro.toigo@polimi.it [Dipartimento di Matematica ' Francesco Brioschi' , Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2011-07-15

    We present a unified treatment of sequential measurements of two conjugate observables. Our approach is to derive a mathematical structure theorem for all the relevant covariant instruments. As a consequence of this result, we show that every Weyl-Heisenberg covariant observable can be implemented as a sequential measurement of two conjugate observables. This method is applicable both in finite- and infinite-dimensional Hilbert spaces, therefore covering sequential spin component measurements as well as position-momentum sequential measurements.

  18. Polymeric nanoparticles conjugate a novel heptapeptide as an epidermal growth factor receptor-active targeting ligand for doxorubicin

    Directory of Open Access Journals (Sweden)

    Liu CW

    2012-08-01

    Full Text Available Chia Wen Liu,1,2 Wen Jen Lin11Graduate Institute of Pharmaceutical Sciences, College of Medicine, National Taiwan University, Taipei; 2Drug Delivery Department, Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu, TaiwanBackground: This study was performed to develop a functional poly(D,L-lactide-co-glycolide-poly(ethylene glycol (PLGA-PEG-bearing amino-active end group for peptide conjugation.Methods and results: PLGA was preactivated following by copolymerization with PEG diamine. The resulting amphiphilic PLGA-PEG copolymer bearing 97.0% of amino end groups had a critical micelle concentration of 3.0 × 10-8 mol/L, and the half-effective inhibition concentration (IC50 of the prepared PLGA-PEG nanoparticles was >100 mg/mL, which was much higher than that of PLGA nanoparticles (1.02 ± 0.37 mg/mL. The amphiphilic properties of PLGA-PEG spontaneously formed a core-shell conformation in the aqueous environment, and this special feature provided the amino group on the PEG chain scattered on the surface of PLGA-PEG nanoparticles for efficient peptide conjugation. The peptide-conjugated PLGA-PEG nanoparticles showed three-fold higher uptake than peptide-free PLGA-PEG nanoparticles in a SKOV3 cell line with high expression of epidermal growth factor receptor. Both peptide-conjugated and peptide-free PLGA-PEG nanoparticles were used as nanocarriers for delivery of doxorubicin. Although the rate of release of doxorubicin from both nanoparticles was similar, drug release at pH 4.0 (500 U lipase was faster than at pH 7.4. The IC50 of doxorubicin-loaded peptide-conjugated PLGA-PEG nanoparticles in SKOV3 cells (0.05 ± 0.03 µg/mL was much lower (by 62.4-fold than that of peptide-free PLGA-PEG nanoparticles (3.12 ± 1.44 µg/mL.Conclusion: This in vivo biodistribution study in SKOV3 tumor-bearing mice was further promising in that accumulation of doxorubicin in tumor tissue was in the order of peptide-conjugated

  19. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements.

    Science.gov (United States)

    Azmi, Sarfuddin; Jiang, Keren; Stiles, Michael; Thundat, Thomas; Kaur, Kamaljit

    2015-03-09

    We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.

  20. Antibody-protein A conjugated quantum dots for multiplexed imaging of surface receptors in living cells.

    Science.gov (United States)

    Jin, Takashi; Tiwari, Dhermendra K; Tanaka, Shin-Ichi; Inouye, Yasushi; Yoshizawa, Keiko; Watanabe, Tomonobu M

    2010-11-01

    To use quantum dots (QDs) as fluorescent probes for receptor imaging, QD surface should be modified with biomolecules such as antibodies, peptides, carbohydrates, and small-molecule ligands for receptors. Among these QDs, antibody conjugated QDs are the most promising fluorescent probes. There are many kinds of coupling reactions that can be used for preparing antibody conjugated QDs. Most of the antibody coupling reactions, however, are non-selective and time-consuming. In this paper, we report a facile method for preparing antibody conjugated QDs for surface receptor imaging. We used ProteinA as an adaptor protein for binding of antibody to QDs. By using ProteinA conjugated QDs, various types of antibodies are easily attached to the surface of the QDs via non-covalent binding between the F(c) (fragment crystallization) region of antibody and ProteinA. To show the utility of ProteinA conjugated QDs, HER2 (anti-human epidermal growth factor receptor 2) in KPL-4 human breast cancer cells were stained by using anti-HER2 antibody conjugated ProteinA-QDs. In addition, multiplexed imaging of HER2 and CXCR4 (chemokine receptor) in the KPL-4 cells was performed. The result showed that CXCR4 receptors coexist with HER2 receptors in the membrane surface of KPL-4 cells. ProteinA mediated antibody conjugation to QDs is very useful to prepare fluorescent probes for multiplexed imaging of surface receptors in living cells.

  1. Influence of the spacer on the inhibitory effect of different polycarbophil-protease inhibitor conjugates.

    Science.gov (United States)

    Marschütz, M K; Veronese, F M; Bernkop-Schnürch, A

    2001-09-01

    Within the present study various polycarbophil (PCP)-serine protease inhibitor conjugates were synthesized and the influence of different spacers on their inhibitory efficacy was evaluated in vitro. Results demonstrated that 4.2+/-0.15 units (n=3; +/-SD) of alpha-chymotrypsin were inhibited by 50% utilizing 0.86% (w/v) of a PCP-tetramethylenediamine (TMDA)-chymostatin 20:1 conjugate. In contrast, only 0.6+/-0.05 units (n=3; +/-SD) of alpha-chymotrypsin were inhibited by a corresponding PCP-poly(ethylene glycol) (PEG)-chymostatin conjugate. Inhibitory effects of PCP-TMDA-antipain and -elastatinal conjugates towards trypsin and elastase, respectively, were also significantly higher (P<0.05) than those of corresponding PCP-PEG-inhibitor conjugates. Hence, the great impact of the molecular size as well as the structure of the spacer on resulting polymer-inhibitor conjugates could be demonstrated. The small and rigid C4-spacer TMDA (molecular weight (MW) 161.1) was thereby shown to be highly advantageous over a long, hydrophilic and flexible PEG-diamine spacer (MW 3400). Results obtained should provide helpful basic knowledge for the development of mucoadhesive polymer-inhibitor conjugates used as auxiliary agents for the oral administration of peptide drugs.

  2. Direct Conjugation of Emerging Contaminants in Arabidopsis: Indication for an Overlooked Risk in Plants?

    Science.gov (United States)

    Fu, Qiuguo; Zhang, Jianbo; Borchardt, Dan; Schlenk, Daniel; Gan, Jay

    2017-06-06

    Agricultural use of treated wastewater, biosolids, and animal wastes introduces a multitude of contaminants of emerging concerns (CECs) into the soil-plant system. The potential for food crops to accumulate CECs depends largely on their metabolism in plants, which at present is poorly understood. Here, we evaluated the metabolism of naproxen and ibuprofen, two of the most-used human drugs from the Profen family, in Arabidopsis thaliana cells and the Arabidopsis plant. The complementary use of high-resolution mass spectrometry and (14)C labeling allowed the characterization of both free and conjugated metabolites, as well as nonextractable residues. Naproxen and ibuprofen, in their parent form, were conjugated quickly and directly with glutamic acid and glutamine, and further with peptides, in A. thaliana cells. For example, after 120 h, the metabolites of naproxen accounted for >90% of the extractable chemical mass, while the intact parent itself was negligible. The structures of glutamate and glutamine conjugates were confirmed using synthesized standards and further verified in whole plants. Amino acid conjugates may easily deconjugate, releasing the parent molecule. This finding highlights the possibility that the bioactivity of such CECs may be effectively preserved through direct conjugation, a previously overlooked risk. Many other CECs are also carboxylic acids, such as the profens. Therefore, direct conjugation may be a common route for plant metabolism of these CECs, making it imperative to consider conjugates when assessing their risks.

  3. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation

    Directory of Open Access Journals (Sweden)

    Brian M. G. Janssen

    2015-06-01

    Full Text Available The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py–Im polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py–Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py–Im polyamides. The effect of Py–Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR. Although the synthesis of different protein-Py–Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py–Im-polyamide conjugates. The practical use of protein-Py–Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  4. Efficient Synthesis of Peptide and Protein Functionalized Pyrrole-Imidazole Polyamides Using Native Chemical Ligation.

    Science.gov (United States)

    Janssen, Brian M G; van Ommeren, Sven P F I; Merkx, Maarten

    2015-06-04

    The advancement of DNA-based bionanotechnology requires efficient strategies to functionalize DNA nanostructures in a specific manner with other biomolecules, most importantly peptides and proteins. Common DNA-functionalization methods rely on laborious and covalent conjugation between DNA and proteins or peptides. Pyrrole-imidazole (Py-Im) polyamides, based on natural minor groove DNA-binding small molecules, can bind to DNA in a sequence specific fashion. In this study, we explore the use of Py-Im polyamides for addressing proteins and peptides to DNA in a sequence specific and non-covalent manner. A generic synthetic approach based on native chemical ligation was established that allows efficient conjugation of both peptides and recombinant proteins to Py-Im polyamides. The effect of Py-Im polyamide conjugation on DNA binding was investigated by Surface Plasmon Resonance (SPR). Although the synthesis of different protein-Py-Im-polyamide conjugates was successful, attenuation of DNA affinity was observed, in particular for the protein-Py-Im-polyamide conjugates. The practical use of protein-Py-Im-polyamide conjugates for addressing DNA structures in an orthogonal but non-covalent manner, therefore, remains to be established.

  5. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    DEFF Research Database (Denmark)

    Kristensen, Mie; Birch, Ditlev; Mørck Nielsen, Hanne

    2016-01-01

    -penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide...... and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes...... are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo...

  6. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    Science.gov (United States)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  7. Use of quantum dot-conjugated antibodies to study intracellular cancer biomarkers in living and fixed cells

    Science.gov (United States)

    Ling, Jian

    2008-02-01

    Quantum dots have unique properties for long-term immunofluorescence imaging of molecular activities inside living cells. The key is how to deliver the quantum dot-conjugated antibodies into cells and further allow the antibodies freely move inside cells to bind target molecules. This study investigated the feasibility of using Pep-1, a cell penetration protein, to facilitate the internalization of quantum dot-conjugated antibodies for the labeling of two intracellular cervical cancer biomarkers: p16 and Mcm5. Quantum dots were directly conjugated with the antibodies to p16 and Mcm5 and, they were able to stain fixed cells and to differentiate biomarker positive and negative cells. The non-covalent binding between the conjugates and Pep-1 peptides allows the quick internalization of the quantum dot-conjugated antibodies into living cells. The internalized conjugates were concentrated in the perinuclear regions of the biomarker-positive HeLa cells. In the biomarker negative Um-Uc-3 cells, however, the conjugates concentrated in juxtaneclear region. Cells bearing with quantum dots still go through the mitosis process. Although the study indicates many questions need to be answered and many problems need to be solved, the use of cell penetration peptide is a promising method for the intracellular labeling of living cell molecules using quantum dots.

  8. Developing a Dissociative Nanocontainer for Peptide Drug Delivery

    Directory of Open Access Journals (Sweden)

    Patrick Kelly

    2015-10-01

    Full Text Available The potency, selectivity, and decreased side effects of bioactive peptides have propelled these agents to the forefront of pharmacological research. Peptides are especially promising for the treatment of neurological disorders and pain. However, delivery of peptide therapeutics often requires invasive techniques, which is a major obstacle to their widespread application. We have developed a tailored peptide drug delivery system in which the viral capsid of P22 bacteriophage is modified to serve as a tunable nanocontainer for the packaging and controlled release of bioactive peptides. Recent efforts have demonstrated that P22 nanocontainers can effectively encapsulate analgesic peptides and translocate them across blood-brain-barrier (BBB models. However, release of encapsulated peptides at their target site remains a challenge. Here a Ring Opening Metathesis Polymerization (ROMP reaction is applied to trigger P22 nanocontainer disassembly under physiological conditions. Specifically, the ROMP substrate norbornene (5-Norbornene-2-carboxylic acid is conjugated to the exterior of a loaded P22 nanocontainer and Grubbs II Catalyst is used to trigger the polymerization reaction leading to nanocontainer disassembly. Our results demonstrate initial attempts to characterize the ROMP-triggered release of cargo peptides from P22 nanocontainers. This work provides proof-of-concept for the construction of a triggerable peptide drug delivery system using viral nanocontainers.

  9. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  10. Function of fibrinogen gamma-chain dodecapeptide-conjugated latex beads under flow.

    Science.gov (United States)

    Takeoka, Shinji; Okamura, Yosuke; Teramura, Yuji; Watanabe, Naohide; Suzuki, Hidenori; Tsuchida, Eishun; Handa, Makoto; Ikeda, Yasuo

    2003-12-19

    In order to perform a fundamental study of platelet substitutes, novel particles that bound to activated platelets were prepared using two oligopeptides conjugated to latex beads. The oligopeptides were CHHLGGAKQAGDV (H12), which is a fibrinogen gamma-chain carboxy-terminal sequence (gamma 400-411), and CGGRGDF (RGD), which contains a fibrinogen alpha-chain sequence (alpha 95-98 RGDF). Both peptides contained an additional amino-terminal cysteine to enable conjugation. Human serum albumin was adsorbed onto the surface of latex beads (average diameter 1microm) and pyridyldisulfide groups were chemically introduced into the adsorbed protein. H12 or RGD peptides were then chemically linked to the modified surface protein via disulfide linkages. H12- or RGD-conjugated latex beads prepared in this way enhanced the in vitro thrombus formation of activated platelets on collagen-immobilized plates under flowing thrombocytopenic-imitation blood. Based on the result of flow cytometric analyses of agglutination, PAC-1 binding, antiP-selectin antibody binding, and annexin V binding, the H12-conjugated latex beads showed minimal interaction with non-activated platelets. These results indicate the excellent potential of H12-conjugated particles as a candidate for a platelet substitute.

  11. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate.

    Science.gov (United States)

    Ryan, Sinéad M; Wang, Xuexuan; Mantovani, Guiseppe; Sayers, Claire T; Haddleton, David M; Brayden, David J

    2009-04-02

    Salmon calcitonin (sCT) was conjugated via its N-terminal cysteine to a comb-shaped end-functionalized poly(poly(ethylene glycol) methyl ether methacrylate) (PolyPEG, 6.5 kDa), and to linear PEG (5 kDa). Conjugate molecular weight and purity was assessed by SEC-HPLC and MALDI-TOF MS. Bioactivity of conjugates was measured by cyclic AMP assay in T47D cells. Calcium and calcitonin levels were measured in rats following intravenous injections. Stability of conjugates was tested against serine proteases, intestinal and liver homogenates and serum. Cytotoxicity of conjugates was assessed by lactate dehydrogenase (LDH) assay and by haemolytic assay of rat red blood cells. Results showed that the two conjugates were of high purity with molecular weights similar to predictions. Both conjugates retained more than 85% bioactivity in vitro and had nanomolar EC(50) values similar to sCT. While both sCT-PolyPEG(6.5 K) and sCT-PEG(5 K) were resistant to metabolism by serine proteases, homogenates and serum, PolyPEG (6.5 K) was more so. Although both conjugates reduced serum calcium to levels similar to those achieved with sCT, PolyPEG(6.5 K) extended the T(1/2) and AUC of serum sCT over values achieved with sCT-PEG and sCT itself. None of PolyPEG, PEG or methacrylic acid displayed significant cytotoxicity. PolyPEG may therefore have potential to improve pharmacokinetic profiles of injected peptides.

  12. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration

    NARCIS (Netherlands)

    Muszanska, Agnieszka K.; Rochford, Edward T. J.; Gruszka, Agnieszka; Bastian, Andreas A.; Busscher, Hendrik; Norde, Willem; van der Mei, Henny C.; Herrmann, Andreas

    This paper describes the synthesis and characterization of polymer peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP),

  13. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  14. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  15. Biological properties of adrenomedullin conjugated with polyethylene glycol.

    Science.gov (United States)

    Kubo, Keishi; Tokashiki, Mariko; Kuwasako, Kenji; Tamura, Masaji; Tsuda, Shugo; Kubo, Shigeru; Yoshizawa-Kumagaye, Kumiko; Kato, Johji; Kitamura, Kazuo

    2014-07-01

    Adrenomedullin (AM) is a vasodilator peptide with pleiotropic effects, including cardiovascular protection and anti-inflammation. Because of these beneficial effects, AM appears to be a promising therapeutic tool for human diseases, while intravenous injection of AM stimulates sympathetic nerve activity due to short-acting potent vasodilation, resulting in increased heart rate and renin secretion. To lessen these acute reactions, we conjugated the N-terminal of human AM peptide with polyethylene glycol (PEG), and examined the biological properties of PEGylated AM in the present study. PEGylated AM stimulated cAMP production, an intracellular second messenger of AM, in cultured human embryonic kidney cells expressing a specific AM receptor in a dose-dependent manner, as did native human AM. The pEC50 value of PEGylated AM was lower than human AM, but no difference was noted in maximum response (Emax) between the PEGylated and native peptides. Intravenous bolus injection of 10nmol/kg PEGylated AM lowered blood pressure in anesthetized rats, but the acute reduction became significantly smaller by PEGylation as compared with native AM. Plasma half-life of PEGylated AM was significantly longer than native AM both in the first and second phases in rats. In summary, N-terminal PEGylated AM stimulated cAMP production in vitro, showing lessened acute hypotensive action and a prolonged plasma half-life in comparison with native AM peptide in vivo.

  16. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  17. Isolation of Camelid Single-Domain Antibodies Against Native Proteins Using Recombinant Multivalent Peptide Ligands.

    Science.gov (United States)

    Alturki, Norah A; Henry, Kevin A; MacKenzie, C Roger; Arbabi-Ghahroudi, Mehdi

    2015-01-01

    Generation of antibodies against desired epitopes on folded proteins may be hampered by various characteristics of the target protein, including antigenic and immunogenic dominance of irrelevant epitopes and/or steric occlusion of the desired epitope. In such cases, peptides encompassing linear epitopes of the native protein represent attractive alternative reagents for immunization and screening. Peptide antigens are typically prepared by fusing or conjugating the peptide of interest to a carrier protein. The utility of such antigens depends on many factors including the peptide's amino acid sequence, display valency, display format (synthetic conjugate vs. recombinant fusion) and characteristics of the carrier. Here we provide detailed protocols for: (1) preparation of DNA constructs encoding peptides fused to verotoxin (VT) multimerization domain; (2) expression, purification, and characterization of the multivalent peptide-VT ligands; (3) concurrent panning of a non-immune phage-displayed camelid VHH library against the peptide-VT ligands and native protein; and (4) identification of VHHs enriched via panning using next-generation sequencing techniques. These methods are simple, rapid and can be easily adapted to yield custom peptide-VT ligands that appear to maintain the antigenic structures of the peptide. However, we caution that peptide sequences should be chosen with great care, taking into account structural, immunological, and biophysical information on the protein of interest.

  18. Conjugate Gradient with Subspace Optimization

    CERN Document Server

    Karimi, Sahar

    2012-01-01

    In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for "conjugate gradient with subspace optimization". It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other CG algorithms, the update step on each iteration is a linear combination of the last gradient and last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical complexity bound of $O(\\sqrt{L/l} \\log(1/\\epsilon))$, where the ratio $L/l$ characterizes the strong convexity of the objective function. In practice, CGSO competes with other CG-type algorithms by incorporating some second order information in each iteration.

  19. Persistence Mechanisms of Conjugative Plasmids

    DEFF Research Database (Denmark)

    Bahl, Martin Iain; Hansen, Lars H.; Sørensen, Søren Johannes

    2009-01-01

    Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting...... the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable...... maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid...

  20. Direct Cytoplasmic Delivery and Nuclear Targeting Delivery of HPMA-MT Conjugates in a Microtubules Dependent Fashion.

    Science.gov (United States)

    Zhong, Jiaju; Zhu, Xi; Luo, Kui; Li, Lian; Tang, Manlin; Liu, Yanxi; Zhou, Zhou; Huang, Yuan

    2016-09-06

    As the hearts of tumor cells, the nucleus is the ultimate target of many chemotherapeutic agents and genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles, such as low efficiency of lysosome escape and insufficient nuclear trafficking. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed, which could achieve direct cytoplasmic delivery by a nonendocytic pathway and transport into the nucleus in a microtubules dependent fashion. A special targeting peptide (MT), derived from an endogenic parathyroid hormone-related protein, was conjugated to the polymer backbone, which could accumulate into the nucleus a by microtubule-mediated pathway. The in vitro studies found that low temperature and NaN3 could not influence the cell internalization of the conjugates. Besides, no obvious overlay of the conjugates with lysosome demonstrated that the polymer conjugates could enter the tumor cell cytoplasm by a nonendocytic pathway, thus avoiding the drug degradation in the lysosome. Furthermore, after suppression of the microtubule dynamics with microtubule stabilizing docetaxel (DTX) and destabilizing nocodazole (Noc), the nuclear accumulation of polymeric conjugates was significantly inhibited. Living cells fluorescence recovery after photobleaching study found that the nuclear import rate of conjugates was 2-fold faster compared with the DTX and Noc treated groups. These results demonstrated that the conjugates transported into the nucleus in a microtubules dependent way. Therefore, in addition to direct cytoplasmic delivery, our peptide conjugated polymeric platform could simultaneously mediate nuclear drug accumulation, which may open a new path for further intracellular genes/peptides delivery.

  1. Hypercube Solutions for Conjugate Directions

    Science.gov (United States)

    1991-12-01

    alternative term that emphasizes the role of A in this definition. We also say that x and y are A-orthogonal. [Ref. 18: p. 410] The method of conjugate...conjugate (A-orthogonal). begin CG u0 =zeros(n) (arbitrary initial guess) Po = r0 = b- Auo for i = 0 : n = pTAp , (denominator used below) ai = (pTri...application, it could characterize water or chemical penetration in soil. We shall continue to use the term "heat equation", though, for the sake of

  2. Taurine Boosts Cellular Uptake of Small d-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly

    OpenAIRE

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-01-01

    Due to their biostability, d-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, d-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small d-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester con...

  3. Immune response to synthetic peptides of dengue prM protein.

    Science.gov (United States)

    Vázquez, Susana; Guzmán, María Guadalupe; Guillen, Gerardo; Chinea, Glay; Pérez, Ana Beatriz; Pupo, Maritza; Rodriguez, Rosmary; Reyes, Osvaldo; Garay, Hilda Elisa; Delgado, Iselys; García, Gissel; Alvarez, Mayling

    2002-03-15

    The immunological activities of five synthetic peptides of the prM protein of dengue-2 (DEN-2) virus containing B cell epitopes were evaluated in BALB/c mice. Two peptides elicited neutralizing antibodies against all four DEN serotypes. Virus-specific proliferative responses were demonstrated in mice immunized with four of the five peptides, demonstrating the presence of T cell epitopes. Mice immunized with three of the five peptides conjugated with bovine albumin showed statistically significant levels (Pdevelopment of anti-flaviviral vaccines.

  4. Synthesis and biological activity of N-substituted-tetrahydro-γ-carbolines containing peptide residues

    Science.gov (United States)

    Sokolova, Nadezhda V; Sokolov, Vladimir B; Vinogradova, Daria V; Shevtsova, Elena F; Dubova, Ludmila G

    2014-01-01

    Summary The synthesis of novel peptide conjugates of N-substituted-tetrahydro-γ-carbolines has been performed using the sequence of the Ugi multicomponent reaction and Cu(I)-catalyzed click chemistry. The effect of obtained γ-carboline–peptide conjugates on the rat liver mitochondria was evaluated. It was found that all compounds in the concentration of 30 µM did onot induce depolarization of mitochondria but possessed some inhibitory effect on the mitochondria permeability transition. The original N-substituted-tetrahydro-γ-carbolines containing an terminal alkyne group demonstrated a high prooxidant activity, whereas their conjugates with peptide fragments slightly inhibited both autooxidation and the t-BHP-induced lipid peroxidation. PMID:24454569

  5. Easy and Efficient 111Indium Labeling of Long-Term Stored DTPA Conjugated Protein

    DEFF Research Database (Denmark)

    Nalla, Amarnadh; Buch, Inge; Hesse, Birger

    2011-01-01

    The labelling efficiency of long-term stored DTPA-conjugates has not been reported previously even though DTPA has been in extensive use as metal chelator in the development of radiopharmaceuticals and contrast agents. DTPA is often used as a bifunctional chelating agent conjugated to tumor...... targeting vehicles such as monoclonal antibodies and receptor directed peptides. The purpose of this study was to monitor the labelling efficiency of a DTPA-conjugate on long-term storage using 111In-chloride at two different temperatures and incubation times for the In-labelling. Method: Cyclic......-diethylene-triamine-pentaacetic acid (cDTAP) was conjugated to a polyclonal immunoglobulin-G (IgG) in borate buffer, pH 8.2 at +4?C for 4 hours. Then the DTPA-conjugate was dialyzed against 50 mmol/l sodium citrate buffer saline, pH 6.0 and stored at -80° C in aliquots of 1 mg/0.5 ml. The DTPA-conjugate was labeled with 111In...

  6. Insights into the Binding Sites of Organometallic Ruthenium Anticancer Compounds on Peptides Using Ultra-High Resolution Mass Spectrometry

    Science.gov (United States)

    Wills, Rebecca H.; Habtemariam, Abraha; Lopez-Clavijo, Andrea F.; Barrow, Mark P.; Sadler, Peter J.; O'Connor, Peter B.

    2014-04-01

    The binding sites of two ruthenium(II) organometallic complexes of the form [(η6-arene)Ru( N, N)Cl]+, where arene/ N, N = biphenyl (bip)/bipyridine (bipy) for complex AH076, and biphenyl (bip)/ o-phenylenediamine ( o-pda) for complex AH078, on the peptides angiotensin and bombesin have been investigated using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Fragmentation was performed using collisionally activated dissociation (CAD), with, in some cases, additional data being provided by electron capture dissociation (ECD). The primary binding sites were identified as methionine and histidine, with further coordination to phenylalanine, potentially through a π-stacking interaction, which has been observed here for the first time. This initial peptide study was expanded to investigate protein binding through reaction with insulin, on which the binding sites proposed are histidine, glutamic acid, and tyrosine. Further reaction of the ruthenium complexes with the oxidized B chain of insulin, in which two cysteine residues are oxidized to cysteine sulfonic acid (Cys-SO3H), and glutathione, which had been oxidized with hydrogen peroxide to convert the cysteine to cysteine sulfonic acid, provided further support for histidine and glutamic acid binding, respectively.

  7. On contravariant product conjugate connections

    Directory of Open Access Journals (Sweden)

    A. M. Blaga

    2012-02-01

    Full Text Available Invariance properties for the covariant and contravariant connections on a Riemannian manifold with respect to an almost product structure are stated. Restricting to a distribution of the contravariant connections is also discussed. The particular case of the conjugate connection is investigated and properties of the extended structural and virtual tensors for the contravariant connections are given.

  8. Actinomycete integrative and conjugative elements

    NARCIS (Netherlands)

    Poele, Evelien M. te; Bolhuis, Henk; Dijkhuizen, Lubbert

    2008-01-01

    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative eleme

  9. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik

    2011-01-01

    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore...

  10. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  11. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  12. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    Science.gov (United States)

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation.

  13. Site-specific conjugation of an antibody-binding protein catalyzed by horseradish peroxidase creates a multivalent protein conjugate with high affinity to IgG.

    Science.gov (United States)

    Minamihata, Kosuke; Goto, Masahiro; Kamiya, Noriho

    2015-01-01

    Cross-linking proteins offers an approach to enhance the distinct function of proteins due to the multivalent effect. In this study, we demonstrated the preparation of a multivalent antibody-binding protein possessing high affinity to IgG by conjugating a number of antibody-binding proteins using the horseradish peroxidase (HRP)-mediated protein conjugation method. By introducing a peptide tag containing a tyrosine (Y-tag) to the C-terminus of the model protein, a chimera protein of protein G and protein A (pG2 pA), the Tyr residue in the Y-tag was efficiently recognized by HRP and cross-linked with each other to yield a pG2 pA conjugate, composed of mainly two to three units of pG2 pA. The cross-linking occurred site specifically at the Tyr residue in the Y-tag and introduction of the Y-tag showed no effect on the function of pG2 pA. The affinity of the Y-tagged pG2 pA conjugate against IgG clearly increased because of the multivalent effect, demonstrating the benefit of this protein cross-linking reaction, which yields functional protein oligomers. Such multivalent protein conjugates created by this reaction should have potential to be used in ELISA and Western blotting applications in which highly sensitive detection of target molecules is desired.

  14. Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries

    Directory of Open Access Journals (Sweden)

    Teruhiko Matsubara

    2012-01-01

    Full Text Available Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as “carbohydrate-mimetic peptides (CMPs” because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.

  15. Synthesis of novel conjugates of a saccharide, amino acids, nucleobase and the evaluation of their cell compatibility

    Directory of Open Access Journals (Sweden)

    Dan Yuan

    2014-10-01

    Full Text Available This article reports the synthesis of a novel type of conjugate of three fundamental biological build blocks (i.e., saccharide, amino acids, and nucleobase and their cell compatibility. The facile synthesis starts with the synthesis of nucleobase and saccharide derivatives, then uses solid-phase peptide synthesis (SPPS to build the peptide segment (Phe-Arg-Gly-Asp or naphthAla-Phe-Arg-Gly-Asp with fully protected groups, and later, an amidation reaction in liquid phase connects these three parts together. The overall yield of these multiple step synthesis is about 34%. Besides exhibiting excellent solubility, these conjugates of saccharide–amino acids–nucleobase (SAN, like the previously reported conjugates of nucleobase–amino acids–saccharide (NAS and nucleobase–saccharide–amino acids (NSA, are mammalian cell compatible.

  16. Gastrin-releasing peptide is a transmitter mediating porcine gallbladder contraction

    DEFF Research Database (Denmark)

    Schjoldager, Birgit; Poulsen, S.S.; Schmidt, P.

    1991-01-01

    We studied the role of gastrin-releasing peptide (GRP) for porcine gallbladder motility. Immunohistochemistry visualized nerve fibers containing GRP-like immunoreactivity in muscularis. GRP concentration dependently stimulated contractions of muscularis strips (ED50, 2.9 nM). Neuromedin B was less...... potent (ED50, 0.1 microM), suggesting existence of GRP-preferring receptors. GRP-induced contractions were unaffected by muscarinic antagonism (1 microM atropine), axonal blockade (1 microM tetrodotoxin), cholecystokinin (CCK) receptor antagonism (10 microM MK-329), or substance P desensitization (1...... microM), supporting the existence of myogenic GRP receptors. The bombesin (BN) analogue D-Phe6-BN-(6-13)propylamide (PA) stimulated contractions (ED50, 3.3 nM) with low efficacy (29% of that of GRP). D-Phe6-BN-(6-13)PA (1 microM) shifted GRP concentration-response curves one log to the right. D-Phe6-BN...

  17. A strategy for efficient cross-presentation of CTL-epitope peptides leading to enhanced induction of in vivo tumor immunity.

    Science.gov (United States)

    Hayashi, Akira; Wakita, Hisashi; Yoshikawa, Tomoaki; Nakanishi, Tsuyoshi; Tsutsumi, Yasuo; Mayumi, Tadanori; Mukai, Yohei; Yoshioka, Yasuo; Okada, Naoki; Nakagawa, Shinsaku

    2007-01-22

    The activation of antitumor cytotoxic T-lymphocytes (CTLs) depends on how efficiently the relevant tumor antigen peptides are delivered into the major histocompatibility complex (MHC) class I presentation pathway in antigen presenting cells (APCs). An elegant approach to promote the peptide-MHC class I association has been described for enhanced peptide transportation into the endoplasmic reticulum (ER) by adding an ER insertion signal sequence (Eriss). Nevertheless, this approach does not appear potent enough to induce in vivo tumor protective immunity. Herein, we present a novel peptide-vaccine strategy based on the combined utilization of Eriss and fusogenic liposomes (FLs) capable of directly introducing encapsulated CTL-epitope peptides into the MHC class I pathway of APCs. APCs pulsed with free peptides, FL-encapsulated peptides, or FL-encapsulated Eriss-conjugated peptides exhibited comparable levels of antigen-presenting activity at early phases after pulsing. Interestingly, whereas in the first two methods the APC ability began to decline 40 to 60 h after pulsing, FL-encapsulated Eriss(+) peptides allowed APCs to retain peptide-presentation activity for at least 140 h. This advantage of FL-encapsulated Eriss(+) peptides correlated with the induction of more potent antitumor immunity compared with soluble Eriss(+) or Eriss(-) peptides or FL-encapsulated Eriss(-) peptides when they were administered in vivo. Thus, Eriss-conjugated CTL-epitope peptides encapsulated in FLs provide a highly efficient tumor-vaccine to enhance the induction of in vivo tumor immunity.

  18. 胃泌素释放肽在炎性疾病中的作用%Roles of gastrin-releasing peptide in inflammatory diseases

    Institute of Scientific and Technical Information of China (English)

    郭龙; 阮林星; 李金宝

    2016-01-01

    Background Gastrin-releasing peptide (GRP), a neuropeptide, belongs to the bombesin (BB) and is expressed in various organs (such as gastrointestinal system, respiratory system, nervous system, endocrine gland and skeletal muscles).Gastrin-releasing peptide receptors (GRPR) is a kind of G protein coupled receptors (GPCRs).In recent years, more and more studies have focused on potential roles of GRP in inflammatory diseases.RC-3095, as a specific GRPR antagonist, has been found to have antiinflammatory properties.Objective To investigate the potential roles and research situation of GRP-GRPR in inflammatory diseases.Content Mainly focusing on reviewing sepsis, arthritis, gastroenteritis, and uveitis, we summarized the roles of GRP-GRPR in inflammatory diseases.Trend In conclusion, GRP and its receptor is a potential therapeutic target in inflammatory diseases as well as the possible transformation from preclinical findings to clinical application.%背景 胃泌素释放肽(gastrin-releasing peptide,GRP)是一种神经肽,属于铃蟾肽类(bombesin,BB),表达于多种组织(胃肠系统、呼吸系统、神经系统、内分泌腺以及骨骼肌等).胃泌素释放肽受体(gastrin-releasing peptide receptor,GRPR)属于G蛋白耦联受体(G protein coupled receptors,GPCRs).近年来,GRP在炎症性疾病中的作用备受关注,研究显示RC-3095作为GRPR特异性拮抗剂具有抗炎作用.目的 探讨GRP在炎性疾病中的作用及其研究现状.内容 主要从脓毒症、关节炎、胃肠炎、眼葡萄膜炎等炎性疾病着手,对GRP在炎症疾病中的作用进行归纳总结.趋向 GRP-GRPR将有可能成为炎性疾病的潜在治疗靶点,并有望实现从基础研究到临床应用的转化.

  19. Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-L-lysine dendrons.

    Science.gov (United States)

    Rosli, Nurlina; Christie, Michelle P; Moyle, Peter M; Toth, Istvan

    2015-05-15

    Multicomponent gene delivery systems incorporating cell-penetrating peptides (CPP) from the human neurturin protein (NRTN-30, NRTN(132-161); NRTN-17, NRTN(145-161)) and a poly-l-lysine (PLL) dendron, were synthesized and characterized for plasmid DNA (pDNA) delivery. Acetylated NRTN peptides (Ac-CPP) and peptides conjugated to a PLL dendron (DEN-CPP) efficiently condensed and stabilized pDNA. Complexes between pDNA and DEN-CPP formed smaller and more stable nanoparticles. Flow cytometry experiments showed that pDNA-DEN-CPPs were taken up more efficiently into HeLa cells. There was also no significant difference between NRTN-30 and NRTN-17 for pDNA uptake, indicating that the truncated peptide alone is sufficient as a CPP for pDNA delivery.

  20. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daehwan; Yeom, Ji-Hyun; Lee, Boeun; Lee, Kangseok [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Bae, Jeehyeon, E-mail: jeehyeon@cau.ac.kr [Department of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Rhee, Sangmyung, E-mail: sangmyung.rhee@cau.ac.kr [Department of Life Science, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-08-21

    The delivery of biologically functional peptides into mammalian cells can be a direct and effective method for cancer therapy and treatment of other diseases. Discoidin domain receptor 2 (DDR2) is a collagen-induced receptor tyrosine kinase recently identified as a novel therapeutic target in lung cancer. In this study, we report that peptides containing the functional domain of DDR2 can be efficiently delivered into lung malignant cancer cells via a gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system. Peptide delivery resulted in the abrogation of DDR2 activation triggered by collagen. Moreover, the peptide delivered by the AuNP-Apt system inhibited cancer cell proliferation and invasion mediated by DDR2 activation. Thus, these results suggest that peptide loaded onto AuNP-Apt conjugates can be used for the development of peptide-based biomedical applications for the treatment of DDR2-positive cancer. - Highlights: • TM-JM1/2 peptides are efficiently delivered into cells by AuNP-Apt-conjugates. • TM-JM1/2 peptides loaded onto AuNP-Apt conjugates inhibit DDR2 activation. • Inhibition of DDR2 activation by TM-JM1/2 peptides decreases tumor progression.

  1. Design, automated synthesis and immunological evaluation of NOD2-ligand–antigen conjugates

    Directory of Open Access Journals (Sweden)

    Marian M. J. H. P. Willems

    2014-06-01

    Full Text Available The covalent attachment of an innate immune system stimulating agent to an antigen can provide active vaccine modalities capable of eliciting a potent immune response against the incorporated antigen. Here we describe the design, automated synthesis and immunological evaluation of a set of four muramyl dipeptide–peptide antigen conjugates. Muramyl dipeptide (MDP represents a well-known ligand for the intracellular NOD2 receptor and our study shows that covalently linking an MDP-moiety to an antigenic peptide can lead to a construct that is capable of stimulating the NOD2 receptor if the ligand is attached at the anomeric center of the muramic acid. The constructs can be processed by dendritic cells (DCs and the conjugation does not adversely affect the presentation of the incorporated SIINFEKL epitope on MHC-I molecules. However, stimulation of the NOD2 receptor in DCs was not sufficient to provide a strong immunostimulatory signal.

  2. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine.

    Science.gov (United States)

    Liu, Tzu-Yu; Hussein, Waleed M; Giddam, Ashwini Kumar; Jia, Zhongfan; Reiman, Jennifer M; Zaman, Mehfuz; McMillan, Nigel A J; Good, Michael F; Monteiro, Michael J; Toth, Istvan; Skwarczynski, Mariusz

    2015-01-22

    Vaccination can provide a safe alternative to chemotherapy by using the body's natural defense mechanisms to create a potent immune response against tumor cells. Peptide-based therapeutic vaccines against human papillomavirus (HPV)-related cancers are usually designed to elicit cytotoxic T cell responses by targeting the HPV-16 E7 oncoprotein. However, peptides alone lack immunogenicity, and an additional adjuvant or external delivery system is required. In this study, we developed new polymer-peptide conjugates to create an efficient self-adjuvanting system for peptide-based therapeutic vaccines. These conjugates reduced tumor growth and eradicated E7-positive TC-1 tumors in mice after a "single shot" immunization, without the help from an external adjuvant. The new conjugates had a significantly higher anticancer efficacy than the antigen formulated with a commercial adjuvant. Furthermore, the polymer-peptide conjugates were promptly taken up by antigen presenting cells, including dendritic cells and macrophages, and efficiently activated CD4(+) T-helper cells and CD8(+) cytotoxic T lymphocyte cells.

  3. Therapeutic Effect on Targeted Hyaluronan Binding Peptide on Neurofibromatosis

    Science.gov (United States)

    2005-09-01

    Furthermore, it confers stability to the peptide at low pH and high temperature, which makes it easy to manipulate and gives it a long shelf - life . Due to...were incubated with peptides for 24 hours and the cells were washed and harvested in lysis buffer (10 mM potassium phosphate at pH 7.5, 1 mM EDTA, 5...30 min followed by incubation with FITC-conjugated anti-goat IgG (1:200) at 4 ºC for 30 min. The cells were finally stained with propidium iodide and

  4. RGD-conjugated albumin nanoparticles as a novel delivery vehicle in pancreatic cancer therapy.

    Science.gov (United States)

    Ji, Shunrong; Xu, Jin; Zhang, Bo; Yao, Wantong; Xu, Wenyan; Wu, Wenzhe; Xu, Yongfeng; Wang, Hao; Ni, Quanxing; Hou, Huimin; Yu, Xianjun

    2012-02-15

    Integrin αvβ3 receptor is expressed on several types of cancer cells, including pancreatic cancer cells, and plays an important role in tumor growth and metastasis. The ability to target the integrin αvβ3 receptor on cancer cells increases the efficacy of targeted therapy and reduces the side effects. The aim of this study is to develop a novel arginine-glycine-aspartic acid (RGD) peptide -conjugated albumin nanoparticle to enhance the intracellular uptake of anticancer drug into the pancreatic cancer cells through receptor-mediated endocytosis. In the cellular uptake studies, the fluorescent signal of RGD-conjugated BSANPs in BxPC3 cells was higher than that of BSANPs without RGD conjugation as determined by fluorescence spectrophotometer. We also found that BSANPs bound to BxPC3 cells in a time- and concentration-dependent manner. The uptake of RGD-conjugated BSANPs by pancreatic cancer cells was inhibited by an excess amount of free RGD peptide, indicating that the binding and/or uptake were mediated by the αvβ3 receptor. Furthermore, the nanoparticles were found to be located close to the nuclei by using laser scanning confocal microscopy. Besides, no significant in vitro cytotoxicity was observed as measured with MTT assay. Both in vitro and in vivo antitumor efficacy was improved by targeting gemcitabine-loaded nanoparticles to BxPC-3 cells using RGD peptides. Therefore, the RGD-conjugated BSANPs hold great potential as an effective drug delivery system to deliver therapeutic agents to pancreatic cancer.

  5. Double phase conjugation in tungsten bronze crystals.

    Science.gov (United States)

    Sharp, E J; Clark Iii, W W; Miller, M J; Wood, G L; Monson, B; Salamo, G J; Neurgaonkar, R R

    1990-02-20

    In this paper we report a new method for double phase conjugation particularly suited to the tungsten bronze crystal strontium barium niobate. It has also been observed to produce conjugate waves in BaTiO(3) and BSKNN. This new arrangement is called the bridge conjugator because the two beams enter opposing [100] crystal faces and fan together to form a bridge without reflection off a crystal face. Our measurements indicate that the bridge conjugator is competitive with previously reported double phase conjugate mirrors in reflectivity, response time, ease of alignment, and fidelity.

  6. Engineering of immunogenic peptides by co-linear synthesis of determinants recognized by B and T cells.

    Science.gov (United States)

    Borras-Cuesta, F; Petit-Camurdan, A; Fedon, Y

    1987-08-01

    The potential of synthetic peptides as vaccines is restricted by their frequent lack of immunogenicity. As with haptens, coupling to a carrier protein is usually required to provide T cell help to anti-peptide antibody-producing B cells. In spite of their short length, a few natural or synthetic peptides are immunogenic: they all include both a determinant recognized by B cells and a proven or putative determinant recognized by T cells. We speculated that it should be possible to induce immunogenicity in peptide haptens by the inclusion of a well characterized determinant recognized by T cells. We thus synthesized two peptides, corresponding to different regions of the major protein VP6 of bovine rotavirus, co-linearly linked to a peptide of influenza virus hemagglutinin which had been shown to induce T helper cells in BALB/c mice. Both peptides induced anti-rotavirus antibodies and were more immunogenic than the corresponding bovine serum albumin-conjugated peptides.

  7. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  8. Conjugative plasmids of Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Emilia Pachulec

    Full Text Available Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones and with and without different tetM determinants (Dutch and American type tetM determinants have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233 or containing Dutch (pEP5289 or American (pEP5050 type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1alpha, beta, gamma, delta and epsilon subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids

  9. Structural determination of the conjugate of human serum albumin with a mitomycin C derivative, KW-2149, by matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Yasuzawa, T; Tomer, K B

    1997-01-01

    A new mitomycin C derivative, KW-2149, is known to form a covalent conjugate with human serum albumin (HSA). This conjugate exhibits 1/20 of the anticellular activity of unconjugated KW-2149. Structural studies of this conjugate were carried out using a combination of enzymatic digestion, high-performance liquid chromatography (HPLC), and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The tryptic peptide T5 (residues 21-41) was the only peptide found to be modified by KW-2149 moieties, the [(gamma-L-glutamylamino)ethyl]thio group or the (2-aminoethyl)thio group, through a disulfide bond. Although the latter peptide lost its mitomycin C moiety in the course of tryptic digestion, these data strongly suggest that KW-2149 was bound to Cys-34, the only free cysteine on HSA.

  10. Spontaneous Isopeptide Bond Formation as a Powerful Tool for Engineering Site-Specific Antibody-Drug Conjugates.

    Science.gov (United States)

    Siegmund, Vanessa; Piater, Birgit; Zakeri, Bijan; Eichhorn, Thomas; Fischer, Frank; Deutsch, Carl; Becker, Stefan; Toleikis, Lars; Hock, Björn; Betz, Ulrich A K; Kolmar, Harald

    2016-12-16

    Spontaneous isopeptide bond formation, a stabilizing posttranslational modification that can be found in gram-positive bacterial cell surface proteins, has previously been used to develop a peptide-peptide ligation technology that enables the polymerization of tagged-proteins catalyzed by SpyLigase. Here we adapted this technology to establish a novel modular antibody labeling approach which is based on isopeptide bond formation between two recognition peptides, SpyTag and KTag. Our labeling strategy allows the attachment of a reporting cargo of interest to an antibody scaffold by fusing it chemically to KTag, available via semi-automated solid-phase peptide synthesis (SPPS), while equipping the antibody with SpyTag. This strategy was successfully used to engineer site-specific antibody-drug conjugates (ADCs) that exhibit cytotoxicities in the subnanomolar range. Our approach may lead to a new class of antibody conjugates based on peptide-tags that have minimal effects on protein structure and function, thus expanding the toolbox of site-specific antibody conjugation.

  11. Human IgA-binding peptides selected from random peptide libraries: affinity maturation and application in IgA purification.

    Science.gov (United States)

    Hatanaka, Takaaki; Ohzono, Shinji; Park, Mirae; Sakamoto, Kotaro; Tsukamoto, Shogo; Sugita, Ryohei; Ishitobi, Hiroyuki; Mori, Toshiyuki; Ito, Osamu; Sorajo, Koichi; Sugimura, Kazuhisa; Ham, Sihyun; Ito, Yuji

    2012-12-14

    Phage display system is a powerful tool to design specific ligands for target molecules. Here, we used disulfide-constrained random peptide libraries constructed with the T7 phage display system to isolate peptides specific to human IgA. The binding clones (A1-A4) isolated by biopanning exhibited clear specificity to human IgA, but the synthetic peptide derived from the A2 clone exhibited a low specificity/affinity (K(d) = 1.3 μm). Therefore, we tried to improve the peptide using a partial randomized phage display library and mutational studies on the synthetic peptides. The designed Opt-1 peptide exhibited a 39-fold higher affinity (K(d) = 33 nm) than the A2 peptide. An Opt-1 peptide-conjugated column was used to purify IgA from human plasma. However, the recovered IgA fraction was contaminated with other proteins, indicating nonspecific binding. To design a peptide with increased binding specificity, we examined the structural features of Opt-1 and the Opt-1-IgA complex using all-atom molecular dynamics simulations with explicit water. The simulation results revealed that the Opt-1 peptide displayed partial helicity in the N-terminal region and possessed a hydrophobic cluster that played a significant role in tight binding with IgA-Fc. However, these hydrophobic residues of Opt-1 may contribute to nonspecific binding with other proteins. To increase binding specificity, we introduced several mutations in the hydrophobic residues of Opt-1. The resultant Opt-3 peptide exhibited high specificity and high binding affinity for IgA, leading to successful isolation of IgA without contamination.

  12. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  14. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  16. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  17. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  18. Fiber bundle phase conjugate mirror

    Science.gov (United States)

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  19. Conjugated Polymers for Energy Production

    DEFF Research Database (Denmark)

    Livi, Francesco

    arylation (DAr) and direct arylation polymerization (DArP) have been applied to the preparation of PPDTBT, making this polymer readily available in only 4 synthetic steps and thus easily transferable to a large scale-production setup. DArP avoids organometallic species and therefore is an appealing......This dissertation is aimed at developing materials for flexible, large area, ITO-free polymer solar cells (PSCs) fully printed under ambient conditions. A large screening of conjugated polymers, both novel and well-known materials, has been carried out in order to find suitable candidates...... for scalable PSCs fully printed under ambient conditions [Adv. Energy Mater. 2015, 5, 1402186]. PPDTBT resulted to be the conjugated polymer with the best photovoltaic performance within the 104 synthesized macromolecules. Therefore, further studies have been done on such material. The impact of side chain...

  20. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    DEFF Research Database (Denmark)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.;

    1999-01-01

    using a tandem GnRH peptide as a branched polylysine construct, a lipo-thioester, a lipo-amide or a KLH conjugate in CFA, and the lipoamide peptide in an immuno-stimulating complex (ISCOM). We found the lipo-thioester and the branched polylysine constructs to be the most effective carrier molecules...... for the induction of antibodies against GnRH and immunocastration of pigs....

  1. Co-administration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs

    OpenAIRE

    Sugahara, Kazuki N.; Teesalu, Tambet; Karmali, Priya Prakash; Kotamraju, Venkata Ramana; Agemy, Lilach; Greenwald, Daniel R.; Ruoslahti, Erkki

    2010-01-01

    Poor penetration of anti-cancer drugs into tumors can be an important factor limiting their efficacy. Studying mouse tumor models, we show that a previously characterized tumor-penetrating peptide, iRGD (CRGDK/RGPD/EC), increased vascular and tissue permeability in a tumor-specific and neuropilin-1-dependent manner, allowing co-administered drugs to penetrate into extravascular tumor tissue. Importantly, this effect did not require the drugs to be chemically conjugated to the peptide. Systemi...

  2. Targeting Listeria Monocytogenes rpoA and rpoD Genes Using Peptide Nucleic Acids

    OpenAIRE

    Alajlouni, Ruba A.; Seleem, Mohamed N.

    2013-01-01

    Treating intracellular pathogens remains a considerable medical challenge because of the inefficient intracellular delivery of antimicrobials and the frequent emergence of bacterial resistance to therapeutic agents deemed the drugs of last resort. We investigated the capability of antisense peptide nucleic acids (PNAs) conjugated to the (KFF)3K cell penetrating peptide to target RNA polymerase α subunit (rpoA) and RNA polymerase sigma 70 (rpoD) in the intracellular pathogen Listeria monocytog...

  3. Conjugated polyelectrolytes fundamentals and applications

    CERN Document Server

    Liu, Bin

    2013-01-01

    This is the first monograph to specifically focus on fundamentals and applications of polyelectrolytes, a class of molecules that gained substantial interest due to their unique combination of properties. Combining both features of organic semiconductors and polyelectrolytes, they offer a broad field for fundamental research as well as applications to analytical chemistry, optical imaging, and opto-electronic devices. The initial chapters introduce readers to the synthesis, optical and electrical properties of various conjugated polyelectrolytes. This is followed by chapters on the applica

  4. Labeling proteins with Tc-99m via hydrazinonicotinamide (HYNIC): optimization of the conjugation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rennen, Huub J.J.M. E-mail: H.Rennen@nugen.azn.nl; Boerman, Otto C.; Koenders, Emile B.; Oyen, Wim J.G.; Corstens, Frans H.M

    2000-06-01

    At present there is considerable interest in labeling peptides with Tc-99m for the development of target specific radiopharmaceuticals for imaging purposes. In the present study the conjugation of the bifunctional coupling agent succinimidyl-hydrazinonicotinamide (S-HYNIC) was studied and optimized in a series of peptides [molecular weight (MW) 6.5-14.3 kDa]. Aprotinin (MW 6.5 kDa), cytochrome C (MW 12.4 kDa), {alpha}-lactalbumin (MW 14.2 kDa), and lysozyme (MW 14.3 kDa) were conjugated with S- via the {epsilon} amino groups of their lysine residues. The effects of molar conjugation ratio, reaction temperature, pH, and protein concentration were studied. Reaction products were analyzed both with respect to the HYNIC-substitution ratio (spectrophotometrically) as well as to the labeling efficiency silica gel-instant thin layer chromatography (SG-ITLC) and molecular size fast performance liquid chromatography (FPLC). The effects of conjugation on biological activity were studied in three proteins binding to receptors on leukocytes: interleukin-8 (MW 8.5 kDa), interleukin-1{alpha} (MW 17 kDa), and interleukin-1 receptor antagonist (MW 17 kDa). The labeling efficiency of aprotinin, cytochrome c, {alpha}-lactalbumin, and lysozyme conjugated under optimal conjugation conditions exceeded 90%. Specific activities obtained were up to 7.5 MBq/{mu}g. Conjugation was most efficient at 0 deg. C (as compared to 20 and 40 deg. C), at pH 8.2 (as compared to 6.0, 7.2, and 9.5), and at protein concentrations {>=} 2.5 mg/mL. In general, efficiency increased with increasing molar conjugation ratio (protein-HYNIC-ratio 1:3 < 1:6 < 1:15 < 1:30). For the receptor binding proteins, biological activity was preserved only under the mildest conjugation conditions. For each of these proteins an inverse relation between labeling efficiency and receptor binding capacity was found. Labeling proteins with {sup 99m}Tc using S-HYNIC is easy, rapid, and efficient, and preparations with high specific

  5. COMPOSITE PEPTIDE COMPOUNDS FOR DIAGNOSIS AND TREATMENT OF DISEASES CAUSED BY PRION PROTEINS

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to diseases caused by prion proteins, Novel composite peptide compounds are disclosed which comprise two or more peptides or peptide fragments optionally linked to a backbone and the peptides or peptide fragments are spatially positioned relative to each other so...... that they together form a non-linear sequence which mimics the tertiary structure of one or more PrPSc-specific epitopes as evidenced by the test described herein. The use of such conjugates as immunogens for the production of antibodies that specifically bind to the pathogenic form of a prion protein is revealed....... Other uses of the composite peptide compounds are also disclosed, such as use in diagnostic assays, production of antibodies and uses as vaccine immunogens for the prophylactic protection and therapeutic treatment of subjects against transmissible prion disease....

  6. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  7. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  8. Stability analysis of glutamic acid linked peptides coupled to NOTA through different chemical linkages.

    Science.gov (United States)

    Lang, Lixin; Ma, Ying; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-11-03

    Glutamic acid is a commonly used linker to form dimeric peptides with enhanced binding affinity than their corresponding monomeric counterparts. We have previously labeled NOTA-Bn-NCS-PEG3-E[c(RGDyK)]2 (NOTA-PRGD2) [1] with [(18)F]AlF and (68)Ga for imaging tumor angiogenesis. The p-SCN-Bn-NOTA was attached to E[c(RGDyK)]2 [2] through a mini-PEG with a thiourea linkage, and the product [1] was stable at radiolabeling condition of 100 °C and pH 4.0 acetate buffer. However, when the same p-SCN-Bn-NOTA was directly attached to the α-amine of E[c(RGDfK)]2 [3], the product NOTA-Bn-NCS-E[c(RGDfK)]2 [4] became unstable under similar conditions and the release of monomeric c(RGDfK) [5] was observed. The purpose of this work was to use HPLC and LC-MS to monitor the decomposition of glutamic acid linked dimeric peptides and their NOTA derivatives. A c(RGDyK) [6] and bombesin (BBN) [7] heterodimer c(RGDyK)-E-BBN [8], and a dimeric bombesin E(BBN)2 [9], both with a glutamic acid as the linker, along with a model compound PhSCN-E[c(RGDfK)] [10] were also studied. All the compounds were dissolved in 0.5 M pH 4.0 acetate buffer at the concentration of 1 mg/mL, and 0.1 mL of each sample was heated at 100 °C for 10 min and the more stable compounds were heated for another 30 min. The samples at both time points were analyzed with analytical HPLC to monitor the decomposition of the heated samples. The samples with decomposition were further analyzed by LC-MS to determine the mass of products from the decomposition for possible structure elucidation. After 10 min heating, the obvious release of c(RGDfK) [5] was observed for NOTA-Bn-NCS-E[c(RGDfK)]2 [4] and Ph-SCN-E[c(RGDfK)] [10]. Little or no release of monomers was observed for the remaining samples at this time point. After further heating, the release of monomers was clearly observed for E[c(RGDyK)]2 [2], E[c(RGDfK)]2 [3], c(RGDyK)-E-BBN [8], and E(BBN)2 [9]. No decomposition or little decomposition was observed for NOTA

  9. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.

  10. Noncovalent Modulation of the Inverse Temperature Transition and Self-Assembly of Elastin-b-Collagen-like Peptide Bioconjugates.

    Science.gov (United States)

    Luo, Tianzhi; Kiick, Kristi L

    2015-12-16

    Stimuli-responsive nanostructures produced with peptide domains from the extracellular matrix offer great opportunities for imaging and drug delivery. Although the individual utility of elastin-like (poly)peptides and collagen-like peptides in such applications has been demonstrated, the synergistic advantages of combining these motifs in short peptide conjugates have surprisingly not been reported. Here, we introduce the conjugation of a thermoresponsive elastin-like peptide (ELP) with a triple-helix-forming collagen-like peptide (CLP) to yield ELP-CLP conjugates that show a remarkable reduction in the inverse transition temperature of the ELP domain upon formation of the CLP triple helix. The lower transition temperature of the conjugate enables the facile formation of well-defined vesicles at physiological temperature and the unexpected resolubilization of the vesicles at elevated temperatures upon unfolding of the CLP domain. Given the demonstrated ability of CLPs to modify collagens, our results not only provide a simple and versatile avenue for controlling the inverse transition behavior of ELPs, but also suggest future opportunities for these thermoresponsive nanostructures in biologically relevant environments.

  11. Recent development of poly(ethylene glycol)-cholesterol conjugates as drug delivery systems.

    Science.gov (United States)

    He, Zhi-Yao; Chu, Bing-Yang; Wei, Xia-Wei; Li, Jiao; Edwards, Carl K; Song, Xiang-Rong; He, Gu; Xie, Yong-Mei; Wei, Yu-Quan; Qian, Zhi-Yong

    2014-07-20

    Poly(ethylene glycol)-cholesterol (PEG-Chol) conjugates are composed of "hydrophilically-flexible" PEG and "hydrophobically-rigid" Chol molecules. PEG-Chol conjugates are capable of forming micelles through molecular self-assembly and they are also used extensively for the PEGylation of drug delivery systems (DDS). The PEGylated DDS have been shown to display optimize