WorldWideScience

Sample records for boltzmann-vlasov equation

  1. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  2. Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation

    Science.gov (United States)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-08-01

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann-Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin-orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  3. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show th

  4. Nonequilibrium statistical mechanics in one-dimensional bose gases

    Science.gov (United States)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  5. Cubic Equation

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    At the beginning of 16th century, mathematicians found it easy to solve equations of the first degree(linear equations, involving x) and of the second degree(quadratic equatiorts, involving x2). Equations of the third degree(cubic equations, involving x3)defeated them.

  6. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  7. Riccati equations

    Directory of Open Access Journals (Sweden)

    Lloyd K. Williams

    1987-01-01

    Full Text Available In this paper we find closed form solutions of some Riccati equations. Attention is restricted to the scalar as opposed to the matrix case. However, the ones considered have important applications to mathematics and the sciences, mostly in the form of the linear second-order ordinary differential equations which are solved herewith.

  8. Beautiful equations

    Science.gov (United States)

    Viljamaa, Panu; Jacobs, J. Richard; Chris; JamesHyman; Halma, Matthew; EricNolan; Coxon, Paul

    2014-07-01

    In reply to a Physics World infographic (part of which is given above) about a study showing that Euler's equation was deemed most beautiful by a group of mathematicians who had been hooked up to a functional magnetic-resonance image (fMRI) machine while viewing mathematical expressions (14 May, http://ow.ly/xHUFi).

  9. Difference equations by differential equation methods

    CERN Document Server

    Hydon, Peter E

    2014-01-01

    Most well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.

  10. Random diophantine equations, I

    OpenAIRE

    Brüdern, Jörg; Dietmann, Rainer

    2012-01-01

    We consider additive diophantine equations of degree $k$ in $s$ variables and establish that whenever $s\\ge 3k+2$ then almost all such equations satisfy the Hasse principle. The equations that are soluble form a set of positive density, and among the soluble ones almost all equations admit a small solution. Our bound for the smallest solution is nearly best possible.

  11. Kinetic energy equations for the average-passage equation system

    Science.gov (United States)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  12. The Modified Magnetohydrodynamical Equations

    Institute of Scientific and Technical Information of China (English)

    EvangelosChaliasos

    2003-01-01

    After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.

  13. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    George F R Ellis

    2007-07-01

    The Raychaudhuri equation is central to the understanding of gravitational attraction in astrophysics and cosmology, and in particular underlies the famous singularity theorems of general relativity theory. This paper reviews the derivation of the equation, and its significance in cosmology.

  14. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  15. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  16. Reducible functional differential equations

    Directory of Open Access Journals (Sweden)

    S. M. Shah

    1985-01-01

    Full Text Available This is the first part of a survey on analytic solutions of functional differential equations (FDE. Some classes of FDE that can be reduced to ordinary differential equations are considered since they often provide an insight into the structure of analytic solutions to equations with more general argument deviations. Reducible FDE also find important applications in the study of stability of differential-difference equations and arise in a number of biological models.

  17. New unified evolution equation

    OpenAIRE

    Lim, Jyh-Liong; Li, Hsiang-nan

    1998-01-01

    We propose a new unified evolution equation for parton distribution functions appropriate for both large and small Bjorken variables $x$, which is an improved version of the Ciafaloni-Catani-Fiorani-Marchesini equation. In this new equation the cancellation of soft divergences between virtual and real gluon emissions is explicit without introducing infrared cutoffs, next-to-leading contributions to the Sudakov resummation can be included systematically. It is shown that the new equation reduc...

  18. Diophantine equations and identities

    Directory of Open Access Journals (Sweden)

    Malvina Baica

    1985-01-01

    Full Text Available The general diophantine equations of the second and third degree are far from being totally solved. The equations considered in this paper are    i  x2−my2=±1 ii  x3+my3+m2z3−3mxyz=1iii  Some fifth degree diopantine equations

  19. The Modified Magnetohydrodynamical Equations

    Institute of Scientific and Technical Information of China (English)

    Evangelos Chaliasos

    2003-01-01

    After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.

  20. Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Jianping Zhao

    2012-01-01

    Full Text Available An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.

  1. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  2. Lanczos's equation to replace Dirac's equation ?

    CERN Document Server

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1994-01-01

    Lanczos's quaternionic interpretation of Dirac's equation provides a unified description for all elementary particles of spin 0, 1/2, 1, and 3/2. The Lagrangian formulation given by Einstein and Mayer in 1933 predicts two main classes of solutions. (1) Point like partons which come in two families, quarks and leptons. The correct fractional or integral electric and baryonic charges, and zero mass for the neutrino and the u-quark, are set by eigenvalue equations. The electro-weak interaction of the partons is the same as with the Standard model, with the same two free parameters: e and sin^2 theta. There is no need for a Higgs symmetry breaking mechanism. (2) Extended hadrons for which there is no simple eigenvalue equation for the mass. The strong interaction is essentially non-local. The pion mass and pion-nucleon coupling constant determine to first order the nucleon size, mass and anomalous magnetic moment.

  3. On separable Pauli equations

    International Nuclear Information System (INIS)

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A0(t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  4. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  5. Elliptic partial differential equations

    CERN Document Server

    Volpert, Vitaly

    If we had to formulate in one sentence what this book is about it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described by reaction-diffusion equations. The theory of reaction-diffusion equations appeared in the first half of the last century. In the present time, it is widely used in population dynamics, chemical physics, biomedical modelling. The purpose of this book is to present the mathematical theory of reaction-diffusion equations in the context of their numerous applications. We will go from the general mathematical theory to specific equations and then to their applications. Mathematical anaylsis of reaction-diffusion equations will be based on the theory of Fredholm operators presented in the first volume. Existence, stability and bifurcations of solutions will be studied for bounded domains and in the case of travelling waves. The classical theory of reaction-diffusion equ...

  6. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  7. Fractional Chemotaxis Diffusion Equations

    CERN Document Server

    Langlands, T A M

    2010-01-01

    We introduce mesoscopic and macroscopic model equations of chemotaxis with anomalous subdiffusion for modelling chemically directed transport of biological organisms in changing chemical environments with diffusion hindered by traps or macro-molecular crowding. The mesoscopic models are formulated using Continuous Time Random Walk master equations and the macroscopic models are formulated with fractional order differential equations. Different models are proposed depending on the timing of the chemotactic forcing. Generalizations of the models to include linear reaction dynamics are also derived. Finally a Monte Carlo method for simulating anomalous subdiffusion with chemotaxis is introduced and simulation results are compared with numerical solutions of the model equations. The model equations developed here could be used to replace Keller-Segel type equations in biological systems with transport hindered by traps, macro-molecular crowding or other obstacles.

  8. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  9. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  10. Fundamental Equation of Economics

    OpenAIRE

    Wayne, James J.

    2013-01-01

    Recent experience of the great recession of 2008 has renewed one of the oldest debates in economics: whether economics could ever become a scientific discipline like physics. This paper proves that economics is truly a branch of physics by establishing for the first time a fundamental equation of economics (FEOE), which is similar to many fundamental equations governing other subfields of physics, for example, Maxwell’s Equations for electromagnetism. From recently established physics laws of...

  11. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  12. On separable Pauli equations

    OpenAIRE

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-1/2 particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the eleven classes of vector-potentials of the electro-magnetic field A(t,x) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is...

  13. A new evolution equation

    International Nuclear Information System (INIS)

    A new evolution equation is proposed for the gluon density relevant (GLR) for the region of small xB. It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multi gluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed αs. It is found that the effects of multi gluon correlations on the deep-inelastic structure function are small. (author) 15 refs, 5 figs, 2 tabs

  14. Gauge invariant flow equation

    CERN Document Server

    Wetterich, C

    2016-01-01

    We propose a gauge invariant flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations, corresponding to a particular gauge fixing. The freedom in the precise choice of the macroscopic field can be exploited in order to keep the flow equation simple.

  15. On the Diophantine equation

    Science.gov (United States)

    Zahari, N. M.; Sapar, S. H.; Mohd Atan, K. A.

    2013-04-01

    This paper discusses an integral solution (a, b, c) of the Diophantine equations x3n+y3n = 2z2n for n ≥ 2 and it is found that the integral solution of these equation are of the form a = b = t2, c = t3 for any integers t.

  16. Some classical Diophantine equations

    Directory of Open Access Journals (Sweden)

    Nikita Bokarev

    2014-09-01

    Full Text Available An attempt to find common solutions complete some Diophantine equations of the second degree with three variables, traced some patterns, suggest a common approach, which being elementary, however, lead to a solution of such equations. Using arithmetic functions allowed to write down the solutions in a single formula with no restrictions on the parameters used.

  17. Braneworld flow equations

    OpenAIRE

    Ramirez, Erandy; Liddle, Andrew

    2004-01-01

    We generalize the flow equations approach to inflationary model building to the Randall–Sundrum Type II braneworld scenario. As the flow equations are quite insensitive to the expansion dynamics, we find results similar to, though not identical to, those found in the standard cosmology.

  18. The Wouthuysen equation

    NARCIS (Netherlands)

    Hazewinkel, M.

    1995-01-01

    Dedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an original space-

  19. Linear Equations: Equivalence = Success

    Science.gov (United States)

    Baratta, Wendy

    2011-01-01

    The ability to solve linear equations sets students up for success in many areas of mathematics and other disciplines requiring formula manipulations. There are many reasons why solving linear equations is a challenging skill for students to master. One major barrier for students is the inability to interpret the equals sign as anything other than…

  20. Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Hannelore Breckner

    2000-01-01

    Full Text Available We consider a stochastic equation of Navier-Stokes type containing a noise part given by a stochastic integral with respect to a Wiener process. The purpose of this paper is to approximate the solution of this nonlinear equation by the Galerkin method. We prove the convergence in mean square.

  1. The relativistic Pauli equation

    CERN Document Server

    Delphenich, David

    2012-01-01

    After discussing the way that C2 and the algebra of complex 2x2 matrices can be used for the representation of both non-relativistic rotations and Lorentz transformations, we show that Dirac bispinors can be more advantageously represented as 2x2 complex matrices. One can then give the Dirac equation a form for such matrix-valued wave functions that no longer necessitates the introduction of gamma matrices or a choice for their representation. The minimally-coupled Dirac equation for a charged spinning particle in an external electromagnetic field then implies a second order equation in the matrix-valued wave functions that is of Klein-Gordon type and represents the relativistic analogue of the Pauli equation. We conclude by presenting the Lagrangian form for the relativistic Pauli equation.

  2. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  3. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  4. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  5. Stochastic Gauss equations

    Science.gov (United States)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  6. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  7. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  8. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  9. Time-of-flight expansion of trapped dipolar Fermi gases: from collisionless to hydrodynamic regime

    CERN Document Server

    Veljic, Vladimir; Pelster, Axel

    2016-01-01

    A recent time-of-flight (TOF) expansion experiment with polarized fermionic erbium atoms measured a Fermi surface deformation from a sphere to an ellipsoid due to dipole-dipole interaction, thus confirming previous theoretical predictions. Here we perform a systematic study of the ground-state properties and TOF dynamics for trapped dipolar Fermi gases from the collisionless to the hydrodynamic regime at zero temperature. To this end we solve analytically the underlying Boltzmann-Vlasov equation within the relaxation-time approximation in the vicinity of equilibrium by using a suitable rescaling of the equilibrium distribution. The resulting ordinary differential equations for the respective scaling parameters are then solved numerically for experimentally realistic parameters and relaxation times that correspond to the collisionless, collisional, and hydrodynamic regime. The equations for the collisional regime are first solved in the approximation of a fixed relaxation time, and then this approach is extend...

  10. Modern introduction to differential equations

    CERN Document Server

    Ricardo, Henry J

    2009-01-01

    A Modern Introduction to Differential Equations, Second Edition, provides an introduction to the basic concepts of differential equations. The book begins by introducing the basic concepts of differential equations, focusing on the analytical, graphical, and numerical aspects of first-order equations, including slope fields and phase lines. The discussions then cover methods of solving second-order homogeneous and nonhomogeneous linear equations with constant coefficients; systems of linear differential equations; the Laplace transform and its applications to the solution of differential equat

  11. A Comparison of IRT Equating and Beta 4 Equating.

    Science.gov (United States)

    Kim, Dong-In; Brennan, Robert; Kolen, Michael

    Four equating methods were compared using four equating criteria: first-order equity (FOE), second-order equity (SOE), conditional mean squared error (CMSE) difference, and the equipercentile equating property. The four methods were: (1) three parameter logistic (3PL) model true score equating; (2) 3PL observed score equating; (3) beta 4 true…

  12. Kinetic equations: computation

    CERN Document Server

    Pareschi, Lorenzo

    2013-01-01

    Kinetic equations bridge the gap between a microscopic description and a macroscopic description of the physical reality. Due to the high dimensionality the construction of numerical methods represents a challenge and requires a careful balance between accuracy and computational complexity.

  13. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  14. Diophantine Equations and Computation

    Science.gov (United States)

    Davis, Martin

    Unless otherwise stated, we’ll work with the natural numbers: N = \\{0,1,2,3, dots\\}. Consider a Diophantine equation F(a1,a2,...,an,x1,x2,...,xm) = 0 with parameters a1,a2,...,an and unknowns x1,x2,...,xm For such a given equation, it is usual to ask: For which values of the parameters does the equation have a solution in the unknowns? In other words, find the set: \\{ mid exists x_1,ldots,x_m [F(a_1,ldots,x_1,ldots)=0] \\} Inverting this, we think of the equation F = 0 furnishing a definition of this set, and we distinguish three classes: a set is called Diophantine if it has such a definition in which F is a polynomial with integer coefficients. We write \\cal D for the class of Diophantine sets.

  15. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  16. Stochastic Gauss Equations

    CERN Document Server

    Frédéric, Pierret

    2014-01-01

    The equations of celestial mechanics that govern the variation of the orbital elements are completely derived for stochastic perturbation which generalized the classic perturbation equations which are used since Gauss, starting from Newton's equation and it's solution. The six most understandable orbital element, the semi-major axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle and the mean motion are express in term of the angular momentum vector $\\textbf{H}$ per unit of mass and the energy $E$ per unit of mass. We differentiate those expressions using It\\^o's theory of differential equations due to the stochastic nature of the perturbing force. The result is applied to the two-body problem perturbed by a stochastic dust cloud and also perturbed by a stochastic dynamical oblateness of the central body.

  17. Nonlinear differential equations

    International Nuclear Information System (INIS)

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  18. Exciton laser rate equations

    OpenAIRE

    Garkavenko A. S.

    2011-01-01

    The rate equations of the exciton laser in the system of interacting excitons have been obtained and the inverted population conditions and generation have been derived. The possibility of creating radically new gamma-ray laser has been shown.

  19. Complex Maxwell's equations

    Institute of Scientific and Technical Information of China (English)

    A.I.Arbab

    2013-01-01

    A unified complex model of Maxwell's equations is presented.The wave nature of the electromagnetic field vector is related to the temporal and spatial distributions and the circulation of charge and current densities.A new vacuum solution is obtained,and a new transformation under which Maxwell's equations are invariant is proposed.This transformation extends ordinary gauge transformation to include charge-current as well as scalar-vector potential.An electric dipole moment is found to be related to the magnetic charges,and Dirac's quantization is found to determine an uncertainty relation expressing the indeterminacy of electric and magnetic charges.We generalize Maxwell's equations to include longitudinal waves.A formal analogy between this formulation and Dirac's equation is also discussed.

  20. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  1. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  2. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  3. Hedin Equations for Superconductors

    OpenAIRE

    Linscheid, A.; Essenberger, F.

    2015-01-01

    We generalize Hedin equations to a system of superconducting electrons coupled with a system of phonons. The electrons are described by an electronic Pauli Hamiltonian which includes the Coulomb interaction among electrons and an external vector and scalar potential. We derive the continuity equation in the presence of the superconducting condensate and point out how to cast vertex corrections in the form of a non-local effective interaction that can be used to describe both fluctuations of s...

  4. Functional Equations and Fourier Analysis

    OpenAIRE

    Yang, Dilian

    2010-01-01

    By exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations -- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation, on compact groups.

  5. Integral equations and computation problems

    International Nuclear Information System (INIS)

    Volterra's Integral Equations and Fredholm's Integral Equations of the second kind are discussed. Computational problems are found in the derivations and the computations. The theorem of the solution of the Fredholm's Integral Equation is discussed in detail. (author)

  6. Scaling Equation for Invariant Measure

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Kuo; FU Zun-Tao; LIU Shi-Da; REN Kui

    2003-01-01

    An iterated function system (IFS) is constructed. It is shown that the invariant measure of IFS satisfies the same equation as scaling equation for wavelet transform (WT). Obviously, IFS and scaling equation of WT both have contraction mapping principle.

  7. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  8. Unified derivation of evolution equations

    OpenAIRE

    Li, Hsiang-nan

    1998-01-01

    We derive the evolution equations of parton distribution functions appropriate in different kinematic regions in a unified and simple way using the resummation technique. They include the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation for large momentum transfer $Q$, the Balitskii-Fadin-Kuraev-Lipatov equation for a small Bjorken variable $x$, and the Ciafaloni-Catani-Fiorani-Marchesini equation which embodies the above two equations. The relation among these equations is explored, and p...

  9. Low-dimensional approach to pair production in an oscillating electric field: Application to bandgap graphene layers

    CERN Document Server

    Akal, Ibrahim; Müller, Carsten; Villalba-Chávez, Selym

    2016-01-01

    The production of particle-antiparticle pairs from the quantum field theoretic ground state in the presence of an external electric field is studied. Starting with the quantum kinetic Boltzmann-Vlasov equation in four-dimensional spacetime, we obtain the corresponding equations in lower dimensionalities by way of spatial compactification. Our outcomes in $2+1$-dimensions are applied to bandgap graphene layers, where the charge carriers have the particular property of behaving like light massive Dirac fermions. We calculate the single-particle distribution function for the case of an electric field oscillating in time and show that the creation of particle-hole pairs in this condensed matter system closely resembles electron-positron pair production by the Schwinger effect.

  10. Low-dimensional approach to pair production in an oscillating electric field: Application to bandgap graphene layers

    Science.gov (United States)

    Akal, I.; Egger, R.; Müller, C.; Villalba-Chávez, S.

    2016-06-01

    The production of particle-antiparticle pairs from the quantum field theoretic ground state in the presence of an external electric field is studied. Starting with the quantum-kinetic Boltzmann-Vlasov equation in four-dimensional spacetime, we obtain the corresponding equations in lower dimensionalities by way of spatial compactification. Our outcomes in 2 +1 dimensions are applied to bandgap graphene layers, where the charge carriers have the particular property of behaving like light massive Dirac fermions. We calculate the single-particle distribution function for the case of an electric field oscillating in time and show that the creation of particle-hole pairs in this condensed matter system closely resembles electron-positron pair production by the Schwinger effect.

  11. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  12. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  13. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  14. Generalization of Hopf Functional Equation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper generalizes the Hopf functional equation in order to apply it to a wider class of not necessarily incompressible fluid flows. We start by defining characteristic functionals of the velocity field, the density field and the temperature field of a compressible field. Using the continuity equation, the Navier-Stokes equations and the equation of energy we derive a functional equation governing the motion of an ideal gas flow and a van der Waals gas flow, and then give some general methods of deriving a functional equation governing the motion of any compressible fluid flow. These functional equations can be considered as the generalization of the Hopf functional equation.

  15. Symplectic Dirac Equation

    CERN Document Server

    Amorim, R G G; Silva, Edilberto O

    2015-01-01

    Symplectic unitary representations for the Poincar\\'{e} group are studied. The formalism is based on the noncommutative structure of the star-product, and using group theory approach as a guide, a consistent physical theory in phase space is constructed. The state of a quantum mechanics system is described by a quasi-probability amplitude that is in association with the Wigner function. As a result, the Klein-Gordon and Dirac equations are derived in phase space. As an application, we study the Dirac equation with electromagnetic interaction in phase space.

  16. Gas Dynamics Equations: Computation

    CERN Document Server

    Chen, Gui-Qiang G

    2012-01-01

    Shock waves, vorticity waves, and entropy waves are fundamental discontinuity waves in nature and arise in supersonic or transonic gas flow, or from a very sudden release (explosion) of chemical, nuclear, electrical, radiation, or mechanical energy in a limited space. Tracking these discontinuities and their interactions, especially when and where new waves arise and interact in the motion of gases, is one of the main motivations for numerical computation for the gas dynamics equations. In this paper, we discuss some historic and recent developments, as well as mathematical challenges, in designing and formulating efficient numerical methods and algorithms to compute weak entropy solutions for the Euler equations for gas dynamics.

  17. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  18. The relativistic Pauli equation

    OpenAIRE

    Delphenich, David

    2012-01-01

    After discussing the way that C2 and the algebra of complex 2x2 matrices can be used for the representation of both non-relativistic rotations and Lorentz transformations, we show that Dirac bispinors can be more advantageously represented as 2x2 complex matrices. One can then give the Dirac equation a form for such matrix-valued wave functions that no longer necessitates the introduction of gamma matrices or a choice for their representation. The minimally-coupled Dirac equation for a charge...

  19. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  20. ON A FUNCTIONAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    Ding Yi

    2009-01-01

    In this article, the author derives a functional equation η(s)=[(π/4)s-1/2√2/πг(1-s)sin(πs/2)]η(1-s) of the analytic function η(s) which is defined by η(s)=1-s-3-s-5-s+7-s…for complex variable s with Re s>1, and is defined by analytic continuation for other values of s. The author proves (1) by Ramanujan identity (see [1], [3]). Her method provides a new derivation of the functional equation of Riemann zeta function by using Poisson summation formula.

  1. Solving Diophantine Equations

    OpenAIRE

    Cira, Octavian; Smarandache, Florentin

    2016-01-01

    In this book a multitude of Diophantine equations and their partial or complete solutions are presented. How should we solve, for example, the equation {\\eta}({\\pi}(x)) = {\\pi}({\\eta}(x)), where {\\eta} is the Smarandache function and {\\pi} is Riemann function of counting the number of primes up to x, in the set of natural numbers? If an analytical method is not available, an idea would be to recall the empirical search for solutions. We establish a domain of searching for the solutions and th...

  2. Theory of differential equations

    CERN Document Server

    Gel'fand, I M

    1967-01-01

    Generalized Functions, Volume 3: Theory of Differential Equations focuses on the application of generalized functions to problems of the theory of partial differential equations.This book discusses the problems of determining uniqueness and correctness classes for solutions of the Cauchy problem for systems with constant coefficients and eigenfunction expansions for self-adjoint differential operators. The topics covered include the bounded operators in spaces of type W, Cauchy problem in a topological vector space, and theorem of the Phragmén-Lindelöf type. The correctness classes for the Cau

  3. Kepler Equation solver

    Science.gov (United States)

    Markley, F. Landis

    1995-01-01

    Kepler's Equation is solved over the entire range of elliptic motion by a fifth-order refinement of the solution of a cubic equation. This method is not iterative, and requires only four transcendental function evaluations: a square root, a cube root, and two trigonometric functions. The maximum relative error of the algorithm is less than one part in 10(exp 18), exceeding the capability of double-precision computer arithmetic. Roundoff errors in double-precision implementation of the algorithm are addressed, and procedures to avoid them are developed.

  4. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  5. On difference Riccati equations and second order linear difference equations

    OpenAIRE

    Ishizaki, Katsuya

    2011-01-01

    In this paper, we treat difference Riccati equations and second order linear difference equations in the complex plane. We give surveys of basic properties of these equations which are analogues in the differential case. We are concerned with the growth and value distributions of transcendental meromorphic solutions of these equations. Some examples are given.

  6. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  7. Variation principle of piezothermoelastic bodies, canonical equation and homogeneous equation

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-hong; ZHANG Hui-ming

    2007-01-01

    Combining the symplectic variations theory, the homogeneous control equation and isoparametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isoparametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which are often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.

  8. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  9. Modelling by Differential Equations

    Science.gov (United States)

    Chaachoua, Hamid; Saglam, Ayse

    2006-01-01

    This paper aims to show the close relation between physics and mathematics taking into account especially the theory of differential equations. By analysing the problems posed by scientists in the seventeenth century, we note that physics is very important for the emergence of this theory. Taking into account this analysis, we show the…

  10. Do Differential Equations Swing?

    Science.gov (United States)

    Maruszewski, Richard F., Jr.

    2006-01-01

    One of the units of in a standard differential equations course is a discussion of the oscillatory motion of a spring and the associated material on forcing functions and resonance. During the presentation on practical resonance, the instructor may tell students that it is similar to when they take their siblings to the playground and help them on…

  11. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  12. On the Breit Equation

    OpenAIRE

    Kasari, Hikoya; Yamaguchi, Yoshio

    2001-01-01

    Contrary to the conventional belief, it was shown that the Breit equation has the eigenvalues for bound states of two oppositely charged Dirac particles interacting through the (static) Coulomb potential. All eigenvalues reduced to those of the Sch\\"odinger case in the non-relativistic limit.

  13. The Equation of Causality

    OpenAIRE

    Chi, Do Minh

    1999-01-01

    We research the natural causality of the Universe. We find that the equation of causality provides very good results on physics. That is our first endeavour and success in describing a quantitative expression of the law of causality. Hence, our theoretical point suggests ideas to build other laws including the law of the Universe's evolution.

  14. Exciton laser rate equations

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2011-08-01

    Full Text Available The rate equations of the exciton laser in the system of interacting excitons have been obtained and the inverted population conditions and generation have been derived. The possibility of creating radically new gamma-ray laser has been shown.

  15. Nonlocal electrical diffusion equation

    Science.gov (United States)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0solar panels, electrochemical phenomena and the description of anomalous complex processes.

  16. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  17. Equational binary decision diagrams

    NARCIS (Netherlands)

    Groote, J.F.; Pol, J.C. van de

    2000-01-01

    We incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and tautology checkin

  18. Lie Symmetries of Ishimori Equation

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-Xia

    2013-01-01

    The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.

  19. Anticipated backward stochastic differential equations

    OpenAIRE

    Peng, Shige; Yang, Zhe

    2009-01-01

    In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.

  20. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian N

    2006-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  1. Differential Equations with Linear Algebra

    CERN Document Server

    Boelkins, Matthew R; Potter, Merle C

    2009-01-01

    Linearity plays a critical role in the study of elementary differential equations; linear differential equations, especially systems thereof, demonstrate a fundamental application of linear algebra. In Differential Equations with Linear Algebra, we explore this interplay between linear algebra and differential equations and examine introductory and important ideas in each, usually through the lens of important problems that involve differential equations. Written at a sophomore level, the text is accessible to students who have completed multivariable calculus. With a systems-first approach, t

  2. Stochastic differential equations and applications

    CERN Document Server

    Friedman, Avner

    2006-01-01

    This text develops the theory of systems of stochastic differential equations, and it presents applications in probability, partial differential equations, and stochastic control problems. Originally published in two volumes, it combines a book of basic theory and selected topics with a book of applications.The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic es

  3. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  4. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  5. The open boundary equation

    Directory of Open Access Journals (Sweden)

    D. Diederen

    2015-06-01

    Full Text Available We present a new equation describing the hydrodynamics in infinitely long tidal channels (i.e., no reflection under the influence of oceanic forcing. The proposed equation is a simple relationship between partial derivatives of water level and velocity. It is formally derived for a progressive wave in a frictionless, prismatic, tidal channel with a horizontal bed. Assessment of a large number of numerical simulations, where an open boundary condition is posed at a certain distance landward, suggests that it can also be considered accurate in the more natural case of converging estuaries with nonlinear friction and a bed slope. The equation follows from the open boundary condition and is therefore a part of the problem formulation for an infinite tidal channel. This finding provides a practical tool for evaluating tidal wave dynamics, by reconstructing the temporal variation of the velocity based on local observations of the water level, providing a fully local open boundary condition and allowing for local friction calibration.

  6. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  7. Suprathermal electron distributions in the solar transition region

    CERN Document Server

    Vocks, C; Mann, G

    2016-01-01

    Suprathermal tails are a common feature of solar wind electron velocity distributions, and are expected in the solar corona. From the corona, suprathermal electrons can propagate through the steep temperature gradient of the transition region towards the chromosphere, and lead to non-Maxwellian electron velocity distribution functions (VDFs) with pronounced suprathermal tails. We calculate the evolution of a coronal electron distribution through the transition region in order to quantify the suprathermal electron population there. A kinetic model for electrons is used which is based on solving the Boltzmann-Vlasov equation for electrons including Coulomb collisions with both ions and electrons. Initial and chromospheric boundary conditions are Maxwellian VDFs with densities and temperatures based on a background fluid model. The coronal boundary condition has been adopted from earlier studies of suprathermal electron formation in coronal loops. The model results show the presence of strong suprathermal tails ...

  8. New application to Riccati equation

    Science.gov (United States)

    Taogetusang; Sirendaoerji; Li, Shu-Min

    2010-08-01

    To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Bäcklund transformation of Riccati equation. Based on the tanh-function expansion method and homogenous balance method, new infinite sequence of exact solutions to Zakharov-Kuznetsov equation, Karamoto-Sivashinsky equation and the set of (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations are obtained with the aid of symbolic computation system Mathematica. The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations.

  9. Telegrapher's equation for light derived from the transport equation

    OpenAIRE

    Hoenders, Bernhard J.; Graaff, R.

    2005-01-01

    Shortcomings of diffusion theory when applied to turbid media such as biological tissue makes the development of more accurate equations desirable. Several authors developed telegrapher's equations in the well known P-1 approximation. The method used in this paper is different: it is based on the asymptotic evaluation of the solutions of the equation of radiative transport with respect to place and time for all values of the albedo. Various coefficients for the telegrapher's equations were de...

  10. Converting fractional differential equations into partial differential equations

    OpenAIRE

    He Ji-Huan; Li Zheng-Biao

    2012-01-01

    A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.

  11. The compressible adjoint equations in geodynamics: equations and numerical assessment

    Science.gov (United States)

    Ghelichkhan, Siavash; Bunge, Hans-Peter

    2016-04-01

    The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited, because density increases by almost a factor of two from the surface to the Core Mantle Boundary. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al (2006)) and geodynamics (Horbach et al (2014)), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.

  12. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  13. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  14. Dimensional Equations of Entropy

    CERN Document Server

    Sparavigna, Amelia Carolina

    2015-01-01

    Entropy is a quantity which is of great importance in physics and chemistry. The concept comes out of thermodynamics, proposed by Rudolf Clausius in his analysis of Carnot cycle and linked by Ludwig Boltzmann to the number of specific ways in which a physical system may be arranged. Any physics classroom, in its task of learning physics, has therefore to face this crucial concept. As we will show in this paper, the lectures can be enriched by discussing dimensional equations linked to the entropy of some physical systems.

  15. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  16. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2013-01-01

    Generalized Estimating Equations, Second Edition updates the best-selling previous edition, which has been the standard text on the subject since it was published a decade ago. Combining theory and application, the text provides readers with a comprehensive discussion of GEE and related models. Numerous examples are employed throughout the text, along with the software code used to create, run, and evaluate the models being examined. Stata is used as the primary software for running and displaying modeling output; associated R code is also given to allow R users to replicat

  17. Matlab differential equations

    CERN Document Server

    Lopez, Cesar

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Differential Equations introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. In addition to giving an introduct

  18. Conservational PDF Equations of Turbulence

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2010-01-01

    Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application

  19. On Certain Dual Integral Equations

    Directory of Open Access Journals (Sweden)

    R. S. Pathak

    1974-01-01

    Full Text Available Dual integral equations involving H-Functions have been solved by using the theory of Mellin transforms. The proof is analogous to that of Busbridge on solutions of dual integral equations involving Bessel functions.

  20. Program Transformation by Solving Equations

    Institute of Scientific and Technical Information of China (English)

    朱鸿

    1991-01-01

    Based on the theory of orthogonal program expansion[8-10],the paper proposes a method to transform programs by solving program equations.By the method,transformation goals are expressed in program equations,and achieved by solving these equations.Although such equations are usually too complicated to be solved directly,the orthogonal expansion of programs makes it possible to reduce such equations into systems of equations only containing simple constructors of programs.Then,the solutions of such equations can be derived by a system of solving and simplifying rules,and algebraic laws of programs.The paper discusses the methods to simplify and solve equations and gives some examples.

  1. Kepler's Differential Equations

    CERN Document Server

    Holder, Martin

    2011-01-01

    Although the differential calculus was invented by Newton, Kepler established his famous laws 70 years earlier by using the same idea, namely to find a path in a nonuniform field of force by small steps. It is generally not known that Kepler demonstrated the elliptic orbit to be composed of intelligeable differential pieces, in modern language, to result from a differential equation. Kepler was first to attribute planetary orbits to a force from the sun, rather than giving them a predetermined geometric shape. Even though neither the force was known nor its relation to motion, he could determine the differential equations of motion from observation. This is one of the most important achievements in the history of physics. In contrast to Newton's Principia and Galilei's Dialogo Kepler's text is not easy to read, for various reasons. Therefore, in the present article, his results -- most of them well known -- are first presented in modern language. Then, in order to justify the claim, the full text of some rele...

  2. The Dirac equation

    International Nuclear Information System (INIS)

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  3. Growth Equation with Conservation Law

    OpenAIRE

    Lauritsen, Kent Baekgaard

    1995-01-01

    A growth equation with a generalized conservation law characterized by an integral kernel is introduced. The equation contains the Kardar-Parisi-Zhang, Sun-Guo-Grant, and Molecular-Beam Epitaxy growth equations as special cases and allows for a unified investigation of growth equations. From a dynamic renormalization-group analysis critical exponents and universality classes are determined for growth models with a conservation law.

  4. ``Riemann equations'' in bidifferential calculus

    Science.gov (United States)

    Chvartatskyi, O.; Müller-Hoissen, F.; Stoilov, N.

    2015-10-01

    We consider equations that formally resemble a matrix Riemann (or Hopf) equation in the framework of bidifferential calculus. With different choices of a first-order bidifferential calculus, we obtain a variety of equations, including a semi-discrete and a fully discrete version of the matrix Riemann equation. A corresponding universal solution-generating method then either yields a (continuous or discrete) Cole-Hopf transformation, or leaves us with the problem of solving Riemann equations (hence an application of the hodograph method). If the bidifferential calculus extends to second order, solutions of a system of "Riemann equations" are also solutions of an equation that arises, on the universal level of bidifferential calculus, as an integrability condition. Depending on the choice of bidifferential calculus, the latter can represent a number of prominent integrable equations, like self-dual Yang-Mills, as well as matrix versions of the two-dimensional Toda lattice, Hirota's bilinear difference equation, (2+1)-dimensional Nonlinear Schrödinger (NLS), Kadomtsev-Petviashvili (KP) equation, and Davey-Stewartson equations. For all of them, a recent (non-isospectral) binary Darboux transformation result in bidifferential calculus applies, which can be specialized to generate solutions of the associated "Riemann equations." For the latter, we clarify the relation between these specialized binary Darboux transformations and the aforementioned solution-generating method. From (arbitrary size) matrix versions of the "Riemann equations" associated with an integrable equation, possessing a bidifferential calculus formulation, multi-soliton-type solutions of the latter can be generated. This includes "breaking" multi-soliton-type solutions of the self-dual Yang-Mills and the (2+1)-dimensional NLS equation, which are parametrized by solutions of Riemann equations.

  5. Hyperbolic Methods for Einstein's Equations

    OpenAIRE

    Reula Oscar

    1998-01-01

    I review evolutionary aspects of general relativity, in particular those related to the hyperbolic character of the field equations and to the applications or consequences that this property entails. I look at several approaches to obtaining symmetric hyperbolic systems of equations out of Einstein's equations by either removing some gauge freedoms from them, or by considering certain linear combinations of a subset of them.

  6. Successfully Transitioning to Linear Equations

    Science.gov (United States)

    Colton, Connie; Smith, Wendy M.

    2014-01-01

    The Common Core State Standards for Mathematics (CCSSI 2010) asks students in as early as fourth grade to solve word problems using equations with variables. Equations studied at this level generate a single solution, such as the equation x + 10 = 25. For students in fifth grade, the Common Core standard for algebraic thinking expects them to…

  7. An Extented Wave Action Equation

    Institute of Scientific and Technical Information of China (English)

    左其华

    2003-01-01

    Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity ui and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.

  8. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  9. The Schroedinger equation and spin

    International Nuclear Information System (INIS)

    Galilei invariance of the Schroedinger equation requires linearization of the operator by the introduction of anticommuting matrices as coefficients of the linear form. In an external field this leads directly to the Pauli equation, the non-relativistic limit of Dirac's equation. An overview of the complete argument that defines spin as a non-relativistic concept is presented. 9 refs

  10. Solution of Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, Steen

    An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...

  11. The anti-Einstein equations

    OpenAIRE

    Chaliasos, Evangelos

    2006-01-01

    As we know, from the Einstein equations the vanishing of the four-divergence of the energy-momentum tensor follows. This is the case because the four-divergence of the Einstein tensor vanishes identically. Inversely, we find that from the vanishing of the four-divergence of the energy-momentum tensor not only the Einstein equations follow. Besides, the so-named anti-Einstein equations follow. These equations must be considered as complementary to the Einstein equations. And while from the Ein...

  12. A generalized advection dispersion equation

    Indian Academy of Sciences (India)

    Abdon Atangana

    2014-02-01

    This paper examines a possible effect of uncertainties, variability or heterogeneity of any dynamic system when being included in its evolution rule; the notion is illustrated with the advection dispersion equation, which describes the groundwater pollution model. An uncertain derivative is defined; some properties of the operator are presented. The operator is used to generalize the advection dispersion equation. The generalized equation differs from the standard equation in four properties. The generalized equation is solved via the variational iteration technique. Some illustrative figures are presented.

  13. Equation with the many fathers

    DEFF Research Database (Denmark)

    Kragh, Helge

    1984-01-01

    of the usual Schrödinger equation. In most of the early versions the Klein-Gordon equation was connected with the general theory of relativity. Klein and some other physicists attempted to express quantum mechanics within a five-dimensional unified theory, embracing general relativity as well......In this essay I discuss the origin and early development of the first relativistic wave equation, known as the Klein-Gordon equation. In 1926 several physicists, among them Klein, Fock, Schrödinger, and de Broglie, announced this equation as a candidate for a relativistic generalization...

  14. Discovering evolution equations with applications

    CERN Document Server

    McKibben, Mark

    2011-01-01

    Most existing books on evolution equations tend either to cover a particular class of equations in too much depth for beginners or focus on a very specific research direction. Thus, the field can be daunting for newcomers to the field who need access to preliminary material and behind-the-scenes detail. Taking an applications-oriented, conversational approach, Discovering Evolution Equations with Applications: Volume 2-Stochastic Equations provides an introductory understanding of stochastic evolution equations. The text begins with hands-on introductions to the essentials of real and stochast

  15. Generalized Klein-Kramers equations

    Science.gov (United States)

    Fa, Kwok Sau

    2012-12-01

    A generalized Klein-Kramers equation for a particle interacting with an external field is proposed. The equation generalizes the fractional Klein-Kramers equation introduced by Barkai and Silbey [J. Phys. Chem. B 104, 3866 (2000), 10.1021/jp993491m]. Besides, the generalized Klein-Kramers equation can also recover the integro-differential Klein-Kramers equation for continuous-time random walk; this means that it can describe the subdiffusive and superdiffusive regimes in the long-time limit. Moreover, analytic solutions for first two moments both in velocity and displacement (for force-free case) are obtained, and their dynamic behaviors are investigated.

  16. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  17. Elliptic scattering equations

    CERN Document Server

    Cardona, Carlos

    2016-01-01

    Recently the CHY approach has been extended to one loop level using elliptic functions and modular forms over a Jacobian variety. Due to the difficulty in manipulating these kind of functions, we propose an alternative prescription that is totally algebraic. This new proposal is based on an elliptic algebraic curve embedded in a $\\mathbb{C}P^2$ space. We show that for the simplest integrand, namely the ${\\rm n-gon}$, our proposal indeed reproduces the expected result. By using the recently formulated $\\Lambda-$algorithm, we found a novel recurrence relation expansion in terms of tree level off-shell amplitudes. Our results connect nicely with recent results on the one-loop formulation of the scattering equations. In addition, this new proposal can be easily stretched out to hyperelliptic curves in order to compute higher genus.

  18. $\\Lambda$ Scattering Equations

    CERN Document Server

    Gomez, Humberto

    2016-01-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter $\\Lambda$ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting $\\Lambda$ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the $\\Lambda$ algorithm.

  19. EXTENDED MILD-SLOPE EQUATION

    Institute of Scientific and Technical Information of China (English)

    黄虎; 丁平兴; 吕秀红

    2001-01-01

    The Hamiltonian formalism for surface waves and the mild-slope approximation were empolyed in handling the case of slowly varying three-dimensional currents and an uneven bottom, thus leading to an extended mild-slope equation. The bottom topography consists of two components: the slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the amplitude being smaller than that of the surface wave. The frequency of the fast varying depth component is, however, comparable to that of the surface waves. The extended mild- slope equation is more widely applicable and contains as special cases famous mild-slope equations below: the classical mild-slope equation of Berkhoff , Kirby' s mild-slope equation with current, and Dingemans' s mild-slope equation for rippled bed. The extended shallow water equations for ambient currents and rapidly varying topography are also obtained.

  20. The Riccati Differential Equation and a Diffusion-Type Equation

    CERN Document Server

    Suazo, Erwin; Vega-Guzman, Jose M

    2008-01-01

    We construct an explicit solution of the Cauchy initial value problem for certain diffusion-type equation with variable coefficients on the entire real line. The corresponding Green function (heat kernel) is given in terms of elementary functions and certain integrals involving a characteristic function, which should be found as an analytic or numerical solution of the second order linear differential equation with time-dependent coefficients. Some special and limiting cases are outlined. Solution of the corresponding nonhomogeneous equation is also found.

  1. Comparison between characteristics of mild slope equations and Boussinesq equations

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Boussinesq-type equations and mild-slope equations are compared in terms of their basic forms and characteristics. It is concluded that linear mild-slope equations on dispersion relation are better than non-linear Boussinesq equations. In addition, Berkhoff experiments are computed and compared by the two models, and agreement between model results and available experimental data is found to be quite reasonable, which demonstrates the two models' capacity to simulate wave transformation. However they can deal with different physical processes respectively, and they have their own characteristics.

  2. JWL Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.

  3. Algebraic Approaches to Partial Differential Equations

    CERN Document Server

    Xu, Xiaoping

    2012-01-01

    Partial differential equations are fundamental tools in mathematics,sciences and engineering. This book is mainly an exposition of the various algebraic techniques of solving partial differential equations for exact solutions developed by the author in recent years, with emphasis on physical equations such as: the Calogero-Sutherland model of quantum many-body system in one-dimension, the Maxwell equations, the free Dirac equations, the generalized acoustic system, the Kortweg and de Vries (KdV) equation, the Kadomtsev and Petviashvili (KP) equation, the equation of transonic gas flows, the short-wave equation, the Khokhlov and Zabolotskaya equation in nonlinear acoustics, the equation of geopotential forecast, the nonlinear Schrodinger equation and coupled nonlinear Schrodinger equations in optics, the Davey and Stewartson equations of three-dimensional packets of surface waves, the equation of the dynamic convection in a sea, the Boussinesq equations in geophysics, the incompressible Navier-Stokes equations...

  4. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  5. Energy Conservation Equations of Motion

    CERN Document Server

    Vinokurov, Nikolay A

    2015-01-01

    A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton and Lagrange equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.

  6. Quaternion Dirac Equation and Supersymmetry

    OpenAIRE

    Rawat, Seema; Negi, O. P. S.

    2007-01-01

    Quaternion Dirac equation has been analyzed and its supersymetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, non zero mass, scalar pote...

  7. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  8. THE ERMAKOV EQUATION: A COMMENTARY

    OpenAIRE

    P.G.L. Leach; Andriopoulos, K.

    2008-01-01

    We present a short history of the Ermakov Equation with an emphasis on its discovery by theWest and the subsequent boost to research into invariants for nonlinear systems although recognizing some of the significant developments in the East. We present the modern context of the Ermakov Equation in the algebraic and singularity theory of ordinary differential equations and applications to more divers fields. The reader is referred to the previous article (Appl. Anal. Discrete Math., 2 (2008), ...

  9. Two-component Dirac equation

    OpenAIRE

    Luo, Da-Wei; Pyshkin, P. V.; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao

    2016-01-01

    We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique. Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This approach allows one to investigate the underlying physics in a different perspective. For particles with small mass such as the neutrino, the leading order equation has a Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors. In the weak ...

  10. Spinor wave equation of photon

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Zhang, Si-Qi; Wang, Jing; Li, Hong; Fan, Xi-Hui; Li, Jing-Wu

    2012-01-01

    In this paper, we give the spinor wave equations of free and unfree photon, which are the differential equation of space-time one order. For the free photon, the spinor wave equations are covariant, and the spinors $\\psi$ are corresponding to the the reducibility representations $D^{10}+D^{01}$ and $D^{10}+D^{01}+D^{1/2 1/2}$ of the proper Lorentz group.

  11. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  12. Electronic representation of wave equation

    Science.gov (United States)

    Veigend, Petr; Kunovský, Jiří; Kocina, Filip; Nečasová, Gabriela; Šátek, Václav; Valenta, Václav

    2016-06-01

    The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.

  13. Quaternion Dirac Equation and Supersymmetry

    Science.gov (United States)

    Rawat, Seema; Negi, O. P. S.

    2009-08-01

    Quaternion Dirac equation has been analyzed and its supersymmetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, nonzero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.

  14. Quaternion Dirac Equation and Supersymmetry

    CERN Document Server

    Rawat, S; Rawat, Seema

    2007-01-01

    Quaternion Dirac equation has been analyzed and its supersymetrization has been discussed consistently. It has been shown that the quaternion Dirac equation automatically describes the spin structure with its spin up and spin down components of two component quaternion Dirac spinors associated with positive and negative energies. It has also been shown that the supersymmetrization of quaternion Dirac equation works well for different cases associated with zero mass, non zero mass, scalar potential and generalized electromagnetic potentials. Accordingly we have discussed the splitting of supersymmetrized Dirac equation in terms of electric and magnetic fields.

  15. A modified electromagnetic wave equation

    International Nuclear Information System (INIS)

    The aim of this paper is to find an alternative to the usual electromagnetic wave equation: that is, we want to find a different equation with the same solutions. The final goal is to solve electromagnetic problems with iterative methods. The curl curl operator that appears in the electromagnetic wave equation is difficult to invert numerically, and this cannot be done iteratively. The addition of a higher order term that emphasizes the diagonal terms in the operator may help the solution of the problem, and the new equation should be solvable by an iterative algorithm. The additional mode is suppressed by suitable boundary conditions. (author) 5 figs., 9 refs

  16. Tippe Top Equations and Equations for the Related Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Nils Rutstam

    2012-04-01

    Full Text Available The equations of motion for the rolling and gliding Tippe Top (TT are nonintegrable and difficult to analyze. The only existing arguments about TT inversion are based on analysis of stability of asymptotic solutions and the LaSalle type theorem. They do not explain the dynamics of inversion. To approach this problem we review and analyze here the equations of motion for the rolling and gliding TT in three equivalent forms, each one providing different bits of information about motion of TT. They lead to the main equation for the TT, which describes well the oscillatory character of motion of the symmetry axis 3ˆ during the inversion. We show also that the equations of motion of TT give rise to equations of motion for two other simpler mechanical systems: the gliding heavy symmetric top and the gliding eccentric cylinder. These systems can be of aid in understanding the dynamics of the inverting TT.

  17. Solutions of relativistic radial quasipotential equations

    Energy Technology Data Exchange (ETDEWEB)

    Minh, V.X.; Kadyshevskii, V.G.; Zhidkov, E.P.

    1985-11-01

    A systematic approach to the investigation of relativistic radial quasipotential equations is developed. The quasipotential equations can be interpreted either as linear equations in finite differences of fourth and second orders, respectively, or as differential equations of infinite order.

  18. Anomalous Fractional Diffusion Equation for Transport Phenomena

    Institute of Scientific and Technical Information of China (English)

    QiuhuaZENG; HouqiangLI; 等

    1999-01-01

    We derive the standard diffusion equation from the continuity equation and by discussing the defectiveness of earlier proposed equations,we get the generalized fractional diffusion equation for anomalous diffusion.

  19. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  20. Enclosing Solutions of Integral Equations

    DEFF Research Database (Denmark)

    Madsen, Kaj; NA NA NA Caprani, Ole; Stauning, Ole

    1996-01-01

    We present a method for enclosing the solution of an integral equation. It is assumed that a solution exists and that the corresponding integral operator T is a contraction near y. When solving the integral equation by iteration we obtain a result which is normally different from y because...

  1. Partial Completion of Equational Theories

    Institute of Scientific and Technical Information of China (English)

    孙永强; 林凯; 陆朝俊

    2000-01-01

    In this paper, the notion of partial completion of equational theories is proposed, which is a procedure to construct a confluent term rewriting system from an equational theory without requirement of termination condition. A partial completion algorithm is presented with a brief description of its application in a program development system.

  2. Uncertainty of empirical correlation equations

    Science.gov (United States)

    Feistel, R.; Lovell-Smith, J. W.; Saunders, P.; Seitz, S.

    2016-08-01

    The International Association for the Properties of Water and Steam (IAPWS) has published a set of empirical reference equations of state, forming the basis of the 2010 Thermodynamic Equation of Seawater (TEOS-10), from which all thermodynamic properties of seawater, ice, and humid air can be derived in a thermodynamically consistent manner. For each of the equations of state, the parameters have been found by simultaneously fitting equations for a range of different derived quantities using large sets of measurements of these quantities. In some cases, uncertainties in these fitted equations have been assigned based on the uncertainties of the measurement results. However, because uncertainties in the parameter values have not been determined, it is not possible to estimate the uncertainty in many of the useful quantities that can be calculated using the parameters. In this paper we demonstrate how the method of generalised least squares (GLS), in which the covariance of the input data is propagated into the values calculated by the fitted equation, and in particular into the covariance matrix of the fitted parameters, can be applied to one of the TEOS-10 equations of state, namely IAPWS-95 for fluid pure water. Using the calculated parameter covariance matrix, we provide some preliminary estimates of the uncertainties in derived quantities, namely the second and third virial coefficients for water. We recommend further investigation of the GLS method for use as a standard method for calculating and propagating the uncertainties of values computed from empirical equations.

  3. Numerical Solution of Parabolic Equations

    DEFF Research Database (Denmark)

    Østerby, Ole

    These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...

  4. A Search on Dirac Equation

    Institute of Scientific and Technical Information of China (English)

    M. Ko(c)ak; B. G(o)nül

    2007-01-01

    The solutions, in terms of orthogonal polynomials, of Dirac equation with analytically solvable potentials are investigated within a novel formalism by transforming the relativistic equation into a Schr(o)dinger-like one. Earlier results are discussed in a unified framework, and some solutions of a large class of potentials are given.

  5. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  6. On asymptotics for difference equations

    NARCIS (Netherlands)

    Rafei, M.

    2012-01-01

    In this thesis a class of nonlinear oscillator equations is studied. Asymptotic approximations of first integrals for nonlinear difference equations are constructed by using the recently developed perturbation method based on invariance vectors. The asymptotic approximations of the solutions of the

  7. A search on Dirac equation

    OpenAIRE

    Kocak, M.; Gonul, B.

    2007-01-01

    The solutions, in terms of orthogonal polynomials, of Dirac equation with analytically solvable potentials are investigated within a novel formalism by transforming the relativistic equation into a Schrodinger like one. Earlier results are discussed in a unified framework and certain solutions of a large class of potentials are given.

  8. Loewner equations and dispersionless hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Takebe, Takashi [Department of Mathematics, Ochanomizu University, Otsuka 2-1-1, Bunkyo-ku, Tokyo, 112-8610 (Japan); Teo, Lee-Peng [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Zabrodin, Anton [Institute of Biochemical Physics, Kosygina str. 4, 119991 Moscow, Russia and ITEP, Bol. Cheremushkinskaya str. 25, 117259 Moscow (Russian Federation)

    2006-09-15

    Using the Hirota representation of dispersionless dKP and dToda hierarchies, we show that the chordal Loewner equations and radial Loewner equations respectively serve as consistency conditions for one-variable reductions of these integrable hierarchies. We also clarify the geometric meaning of this result by relating it to the eigenvalue distribution of normal random matrices in the large N limit.

  9. Singularity: Raychaudhuri equation once again

    Indian Academy of Sciences (India)

    Naresh Dadhich

    2007-07-01

    I first recount Raychaudhuri's deep involvement with the singularity problem in general relativity. I then argue that precisely the same situation has arisen today in loop quantum cosmology as obtained when Raychaudhuri discovered his celebrated equation. We thus need a new analogue of the Raychaudhuri equation in quantum gravity.

  10. Non-relativistic BUU equation

    International Nuclear Information System (INIS)

    The Boltzmann-Uhlenbeck (BUU) equation, which is the time evolution of the wigner function of the single particle Green's function, is dervied by using the closed-time Green's function approach. The quantum mechanical approximation in derving the BUU equation is discussed

  11. Conservation Laws of Differential Equations in Finance

    Institute of Scientific and Technical Information of China (English)

    QIN Mao-Chang; MEI Feng-Xiang; SHANG Mei

    2005-01-01

    Conservation laws of some differential equations in fiance are studied in this paper. This method does not involve the use or existence of a variational principle. As an alternative, linearize the given equation and find adjoint equation of the linearized equation, the conservation laws can be constructed directly from the symmetries and adjoint symmetries of the associated linearized equation and its adjoint equation.

  12. Transport Equations for Oscillating Neutrinos

    CERN Document Server

    Zhang, Yunfan

    2013-01-01

    We derive a suite of generalized Boltzmann equations, based on the density-matrix formalism, that incorporates the physics of neutrino oscillations for two- and three-flavor oscillations, matter refraction, and self-refraction. The resulting equations are straightforward extensions of the classical transport equations that nevertheless contain the full physics of quantum oscillation phenomena. In this way, our broadened formalism provides a bridge between the familiar neutrino transport algorithms employed by supernova modelers and the more quantum-heavy approaches frequently employed to illuminate the various neutrino oscillation effects. We also provide the corresponding angular-moment versions of this generalized equation set. Our goal is to make it easier for astrophysicists to address oscillation phenomena in a language with which they are familiar. The equations we derive are simple and practical, and are intended to facilitate progress concerning oscillation phenomena in the context of core-collapse su...

  13. A Generalized Cubic Functional Equation

    Institute of Scientific and Technical Information of China (English)

    P. K. SAHOO

    2005-01-01

    In this paper, we determine the general solution of the functional equation f1 (2x + y) +f2(2x - y) = f3(x + y) + f4(x - y) + f5(x) without assuming any regularity condition on the unknown functions f1,f2,f3, f4,f5: R → R. The general solution of this equation is obtained by finding the general solution of the functional equations f(2x + y) + f(2x - y) = g(x + y) + g(x - y) + h(x) and f(2x + y) - f(2x - y) = g(x + y) - g(x - y). The method used for solving these functional equations is elementary but exploits an important result due to Hosszu. The solution of this functional equation can also be determined in certain type of groups using two important results due to Székelyhidi.

  14. Nominal Logic with Equations Only

    CERN Document Server

    Clouston, Ranald

    2011-01-01

    Many formal systems, particularly in computer science, may be captured by equations modulated by side conditions asserting the "freshness of names"; these can be reasoned about with Nominal Equational Logic (NEL). Like most logics of this sort NEL employs this notion of freshness as a first class logical connective. However, this can become inconvenient when attempting to translate results from standard equational logic to the nominal setting. This paper presents proof rules for a logic whose only connectives are equations, which we call Nominal Equation-only Logic (NEoL). We prove that NEoL is just as expressive as NEL. We then give a simple description of equality in the empty NEoL-theory, then extend that result to describe freshness in the empty NEL-theory.

  15. Determining dynamical equations is hard

    CERN Document Server

    Cubitt, Toby S; Wolf, Michael M

    2010-01-01

    The behaviour of any physical system is governed by its underlying dynamical equations--the differential equations describing how the system evolves with time--and much of physics is ultimately concerned with discovering these dynamical equations and understanding their consequences. At the end of the day, any such dynamical law is identified by making measurements at different times, and computing the dynamical equation consistent with the acquired data. In this work, we show that, remarkably, this process is a provably computationally intractable problem (technically, it is NP-hard). That is, even for a moderately complex system, no matter how accurately we have specified the data, discovering its dynamical equations can take an infeasibly long time (unless P=NP). As such, we find a complexity-theoretic solution to both the quantum and the classical embedding problems; the classical version is a long-standing open problem, dating from 1937, which we finally lay to rest.

  16. Some Variations on Maxwell's Equations

    CERN Document Server

    Ascoli, G A; Ascoli, Giorgio A.; Goldin, Gerald A.

    2006-01-01

    In the first sections of this article, we discuss two variations on Maxwell's equations that have been introduced in earlier work---a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equations), and a linear modification motivated by the coupling of the electromagnetic potential with a certain nonlinear Schroedinger equation. In the final section, revisiting an old idea of Lorentz, we write Maxwell's equations for a theory in which the electrostatic force of repulsion between like charges differs fundamentally in magnitude from the electrostatic force of attraction between unlike charges. We elaborate on Lorentz' description by means of electric and magnetic field strengths, whose governing equations separate into two fully relativistic Maxwell systems---one describing ordinary electromagnetism, and the other describing a universally attractive or repulsive long-range force. If such a force cannot be ruled out {\\it a priori\\/} by known physical ...

  17. Stochastic differential equations, backward SDEs, partial differential equations

    CERN Document Server

    Pardoux, Etienne

    2014-01-01

    This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has...

  18. COMPARISON BETWEEN BOUSSINESQ EQUATIONS AND MILD-SLOPE EQUATIONS MODEL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the Boussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were established. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.

  19. Higher derivative gravity: Field equation as the equation of state

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Mohd, Arif

    2016-08-01

    One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.

  20. Higher derivative gravity: field equation as the equation of state

    CERN Document Server

    Dey, Ramit; Mohd, Arif

    2016-01-01

    One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. Extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.

  1. Wave equations for pulse propagation

    Science.gov (United States)

    Shore, B. W.

    1987-06-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  2. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  3. Galois theory of difference equations

    CERN Document Server

    Put, Marius

    1997-01-01

    This book lays the algebraic foundations of a Galois theory of linear difference equations and shows its relationship to the analytic problem of finding meromorphic functions asymptotic to formal solutions of difference equations. Classically, this latter question was attacked by Birkhoff and Tritzinsky and the present work corrects and greatly generalizes their contributions. In addition results are presented concerning the inverse problem in Galois theory, effective computation of Galois groups, algebraic properties of sequences, phenomena in positive characteristics, and q-difference equations. The book is aimed at advanced graduate researchers and researchers.

  4. THE ERMAKOV EQUATION: A COMMENTARY

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2008-08-01

    Full Text Available We present a short history of the Ermakov Equation with an emphasis on its discovery by theWest and the subsequent boost to research into invariants for nonlinear systems although recognizing some of the significant developments in the East. We present the modern context of the Ermakov Equation in the algebraic and singularity theory of ordinary differential equations and applications to more divers fields. The reader is referred to the previous article (Appl. Anal. Discrete Math., 2 (2008, 123–145 for an English translation of Ermakov’s original paper.

  5. Reflection algebra and functional equations

    Energy Technology Data Exchange (ETDEWEB)

    Galleas, W., E-mail: w.galleas@uu.nl; Lamers, J., E-mail: j.lamers@uu.nl

    2014-09-15

    In this work we investigate the possibility of using the reflection algebra as a source of functional equations. More precisely, we obtain functional relations determining the partition function of the six-vertex model with domain-wall boundary conditions and one reflecting end. The model's partition function is expressed as a multiple-contour integral that allows the homogeneous limit to be obtained straightforwardly. Our functional equations are also shown to give rise to a consistent set of partial differential equations satisfied by the partition function.

  6. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  7. Equational theories of tropical sernirings

    DEFF Research Database (Denmark)

    Aceto, Luca; Esik, Zoltan; Ingolfsdottir, Anna

    2003-01-01

    of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results. Udgivelsesdato: APR 11......This paper studies the equational theories of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime...

  8. Direct 'delay' reductions of the Toda equation

    International Nuclear Information System (INIS)

    A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painleve equations. The Lax pair associated with this equation is obtained, also by reduction. (fast track communication)

  9. Direct "Delay" Reductions of the Toda Equation

    OpenAIRE

    Joshi, Nalini

    2008-01-01

    A new direct method of obtaining reductions of the Toda equation is described. We find a canonical and complete class of all possible reductions under certain assumptions. The resulting equations are ordinary differential-difference equations, sometimes referred to as delay-differential equations. The representative equation of this class is hypothesized to be a new version of one of the classical Painlev\\'e equations. The Lax pair associated to this equation is obtained, also by reduction.

  10. Integral Transform Approach to Generalized Tricomi Equations

    OpenAIRE

    Yagdjian, Karen

    2014-01-01

    We present some integral transform that allows to obtain solutions of the generalized Tricomi equation from solutions of a simpler equation. We used in [13,14],[41]-[46] the particular version of this transform in order to investigate in a unified way several equations such as the linear and semilinear Tricomi equations, Gellerstedt equation, the wave equation in Einstein-de Sitter spacetime, the wave and the Klein-Gordon equations in the de Sitter and anti-de Sitter spacetimes.

  11. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  12. Solving Differential Equations in R

    Science.gov (United States)

    Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...

  13. IKT for quantum hydrodynamic equations

    Science.gov (United States)

    Tessarotto, Massimo; Ellero, Marco; Nicolini, Piero

    2007-11-01

    A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In fact, it is well-known that the Schr"odinger equation is equivalent to a closed set of partial differential equations for suitable real-valued functions of position and time (denoted as quantum fluid fields) [Madelung, 1928]. In particular, the corresponding quantum hydrodynamic equations (QHE) can be viewed as the equations of a classical compressible and non-viscous fluid, endowed with potential velocity and quantized velocity circulation. In this reference, an interesting theoretical problem, in its own right, is the construction of an inverse kinetic theory (IKT) for such a type of fluids. In this note we intend to investigate consequences of the IKT recently formulated for QHE [M.Tessarotto et al., Phys. Rev. A 75, 012105 (2007)]. In particular a basic issue is related to the definition of the quantum fluid fields.

  14. Spin equation and its solutions

    CERN Document Server

    Bagrov, V G; Baldiotti, M C; Levin, A D

    2005-01-01

    The aim of the present article is to study in detail the so-called spin equation (SE) and present both the methods of generating new solution and a new set of exact solutions. We recall that the SE with a real external field can be treated as a reduction of the Pauli equation to the (0+1)-dimensional case. Two-level systems can be described by an SE with a particular form of the external field. In this article, we also consider associated equations that are equivalent or (in one way or another) related to the SE. We describe the general solution of the SE and solve the inverse problem for this equation. We construct the evolution operator for the SE and consider methods of generating new sets of exact solutions. Finally, we find a new set of exact solutions of the SE.

  15. Diophantine approximations and Diophantine equations

    CERN Document Server

    Schmidt, Wolfgang M

    1991-01-01

    "This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum

  16. Invariant foliations for parabolic equations

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is proved for parabolic equations that under certain conditions the weak (un-)stable manifolds possess invariant foliations, called strongly (un-)stable foliations. The relevant results on center manifolds are generalized to weak hyperbolic manifolds.

  17. Overdetermined Systems of Linear Equations.

    Science.gov (United States)

    Williams, Gareth

    1990-01-01

    Explored is an overdetermined system of linear equations to find an appropriate least squares solution. A geometrical interpretation of this solution is given. Included is a least squares point discussion. (KR)

  18. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-04-01

    Full Text Available Routinely, Einstein’s equations are be reduced to a wave form (linearly independent of the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel’s symbols. As shown herein, the origin of the problem is the use of the general covariant theory of measurement. Herein the wave form of Einstein’s equations is obtained in terms of Zelmanov’s chronometric invariants (physically observable projections on the observer’s time line and spatial section. The equations so obtained depend solely upon the second derivatives, even for gravitation, the space rotation and Christoffel’s symbols. The correct linearization proves that the Einstein equations are completely compatible with weak waves of the metric.

  19. Hidden Statistics of Schroedinger Equation

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.

  20. A New Unified Evolution Equation

    OpenAIRE

    Lim, Jyh-Liong

    1998-01-01

    WE propose a new unified evolution equation for parton distribution functions appropriate for both large and small Bjorken x. Compared with the Ciafaloni- Catani-Fiorani-Marchesini equation, the cancellation of soft poles between virtual and real gluon emissions is made explicitly without introducing infrared cutoffs, next-to-leading contributions to the Sudakov resummation can be included systematically, and the scales of the running coupling constants are determined unambiguously.

  1. On basic equation of statistical physics

    Institute of Scientific and Technical Information of China (English)

    邢修三

    1996-01-01

    Considering that thermodynamic irreversibility, the principle of entropy increase and hydrodynamic equations cannot be derived rigorously and in a unified way from the Liouville equations, the anomalous Langevin equation in Liouville space or its equivalent generalized Liouville equation is proposed as a basic equation of statistical physics. This equation reflects the fact that the law of motion of statistical thermodynamics is stochastic, but not deterministic. From that the nonequilibrium entropy, the principle of entropy increase, the theorem of minimum entropy production and the BBGKY diffusion equation hierarchy have been derived. The hydrodynamic equations, such as the generalized Navier-Stokes equation and the mass drift-diffusion equation, etc. have been derived from the BBGKY diffusion equation hierarchy. This equation has the same equilibrium solution as that of the Liouville equation. All these are unified and rigorous without adding any extra assumption. But it is difficult to prove that th

  2. Computational partial differential equations using Matlab

    CERN Document Server

    Li, Jichun

    2008-01-01

    Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE

  3. Equationally Compact Acts : Coproducts / Peeter Normak

    Index Scriptorium Estoniae

    Normak, Peeter

    1998-01-01

    In this article equational compactness of acts and its generalizations are discussed. As equational compactness does not carry over to coproducts a slight generalization of c-equational campactness is introduced. It is proved that a coproduct of acts is c-equationally compact if and only if all components are c-equationally campact

  4. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  5. ON THE EQUIVALENCE OF THE ABEL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article uses the reflecting function of Mironenko to study some complicated differential equations which are equivalent to the Abel equation. The results are applied to discuss the behavior of solutions of these complicated differential equations.

  6. Non-linear constitutive equations for gravitoelectromagnetism

    OpenAIRE

    Duplij, Steven; Di Grezia, Elisabetta; Esposito, Giampiero; Kotvytskiy, Albert

    2013-01-01

    This paper studies non-linear constitutive equations for gravitoelectromagnetism. Eventually, the problem is solved of finding, for a given particular solution of the gravity-Maxwell equations, the exact form of the corresponding non-linear constitutive equations.

  7. Multi-Time Equations, Classical and Quantum

    CERN Document Server

    Petrat, Sören

    2013-01-01

    Multi-time equations are evolution equations involving several time variables, one for each particle. Such equations have been considered for the purpose of making theories manifestly Lorentz invariant. We compare their status and significance in classical and quantum physics.

  8. First-order partial differential equations

    CERN Document Server

    Rhee, Hyun-Ku; Amundson, Neal R

    2001-01-01

    This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of mo

  9. How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation

    Science.gov (United States)

    Heras, Jose A.

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  10. How to obtain the covariant form of Maxwell's equations from the continuity equation

    Energy Technology Data Exchange (ETDEWEB)

    Heras, Jose A [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200, Mexico D. F. (Mexico); Departamento de Fisica y Matematicas, Universidad Iberoamericana, Prolongacion Paseo de la Reforma 880, Mexico D. F. 01210 (Mexico)

    2009-07-15

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  11. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  12. Differential Equations for Morphological Amoebas

    Science.gov (United States)

    Welk, Martin; Breuß, Michael; Vogel, Oliver

    This paper is concerned with amoeba median filtering, a structure-adaptive morphological image filter. It has been introduced by Lerallut et al. in a discrete formulation. Experimental evidence shows that iterated amoeba median filtering leads to segmentation-like results that are similar to those obtained by self-snakes, an image filter based on a partial differential equation. We investigate this correspondence by analysing a space-continuous formulation of iterated median filtering. We prove that in the limit of vanishing radius of the structuring elements, iterated amoeba median filtering indeed approximates a partial differential equation related to self-snakes and the well-known (mean) curvature motion equation. We present experiments with discrete iterated amoeba median filtering that confirm qualitative and quantitative predictions of our analysis.

  13. Quantum corrections for Boltzmann equation

    Institute of Scientific and Technical Information of China (English)

    M.; Levy; PETER

    2008-01-01

    We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.

  14. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  15. Stability Analysis of Ecomorphodynamic Equations

    CERN Document Server

    Bärenbold, Fabian; Perona, Paolo

    2014-01-01

    Although riparian vegetation is present in or along many water courses of the world, its active role resulting from the interaction with flow and sediment processes has only recently become an active field of research. Especially, the role of vegetation in the process of river pattern formation has been explored and demonstrated mostly experimentally and numerically until now. In the present work, we shed light on this subject by performing a linear stability analysis on a simple model for riverbed vegetation dynamics coupled with the set of classical river morphodynamic equations. The vegetation model only accounts for logistic growth, local positive feedback through seeding and resprouting, and mortality by means of uprooting through flow shear stress. Due to the simplicity of the model, we can transform the set of equations into an eigenvalue problem and assess the stability of the linearized equations when slightly perturbated away from a spatially homogeneous solution. If we couple vegetation dynamics wi...

  16. Random equations in nilpotent groups

    CERN Document Server

    Gilman, Robert; Romankov, Vitalii

    2011-01-01

    In this paper we study satisfiability of random equations in an infinite finitely generated nilpotent group G. We show that the set SAT(G,k) of all equations in k > 1 variables over G which are satisfiable in G has an intermediate asymptotic density in the space of all equations in k variables over G. When G is a free abelian group of finite rank, we compute this density precisely; otherwise we give some non-trivial upper and lower bounds. For k = 1 the set SAT(G,k) is negligible. Usually the asymptotic densities of interesting sets in groups are either zero or one. The results of this paper provide new examples of algebraically significant sets of intermediate asymptotic density.

  17. Students' understanding of quadratic equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-05-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.

  18. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    2006-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  19. Hamiltonian systems as selfdual equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.

  20. Stability theory of differential equations

    CERN Document Server

    Bellman, Richard

    2008-01-01

    Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies.The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from

  1. Nielsen number and differential equations

    Directory of Open Access Journals (Sweden)

    Andres Jan

    2005-01-01

    Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.

  2. Fundamentals of equations of state

    CERN Document Server

    Eliezer, Shalom; Hora, Heinrich

    2002-01-01

    The equation of state was originally developed for ideal gases, and proved central to the development of early molecular and atomic physics. Increasingly sophisticated equations of state have been developed to take into account molecular interactions, quantization, relativistic effects, etc. Extreme conditions of matter are encountered both in nature and in the laboratory, for example in the centres of stars, in relativistic collisions of heavy nuclei, in inertial confinement fusion (where a temperature of 10 9 K and a pressure exceeding a billion atmospheres can be achieved). A sound knowledg

  3. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  4. Group analysis of differential equations

    CERN Document Server

    Ovsiannikov, L V

    1982-01-01

    Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations.This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the g

  5. Differential equations and mathematical biology

    CERN Document Server

    Jones, DS; Sleeman, BD

    2009-01-01

    ""… Much progress by these authors and others over the past quarter century in modeling biological and other scientific phenomena make this differential equations textbook more valuable and better motivated than ever. … The writing is clear, though the modeling is not oversimplified. Overall, this book should convince math majors how demanding math modeling needs to be and biologists that taking another course in differential equations will be worthwhile. The coauthors deserve congratulations as well as course adoptions.""-SIAM Review, Sept. 2010, Vol. 52, No. 3""… Where this text stands out i

  6. Partial differential equations an introduction

    CERN Document Server

    Colton, David

    2004-01-01

    Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of

  7. Integral equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2016-01-01

    This book offers the reader an overview of recent developments of integral equations on time scales. It also contains elegant analytical and numerical methods. This book is primarily intended for senior undergraduate students and beginning graduate students of engineering and science courses. The students in mathematical and physical sciences will find many sections of direct relevance. The book contains nine chapters and each chapter is pedagogically organized. This book is specially designed for those who wish to understand integral equations on time scales without having extensive mathematical background.

  8. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  9. On a nonhomogeneous Burgers' equation

    Institute of Scientific and Technical Information of China (English)

    DING; Xiaqi(

    2001-01-01

    [1]Hopf, E., The partial differential equation ut + uux = μuxx, Comm. Pure Appl. Math., 1950, 3: 201-230.[2]Ding, X. Q. , Luo, P. Z. , Generalized expansions in Hilbert space, Acta Mathematica Scientia, 1999, 19(3): 241 250.[3]Titchmarsh, E., Introduction to the Theory of Fourier Integrals, 2nd ed., Oxford: Oxford University Press, 1948.[4]Ladyzhenskaya, O. A., Solonnikov, V. A., Ural' ceva, N. N., Linear and Quasilinear Equations of Parabolic Type,Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, 1968.

  10. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    OpenAIRE

    E. M. E. Zayed; K. A. E. Alurrfi

    2014-01-01

    We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  11. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    E. M. E. Zayed

    2014-01-01

    Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  12. Algebraic solution of master equations

    OpenAIRE

    R. Rangel; L. Carvalho

    2003-01-01

    We present a simple analytical method to solve master equations for finite temperatures and any initial conditions, which consists in the expansion of the density operator into normal modes. These modes and the expansion coefficients are obtained algebraically by using ladder superoperators. This algebraic technique is successful in cases in which the Liouville superoperator is quadratic in the creation and annihilation operators.

  13. Lithium equation-of-state

    International Nuclear Information System (INIS)

    In 1977, Dave Young published an equation-of-state (EOS) for lithium. This EOS was used by Lew Glenn in his AFTON calculations of the HYLIFE inertial-fusion-reactor hydrodynamics. In this paper, I summarize Young's development of the EOS and demonstrate a computer program (MATHSY) that plots isotherms, isentropes and constant energy lines on a P-V diagram

  14. Equational axioms of test algebra

    NARCIS (Netherlands)

    Hollenberg, M.

    2008-01-01

    We present a complete axiomatization of test algebra ([24,18,29]), the two-sorted algebraic variant of Propositional Dynamic Logic (PDL,[21,7]). The axiomatization consists of adding a finite number of equations to any axiomatization of Kleene algebra ([15,26,17,4]) and algebraic translations of the

  15. Sonar equations for planetary exploration.

    Science.gov (United States)

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus. PMID:27586766

  16. Stability of Functional Differential Equations

    CERN Document Server

    Lemm, Jeffrey M

    1986-01-01

    This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.

  17. Homographic scheme for Riccati equation

    CERN Document Server

    Dubois, François

    2011-01-01

    In this paper we present a numerical scheme for the resolution of matrix Riccati equation, usualy used in control problems. The scheme is unconditionnaly stable and the solution is definite positive at each time step of the resolution. We prove the convergence in the scalar case and present several numerical experiments for classical test cases.

  18. Renaissance Learning Equating Study. Report

    Science.gov (United States)

    Sewell, Julie; Sainsbury, Marian; Pyle, Katie; Keogh, Nikki; Styles, Ben

    2007-01-01

    An equating study was carried out in autumn 2006 by the National Foundation for Educational Research (NFER) on behalf of Renaissance Learning, to provide validation evidence for the use of the Renaissance Star Reading and Star Mathematics tests in English schools. The study investigated the correlation between the Star tests and established tests.…

  19. Quaternionic Monge-Ampere equations

    OpenAIRE

    Alesker, Semyon

    2002-01-01

    The main result of this paper is the existence and uniqueness of solution of the Dirichlet problem for quaternionic Monge-Ampere equations in quaternionic strictly pseudoconvex bounded domains in H^n. We continue the study of the theory of plurisubharmonic functions of quaternionic variables started by the author at [2].

  20. Pendulum Motion and Differential Equations

    Science.gov (United States)

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  1. Solution and transcritical bifurcation of Burgers equation

    Institute of Scientific and Technical Information of China (English)

    Tang Jia-Shi; Zhao Ming-Hua; Han Feng; Zhang Liang

    2011-01-01

    Burgers equation is reduced into a first-order ordinary differential equation by using travelling wave transformation and it has typical bifurcation characteristics. We can obtain many exact solutions of the Burgers equation, discuss its transcritical bifurcation and control dynamical behaviours by extending the stable region. The transcritical bifurcation exists in the (2 + 1)-dimensional Burgers equation.

  2. Stochastic dynamic equations on general time scales

    OpenAIRE

    Martin Bohner; Olexandr M. Stanzhytskyi; Anastasiia O. Bratochkina

    2013-01-01

    In this article, we construct stochastic integral and stochastic differential equations on general time scales. We call these equations stochastic dynamic equations. We provide the existence and uniqueness theorem for solutions of stochastic dynamic equations. The crucial tool of our construction is a result about a connection between the time scales Lebesgue integral and the Lebesgue integral in the common sense.

  3. A Bayesian Nonparametric Approach to Test Equating

    Science.gov (United States)

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  4. Exact Vacuum Solutions to the Einstein Equation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the author presents a framework for getting a series of exact vacuum solutions to the Einstein equation. This procedure of resolution is based on a canonical form of the metric. According to this procedure, the Einstein equation can be reduced to some 2-dimensional Laplace-like equations or rotation and divergence equations,which are much convenient for the resolution.

  5. Functional Equations and Inequalities with Applications

    CERN Document Server

    Kannappan, Palaniappan

    2009-01-01

    Presents a comprehensive study of the classical topic of functional equations. This monograph explores different aspects of functional equations and their applications to related topics, such as differential equations, integral equations, the Laplace transformation, the calculus of finite differences, and many other basic tools in analysis.

  6. On Backward Stochstic Partial Differential Equations.

    OpenAIRE

    2001-01-01

    We prove an existence and uniqueness result for a general class of backward stochastic partial differential equations. This is a type of equations which appear as adjoint equations in the maximum principle approach to optimal control of systems described by stochastic partial differential equations.

  7. Algebraic entropy for differential-delay equations

    OpenAIRE

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  8. The AGL equation from the dipole picture

    CERN Document Server

    Gay-Ducati, M B

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to an unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for an unitarized evolution equation at small x in the DLA limit.

  9. The AGL equation from the dipole picture

    International Nuclear Information System (INIS)

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to a unitarized gluon distribution in the small x regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this paper that the AGL equation and, consequently, the GLR equation, can also be obtained from the dipole picture in the double logarithmic limit, using an evolution equation, recently proposed, which includes all multiple pomeron exchanges in the leading logarithmic approximation. Our conclusion is that the AGL equation is a good candidate for a unitarized evolution equation at small x in the DLA limit

  10. Explicit Integration of Friedmann's Equation with Nonlinear Equations of State

    CERN Document Server

    Chen, Shouxin; Yang, Yisong

    2015-01-01

    This paper is a continuation of our earlier study on the integrability of the Friedmann equations in the light of the Chebyshev theorem. Our main focus will be on a series of important, yet not previously touched, problems when the equation of state for the perfect-fluid universe is nonlinear. These include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born--Infeld, and two-fluid models. We show that some of these may be integrated using Chebyshev's result while other are out of reach by the theorem but may be integrated explicitly by other methods. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution. For example, in the Chaplygin gas universe, it is seen that, as far as there is a tiny presence of nonlinear matter, linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics ...

  11. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  12. Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous:Mathematical Discussions and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation,generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.

  13. The AGL Equation from a Dipole Picture

    CERN Document Server

    Gay-Ducati, M B

    1999-01-01

    The AGL equation includes all multiple pomeron exchanges in the double logarithmic approximation (DLA) limit, leading to an unitarized gluon distribution in the small $x$ regime. This equation was originally obtained using the Glauber-Mueller approach. We demonstrate in this contribution that the AGL equation can also be obtained from the dipole picture. Our conclusion is that the AGL equation is a good candidate for an unitarized evolution equation at small $x$ in the DLA limit.

  14. Dual Isomonodromic Problems and Whitham Equations

    OpenAIRE

    Takasaki, Kanehisa

    1997-01-01

    The author's recent results on an asymptotic description of the Schlesinger equation are generalized to the JMMS equation. As in the case of the Schlesinger equation, the JMMS equation is reformulated to include a small parameter $\\epsilon$. By the method of multiscale analysis, the isomonodromic problem is approximated by slow modulations of an isospectral problem. A modulation equation of this slow dynamics is proposed, and shown to possess a number of properties similar to the Seiberg- Wit...

  15. Techniques for solving Boolean equation systems

    OpenAIRE

    Keinänen, Misa

    2006-01-01

    Boolean equation systems are ordered sequences of Boolean equations decorated with least and greatest fixpoint operators. Boolean equation systems provide a useful framework for formal verification because various specification and verification problems, for instance, μ-calculus model checking can be represented as the problem of solving Boolean equation systems. The general problem of solving a Boolean equation system is a computationally hard task, and no polynomial time solution technique ...

  16. The Pauli equation in scale relativity

    OpenAIRE

    Celerier, Marie-Noelle; Nottale, Laurent

    2006-01-01

    In standard quantum mechanics, it is not possible to directly extend the Schrodinger equation to spinors, so the Pauli equation must be derived from the Dirac equation by taking its non-relativistic limit. Hence, it predicts the existence of an intrinsic magnetic moment for the electron and gives its correct value. In the scale relativity framework, the Schrodinger, Klein-Gordon and Dirac equations have been derived from first principles as geodesics equations of a non-differentiable and cont...

  17. Integrable (2k)-Dimensional Hitchin Equations

    CERN Document Server

    Ward, R S

    2016-01-01

    This letter describes a completely-integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the k=2 case are described.

  18. Algebrization of Nonautonomous Differential Equations

    Directory of Open Access Journals (Sweden)

    María Aracelia Alcorta-García

    2015-01-01

    Full Text Available Given a planar system of nonautonomous ordinary differential equations, dw/dt=F(t,w, conditions are given for the existence of an associative commutative unital algebra A with unit e and a function H:Ω⊂R2×R2→R2 on an open set Ω such that F(t,w=H(te,w and the maps H1(τ=H(τ,ξ and H2(ξ=H(τ,ξ are Lorch differentiable with respect to A for all (τ,ξ∈Ω, where τ and ξ represent variables in A. Under these conditions the solutions ξ(τ of the differential equation dξ/dτ=H(τ,ξ over A define solutions (x(t,y(t=ξ(te of the planar system.

  19. Decoherent Histories and Hydrodynamic Equations

    CERN Document Server

    Halliwell, J J

    1998-01-01

    For a system consisting of a large collection of particles, a set of variables that will generally become effectively classical are the local densities (number, momentum, energy). That is, in the context of the decoherent histories approach to quantum theory, it is expected that histories of these variables will be approximately decoherent, and that their probabilites will be strongly peaked about hydrodynamic equations. This possibility is explored for the case of the diffusion of the number density of a dilute concentration of foreign particles in a fluid. It is shown that, for certain physically reasonable initial states, the probabilities for histories of number density are strongly peaked about evolution according to the diffusion equation. Decoherence of these histories is also shown for a class of initial states which includes non-trivial superpositions of number density. Histories of phase space densities are also discussed. The case of histories of number, momentum and energy density for more general...

  20. Power equations in endurance sports.

    Science.gov (United States)

    van Ingen Schenau, G J; Cavanagh, P R

    1990-01-01

    This paper attempts to clarify the formulation of power equations applicable to a variety of endurance activities. An accurate accounting of the relationship between the metabolic power input and the mechanical power output is still elusive, due to such issues as storage and recovery of strain energy and the differing energy costs of concentric and eccentric muscle actions. Nevertheless, an instantaneous approach is presented which is based upon the application of conventional Newtonian mechanics to a rigid segment model of the body, and does not contain assumptions regarding the exact nature of segmental interactions--such as energy transfer, etc. The application of the equation to running, cycling, speed skating, swimming and rowing is discussed and definitions of power, efficiency, and economy are presented.

  1. Differential Equations of Ideal Memristors

    Directory of Open Access Journals (Sweden)

    Z. Biolek

    2015-06-01

    Full Text Available Ideal memristor is a resistor with a memory, which adds dynamics to its behavior. The most usual characteristics describing this dynamics are the constitutive relation (i.e. the relation between flux and charge, or Parameter-vs-state- map (PSM, mostly represented by the memristance-to-charge dependence. One of the so far unheeded tools for memristor description is its differential equation (DEM, composed exclusively of instantaneous values of voltage, current, and their derivatives. The article derives a general form of DEM that holds for any ideal memristor and shows that it is always a nonlinear equation of the first order; the PSM forms are found for memristors which are governed by DEMs of the Bernoulli and the Riccati types; a classification of memristors according to the type of their dynamics with respect to voltage and current is carried out.

  2. Nielsen number and differential equations

    Directory of Open Access Journals (Sweden)

    Jan Andres

    2005-06-01

    Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial Rδ-structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.

  3. The equations icons of knowledge

    CERN Document Server

    Bais, Sander

    2005-01-01

    For thousands of years mankind has tried to understand nature. Exploring the world on all scales with instruments of ever more ingenuity, we have been able to unravel some of the great mysteries that surround us. While collecting an overwhelming multitude of observational facts, we discovered fundamental laws that govern the structure and evolution of physical reality. We know that nature speaks to us in the language of mathematics. In this language most of our basic understanding of the physical world can be expressed in an unambiguous and concise way. The most artificial language turns out to be the most natural of all. The laws of nature correspond to equations. These equations are the icons of knowledge that mark crucial turning points in our thinking about the world we happen to live in. They form the symbolic representation of most of what we know, and as such constitute an important and robust part of our culture.

  4. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  5. Sensitivity for the Smoluchowski equation

    Energy Technology Data Exchange (ETDEWEB)

    Bailleul, I F, E-mail: i.bailleul@statslab.cam.ac.uk [Statistical Laboratory, DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB (United Kingdom)

    2011-06-17

    This paper investigates the question of sensitivity of the solutions {mu}{sup {lambda}}{sub t} of the Smoluchowski equation on R{sub +}* with respect to the parameters {lambda} in the interaction kernel K{sup {lambda}}. It is proved that {mu}{sup {lambda}}{sub t} is a C{sup 1} function of (t, {lambda}) with values in a good space of measures under the hypotheses K{sup {lambda}}(x, y) {<=} {psi}(x) {psi}(y), for some sub-linear function {psi}, and {integral}{psi}{sup 4+{epsilon}}(x) {mu}{sub 0}(dx) < {infinity}, and that the derivative is the unique solution of a related equation.

  6. Eigenwavelets of the Wave equation

    OpenAIRE

    Kaiser, Gerald

    2004-01-01

    We study a class of localized solutions of the wave equation, called eigenwavelets, obtained by extending its fundamental solutions to complex spacetime in the sense of hyperfunctions. The imaginary spacetime variables y, which form a timelike vector, act as scale parameters generalizing the scale variable of wavelets in one dimension. They determine the shape of the wavelets in spacetime, making them pulsed beams that can be focused as tightly as desired around a single ray by letting y appr...

  7. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  8. Generalized bootstrap for estimating equations

    OpenAIRE

    Chatterjee, Snigdhansu; Bose, Arup

    2005-01-01

    We introduce a generalized bootstrap technique for estimators obtained by solving estimating equations. Some special cases of this generalized bootstrap are the classical bootstrap of Efron, the delete-d jackknife and variations of the Bayesian bootstrap. The use of the proposed technique is discussed in some examples. Distributional consistency of the method is established and an asymptotic representation of the resampling variance estimator is obtained.

  9. Equation of State Project Overview

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-11

    A general overview of the Equation of State (EOS) Project will be presented. The goal is to provide the audience with an introduction of what our more advanced methods entail (DFT, QMD, etc.. ) and how these models are being utilized to better constrain the thermodynamic models. These models substantially reduce our regions of interpolation between the various thermodynamic limits. I will also present a variety example of recent EOS work.

  10. Instantaneous Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    We present a systematic algebraic and numerical investigation of the instantaneous Beth-Salpeter equation. Emphasis is placed on confining interaction kernels of the Lorentz scalar, time component vector, and full vector-types. We explore the stability of the solutions and Regge behavior for each of these interactions, and conclude that only time component vector confinement leads to normal Regge structure and stable solutions for all quark masses

  11. Operator equations and invariant subspaces

    Directory of Open Access Journals (Sweden)

    Valentin Matache

    1994-05-01

    Full Text Available Banach space operators acting on some fixed space X are considered. If two such operators A and B verify the condition A2=B2 and if A has nontrivial hyperinvariant subspaces, then B has nontrivial invariant subspaces. If A and B commute and satisfy a special type of functional equation, and if A is not a scalar multiple of the identity, the author proves that if A has nontrivial invariant subspaces, then so does B.

  12. Differential equations in airplane mechanics

    Science.gov (United States)

    Carleman, M T

    1922-01-01

    In the following report, we will first draw some conclusions of purely theoretical interest, from the general equations of motion. At the end, we will consider the motion of an airplane, with the engine dead and with the assumption that the angle of attack remains constant. Thus we arrive at a simple result, which can be rendered practically utilizable for determining the trajectory of an airplane descending at a constant steering angle.

  13. Wave equations in higher dimensions

    CERN Document Server

    Dong, Shi-Hai

    2011-01-01

    Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativisti...

  14. Effective Schroedinger equations on submanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Wachsmuth, Jakob

    2010-02-11

    In this thesis the time dependent Schroedinger equation is considered on a Riemannian manifold A with a potential that localizes a certain class of states close to a fixed submanifold C, the constraint manifold. When the potential is scaled in the directions normal to C by a small parameter epsilon, the solutions concentrate in an epsilon-neighborhood of the submanifold. An effective Schroedinger equation on the submanifold C is derived and it is shown that its solutions, suitably lifted to A, approximate the solutions of the original equation on A up to errors of order {epsilon}{sup 3} vertical stroke t vertical stroke at time t. Furthermore, it is proved that, under reasonable conditions, the eigenvalues of the corresponding Hamiltonians below a certain energy coincide upto errors of order {epsilon}{sup 3}. These results holds in the situation where tangential and normal energies are of the same order, and where exchange between normal and tangential energies occurs. In earlier results tangential energies were assumed to be small compared to normal energies, and rather restrictive assumptions were needed, to ensure that the separation of energies is maintained during the time evolution. The most important consequence of this thesis is that now constraining potentials that change their shape along the submanifold can be treated, which is the typical situation in applications like molecular dynamics and quantum waveguides.

  15. Torsion Effects and LLG Equation

    CERN Document Server

    Ferreira, Cristine N; Neto, J A Helayël

    2016-01-01

    Based on the non-relativistic regime of the Dirac equation coupled to a torsion pseudo-vector, we study the dynamics of magnetization and how it is affected by the presence of torsion. We consider that torsion interacting terms in Dirac equation appear in two ways one of these is thhrough the covariant derivative considering the spin connection and gauge magnetic field and the other is through a non-minimal spin torsion coupling. We show within this framework, that it is possible to obtain the most general Landau, Lifshitz and Gilbert (LLG) equation including the torsion effects, where we refer to torsion as a geometric field playing an important role in the spin coupling process. We show that the torsion terms can give us two important landscapes in the magnetization dynamics: one of them related with damping and the other related with the screw dislocation that give us a global effect like a helix damping sharped. These terms are responsible for changes in the magnetization precession dynamics.

  16. ADVANCED WAVE-EQUATION MIGRATION

    Energy Technology Data Exchange (ETDEWEB)

    L. HUANG; M. C. FEHLER

    2000-12-01

    Wave-equation migration methods can more accurately account for complex wave phenomena than ray-tracing-based Kirchhoff methods that are based on the high-frequency asymptotic approximation of waves. With steadily increasing speed of massively parallel computers, wave-equation migration methods are becoming more and more feasible and attractive for imaging complex 3D structures. We present an overview of several efficient and accurate wave-equation-based migration methods that we have recently developed. The methods are implemented in the frequency-space and frequency-wavenumber domains and hence they are called dual-domain methods. In the methods, we make use of different approximate solutions of the scalar-wave equation in heterogeneous media to recursively downward continue wavefields. The approximations used within each extrapolation interval include the Born, quasi-Born, and Rytov approximations. In one of our dual-domain methods, we use an optimized expansion of the square-root operator in the one-way wave equation to minimize the phase error for a given model. This leads to a globally optimized Fourier finite-difference method that is a hybrid split-step Fourier and finite-difference scheme. Migration examples demonstrate that our dual-domain migration methods provide more accurate images than those obtained using the split-step Fourier scheme. The Born-based, quasi-Born-based, and Rytov-based methods are suitable for imaging complex structures whose lateral variations are moderate, such as the Marmousi model. For this model, the computational cost of the Born-based method is almost the same as the split-step Fourier scheme, while other methods takes approximately 15-50% more computational time. The globally optimized Fourier finite-difference method significantly improves the accuracy of the split-step Fourier method for imaging structures having strong lateral velocity variations, such as the SEG/EAGE salt model, at an approximately 30% greater

  17. a Multiple Riccati Equations Rational-Exponent Method and its Application to Whitham-Broer Equation

    Science.gov (United States)

    Liu, Qing; Wang, Zi-Hua; Jia, Dong-Li

    2013-03-01

    According to two dependent solutions to a generalized Riccati equation together with the equation itself, a multiple Riccati equations rational-exponent method is proposed and applied to Whitham-Broer-Kaup equation. It shows that this method is a more concise and efficient approach and can uniformly derive many types of combined solutions to nonlinear partial differential equations.

  18. Gibbs adsorption and the compressibility equation

    International Nuclear Information System (INIS)

    A new approach for deriving the equation of state is developed. It is shown that the integral in the compressibility equation is identical to the isotherm for Gibbs adsorption in radial coordinates. The Henry, Langmuir, and Frumkin adsorption isotherms are converted into equations of state. It is shown that using Henry's law gives an expression for the second virial coefficient that is identical to the result from statistical mechanics. Using the Langmuir isotherm leads to a new analytic expression for the hard-sphere equation of state which can be explicit in either pressure or density. The Frumkin isotherm results in a new equation of state for the square-well potential fluid. Conversely, new adsorption isotherms can be derived from equations of state using the compressibility equation. It is shown that the van der Waals equation gives an adsorption isotherm equation that describes both polymolecular adsorption and the unusual adsorption behavior observed for supercritical fluids. copyright 1995 American Institute of Physics

  19. Kinetic equations for an unstable plasma

    International Nuclear Information System (INIS)

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors)

  20. Transport Properties of the Universal Quantum Equation

    Institute of Scientific and Technical Information of China (English)

    A.I.Arbab

    2012-01-01

    The universal quantum equation (UQE) is found to describe the transport properties of the quantum particles.This equation describes a wave equation interacting with constant scalar and vector potentials propagating in spacetime.A new transformation that sends the Schr(o)dinger equation with a potential energy V =-1/2mc2 to Dirac's equation is proposed.The Cattaneo telegraph equation as well as a one-dimensional UQE are compatible with our recently proposed generalized continuity equations.Furthermore,a new wave equation resulted from the invariance of the UQE under the post-Galilean transformations is derived.This equation is found to govern a Klein Gordon's particle interacting with a photon-like vector field (ether) whose magnitude is proportional to the particle's mass.

  1. On Reducing a System of Equations to a Single Equation

    DEFF Research Database (Denmark)

    Frandsen, G.S.; Shparlinski, I.E.

    2004-01-01

    For a system of polynomial equations over Q;p; we present an efficient construction of a single polynomial of quite small degree whose zero set over Q;p; coincides with the zero set over Q;p; of the original system. We also show that the polynomial has some other attractive features such as low a...... additive and straight-line complexity.The proof is based on a link established here between the above problem and some recent number theoretic result about zeros of p-adic forms....

  2. From Newton's Equation to Fractional Diffusion and Wave Equations

    Directory of Open Access Journals (Sweden)

    Vázquez Luis

    2011-01-01

    Full Text Available Fractional calculus represents a natural instrument to model nonlocal (or long-range dependence phenomena either in space or time. The processes that involve different space and time scales appear in a wide range of contexts, from physics and chemistry to biology and engineering. In many of these problems, the dynamics of the system can be formulated in terms of fractional differential equations which include the nonlocal effects either in space or time. We give a brief, nonexhaustive, panoramic view of the mathematical tools associated with fractional calculus as well as a description of some fields where either it is applied or could be potentially applied.

  3. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  4. Handbook of differential equations stationary partial differential equations

    CERN Document Server

    Chipot, Michel

    2006-01-01

    This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke

  5. Using fundamental equations to describe basic phenomena

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    When the fundamental thermodynamic balance equations (mass, energy, and momentum) are used to describe the processes in a simple refrigeration system, then one finds that the resulting equation system will have a degree of freedom equal to one. Further investigations reveal that it is the equation...... and subcooling are introduced. Since the degree of freedom was equal to one, using both the superheat and subcooling require that one of the fundamental equations must be omitted from the equation system.The main purpose of the paper is to clarify the relation between the fundamental balance equations...

  6. Partial differential equations for scientists and engineers

    CERN Document Server

    Farlow, Stanley J

    1993-01-01

    Most physical phenomena, whether in the domain of fluid dynamics, electricity, magnetism, mechanics, optics, or heat flow, can be described in general by partial differential equations. Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing th

  7. Mathematical physics with partial differential equations

    CERN Document Server

    Kirkwood, James

    2011-01-01

    Mathematical Physics with Partial Differential Equations is for advanced undergraduate and beginning graduate students taking a course on mathematical physics taught out of math departments. The text presents some of the most important topics and methods of mathematical physics. The premise is to study in detail the three most important partial differential equations in the field - the heat equation, the wave equation, and Laplace's equation. The most common techniques of solving such equations are developed in this book, including Green's functions, the Fourier transform

  8. International Workshop on Elliptic and Parabolic Equations

    CERN Document Server

    Schrohe, Elmar; Seiler, Jörg; Walker, Christoph

    2015-01-01

    This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.

  9. EQUATIONS FOR GRAIN SIZE DISTRIBUTION CURVE

    Institute of Scientific and Technical Information of China (English)

    Prabhata K.SWAMEE; Nimisha SWAMEE

    2004-01-01

    The grain size distribution of particulate material is of particular interest in the field of sediment transport. The size distribution is described by various equations, however no equation is flexible enough to satisfy the grain size distribution data faithfully. Presented herein are the equations for unimodal and multimodal grain size distribution curves. A graphical method has been given to evaluate the parameters involved in these equations. The size distribution equation can be used to estimate many properties of sediment sample like number of sediment particles, surface area of the particles and hydraulic conductivity. It is hoped that the equations will find many applications in studying sedimentation processes.

  10. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    Science.gov (United States)

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  11. PICARD ITERATION FOR NONSMOOTH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Song-bai Sheng; Hui-fu Xu

    2001-01-01

    This paper presents an analysis of the generalized Newton method, approximate Newton methods, and splitting methods for solving nonsmooth equations from Picard iteration viewpoint. It is proved that the radius of the weak Jacobian (RGJ) of Picard iteration function is equal to its least Lipschitz constant. Linear convergence or superlinear convergence results can be obtained provided that RGJ of the Picard iteration function at a solution point is less than one or equal to zero. As for applications, it is pointed out that the approximate Newton methods, the generalized Newton method for piecewise C1problems and splitting methods can be explained uniformly with the same viewpoint.

  12. Advanced lab on Fresnel equations

    Science.gov (United States)

    Petrova-Mayor, Anna; Gimbal, Scott

    2015-11-01

    This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.

  13. Anyon Equation on a Torus

    Science.gov (United States)

    Ho, Choon-Lin; Hosotani, Yutaka

    Starting from the quantum field theory of nonrelativistic matter on a torus interacting with Chern-Simons gauge fields, we derive the Schrödinger equation for an anyon system. The nonintegrable phases of the Wilson line integrals on a torus play an essential role. In addition to generating degenerate vacua, they enter in the definition of a many-body Schrödinger wave function in quantum mechanics, which can be defined as a regular function of the coordinates of anyons. It obeys a non-Abelian representation of the braid group algebra, being related to Einarsson’s wave function by a singular gauge transformation.

  14. BMN correlators by loop equations

    International Nuclear Information System (INIS)

    In the BMN approach to N=4 SYM a large class of correlators of interest are expressible in terms of expectation values of traces of words in a zero-dimensional gaussian complex matrix model. We develop a loop-equation based, analytic strategy for evaluating such expectation values to any order in the genus expansion. We reproduce the expectation values which were needed for the calculation of the one-loop, genus one correction to the anomalous dimension of BMN-operators and which were earlier obtained by combinatorial means. Furthermore, we present the expectation values needed for the calculation of the one-loop, genus two correction. (author)

  15. Experimental determination of circuit equations

    CERN Document Server

    Shulman, Jason; Widjaja, Matthew; Gunaratne, Gemunu H

    2013-01-01

    Kirchhoff's laws offer a general, straightforward approach to circuit analysis. Unfortunately, use of the laws becomes impractical for all but the simplest of circuits. This work presents a novel method of analyzing direct current resistor circuits. It is based on an approach developed to model complex networks, making it appropriate for use on large, complicated circuits. It is unique in that it is not an analytic method. It is based on experiment, yet the approach produces the same circuit equations obtained by more traditional means.

  16. On oscillatory solutions of certain difference equations

    Directory of Open Access Journals (Sweden)

    Grzegorz Grzegorczyk

    2006-01-01

    Full Text Available Some difference equations with deviating arguments are discussed in the context of the oscillation problem. The aim of this paper is to present the sufficient conditions for oscillation of solutions of the equations discussed.

  17. On oscillatory solutions of certain difference equations

    OpenAIRE

    Grzegorz Grzegorczyk; Jarosław Werbowski

    2006-01-01

    Some difference equations with deviating arguments are discussed in the context of the oscillation problem. The aim of this paper is to present the sufficient conditions for oscillation of solutions of the equations discussed.

  18. The Spin-2 Equation on Minkowski Background

    CERN Document Server

    Beyer, Florian; Frauendiener, Jörg; Whale, Ben

    2014-01-01

    The linearised general conformal field equations in their first and second order form are used to study the behaviour of the spin-2 zero-rest-mass equation on Minkowski background in the vicinity of space-like infinity.

  19. Hydrodynamic Equations for Microscopic Phase Densities

    OpenAIRE

    Gerasimenko, V. I.; Shtyk, V. O.; Zagorodny, A. G.

    2009-01-01

    The evolution equations for the generalized microscopic phase densities are introduced. The evolution equations of average values of microscopic phase densities are derived and a solution of the initial-value problem of the obtained hydrodynamic type hierarchy is constructed.

  20. Introduction to linear algebra and differential equations

    CERN Document Server

    Dettman, John W

    1986-01-01

    Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

  1. Exact Solutions to Short Pulse Equation

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; ZHENG Ming-Hua; LIU Shi-Kuo

    2009-01-01

    In this paper, dependent and independent variable transformations are introduced to solve the short pulse equation. It is shown that different kinds of solutions can be obtained to the short pulse equation.

  2. Exact Solutions to Degasperis-Procesi Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin-Na; FU Zun-Tao; LIU Shi-Kuo

    2008-01-01

    In this paper,dependent and independent variable transformations are introduced to solve the Degasperis-Procesi equation.It is shown that different kinds of solutions can be obtained to the Degasperis-Procesi equation.

  3. Simultaneous Independent Linear Equations and Goldbach Conjecture

    CERN Document Server

    Linggen, Song

    2007-01-01

    It was verified that if Goldbach conjecture was a fault, the number of simultaneous independent linear equations educed from this assumption would be unreasonably at least one more than the number of unknowns involved in these equations.

  4. A new class of variational equation problems

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Applying an analysis method to a group of multivariable equations, a new class of variational equations are proved. This method is more concise and more direct than the others. This result can be applied to some stochastic control models.

  5. Functional differential equations of third order

    Directory of Open Access Journals (Sweden)

    Tuncay Candan

    2005-04-01

    Full Text Available In this paper, we consider the third-order neutral functional differential equation with distributed deviating arguments. We give sufficient conditions for the oscillatory behavior of this functional differential equation.

  6. OSCILLATION CRITERIA FOR FORCED SUPERLINEAR DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using Riccati transformation techniques,some oscillation criteria for the forced second-order superlinear difference equations are established.These criteria are dis- crete analogues of the criteria for differential equations proposed by Yan.

  7. An axiomatic approach to Maxwell's equations

    CERN Document Server

    Heras, José A

    2016-01-01

    This paper suggests an axiomatic approach to Maxwell's equations. The basis of this approach is a theorem formulated for two sets of functions localized in space and time. If each set satisfies a continuity equation then the theorem provides an integral representation for each function. A corollary of this theorem yields Maxwell's equations with magnetic monopoles. It is pointed out that the causality principle and the conservation of electric and magnetic charges are the most fundamental physical axioms underlying these equations. Another application of the corollary yields Maxwell's equations in material media. The theorem is also formulated in the Minkowski space-time and applied to obtain the covariant form of Maxwell's equations with magnetic monopoles and the covariant form of Maxwell's equations in material media. The approach makes use of the infinite-space Green function of the wave equation and is therefore suitable for an advanced course in electrodynamics.

  8. Dirac and Maxwell equations in Split Octonions

    CERN Document Server

    Beradze, Revaz

    2016-01-01

    The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.

  9. Linear superposition solutions to nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition,i.e.,the linear superposition of two or more known solutions is still a solution of the linear wave equation.We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic,triangle,and exponential functions,and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics.The linear superposition solutions to the generalized KdV equation K(2,2,1),the Oliver water wave equation,and the k(n,n) equation are given.The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed,and the reason why the solutions with the forms of hyperbolic,triangle,and exponential functions can form the linear superposition solutions is also discussed.

  10. Fractional Complex Transform for Fractional Differential Equations

    OpenAIRE

    Li, Zheng-Biao; He, Ji-Huan

    2010-01-01

    Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily applied to fractional calculus. Two examples are given.

  11. Solving Equations of Multibody Dynamics

    Science.gov (United States)

    Jain, Abhinandan; Lim, Christopher

    2007-01-01

    Darts++ is a computer program for solving the equations of motion of a multibody system or of a multibody model of a dynamic system. It is intended especially for use in dynamical simulations performed in designing and analyzing, and developing software for the control of, complex mechanical systems. Darts++ is based on the Spatial-Operator- Algebra formulation for multibody dynamics. This software reads a description of a multibody system from a model data file, then constructs and implements an efficient algorithm that solves the dynamical equations of the system. The efficiency and, hence, the computational speed is sufficient to make Darts++ suitable for use in realtime closed-loop simulations. Darts++ features an object-oriented software architecture that enables reconfiguration of system topology at run time; in contrast, in related prior software, system topology is fixed during initialization. Darts++ provides an interface to scripting languages, including Tcl and Python, that enable the user to configure and interact with simulation objects at run time.

  12. Classical equations for quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gell-Mann, M. (Theoretical Astrophysics Group (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico 87545) (United States) (Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico 87501); Hartle, J.B. (Department of Physics, University of California enSanta Barbara, Santa Barbara, (California) 93106)

    1993-04-15

    The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. A formulation of quantum mechanics is used that predicts probabilities for the individual members of a set of alternative coarse-grained histories that [ital decohere], which means that there is negligible quantum interference between the individual histories in the set. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e., such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of the noise consisting of the fluctuations that typical mechanisms of decoherence produce. We describe the derivation of phenomenological equations of motion explicitly for a particular class of models.

  13. Quantization of Equations of Motion

    Directory of Open Access Journals (Sweden)

    D. Kochan

    2007-01-01

    Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail. 

  14. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  15. BOUNDARY CONTROL OF MKDV-BURGERS EQUATION

    Institute of Scientific and Technical Information of China (English)

    TIAN Li-xin; ZHAO Zhi-feng; WANG Jing-feng

    2006-01-01

    The boundary control of MKdV-Burgers equation was considered by feedback control on the domain [0,1]. The existence of the solution of MKdV-Burgers equation with the feedback control law was proved. On the base, priori estimates for the solution was given. At last, the existence of the weak solution of MKdV-Burgers equation was proved and the global-exponential and asymptotic stability of the solution of MKdV-Burgers equation was given.

  16. Nonlinear SCHRÖDINGER-PAULI Equations

    Science.gov (United States)

    Ng, Wei Khim; Parwani, Rajesh R.

    2011-11-01

    We obtain novel nonlinear Schrüdinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought forward by the nonlinear terms and suggests how to regularise previous equations studied in the literature. The enhancement of contributions coming from the regularised singularities suggests that the obtained equations might be useful for future precision tests of quantum nonlinearity.

  17. Weierstrass solutions for dissipative BBM equation

    OpenAIRE

    Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar

    2013-01-01

    In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified BBM equation. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant make the equation integrable in terms of Weiers...

  18. A Note on Indefinite Stochastic Riccati Equations

    CERN Document Server

    Qian, Zhongmin

    2012-01-01

    An indefinite stochastic Riccati Equation is a matrix-valued, highly nonlinear backward stochastic differential equation together with an algebraic, matrix positive definiteness constraint. We introduce a new approach to solve a class of such equations (including the existence of solutions) driven by one-dimensional Brownian motion. The idea is to replace the original equation by a system of BSDEs (without involving any algebraic constraint) whose existence of solutions automatically enforces the original algebraic constraint to be satisfied.

  19. On a complex differential Riccati equation

    Energy Technology Data Exchange (ETDEWEB)

    Khmelnytskaya, Kira V; Kravchenko, Vladislav V [Department of Mathematics, CINVESTAV del IPN, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, Queretaro, Qro. C.P. 76230 Mexico (Mexico)], E-mail: vkravchenko@qro.cinvestav.mx

    2008-02-29

    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem.

  20. Solutions manual to accompany Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  1. Homogenization of ordinary and linear transport equations

    OpenAIRE

    Peirone, Roberto

    1996-01-01

    The homogenization of first order ordinary differential equations in $\\mathbb{R}^N$ and associated linear transport equations are studied. We prove the equivalence between $G$-convergence and strong $G$-convergence for the ordinary equations. We give a sufficient condition, which is also necessary in the autonomous case, for the weak homogenization of the linear transport equations. This condition is satisfied when div$_x f=0$.

  2. Some constant solutions to Zamolodchikov's tetrahedron equations

    CERN Document Server

    Hietarinta, Jarmo

    1992-01-01

    In this letter we present constant solutions to the tetrahedron equations proposed by Zamolodchikov. In general, from a given solution of the Yang-Baxter equation there are two ways to construct solutions to the tetrahedron equation. There are also other kinds of solutions. We present some two-dimensional solutions that were obtained by directly solving the equations using either an upper triangular or Zamolodchikov's ansatz.

  3. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Cam

  4. Onsager equations and time dependent neutron transport

    International Nuclear Information System (INIS)

    The diffusion of neutrons following an abrupt, localized temperature fluctuation can be conducted in the framework of Onsager-type transport equations. Considering Onsager equations as a generalized Fick's law, time-dependent particle and energy 'generalized diffusion equations' can be obtained. Aim of the present paper is to obtain the time-dependent diffusion Onsager-type equations for the diffusion of neutrons and to apply them to simple trial cases to gain a feeling for their behaviour. (author)

  5. Some Aspects of Extended Kinetic Equation

    Directory of Open Access Journals (Sweden)

    Dilip Kumar

    2015-09-01

    Full Text Available Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended kinetic equation with fractional calculus operator is established. The solution of the general form of the fractional kinetic equation is obtained through Laplace transform. The results for the standard kinetic equation are obtained as the limiting case.

  6. Notes on the infinity Laplace equation

    CERN Document Server

    Lindqvist, Peter

    2016-01-01

    This BCAM SpringerBriefs is a treaty of the Infinity-Laplace Equation, which has inherited many features from the ordinary Laplace Equation, and is based on lectures by the author. The Infinity.Laplace Equation has delightful counterparts to the Dirichlet integral, the mean value property, the Brownian motion, Harnack's inequality, and so on. This "fully non-linear" equation has applications to image processing and to mass transfer problems, and it provides optimal Lipschitz extensions of boundary values.

  7. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  8. Symmetry Breaking for Black-Scholes Equations

    Science.gov (United States)

    Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng

    2007-06-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  9. Symmetry Breaking for Black-Scholes Equations

    International Nuclear Information System (INIS)

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  10. The Modified Enskog Equation for Mixtures

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1973-01-01

    In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport coe

  11. Some Functional Equations Originating from Number Theory

    Indian Academy of Sciences (India)

    Soon-Mo Jung; Jae-Hyeong Bae

    2003-05-01

    We will introduce new functional equations (3) and (4) which are strongly related to well-known formulae (1) and (2) of number theory, and investigate the solutions of the equations. Moreover, we will also study some stability problems of those equations.

  12. Errors in equations for galaxy rotation speeds

    OpenAIRE

    Nicholson, Kenneth F.

    2003-01-01

    Shown are the errors and difficulties of the equations used for galaxy rotation speeds in the book "Galactic Dynamics" (Binney and Tremaine). A usable and accurate set of equations is then presented. The new equations allow easy determination of galaxy mass distribution from the rotation profile with no need for dark matter or any knowledge of galaxy surface light.

  13. Differential Galois Theory of Linear Difference Equations

    OpenAIRE

    Hardouin, Charlotte; Singer, Michael F.

    2008-01-01

    We present a Galois theory of difference equations designed to measure the differential dependencies among solutions of linear difference equations. With this we are able to reprove Hoelder's Theorem that the Gamma function satisfies no polynomial differential equation and are able to give general results that imply, for example, that no differential relationship holds among solutions of certain classes of q-hypergeometric functions.

  14. Difference Galois theory of linear differential equations

    OpenAIRE

    Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael

    2013-01-01

    We develop a Galois theory for linear differential equations equipped with the action of an endomorphism. This theory is aimed at studying the difference algebraic relations among the solutions of a linear differential equation. The Galois groups here are linear difference algebraic groups, i.e., matrix groups defined by algebraic difference equations.

  15. The Schrodinger equation and negative energies

    OpenAIRE

    Bruce, S

    2008-01-01

    We present a nonrelativistic wave equation for the electron in (3+1)-dimensions which includes negative-energy eigenstates. We solve this equation for three well-known instances, reobtaining the corresponding Pauli equation (but including negative-energy eigenstates) in each case.

  16. Symmetry properties of fractional diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru

    2009-10-15

    In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.

  17. The Effect of Repeaters on Equating

    Science.gov (United States)

    Kim, HeeKyoung; Kolen, Michael J.

    2010-01-01

    Test equating might be affected by including in the equating analyses examinees who have taken the test previously. This study evaluated the effect of including such repeaters on Medical College Admission Test (MCAT) equating using a population invariance approach. Three-parameter logistic (3-PL) item response theory (IRT) true score and…

  18. Contact Structures of Partial Differential Equations

    NARCIS (Netherlands)

    Eendebak, P.T.

    2007-01-01

    We study the geometry of contact structures of partial differential equations. The main classes we study are first order systems of two equations in two independent and two dependent variables and the second order scalar equations in two independent variables. The contact distribution in these two c

  19. Solving Absolute Value Equations Algebraically and Geometrically

    Science.gov (United States)

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  20. TWO PROBLEMS OF HERMITE ELLIPTIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Huaug Feirain

    2009-01-01

    In this article, the author investigates some Hermite elliptic equations in a modified Sobolev space introduced by X. Ding [2]. First, the author shows the existence of a ground state solution of semilinear Hermite elliptic equation. Second, the author studies the eigenvalue problem of linear Hermite elliptic equation in a bounded or unbounded domain.

  1. Some new modular equations and their applications

    Science.gov (United States)

    Yi, Jinhee; Sim, Hyo Seob

    2006-07-01

    Ramanujan derived 23 beautiful eta-function identities, which are certain types of modular equations. We found more than 70 of certain types of modular equations by using Garvan's Maple q-series package. In this paper, we prove some new modular equations which we found by employing the theory of modular form and we give some applications for them.

  2. Non RG logarithms via RG equations

    OpenAIRE

    Malyshev, Dmitry

    2004-01-01

    We compute complete leading logarithms in $\\Phi^4$ theory with the help of Connes and Kreimer RG equations. These equations are defined in the Lie algebra dual to the Hopf algebra of graphs. The results are compared with calculations in parquet approximation. An interpretation of the new RG equations is discussed.

  3. Invalidity of the spectral Fokker-Planck equation forCauchy noise driven Langevin equation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2004-01-01

    The standard Langevin equation is a first order stochastic differential equation where the driving noise term is a Brownian motion. The marginal probability density is a solution to a linear partial differential equation called the Fokker-Planck equation. If the Brownian motion is replaced by so......-called alpha-stable noise (or Levy noise) the Fokker-Planck equation no longer exists as a partial differential equation for the probability density because the property of finite variance is lost. In stead it has been attempted to formulate an equation for the characteristic function (the Fourier transform......) corresponding to the density function. This equation is frequently called the spectral Fokker-Planck equation. This paper raises doubt about the validity of the spectral Fokker/Planck equation in its standard formulation. The equation can be solved with respect to stationary solutions in the particular case...

  4. Dual Isomonodromic Problems and Whitham Equations

    CERN Document Server

    Takasaki, K

    1997-01-01

    The author's recent results on an asymptotic description of the Schlesinger equation are generalized to the JMMS equation. As in the case of the Schlesinger equation, the JMMS equation is reformulated to include a small parameter $\\epsilon$. By the method of multiscale analysis, the isomonodromic problem is approximated by slow modulations of an isospectral problem. A modulation equation of this slow dynamics is proposed, and shown to possess a number of properties similar to the Seiberg- Witten solutions of low energy supersymmetric gauge theories.

  5. The Dirac equation and its solutions

    CERN Document Server

    Bagrov, Vladislav G

    2014-01-01

    Dirac equations are of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly.In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  6. Constraint-Preserving Scheme for Maxwell's Equations

    CERN Document Server

    Tsuchiya, Takuya

    2016-01-01

    We derive the discretized Maxwell's equations using the discrete variational derivative method (DVDM), calculate the evolution equation of the constraint, and confirm that the equation is satisfied at the discrete level. Numerical simulations showed that the results obtained by the DVDM are superior to those obtained by the Crank-Nicolson scheme. In addition, we study the two types of the discretized Maxwell's equations by the DVDM and conclude that if the evolution equation of the constraint is not conserved at the discrete level, then the numerical results are also unstable.

  7. Quadratic field equations on the brane

    International Nuclear Information System (INIS)

    It is shown that four-dimensional vacuum Einstein solutions simply embedded in five dimensions obey the Gauss-Bonnet-Einstein field equations: Gab+ αGBab + δ55abαexp[-2χ/√α]GB4 = 0 and the Pauli-Einstein equations Gab - 3αPab/5 = 0, and the Bach-Einstein equations Bab = 0. General equations are calculated for which these and similar results follow. It is briefly argued that such field equations could be significant on large distance scales.

  8. Some Recent Advances in Partial Difference Equations

    CERN Document Server

    Petropoulou, Eugenia N

    2010-01-01

    Lately there is an increasing interest in partial difference equations demonstrated by the enormous amount of research papers devoted to them. The initial reason for this increasing interest was the development of computers and the area of numerical analysis, where partial difference equations arise naturally when discretizing a partial differential equation. The aim of this e-book is to provide some recent advances in the field of partial difference equations. Applications of partial difference equations in numerical analysis and systems theory are also presented. This e-book will be of use t

  9. Generalised connections and higher-spin equations

    CERN Document Server

    Francia, Dario

    2012-01-01

    We consider high-derivative equations obtained setting to zero the divergence of the higher-spin curvatures in metric-like form, showing their equivalence to the second-order equations emerging from the tensionless limit of open string field theory, which propagate reducible spectra of particles with different spins. This result can be viewed as complementary to the possibility of setting to zero a single trace of the higher-spin field strengths, which yields an equation known to imply Fronsdal's equation in the compensator form. Higher traces and divergences of the curvatures produce a whole pattern of high-derivative equations whose systematics is also presented.

  10. Classical Equations for Quantum Systems

    CERN Document Server

    Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.

    1993-01-01

    The origin of the phenomenological deterministic laws that approximately govern the quasiclassical domain of familiar experience is considered in the context of the quantum mechanics of closed systems such as the universe as a whole. We investigate the requirements for coarse grainings to yield decoherent sets of histories that are quasiclassical, i.e. such that the individual histories obey, with high probability, effective classical equations of motion interrupted continually by small fluctuations and occasionally by large ones. We discuss these requirements generally but study them specifically for coarse grainings of the type that follows a distinguished subset of a complete set of variables while ignoring the rest. More coarse graining is needed to achieve decoherence than would be suggested by naive arguments based on the uncertainty principle. Even coarser graining is required in the distinguished variables for them to have the necessary inertia to approach classical predictability in the presence of t...

  11. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  12. The equations of medieval cosmology

    Science.gov (United States)

    Buonanno, Roberto; Quercellini, Claudia

    2009-04-01

    In Dantean cosmography the Universe is described as a series of concentric spheres with all the known planets embedded in their rotation motion, the Earth located at the centre and Lucifer at the centre of the Earth. Beyond these "celestial spheres", Dante represents the "angelic choirs" as other nine spheres surrounding God. The rotation velocity increases with decreasing distance from God, that is with increasing Power (Virtù). We show that, adding Power as an additional fourth dimension to space, the modern equations governing the expansion of a closed Universe (i.e. with the density parameter Ω0 > 1) in the space-time, can be applied to the medieval Universe as imaged by Dante in his Divine Comedy. In this representation, the Cosmos acquires a unique description and Lucifer is not located at the centre of the hyperspheres.

  13. The equations of medieval cosmology

    CERN Document Server

    Buonanno, Roberto

    2008-01-01

    In Dantean cosmography the Universe is described as a series of concentric spheres with all the known planets embedded in their rotation motion, the Earth located at the centre and Lucifer at the centre of the Earth. Beyond these "celestial spheres", Dante represents the "angelic choirs" as other nine spheres surrounding God. The rotation velocity increases with decreasing distance from God, that is with increasing Power (Virtu'). We show that, adding Power as an additional fourth dimension to space, the modern equations governing the expansion of a closed Universe (i. e. with the density parameter \\Omega_0>1) in the space-time, can be applied to the medieval Universe as imaged by Dante in his Divine Comedy. In this representation the Cosmos acquires a unique description and Lucifer is not located at the centre of the hyperspheres.

  14. An introduction to differential equations

    CERN Document Server

    Ladde, Anil G

    2012-01-01

    This is a twenty-first century book designed to meet the challenges of understanding and solving interdisciplinary problems. The book creatively incorporates "cutting-edge" research ideas and techniques at the undergraduate level. The book also is a unique research resource for undergraduate/graduate students and interdisciplinary researchers. It emphasizes and exhibits the importance of conceptual understandings and its symbiotic relationship in the problem solving process. The book is proactive in preparing for the modeling of dynamic processes in various disciplines. It introduces a "break-down-the problem" type of approach in a way that creates "fun" and "excitement". The book presents many learning tools like "step-by-step procedures (critical thinking)", the concept of "math" being a language, applied examples from diverse fields, frequent recaps, flowcharts and exercises. Uniquely, this book introduces an innovative and unified method of solving nonlinear scalar differential equations. This is called ...

  15. Model Equations: "Black Box" Reconstruction

    Science.gov (United States)

    Bezruchko, Boris P.; Smirnov, Dmitry A.

    Black box reconstruction is both the most difficult and the most tempting modelling problem when any prior information about an appropriate model structure is lacking. An intriguing thing is that a model capable of reproducing an observed behaviour or predicting further evolution should be obtained only from an observed time series, i.e. "from nothing" at first sight. Chances for a success are not large. Even more so, a "good" model would become a valuable tool to characterise an object and understand its dynamics. Lack of prior information causes one to utilise universal model structures, e.g. artificial neural networks, radial basis functions and algebraic polynomials are included in the right-hand sides of dynamical model equations. Such models are often multi-dimensional and involve quite many free parameters.

  16. Equation of state of beryllium

    International Nuclear Information System (INIS)

    A new, wide-range equation of state (EOS) has been constructed for Be. The composite theoretical model incorporates ionization equilibrium and condensed-matter and multiphase physics. It also satisfies all thermodynamic equilibrium constraints. The theoretical EOS has been compared with all available high-pressure and high-temperature Be data, and satisfactory agreement is generally achieved. The most interesting feature is the theoretical prediction of melting at just below 220 GPa (2 Mb), indicating an extremely wide pressure range for solid Be. A striking feature is the appearance of shell-structure effects in physical-process paths: 2 large loops appear on the principal Hugoniot and the behavior of release isentropes from rho = rho0 is significantly affected

  17. Structural equation modeling in epidemiology

    Directory of Open Access Journals (Sweden)

    Leila Denise Alves Ferreira Amorim

    2010-12-01

    Full Text Available Structural equation modeling (SEM is an important statistical tool for evaluating complex relations in several research areas. In epidemiology, the use and discussion of SEM have been limited thus far. This article presents basic principles and concepts in SEM, including an application using epidemiological data analysis from a study on the determinants of cognitive development in young children, considering constructs related to organization of the child's home environment, parenting style, and the child's health status. The relations between the constructs and cognitive development were measured. The results showed a positive association between psychosocial stimulus at home and cognitive development in young children. The article presents the contributions by SEM to epidemiology, highlighting the need for an a priori theoretical model for improving the study of epidemiological questions from a new perspective.

  18. Inferring Mathematical Equations Using Crowdsourcing.

    Directory of Open Access Journals (Sweden)

    Szymon Wasik

    Full Text Available Crowdsourcing, understood as outsourcing work to a large network of people in the form of an open call, has been utilized successfully many times, including a very interesting concept involving the implementation of computer games with the objective of solving a scientific problem by employing users to play a game-so-called crowdsourced serious games. Our main objective was to verify whether such an approach could be successfully applied to the discovery of mathematical equations that explain experimental data gathered during the observation of a given dynamic system. Moreover, we wanted to compare it with an approach based on artificial intelligence that uses symbolic regression to find such formulae automatically. To achieve this, we designed and implemented an Internet game in which players attempt to design a spaceship representing an equation that models the observed system. The game was designed while considering that it should be easy to use for people without strong mathematical backgrounds. Moreover, we tried to make use of the collective intelligence observed in crowdsourced systems by enabling many players to collaborate on a single solution. The idea was tested on several hundred players playing almost 10,000 games and conducting a user opinion survey. The results prove that the proposed solution has very high potential. The function generated during weeklong tests was almost as precise as the analytical solution of the model of the system and, up to a certain complexity level of the formulae, it explained data better than the solution generated automatically by Eureqa, the leading software application for the implementation of symbolic regression. Moreover, we observed benefits of using crowdsourcing; the chain of consecutive solutions that led to the best solution was obtained by the continuous collaboration of several players.

  19. A New Route to the Majorana Equation

    Directory of Open Access Journals (Sweden)

    Eckart Marsch

    2013-09-01

    Full Text Available In this paper, we suggest an alternative strategy to derive the complex two-component Majorana equation with a mass term and elucidate the related Lorentz transformation. The Majorana equation is established completely on its own, rather than derived from the chiral Dirac equation. Thereby, use is made of the complex conjugation operator and Pauli spin matrices only. The eigenfunctions of the two-component complex Majorana equation are also calculated. The associated quantum fields are found to describe particles and antiparticles, which have opposite mean helicities and are not their own antiparticles, but correspond to two independent degrees of freedom. The four-component real Dirac equation in its Majorana representation is shown to be the natural outcome of the two-component complex Majorana equation. Both types of equations come in two forms, which correspond to the irreducible left- and right-chiral representations of the Lorentz group.

  20. The tanh-coth method combined with the Riccati equation for solving non-linear equation

    Energy Technology Data Exchange (ETDEWEB)

    Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr

    2009-05-15

    In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.

  1. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

    Indian Academy of Sciences (India)

    Yusuf Gurefe; Abdullah Sonmezoglu; Emine Misirli

    2011-12-01

    In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.

  2. Difference equations and cluster algebras I: Poisson bracket for integrable difference equations

    CERN Document Server

    Inoue, Rei

    2010-01-01

    We introduce the cluster algebraic formulation of the integrable difference equations, the discrete Lotka-Volterra equation and the discrete Liouville equation, from the view point of the general T-system and Y-system. We also study the Poisson structure for the cluster algebra, and give the associated Poisson bracket for the two difference equations.

  3. Similarities and Differences Between Freundlich Kinetic Equation and Two—Constant Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANGZENGQIANG; ZHANGYIPING

    1999-01-01

    A mathematical expression of Freundlich kinetic equation,lnS=A'+B'lnt,is presented,and the physical meanings of its parameters are indicated.Although the Freundlich kinetic equation and the two-constant equation are the same in the form,the derivation of the Freundlich kinetic equation is precise,while the derivation of the two-constant equation has some contradictions and is unreasonable,And it is suggested that the Freundlich kinetic equation should have prority over the two-constant equation to be used.

  4. The properties of the first equation of the Vlasov chain of equations

    Science.gov (United States)

    Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.

    2015-05-01

    A derivation of the first Vlasov equation as a well-known Schrödinger equation for the probabilistic description of a system and families of the classic diffusion equations and heat conduction for the deterministic description of physical systems was inferred. A physical meaning of the phase of the wave function which is a scalar potential of the probabilistic flow velocity is demonstrated. Occurrence of the velocity potential vortex component leads to the Pauli equation for one of the spinar components. A scheme for the construction of the Schrödinger equation solution from the Vlasov equation solution and vice-versa is shown. A process of introduction of the potential to the Schrödinger equation and its interpretation are given. The analysis of the potential properties gives us the Maxwell equation, the equation of the kinematic point movement, and the equation for movement of the medium within electromagnetic fields.

  5. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    levitation about Itokawa, we must include accurate plasma and gravity models. We use a 2D PIC code (described in [8]) to model the plasma environment about Itokawa's equator. The plasma model includes photoemission and shadowing. Thus, we model the plasma environment for various solar incidence angles. The plasma model gives us the 2D electric field components and the plasma potential. We model the gravity field around the equatorial cross-section using an Interior Gravity model [9]. The gravity model is based on the shape model acquired by the Hayabusa mission team and, unlike other models, is quick and accurate close to the surface of the body. Due to the nonspherical shape of Itokawa, the electrostatic force and the gravity may not be collinear. Given our accurate plasma and gravity environments, we are able to simulate the trajectories of dust grains about the equator of Itokawa. When modeling the trajectories of the grains, the current to the grains is calculated using Nitter et al.'s formulation [10] with the plasma sheath parameters provided by our PIC model (i.e., the potential minimum, the potential at the surface, and the sheath type). Additionally, we are able to numerically locate the equilibria about which dust grains may levitate. Interestingly, we observe that equilibria exist for grains up to 20 microns in radius about Itokawa's equator when the Sun is illuminating Itokawa's 'otter tail'. This grain size is significantly larger than the stably levitating grains we observed using our 1D plasma and gravity models. Conclusions and Future Work: The possibility of dust levitation above asteroids has implications both for our understanding of their evolution and for the design of future missions to these bodies. Using detailed gravity and plasma models, we are above to propagate the trajectories of dust particles about Itokawa's equator and identify the equilibria about which these grains will levitate. Using these simulations, we see that grains up to 20 microns

  6. A new application of Riccati equation to some nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Geng Tao [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)], E-mail: taogeng@yahoo.com.cn; Shan Wenrui [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2008-03-03

    By means of symbolic computation, a new application of Riccati equation is presented to obtain novel exact solutions of some nonlinear evolution equations, such as nonlinear Klein-Gordon equation, generalized Pochhammer-Chree equation and nonlinear Schroedinger equation. Comparing with the existing tanh methods and the proposed modifications, we obtain the exact solutions in the form as a non-integer power polynomial of tanh (or tan) functions by using this method, and the availability of symbolic computation is demonstrated.

  7. New Type of Soliton Equation Described Some Statistical Distributions and Nonlinear Equations Unified Quantum Statistics

    OpenAIRE

    Chang, Yi-Fang

    2009-01-01

    We proposed a new type of soliton equation, whose solutions may describe some statistical distributions, for example, Cauchy distribution, normal distribution and student distribution, etc. The equation possesses two characters. Further, from an extension of this type of equation we may obtain the exponential distribution, and the Fermi-Dirac distribution in quantum statistics. Moreover, by using the method of the soliton-solution, the nonlinear Klein-Gordon equation and nonlinear Dirac equat...

  8. Renormalization group flow equations from the 4PI equations of motion

    CERN Document Server

    Carrington, M E

    2013-01-01

    The 4PI effective action provides a a hierarchy of integral equations which have the form of Bethe-Salpeter equations. The vertex functions obtained from these equations can be used to truncate the exact renormalization group flow equations. This truncation has the property that the flow is a total derivative with respect to the flow parameter and is equivalent to solving the nPI equations of motion. This result establishes a direct connection between two non-perturbative methods.

  9. Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma

    Science.gov (United States)

    Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.

    2007-12-01

    The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.

  10. Solving equations through particle dynamics

    Science.gov (United States)

    Edvardsson, S.; Neuman, M.; Edström, P.; Olin, H.

    2015-12-01

    The present work evaluates a recently developed particle method (DFPM). The basic idea behind this method is to utilize a Newtonian system of interacting particles that through dissipation solves mathematical problems. We find that this second order dynamical system results in an algorithm that is among the best methods known. The present work studies large systems of linear equations. Of special interest is the wide eigenvalue spectrum. This case is common as the discretization of the continuous problem becomes dense. The convergence rate of DFPM is shown to be in parity with that of the conjugate gradient method, both analytically and through numerical examples. However, an advantage with DFPM is that it is cheaper per iteration. Another advantage is that it is not restricted to symmetric matrices only, as is the case for the conjugate gradient method. The convergence properties of DFPM are shown to be superior to the closely related approach utilizing only a first order dynamical system, and also to several other iterative methods in numerical linear algebra. The performance properties are understood and optimized by taking advantage of critically damped oscillators in classical mechanics. Just as in the case of the conjugate gradient method, a limitation is that all eigenvalues (spring constants) are required to be of the same sign. DFPM has no other limitation such as matrix structure or a spectral radius as is common among iterative methods. Examples are provided to test the particle algorithm's merits and also various performance comparisons with existent numerical algorithms are provided.

  11. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  12. Numerical methods for ordinary differential equations

    CERN Document Server

    Butcher, John C

    2008-01-01

    In recent years the study of numerical methods for solving ordinary differential equations has seen many new developments. This second edition of the author''s pioneering text is fully revised and updated to acknowledge many of these developments.  It includes a complete treatment of linear multistep methods whilst maintaining its unique and comprehensive emphasis on Runge-Kutta methods and general linear methods. Although the specialist topics are taken to an advanced level, the entry point to the volume as a whole is not especially demanding.  Early chapters provide a wide-ranging introduction to differential equations and difference equations together with a survey of numerical differential equation methods, based on the fundamental Euler method with more sophisticated methods presented as generalizations of Euler. Features of the book includeIntroductory work on differential and difference equations.A comprehensive introduction to the theory and practice of solving ordinary differential equations numeri...

  13. Diffusion phenomenon for linear dissipative wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-01-01

    In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.

  14. Exponential Attractor for a Nonlinear Boussinesq Equation

    Institute of Scientific and Technical Information of China (English)

    Ahmed Y. Abdallah

    2006-01-01

    This paper is devoted to prove the existence of an exponential attractor for the semiflow generated by a nonlinear Boussinesq equation. We formulate the Boussinesq equation as an abstract equation in the Hilbert space H20(0, 1) × L2(0, 1). The main step in this research is to show that there exists an absorbing set for the solution semiflow in the Hilbert space H03(0, 1) × H10(0, 1).

  15. Multigrid method for nonlinear poroelasticity equations

    OpenAIRE

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, Cornelis

    2016-01-01

    In this study, a nonlinear multigrid method is applied for solving the system of incompressible poroelasticity equations considering nonlinear hydraulic conductivity. For the unsteady problem, an additional artificial term is utilized to stabilize the solutions when the equations are discretized on collocated grids. We employ two nonlinear multigrid methods, i.e. the “full approximation scheme” and “Newton multigrid” for solving the corresponding system of equations arising after discretizati...

  16. Introducing Equational Semantics for Argumentation Networks

    OpenAIRE

    Gabbay, Dov M.

    2011-01-01

    This paper provides equational semantics for Dung’s argumentation networks. The network nodes get numerical values in [0,1], and are supposed to satisfy certain equations. The solutions to these equations correspond to the “extensions” of the network. This approach is very general and includes the Caminada labelling as a special case, as well as many other so-called network extensions, support systems, higher level attacks, Boolean networks, dependence on time, etc, etc. ...

  17. Reaction diffusion equations with boundary degeneracy

    Directory of Open Access Journals (Sweden)

    Huashui Zhan

    2016-03-01

    Full Text Available In this article, we consider the reaction diffusion equation $$ \\frac{\\partial u}{\\partial t} = \\Delta A(u,\\quad (x,t\\in \\Omega \\times (0,T, $$ with the homogeneous boundary condition. Inspired by the Fichera-Oleinik theory, if the equation is not only strongly degenerate in the interior of $\\Omega$, but also degenerate on the boundary, we show that the solution of the equation is free from any limitation of the boundary condition.

  18. Involutive reductions and solutions of differential equations

    OpenAIRE

    Engelmann, Joachim

    2003-01-01

    This work introduces the so-called involutive reduction procedure to simplify and solve differential equations. The method is based on symmetry analysis, which was developed by the Norwegian mathematician Sophus Lie. The involutive reduction procedure uses the given differential equation itself and the invariant surface condition of this differential equation. The invariant surface condition incorporates the symmetries of the problem. This coupled system of partial differential equati...

  19. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  20. Horizon Thermodynamics from Einstein's Equation of State

    CERN Document Server

    Hansen, Devin; Mann, Robert

    2016-01-01

    By regarding the Einstein equations as equation(s) of state, we demonstrate that a full cohomogeneity horizon first law can be derived in horizon thermodynamics. In this approach both the entropy and the free energy are derived concepts, while the standard (degenerate) horizon first law is recovered by a Legendre projection from the more general one we derive. These results readily generalize to higher curvature gravities and establish a way of how to formulate consistent black hole thermodynamics without conserved charges.

  1. The Nonlinear Convection—Reaction—Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    ShiminTANG; MaochangCUI; 等

    1996-01-01

    A nonlinear convection-reaction-diffusion equation is used as a model equation of the El Nino events.In this model,the effects of convection,turbulent diffusion,linear feed-back and nolinear radiation on the anomaly of Sea Surface Temperature(SST) are considered.In the case of constant convection,this equation has exact kink-like travelling wave solutions,which can be used to explain the history of an El Nino event.

  2. Symmetry Coefficients of Semilinear Partial Differential Equations

    OpenAIRE

    Freire, Igor Leite; Martins, Antonio Carlos Gilli

    2008-01-01

    We show that for any semilinear partial differential equation of order m, the infinitesimals of the independent variables depend only on the independent variables and, if m>1 and the equation is also linear in its derivatives of order m-1 of the dependent variable, then the infinitesimal of the dependent variable is at most linear on the dependent variable. Many examples of important partial differential equations in Analysis, Geometry and Mathematical - Physics are given in order to enlighte...

  3. Partial differential equations of parabolic type

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta

  4. Estimating Structural Change in Linear Simultaneous Equations

    OpenAIRE

    Huang Weihong; Zhang Yang

    2004-01-01

    Tests and estimation for changes in the coefficients of linear regression models, particularly the analysis of covariance and the Chow tests, are well known to econometricians and are widely used. This paper demonstrates that analogous estimation can also be constructed in simultaneous equation models when equations are estimated by common estimator like OLS, 2SLS and LIML. In the present paper, we discuss the problem of estimating structural changes in equations from a simultaneous structura...

  5. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  6. Equation of state of HE detonation products

    OpenAIRE

    Nadykto B.A.

    2011-01-01

    Computational analysis of steady-state HE detonation parameters is possible if one knows the equation of state of detonation products and thermal energy released at the Jouget point during detonation. There are a number of equations of state of HE detonation products that result from different assumptions concerning detonated material conditions. The paper considers one more version of the equation of state for HE detonation products.

  7. The model equation of soliton theory

    OpenAIRE

    Adler, V. E.; Shabat, A. B.

    2007-01-01

    We consider an hierarchy of integrable 1+2-dimensional equations related to Lie algebra of the vector fields on the line. The solutions in quadratures are constructed depending on $n$ arbitrary functions of one argument. The most interesting result is the simple equation for the generating function of the hierarchy which defines the dynamics for the negative times and also has applications to the second order spectral problems. A rather general theory of integrable 1+1-dimensional equations c...

  8. Dynamic equations for curved submerged floating tunnel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.

  9. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  10. Fuzzy Symmetric Solutions of Fuzzy Matrix Equations

    OpenAIRE

    Xiaobin Guo; Dequan Shang

    2012-01-01

    The fuzzy symmetric solution of fuzzy matrix equation AX˜=B˜, in which A is a crisp m×m nonsingular matrix and B˜ is an m×n fuzzy numbers matrix with nonzero spreads, is investigated. The fuzzy matrix equation is converted to a fuzzy system of linear equations according to the Kronecker product of matrices. From solving the fuzzy linear system, three types of fuzzy symmetric solutions of the fuzzy matrix equation are derived. Finally, two examples are given to illustrate the proposed method....

  11. Folding transformations for quantum Painleve equations

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, A [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Nagoya, H [Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8914 Tokyo (Japan); Grammaticos, B [IMNC, Universite Paris VII-Paris XI, CNRS, UMR 8165, Bat. 104, 91406 Orsay (France); Tamizhmani, T [Department of Mathematics, Kanchi Mamunivar Centre for Postgraduate Studies, Puducherry (India)

    2009-03-06

    We examine a special property of Painleve equations, namely possessing folding transformations. The latter are relations of the solution of a given Painleve equation to the square of that of some other, which can be the same as the initial one. They generally exist only for special values of the parameters of a given equation. The present setting will be that of the quantum Painleve equations, which are systems where the dependent variables are noncommuting objects. Both continuous and discrete cases are analysed and the folding transformations are established in a perfect parallel between continuous and discrete systems.

  12. Folding transformations for quantum Painleve equations

    International Nuclear Information System (INIS)

    We examine a special property of Painleve equations, namely possessing folding transformations. The latter are relations of the solution of a given Painleve equation to the square of that of some other, which can be the same as the initial one. They generally exist only for special values of the parameters of a given equation. The present setting will be that of the quantum Painleve equations, which are systems where the dependent variables are noncommuting objects. Both continuous and discrete cases are analysed and the folding transformations are established in a perfect parallel between continuous and discrete systems

  13. The Raychaudhuri equations: A brief review

    Indian Academy of Sciences (India)

    Sayan Kar; Soumitra Sengupta

    2007-07-01

    We present a brief review on the Raychaudhuri equations. Beginning with a summary of the essential features of the original article by Raychaudhuri and subsequent work of numerous authors, we move on to a discussion of the equations in the context of alternate non-Riemannian spacetimes as well as other theories of gravity, with a special mention on the equations in spacetimes with torsion (Einstein–Cartan–Sciama–Kibble theory). Finally, we give an overview of some recent applications of these equations in general relativity, quantum field theory, string theory and the theory of relativisitic membranes. We conclude with a summary and provide our own perspectives on directions of future research.

  14. Fractional Schrödinger equation.

    Science.gov (United States)

    Laskin, Nick

    2002-11-01

    Some properties of the fractional Schrödinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schrödinger equation we find the energy spectra of a hydrogenlike atom (fractional "Bohr atom") and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schrödinger equations. PMID:12513557

  15. New integrability case for the Riccati equation

    CERN Document Server

    Mak, M K

    2012-01-01

    A new integrability condition of the Riccati equation $dy/dx=a(x)+b(x)y+c(x)y^{2}$ is presented. By introducing an auxiliary equation depending on a generating function $f(x)$, the general solution of the Riccati equation can be obtained if the coefficients $a(x)$, $b(x)$, $c(x)$, and the function $f(x)$ satisfy a particular constraint. The validity and reliability of the method are tested by obtaining the general solutions of some Riccati type differential equations. Some applications of the integrability conditions for the case of the damped harmonic oscillator with time dependent frequency, and for solitonic wave, are briefly discussed.

  16. Mass continuity equation in the electromagnetic field

    CERN Document Server

    Weng, Ying

    2009-01-01

    A theoretical method with the quaternion algebra was presented to derive the mass continuity equation from the linear momentum. It predicts that the strength of electromagnetic field and the velocity have the impact on the mass continuity equation. In the gravitational field and electromagnetic field, the mass continuity equation will change with the electromagnetic field strength, gravitational field strength, linear momentum, electric current, and the speed of light. The deduction can explain why the field strength has an influence on the anomalous transport about the mass continuity equation in the plasma and electrolytes etc.

  17. Algebras with Parastrophically Uncancellable Quasigroup Equations

    Directory of Open Access Journals (Sweden)

    Amir Ehsani

    2016-07-01

    Full Text Available We consider 48 parastrophically uncancellable quadratic functional equations with four object variables and two quasigroup operations in two classes: balanced non-Belousov (consists of 16 equations and non-balanced non-gemini (consists of 32 equations. A linear representation of a group (Abelian group for a pair of quasigroup operations satisfying one of these parastrophically uncancellable quadratic equations is obtained. As a consequence of these results, a linear representation for every operation of a binary algebra satisfying one of these hyperidentities is obtained.

  18. Numerical Solutions of Fractional Boussinesq Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Qi

    2007-01-01

    Based upon the Adomian decomposition method,a scheme is developed to obtain numerical solutions of a fractional Boussinesq equation with initial condition,which is introduced by replacing some order time and space derivatives by fractional derivatives.The fractional derivatives are described in the Caputo sense.So the traditional Adomian decomposition method for differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional differential equations.The solutions of our model equation are calculated in the form of convergent series with easily computable components.

  19. Blending Brownian motion and heat equation

    CERN Document Server

    Cristiani, Emiliano

    2015-01-01

    In this short communication we present an original way to couple the Brownian motion and the heat equation. More in general, we suggest a way for coupling the Langevin equation for a particle, which describes a single realization of its trajectory, with the associated Fokker-Planck equation, which instead describes the evolution of the particle's probability density function. Numerical results show that it is indeed possible to obtain a regularized Brownian motion and a Brownianized heat equation still preserving the global statistical properties of the solutions. The results also suggest that the more macroscale leads the dynamics the more one can reduce the microscopic degrees of freedom.

  20. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  1. On q-Difference Riccati Equations and Second-Order Linear q-Difference Equations

    Directory of Open Access Journals (Sweden)

    Zhi-Bo Huang

    2013-01-01

    Full Text Available We consider q-difference Riccati equations and second-order linear q-difference equations in the complex plane. We present some basic properties, such as the transformations between these two equations, the representations and the value distribution of meromorphic solutions of q-difference Riccati equations, and the q-Casorati determinant of meromorphic solutions of second-order linear q-difference equations. In particular, we find that the meromorphic solutions of these two equations are concerned with the q-Gamma function when q∈ℂ such that 0<|q|<1. Some examples are also listed to illustrate our results.

  2. Extended generalized Riccati equation mapping method for the fifth-order Sawada-Kotera equation

    Science.gov (United States)

    Naher, Hasibun; Abdullah, Farah Aini; Mohyud-Din, Syed Tauseef

    2013-05-01

    In this article, the generalized Riccati equation mapping together with the basic (G'/G)-expansion method is implemented which is advance mathematical tool to investigate nonlinear partial differential equations. Moreover, the auxiliary equation G'(ϕ) = h + f G(ϕ) + g G2(ϕ) is used with arbitrary constant coefficients and called the generalized Riccati equation. By applying this method, we have constructed abundant traveling wave solutions in a uniform way for the Sawada-Kotera equation. The obtained solutions of this equation have vital and noteworthy explanations for some practical physical phenomena.

  3. On the Equivalence of the Massless DKP equation and the Maxwell Equations in the Shuwer

    CERN Document Server

    Salti, M; Salti, Mustafa; Havare, Ali

    2005-01-01

    In this paper, a general relativistic wave equation is written to deal with electromagnetic waves in the background of the Shuwer. We obtain the exact form of this equation in a second order form. On the other hand, by using spinor form of the Maxwell equations the propagation problem is reduced to the solution of the second order differential equation of complex combination of the electric and magnetic fields. For these two different approach, we obtain the spinors in terms of field strength tensor. We show that the Maxwell equations are the equivalence with the mDKP equation in the Shuwer.

  4. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  5. Shear viscosity of nuclear matter

    CERN Document Server

    Magner, A G; Grygoriev, U V; Plujko, V A

    2016-01-01

    Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...

  6. An Exact Mapping from Navier-Stokes Equation to Schrodinger Equation via Riccati EquationAn Exact Mapping from Navier-Stokes Equation to Schrodinger Equation via Riccati Equation

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-01-01

    Full Text Available In the present article we argue that it is possible to write down Schrodinger representation of Navier-Stokes equation via Riccati equation. The proposed approach, while differs appreciably from other method such as what is proposed by R.M.Kiehn, has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic version of Navier-Stokes equation, for instance via Kravchenko's and Gibbon's route. Further observation is of course recommended in order to refute or verify this proposition.

  7. SOLVABILITY OF SINGULAR CANTILEVER BEAM EQUATION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two local existence theorems are established for a class of fourth-order two-point boundary value problems with all order derivatives and singularity.Main ingredients are Green function and integral equation.In mechanics,such class of problems is called cantilever beam equation which describes the deflection of an elastic beam fixed at left and freed at right.

  8. The Homoclinic Orbits in Nonlinear Schroedinger Equation

    Institute of Scientific and Technical Information of China (English)

    PengchengXU; BolingGUO; 等

    1998-01-01

    The persistence of Homoclinic orbits for perturbed nonlinear Schroedinger equation with five degree term under een periodic boundary conditions is considered.The exstences of the homoclinic orbits for the truncation equation is established by Melnikov's analysis and geometric singular perturbation theory.

  9. The Homoclinic Orbit Solution for Functional Equation

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Da; FUZun-Tao; 等

    2002-01-01

    In this paper,some examples,such as iterated functional systems,scaling equation of wavelet transform,and invariant measure system,are used to show that the homoclinic orbit solutions exist in the functional equations too.And the solitary wave exists in generalized dynamical systems and functional systems.

  10. The Homoclinic Orbit Solution for Functional Equation

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Da; FU Zun-Tao; LIU Shi-Kuo; REN Kui

    2002-01-01

    In this paper, some examples, such as iterated functional systems, scaling equation of wavelet transform,and invariant measure system, are used to show that the homoclinic orbit solutions exist in the functional equations too.And the solitary wave exists in generalized dynamical systems and functional systems.

  11. The open boundary equation (discussion paper)

    NARCIS (Netherlands)

    Diederen, D.; Savenije, H.H.G.; Toffolon, M.

    2015-01-01

    We present a new equation describing the hydrodynamics in infinitely long tidal channels (i.e., no reflection) under the influence of oceanic forcing. The proposed equation is a simple relationship between partial derivatives of water level and velocity. It is formally derived for a progressive wave

  12. Multigrid method for nonlinear poroelasticity equations

    NARCIS (Netherlands)

    Luo, P.; Rodrigo, C.; Gaspar, F.J.; Oosterlee, C.W.

    2016-01-01

    In this study, a nonlinear multigrid method is applied for solving the system of incompressible poroelasticity equations considering nonlinear hydraulic conductivity. For the unsteady problem, an additional artificial term is utilized to stabilize the solutions when the equations are discretized on

  13. Semigroup methods for evolution equations on networks

    CERN Document Server

    Mugnolo, Delio

    2014-01-01

    This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations.  Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.      This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...

  14. Difference methods for stiff delay differential equations

    International Nuclear Information System (INIS)

    Delay differential equations of the form y'(t) = f(y(t), z(t)), where z(t) = [y1(α1(y(t))),..., y/sub n/(α/sub n/(y(t)))]/sup T/ and α/sub i/(y(t)) less than or equal to t, arise in many scientific and engineering fields when transport lags and propagation times are physically significant in a dynamic process. Difference methods for approximating the solution of stiff delay systems require special stability properties that are generalizations of those employed for stiff ordinary differential equations. By use of the model equation y'(t) = py(t) + qy(t-1), with complex p and q, the definitions of A-stability, A( )-stability, and stiff stability have been generalize to delay equations. For linear multistep difference formulas, these properties extend directly from ordinary to delay equations. This straight forward extension is not true for implicit Runge-Kutta methods, as illustrated by the midpoint formula, which is A-stable for ordinary equations, but not for delay equations. A computer code for stiff delay equations was developed using the BDF. 24 figures, 5 tables

  15. Coupling and reduction of the HAWC equations

    DEFF Research Database (Denmark)

    Nim, E.

    2001-01-01

    This report contains a description of a general method for coupling and reduction of the so-called HAWC equations, which constitute the basis equations of motion of the aeroelastic model HAWC used widely by research institutes and industrial companies formore than the ten years. The principal aim...

  16. Acoustofluidics 1: Governing equations in microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2011-01-01

    Governing equations for microfluidics and basic flow solutions are presented. Equivalent circuit modeling for determining flow rates in microfluidic networks is introduced.......Governing equations for microfluidics and basic flow solutions are presented. Equivalent circuit modeling for determining flow rates in microfluidic networks is introduced....

  17. A comparison of two equations of state

    CERN Document Server

    Celebonovic, V

    1999-01-01

    The forms of two astrophysically applicable equations of state (EOS) are compared: the EOS proposed within the semiclassical theory of dense matter developed by P.Savic and R.Kasanin,and the universal equation of state introduced by Vinet et al.Some similarities between them are discussed and possibilities of astrophysical tests are pointed out.

  18. xRage Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Grove, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-16

    The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.

  19. Linearization of Systems of Nonlinear Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    KANG Jing; QU Chang-Zheng

    2007-01-01

    We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings.

  20. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  1. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  2. Modeling helicity dissipation-rate equation

    CERN Document Server

    Yokoi, Nobumitsu

    2016-01-01

    Transport equation of the dissipation rate of turbulent helicity is derived with the aid of a statistical analytical closure theory of inhomogeneous turbulence. It is shown that an assumption on the helicity scaling with an algebraic relationship between the helicity and its dissipation rate leads to the transport equation of the turbulent helicity dissipation rate without resorting to a heuristic modeling.

  3. Quasi-exact Solvability of Dirac Equations

    CERN Document Server

    Ho, Choon-Lin

    2007-01-01

    We present a general procedure for determining quasi-exact solvability of the Dirac and the Pauli equation with an underlying $sl(2)$ symmetry. This procedure makes full use of the close connection between quasi-exactly solvable systems and supersymmetry. The Dirac-Pauli equation with spherical electric field is taken as an example to illustrate the procedure.

  4. The Pauli equation in scale relativity

    CERN Document Server

    Célérier, M N; Celerier, Marie-Noelle; Nottale, Laurent

    2006-01-01

    In standard quantum mechanics, it is not possible to directly extend the Schrodinger equation to spinors, so the Pauli equation must be derived from the Dirac equation by taking its non-relativistic limit. Hence, it predicts the existence of an intrinsic magnetic moment for the electron and gives its correct value. In the scale relativity framework, the Schrodinger, Klein-Gordon and Dirac equations have been derived from first principles as geodesics equations of a non-differentiable and continuous spacetime. Since such a generalized geometry implies the occurence of new discrete symmetry breakings, this has led us to write Dirac bi-spinors in the form of bi-quaternions (complex quaternions). In the present work, we show that, in scale relativity also, the correct Pauli equation can only be obtained from a non-relativistic limit of the relativistic geodesics equation (which, after integration, becomes the Dirac equation) and not from the non-relativistic formalism (that involves symmetry breakings in a fracta...

  5. Euler's Amazing Way to Solve Equations.

    Science.gov (United States)

    Flusser, Peter

    1992-01-01

    Presented is a series of examples that illustrate a method of solving equations developed by Leonhard Euler based on an unsubstantiated assumption. The method integrates aspects of recursion relations and sequences of converging ratios and can be extended to polynomial equation with infinite exponents. (MDH)

  6. Poisson theory of generalized Bikhoff equations

    Institute of Scientific and Technical Information of China (English)

    Shang Mei; Mei Feng-Xiang

    2009-01-01

    This paper presents a Poisson theory of the generalized Birkhoff equations,including the algebraic structure of the equations,the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.

  7. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  8. RICCATI EQUATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

    NARCIS (Netherlands)

    Curtain, Ruth

    2011-01-01

    Conditions for the existence of a solution of a Riccati equation to be in some prescribed noncommutative involutive Banach algebras are given. The Banach algebras are inverse-closed subalgebras of the space of bounded linear operators on some Hilbert space, and the Riccati equation has an exponentia

  9. Long term dynamics of stochastic evolution equations

    NARCIS (Netherlands)

    Bierkens, Gregorius Nicolaas Johannes Cornelis

    2010-01-01

    Stochastic differential equations with delay are the inspiration for this thesis. Examples of such equations arise in population models, control systems with delay and noise, lasers, economical models, neural networks, environmental pollution and in many other situations. In such models we are often

  10. Diophantine equations related to quasicrystals: a note

    OpenAIRE

    Pelantová, E.; Perelomov, A. M.

    2001-01-01

    We give the general solution of three Diophantine equations in the ring of integer of the algebraic number field ${\\bf Q}[{\\sqr 5}]$. These equations are related to the problem of determination of the minimum distance in quasicrystals with fivefold symmetry.

  11. Regularity of the Gurtin-Pipkin equation

    CERN Document Server

    Ivanov, Sergei A

    2012-01-01

    We study regularity of the solution $\\theta$ to the Gurtin-Pipkin integral-differential equation of the first order in time. The solution smoothness in Sobolev spaces is proved. Also it is proved that the 'perturbation' part, namely, the difference of $\\theta$ and the solution to the corresponding wave equation is smoother than $\\theta$.

  12. ON ALGEBRICO-DIFFERENTIAL EQUATIONS-SOLVING

    Institute of Scientific and Technical Information of China (English)

    WU Wenjun(Wu Wen-tsun)

    2004-01-01

    The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations. As an illustration of the method, the Devil's Problem of Pommaret is solved in details.

  13. Qualitative permanence of Lotka-Volterra equations.

    Science.gov (United States)

    Hofbauer, Josef; Kon, Ryusuke; Saito, Yasuhisa

    2008-12-01

    In this paper, we consider permanence of Lotka-Volterra equations. We investigate the sign structure of the interaction matrix that guarantees the permanence of a Lotka-Volterra equation whenever it has a positive equilibrium point. An interaction matrix with this property is said to be qualitatively permanent. Our results provide both necessary and sufficient conditions for qualitative permanence.

  14. Sonar Equations for Planets and Moons

    NARCIS (Netherlands)

    Ainslie, M.A.; Leighton, T.G.

    2015-01-01

    A set of equations to describe the performance of sonar systems, collectively known as the “sonar equations”, was developed during and after the Second World War. These equations assumed that both the sonar equipment and the object to be detected (usually a submarine) would be submerged in one of Ea

  15. GLOBAL ATTRACTIVITY OF A DIFFERENCE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we investigate the global stability of all positive solutions to a difference equation.We show that the unique positive equilibrium of the equation is a global attractor with a basin under some certain conditions on the coefficient.

  16. Multisymplectic Geometry for the Seismic Wave Equation

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-Bo

    2004-01-01

    The multisymplectic geometry for the seismic wave equation is presented in this paper.The local energy conservation law,the local momentum evolution equations,and the multisymplectic form are derived directly from the variational principle.Based on the covariant Legendre transform,the multisymplectic Hamiltonian formulation is developed.Multisymplectic discretization and numerical experiments are also explored.

  17. Quasilinear evolution equations of the third order

    Directory of Open Access Journals (Sweden)

    Andrei V. Faminskii

    2007-11-01

    Full Text Available The present paper is a survey concerned with certain aspects of solvability and well-posedness of initial and initial-boundary value problems for various quasilinear evolution equations of the third order. This class includes, for example, Korteweg-de Vries (KdV and Zakharov-Kuznetsov (ZK equations.

  18. Topologies for neutral functional differential equations.

    Science.gov (United States)

    Melvin, W. R.

    1973-01-01

    Bounded topologies are considered for functional differential equations of the neutral type in which present dynamics of the system are influenced by its past behavior. A special bounded topology is generated on a collection of absolutely continuous functions with essentially bounded derivatives, and an application to a class of nonlinear neutral functional differential equations due to Driver (1965) is presented.

  19. Symbolic Solution of Linear Differential Equations

    Science.gov (United States)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  20. SPACE-TIME ESTIMATE TO HEAT EQUATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, we prove the Strichartz type estimate for the solutions of linear heat equation with initial data in Hardy space H1(Rd). As an application, we obtain the full space-time estimate to the solutions of heat equation with initial data in LP(Rd) for 1<p<∞.

  1. Some differential equations in synthetic differential geometry

    OpenAIRE

    Kock, Anders; Reyes, Gonzalo E.

    2001-01-01

    Some differential equations are considered in the context of Synthetic Differential Geometry. Here, this means that not only nilpotent infinitesimals, but also the formation of function spaces, is exploited. In particular, we utilize distribution spaces in our study of wave and heat equations.

  2. Nonlinear wave equations and constrained harmonic motion

    OpenAIRE

    Deift, Percy; Lund, Fernando; Trubowitz, Eugene

    1980-01-01

    The study of the Korteweg-deVries, nonlinear Schrödinger, Sine-Gordon, and Toda lattice equations is simply the study of constrained oscillators. This is likely to be true for any nonlinear wave equation associated with a second-order linear problem.

  3. Analytical solutions of the extended Boussinesq equation

    International Nuclear Information System (INIS)

    The extended Boussinesq equation for the description of the Fermi-Pasta-Ulam problem has been studied and analyzed with the Painleve test. It has been shown that the equation does not pass the Painleve test, but the necessary condition for the existence of meromorphic solutions is satisfied

  4. Metrisability of Painlev\\'e equations

    CERN Document Server

    Contatto, Felipe

    2016-01-01

    We solve the metrisability problem for the six Painlev\\'e equations, and more generally for all 2nd order ODEs with Painlev\\'e property, and determine for which of these equations their integral curves are geodesics of a (pseudo) Riemannian metric on a surface.

  5. A Numerical Method for Fuzzy Differential Equations and Hybrid Fuzzy Differential Equations

    OpenAIRE

    Ivaz, K.; Khastan, A.; Juan J. Nieto

    2013-01-01

    Numerical algorithms for solving first-order fuzzy differential equations and hybrid fuzzy differential equations have been investigated. Sufficient conditions for stability and convergence of the proposed algorithms are given, and their applicability is illustrated with some examples.

  6. 5-th order differential equations related to Calabi-Yau differential equations

    OpenAIRE

    Almkvist, Gert

    2007-01-01

    The very few 5-th order differential equations which have 4-th order Calabi-Yau equations as pullbacks are listed. We use the pullback of Yifan Yang that in most cases has much lower degree than the usual pullback.

  7. An irrational trial equation method and its applications

    Indian Academy of Sciences (India)

    Xing-Hua Du

    2010-09-01

    An irrational trial equation method was proposed to solve nonlinear differential equations. By this method, a number of exact travelling wave solutions to the Burgers–KdV equation and the dissipative double sine-Gordon equation were obtained. A more general irrational trial equation method was discussed, and many exact solutions to the Fujimoto–Watanabe equation were given.

  8. Covariant Conformal Decomposition of Einstein Equations

    Science.gov (United States)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  9. Equation of state for inert gas solids

    Indian Academy of Sciences (India)

    Kamal Devlal; B R K Gupta

    2007-08-01

    The equation of state is a fundamental relation to analyse the thermophysical properties of different class of solids and it plays a key role in basic and applied condensed matter physics research. A lot of work has been done in the field of ionic solids, minerals and metals but a very little work is done in the field of inert gas solids. Most of the equations of state failed to explain the properties of inert gas solid because of their abnormal behavior in the low temperature range. In the present paper, Singh–Gupta equation of state has been used to study the properties of these solids. The results obtained using these equations have shown a good agreement with available experimental results. Thus it is shown that these equations of states successfully explain the behavior of inert gas solids.

  10. Computing with linear equations and matrices

    International Nuclear Information System (INIS)

    Systems of linear equations and matrices arise in many disciplines. The equations may accurately represent conditions satisfied by a system or, more likely, provide an approximation to a more complex system of non-linear or differential equations. The system may involve a few or many thousand unknowns and each individual equation may involve few or many of them. Over the past 50 years a vast literature on methods for solving systems of linear equations and the associated problems of finding the inverse or eigenvalues of a matrix has been produced. These lectures cover those methods which have been found to be most useful for dealing with such types of problem. References are given where appropriate and attention is drawn to the possibility of improved methods for use on vector and parallel processors. (orig.)

  11. An Extended Mild-Slope Equation

    Institute of Scientific and Technical Information of China (English)

    PAN Junning; HONG Guangwen; ZUO Qihua

    2000-01-01

    On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of ( h h)2 and /2h h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen′s (1989) empirical formula for wind waves and Snyder′s observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.

  12. Physics in terms of difference equations

    International Nuclear Information System (INIS)

    For more than three centuries scientists have been influenced by the precept that fundamental laws of physics should be expressed in terms of differential equations. Difference equations are always regarded as approximations. The author tries to explore the opposite: Difference equations are more fundamental, and differential equations are regarded as approximations. A difference equation formulation leads to discrete mechanics which can also be viewed as the mathematical limit of the usual continuum mechanics, but with a fixed density of lattice sites. Because this is an invariant constraint, the discrete theory shares the same symmetries of the usual continuum theory. In this way theories with finite degrees of freedom, but which retain the good properties of the usual continuum theory can be created. In this new mechanics, space and time are treated as dynamical variables, on the same footing as electromagnetic fields, gluon fields, etc. (Auth.)

  13. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  14. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  15. Advanced functional evolution equations and inclusions

    CERN Document Server

    Benchohra, Mouffak

    2015-01-01

    This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks. This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.

  16. The Riccati Equation Mapping Method for Solving Nonlinear Partial Differential Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Elsayed Mohamed Elsayed ZAYED

    2014-07-01

    Full Text Available In this article, many new exact solutions of the (2+1-dimensional nonlinear Boussinesq-Kadomtsev-Petviashvili equation and the (1+1-dimensional nonlinear heat conduction equation are constructed using the Riccati equation mapping method. By means of this method, many new exact solutions are successfully obtained. This method can be applied to many other nonlinear evolution equations in mathematical physics.doi:10.14456/WJST.2014.14

  17. Extended Auxiliary Equation Method and Its Applications to Three Generalized NLS Equations

    Directory of Open Access Journals (Sweden)

    Gui-qiong Xu

    2014-01-01

    Full Text Available The auxiliary equation method proposed by Sirendaoreji is extended to construct new types of elliptic function solutions of nonlinear evolution equations. The effectiveness of the extended method is demonstrated by applications to the RKL model, the generalized derivative NLS equation and the Kundu-Eckhaus equation. Not only are the Jacobian elliptic function solutions are derived, but also the solitary wave solutions and trigonometric function solutions are obtained in a unified way.

  18. Integrable systems of partial differential equations determined by structure equations and Lax pair

    Science.gov (United States)

    Bracken, Paul

    2010-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  19. Integrable systems of partial differential equations determined by structure equations and Lax pair

    International Nuclear Information System (INIS)

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  20. Integrable systems of partial differential equations determined by structure equations and Lax pair

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, Paul, E-mail: bracken@panam.ed [Department of Mathematics, University of Texas, Edinburg, TX 78541-2999 (United States)

    2010-01-11

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  1. Integrable Systems of Partial Differential Equations Determined by Structure Equations and Lax pair

    CERN Document Server

    Bracken, Paul

    2009-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows the coefficients of the second fundamental form to be selected in a more general way so they need not be constants.

  2. Extended Auxiliary Equation Method and Its Applications to Three Generalized NLS Equations

    OpenAIRE

    Gui-qiong Xu

    2014-01-01

    The auxiliary equation method proposed by Sirendaoreji is extended to construct new types of elliptic function solutions of nonlinear evolution equations. The effectiveness of the extended method is demonstrated by applications to the RKL model, the generalized derivative NLS equation and the Kundu-Eckhaus equation. Not only are the Jacobian elliptic function solutions are derived, but also the solitary wave solutions and trigonometric function solutions are obtained in a unified way.

  3. A reinterpretation of set differential equations as differential equations in a Banach space

    OpenAIRE

    Rasmussen, Martin; Rieger, Janosch; Webster, Kevin

    2015-01-01

    Set differential equations are usually formulated in terms of the Hukuhara differential, which implies heavy restrictions for the nature of a solution. We propose to reformulate set differential equations as ordinary differential equations in a Banach space by identifying the convex and compact subsets of $\\R^d$ with their support functions. Using this representation, we demonstrate how existence and uniqueness results can be applied to set differential equations. We provide a simple example,...

  4. Banking on the equator. Are banks that adopted the equator principles different from non-adopters?

    NARCIS (Netherlands)

    Scholtens, B.; Dam, L.

    2007-01-01

    We analyze the performance of banks that adopted the Equator Principles. The Equator Principles are designed to assure sustainable development in project finance. The social, ethical, and environmental policies of the adopters differ significantly from those of banks that did not adopt the Equator P

  5. Numerical solutions to integrodifferential equations which interpolate heat and wave equations

    OpenAIRE

    Rozmej, Piotr; Karczewska, Anna

    2005-01-01

    In the paper we study some numerical solutions to Volterra equations which interpolate heat and wave equations. We present a scheme for construction of approximate numerical solutions for one and two spatial dimensions. Some solutions to the stochastic version of such equations (for one spatial dimension) are presented as well.

  6. Exact solutions of some coupled nonlinear diffusion-reaction equations using auxiliary equation method

    Indian Academy of Sciences (India)

    Ranjit Kumar

    2012-09-01

    Travelling and solitary wave solutions of certain coupled nonlinear diffusion-reaction equations have been constructed using the auxiliary equation method. These equations arise in a variety of contexts not only in biological, chemical and physical sciences but also in ecological and social sciences.

  7. A Boundary Integral Equation Approach for Boundary Problem of Laplace Equation

    Institute of Scientific and Technical Information of China (English)

    SUNJian-she; YELiu-qing

    2003-01-01

    Using the second Green formula, the boundary problem of Laplace equation satisfied by potential function of static electric field is transformed to the problem of the boundary integral equation,and then a boundary integral equation approach is established by partitioning boundary using linear boundary element.

  8. Comment on the "Maxwell Equations as the One-Photon Quantum Equation" by A. Gersten

    CERN Document Server

    Dvoeglazov, V V

    2000-01-01

    We show that the Gersten derivation of Maxwell equations can be generalized. It actually leads to additional solutions of `S=1 equations'. They follow directly from previous considerations by Majorana, Oppenheimer, Weinberg and Ogievetskii and Polubarinov. Therefore, {\\it generalized} Maxwell equations should be used as a guideline for proper interpretations of quantum theories.

  9. New Exact Solutions for Konopelchenko-Dubrovsky Equation Using an Extended Riccati Equation Rational Expansion Method

    Institute of Scientific and Technical Information of China (English)

    SONG Li-Na; ZHANG Hong-Qing

    2006-01-01

    Taking the Konopelchenko-Dubrovsky system as a simple example, some families of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.

  10. An Exact Mapping from Navier-Stokes Equation to Schördinger Equation via Riccati Equation

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2008-01-01

    Full Text Available In the present article we argue that it is possible to write down Schrödinger representation of Navier-Stokes equation via Riccati equation. The proposed approach, while differs appreciably from other method such as what is proposed by R. M. Kiehn, has an advantage, i.e. it enables us extend further to quaternionic and biquaternionic version of Navier-Stokes equation, for instance via Kravchenko’s and Gibbon’s route. Further observation is of course recommended in order to refute or verify this proposition.

  11. Einstein's 1916 derivation of the Field Equations

    CERN Document Server

    Weinstein, Galina

    2013-01-01

    In his first November 4, 1915 paper Einstein wrote the Lagrangian form of his field equations. In the fourth November 25, 1915 paper, Einstein added a trace term of the energy-momentum tensor on the right-hand side of the generally covariant field equations. The main purpose of the present work is to show that in November 4, 1915, Einstein had already explored much of the main ingredients that were required for the formulation of the final form of the field equations of November 25, 1915. The present work suggests that the idea of adding the second-term on the right-hand side of the field equation might have originated in reconsideration of the November 4, 1915 field equations. In this regard, the final form of Einstein's field equations with the trace term may be linked with his work of November 4, 1915. The interesting history of the derivation of the final form of the field equations is inspired by the exchange of letters between Einstein and Paul Ehrenfest in winter 1916 and by Einstein's 1916 derivation ...

  12. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  13. Elimination of redundancy in superspace equations of supergravity. [Field equation minimal list

    Energy Technology Data Exchange (ETDEWEB)

    Gell-Mann, M.; Ramond, P.; Schwarz, J.H.

    1978-01-01

    The equations of N = 1 supergravity in superspace, with e not equal to 0 and with external vector--spinor matter, were derived previously, but in redundant form (420 equations for 112 potentials V/sub A//sup ..lambda../ and h/sub ..lambda..//sup rs/). There are many possible minimal lists of 112 equations from which the other equations can be obtained by means of Bianchi identities for the field strengths. Such a minimal list is exhibited, and the full set of equations derived. The procedure can easily be generalized to extended supergravity (N > 1).

  14. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

    Science.gov (United States)

    Feng, Qing-Hua

    2014-08-01

    In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained.

  15. Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Jiao; WANG Qi

    2006-01-01

    In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.

  16. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  17. The modified simple equation method for solving some fractional-order nonlinear equations

    Indian Academy of Sciences (India)

    KAPLAN MELIKE; BEKIR AHMET

    2016-07-01

    Nonlinear fractional differential equations are encountered in various fields of mathematics, physics, chemistry, biology, engineering and in numerous other applications. Exact solutions of these equations play a crucial role in the proper understanding of the qualitative features of many phenomena and processes in various areas of natural science. Thus, many effective and powerful methods have been established and improved. In this study, we establish exact solutions of the time fractional biological population model equation and nonlinearfractional Klein–Gordon equation by using the modified simple equation method.

  18. From Chemical Langevin Equations to Fokker-Planck Equation: Application of Hodge Decomposition and Klein-Kramers Equation

    Institute of Scientific and Technical Information of China (English)

    MU Wei-Hua; OU-YANG Zhong-Can; Li Xiao-Qing

    2011-01-01

    The stochastic systems without detailed balance are common in various chemical reaction systems, such as metabolic network systems. In studies of these systems, the concept of potential landscape is useful. However, what are the sufficient and necessary conditions of the existence of the potential function is still an open problem. Use Hodge decomposition theorem in differential form theory, we focus on the general chemical Langevin equations, which reflect complex chemical reaction systems. We analysis the conditions for the existence of potential landscape of the systems.By mapping the stochastic differential equations to a Hamiltonian mechanical system, we obtain the Fokker-Planck equation of the chemical reaction systems. The obtained Fokker-Planck equation can be used in further studies of other steady properties of complex chemical reaction systems, such as their steady state entropies.

  19. The Pauli equation in scale relativity

    Energy Technology Data Exchange (ETDEWEB)

    Celerier, Marie-Noelle; Nottale, Laurent [LUTH, CNRS, Observatoire de Paris-Meudon, 5 place Jules Janssen, 92195 Meudon Cedex (France)

    2006-10-06

    In standard quantum mechanics, it is not possible to directly extend the Schroedinger equation to spinors, so the Pauli equation must be derived from the Dirac equation by taking its non-relativistic limit. Hence, it predicts the existence of an intrinsic magnetic moment for the electron and gives its correct value. In the scale relativity framework, the Schroedinger, Klein-Gordon and Dirac equations have been derived from first principles as geodesics equations of a non-differentiable and continuous spacetime. Since such a generalized geometry implies the occurrence of new discrete symmetry breakings, this has led us to write Dirac bi-spinors in the form of bi-quaternions (complex quaternions). In the present work, we show that, in scale relativity also, the correct Pauli equation can only be obtained from a non-relativistic limit of the relativistic geodesics equation (which, after integration, becomes the Dirac equation) and not from the non-relativistic formalism (that involves symmetry breakings in a fractal 3-space). The same degeneracy procedure, when it is applied to the bi-quaternionic 4-velocity used to derive the Dirac equation, naturally yields a Pauli-type quaternionic 3-velocity. It therefore corroborates the relevance of the scale relativity approach for the building from first principles of the quantum postulates and the quantum tools. This also reinforces the relativistic and fundamentally quantum nature of spin, which we attribute in scale relativity to the non-differentiability of the quantum spacetime geometry (and not only of the quantum space). We conclude by performing numerical simulations of spinor geodesics, that allow one to gain a physical geometric picture of the nature of spin.

  20. The Pauli equation in scale relativity

    International Nuclear Information System (INIS)

    In standard quantum mechanics, it is not possible to directly extend the Schroedinger equation to spinors, so the Pauli equation must be derived from the Dirac equation by taking its non-relativistic limit. Hence, it predicts the existence of an intrinsic magnetic moment for the electron and gives its correct value. In the scale relativity framework, the Schroedinger, Klein-Gordon and Dirac equations have been derived from first principles as geodesics equations of a non-differentiable and continuous spacetime. Since such a generalized geometry implies the occurrence of new discrete symmetry breakings, this has led us to write Dirac bi-spinors in the form of bi-quaternions (complex quaternions). In the present work, we show that, in scale relativity also, the correct Pauli equation can only be obtained from a non-relativistic limit of the relativistic geodesics equation (which, after integration, becomes the Dirac equation) and not from the non-relativistic formalism (that involves symmetry breakings in a fractal 3-space). The same degeneracy procedure, when it is applied to the bi-quaternionic 4-velocity used to derive the Dirac equation, naturally yields a Pauli-type quaternionic 3-velocity. It therefore corroborates the relevance of the scale relativity approach for the building from first principles of the quantum postulates and the quantum tools. This also reinforces the relativistic and fundamentally quantum nature of spin, which we attribute in scale relativity to the non-differentiability of the quantum spacetime geometry (and not only of the quantum space). We conclude by performing numerical simulations of spinor geodesics, that allow one to gain a physical geometric picture of the nature of spin

  1. BK equation and traveling wave solutions

    Energy Technology Data Exchange (ETDEWEB)

    De Santana Amaral, J.T.; Betemps, M.A.; Gay Ducati, M.B. [Univ Fed Rio Grande do Sul, Inst Fis, BR-91501 Porto Alegre, RS, (Brazil); Soyez, G. [CEA Saclay, DSM, SPhT, Serv Phys Theor Saclay, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    It has been shown that the transition to the saturation regime of high energy QCD is similar to the formation of the front of a traveling wave. In particular, it can be verified that Balitsky-Kovchegov (BK) evolution equation reduces, after some approximations, to the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation, well-known from statistical physics. In these proceedings, based on the current knowledge of the asymptotic solutions of the BK equation, we propose a parametrization for the forward scattering amplitude which interpolates between the traveling wave solution and the saturation region. (authors)

  2. BK equation and traveling wave solutions

    Energy Technology Data Exchange (ETDEWEB)

    Santana Amaral, J.T. de; Betemps, M.A.; Ducati, M.B. Gay [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica; Soyez, G. [CEA Saclay, Gif-sur-Yvette (France). Direction des Sciences de la Matiere. Service de Physique Theorique

    2007-06-15

    It has been shown that the transition to the saturation regime of high energy QCD is similar to the formation of the front of a traveling wave. In particular, it can be verified that Balitsky-Kovchegov (BK) evolution equation reduces, after some approximations, to the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation, well-known from statistical physics. In these proceedings, based on the current knowledge of the asymptotic solutions of the BK equation, we propose a parametrization for the forward scattering amplitude which interpolates between the traveling wave solution and the saturation region. (author)

  3. Solving logic equation via matrix expression

    Institute of Scientific and Technical Information of China (English)

    Daizhan CHENG; Zhiqiang LI

    2009-01-01

    A new matrix product, called semi-tensor product of matrices, is introduced. Using this, an algebraic expression of logic is proposed, where a logical variability is expressed as a vector, a logic function is expressed as a matrix and the function values are obtained by the product of matrix with its arguments' vectors. Under this frame-work, the problem of solving logic equations is investi-gated. For a static logic equation, we convert it into a set of linear algebraic equations. Then the solution becomes obvious. Some examples are presented to show that it is useful for logic infection.

  4. Chaos in discrete fractional difference equations

    Indian Academy of Sciences (India)

    AMEY DESHPANDE; VARSHA DAFTARDAR-GEJJI

    2016-10-01

    Recently, the discrete fractional calculus (DFC) is receiving attention due to its potential applications in the mathematical modelling of real-world phenomena with memory effects. In the present paper, the chaotic behaviour of fractional difference equations for the tent map, Gauss map and 2x(mod 1) map are studied numerically. We analyse the chaotic behaviour of these fractional difference equations and compare them with their integer counterparts. It is observed that fractional difference equations for the Gauss and tent maps are more stable compared to their integer-order version.

  5. Concentration phenomena in the semilinear parabolic equation

    Institute of Scientific and Technical Information of China (English)

    TAN; Zhong

    2001-01-01

    [1]Fujita, H., On the blowing up of solutions of the Chauch problem for u=Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 966, 3: 09.[2]Ni, W. -M., Sacks, P. E., Tavantzis, J., On the asymptotic behavior of solutions of certain quasilinear equations of parabolic type, J. Differential Equations, 984, 54: 97.[3]Cazenave, T., Lions, P. L., Solutions globales d'equations de la chaleur semilineaires, Comm. in Partial Differential Equations, 984, 9(0): 955.[4]Giga, Y., A bound for global solutions of semilinear heat equations, Commun. Math. Phys., 986, 03: 45.[5]Galaktionov, V., Vazquez, J. L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 997, 50: .[6]Rey, O., The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Func. Anal., 990, 89: .[7]Wei Juncheng, Asymptotic behavior of least energy solution to a semilinear Dirichlet problem near the critical exponent, J. Math. Soc. Japan, 998, 50(): 39.[8]Lions, P. L., The concentration-compactness principle in the calculus of variations, The limit case ,2, Rev. Mat. Iberoamerioana, 985, : 45, 45.[9]Brezis, H., Elliptic equations with limiting Sobolev exponents——the impact of topology, Commun. Pure and Appl. Math., 986, XXXXIX: S7.[10]Sacks, J., Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann. Math., 98, 3: .[11]Zhu Xiping, Nontrivial solutions of quasilinear elliptic equation involving critical growth, Science in China (in Chinese), Ser. A, 988, (3): 225.[12]Pohozaev, S. I., Eigenfunctions of the equation -Δu+λf(u)=0, Soviet. Math. Dold., 965, 6: 408.[13]Gidas, B., Ni, W. -M., Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 979, 68: 209.[14]Ni, W. -M., Sacks, P. E., Singular behaviour in nonlinear parabolic equations, Tran. of the AMS, 985, 287(2): 657.[15]Ni, W. -M., Sacks, P. E

  6. Fractional diffusion equations coupled by reaction terms

    Science.gov (United States)

    Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.

    2016-09-01

    We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

  7. Schrödinger equation revisited.

    Science.gov (United States)

    Schleich, Wolfgang P; Greenberger, Daniel M; Kobe, Donald H; Scully, Marlan O

    2013-04-01

    The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton-Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260

  8. An alternative form of the Darcy equation

    Directory of Open Access Journals (Sweden)

    Awad Mohamed M.

    2014-01-01

    Full Text Available This study presents an alternative form of the Darcy equation. This alternative form will be presented with the use of Bejan number (Be in the Left Hand Side (LHS of the equation. The main advantage in this alternative form of the Darcy equation is presenting both the Left Hand Side (LHS and the Right Hand Side (RHS as dimensionless quantities. For instance, this is similar to the relation of Fanning friction factor with Reynolds number for Hagen-Poiseuille flow (fully developed laminar flow in a circular pipe.

  9. Statistical Constitutive Equation of Aramid Fiber Bundles

    Institute of Scientific and Technical Information of China (English)

    熊杰; 顾伯洪; 王善元

    2003-01-01

    Tensile impact tests of aramid (Twaron) fiber bundles were carried om under high strain rates with a wide range of 0. 01/s~1000/s by using MTS and bar-bar tensile impact apparatus. Based on the statistical constitutive model of fiber bundles, statistical constitutive equations of aramid fiber bundles are derived from statistical analysis of test data at different strain rates. Comparison between the theoretical predictions and experimental data indicates statistical constitutive equations fit well with the experimental data, and statistical constitutive equations of fiber bundles at different strain rates are valid.

  10. String Field Equations from Generalized Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Bardakci, K.; Bernardo, L.M.

    1997-01-29

    We propose a new approach for deriving the string field equations from a general sigma model on the world-sheet. This approach leads to an equation which combines some of the attractive features of both the renormalization group method and the covariant beta function treatment of the massless excitations. It has the advantage of being covariant under a very general set of both local and non-local transformations in the field space. We apply it to the tachyon, massless and first massive level, and show that the resulting field equations reproduce the correct spectrum of a left-right symmetric closed bosonic string.

  11. On the quantum master equation for fermions

    OpenAIRE

    Huang, C. F.; Huang, K. -N.

    2006-01-01

    A quantum master equation is obtained for identical fermions by including a relaxation term in addition to the mean-field Hamiltonian. [Huang C F and Huang K N 2004 Chinese J. Phys. ${\\bf 42}$ 221; Gebauer R and Car R 2004 Phys. Rev. B ${\\bf 70}$ 125324] It is proven in this paper that both the positivity and Pauli's exclusion principle are preserved under this equation when there exists an upper bound for the transition rate. Such an equation can be generalized to model BCS-type quasiparticl...

  12. A Riccati equation in radiative stellar collapse

    CERN Document Server

    Rajah, S S

    2008-01-01

    We model the behaviour of a relativistic spherically symmetric shearing fluid undergoing gravitational collapse with heat flux. It is demonstrated that the governing equation for the gravitational behaviour is a Riccati equation. We show that the Riccati equation admits two classes of new solutions in closed form. We regain particular models, obtained in previous investigations, as special cases. A significant feature of our solutions is the general spatial dependence in the metric functions which allows for a wider study of the physical features of the model, such as the behaviour of the causal temperature in inhomogeneous spacetimes.

  13. Green's Functions of Wave Equations in

    Science.gov (United States)

    Deng, Shijin; Wang, Weike; Yu, Shih-Hsien

    2015-06-01

    We study the d'Alembert equation with a boundary. We introduce the notions of Rayleigh surface wave operators, delayed/advanced mirror images, wave recombinations, and wave cancellations. This allows us to obtain the complete and simple formula of the Green's functions for the wave equation with the presence of various boundary conditions. We are able to determine whether a Rayleigh surface wave is active or virtual, and study the lacunas of the wave equation in three dimensional with the presence of a boundary in the case of a virtual Rayleigh surface wave.

  14. On convergents formed from Diophantine equations

    OpenAIRE

    Elsner, Carsten; Komatsu, Takao; SHIOKAWA, IEKATA

    2009-01-01

    We compute upper and lower bounds for the approximation of certain values ξ of hyperbolic and trigonometric functions by rationals x/y such that x, y satisfy Diophantine equations. We show that there are infinitely many coprime integers x, y such that |y ξ - x| (log log y)/(log y) and a Diophantine equation holds simultaneously relating x, y and some integer z. Conversely, all positive integers x, y with y ≥ c0 solving the Diophantine equation satisfy |y ξ - x| (log log y)/(log ...

  15. Minimal relativistic three-particle equations

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, J.

    1981-07-01

    A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.

  16. Existence theorems for ordinary differential equations

    CERN Document Server

    Murray, Francis J

    2007-01-01

    Theorems stating the existence of an object-such as the solution to a problem or equation-are known as existence theorems. This text examines fundamental and general existence theorems, along with the Picard iterants, and applies them to properties of solutions and linear differential equations.The authors assume a basic knowledge of real function theory, and for certain specialized results, of elementary functions of a complex variable. They do not consider the elementary methods for solving certain special differential equations, nor advanced specialized topics; within these restrictions, th

  17. Path Deviation Equations in AP-Geometry

    CERN Document Server

    Wanas, M I

    2005-01-01

    Recently, it has been shown that Absolute Parallelism (AP) geometry admits paths that are naturally quantized. These paths have been used to describe the motion of spinning particles in a background gravitational field. In case of a weak static gravitational field limits, the paths are applied successfully to interpret the discrepancy in the motion of thermal neutrons in the Earth's gravitational field (COW-experiment). The aim of the present work is to explore the properties of the deviation equations corresponding to these paths. In the present work the deviation equations are derived and compared to the geodesic deviation equation of the Riemannian geometry.

  18. Quakonium spectroscopy by Klein-Gordon equation

    Directory of Open Access Journals (Sweden)

    M. Haghighat B Mirza

    2000-06-01

    Full Text Available   A model is proposed to obtain the qq spectra by using a generalized Klein-Gordon equation for a two-body system. A variety of different potentials are coupled to the mass term of the generalized equation. The eigenvalues and the corresponding mass spectra are evaluated by using numerical and analytical methods. The resulting spectra match dosely with the experimental data. The obtained values are also compared with those of models such as quasipotential equation (QPE.

  19. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  20. Multicomponent equations of state for electrolytes

    DEFF Research Database (Denmark)

    Lin, Yi; Thomsen, Kaj; Hemptinne, Jean-Charles de

    2007-01-01

    . The parameters in the equations of state were fitted to experimental data consisting of apparent molar volumes, osmotic coefficients, mean ionic activity coefficients, and solid-liquid equilibrium data. The results of the parameter fitting are presented. The ability of the equations of state to reproduce...... to these electrostatic terms. The resulting electrolyte equations of state were tested by determining the optimal model parameters for the multicomponent test system consisting of H2O, Na+, H+, Ca2+, Cl-, OH-, SO42-. To describe the thermodynamics of this multicomponent system, ion specific parameters were determined...