Long-range correlations in Boltzmann-Langevin model
International Nuclear Information System (INIS)
Ayik, S.
1994-01-01
The average phase-space density described by the Boltzmann-Langevin model can largely deviate from the one provided by the Boltzmann-Uhling-Uhlenbeck model, due to the non-linear evolution of density fluctuations. This aspect is investigated for long-wavelength, small density fluctuations in the framework of a memory incorporated Boltzmann-Langevin model. It is shown that the correlations associated with density fluctuations yield a collision term describing coupling between the collective vibrations and the single-particle degrees of freedom, which may play an important role in damping of collective motion in both the stable and unstable regions. (orig.)
Simplified simulation of Boltzmann-Langevin equation
International Nuclear Information System (INIS)
Ayik, S.; Randrup, J.
1994-01-01
We briefly recall the Boltzmann-Langevin model of nuclear dynamics. We then summarize recent progress in deriving approximate analytical expressions for the associated transport coefficients and describe a numerical method for simulating the stochastic evolution of the phase-space density. (orig.)
Dynamics of density fluctuations in a non-Markovian Boltzmann- Langevin model
International Nuclear Information System (INIS)
Ayik, S.
1996-01-01
In the course of the past few years, the nuclear Boltzmann-Langevin (BL)model has emerged as a promising microscopic model for nuclear dynamics at intermediate energies. The BL model goes beyond the much employed Boltzmann-Uehling-Uhlenbeck (BUU) model, and hence it provides a basis for describing dynamics of density fluctuations and addressing processes exhibiting spontaneous symmetry breaking and catastrophic transformations in nuclear collisions, such as induced fission and multifragmentation. In these standard models, the collision term is treated in a Markovian approximation by assuming that two-body collisions are local in both space and time, in accordance with Boltzmann's original treatment. This simplification is usually justified by the fact that the duration of a two-body collision is short on the time scale characteristic of the macroscopic evolution of the system. As a result, transport properties of the collective motion has then a classical character. However, when the system possesses fast collective modes with characteristic energies that are not small in comparision with the temperature, then the quantum-statistical effects are important and the standard Markovian treatment is inadequate. In this case, it is necessary to improve the one-body transport model by including the memory effect due to the finite duration of two-body collisions. First we briefly describe the non-Markovian extension of the BL model by including the finite memory time associated with two-body collisions. Then, using this non-Markovian model in a linear response framework, we investigate the effect of the memory time on the agitation of unstable modes in nuclear matter in the spinodal zone, and calculate the collisional relaxation rates of nuclear collective vibrations
Boltzmann-Langevin equation, dynamical instability and multifragmentation
International Nuclear Information System (INIS)
Feng-Shou Zhang
1993-02-01
By using simulations of the Boltzmann-Langevin equation which incorporates dynamical fluctuations beyond usual transport theories and by coupling it with a coalescence model, we obtain information on multifragmentation in heavy-ion collisions. From a calculation of the 40 Ca + 40 Ca system, we recover some trends of recent multifragmentation data
Applications of Boltzmann Langevin equation to nuclear collisions
International Nuclear Information System (INIS)
Suraud, E.; Belkacem, M.; Stryjewski, J.; Ayik, S.
1991-01-01
An approximate method for obtaining numerical solutions of the Boltzmann-Langevin equation is proposed. The method is applied to calculate the time evolution of the mean value and dispersion of the quadrupole and octupole moments of the momentum distribution in nucleus-nucleus collisions, and some consequences are discussed
Isospin dependent Boltzmann-langevin equation and the production cross section of 19Na
International Nuclear Information System (INIS)
Ming Zhaoyu; Zhang Fengshou; Chen Liewen; Zhu Zhiyuan; Zhang Wenlong; Guo Zhongyan; Xiao Guoqing
2000-01-01
A new transport model (isospin dependent Boltzmann-Langevin equation) is developed and it is shown that this model can regenerate the experimental data for reaction of 12 C + 12 C at 28.7 MeV/u. The production cross section of 19 Na is systematically studied for reactions of 17-20,22 Ne + 12 C at 28.7 MeV/u. It is found that a neutron deficient projectile has larger 19 Na cross section than a stable projectile
The Boltzmann-Langevin Equation derived from the real-time path formalism
International Nuclear Information System (INIS)
Suraud, E.; Reinhard, P.G.
1991-01-01
We derive the Boltzmann-Langevin equation using Green's functions techniques in the real-time path formalism. We start from the Martin-Schwinger hierarchy and close it approximately at the two-body level. A careful discussion of the initial conditions for the free two-body Green's function provides the flexibility to recover the discarded correlations as fluctuations leading to the Langevin force. The derivation is generalized to the T-matrix approach which allows to prove that one can use the same effective interaction in the mean-field as well as in the collision term and Langevin force
AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.
Koehl, Patrice; Delarue, Marc
2010-02-14
The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE
The Langevin method and Hubbard-like models
International Nuclear Information System (INIS)
Gross, M.; Hamber, H.
1989-01-01
The authors reexamine the difficulties associated with application of the Langevin method to numerical simulation of models with non-positive definite statistical weights, including the Hubbard model. They show how to avoid the violent crossing of the zeroes of the weight and how to move those nodes away from the real axis. However, it still appears necessary to keep track of the sign (or phase) of the weight
International Nuclear Information System (INIS)
Lin, X.
1991-01-01
This paper reports the development of an object-oriented programming methodology for particle simulations. It is established on the [m reductionist] view that many physical phenomena cana be reduced to many-body problems. By doing the reduction, many seemly unrelated physical phenomena can be simulated in a systematic way and a high-level programming system can be constructed to facilitate the programming and the solution of the simulations. In the object-oriented particle simulation methodology, a hierarchy of abstract particles is defined to represent a variety of characteristics in physical system simulations. A simulation program is constructed from particles derived from the abstract particles. The object- oriented particle simulation methodology provides a unifying modeling and simulation framework for a variety of simulation applications with the use of particle methods. It allows easy composition of simulation programs from predefined software modules and facilitates software reusability. It greatly increase the productivity of simulation program constructions. Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming system in the object-oriented particle simulation methodology. Boltzmann is implemented in C++ and the X Window System. It contains a library of data types and functions that support simulations in particle methods. Moreover, it provides a visualization window to support friendly user-computer interaction. Examples of the application of the Boltzmann programming system are presented. The effectiveness of the object-oriented particle simulation methodology is demonstrated. A user's manual is included in the appendix
Parallel Boltzmann machines : a mathematical model
Zwietering, P.J.; Aarts, E.H.L.
1991-01-01
A mathematical model is presented for the description of parallel Boltzmann machines. The framework is based on the theory of Markov chains and combines a number of previously known results into one generic model. It is argued that parallel Boltzmann machines maximize a function consisting of a
Is the Langevin phase equation an efficient model for oscillating neurons?
Ota, Keisuke; Tsunoda, Takamasa; Omori, Toshiaki; Watanabe, Shigeo; Miyakawa, Hiroyoshi; Okada, Masato; Aonishi, Toru
2009-12-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Is the Langevin phase equation an efficient model for oscillating neurons?
International Nuclear Information System (INIS)
Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi
2009-01-01
The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.
Essentially Entropic Lattice Boltzmann Model
Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh
2017-12-01
The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.
Pruning Boltzmann networks and hidden Markov models
DEFF Research Database (Denmark)
Pedersen, Morten With; Stork, D.
1996-01-01
We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...
Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers
Directory of Open Access Journals (Sweden)
Nicolás Peréz Alvarez
2015-11-01
Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.
Comparison of Langevin and Markov channel noise models for neuronal signal generation.
Sengupta, B; Laughlin, S B; Niven, J E
2010-01-01
The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.
Multispeed models in off-lattice Boltzmann simulations
Bardow, A.; Karlin, I.V.; Gusev, A.A.
2008-01-01
The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.
Relations between the kinetic equation and the Langevin models in two-phase flow modelling
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)
Progress on Complex Langevin simulations of a finite density matrix model for QCD
Energy Technology Data Exchange (ETDEWEB)
Bloch, Jacques [Univ. of Regensburg (Germany). Inst. for Theorectical Physics; Glesaan, Jonas [Swansea Univ., Swansea U.K.; Verbaarschot, Jacobus [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik
2018-04-01
We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.
Generalised and Fractional Langevin Equations-Implications for Energy Balance Models
Watkins, N. W.; Chapman, S. C.; Chechkin, A.; Ford, I.; Klages, R.; Stainforth, D. A.
2017-12-01
Energy Balance Models (EBMs) have a long heritage in climate science, including their use in modelling anomalies in global mean temperature. Many types of EBM have now been studied, and this presentation concerns the stochastic EBMs, which allow direct treatment of climate fluctuations and noise. Some recent stochastic EBMs (e.g. [1]) map on to Langevin's original form of his equation, with temperature anomaly replacing velocity, and other corresponding replacements being made. Considerable sophistication has now been reached in the application of multivariate stochastic Langevin modelling in many areas of climate. Our work is complementary in intent and investigates the Mori-Kubo "Generalised Langevin Equation" (GLE) which incorporates non-Markovian noise and response in a univariate framework, as a tool for modelling GMT [2]. We show how, if it is present, long memory simplifies the GLE to a fractional Langevin equation (FLE). Evidence for long range memory in global temperature, and the success of fractional Gaussian noise in its prediction [5] has already motivated investigation of a power law response model [3,4,5]. We go beyond this work to ask whether an EBM of FLE-type exists, and what its solutions would be. [l] Padilla et al, J. Climate (2011); [2] Watkins, GRL (2013); [3] Rypdal, JGR (2012); [4] Rypdal and Rypdal, J. Climate (2014); [5] Lovejoy et al, ESDD (2015).
Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling
Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.
2018-05-01
Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Boltzmann machines as a model for parallel annealing
Aarts, E.H.L.; Korst, J.H.M.
1991-01-01
The potential of Boltzmann machines to cope with difficult combinatorial optimization problems is investigated. A discussion of various (parallel) models of Boltzmann machines is given based on the theory of Markov chains. A general strategy is presented for solving (approximately) combinatorial
On some asymptotic relations in the Boltzmann-Enskog model
International Nuclear Information System (INIS)
Sadovnikov, B.I.; Inozemtseva, N.G.
1977-04-01
The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator
Exact solutions for some discrete models of the Boltzmann equation
International Nuclear Information System (INIS)
Cabannes, H.; Hong Tiem, D.
1987-01-01
For the simplest of the discrete models of the Boltzmann equation: the Broadwell model, exact solutions have been obtained by Cornille in the form of bisolitons. In the present Note, we build exact solutions for more complex models [fr
Poisson-Boltzmann-Nernst-Planck model
International Nuclear Information System (INIS)
Zheng Qiong; Wei Guowei
2011-01-01
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Poisson-Boltzmann-Nernst-Planck model.
Zheng, Qiong; Wei, Guo-Wei
2011-05-21
The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external
Immiscible multicomponent lattice Boltzmann model for fluids with ...
Indian Academy of Sciences (India)
College of Mechanical Engineering, Tongji University, 4800# Cao'an Road, ... was developed from a discretized fluid model known as the lattice gas automata ... of two immiscible fluids, several lattice Boltzmann (LB) models have been ...
Galilean-Invariant Lattice-Boltzmann Models with H Theorem
National Research Council Canada - National Science Library
Boghosian, Bruce
2003-01-01
The authors demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations...
Bayesian inference with information content model check for Langevin equations
DEFF Research Database (Denmark)
Krog, Jens F. C.; Lomholt, Michael Andersen
2017-01-01
The Bayesian data analysis framework has been proven to be a systematic and effective method of parameter inference and model selection for stochastic processes. In this work we introduce an information content model check which may serve as a goodness-of-fit, like the chi-square procedure...
Model reduction of multiscale chemical langevin equations: a numerical case study.
Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N
2009-01-01
Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.
On a Boltzmann-type price formation model
Burger, Martin
2013-06-26
In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
On a Boltzmann-type price formation model
Burger, Martin; Caffarelli, Luis A.; Markowich, Peter A.; Wolfram, Marie Therese
2013-01-01
In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Indian Academy of Sciences (India)
tions not only in physics but also in various other fields such as chemistry, biology and ... the required tools for the development of t~e special theory of relativity and would ... During the second world war Langevin became a vocal anti-.
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Langevin modelling of high-frequency Hang-Seng index data
Tang, Lei-Han
2003-06-01
Accurate statistical characterization of financial time series, such as compound stock indices, foreign currency exchange rates, etc., is fundamental to investment risk management, pricing of derivative products and financial decision making. Traditionally, such data were analyzed and modeled from a purely statistics point of view, with little concern on the specifics of financial markets. Increasingly, however, attention has been paid to the underlying economic forces and the collective behavior of investors. Here we summarize a novel approach to the statistical modeling of a major stock index (the Hang Seng index). Based on mathematical results previously derived in the fluid turbulence literature, we show that a Langevin equation with a variable noise amplitude correctly reproduces the ubiquitous fat tails in the probability distribution of intra-day price moves. The form of the Langevin equation suggests that, despite the extremely complex nature of financial concerns and investment strategies at the individual's level, there exist simple universal rules governing the high-frequency price move in a stock market.
Navier-Stokes Dynamics by a Discrete Boltzmann Model
Rubinstein, Robet
2010-01-01
This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.
Signals for the QCD phase transition and critical point in a Langevin dynamical model
International Nuclear Information System (INIS)
Herold, Christoph; Bleicher, Marcus; Yan, Yu-Peng
2013-01-01
The search for the critical point is one of the central issues that will be investigated in the upcoming FAIR project. For a profound theoretical understanding of the expected signals we go beyond thermodynamic studies and present a fully dynamical model for the chiral and deconfinement phase transition in heavy ion collisions. The corresponding order parameters are propagated by Langevin equations of motions on a thermal background provided by a fluid dynamically expanding plasma of quarks. By that we are able to describe nonequilibrium effects occurring during the rapid expansion of a hot fireball. For an evolution through the phase transition the formation of a supercooled phase and its subsequent decay crucially influence the trajectories in the phase diagram and lead to a significant reheating of the quark medium at highest baryon densities. Furthermore, we find inhomogeneous structures with high density domains along the first order transition line within single events.
Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena
International Nuclear Information System (INIS)
Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai
2014-01-01
A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Lattice Boltzmann model for three-phase viscoelastic fluid flow
Xie, Chiyu; Lei, Wenhai; Wang, Moran
2018-02-01
A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.
Entropic multirelaxation lattice Boltzmann models for turbulent flows
Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.
2015-10-01
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
International Nuclear Information System (INIS)
Abdalla, E.; Carneiro, C.E.I.
1988-12-01
The O(3) model, the pure CP 1 model and the CP 1 model minimally coupled to fermions are numerically simulated. The equivalence between the O(3) and the bound state of the pure CP 1 model is investigated. It is shown that: the relations g O(3 ) = 2 g CP 1 and E O(3 )= 2E CP 1 + 2, for the coupling constants and energies hold beyond the classical level; the mass gap as a function of the coupling is the same for both models. The mass gap for the CP 1 minimally coupled to fermions is also calculated. The calculations are performed using different techniques. The proposal by Namiki and colaborators to enforce constraints on Langevin equations and Parisi's technique to calculate correlation functions via Langevin equations is tested. The results are compared with those obtained using the multi-hit Metropolis algorithm. (author) [pt
NMR signals within the generalized Langevin model for fractional Brownian motion
Lisý, Vladimír; Tóthová, Jana
2018-03-01
The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.
Lisý, Vladimír; Tóthová, Jana
2018-02-01
Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models
Luo, Li-Shi
1998-01-01
A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.
Simulating the Langevin force by simple noise in nuclear one-body dynamics
International Nuclear Information System (INIS)
Chomaz, Ph.; Colonna, M.; Burgio, G.F.; Toro, M. Di; Randrup, J.
1992-01-01
For the purpose of addressing catastrophic phenomena in nuclear dynamics, the possibility of simulating the stochastic part of the collision integral is explored in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in the ordinary BUU treatment. Considering idealized two-dimensional matter, for which it is practical to simulate the Boltzmann-Langevin equation directly, it is demonstrated that the number of test-particles per nucleon can be adjusted so that the corresponding BUU calculation yields a good reproduction of the spontaneous clusterization occurring inside the spinodal region. This approximate method may therefore provide a relatively easy way to introduce meaningful fluctuations in simulations of unstable nuclear dynamics. (author) 18 refs.; 3 figs
International Nuclear Information System (INIS)
Migdal, A.A.; Polikarpov, M.I.; Veselov, A.I.; Yurov, V.P.
1983-01-01
The Langevin equation for the lattice theory with arbitrary gauge group is derived. The four-dimensional twisted Eguchi-Kawai model is investigated numerically. The results for the plaquette energy agree with those of the known Monte Carlo calculations. The new result is the distribution of eigenvalues of the plaquette matrix. In the strong coupling phase this distribution is smooth, whereas in the weak coupling phase a gap is clearly seen
Chu, Weiqi; Li, Xiantao
2018-01-01
We present some estimates for the memory kernel function in the generalized Langevin equation, derived using the Mori-Zwanzig formalism from a one-dimensional lattice model, in which the particles interactions are through nearest and second nearest neighbors. The kernel function can be explicitly expressed in a matrix form. The analysis focuses on the decay properties, both spatially and temporally, revealing a power-law behavior in both cases. The dependence on the level of coarse-graining is also studied.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Lattice Boltzmann model capable of mesoscopic vorticity computation
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
Operational derivation of Boltzmann distribution with Maxwell's demon model.
Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka
2015-11-24
The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.
Lattice Boltzmann model for simulating immiscible two-phase flows
International Nuclear Information System (INIS)
Reis, T; Phillips, T N
2007-01-01
The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio
Lattice Boltzmann modeling an introduction for geoscientists and engineers
Sukop, Michael C
2005-01-01
Lattice Boltzmann models have a remarkable ability to simulate single- and multi-phase fluids and transport processes within them. A rich variety of behaviors, including higher Reynolds numbers flows, phase separation, evaporation, condensation, cavitation, buoyancy, and interactions with surfaces can readily be simulated. This book provides a basic introduction that emphasizes intuition and simplistic conceptualization of processes. It avoids the more difficult mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those with more interest in model application than detailed mathematical foundations will find this a powerful "quick start" guide. Example simulations, exercises, and computer codes are included. Working code is provided on the Internet.
A lattice Boltzmann model for the Burgers-Fisher equation.
Zhang, Jianying; Yan, Guangwu
2010-06-01
A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.
Lattice Boltzmann model for melting with natural convection
International Nuclear Information System (INIS)
Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier
2008-01-01
We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
Li, Q; Luo, K H; Li, X J
2012-07-01
The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.
Modelling viscoacoustic wave propagation with the lattice Boltzmann method.
Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen
2017-08-31
In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.
Multiple-relaxation-time lattice Boltzmann model for compressible fluids
International Nuclear Information System (INIS)
Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun
2011-01-01
We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.
International Nuclear Information System (INIS)
Lim, S C; Teo, L P
2009-01-01
Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion
Stable lattice Boltzmann model for Maxwell equations in media
Hauser, A.; Verhey, J. L.
2017-12-01
The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.
Corner-transport-upwind lattice Boltzmann model for bubble cavitation
Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.
2018-02-01
Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .
Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces
Dalgamoni, Hussein; Yong, Xin
2017-11-01
Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.
Lattice Boltzmann heat transfer model for permeable voxels
Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil
2017-12-01
We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.
Polar-coordinate lattice Boltzmann modeling of compressible flows
Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro
2014-01-01
We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.
Implementing the lattice Boltzmann model on commodity graphics hardware
International Nuclear Information System (INIS)
Kaufman, Arie; Fan, Zhe; Petkov, Kaloian
2009-01-01
Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the
Non-Gaussian statistics, classical field theory, and realizable Langevin models
International Nuclear Information System (INIS)
Krommes, J.A.
1995-11-01
The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example
A lattice Boltzmann model for solute transport in open channel flow
Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei
2018-01-01
A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.
Volumetric formulation of lattice Boltzmann models with energy conservation
Sbragaglia, M.; Sugiyama, K.
2010-01-01
We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...
Generalized Langevin quantization
International Nuclear Information System (INIS)
Defendi, A.; Roncadelli, M.
1994-01-01
The recently proposed Langevin formulation of quantum dynamics yields the quantum mechanical propagator at imaginary time as a noise average which involves the solutions of a Langevin equation in configuration space with a Gaussian white noise. This strategy does not require any knowledge about the ground-state quantum dynamics and has been successful in dealing with certain as yet unsolved problems. Here we sketch a generalization of this approach which is based on a similar Langevin equation, whose drift however contains an arbitrary function. As it turns out, this freedom leads to a great simplification in the treatment of several quantum mechanical systems as compared to the original Langevin formulation (this point is illustrated by taking the forced harmonic oscillator as an example). We also show that when the above-mentioned arbitrary function obeys the imaginary-time Hamilton-Jacobi equation, then the new formulation of quantum dynamics exhibits a manifest connection with classical mechanics (at imaginary time). (orig.)
International Nuclear Information System (INIS)
Lin-Jie, Chen; Chang-Feng, Ma
2010-01-01
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)
Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations
Energy Technology Data Exchange (ETDEWEB)
Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)
2015-03-15
In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.
The lattice Boltzmann model for the second-order Benjamin–Ono equations
International Nuclear Information System (INIS)
Lai, Huilin; Ma, Changfeng
2010-01-01
In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations
Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method
DEFF Research Database (Denmark)
Skocek, Jan; Svec, Oldrich; Spangenberg, Jon
2011-01-01
is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...
Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.
2013-01-01
A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the
Bouzat, Sebastián
2016-01-01
One-dimensional models coupling a Langevin equation for the cargo position to stochastic stepping dynamics for the motors constitute a relevant framework for analyzing multiple-motor microtubule transport. In this work we explore the consistence of these models focusing on the effects of the thermal noise. We study how to define consistent stepping and detachment rates for the motors as functions of the local forces acting on them in such a way that the cargo velocity and run-time match previously specified functions of the external load, which are set on the base of experimental results. We show that due to the influence of the thermal fluctuations this is not a trivial problem, even for the single-motor case. As a solution, we propose a motor stepping dynamics which considers memory on the motor force. This model leads to better results for single-motor transport than the approaches previously considered in the literature. Moreover, it gives a much better prediction for the stall force of the two-motor case, highly compatible with the experimental findings. We also analyze the fast fluctuations of the cargo position and the influence of the viscosity, comparing the proposed model to the standard one, and we show how the differences on the single-motor dynamics propagate to the multiple motor situations. Finally, we find that the one-dimensional character of the models impede an appropriate description of the fast fluctuations of the cargo position at small loads. We show how this problem can be solved by considering two-dimensional models.
Pomeau, Yves; Piasecki, Jarosław
2017-11-01
The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the "macroscopic" flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the "Langevin" force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin-Heisenberg and/or Langevin-Schrödinger equation used in quantum mechanics.
Nonaligned shocks for discrete velocity models of the Boltzmann equation
Directory of Open Access Journals (Sweden)
J. M. Greenberg
1991-05-01
Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.
International Nuclear Information System (INIS)
Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan
2016-01-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)
International Nuclear Information System (INIS)
Calif, Rudy
2012-01-01
Highlights: ► Probability Density Functions are proposed to fit the wind speed fluctuations distributions for three representative classes. ► Stochastic simulations are performed using a Langevin equation for each class. ► The properties of simulated and measured wind speed sequences are close. -- Abstract: Wind energy production is very sensitive to turbulent wind speed. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output, in particular when wind power variations on very short time scales, range at few seconds to 1 h, are considered. In small grid as they exist on islands (Guadeloupean Archipelago: French West Indies) such fluctuations can cause instabilities in case of intermediate power shortages. The developed analysis in reveals three main classes of time series for the wind speed fluctuations. In this work, Probability Density Functions (PDFs) are proposed to fit the wind speed fluctuations distributions in each class. After, to simulate wind speed fluctuations sequences, we use a stochastic differential equation, the Langevin equation considering Gaussian turbulence PDF (class I), Gram–Charlier PDF (class II) and a mixture of gaussian PDF (class III). The statistical and dynamical properties of simulated wind sequences are close to those of measured wind sequences, for each class.
Calibrating the Shan-Chen lattice Boltzmann model for immiscible displacement in porous media
DEFF Research Database (Denmark)
Christensen, Britt Stenhøj Baun; Schaap, M.G.; Wildenschild, D.
2006-01-01
The lattice Boltzmann (LB) modeling technique is increasingly being applied in a variety of fields where computational fluid dynamics are investigated. In our field of interest, environmentally related flow processes in porous media, the use of the LB method is still not common. For the LB...
Evolution of a neutral-ion 2 fluid system using thermal lattice Boltzmann model
International Nuclear Information System (INIS)
Vahala, L.; Vahala, G.; Carter, J.; Pavlo, P.
2000-01-01
The 2D evolution of a 2-species system is examined using the thermal lattice Boltzmann model (TLBM). The effects of velocity shear layers on sharp heat fronts are considered for a neutral-ion system in the case where both species are turbulent. The rate at which the species velocities and temperatures equilibrate no longer follow the Morse estimate. (author)
Exact solutions for a discrete unidimensional Boltzmann model satisfying all conservation laws
International Nuclear Information System (INIS)
Cornille, H.
1989-01-01
We consider a four-velocity discrete and unidimensional Boltzmann model. The mass, momentum and energy conservation laws being satisfied we can define a temperature. We report the exact positive solutions which have been found: periodic in the space and propagating or not when the time is growing, shock waves similarity solutions and (1 + 1)-dimensional solutions [fr
Models, Their Application, and Scientific Anticipation: Ludwig Boltzmann's Work as Tacit Knowing
Schmitt, Richard Henry
2011-01-01
Ludwig Boltzmann's work in theoretical physics exhibits an approach to the construction of theory that he transmitted to the succeeding generation by example. It involved the construction of clear models, allowed more than one, and was not based solely on the existing facts, with the intent of examining and criticizing the assumptions that made…
Modelling the IDV Emissions of the BL Lac Objects with a Langevin ...
Indian Academy of Sciences (India)
2Department of Physics and Center for Theoretical and Computational Physics,. The University of ... The mathematical model is formulated in ... approximate the distribution of the surface density in the geometrically thin disk by the formulae. = ... Radj = 75Rin, while the outer radius of the disk is located at Rout = 250Rin. By.
Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki
2013-01-01
The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425
Langevin diffusions on the torus
DEFF Research Database (Denmark)
García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.
2018-01-01
We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues......) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate...
Stochastic TDHF and the Boltzman-Langevin equation
International Nuclear Information System (INIS)
Suraud, E.; Reinhard, P.G.
1991-01-01
Outgoing from a time-dependent theory of correlations, we present a stochastic differential equation for the propagation of ensembles of Slater determinants, called Stochastic Time-Dependent Hartree-Fock (Stochastic TDHF). These ensembles are allowed to develop large fluctuations in the Hartree-Fock mean fields. An alternative stochastic differential equation, the Boltzmann-Langevin equation, can be derived from Stochastic TDHF by averaging over subensembles with small fluctuations
Munafò, A; Panesi, M; Magin, T E
2014-02-01
A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.
Energy Technology Data Exchange (ETDEWEB)
Zalzale, M. [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)
2012-12-15
The lattice Boltzmann method is used to investigate the permeability of microstructures of cement pastes generated using the numerical models CEMHYD3D (Bentz, 1997) and {mu}IC (Bishnoi and Scrivener, 2009). Results are reported as a function of paste water-to-cement ratio and degree of hydration. The permeability decreases with increasing hydration and decreasing water-to-cement ratio in agreement with experiment. However the permeability is larger than the experimental data recorded using beam bending methods (Vichit-Vadakan and Scherer, 2002). Notwithstanding, the lattice Boltzmann results compare favourably with alternate numerical methods of permeability calculation for cement model microstructures. In addition, we show early results for the liquid/vapour capillary adsorption and desorption isotherms in the same model {mu}IC structures. The broad features of the experimental capillary porosity isotherm are reproduced, although further work is required to adequately parameterise the model.
Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.
Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro
2018-03-01
We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.
Power Laws are Disguised Boltzmann Laws
Richmond, Peter; Solomon, Sorin
Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, wGeneralized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.
A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows
Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong
2018-01-01
In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)
2011-08-15
This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.
On the asymptotic behavior of a boltzmann-type price formation model
Burger, Martin; Caffarelli, Luis A.; Markowich, Peter A.; Wolfram, Marie-Therese
2014-01-01
In this paper we study the asymptotic behavior of a Boltzmann-type price formation model, which describes the trading dynamics in a financial market. In many of these markets trading happens at high frequencies and low transaction costs. This observation motivates the study of the limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka=const. Furthermore we illustrate the price dynamics with numerical simulations © 2014 International Press.
Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence
International Nuclear Information System (INIS)
Xu Hui; Tao Wenquan; Zhang Yan
2009-01-01
We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
Farhat, Hassan; Kondaraju, Sasidhar
2014-01-01
Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...
Langevin- Science and vigilance
International Nuclear Information System (INIS)
Bensaude-Vincent, B.
1987-01-01
Paul Langevin personifies the figure of popular scientist, buried in the Pantheon, because he was in all great fights: to diffuse knowledge, for improvement and democratization of teaching, for justice and peace. Great theoretician of physics, comparable to Einstein whom he rejoined the approach, he was a fertile discoverer, author, in particular, of a proceeding to detect submarines. He fought politically, regardless of his career, in the ranges of pacifists and opponents of fascism. This book reveals, in his warm diversity, a badly known personality, in spite of the legend in his lifetime. (N.C.)
On the Langevin approach to particle transport
International Nuclear Information System (INIS)
Bringuier, Eric
2006-01-01
In the Langevin description of Brownian motion, the action of the surrounding medium upon the Brownian particle is split up into a systematic friction force of Stokes type and a randomly fluctuating force, alternatively termed noise. That simple description accounts for several basic features of particle transport in a medium, making it attractive to teach at the undergraduate level, but its range of applicability is limited. The limitation is illustrated here by showing that the Langevin description fails to account realistically for the transport of a charged particle in a medium under crossed electric and magnetic fields and the ensuing Hall effect. That particular failure is rooted in the concept of the friction force rather than in the accompanying random force. It is then shown that the framework of kinetic theory offers a better account of the Hall effect. It is concluded that the Langevin description is nothing but an extension of Drude's transport model subsuming diffusion, and so it inherits basic limitations from that model. This paper thus describes the interrelationship of the Langevin approach, the Drude model and kinetic theory, in a specific transport problem of physical interest
Invasion percolation of single component, multiphase fluids with lattice Boltzmann models
International Nuclear Information System (INIS)
Sukop, M.C.; Or, Dani
2003-01-01
Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models
From hard thermal loops to Langevin dynamics
International Nuclear Information System (INIS)
Boedeker, Dietrich
1999-01-01
In hot non-Abelian gauge theories, processes characterized by the momentum scale g 2 T (such as electroweak baryon number violation in the very early universe) are non-perturbative. An effective theory for the soft (vertical bar p vertical bar ∼ g 2 T) field modes is obtained by integrating out momenta larger than than g 2 T. Starting from the hard thermal loop effective theory, which is the result of integrating out the scale T, it is shown how to integrate out the scale gT in an expansion in the gauge coupling g. At leading order in g, one obtains Vlasov-Boltzmann equations for the soft field modes, which contain a Gaussian noise and a collision term. The 2-point function of the noise and the collision term are explicitly calculated in a leading logarithmic approximation. In this approximation the Boltzmann equation is solved. The resulting effective theory for the soft field modes is described by a Langevin equation. It determines the parametric form of the hot baryon number violation rate as Γ = κg 10 log(1/g)gT 4 , and it allows for a calculation for κ on the lattice
Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies
Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger
2018-02-01
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger
2018-02-01
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
Ginzburg, Irina; Steiner, Konrad
2002-03-15
The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic fluids with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered to be a vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Directory of Open Access Journals (Sweden)
Liping Chen
2018-05-01
Full Text Available A sub-grid multiple relaxation time (MRT lattice Boltzmann model with curvilinear coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9 model and standard Smagorinsky sub-grid scale (SGS model is introduced to simulate meandering flows. The interpolation supplemented lattice Boltzmann method (ISLBM and the non-equilibrium extrapolation method are used for second-order accuracy and boundary conditions. The proposed model was validated by a meandering channel with a 180° bend and applied to a steady curved river with piers. Excellent agreement between the simulated results and previous computational and experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method coupled with a Smagorinsky sub-grid scale (SGS model in a curvilinear coordinates grid is capable of simulating practical meandering flows.
International Nuclear Information System (INIS)
Scheinine, A.L.
1992-01-01
The frustrated XY model was studied on a lattice, primarily to test Fourier transform acceleration technique for a phase transition having more field structure than just spinwaves and vortices. Also, the spinless Hubbard model without hopping was simulated using continuous variables for the auxiliary field that mediates coupling between fermions. Finally, spin one-half Hubbard model was studied with a technique that sampled the fermion occupation configurations. The frustrated two-dimensional XY model was simulated using the Langevin equation with Fourier transform acceleration. Speedup due to Fourier acceleration was measured for frustration one-half at the transition temperature. The unfrustrated XY model was also studied. For the frustrated case, only long-distance spin correlation and the autocorrelation of the spin showed significant speedup. The frustrated case has Ising-like domains. It was found that Fourier acceleration speeds the evolution of spinwaves but has negligible effect on the Ising-like domains. In the Hubbard model, fermion determinant weight factor in the partition function changes sign, causing large statistical fluctuations of observables. A technique was found for sampling configuration space using continuous auxiliary fields, despite energy barriers where the fermion determinant changes sign. For two-dimensional spinless Hubbard model with no hopping, an exact solution was found for a 4 x 4 lattice; which could be compared to numerical simulations. The sign problem remained, and was found to be related to the sign problem encountered when a discrete variable is used for the auxiliary field. For spin one-half Hubbard model, a Monte Carlo simulation was done in which the fermion occupation configurations were varied. Rather than integrate-out the fermions and make a numerical estimate of the sum over the auxiliary field, the auxiliary field was integrated-out and a numerical estimate was made of the sum over fermion configurations
Directory of Open Access Journals (Sweden)
Stuart Bartlett
2017-08-01
Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.
Modeling and simulation of ocean wave propagation using lattice Boltzmann method
Nuraiman, Dian
2017-10-01
In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.
Thermal equilibrium properties of surface hopping with an implicit Langevin bath
International Nuclear Information System (INIS)
Sherman, M. C.; Corcelli, S. A.
2015-01-01
The ability of fewest switches surface hopping (FSSH) approach, where the classical degrees of freedom are coupled to an implicit Langevin bath, to establish and maintain an appropriate thermal equilibrium was evaluated in the context of a three site model for electron transfer. The electron transfer model consisted of three coupled diabatic states that each depends harmonically on the collective bath coordinate. This results in three states with increasing energy in the adiabatic representation. The adiabatic populations and distributions of the collective solvent coordinate were monitored during the course of 250 ns FSSH-Langevin (FSSH-L) simulations performed at a broad range of temperatures and for three different nonadiabatic coupling strengths. The agreement between the FSSH-L simulations and numerically exact results for the adiabatic population ratios and solvent coordinate distributions was generally favorable. The FSSH-L method produces a correct Boltzmann distribution of the solvent coordinate on each of the adiabats, but the integrated populations are slightly incorrect because FSSH does not rigorously obey detailed balance. The overall agreement is better at high temperatures and for high nonadiabatic coupling, which agrees with a previously reported analytical and simulation analysis [J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008)] on a two-level system coupled to a classical bath
DEFF Research Database (Denmark)
Christensen, Britt Stenhøj Baun
-teknik (Computed Tomography) til at visualisere og kvantificere de eksperimentelle poreskala systemer. Både en medicinsk CT-scanner og et synkrotron baseret skanningssystem med høj billede opløselighed blev anvendt. Numerisk modellering af poreskala processerne blev gjort ved hjælp af en lattice Boltzmann model...... for testning af en Shan-Chen lattice Boltzmann model. Ved anvendelse af simple veldefinerede to-fase systemer blev en kalibreringsprocedure skitseret til identificering af de dimensionsløse modelparametre og deres kobling til overfladespænding og kontaktvinkel egenskaberne af det fysiske system. Det blev taget...
Lorentz Covariance of Langevin Equation
International Nuclear Information System (INIS)
Koide, T.; Denicol, G.S.; Kodama, T.
2008-01-01
Relativistic covariance of a Langevin type equation is discussed. The requirement of Lorentz invariance generates an entanglement between the force and noise terms so that the noise itself should not be a covariant quantity. (author)
Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor
Energy Technology Data Exchange (ETDEWEB)
Esfahanian, Vahid [University of Tehran, Tehran (Iran, Islamic Republic of); Ghadyani, Mohsen [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2015-05-15
Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.
International Nuclear Information System (INIS)
Foroutan, A.
1992-05-01
The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)
Improvement of the instability of compressible lattice Boltzmann model by shockdetecting sensor
International Nuclear Information System (INIS)
Esfahanian, Vahid; Ghadyani, Mohsen
2015-01-01
Recently, lattice Boltzmann method (LBM) has drawn attention as an alternative and promising numerical technique for simulating fluid flows. The stability of LBM is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulating inviscid flows by a compressible lattice Boltzmann model in order to improve the instability using a shock-detecting procedure. The advantages and disadvantages of using a numerical hybrid filter on the primitive or conservative variables, in addition to, macroscopic or mesoscopic variables are investigated. The study demonstrates that the robustness of the utilized LB model is improved for inviscid compressible flows by implementation of the complementary scheme on mesoscopic variables. The validity of the procedure to capture shocks and resolve contact discontinuity and rarefaction waves in well-known benchmark problems is investigated. The numerical results show that the scheme is capable of generating more robust solutions in the simulation of compressible flows and prevents the formation of oscillations. Good agreements are obtained for all test cases.
Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations
International Nuclear Information System (INIS)
Yotsuji, K.; Tachi, Y.; Nishimaki, Y.
2012-01-01
Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3
Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows
Directory of Open Access Journals (Sweden)
Y. Peng
2017-01-01
Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.
Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.
2018-01-01
Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.
International Nuclear Information System (INIS)
Bianchi, M.P.
1991-01-01
The discrete Boltzmann equation is a mathematical model in the kinetic theory of gases which defines the time and space evolution of a system of gas particles with a finite number of selected velocities. Discrete kinetic theory is an interesting field of research in mathematical physics and applied mathematics for several reasons. One of the relevant fields of application of the discrete Boltzmann equation is the analysis of nonlinear shock wave phenomena. Here, a new multiple collision regular plane model for binary gas mixtures is proposed within the discrete theory of gases and applied to the analysis of the classical problems of shock wave propagation
Lattice Boltzmann model for free-surface flow and its application to filling process in casting
Ginzburg, I
2003-01-01
A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial region are constructed according to the first-order Chapman-Enskog analysis. The interfacial boundary conditions are satisfied exactly by the coefficients in the Chapman-Enskog expansion. The distribution functions are naturally expressed in the local interfacial coordinates. The macroscopic quantities at the interface are extracted from the least-square solutions of a locally linearized system obtained from the known distribution functions. The proposed method does not require any geometric front construction and is robust for any interfacial ...
A shallow water model for the propagation of tsunami via Lattice Boltzmann method
Zergani, Sara; Aziz, Z. A.; Viswanathan, K. K.
2015-01-01
An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory.
Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.
Házi, Gábor; Márkus, Attila
2008-02-01
A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.
Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods
International Nuclear Information System (INIS)
Klassen, Alexander; Scharowsky, Thorsten; Körner, Carolin
2014-01-01
Evaporation plays an important role in many technical applications including beam-based additive manufacturing processes, such as selective electron beam or selective laser melting (SEBM/SLM). In this paper, we describe an evaporation model which we employ within the framework of a two-dimensional free surface lattice Boltzmann method. With this method, we solve the hydrodynamics as well as thermodynamics of the molten material taking into account the mass and energy losses due to evaporation and the recoil pressure acting on the melt pool. Validation of the numerical model is performed by measuring maximum melt depths and evaporative losses in samples of pure titanium and Ti–6Al–4V molten by an electron beam. Finally, the model is applied to create processing maps for an SEBM process. The results predict that the penetration depth of the electron beam, which is a function of the acceleration voltage, has a significant influence on evaporation effects. (paper)
A shallow water model for the propagation of tsunami via Lattice Boltzmann method
International Nuclear Information System (INIS)
Zergani, Sara; Aziz, Z A; Viswanathan, K K
2015-01-01
An efficient implementation of the lattice Boltzmann method (LBM) for the numerical simulation of the propagation of long ocean waves (e.g. tsunami), based on the nonlinear shallow water (NSW) wave equation is presented. The LBM is an alternative numerical procedure for the description of incompressible hydrodynamics and has the potential to serve as an efficient solver for incompressible flows in complex geometries. This work proposes the NSW equations for the irrotational surface waves in the case of complex bottom elevation. In recent time, equation involving shallow water is the current norm in modelling tsunami operations which include the propagation zone estimation. Several test-cases are presented to verify our model. Some implications to tsunami wave modelling are also discussed. Numerical results are found to be in excellent agreement with theory
International Nuclear Information System (INIS)
Ayissi, Raoul Domingo; Noutchegueme, Norbert
2015-01-01
Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the
Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth
Burger, Martin
2016-11-18
In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.
Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries
Xu, Ao; Shyy, Wei; Zhao, Tianshou
2017-06-01
Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.
Study of nonequilibrium work distributions from a fluctuating lattice Boltzmann model.
Nasarayya Chari, S Siva; Murthy, K P N; Inguva, Ramarao
2012-04-01
A system of ideal gas is switched from an initial equilibrium state to a final state not necessarily in equilibrium, by varying a macroscopic control variable according to a well-defined protocol. The distribution of work performed during the switching process is obtained. The equilibrium free energy difference, ΔF, is determined from the work fluctuation relation. Some of the work values in the ensemble shall be less than ΔF. We term these as ones that "violate" the second law of thermodynamics. A fluctuating lattice Boltzmann model has been employed to carry out the simulation of the switching experiment. Our results show that the probability of violation of the second law increases with the increase of switching time (τ) and tends to one-half in the reversible limit of τ→∞.
Analytical estimation of effective charges at saturation in Poisson-Boltzmann cell models
International Nuclear Information System (INIS)
Trizac, Emmanuel; Aubouy, Miguel; Bocquet, Lyderic
2003-01-01
We propose a simple approximation scheme for computing the effective charges of highly charged colloids (spherical or cylindrical with infinite length). Within non-linear Poisson-Boltzmann theory, we start from an expression for the effective charge in the infinite-dilution limit which is asymptotically valid for large salt concentrations; this result is then extended to finite colloidal concentration, approximating the salt partitioning effect which relates the salt content in the suspension to that of a dialysing reservoir. This leads to an analytical expression for the effective charge as a function of colloid volume fraction and salt concentration. These results compare favourably with the effective charges at saturation (i.e. in the limit of large bare charge) computed numerically following the standard prescription proposed by Alexander et al within the cell model
Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin
2016-01-01
This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...
Langevin formulation of quantum dynamics
International Nuclear Information System (INIS)
Roncadelli, M.
1989-03-01
We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change
Li, Qing; Zhou, P.; Yan, H. J.
2017-12-01
In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.
Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.
Li, Qing; Luo, K H
2014-05-01
The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.
Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions
International Nuclear Information System (INIS)
Denton, A R
2010-01-01
Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid
Energy Technology Data Exchange (ETDEWEB)
Molaeimanesh, Gholam Reza; Akbari, Mohammad Hadi [Shiraz University, Shiraz (Iran, Islamic Republic of)
2015-03-15
A pore-scale model based on the lattice Boltzmann method (LBM) is proposed for the cathode electrode of a PEM fuel cell with heterogeneous and anisotropic porous gas diffusion layer (GDL) and interdigitated flow field. An active approach is implemented to model multi-component transport in GDL, which leads to enhanced accuracy, especially at higher activation over-potentials. The core of the paper is the implementation of an electrochemical reaction with an active approach in a multi-component lattice Boltzmann model for the first time. After model validation, the capability of the presented model is demonstrated through a parametric study. Effects of activation over-potential, pressure differential between inlet and outlet gas channels, land width to channel width ratio, and channel width are investigated. The results show the significant influence of GDL microstructure on the oxygen distribution and current density profile.
Directory of Open Access Journals (Sweden)
Song Wenyu
2017-06-01
Full Text Available In the current study, a macroscopic lattice Boltzmann model for simulating the heat and moisture transport phenomenon in unsaturated porous media during the freezing process was proposed. The proposed model adopted percolation threshold to reproduce the extra resistance in frozen fringe during the freezing process. The freezing process in Kanagawa sandy loam soil was demonstrated by the proposed model. The numerical result showed good agreement with the experimental result. The proposed model also offered higher computational efficiency and better agreement with the experimental result than the existing numerical models. Lattice Boltzmann method is suitable for simulating complex heat and mass transfer process in porous media at macroscopic scale under proper dimensionless criterion, which makes it a potentially powerful tool for engineering application.
Langevin dynamics for ramified structures
Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel
2017-06-01
We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.
A study of the Boltzmann and Gibbs entropies in the context of a stochastic toy model
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2018-05-01
In this article we reconsider a stochastic toy model of thermal contact, first introduced in Onorato et al (2017 Eur. J. Phys. 38 045102), showing its educational potential for clarifying some current issues in the foundations of thermodynamics. The toy model can be realized in practice using dice and coins, and can be seen as representing thermal coupling of two subsystems with energy bounded from above. The system is used as a playground for studying the different behaviours of the Boltzmann and Gibbs temperatures and entropies in the approach to steady state. The process that models thermal contact between the two subsystems can be proved to be an ergodic, reversible Markov chain; thus the dynamics produces an equilibrium distribution in which the weight of each state is proportional to its multiplicity in terms of microstates. Each one of the two subsystems, taken separately, is formally equivalent to an Ising spin system in the non-interacting limit. The model is intended for educational purposes, and the level of readership of the article is aimed at advanced undergraduates.
Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling
International Nuclear Information System (INIS)
Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish
2015-01-01
Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties
Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling
Energy Technology Data Exchange (ETDEWEB)
Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)
2015-12-28
Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.
Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong
The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
Farhat, Hassan
Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls
A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations
Energy Technology Data Exchange (ETDEWEB)
Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2016-06-01
Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region
Habilomatis, George; Chaloulakou, Archontoula
2013-10-01
Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Directory of Open Access Journals (Sweden)
Aizat Abas
2016-01-01
Full Text Available This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI. Three different types of Lattice Boltzmann (LB models are computed, namely, single relaxation time (SRT, multiple relaxation time (MRT, and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV- based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
Eliminating cubic terms in the pseudopotential lattice Boltzmann model for multiphase flow
Huang, Rongzong; Wu, Huiying; Adams, Nikolaus A.
2018-05-01
It is well recognized that there exist additional cubic terms of velocity in the lattice Boltzmann (LB) model based on the standard lattice. In this work, elimination of these cubic terms in the pseudopotential LB model for multiphase flow is investigated, where the force term and density gradient are considered. By retaining high-order (≥3 ) Hermite terms in the equilibrium distribution function and the discrete force term, as well as introducing correction terms in the LB equation, the additional cubic terms of velocity are entirely eliminated. With this technique, the computational simplicity of the pseudopotential LB model is well maintained. Numerical tests, including stationary and moving flat and circular interface problems, are carried out to show the effects of such cubic terms on the simulation of multiphase flow. It is found that the elimination of additional cubic terms is beneficial to reduce the numerical error, especially when the velocity is relatively large. Numerical results also suggest that these cubic terms mainly take effect in the interfacial region and that the density-gradient-related cubic terms are more important than the other cubic terms for multiphase flow.
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
A lattice Boltzmann model for substrates with regularly structured surface roughness
Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.
2015-11-01
Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.
Pravinraj, T.; Patrikar, Rajendra
2017-07-01
Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.
Guo, Yangyu; Wang, Moran
2017-10-01
The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.
Lattice Boltzmann model for high-order nonlinear partial differential equations
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Lattice Boltzmann model for high-order nonlinear partial differential equations.
Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang
2018-01-01
In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.
International Nuclear Information System (INIS)
Zhang Qing-Yu; Zhang You-Fa; Zhu Ming-Fang; Sun Dong-Ke
2016-01-01
In the present study, the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multi-component multi-phase lattice Boltzmann model. The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays. Droplets nucleated at the top (top-nucleation mode), or in the upside interpillar space of nanoarrays (side-nucleation mode), generate the non-wetting Cassie state, whereas the ones nucleated at the bottom corners between the nanoarrays (bottom-nucleation mode) present the wetting Wenzel state. Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes. The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated, indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface. The simulation results are compared well with the experimental observations reported in the literature. (paper)
Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition
International Nuclear Information System (INIS)
Attar, Elham; Koerner, Carolin
2011-01-01
Purpose: The main objective of this work is to develop an algorithm to use the Lattice Boltzmann method for solving free surface thermal flow problems with solid/liquid phase changes. Approach: A multi-distribution function model is applied to simulate hydrodynamic flow and the coupled thermal diffusion-convection problem. Findings: The free surface problem, i.e. the reconstruction of the missing distribution functions at the interface, can be solved by applying a physical transparent momentum and heat flux based methodology. The developed method is subsequently applied to some test cases in order to assess its computational potentials. Practical implications: Many industrial processes involve problems where non-isothermal motion and simultaneous solidification of fluids with free surface is important. Examples are all castings processes and especially foaming processes which are characterized by a huge and strongly changing surface. Value: A reconstruction algorithm to treat a thermal hydrodynamic problem with free surfaces is presented which is physically transparent and easy to implement.
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan
2018-03-01
An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.
International Nuclear Information System (INIS)
Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin
2014-01-01
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body
DEFF Research Database (Denmark)
Dyekjær, Jane Dannow; Rasmussen, Kjeld; Jonsdottir, Svava Osk
2002-01-01
Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann-averaged by sele......Values for nine descriptors for QSPR (quantitative structure-property relationships) modeling of physical properties of 96 alkanes, alcohols, ethers, diols, triols and cyclic alkanes and alcohols in conjunction with the program Codessa are presented. The descriptors are Boltzmann...
Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
Ba, Yan; Liu, Haihu; Sun, Jinju; Zheng, Rongye
2013-10-01
Lattice Boltzmann method (LBM) is an effective tool for simulating the contact-line motion due to the nature of its microscopic dynamics. In contact-line motion, contact-angle hysteresis is an inherent phenomenon, but it is neglected in most existing color-gradient based LBMs. In this paper, a color-gradient based multiphase LBM is developed to simulate the contact-line motion, particularly with the hysteresis of contact angle involved. In this model, the perturbation operator based on the continuum surface force concept is introduced to model the interfacial tension, and the recoloring operator proposed by Latva-Kokko and Rothman is used to produce phase segregation and resolve the lattice pinning problem. At the solid surface, the color-conserving wetting boundary condition [Hollis et al., IMA J. Appl. Math. 76, 726 (2011)] is applied to improve the accuracy of simulations and suppress spurious currents at the contact line. In particular, we present a numerical algorithm to allow for the effect of the contact-angle hysteresis, in which an iterative procedure is used to determine the dynamic contact angle. Numerical simulations are conducted to verify the developed model, including the droplet partial wetting process and droplet dynamical behavior in a simple shear flow. The obtained results are compared with theoretical solutions and experimental data, indicating that the model is able to predict the equilibrium droplet shape as well as the dynamic process of partial wetting and thus permits accurate prediction of contact-line motion with the consideration of contact-angle hysteresis.
Energy Technology Data Exchange (ETDEWEB)
Pravinraj, T., E-mail: pravinraj1711@gmail.com; Patrikar, Rajendra
2017-07-01
Highlights: • A LBM model on partial wetting surface for droplet dynamics is presented by introducing a simple initial partial wetting boundary condition in SC model. • With our approach one can tune the splitting volume and time by carefully choosing strip width and position. • It is shown that the droplet spreading on chemically heterogeneous surfaces can be controlled not only by Weber number but also by tuning strip width ratio. • The directional transportation of a droplet due to chemical wetting gradient is simulated and analyzed using hybrid thermodynamic-image processing technique. • Microstructure surface and its influence on the directional wetting based transportation of droplet are demonstrated. - Abstract: Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains
Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
Liu, Haihu; Valocchi, Albert J; Kang, Qinjun
2012-04-01
We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the
A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins
Xu, Jingjie; Lu, Benzhuo
2018-01-01
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644
Sohrabi, Salman; Liu, Yaling
2018-03-01
Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the
Energy Technology Data Exchange (ETDEWEB)
Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)
2008-10-21
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
International Nuclear Information System (INIS)
Boyd, J; Buick, J M
2008-01-01
Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.
Lattice Boltzmann flow simulations with applications of reduced order modeling techniques
Brown, Donald
2014-01-01
With the recent interest in shale gas, an understanding of the flow mechanisms at the pore scale and beyond is necessary, which has attracted a lot of interest from both industry and academia. One of the suggested algorithms to help understand flow in such reservoirs is the Lattice Boltzmann Method (LBM). The primary advantage of LBM is its ability to approximate complicated geometries with simple algorithmic modificatoins. In this work, we use LBM to simulate the flow in a porous medium. More specifically, we use LBM to simulate a Brinkman type flow. The Brinkman law allows us to integrate fast free-flow and slow-flow porous regions. However, due to the many scales involved and complex heterogeneities of the rock microstructure, the simulation times can be long, even with the speed advantage of using an explicit time stepping method. The problem is two-fold, the computational grid must be able to resolve all scales and the calculation requires a steady state solution implying a large number of timesteps. To help reduce the computational complexity and total simulation times, we use model reduction techniques to reduce the dimension of the system. In this approach, we are able to describe the dynamics of the flow by using a lower dimensional subspace. In this work, we utilize the Proper Orthogonal Decomposition (POD) technique, to compute the dominant modes of the flow and project the solution onto them (a lower dimensional subspace) to arrive at an approximation of the full system at a lowered computational cost. We present a few proof-of-concept examples of the flow field and the corresponding reduced model flow field.
International Nuclear Information System (INIS)
Boyd, J; Buick, J; Cosgrove, J A; Stansell, P
2005-01-01
The lattice Boltzmann model is used to observe changes in the velocity flow and shear stress in a carotid artery model during a simulated stenosis growth. Near wall shear stress in the unstenosed artery is found to agree with literature values. The model also shows regions of low velocity, rotational flow and low near wall shear stress along parts of the walls of the carotid artery that have been identified as being prone to atherosclerosis. These regions persist during the simulated stenosis growth, suggesting that atherosclerotic plaque build-up creates regions of flow with properties that favour atherosclerotic progression
Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann
Energy Technology Data Exchange (ETDEWEB)
Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)
2017-06-01
Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.
Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen
2015-04-01
This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive
On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations
Zhao, Weifeng; Wang, Liang; Yong, Wen-An
2018-02-01
In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.
An introduction to the theory of the Boltzmann equation
Harris, Stewart
2011-01-01
Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes
Flavored quantum Boltzmann equations
International Nuclear Information System (INIS)
Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean
2010-01-01
We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.
International Nuclear Information System (INIS)
Pan, Dongqing; Chien Jen, Tien; Li, Tao; Yuan, Chris
2014-01-01
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired
Energy Technology Data Exchange (ETDEWEB)
Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)
2014-01-15
This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice Bhatnagar–Gross–Krook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.
Directory of Open Access Journals (Sweden)
A. R. Rahmati
2016-12-01
Full Text Available Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the accommodation coefficient significantly, but there is not an explicitly relationship between properties at wall and accommodation coefficient. In the present wok, Langmuir slip model is used beside LBM to simulate micro-channel and micro-orifice flows. Slip velocity and nonlinear pressure drop profiles are presented as two major effects in such flows. The results are in good agreement with existing results in the literature.
Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling
Duong, Chi Nhan; Luu, Khoa; Quach, Kha Gia; Bui, Tien D.
2016-01-01
The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the genera...
Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan
2012-12-01
Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.
Energy Technology Data Exchange (ETDEWEB)
Boyd, J [Cardiovascular Research Group, Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Mechanical and Design Engineering, Anglesea Building, Anglesea Road, University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)
2008-10-21
Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.
International Nuclear Information System (INIS)
Boyd, J; Buick, J M
2008-01-01
Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.
Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model
Directory of Open Access Journals (Sweden)
Mahshid Hadavand
2011-01-01
Full Text Available Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM. This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.
Pradhan, Aniruddhe; Akhavan, Rayhaneh
2017-11-01
Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.
International Nuclear Information System (INIS)
Gelat, Pierre; Podesta, Michael de; Sutton, Gavin; Underwood, Robin; Joly, Nicolas
2009-01-01
iMERA/Euromet Project 885 is co-ordinating European effort towards a new determination of the Boltzmann constant k B to within 1 ppm with the aim of redefining the unit of thermodynamic temperature. This project will enable the National Physical Laboratory to perform primary thermometry in the region of -40 0 C (Hg) to 156 0 C (In) with sub-millikelvin uncertainties by 2012. The chosen technique relies on determining the speed of sound in a monatomic gas. Using the radial acoustic modes of a spherical resonator, consisting of a copper shell and filled with argon or helium, the speed of sound can be measured with great precision and from this measurement the Boltzmann constant can be inferred. This project draws on expertise in dimensional, density, microwave and acoustic measurements at the state-of-the-art. In order to gain further understanding of the experimental configuration a vibro-acoustic model has been developed using the finite element method. Initial calculations were carried out to ensure that predictions of the resonant frequency could be made with the required precision by comparing against an analytical model of a spherical shell filled with a gas. A more elaborate model better representing the experimental configuration was then developed. Thermo-viscous effects close to the fluid-structure boundary were accounted for using a linear acoustic formulation, from which a normal incidence admittance boundary condition was derived and imposed on the inner surface of the resonator. Acoustic pressure, particle velocity and temperature variation as a function of position may be obtained within the gas as a function of frequency. It is therefore possible to investigate how changes in the configuration affect the frequency of radial modes. It is hoped that this approach will shed a better understanding of the underlying complex physical phenomena allowing a minimization of the overall uncertainty.
Gélat, Pierre; Joly, Nicolas; de Podesta, Michael; Sutton, Gavin; Underwood, Robin
2009-11-01
iMERA/Euromet Project 885 is co-ordinating European effort towards a new determination of the Boltzmann constant kB to within 1 ppm with the aim of redefining the unit of thermodynamic temperature. This project will enable the National Physical Laboratory to perform primary thermometry in the region of -40 °C (Hg) to 156 °C (In) with sub-millikelvin uncertainties by 2012. The chosen technique relies on determining the speed of sound in a monatomic gas. Using the radial acoustic modes of a spherical resonator, consisting of a copper shell and filled with argon or helium, the speed of sound can be measured with great precision and from this measurement the Boltzmann constant can be inferred. This project draws on expertise in dimensional, density, microwave and acoustic measurements at the state-of-the-art. In order to gain further understanding of the experimental configuration a vibro-acoustic model has been developed using the finite element method. Initial calculations were carried out to ensure that predictions of the resonant frequency could be made with the required precision by comparing against an analytical model of a spherical shell filled with a gas. A more elaborate model better representing the experimental configuration was then developed. Thermo-viscous effects close to the fluid-structure boundary were accounted for using a linear acoustic formulation, from which a normal incidence admittance boundary condition was derived and imposed on the inner surface of the resonator. Acoustic pressure, particle velocity and temperature variation as a function of position may be obtained within the gas as a function of frequency. It is therefore possible to investigate how changes in the configuration affect the frequency of radial modes. It is hoped that this approach will shed a better understanding of the underlying complex physical phenomena allowing a minimization of the overall uncertainty.
Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako
2018-03-01
A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.
International Nuclear Information System (INIS)
Hua-Bing, Li; Li, Jin; Bing, Qiu
2008-01-01
To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))
The convergence of parallel Boltzmann machines
Zwietering, P.J.; Aarts, E.H.L.; Eckmiller, R.; Hartmann, G.; Hauske, G.
1990-01-01
We discuss the main results obtained in a study of a mathematical model of synchronously parallel Boltzmann machines. We present supporting evidence for the conjecture that a synchronously parallel Boltzmann machine maximizes a consensus function that consists of a weighted sum of the regular
A direct force model for Galilean invariant lattice Boltzmann simulation of fluid-particle flows
Tao, Shi; He, Qing; Chen, Baiman; Yang, Xiaoping; Huang, Simin
The lattice Boltzmann method (LBM) has been widely used in the simulation of particulate flows involving complex moving boundaries. Due to the kinetic background of LBM, the bounce-back (BB) rule and the momentum exchange (ME) method can be easily applied to the solid boundary treatment and the evaluation of fluid-solid interaction force, respectively. However, recently it has been found that both the BB and ME schemes may violate the principle of Galilean invariance (GI). Some modified BB and ME methods have been proposed to reduce the GI error. But these remedies have been recognized subsequently to be inconsistent with Newton’s Third Law. Therefore, contrary to those corrections based on the BB and ME methods, a unified iterative approach is adopted to handle the solid boundary in the present study. Furthermore, a direct force (DF) scheme is proposed to evaluate the fluid-particle interaction force. The methods preserve the efficiency of the BB and ME schemes, and the performance on the accuracy and GI is verified and validated in the test cases of particulate flows with freely moving particles.
Fares, Ehab; Duda, Benjamin; Khorrami, Mehdi R.
2016-01-01
Unsteady flow computations are presented for a Gulfstream aircraft model in landing configuration, i.e., flap deflected 39deg and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW(Trademark) to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. Two geometry representations of the same aircraft are analyzed: an 18% scale, high-fidelity, semi-span model at wind tunnel Reynolds number and a full-scale, full-span model at half-flight Reynolds number. Previously published and newly generated model-scale results are presented; all full-scale data are disclosed here for the first time. Reynolds number and geometrical fidelity effects are carefully examined to discern aerodynamic and aeroacoustic trends with a special focus on the scaling of surface pressure fluctuations and farfield noise. An additional study of the effects of geometrical detail on farfield noise is also documented. The present investigation reveals that, overall, the model-scale and full-scale aeroacoustic results compare rather well. Nevertheless, the study also highlights that finer geometrical details that are typically not captured at model scales can have a non-negligible contribution to the farfield noise signature.
Directory of Open Access Journals (Sweden)
Song-Gui Chen
2016-01-01
Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
Training Restricted Boltzmann Machines
DEFF Research Database (Denmark)
Fischer, Asja
relies on sampling based approximations of the log-likelihood gradient. I will present an empirical and theoretical analysis of the bias of these approximations and show that the approximation error can lead to a distortion of the learning process. The bias decreases with increasing mixing rate......Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...... of the applied sampling procedure and I will introduce a transition operator that leads to faster mixing. Finally, a different parametrisation of RBMs will be discussed that leads to better learning results and more robustness against changes in the data representation....
Numerical solution of Boltzmann's equation
International Nuclear Information System (INIS)
Sod, G.A.
1976-04-01
The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig
Sman, van der R.G.M.
2006-01-01
In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the
A topological insight into restricted Boltzmann machines
Mocanu, D.C.; Mocanu, E.; Nguyen, H.P.; Gibescu, M.; Liotta, A.
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep artificial neural networks for automatic features extraction, unsupervised weights initialization, but also as density estimators. Thus, their generative and discriminative
Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan
2016-10-01
A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.
Benioug, M.; Yang, X.
2017-12-01
The evolution of microbial phase within porous medium is a complex process that involves growth, mortality, and detachment of the biofilm or attachment of moving cells. A better understanding of the interactions among biofilm growth, flow and solute transport and a rigorous modeling of such processes are essential for a more accurate prediction of the fate of pollutants (e.g. NAPLs) in soils. However, very few works are focused on the study of such processes in multiphase conditions (oil/water/biofilm systems). Our proposed numerical model takes into account the mechanisms that control bacterial growth and its impact on the dissolution of NAPL. An Immersed Boundary - Lattice Boltzmann Model (IB-LBM) is developed for flow simulations along with non-boundary conforming finite volume methods (volume of fluid and reconstruction methods) used for reactive solute transport. A sophisticated cellular automaton model is also developed to describe the spatial distribution of bacteria. A series of numerical simulations have been performed on complex porous media. A quantitative diagram representing the transitions between the different biofilm growth patterns is proposed. The bioenhanced dissolution of NAPL in the presence of biofilms is simulated at the pore scale. A uniform dissolution approach has been adopted to describe the temporal evolution of trapped blobs. Our simulations focus on the dissolution of NAPL in abiotic and biotic conditions. In abiotic conditions, we analyze the effect of the spatial distribution of NAPL blobs on the dissolution rate under different assumptions (blobs size, Péclet number). In biotic conditions, different conditions are also considered (spatial distribution, reaction kinetics, toxicity) and analyzed. The simulated results are consistent with those obtained from the literature.
Topology optimization and lattice Boltzmann methods
DEFF Research Database (Denmark)
Nørgaard, Sebastian Arlund
This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...
A Langevin simulation of the Gross-Neveu spectrum
International Nuclear Information System (INIS)
Lacaze, R.; Morel, A.; Petersson, B.
1989-01-01
We study the order parameter of Chiral symmetry, and fermion and boson masses in the Gross-Neveu model as a function of the flavour number N and of the Langevin time step ε in the scaling region. The 1/N dependence of the ε=0 value of the order parameter is in excellent agreement with an analytical calculation up to second order. Care is taken of the important two fermion contribution in the bosonic correlation functions. Mass ratios are found to be ε dependent, but their ε=0 extrapolation is compatible with the analytic expectation
Directory of Open Access Journals (Sweden)
Simon Steentjes
2017-05-01
Full Text Available This paper compares the match obtained using the classical Langevin function, the tanh function as well as a recently by the authors proposed double Langevin function with the measured anhysteretic magnetization curve of three different non-oriented electrical steel grades and one grain-oriented grade. Two standard non-oriented grades and a high-silicon grade (Si content of 6.5% made by CVD are analyzed. An excellent match is obtained using the double Langevin function, whereas the classical solutions are less appropriate. Thereby, problems such as those due to propagation of approximation errors observed in hysteresis modeling can be bypassed.
Limitations of Boltzmann's principle
International Nuclear Information System (INIS)
Lavenda, B.H.
1995-01-01
The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2
International Nuclear Information System (INIS)
Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy
2013-01-01
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)
Energy Technology Data Exchange (ETDEWEB)
Premnath, Kannan N [Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, CO 80217 (United States); Pattison, Martin J [HyPerComp Inc., 2629 Townsgate Road, Suite 105, Westlake Village, CA 91361 (United States); Banerjee, Sanjoy, E-mail: kannan.premnath@ucdenver.edu, E-mail: kannan.np@gmail.com [Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031 (United States)
2013-10-15
Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)
A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films
Kwiatkowski, Joe J.; Jimison, Leslie H.; Salleo, Alberto; Spakowitz, Andrew J.
2011-01-01
We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.
Czech Academy of Sciences Publication Activity Database
Ziaja, B.; Saxena, V.; Son, S.-K.; Medvedev, N.; Barbrel, B.; Woloncewicz, B.; Stránský, Michal
2016-01-01
Roč. 93, č. 5 (2016), 1-6, č. článku 053210. ISSN 2470-0045 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : X-ray * Boltzmann equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.366, year: 2016
Nuclear fission with a Langevin equation
International Nuclear Information System (INIS)
Boilley, D.; Suraud, E.; Abe, Yasuhisa
1992-01-01
A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs
International Nuclear Information System (INIS)
Zhang Qing-Yu; Zhu Ming-Fang; Sun Dong-Ke
2017-01-01
A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young’s equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie’s law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to
A subjective supply–demand model: the maximum Boltzmann/Shannon entropy solution
International Nuclear Information System (INIS)
Piotrowski, Edward W; Sładkowski, Jan
2009-01-01
The present authors have put forward a projective geometry model of rational trading. The expected (mean) value of the time that is necessary to strike a deal and the profit strongly depend on the strategies adopted. A frequent trader often prefers maximal profit intensity to the maximization of profit resulting from a separate transaction because the gross profit/income is the adopted/recommended benchmark. To investigate activities that have different periods of duration we define, following the queuing theory, the profit intensity as a measure of this economic category. The profit intensity in repeated trading has a unique property of attaining its maximum at a fixed point regardless of the shape of demand curves for a wide class of probability distributions of random reverse transactions (i.e. closing of the position). These conclusions remain valid for an analogous model based on supply analysis. This type of market game is often considered in research aiming at finding an algorithm that maximizes profit of a trader who negotiates prices with the Rest of the World (a collective opponent), possessing a definite and objective supply profile. Such idealization neglects the sometimes important influence of an individual trader on the demand/supply profile of the Rest of the World and in extreme cases questions the very idea of demand/supply profile. Therefore we put forward a trading model in which the demand/supply profile of the Rest of the World induces the (rational) trader to (subjectively) presume that he/she lacks (almost) all knowledge concerning the market but his/her average frequency of trade. This point of view introduces maximum entropy principles into the model and broadens the range of economic phenomena that can be perceived as a sort of thermodynamical system. As a consequence, the profit intensity has a fixed point with an astonishing connection with Fibonacci classical works and looking for the quickest algorithm for obtaining the extremum of a
A subjective supply-demand model: the maximum Boltzmann/Shannon entropy solution
Piotrowski, Edward W.; Sładkowski, Jan
2009-03-01
The present authors have put forward a projective geometry model of rational trading. The expected (mean) value of the time that is necessary to strike a deal and the profit strongly depend on the strategies adopted. A frequent trader often prefers maximal profit intensity to the maximization of profit resulting from a separate transaction because the gross profit/income is the adopted/recommended benchmark. To investigate activities that have different periods of duration we define, following the queuing theory, the profit intensity as a measure of this economic category. The profit intensity in repeated trading has a unique property of attaining its maximum at a fixed point regardless of the shape of demand curves for a wide class of probability distributions of random reverse transactions (i.e. closing of the position). These conclusions remain valid for an analogous model based on supply analysis. This type of market game is often considered in research aiming at finding an algorithm that maximizes profit of a trader who negotiates prices with the Rest of the World (a collective opponent), possessing a definite and objective supply profile. Such idealization neglects the sometimes important influence of an individual trader on the demand/supply profile of the Rest of the World and in extreme cases questions the very idea of demand/supply profile. Therefore we put forward a trading model in which the demand/supply profile of the Rest of the World induces the (rational) trader to (subjectively) presume that he/she lacks (almost) all knowledge concerning the market but his/her average frequency of trade. This point of view introduces maximum entropy principles into the model and broadens the range of economic phenomena that can be perceived as a sort of thermodynamical system. As a consequence, the profit intensity has a fixed point with an astonishing connection with Fibonacci classical works and looking for the quickest algorithm for obtaining the extremum of a
Leclaire, Sebastien
The computer assisted simulation of the dynamics of fluid flow has been a highly rewarding topic of research for several decades now, in terms of the number of scientific problems that have been solved as a result, both in the academic world and in industry. In the fluid dynamics field, simulating multiphase immiscible fluid flow remains a challenge, because of the complexity of the interactions at the flow phase interfaces. Various numerical methods are available to study these phenomena, and, the lattice Boltzmann method has been shown in recent years to be well adapted to solving this type of complex flow. In this thesis, a lattice Boltzmann model for the simulation of two-phase immiscible flows is studied. The main objective of the thesis is to develop this promising method further, with a view to enhancing its validity. To achieve this objective, the research is divided into five distinct themes. The first two focus on correcting some of the deficiencies of the original model. The third generalizes the model to support the simulation of N-phase immiscible fluid flows. The fourth is aimed at modifying the model itself, to enable the simulation of immiscible fluid flows in which the density of the phases varies. With the lattice Boltzmann class of models studied here, this density variation has been inadequately modeled, and, after 20 years, the issue still has not been resolved. The fifth, which complements this thesis, is connected with the lattice Boltzmann method, in that it generalizes the theory of 2D and 3D isotropic gradients for a high order of spatial precision. These themes have each been the subject of a scientific article, as listed in the appendix to this thesis, and together they constitute a synthesis that explains the links between the articles, as well as their scientific contributions, and satisfy the main objective of this research. Globally, a number of qualitative and quantitative test cases based on the theory of multiphase fluid flows
Mean electrostatic and Poisson-Boltzmann models for multicomponent transport through compacted clay
International Nuclear Information System (INIS)
Steefel, C.I.; Galindez, J.M.
2012-01-01
Document available in extended abstract form only. Electrical double layer effects in the pore space of clays become increasingly important as the level of compaction increases and intergrain and interlayer spacings shift towards the range of nano-meters. At such scales, solute transport can no longer be explained by concentration gradients alone and it becomes necessary to include the electrostatic effects on chemical potentials. In fact, the electrical double layer (EDL) that develops in the neighborhood of the negatively charged clay surfaces can extend well into the aqueous phase, effectively constraining the space available to anions (known as anion exclusion), thus distorting the spatial distribution of ionic species in solution. In this study, we make use of two approaches for addressing the accumulation and transport of charged ionic species in the electrical double layers of compacted bentonite: 1) a mean electrostatic approach based on the assumption of Donnan equilibrium, and 2) a 2D numerical approach based on the multicomponent Poisson-Nernst-Planck (NPP) set of equations. For the mean electrostatic or Donnan approach to the electrical double layer [1], two options are considered: 1) a model in which surface complexation in the Stern layer may partly balance the fixed charge of the montmorillonite making up the bentonite buffer, and 2) a model in which the fixed mineral charge is balanced completely by the diffuse layer. In the mean electrostatic approach, one additional equation that balances the charge between the Stern layer and the diffuse layer is added to the multicomponent reactive transport code CrunchFlow. The only additional unknown that is required is the mean electrostatic potential, although it may be necessary in certain cases to consider the volume (or width) of the electrical double layer as an additional implicit unknown. Both ions and neutral species may diffuse within the diffuse layer according to their gradients and species
Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2017-02-15
The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from the Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.
Treatment of constraints in the stochastic quantization method and covariantized Langevin equation
International Nuclear Information System (INIS)
Ikegami, Kenji; Kimura, Tadahiko; Mochizuki, Riuji
1993-01-01
We study the treatment of the constraints in the stochastic quantization method. We improve the treatment of the stochastic consistency condition proposed by Namiki et al. by suitably taking into account the Ito calculus. Then we obtain an improved Langevin equation and the Fokker-Planck equation which naturally leads to the correct path integral quantization of the constrained system as the stochastic equilibrium state. This treatment is applied to an O(N) non-linear σ model and it is shown that singular terms appearing in the improved Langevin equation cancel out the δ n (0) divergences in one loop order. We also ascertain that the above Langevin equation, rewritten in terms of independent variables, is actually equivalent to the one in the general-coordinate transformation covariant and vielbein-rotation invariant formalism. (orig.)
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the
The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method
Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.
2011-12-01
Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.
On a class of quantum Langevin equations and the question of approach to equilibrium
International Nuclear Information System (INIS)
Maassen, J.D.M.
1982-01-01
This thesis is concerned with a very simple 'open' quantum system, i.e. being in contact with the outer world. It is asked whether the motion of this system shows frictional behaviour in that it tends to thermal equilibrium. A partial positive answer is given to this question, more precisely, to the question if the solution of the quantum mechanical Langevin equation that describes the Lamb-model (a harmonic oscillator damped by coupling with a string), approaches an equilibrium state. In two sections, the classical and quantum Langevin equations are treated analogously. (Auth.)
Boltzmann's "H"-Theorem and the Assumption of Molecular Chaos
Boozer, A. D.
2011-01-01
We describe a simple dynamical model of a one-dimensional ideal gas and use computer simulations of the model to illustrate two fundamental results of kinetic theory: the Boltzmann transport equation and the Boltzmann "H"-theorem. Although the model is time-reversal invariant, both results predict that the behaviour of the gas is time-asymmetric.…
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2015-04-05
The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.
Ludwig Boltzmann: Atomic genius
Energy Technology Data Exchange (ETDEWEB)
Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it
2006-09-15
On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)
Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model
Landry, C. J.; Prodanovic, M.; Eichhubl, P.
2014-12-01
The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.
Institut Max von Laue-Paul Langevin
International Nuclear Information System (INIS)
This part of the annual report is concerned with the external and internal organization of the ILL (Institut Laue-Langevin), and a general presentation of the activities of the ILL during 1975. A first part is concerned with measurement and control instruments: three axis spectrometers,, time-of-flight, crystallography, diffuse scattering, powder spectrometers, polarized neutrons, monochromators, nuclear physics. In the second part the fields of research are reviewed by College: theory, nuclear physics, excitations, structures, liquids, gas and amorphous materials, imperfections, physical biochemistry, and chemistry, reactor exploitation [fr
Another higher order Langevin algorithm for QCD
International Nuclear Information System (INIS)
Kronfeld, A.S.
1986-01-01
This note provides an algorithm for integrating the Langevin equation which is second order. It introduces a term into the drift force which is a product of the Gaussian noise and a second derivative of the action. The specific application presented here is for nonabelian gauge theories interacting with fermions, e.g. QCD, for which it requires less memory than the Runge-Kutta algorithm of the same order. The memory and computational requirements of Euler, Runge-Kutta, and the present algorithm are compared. (orig.)
Institut Max von Laue-Paul Langevin
International Nuclear Information System (INIS)
Whereas the first volume of the Annual Report gives a general survey of the activities of the different sections of the ILL (Institut Laue-Langevin), this second volume titled Annex to the 1975 annual report is dealing in more details with the scientific work carried out at the ILL from November the 1st 1974 to October the 1st 1975. Scientific works for which reports are available are presented grouped as possible, by college: theory; nuclear physics; excitations; structures; liquids, gas and amorphous materials; imperfections; physical biochemistry; and chemistry [fr
Lindley, David
2002-01-01
Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.
Axisymmetric multiphase lattice Boltzmann method for generic equations of state
Reijers, S.A.; Gelderblom, H.; Toschi, F.
2016-01-01
We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Meng, Xuhui; Guo, Zhaoli
2015-10-01
A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.
Boltzmann hierarchy for interacting neutrinos I: formalism
International Nuclear Information System (INIS)
Oldengott, Isabel M.; Rampf, Cornelius; Wong, Yvonne Y.Y.
2015-01-01
Starting from the collisional Boltzmann equation, we derive for the first time and from first principles the Boltzmann hierarchy for neutrinos including interactions with a scalar particle. Such interactions appear, for example, in majoron-like models of neutrino mass generation. We study two limits of the scalar mass: (i) An extremely massive scalar whose only role is to mediate an effective 4-fermion neutrino-neutrino interaction, and (ii) a massless scalar that can be produced in abundance and thus demands its own Boltzmann hierarchy. In contrast to, e.g., the first-order Boltzmann hierarchy for Thomson-scattering photons, our interacting neutrino/scalar Boltzmann hierarchies contain additional momentum-dependent collision terms arising from a non-negligible energy transfer in the neutrino-neutrino and neutrino-scalar interactions. This necessitates that we track each momentum mode of the phase space distributions individually, even if the particles were massless. Comparing our hierarchy with the commonly used (c eff 2 ,c vis 2 )-parameterisation, we find no formal correspondence between the two approaches, which raises the question of whether the latter parameterisation even has an interpretation in terms of particle scattering. Lastly, although we have invoked majoron-like models as a motivation for our study, our treatment is in fact generally applicable to all scenarios in which the neutrino and/or other ultrarelativistic fermions interact with scalar particles
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034 ...
Hot electrons in superlattices: quantum transport versus Boltzmann equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.
1999-01-01
A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...
Thermal equation of state for lattice Boltzmann gases
International Nuclear Information System (INIS)
Zheng, Ran
2009-01-01
The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar–Gross–Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar–Gross–Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics
Exploring cluster Monte Carlo updates with Boltzmann machines
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
Exploring cluster Monte Carlo updates with Boltzmann machines.
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
Snook, Ian
2007-01-01
The Langevin and Generalised Langevin Approach To The Dynamics Of Atomic, Polymeric And Colloidal Systems is concerned with the description of aspects of the theory and use of so-called random processes to describe the properties of atomic, polymeric and colloidal systems in terms of the dynamics of the particles in the system. It provides derivations of the basic equations, the development of numerical schemes to solve them on computers and gives illustrations of application to typical systems.Extensive appendices are given to enable the reader to carry out computations to illustrate many of the points made in the main body of the book.* Starts from fundamental equations* Gives up-to-date illustration of the application of these techniques to typical systems of interest* Contains extensive appendices including derivations, equations to be used in practice and elementary computer codes
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.
2018-04-01
The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649 × 10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7 × 10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.
Quantum linear Boltzmann equation
International Nuclear Information System (INIS)
Vacchini, Bassano; Hornberger, Klaus
2009-01-01
We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.
Singularities in the nonisotropic Boltzmann equation
International Nuclear Information System (INIS)
Garibotti, C.R.; Martiarena, M.L.; Zanette, D.
1987-09-01
We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs
Boltzmann equations for a binary one-dimensional ideal gas.
Boozer, A D
2011-09-01
We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.
Ludwig Boltzmann - pioneer of atomistics and evolution
International Nuclear Information System (INIS)
Stiller, W.
1986-01-01
At first a short introduction to Ludwig Boltzmann's life (1844 - 1906) and work is given. Some theoretical results of his work (H-theorem, classical Boltzmann statistics, Boltzmann's kinetic equation) are treated in detail. His experimental work is briefly discussed. In addition Boltzmann's philosophical work is characterized. Finally, the influence of Boltzmann's ideas on our time is investigated. (author)
Complex Langevin simulation of real time quantum evolution
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Kripfganz, J.
1986-07-01
Complex Langevin methods are used to study the time evolution of quantum mechanical wave packets. We do not need any Feynman ε regularization for the numerical evaluation of the double time path integral. (author)
On the Langevin equation for stochastic quantization of gravity
International Nuclear Information System (INIS)
Nakazawa, Naohito.
1989-10-01
We study the Langevin equation for stochastic quantization of gravity. By introducing two independent variables with a second-class constraint for the gravitational field, we formulate a pair of the Langevin equations for gravity which couples with white noises. After eliminating the multiplier field for the second-class constraint, we show that the equations leads to stochastic quantization of gravity including an unique superspace metric. (author)
Bijma, K; Engberts, J B F N
This paper describes how the theory of the ''dressed micelle'', which is based on the nonlinear Poisson-Boltzmann equation, can be used to calculate a number of thermodynamic quantities for micellization of sodium p-alkylbenzenesulphonates. From the Gibbs energy of micellization, the enthalpy of
Directory of Open Access Journals (Sweden)
Ahmed Kadhim Hussein
2016-03-01
Full Text Available A steady laminar two-dimensional magneto-hydrodynamics (MHD natural convection flow in a square enclosure filled with an electrically conducting fluid is numerically investigated using Lattice Boltzmann Method (LBM. The left and right vertical sidewalls of the square enclosure are maintained at hot and cold temperatures respectively. The horizontal top and bottom walls are considered thermally insulated. An adiabatic square shaped body is located in the center of a square enclosure and an external magnetic field is applied parallel to the horizontal x-axis. In the present work, the following parametric ranges of the non-dimensional groups are utilized: Hartmann number is varied as 0 ⩽ Ha ⩽ 50, Rayleigh number is varied as 103 ⩽ Ra ⩽ 105, Prandtl number is varied 0.05 ⩽ Pr ⩽ 5. It is found that the Hartmann number, Rayleigh number, and Prandtl number have an important role on the flow and thermal characteristics. It is found that when the Hartmann number increases the average Nusselt number decreases. The results also explain that the effect of magnetic field on flow field increases by increasing Prandtl number. However, the Prandtl number effect on the average Nusselt number with a magnetic field is less than the case without a magnetic field. Comparisons with previously published numerical works are performed and good agreements between the results are observed.
Langevin simulations of QCD, including fermions
International Nuclear Information System (INIS)
Kronfeld, A.S.
1986-02-01
We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)
Deriving Langevin equations in curved spacetime
International Nuclear Information System (INIS)
Ramos, Rudnei O.; Tavares, Romulo F.
2013-01-01
Full text: Warm inflation is an inflationary scenario where the interactions between the inflaton and other degrees of freedom are considered. The effective equation of motion for the inflaton is in general of the form of a Langevin equation, that includes both quantum and thermal effects and where these effects manifest in the form of dissipation and stochastic noise terms, which are related by a generalized fluctuation-dissipation relation. The dissipation term is related to the interactions of the inflaton with other degrees of freedom of the thermal bath that can be obtained from the appropriate Feynman propagators. As the inflaton evolves into an expanding metric, these effects have to be taken into account when calculating the Green functions and consequently the Feynman propagators. In this work we present the considerations that must be made to calculate the Green functions in curved space (expanding metric) and in the presence of radiation in order to proper derive the effective evolution of the inflaton in the warm-inflation scenario. (author)
Fast-forward Langevin dynamics with momentum flips
Hijazi, Mahdi; Wilkins, David M.; Ceriotti, Michele
2018-05-01
Stochastic thermostats based on the Langevin equation, in which a system is coupled to an external heat bath, are popular methods for temperature control in molecular dynamics simulations due to their ergodicity and their ease of implementation. Traditionally, these thermostats suffer from sluggish behavior in the limit of high friction, unlike thermostats of the Nosé-Hoover family whose performance degrades more gently in the strong coupling regime. We propose a simple and easy-to-implement modification to the integration scheme of the Langevin algorithm that addresses the fundamental source of the overdamped behavior of high-friction Langevin dynamics: if the action of the thermostat causes the momentum of a particle to change direction, it is flipped back. This fast-forward Langevin equation preserves the momentum distribution and so guarantees the correct equilibrium sampling. It mimics the quadratic behavior of Nosé-Hoover thermostats and displays similarly good performance in the strong coupling limit. We test the efficiency of this scheme by applying it to a 1-dimensional harmonic oscillator, as well as to water and Lennard-Jones polymers. The sampling efficiency of the fast-forward Langevin equation thermostat, measured by the correlation time of relevant system variables, is at least as good as the traditional Langevin thermostat, and in the overdamped regime, the fast-forward thermostat performs much better, improving the efficiency by an order of magnitude at the highest frictions we considered.
Directory of Open Access Journals (Sweden)
J. Soete
2017-01-01
Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.
Correlated continuous-time random walks—scaling limits and Langevin picture
International Nuclear Information System (INIS)
Magdziarz, Marcin; Metzler, Ralf; Szczotka, Wladyslaw; Zebrowski, Piotr
2012-01-01
In this paper we analyze correlated continuous-time random walks introduced recently by Tejedor and Metzler (2010 J. Phys. A: Math. Theor. 43 082002). We obtain the Langevin equations associated with this process and the corresponding scaling limits of their solutions. We prove that the limit processes are self-similar and display anomalous dynamics. Moreover, we extend the model to include external forces. Our results are confirmed by Monte Carlo simulations
Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium.
Ceccato, Alessandro; Frezzato, Diego
2018-02-14
The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-known continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An illustration is given for a model case.
Coffey, W T; Titov, S V
2003-01-01
A theory of orientational relaxation for the inertial rotational Brownian motion of a symmetric top molecule is developed using the Langevin equation rather than the Fokker-Planck equation. The infinite hierarchy of differential-recurrence relations for the orientational correlation functions for the relaxation behaviour is derived by averaging the corresponding Euler-Langevin equations. The solution of this hierarchy is obtained using matrix continued fractions allowing the calculation of the correlation times and the spectra of the orientational correlation functions for typical values of the model parameters.
International Nuclear Information System (INIS)
Kwok, Sau Fa
2012-01-01
A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
International Nuclear Information System (INIS)
Hirohashi, Kensuke; Inamuro, Takaji
2017-01-01
Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)
Energy Technology Data Exchange (ETDEWEB)
Hirohashi, Kensuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan)
2017-08-15
Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)
Critique of the Brownian approximation to the generalized Langevin equation in lattice dynamics
International Nuclear Information System (INIS)
Diestler, D.J.; Riley, M.E.
1985-01-01
We consider the classical motion of a harmonic lattice in which only those atoms in a certain subset of the lattice (primary zone) may interact with an external force. The formally exact generalized Langevin equation (GLE) for the primary zone is an appropriate description of the dynamics. We examine a previously proposed Brownian, or frictional damping, approximation that reduces the GLE to a set of coupled ordinary Langevin equations for the primary atoms. It is shown that the solution of these equations can contain undamped motion if there is more than one atom in the primary zone. Such motion is explicitly demonstrated for a model that has been used to describe energy transfer in atom--surface collisions. The inability of the standard Brownian approximation to yield an acceptable, physically meaningful result for primary zones comprising more than one atom suggests that the Brownian approximation may introduce other spurious dynamical effects. Further work on damping of correlated motion in lattices is needed
International Nuclear Information System (INIS)
Brett, Tobias; Galla, Tobias
2014-01-01
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period
Brett, Tobias; Galla, Tobias
2014-03-28
We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.
Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation
Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele
2018-03-01
Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.
Nonequilibrium Langevin dynamics: A demonstration study of shear flow fluctuations in a simple fluid
Belousov, Roman; Cohen, E. G. D.; Rondoni, Lamberto
2017-08-01
The present paper is based on a recent success of the second-order stochastic fluctuation theory in describing time autocorrelations of equilibrium and nonequilibrium physical systems. In particular, it was shown to yield values of the related deterministic parameters of the Langevin equation for a Couette flow in a microscopic molecular dynamics model of a simple fluid. In this paper we find all the remaining constants of the stochastic dynamics, which then is simulated numerically and compared directly with the original physical system. By using these data, we study in detail the accuracy and precision of a second-order Langevin model for nonequilibrium physical systems theoretically and computationally. We find an intriguing relation between an applied external force and cumulants of the resulting flow fluctuations. This is characterized by a linear dependence of an athermal cumulant ratio, an apposite quantity introduced here. In addition, we discuss how the order of a given Langevin dynamics can be raised systematically by introducing colored noise.
International Nuclear Information System (INIS)
Minami, Keisuke; Suzuki, Kosuke; Inamuro, Takaji
2015-01-01
Free flights of the dragonfly-like flapping wing-body model are numerically investigated using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m, and we set the parameters at Re = 200, Fr = 15, and m = 51. First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ, and the model with ϕ = 0 ∘ and 90 ∘ goes upward against gravity. The model with ϕ =180 ∘ goes almost horizontally, and the model with ϕ =270 ∘ goes downward. That is, the moving direction of the model depends on the phase lag angle ϕ. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ. It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle Θ c increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead–lag angle γ(t). We propose a simple proportional controller of γ(t) which makes stable flights within Θ c =±5 ∘ and works well even for a large disturbance. (paper)
Directory of Open Access Journals (Sweden)
Takumi Washio
2018-04-01
Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Maxwell iteration for the lattice Boltzmann method with diffusive scaling
Zhao, Weifeng; Yong, Wen-An
2017-03-01
In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.
Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.
2018-04-01
We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.
Directory of Open Access Journals (Sweden)
L.B. Bhuiyan
2017-12-01
Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.
Numerical integration of the Langevin equation: Monte Carlo simulation
International Nuclear Information System (INIS)
Ermak, D.L.; Buckholz, H.
1980-01-01
Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function
Ludwig Boltzmann, mechanics and vitalism
International Nuclear Information System (INIS)
Broda, E.
1990-01-01
During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought, of morality, of the sense of beauty, and of
Kiwaki, Taichi
2015-01-01
We present a layered Boltzmann machine (BM) that can better exploit the advantages of a distributed representation. It is widely believed that deep BMs (DBMs) have far greater representational power than its shallow counterpart, restricted Boltzmann machines (RBMs). However, this expectation on the supremacy of DBMs over RBMs has not ever been validated in a theoretical fashion. In this paper, we provide both theoretical and empirical evidences that the representational power of DBMs can be a...
Miller, C. T.; McClure, J. E.; Bruning, K.
2017-12-01
Variations in the wettability of a solid material are well known to affect the flow of two fluids in a porous media. However, thesemechanisms have not been modeled with high fidelity at the microscale and such mechanisms are typically not included in macroscalemodels. Recent experimental work by Zhao, MacMinn, and Juanes published in the Proceedings of the National Academy of Sciences(2016) has investigated two-fluid displacement in microfluidic cells. Displacement patterns were investigated as a function of thecontact angle and the capillary number for both drainage and imbibition. These results yielded new mechanistic understanding ofprocesses such as pore filling and post bridging, which were imaged at high resolution. In a challenge to the pore-scale modeling community,the authors of this work released their experimental data and encouraged an international set of modeling research groups tosimulate the conditions that were experimentally observed. The intent is to compare the results that materialize to shed new light on thestate-of-science in pore-scale simulation of these challenging and interesting flow systems. In this work, we summarize the experimentalfindings and report on initial efforts to simulate these community challenge experiments using a high-resolution lattice-Boltzmann method(LBM). A three-dimensional, multiple-relaxation-time color model based on a 19-site lattice is advanced in this work to matchexperimental conditions in a novel manner. A computational approach is implemented for the LBM method on hybrid CPU-GPU nodes and shown toscale near optimally. A new algorithm is described to match experimental boundary conditions. A grid-resolution study is performedto determine the resolution needed to determine grid-independent numerical approximations. Finally, the LBM simulation results arecompared to the highly resolved microfluidic experiments, displacement mechanisms are investigated, and observations and analysis of thetopological state
Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases
Cates, M. E.; Henrich, O.; Marenduzzo, D.; Stratford, K.
2010-01-01
Lattice Boltzmann simulations have become a method of choice to solve the hydrodynamic equations of motion of a number of complex fluids. Here we review some recent applications of lattice Boltzmann to study the hydrodynamics of liquid crystalline materials. In particular, we focus on the study of (a) the exotic blue phases of cholesteric liquid crystals, and (b) active gels - a model system for actin plus myosin solutions or bacterial suspensions. In both cases lattice Boltzmann studies have...
Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.
2018-02-01
While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.
Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...
Biesheuvel, P.M.; Lindhoud, S.; Vries, de R.J.; Stuart, M.A.C.
2006-01-01
We study the phase behavior of mixtures of oppositely charged nanoparticles, both theoretically and experimentally. As an experimental model system we consider mixtures of lysozyme and lysozyme that has been chemically modified in such a way that its charge is nearly equal in magnitude but opposite
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over
Energy Technology Data Exchange (ETDEWEB)
Nomura, Yasunori, E-mail: ynomura@berkeley.edu
2015-10-07
Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except for the one imposed by the Poincaré recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.
A discontinuous Galerkin finite-element method for a 1D prototype of the Boltzmann equation
Hoitinga, W.; Brummelen, van E.H.
2011-01-01
To develop and analyze new computational techniques for the Boltzmann equation based on model or approximation adaptivity, it is imperative to have disposal of a compliant model problem that displays the essential characteristics of the Boltzmann equation and that admits the extraction of highly
Joint Training of Deep Boltzmann Machines
Goodfellow, Ian; Courville, Aaron; Bengio, Yoshua
2012-01-01
We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.
Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise
Morita, Satoru
2018-05-01
Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.
Zakirov, T.; Galeev, A.; Khramchenkov, M.
2018-05-01
The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at
Numerical simulations of generalized Langevin equations with deeply asymptotic parameters
International Nuclear Information System (INIS)
Bao Jingdong; Li Rongwu; Wu Wei
2004-01-01
A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge-Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multiplicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly reduces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to treat a weak non-Markovian process
Langevin description of fission fragment charge distribution from excited nuclei
Karpov, A V
2002-01-01
A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied
Langevin approach to synchronization of hyperchaotic time-delay dynamics
Energy Technology Data Exchange (ETDEWEB)
Budini, Adrian A [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche, Av. E Bustillo Km 9.5, (8400) Bariloche (Argentina); Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)
2008-11-07
In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar nonlinear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the nonlinear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second-order differential delay equations associated with synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated with the hyperchaotic dynamics support the formalism.
Dissipative Boltzmann-Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Hiscock, W.A.; Salmonson, J.
1991-01-01
The equations governing a flat Robertson-Walker cosmological model containing a dissipative Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and contrasted. The Eckart models are shown to always differ in a significant quantitative way from the Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart theory for cosmological applications. For large bulk viscosities, both cosmological models approach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands more rapidly than the Israel-Stewart models. These results suggest that ''bulk-viscous'' inflation may be an artifact of using a pathological fluid theory such as the Eckart theory
Quantum Difference Langevin System with Nonlocal q-Derivative Conditions
Directory of Open Access Journals (Sweden)
Surang Sitho
2016-01-01
Full Text Available We introduce a new class of boundary value problems for Langevin quantum difference systems. Some new existence and uniqueness results for coupled systems are obtained by using fixed point theorems. The existence and uniqueness of solutions are established by Banach’s contraction mapping principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. The obtained results are well illustrated with the aid of examples.
Langevin theory of anomalous Brownian motion made simple
International Nuclear Information System (INIS)
Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas
2011-01-01
During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.
The Sagnac effect and its interpretation by Paul Langevin
Pascoli, Gianni
2017-11-01
The French physicist Georges Sagnac is nowdays frequently cited by the engineers who work on devices such as ring-laser gyroscopes. These systems operate on the principle of the Sagnac effect. It is less known that Sagnac was a strong opponent to the theory of special relativity proposed by Albert Einstein. He set up his experiment to prove the existence of the aether discarded by the Einsteinian relativity. An accurate explanation of the phenomenon was provided by Paul Langevin in 1921.
Brownian motion of spins; generalized spin Langevin equation
International Nuclear Information System (INIS)
Jayannavar, A.M.
1990-03-01
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concomitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature. (author). 16 refs
Boltzmann Oracle for Combinatorial Systems
Pivoteau , Carine; Salvy , Bruno; Soria , Michèle
2008-01-01
International audience; Boltzmann random generation applies to well-deﬁned systems of recursive combinatorial equations. It relies on oracles giving values of the enumeration generating series inside their disk of convergence. We show that the combinatorial systems translate into numerical iteration schemes that provide such oracles. In particular, we give a fast oracle based on Newton iteration.
An Analysis of Vehicular Traffic Flow Using Langevin Equation
Directory of Open Access Journals (Sweden)
Çağlar Koşun
2015-08-01
Full Text Available Traffic flow data are stochastic in nature, and an abundance of literature exists thereof. One way to express stochastic data is the Langevin equation. Langevin equation consists of two parts. The first part is known as the deterministic drift term, the other as the stochastic diffusion term. Langevin equation does not only help derive the deterministic and random terms of the selected portion of the city of Istanbul traffic empirically, but also sheds light on the underlying dynamics of the flow. Drift diagrams have shown that slow lane tends to get congested faster when vehicle speeds attain a value of 25 km/h, and it is 20 km/h for the fast lane. Three or four distinct regimes may be discriminated again from the drift diagrams; congested, intermediate, and free-flow regimes. At places, even the intermediate regime may be divided in two, often with readiness to congestion. This has revealed the fact that for the selected portion of the highway, there are two main states of flow, namely, congestion and free-flow, with an intermediate state where the noise-driven traffic flow forces the flow into either of the distinct regimes.
Identifying product order with restricted Boltzmann machines
Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin
2018-03-01
Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.
Privacy-Preserving Restricted Boltzmann Machine
Directory of Open Access Journals (Sweden)
Yu Li
2014-01-01
Full Text Available With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM. The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model.
Tomography and generative training with quantum Boltzmann machines
Kieferová, Mária; Wiebe, Nathan
2017-12-01
The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.
Lattice Boltzmann method with the cell-population equilibrium
International Nuclear Information System (INIS)
Zhou Xiaoyang; Cheng Bing; Shi Baochang
2008-01-01
The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions
Boltzmann, Einstein, Natural Law and Evolution
International Nuclear Information System (INIS)
Broda, E.
1980-01-01
Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)
Ginzburg, Irina
2016-02-01
In this Comment on the recent work (Zhu and Ma, 2013) [11] by Zhu and Ma (ZM) we first show that all three local gray Lattice Boltzmann (GLB) schemes in the form (Zhu and Ma, 2013) [11]: GS (Chen and Zhu, 2008; Gao and Sharma, 1994) [1,4], WBS (Walsh et al., 2009) [12] and ZM, fail to get constant Darcy's velocity in series of porous blocks. This inconsistency is because of their incorrect definition of the macroscopic velocity in the presence of the heterogeneous momentum exchange, while the original WBS model (Walsh et al., 2009) [12] does this properly. We improve the GS and ZM schemes for this and other related deficiencies. Second, we show that the ;discontinuous velocity; they recover on the stratified interfaces with their WBS scheme is inherent, in different degrees, to all LBE Brinkman schemes, including ZM scheme. None of them guarantees the stress and the velocity continuity by their implicit interface conditions, even in the frame of the two-relaxation-times (TRT) collision operator where these two properties are assured in stratified Stokes flow, Ginzburg (2007) [5]. Third, the GLB schemes are presented in work (Zhu and Ma, 2013) [11] as the alternative ones to direct, Brinkman-force based (BF) schemes (Freed, 1998; Nie and Martys, 2007) [3,8]. Yet, we show that the BF-TRT scheme (Ginzburg, 2008) [6] gets the solutions of any of the improved GLB schemes for specific, viscosity-dependent choice of its one or two local relaxation rates. This provides the principal difference between the GLB and BF: while the BF may respect the linearity of the Stokes-Brinkman equation rigorously, the GLB-TRT cannot, unless it reduces to the BF via the inverse transform of the relaxation rates. Furthermore, we show that, in limited parameter space, ;gray; schemes may run one another. From the practical point of view, permeability values obtained with the GLB are viscosity-dependent, unlike with the BF. Finally, the GLB shares with the BF a so-called anisotropy (Ginzburg
International Nuclear Information System (INIS)
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T.; Santos, Marcio G.
2015-01-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
Energy Technology Data Exchange (ETDEWEB)
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte
2015-07-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
A topological insight into restricted Boltzmann machines (extented abstract)
Mocanu, D.C.; Mocanu, E.; Nguyen, H.P.; Gibescu, M.; Liotta, A.
2016-01-01
Restricted Boltzmann Machines (RBMs) and models derived from them have been successfully used as basic building blocks in deep neural networks for automatic features extraction, unsupervised weights initialization, but also as standalone models for density estimation, activity recognition and so on.
Optimising Boltzmann codes for the PLANCK era
International Nuclear Information System (INIS)
Hamann, Jan; Lesgourgues, Julien; Balbi, Amedeo; Quercellini, Claudia
2009-01-01
High precision measurements of the Cosmic Microwave Background (CMB) anisotropies, as can be expected from the PLANCK satellite, will require high-accuracy theoretical predictions as well. One possible source of theoretical uncertainty is the numerical error in the output of the Boltzmann codes used to calculate angular power spectra. In this work, we carry out an extensive study of the numerical accuracy of the public Boltzmann code CAMB, and identify a set of parameters which determine the error of its output. We show that at the current default settings, the cosmological parameters extracted from data of future experiments like Planck can be biased by several tenths of a standard deviation for the six parameters of the standard ΛCDM model, and potentially more seriously for extended models. We perform an optimisation procedure that leads the code to achieve sufficient precision while at the same time keeping the computation time within reasonable limits. Our conclusion is that the contribution of numerical errors to the theoretical uncertainty of model predictions is well under control—the main challenges for more accurate calculations of CMB spectra will be of an astrophysical nature instead
Lattice Boltzmann method for weakly ionized isothermal plasmas
International Nuclear Information System (INIS)
Li Huayu; Ki, Hyungson
2007-01-01
In this paper, a lattice Boltzmann method (LBM) for weakly ionized isothermal plasmas is presented by introducing a rescaling scheme for the Boltzmann transport equation. Without using this rescaling, we found that the nondimensional relaxation time used in the LBM is too large and the LBM does not produce physically realistic results. The developed model was applied to the electrostatic wave problem and the diffusion process of singly ionized helium plasmas with a 1-3% degree of ionization under an electric field. The obtained results agree well with theoretical values
Large Time Behavior of the Vlasov-Poisson-Boltzmann System
Directory of Open Access Journals (Sweden)
Li Li
2013-01-01
Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.
Towards a physical interpretation of the entropic lattice Boltzmann method
Malaspinas, Orestis; Deville, Michel; Chopard, Bastien
2008-12-01
The entropic lattice Boltzmann method (ELBM) is one among several different versions of the lattice Boltzmann method for the simulation of hydrodynamics. The collision term of the ELBM is characterized by a nonincreasing H function, guaranteed by a variable relaxation time. We propose here an analysis of the ELBM using the Chapman-Enskog expansion. We show that it can be interpreted as some kind of subgrid model, where viscosity correction scales like the strain rate tensor. We confirm our analytical results by the numerical computations of the relaxation time modifications on the two-dimensional dipole-wall interaction benchmark.
International Nuclear Information System (INIS)
Silva, Goncalo; Talon, Laurent; Ginzburg, Irina
2017-01-01
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
Energy Technology Data Exchange (ETDEWEB)
Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France); Talon, Laurent, E-mail: talon@fast.u-psud.fr [CNRS (UMR 7608), Laboratoire FAST, Batiment 502, Campus University, 91405 Orsay (France); Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France)
2017-04-15
The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM
International Nuclear Information System (INIS)
Sandev, Trifce; Metzler, Ralf; Tomovski, Živorad
2014-01-01
We study generalized fractional Langevin equations in the presence of a harmonic potential. General expressions for the mean velocity and particle displacement, the mean squared displacement, position and velocity correlation functions, as well as normalized displacement correlation function are derived. We report exact results for the cases of internal and external friction, that is, when the driving noise is either internal and thus the fluctuation-dissipation relation is fulfilled or when the noise is external. The asymptotic behavior of the generalized stochastic oscillator is investigated, and the case of high viscous damping (overdamped limit) is considered. Additional behaviors of the normalized displacement correlation functions different from those for the regular damped harmonic oscillator are observed. In addition, the cases of a constant external force and the force free case are obtained. The validity of the generalized Einstein relation for this process is discussed. The considered fractional generalized Langevin equation may be used to model anomalous diffusive processes including single file-type diffusion
Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution
International Nuclear Information System (INIS)
Tothova, J.; Lisy, V.
2015-01-01
The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)
Langevin equations with multiplicative noise: application to domain growth
International Nuclear Information System (INIS)
Sancho, J.M.; Hernandez-Machado, A.; Ramirez-Piscina, L.; Lacasta, A.M.
1993-01-01
Langevin equations of Ginzburg-Landau form with multiplicative noise, are proposed to study the effects of fluctuations in domain growth. These equations are derived from a coarse-grained methodology. The Cahn-Hilliard-Cook linear stability analysis predicts some effects in the transitory regime. We also derive numerical algorithms for the computer simulation of these equations. The numerical results corroborate the analytical productions of the linear analysis. We also present simulation results for spinodal decomposition at large times. (author). 28 refs, 2 figs
Langevin dynamics of A+A reactions in one dimension
International Nuclear Information System (INIS)
Sancho, J M; Romero, A H; Lacasta, A M; Lindenberg, Katja
2007-01-01
We propose a set of Langevin equations of motion together with a reaction rule for the study of binary reactions. Our scheme is designed to address this problem for arbitrary friction γ and temperature T. It easily accommodates the inclusion of a substrate potential, and it lends itself to straightforward numerical integration. We test this approach on diffusion-limited (γ → ∞) as well as ballistic (γ = 0) A+A → P reactions for which there are extensive exact and approximate theoretical results as well as extensive Monte Carlo results. We reproduce the known results using our integration scheme, and also present new results for the ballistic reactions
Solving the generalized Langevin equation with the algebraically correlated noise
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1997-01-01
The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)
Paul Langevin and french physics from 1900 to 1939
International Nuclear Information System (INIS)
Bensaude-Vincent, B.
1987-01-01
As a young physicist at the turn of this century, P. Langevin was one of the most promising figures in French science. His doctoral dissertation on gas ionization and his research on magnetic theory earned him international reputation. All along his career he championed the new physical theories and made efforts to spread them in France. Through his research and his teaching, he thus fostered the development of atomistics, of theory of relativity and of quantum physics. After a brief survey of his physicist's work the paper seeks to discuss his influence on French physics [fr
Comparison of Langevin dynamics and direct energy barrier computation
International Nuclear Information System (INIS)
Dittrich, Rok; Schrefl, Thomas; Thiaville, Andre; Miltat, Jacques; Tsiantos, Vassilios; Fidler, Josef
2004-01-01
Two complementary methods to study thermal effects in micromagnetics are compared. On short time scales Langevin dynamics gives insight in the thermally activated dynamics. For longer time scales the 'nudged elastic band' method is applied. The method calculates a highly probable thermal switching path between two local energy minima of a micromagnetic system. Comparing the predicted thermal transition rates between ground states in small softmagnetic elements up to a size of 90x90x4.5 nm 3 gives good agreement of the methods
Quantum Non-Markovian Langevin Equations and Transport Coefficients
International Nuclear Information System (INIS)
Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.
2005-01-01
Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed
Contact angle determination in multicomponent lattice Boltzmann simultations
Schmieschek, S.M.P.; Harting, J.D.R.
2011-01-01
Droplets on hydrophobic surfaces are ubiquitous in microfluidic applications and there exists a number of commonly used multicomponent and multiphase lattice Boltzmann schemes to study such systems. In this paper we focus on a popular implementation of a multicomponent model as introduced by Shan
Boltzmann learning of parameters in cellular neural networks
DEFF Research Database (Denmark)
Hansen, Lars Kai
1992-01-01
The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...
Lattice Boltzmann simulations of attenuation-driven acoustic streaming
International Nuclear Information System (INIS)
Haydock, David; Yeomans, J M
2003-01-01
We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field
Comparison of Einstein-Boltzmann solvers for testing general relativity
Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.
2018-01-01
We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.
Flux Limiter Lattice Boltzmann for Compressible Flows
International Nuclear Information System (INIS)
Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai
2011-01-01
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Classifying images using restricted Boltzmann machines and convolutional neural networks
Zhao, Zhijun; Xu, Tongde; Dai, Chenyu
2017-07-01
To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.
Asymmetrically extremely dilute neural networks with Langevin dynamics and unconventional results
International Nuclear Information System (INIS)
Hatchett, J P L; Coolen, A C C
2004-01-01
We study graded response attractor neural networks with asymmetrically extremely dilute interactions and Langevin dynamics. We solve our model in the thermodynamic limit using generating functional analysis, and find (in contrast to the binary neurons case) that even in statics, for T > 0 or large α, one cannot eliminate the non-persistent order parameters, atypically for recurrent neural network models. The macroscopic dynamics is driven by the (non-trivial) joint distribution of neurons and fields, rather than just the (Gaussian) field distribution. We calculate phase transition lines and find, as may be expected for this asymmetric model, that there is no spin-glass phase, only recall and paramagnetic phases. We present simulation results in support of our theory
On the non-stationary generalized Langevin equation
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
Inelastic X-ray scattering on liquid benzene analyzed using a generalized Langevin equation
Yoshida, Koji; Fukuyama, Nami; Yamaguchi, Toshio; Hosokawa, Shinya; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.
2017-07-01
The dynamic structure factor, S(Q,ω), of liquid benzene was measured by meV-resolved inelastic X-ray scattering (IXS) and analyzed using a generalized Langevin model with a memory function including fast, μ-relaxation and slow, structural, α-relaxation. The model well reproduced the experimental S(Q,ω) of liquid benzene. The dispersion relation of the collective excitation energy yields the high-frequency sound velocity for liquid benzene as related to the α-relaxation. The ratio of the high-frequency to the adiabatic sound velocity is approximately 1.5, larger to that of carbon tetrachloride and smaller than those of methanol and water, reflecting the nature of intermolecular interactions.
Boltzmann factor and Hawking radiation
International Nuclear Information System (INIS)
Ryskin, Gregory
2014-01-01
Hawking radiation has thermal spectrum corresponding to the temperature T H =(8πM) −1 , where M is the mass (energy) of the black hole. Corrections to the Hawking radiation spectrum were discovered by Kraus and Wilczek (1995) and Parikh and Wilczek (2000). Here I show that these corrections follow directly from the basic principles of thermodynamics and statistical mechanics. In essence, it is the Boltzmann factor that ought to be corrected; corrections to the Hawking (or any other) radiation spectrum then follow necessarily
Generalized Stefan-Boltzmann Law
Montambaux, Gilles
2018-03-01
We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.
Combinatorial optimization on a Boltzmann machine
Korst, J.H.M.; Aarts, E.H.L.
1989-01-01
We discuss the problem of solving (approximately) combinatorial optimization problems on a Boltzmann machine. It is shown for a number of combinatorial optimization problems how they can be mapped directly onto a Boltzmann machine by choosing appropriate connection patterns and connection strengths.
Painleve test and discrete Boltzmann equations
International Nuclear Information System (INIS)
Euler, N.; Steeb, W.H.
1989-01-01
The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs
Global existence proof for relativistic Boltzmann equation
International Nuclear Information System (INIS)
Dudynski, M.; Ekiel-Jezewska, M.L.
1992-01-01
The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions
Lattice-Boltzmann Simulation of Tablet Disintegration
Jiang, Jiaolong; Sun, Ning; Gersappe, Dilip
Using the lattice-Boltzmann method, we developed a 2D model to study the tablet disintegration involving the swelling and wicking mechanisms. The surface area and disintegration profile of each component were obtained by tracking the tablet structure in the simulation. Compared to pure wicking, the total surface area is larger for swelling and wicking, which indicates that the swelling force breaks the neighboring bonds. The disintegration profiles show that the tablet disintegrates faster than pure wicking, and there are more wetted active pharmaceutical ingredient particles distributed on smaller clusters. Our results indicate how the porosity would affect the disintegration process by changing the wetting area of the tablet as well as by changing the swelling force propagation.
A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide
Allen, Rebecca; Reis, Tim; Sun, Shuyu
2013-01-01
-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
2011-02-01
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele
2011-02-28
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Nagata, Keitro; Nishimura, Jun; Shimasaki, Shinji
2018-03-01
We study QCD at finite density and low temperature by using the complex Langevin method. We employ the gauge cooling to control the unitarity norm and intro-duce a deformation parameter in the Dirac operator to avoid the singular-drift problem. The reliability of the obtained results are judged by the probability distribution of the magnitude of the drift term. By making extrapolations with respect to the deformation parameter using only the reliable results, we obtain results for the original system. We perform simulations on a 43 × 8 lattice and show that our method works well even in the region where the reweighing method fails due to the severe sign problem. As a result we observe a delayed onset of the baryon number density as compared with the phase-quenched model, which is a clear sign of the Silver Blaze phenomenon.
SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS
International Nuclear Information System (INIS)
QIANG, J.; RYNE, R.; HABIB, S.
2000-01-01
In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators
A Langevin Canonical Approach to the Study of Quantum Stochastic Resonance in Chiral Molecules
Directory of Open Access Journals (Sweden)
Germán Rojas-Lorenzo
2016-09-01
Full Text Available A Langevin canonical framework for a chiral two-level system coupled to a bath of harmonic oscillators is used within a coupling scheme different from the well-known spin-boson model to study the quantum stochastic resonance for chiral molecules. This process refers to the amplification of the response to an external periodic signal at a certain value of the noise strength, being a cooperative effect of friction, noise, and periodic driving occurring in a bistable system. Furthermore, from this stochastic dynamics within the Markovian regime and Ohmic friction, the competing process between tunneling and the parity violating energy difference present in this type of chiral systems plays a fundamental role. This mechanism is finally proposed to observe the so-far elusive parity-violating energy difference in chiral molecules.
Nucleation theory in Langevin's approach and lifetime of a Brownian particle in potential wells.
Alekseechkin, N V
2008-07-14
The multivariable theory of nucleation suggested by Alekseechkin [J. Chem. Phys. 124, 124512 (2006)] is further developed in the context of Langevin's approach. The use of this approach essentially enhances the capability of the nucleation theory, because it makes possible to consider the cases of small friction which are not taken into account by the classical Zel'dovich-Frenkel theory and its multivariable extensions. The procedure for the phenomenological determination of the nucleation parameters is described. Using the similarity of the Kramers model with that of nucleation, the lifetime of a Brownian particle in potential wells in various dimensionalities is calculated with the help of the expression for the steady state nucleation rate.
Bifurcation dynamics of the tempered fractional Langevin equation
Energy Technology Data Exchange (ETDEWEB)
Zeng, Caibin, E-mail: macbzeng@scut.edu.cn; Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Mathematics, South China University of Technology, Guangzhou 510640 (China); Chen, YangQuan, E-mail: ychen53@ucmerced.edu [MESA LAB, School of Engineering, University of California, Merced, 5200 N. Lake Road, Merced, California 95343 (United States)
2016-08-15
Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.
Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle
International Nuclear Information System (INIS)
Salazar, Domingos S P; Lira, Sérgio A
2016-01-01
In this work, we study the nonequilibrium statistical properties of the relaxation dynamics of a nanoparticle trapped in a harmonic potential. We report an exact time-dependent analytical solution to the Langevin dynamics that arises from the stochastic differential equation of our system’s energy in the underdamped regime. By utilizing this stochastic thermodynamics approach, we are able to completely describe the heat exchange process between the nanoparticle and the surrounding environment. As an important consequence of our results, we observe the validity of the heat exchange fluctuation theorem in our setup, which holds for systems arbitrarily far from equilibrium conditions. By extending our results for the case of N noninterating nanoparticles, we perform analytical asymptotic limits and direct numerical simulations that corroborate our analytical predictions. (paper)
Stochastic sensitivity analysis and Langevin simulation for neural network learning
International Nuclear Information System (INIS)
Koda, Masato
1997-01-01
A comprehensive theoretical framework is proposed for the learning of a class of gradient-type neural networks with an additive Gaussian white noise process. The study is based on stochastic sensitivity analysis techniques, and formal expressions are obtained for stochastic learning laws in terms of functional derivative sensitivity coefficients. The present method, based on Langevin simulation techniques, uses only the internal states of the network and ubiquitous noise to compute the learning information inherent in the stochastic correlation between noise signals and the performance functional. In particular, the method does not require the solution of adjoint equations of the back-propagation type. Thus, the present algorithm has the potential for efficiently learning network weights with significantly fewer computations. Application to an unfolded multi-layered network is described, and the results are compared with those obtained by using a back-propagation method
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Computing generalized Langevin equations and generalized Fokker-Planck equations.
Darve, Eric; Solomon, Jose; Kia, Amirali
2009-07-07
The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.
Extended lattice Boltzmann scheme for droplet combustion.
Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas
2017-05-01
The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.
Ludwig Boltzmann - The Man and His Work
International Nuclear Information System (INIS)
Broda, E.
1982-01-01
It is argued that Ludwig Boltzmann was, along with Newton and Maxwell, one of the three greatest theoretical physicists of classical times. It is less generally known that he was also a powerful realist-materialist philosopher and a keen opponent of Ernst Mach's positivism and of the philosophical idealism of Berkeley, Hegel and Schopenhauer. Boltzmann was also opposed to Kant. Moreover, he had a lively interest in biology and especially in Darwinian evolution, and he should be taken as one of the founders of biophysics. Boltzmann discussed the origin of life and of the mind. Finally, he also was a most vigorous, colourful and attractive person. (author)
On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity
Directory of Open Access Journals (Sweden)
Nikolai N. Bogoliubov (Jr.
2007-01-01
Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.
Deviations from the Boltzmann distribution in vibrationally excited gas flows
International Nuclear Information System (INIS)
Offenhaeuser, F.; Frohn, A.
1986-01-01
A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references
Shah, S. M.; Crawshaw, J. P.; Gray, F.; Yang, J.; Boek, E. S.
2017-06-01
In the last decade, the study of fluid flow in porous media has developed considerably due to the combination of X-ray Micro Computed Tomography (micro-CT) and advances in computational methods for solving complex fluid flow equations directly or indirectly on reconstructed three-dimensional pore space images. In this study, we calculate porosity and single phase permeability using micro-CT imaging and Lattice Boltzmann (LB) simulations for 8 different porous media: beadpacks (with bead sizes 50 μm and 350 μm), sandpacks (LV60 and HST95), sandstones (Berea, Clashach and Doddington) and a carbonate (Ketton). Combining the observed porosity and calculated single phase permeability, we shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging. Our study applies the concept of the 'Convex Hull' to calculate the REV by considering the two main macroscopic petrophysical parameters, porosity and single phase permeability, simultaneously. The shape of the hull can be used to identify strong correlation between the parameters or greatly differing convergence rates. To further enhance computational efficiency we note that the area of the convex hull (for well-chosen parameters such as the log of the permeability and the porosity) decays exponentially with sub-sample size so that only a few small simulations are needed to determine the system size needed to calculate the parameters to high accuracy (small convex hull area). Finally we propose using a characteristic length such as the pore size to choose an efficient absolute voxel size for the numerical rock.
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
The Langevin Approach: An R Package for Modeling Markov Processes
Directory of Open Access Journals (Sweden)
Philip Rinn
2016-08-01
Full Text Available We describe an 'R' package developed by the research group 'Turbulence, Wind energy' 'and Stochastics' (TWiSt at the Carl von Ossietzky University of Oldenburg, which extracts the (stochastic evolution equation underlying a set of data or measurements. The method can be directly applied to data sets with one or two stochastic variables. Examples for the one-dimensional and two-dimensional cases are provided. This framework is valid under a small set of conditions which are explicitly presented and which imply simple preliminary test procedures to the data. For Markovian processes involving Gaussian white noise, a stochastic differential equation is derived straightforwardly from the time series and captures the full dynamical properties of the underlying process. Still, even in the case such conditions are not fulfilled, there are alternative versions of this method which we discuss briefly and provide the user with the necessary bibliography.
Hamiltonian models for the Madelung fluid and generalized Langevin equations
International Nuclear Information System (INIS)
Nonnenmacher, T.F.
1985-01-01
We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)
Relativistic Boltzmann theory for a plasma
International Nuclear Information System (INIS)
Erkelens, H. van.
1984-01-01
This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)
Non-linear effects in the Boltzmann equation
International Nuclear Information System (INIS)
Barrachina, R.O.
1985-01-01
The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es
Mélykúti, Bence; Burrage, Kevin; Zygalakis, Konstantinos C.
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Xiao, Tiejun
2016-11-01
In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.
Riemann-Theta Boltzmann Machine arXiv
Krefl, Daniel; Haghighat, Babak; Kahlen, Jens
A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.
The Lattice Boltzmann Method applied to neutron transport
International Nuclear Information System (INIS)
Erasmus, B.; Van Heerden, F. A.
2013-01-01
In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)
2015-06-28
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
International Nuclear Information System (INIS)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver
2015-01-01
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom
Complex Langevin Simulations of QCD at Finite Density - Progress Report
Sinclair, D. K.; Kogut, J. B.
2018-03-01
We simulate lattice QCD at finite quark-number chemical potential to study nuclear matter, using the complex Langevin equation (CLE). The CLE is used because the fermion determinant is complex so that standard methods relying on importance sampling fail. Adaptive methods and gauge-cooling are used to prevent runaway solutions. Even then, the CLE is not guaranteed to give correct results. We are therefore performing extensive testing to determine under what, if any, conditions we can achieve reliable results. Our earlier simulations at β = 6/g2 = 5.6, m = 0.025 on a 124 lattice reproduced the expected phase structure but failed in the details. Our current simulations at β = 5.7 on a 164 lattice fail in similar ways while showing some improvement. We are therefore moving to even weaker couplings to see if the CLE might produce the correct results in the continuum (weak-coupling) limit, or, if it still fails, whether it might reproduce the results of the phase-quenched theory. We also discuss action (and other dynamics) modifications which might improve the performance of the CLE.
Langevin equation in systems with also negative temperatures
Baldovin, Marco; Puglisi, Andrea; Vulpiani, Angelo
2018-04-01
We discuss how to derive a Langevin equation (LE) in non standard systems, i.e. when the kinetic part of the Hamiltonian is not the usual quadratic function. This generalization allows to consider also cases with negative absolute temperature. We first give some phenomenological arguments suggesting the shape of the viscous drift, replacing the usual linear viscous damping, and its relation with the diffusion coefficient modulating the white noise term. As a second step, we implement a procedure to reconstruct the drift and the diffusion term of the LE from the time-series of the momentum of a heavy particle embedded in a large Hamiltonian system. The results of our reconstruction are in good agreement with the phenomenological arguments. Applying the method to systems with negative temperature, we can observe that also in this case there is a suitable LE, obtained with a precise protocol, able to reproduce in a proper way the statistical features of the slow variables. In other words, even in this context, systems with negative temperature do not show any pathology.
Parallelization of 2-D lattice Boltzmann codes
International Nuclear Information System (INIS)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo.
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author)
Parallelization of 2-D lattice Boltzmann codes
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Soichiro; Kaburaki, Hideo; Yokokawa, Mitsuo
1996-03-01
Lattice Boltzmann (LB) codes to simulate two dimensional fluid flow are developed on vector parallel computer Fujitsu VPP500 and scalar parallel computer Intel Paragon XP/S. While a 2-D domain decomposition method is used for the scalar parallel LB code, a 1-D domain decomposition method is used for the vector parallel LB code to be vectorized along with the axis perpendicular to the direction of the decomposition. High parallel efficiency of 95.1% by the vector parallel calculation on 16 processors with 1152x1152 grid and 88.6% by the scalar parallel calculation on 100 processors with 800x800 grid are obtained. The performance models are developed to analyze the performance of the LB codes. It is shown by our performance models that the execution speed of the vector parallel code is about one hundred times faster than that of the scalar parallel code with the same number of processors up to 100 processors. We also analyze the scalability in keeping the available memory size of one processor element at maximum. Our performance model predicts that the execution time of the vector parallel code increases about 3% on 500 processors. Although the 1-D domain decomposition method has in general a drawback in the interprocessor communication, the vector parallel LB code is still suitable for the large scale and/or high resolution simulations. (author).
Boltzmann map for quantum oscillators
International Nuclear Information System (INIS)
Streater, R.F.
1987-01-01
The authors define a map tau on the space of quasifree states of the CCR or CAR of more than one harmonic oscillator which increases entropy except at fixed points of tau. The map tau is the composition of a double stochastic map T*, and the quasifree reduction Q. Under mixing conditions on T, iterates of tau take any initial state to the Gibbs states, provided that the oscillator frequencies are mutually rational. They give an example of a system with three degrees of freedom with energies omega 1 , omega 2 , and omega 3 mutually irrational, but obeying a relation n 1 omega 1 + n 2 omega 2 = n 3 omega 3 , n/sub i/epsilon Z. The iterated Boltzmann map converges from an initial state rho to independent Gibbs states of the three oscillators at betas (inverse temperatures) β 1 , β 2 , β 3 obeying the equation n 1 omega 1 β 1 + n 2 omega 3 β 1 number. The equilibrium state can be rewritten as a grand canonical state. They show that for two, three, or four fermions we can get the usual rate equations as a special case
Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms
2018-01-01
In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
Energy Technology Data Exchange (ETDEWEB)
Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)
2016-12-05
In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the determination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from SO(4) to SO(2) is expected to occur due to the phase of the complex fermion determinant. Unlike previous work based on a reweighting-type method, we are able to determine the true vacuum by calculating the order parameters, which agree with the prediction by the Gaussian expansion method.
DEFF Research Database (Denmark)
Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir
2015-01-01
A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh......A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall...
International Nuclear Information System (INIS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-01-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications
Energy Technology Data Exchange (ETDEWEB)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
Celebrating Cercignani's conjecture for the Boltzmann equation
Villani, Cédric
2011-01-01
Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.
Description of the approach to equilibrium in the Boltzmann equation
Energy Technology Data Exchange (ETDEWEB)
Barrachina, R.O.; Fujii, D.H.; Garibotti, C.R.
1985-06-01
An integral transform of the Boltzmann equation with a clear physical interpretation is introduced. It is applied to different interaction models and initial conditions, relevant information about the way the equilibrium is reached. This method leads quite naturally to the introduction of an N-pole approximant of the distribution function which seems to be a rather useful technique not only in view of its simplicity but also because of its capability to keep track of the temporal evolution features of the chosen interaction model. 6 references.
International Nuclear Information System (INIS)
Wu, C.-H.; Lee, D.-S.
2005-01-01
We employ the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the mirror with perfect reflection moving in a quantum field. In the case where the mirror undergoes the small displacement, the coarse-grained effective action is obtained by integrating out the quantum field with the method of influence functional. The semiclassical Langevin equation is derived, and is found to involve two levels of backreaction effects on the dynamics of mirrors: radiation reaction induced by the motion of the mirror and backreaction dissipation arising from fluctuations in quantum field via a fluctuation-dissipation relation. Although the corresponding theorem of fluctuation and dissipation for the case with the small mirror's displacement is of model independence, the study from the first principles derivation shows that the theorem is also independent of the regulators introduced to deal with short-distance divergences from the quantum field. Thus, when the method of regularization is introduced to compute the dissipation and fluctuation effects, this theorem must be fulfilled as the results are obtained by taking the short-distance limit in the end of calculations. The backreaction effects from vacuum fluctuations on moving mirrors are found to be hardly detected while those effects from thermal fluctuations may be detectable
International Nuclear Information System (INIS)
Ryabov, E.G.; Karpov, A.V.; Adeev, G.D.
2006-01-01
Dependence of fission fragments mass distribution on the angular momentum within Langevin dynamics is studied. The calculations are performed in the framework of the rotating temperature-dependent finite-range liquid drop model. The calculations are done for the five nuclei, representing heavy fissioning nuclei, medium fissioning nuclei and light fissioning one with the angular momentum varied in the wide range from l=0 to l=70-bar . The dependence coefficients dσ M 2 /dl 2 for the investigated nuclei are extracted. The comparison of the extracted values with the experimental data reveals a good agreement for all the cases (the heavy, medium, and light fissioning nuclei). It is found out that the obtained dependence of σ M 2 on l can be explained with the help of temperature at scission as a function of l. The latter dependence is determined by dependence of the mean prescission neutron multiplicity on l. The analysis of this dependence is done as a competition between fission process and neutron evaporation. 'Remembering of the former large fluctuations of mass asymmetry coordinate during descent from the saddle to scission' is considered. It is shown that the 'remembering effect' takes place, but does not play a crucial role for the investigated dependence of σ M 2 on l
Langevin dynamics simulation on the translocation of polymer through α-hemolysin pore
International Nuclear Information System (INIS)
Sun, Li-Zhen; Luo, Meng-Bo
2014-01-01
The forced translocation of a polymer through an α-hemolysin pore under an electrical field is studied using a Langevin dynamics simulation. The α-hemolysin pore is modelled as a connection of a spherical vestibule and a cylindrical β-barrel and polymer-pore attraction is taken into account. The results show that polymer-pore attraction can help the polymer enter the vestibule and the β-barrel as well; however, a strong attraction will slow down the translocation of the polymer through the β-barrel. The mean translocation time for the polymer to thread through the β-barrel increases linearly with the polymer length. By comparing our results with that of a simple pore without a vestibule, we find that the vestibule helps the polymer enter and thread through the β-barrel. Moreover, we find that it is easier for the polymer to thread through the β-barrel if the polymer is located closer to the surface of the vestibule. Some simulation results are explained qualitatively by theoretically analyzing the free-energy landscape of polymer translocation. (paper)
Energy Technology Data Exchange (ETDEWEB)
Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)
2014-12-01
The dynamics of fission of excited nuclei has been studied by solving four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. The projection of the total spin of the compound nucleus to the symmetry axis, K, was considered as the fourth dimension in Langevin dynamical calculations. The average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy have been calculated in a wide range of fissile parameter for compound nuclei {sup 162}Yb, {sup 172}Yb, {sup 215}Fr, {sup 224}Th, {sup 248}Cf, {sup 260}Rf and results compared with the experimental data. Calculations were performed with a constant dissipation coefficient of K, {sub γK} (MeV zs){sup -1/2}, and with a non-constant dissipation coefficient. Comparison of the theoretical results for the average pre-scission neutron multiplicities, mean kinetic energy of fission fragments and the variances of the mass and kinetic energy with the experimental data showed that the results of four-dimensional Langevin equations with a non-constant dissipation coefficient are in better agreement with the experimental data. Furthermore, the difference between the results of two models for compound nuclei with low fissile parameter is low whereas, for heavy compound nuclei, is high. (orig.)
Ethic and Evolution in Boltzmann's and Einstein's Thought
International Nuclear Information System (INIS)
Broda, E.
1980-01-01
In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)
Ethic and Evolution in Boltzmann's and Einstein's Thought
Energy Technology Data Exchange (ETDEWEB)
Broda, E.
1980-07-01
In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)
Langevin equation in effective theory of interacting QCD pomerons in the limit of large Nc
International Nuclear Information System (INIS)
Bondarenko, S.
2007-01-01
Effective field theory of interacting BFKL pomerons is investigated and Langevin equation for the theory, which arises after the introduction of additional auxiliary field, is obtained. The Langevin equations are considered for the case of interacting BFKL pomerons with both splitting and merging vertexes and for the interaction which includes additional 'toy' four pomeron interaction vertex. In the latest case an analogy with the Regge field theory in zero dimensions (RFT-0) was used in order to obtain this 'toy' vertex, which coincided with the four point function of two-dimensional conformal field theory obtained in [G.P. Korchemsky, Nucl. Phys. B 550 (1999) 397]. The comparison between the Langevin equations obtained in the frameworks of dipole and RFT approaches is performed, the interpretation of results is given and possible application of obtained equations is discussed
Langevin dynamics for vector variables driven by multiplicative white noise: A functional formalism
Moreno, Miguel Vera; Arenas, Zochil González; Barci, Daniel G.
2015-04-01
We discuss general multidimensional stochastic processes driven by a system of Langevin equations with multiplicative white noise. In particular, we address the problem of how time reversal diffusion processes are affected by the variety of conventions available to deal with stochastic integrals. We present a functional formalism to build up the generating functional of correlation functions without any type of discretization of the Langevin equations at any intermediate step. The generating functional is characterized by a functional integration over two sets of commuting variables, as well as Grassmann variables. In this representation, time reversal transformation became a linear transformation in the extended variables, simplifying in this way the complexity introduced by the mixture of prescriptions and the associated calculus rules. The stochastic calculus is codified in our formalism in the structure of the Grassmann algebra. We study some examples such as higher order derivative Langevin equations and the functional representation of the micromagnetic stochastic Landau-Lifshitz-Gilbert equation.
Study of fission dynamics with the three-dimensional Langevin equations
Energy Technology Data Exchange (ETDEWEB)
Eslamizadeh, H. [Persian Gulf University, Department of Physics, Bushehr (Iran, Islamic Republic of)
2011-11-15
The dynamics of fission has been studied by solving one- and three-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The average prescission neutron multiplicities, fission probabilities and the mean fission times have been calculated in a broad range of the excitation energy for compound nuclei {sup 210}Po and {sup 224}Th formed in the fusion-fission reactions {sup 4}He+{sup 206}Pb, {sup 16}O+{sup 208}Pb and results compared with the experimental data. The analysis of the results shows that the average prescission neutron multiplicities, fission probabilities and the mean fission times calculated by one- and three-dimensional Langevin equations are different from each other, and also the results obtained based on three-dimensional Langevin equations are in better agreement with the experimental data. (orig.)
Complex saddle points and the sign problem in complex Langevin simulation
International Nuclear Information System (INIS)
Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya
2016-01-01
We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.
On the interpretations of Langevin stochastic equation in different coordinate systems
International Nuclear Information System (INIS)
Martinez, E.; Lopez-Diaz, L.; Torres, L.; Alejos, O.
2004-01-01
The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2017-12-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
International Nuclear Information System (INIS)
Green, B I; Vedula, Prakash
2013-01-01
An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework. (paper)
Boltzmann machines for travelling salesman problems
Aarts, E.H.L.; Korst, J.H.M.
1989-01-01
Boltzmann machines are proposed as a massively parallel alternative to the (sequential) simulated annealing algorithm. Our approach is tailored to the travelling salesman problem, but it can also be applied to a more general class of combinatorial optimization problems. For two distinct 0–1
Quantum Heat Engine and Negative Boltzmann Temperature
International Nuclear Information System (INIS)
Xi Jing-Yi; Quan Hai-Tao
2017-01-01
To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. (paper)
Boltzmann und das Ende des mechanistischen Weltbildes
Renn, Jürgen
2007-01-01
Der Wissenschaftshistoriker und Physiker Jürgen Renn untersucht die Rolle des österreichischen Physikers und Philosophen Ludwig Boltzmann (18441906) bei der Entwicklung der modernen Physik. Boltzmann war einer der letzen Vertreter des mechanistischen Weltbildes und stand somit am Ende eines Zeitalters. Renn porträtiert den Wissenschaftler aber als einen Pionier der modernen Physik, dessen Beschäftigung mit den inneren Spannungen der klassischen Physik ihn visionär zukünftige Fragestellungen aufgreifen ließ. So befasste sich Boltzmann etwa mit den Grenzproblemen zwischen Mechanik und Thermodynamik, die ihn zur Entwicklung immer raffinierterer Instrumente der statistischen Physik antrieb, die schließlich zu Schlüsselinstrumenten der modernen Physik wurden. Boltzmanns Werk steht somit am Übergang vom mechanistischen Weltbild zur Relativitäts- und Quantentheorie. Der Aussage des viel bekannteren Physikers Albert Einstein, dass Fantasie wichtiger sei als Wissen, hält Jürgen Renn im Hinblick auf Leben ...
Langevin synchronization in a time-dependent, harmonic basin: An exact solution in 1D
Cadilhe, A.; Voter, Arthur F.
2018-02-01
The trajectories of two particles undergoing Langevin dynamics while sharing a common noise sequence can merge into a single (master) trajectory. Here, we present an exact solution for a particle undergoing Langevin dynamics in a harmonic, time-dependent potential, thus extending the idea of synchronization to nonequilibrium systems. We calculate the synchronization level, i.e., the mismatch between two trajectories sharing a common noise sequence, in the underdamped, critically damped, and overdamped regimes. Finally, we provide asymptotic expansions in various limiting cases and compare to the time independent case.
Phase transitions in restricted Boltzmann machines with generic priors
Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele
2017-10-01
We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.
Measuring the usefulness of hidden units in Boltzmann machines with mutual information.
Berglund, Mathias; Raiko, Tapani; Cho, Kyunghyun
2015-04-01
Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in deep learning, but it is often difficult to measure their performance in general, or measure the importance of individual hidden units in specific. We propose to use mutual information to measure the usefulness of individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper bound for the information the neuron can pass on, enabling detection of a particular kind of poor training results. We confirm experimentally that the proposed measure indicates how much the performance of the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of the measure for early detection of poor training in DBMs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Topology optimization of unsteady flow problems using the lattice Boltzmann method
DEFF Research Database (Denmark)
Nørgaard, Sebastian Arlund; Sigmund, Ole; Lazarov, Boyan Stefanov
2016-01-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems...
Mélykúti, Bence
2010-01-01
The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.
Lattice Boltzmann simulation of flow around a confined circular cyclinder
International Nuclear Information System (INIS)
Ashrafizaadeh, M.; Zadehgol, A.
2002-01-01
A two dimensional lattice Boltzmann model (LBM) based on a single time relaxation BGK model has been developed. Several benchmark problems including the Poiseuille flow, the lid driven cavity flow and the flow around a circular cylinder have been performed employing a d2q9 lattice. The laminar flow around a circular cylinder within a channel has been extensively investigated using the present lattice Boltzmann model. Both symmetric and asymmetric placement configurations of the circular cylinder within the channel have been considered. A new treatment for the outlet velocity and pressure (density) boundary conditions has been proposed and validated. The present LBM results are in excellent agreement with those of the other existing CFD results. Careful examination of the LBM results and an appropriate calculation of the lift coefficient based on the rectangular lattice representation of the circular cylinder reveals that the periodic oscillation of the lift coefficient has a second harmonic when the cylinder is placed asymmetrically within the channel. The second harmonic could be associated with an asymmetrical shedding pattern of the vortices behind the cylinder from the upper and lower sides of the cylinder. (author)
Simulation of bubble motion under gravity by lattice Boltzmann method
International Nuclear Information System (INIS)
Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo
2001-01-01
We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)
Impressions from a visit by the ASN of the Laue Langevin Institute research reactor in Grenoble
International Nuclear Information System (INIS)
Nifenecker, H.
2011-01-01
After having recalled some specific characteristics of the Laue Langevin Institute research reactor (fuel type, cooling system, power, fuel management, fuel storage pool), the author reports the examination of the emergency procedures and of the reactor maintenance. He describes two exercises which respectively simulated the occurrence of an earthquake and that of a flooding due to a dam breaching
International Nuclear Information System (INIS)
Menezes, G.; Svaiter, N.F.
2006-04-01
We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)
Langevin equation of a fluid particle in wall-induced turbulence
Brouwers, J.J.H.
2010-01-01
We derive the Langevin equation describing the stochastic process of fluid particle motion in wall-inducedturbulence (turbulent flow in pipes, channels, and boundary layers including the atmospheric surface layer).The analysis is based on the asymptotic behavior at a large Reynolds number. We use
Contributions to the spectral theory of the linear Boltzmann operator for various geometries
International Nuclear Information System (INIS)
Protopopescu, V.
1975-01-01
The linear monoenergetic Boltzmann operator with isotropic scattering is studied for various geometries and boundary conditions as the infinitesimal generator of a positivity preserving contractive semigroup in an appropriate Hilbert space. General results about the existence and the uniqueness of the solutions of the corresponding evolution problems are reviewed. The spectrum of the Boltzmann operator is analyzed for semi-infinite, slab and parallelepipedic geometries with vacuum, periodic, perfectly reflecting, generalized and diffusely reflecting boundary condition respectively. The main features of these spectra, their importance for determining the asymptotic evolution and possible generalizations to more realistic models are put together in a final section. (author)
A lattice Boltzmann coupled to finite volumes method for solving phase change problems
Directory of Open Access Journals (Sweden)
El Ganaoui Mohammed
2009-01-01
Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.
Nonequilibrium thermodynamics of restricted Boltzmann machines
Salazar, Domingos S. P.
2017-08-01
In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.
Lattice-Boltzmann simulations of droplet evaporation
Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.
2014-01-01
© the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is
Lattice-Boltzmann simulations of droplet evaporation
Ledesma-Aguilar, Rodrigo
2014-09-04
© the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is
Nonequilibrium thermodynamics of restricted Boltzmann machines.
Salazar, Domingos S P
2017-08-01
In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.
Simulating colloid hydrodynamics with lattice Boltzmann methods
International Nuclear Information System (INIS)
Cates, M E; Stratford, K; Adhikari, R; Stansell, P; Desplat, J-C; Pagonabarraga, I; Wagner, A J
2004-01-01
We present a progress report on our work on lattice Boltzmann methods for colloidal suspensions. We focus on the treatment of colloidal particles in binary solvents and on the inclusion of thermal noise. For a benchmark problem of colloids sedimenting and becoming trapped by capillary forces at a horizontal interface between two fluids, we discuss the criteria for parameter selection, and address the inevitable compromise between computational resources and simulation accuracy
Nonlocal Boltzmann theory of plasma channels
International Nuclear Information System (INIS)
Yu, S.S.; Melendez, R.E.
1983-01-01
The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents
Lattice Boltzmann Approach to Resistive MHD
Czech Academy of Sciences Publication Activity Database
Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.
2002-01-01
Roč. 47, č. 9 (2002), s. 51 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/44th./. Orlando , Florida, 11.11.2001-15.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann, magnetic fields Subject RIV: BL - Plasma and Gas Discharge Physics
The Boltzmann equation in the difference formulation
Energy Technology Data Exchange (ETDEWEB)
Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-05-06
First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.
Energy Dependent Streaming in Lattice Boltzmann Simulations
Czech Academy of Sciences Publication Activity Database
Pavlo, Pavol; Vahala, G.; Vahala, L.
2001-01-01
Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics
Exact results for the Boltzmann equation and Smoluchowski's coagulation equation
International Nuclear Information System (INIS)
Hendriks, E.M.
1983-01-01
Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)
Energy Technology Data Exchange (ETDEWEB)
Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Cheredov, A.V.; Adeev, G.D. [Omsk State University, Omsk (Russian Federation)
2016-10-15
A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from {sup 199}Pb to {sup 248}Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom (K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient k{sub s} of the contribution from the ''wall'' formula is introduced. The calculations are performed both for the constant values of the coefficient k{sub s} and for the coordinate-dependent reduction coefficient k{sub s}(q) which is found on the basis of the ''chaos-weighted wall formula''. Different possibilities of the deformation-dependent dissipation coefficient (γ{sub K}) for the K coordinate are investigated. The presented results demonstrate that an impact of the k{sub s} and γ{sub K} parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γ{sub K}(q) coefficient for shapes featuring a neck, which predicts quite small values of γ{sub K} = 0.0077 (MeV zs){sup -1/2} and constant γ{sub K} = 0.1 -0.4 (MeV zs){sup -1/2} for compact shapes featuring no neck. (orig.)
A note on the Lattice Boltzmann Method Beyond the Chapman Enskog Limits
Sbragaglia, M.; Succi, S.
2006-01-01
A non-perturbative analysis of the Bhatnagar-Gross-Krook (BGK) model kinetic equation for finite values of the Knudsen number is presented. This analysis indicates why discrete kinetic versions of the BGK equation, and notably the lattice Boltzmann method, can provide semi-quantitative results also
Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field
International Nuclear Information System (INIS)
Haydock, David
2005-01-01
We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important
Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field
Energy Technology Data Exchange (ETDEWEB)
Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2005-04-15
We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.
Mathematical model of Boltzmann's sigmoidal equation applicable ...
Indian Academy of Sciences (India)
Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico; Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México, Mexico; Departamento de Ingeniería Agrícola, DICIVA, Universidad de Guanajuato, Campus ...
Mathematical model of Boltzmann's sigmoidal equation applicable ...
Indian Academy of Sciences (India)
2017-08-18
Aug 18, 2017 ... In this work, we present the stoichiometric behaviour of Ba2+ and Sr2+ when they are deposited to make a solid solution of ... environmental stimulus [6]. Also ... transition changes from continuous to discontinuous at the.
Boltzmann Transport in Hybrid PIC HET Modeling
2015-07-01
assumption of an electron velocity distribution function in local thermal equilibrium. Recently, work in the field of gaseous electronics has...parameters and are based on the assumption of an electron velocity distribution function in local thermal equilibrium. Recently, work in the field of gaseous ...constant νe = electron momentum exchange frequency e = elementary charge µ = scalar electron mobility ν = electron momentum exchange collision frequency Ωe
New Poisson–Boltzmann type equations: one-dimensional solutions
International Nuclear Information System (INIS)
Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun
2011-01-01
The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations
Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation
Directory of Open Access Journals (Sweden)
Bertrand Lods
2015-06-01
Full Text Available Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set Ɛ of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if Ɛ is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyze the Boltzmann operator in the geometric setting from the point of its Maxwell’s weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts, i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyvärinen divergence. This requires us to generalize our approach to Orlicz–Sobolev spaces to include derivatives.
Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines
Triwijoyo, B. K.; Pradipto, Y. D.
2017-01-01
hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.
Conditional High-Order Boltzmann Machines for Supervised Relation Learning.
Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu
2017-09-01
Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.
Boltzmann, Darwin and Directionality theory
Energy Technology Data Exchange (ETDEWEB)
Demetrius, Lloyd A., E-mail: ldemetr@oeb.harvard.edu
2013-09-01
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and
Boltzmann, Darwin and Directionality theory
International Nuclear Information System (INIS)
Demetrius, Lloyd A.
2013-01-01
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and
Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method
Directory of Open Access Journals (Sweden)
Muneki Yasuda
2018-04-01
Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.
Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force
Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong
2018-03-01
We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.
Jeon, Jae-Hyung; Metzler, Ralf
2010-02-01
Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.
Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons
DEFF Research Database (Denmark)
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
We investigate the importance of including quantized initial conditions in Langevin dynamics for adsorbates interacting with a thermal reservoir of electrons. For quadratic potentials the time evolution is exactly described by a classical Langevin equation and it is shown how to rigorously obtain...... quantum mechanical probabilities from the classical phase space distributions resulting from the dynamics. At short time scales, classical and quasiclassical initial conditions lead to wrong results and only correctly quantized initial conditions give a close agreement with an inherently quantum...... mechanical master equation approach. With CO on Cu(100) as an example, we demonstrate the effect for a system with ab initio frictional tensor and potential energy surfaces and show that quantizing the initial conditions can have a large impact on both the desorption probability and the distribution...
Resonant behavior of the generalized Langevin system with tempered Mittag–Leffler memory kernel
Chen, Yao; Wang, Xudong; Deng, Weihua
2018-05-01
The generalized Langevin equation describes anomalous dynamics. Noise is not only the origin of uncertainty but also plays a positive role in helping to detect signals with information, termed stochastic resonance (SR). This paper analyzes the anomalous resonant behaviors of the generalized Langevin system with a multiplicative dichotomous noise and an internal tempered Mittag–Leffler noise. For a system with a fluctuating harmonic potential, we obtain the exact expressions of several types of SR such as the first moment, the amplitude and autocorrelation function for the output signal as well as the signal–noise ratio. We analyze the influence of the tempering parameter and memory exponent on the bona fide SR and the general SR. Moreover, it is detected that the critical memory exponent changes regularly with the increase of the tempering parameter. Almost all the theoretical results are validated by numerical simulations.
Müller, Eike H; Scheichl, Rob; Shardlow, Tony
2015-04-08
This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.
Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion
Chen, Yao; Wang, Xudong; Deng, Weihua
2017-10-01
This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.
Trap-assisted and Langevin-type recombination in organic light-emitting diodes
Wetzelaer, G. A. H.; Kuik, M.; Nicolai, H. T.; Blom, P. W. M.
2011-04-01
Trapping of charges is known to play an important role in the charge transport of organic semiconductors, but the role of traps in the recombination process has not been addressed. Here we show that the ideality factor of the current of organic light-emitting diodes (OLEDs) in the diffusion-dominated regime has a temperature-independent value of 2, which reveals that nonradiative trap-assisted recombination dominates the current. In contrast, the ideality factor of the light output approaches unity, demonstrating that luminance is governed by recombination of the bimolecular Langevin type. This apparent contradiction can be resolved by measuring the current and luminance ideality factor for a white-emitting polymer, where both free and trapped charge carriers recombine radiatively. With increasing bias voltage, Langevin recombination becomes dominant over trap-assisted recombination due to its stronger dependence on carrier density, leading to an enhancement in OLED efficiency.
Boltzmann, Darwin and Directionality theory
Demetrius, Lloyd A.
2013-09-01
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and
Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations
International Nuclear Information System (INIS)
Xu Kun; He Xiaoyi
2003-01-01
Both lattice Boltzmann method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann equation with collisional models, such as, the Bhatnagar-Gross-Krook (BGK) model. LBM tracks limited number of particles and the viscous flow behavior emerges automatically from the intrinsic particle stream and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the time-dependent gas distribution function with continuous particle velocity space is constructed and used in the evaluation of the numerical fluxes across cell interfaces. Currently, LBM is mainly used for low Mach number, nearly incompressible flow simulation. For the gas-kinetic scheme, the application is focusing on the high speed compressible flows. In this paper, we are going to compare both schemes in the isothermal low-Mach number flow simulations. The methodology for developing both schemes will be clarified through the introduction of operator splitting Boltzmann model and operator averaging Boltzmann model. From the operator splitting Boltzmann model, the error rooted in many kinetic schemes, which are based on the decoupling of particle transport and collision, can be easily understood. As to the test case, we choose to use the 2D cavity flow since it is one of the most extensively studied cases. Detailed simulation results with different Reynolds numbers, as well as the benchmark solutions, are presented
First results of the EXILL and FATIMA campaign at the Institut Laue Langevin
Energy Technology Data Exchange (ETDEWEB)
Jolie, Jan; Regis, Jean-Marc; Saed-Samii, Nima; Warr, Nigel [IKP, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Wilmsen, Dennis [IKP, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); GANIL, BP 55027 (France); France, Gilles de; Clement, Emmanuel [GANIL, BP 55027 (France); Blanc, Aurelien; Jentschel, Michael; Koester, Uli; Mutti, Paolo; Soldner, Thorsten [ILL, 71 Av. des Martyrs, 38042 Grenoble (France); Simpson, Gary [University of Western Scotland, Paisley, PA1 2BE (United Kingdom); UIrban, Waldek [Faculty of Physics, University of Warsaw, 02-093 Warsaw (Poland); Bruce, Alison; Lalskovski, Stefan [SCEM, University of Brighton, Brighton BN2 4GJ (United Kingdom); Fraile, Luis [Grupo de Fisica Nuclear, Universidad Complutese, 28040 Madrid (Spain); Kroell, Thorsten [Institut fuer Kernphysik, TU Darmstadt, Darmstadt (Germany); Podolyak, Zsolt; Regan, Patrick [Dept. of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Korten, Wolfram [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Ur, Calin; Marginean, Nicu [Horia Hulubei NIPNE, 77125 Bucharest (Romania)
2015-07-01
At the PF1B cold neutron beam line at the Institut Laue Langevin the EXILL and FATIMA array consisting of 8 EXOGAM clover Ge detectors and 16 LaBr3(Ce) scintillators was used for the measurement of lifetimes using the generalised centroid difference method. The studied nuclei were formed by the (n,γ) and (n,fission) reactions. We report on the set-up and present first results on {sup 90}Zr and {sup 196}Pt.
Lattice Boltzmann methods for moving boundary flows
International Nuclear Information System (INIS)
Inamuro, Takaji
2012-01-01
The lattice Boltzmann methods (LBMs) for moving boundary flows are presented. The LBM for two-phase fluid flows with the same density and the LBM combined with the immersed boundary method are described. In addition, the LBM on a moving multi-block grid is explained. Three numerical examples (a droplet moving in a constricted tube, the lift generation of a flapping wing and the sedimentation of an elliptical cylinder) are shown in order to demonstrate the applicability of the LBMs to moving boundary problems. (invited review)
Lattice Boltzmann methods for moving boundary flows
Energy Technology Data Exchange (ETDEWEB)
Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, and Advanced Research Institute of Fluid Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2012-04-01
The lattice Boltzmann methods (LBMs) for moving boundary flows are presented. The LBM for two-phase fluid flows with the same density and the LBM combined with the immersed boundary method are described. In addition, the LBM on a moving multi-block grid is explained. Three numerical examples (a droplet moving in a constricted tube, the lift generation of a flapping wing and the sedimentation of an elliptical cylinder) are shown in order to demonstrate the applicability of the LBMs to moving boundary problems. (invited review)
Scattering theory of the linear Boltzmann operator
International Nuclear Information System (INIS)
Hejtmanek, J.
1975-01-01
In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de
Celebrating Cercignani's conjecture for the Boltzmann equation
Villani, Cé dric; Mouhot, Clé ment; Desvillettes, Laurent
2011-01-01
Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.
The polaron problem and the Boltzmann equation
International Nuclear Information System (INIS)
Devreese, J.
1979-01-01
A mobility theory for the Feynman polaron is developed. It is shown that the Boltzmann equation for polarons is valid for weak coupling and not too high electric fields. The analytical results indicate that for E → 0 the relaxation time approximation is valid. A comparison is made of three methods to calculate the mobility in a linear electron transport theory. An approximation to the Kubo formula, a mobility calculation using path integrals by Feynman and a calculation based on the displaced Maxwell distribution function are considered. The three methods lead to equivalent results in the weak scattering and small electric field limit
The Boltzmann constant from a snifter
International Nuclear Information System (INIS)
Tyukodi, B; Sárközi, Zs; Néda, Z; Tunyagi, A; Györke, E
2012-01-01
Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments. (paper)
Predicting drug-target interactions using restricted Boltzmann machines.
Wang, Yuhao; Zeng, Jianyang
2013-07-01
In silico prediction of drug-target interactions plays an important role toward identifying and developing new uses of existing or abandoned drugs. Network-based approaches have recently become a popular tool for discovering new drug-target interactions (DTIs). Unfortunately, most of these network-based approaches can only predict binary interactions between drugs and targets, and information about different types of interactions has not been well exploited for DTI prediction in previous studies. On the other hand, incorporating additional information about drug-target relationships or drug modes of action can improve prediction of DTIs. Furthermore, the predicted types of DTIs can broaden our understanding about the molecular basis of drug action. We propose a first machine learning approach to integrate multiple types of DTIs and predict unknown drug-target relationships or drug modes of action. We cast the new DTI prediction problem into a two-layer graphical model, called restricted Boltzmann machine, and apply a practical learning algorithm to train our model and make predictions. Tests on two public databases show that our restricted Boltzmann machine model can effectively capture the latent features of a DTI network and achieve excellent performance on predicting different types of DTIs, with the area under precision-recall curve up to 89.6. In addition, we demonstrate that integrating multiple types of DTIs can significantly outperform other predictions either by simply mixing multiple types of interactions without distinction or using only a single interaction type. Further tests show that our approach can infer a high fraction of novel DTIs that has been validated by known experiments in the literature or other databases. These results indicate that our approach can have highly practical relevance to DTI prediction and drug repositioning, and hence advance the drug discovery process. Software and datasets are available on request. Supplementary data are
Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times
Directory of Open Access Journals (Sweden)
Kosuke Hayashi
2012-06-01
Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.
Implementation of the Lattice Boltzmann Method on Heterogeneous Hardware and Platforms using OpenCL
Directory of Open Access Journals (Sweden)
TEKIC, P. M.
2012-02-01
Full Text Available The Lattice Boltzmann method (LBM has become an alternative method for computational fluid dynamics with a wide range of applications. Besides its numerical stability and accuracy, one of the major advantages of LBM is its relatively easy parallelization and, hence, it is especially well fitted to many-core hardware as graphics processing units (GPU. The majority of work concerning LBM implementation on GPU's has used the CUDA programming model, supported exclusively by NVIDIA. Recently, the open standard for parallel programming of heterogeneous systems (OpenCL has been introduced. OpenCL standard matures and is supported on processors from most vendors. In this paper, we make use of the OpenCL framework for the lattice Boltzmann method simulation, using hardware accelerators - AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce GPU's. Application has been developed using a combination of Java and OpenCL programming languages. Java bindings for OpenCL have been utilized. This approach offers the benefits of hardware and operating system independence, as well as speeding up of lattice Boltzmann algorithm. It has been showed that the developed lattice Boltzmann source code can be executed without modification on all of the used hardware accelerators. Performance results have been presented and compared for the hardware accelerators that have been utilized.
Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E
2018-03-05
The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.
Boltzmann and Einstein: Statistics and dynamics –An unsolved ...
Indian Academy of Sciences (India)
The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...
General relativistic Boltzmann equation, II: Manifestly covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann
Adaptive Non-Boltzmann Monte Carlo
International Nuclear Information System (INIS)
Fitzgerald, M.; Picard, R.R.; Silver, R.N.
1998-01-01
This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods
Adaptive Non-Boltzmann Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Fitzgerald, M.; Picard, R.R.; Silver, R.N.
1998-06-01
This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods.
Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation
International Nuclear Information System (INIS)
Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi
2008-01-01
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows
Simulation of plume dynamics by the Lattice Boltzmann Method
Mora, Peter; Yuen, David A.
2017-09-01
The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.
Simulating condensation on microstructured surfaces using Lattice Boltzmann Method
Alexeev, Alexander; Vasyliv, Yaroslav
2017-11-01
We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.
Monte Carlo variance reduction approaches for non-Boltzmann tallies
International Nuclear Information System (INIS)
Booth, T.E.
1992-12-01
Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed
Langevin equation with the deterministic algebraically correlated noise
International Nuclear Information System (INIS)
Ploszajczak, M.; Srokowski, T.
1995-01-01
Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author)
Langevin equation with the deterministic algebraically correlated noise
Energy Technology Data Exchange (ETDEWEB)
Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Srokowski, T. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[Institute of Nuclear Physics, Cracow (Poland)
1995-12-31
Stochastic differential equations with the deterministic, algebraically correlated noise are solved for a few model problems. The chaotic force with both exponential and algebraic temporal correlations is generated by the adjoined extended Sinai billiard with periodic boundary conditions. The correspondence between the autocorrelation function for the chaotic force and both the survival probability and the asymptotic energy distribution of escaping particles is found. (author). 58 refs.
Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.
Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew
2014-12-26
Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.
Partitioned learning of deep Boltzmann machines for SNP data.
Hess, Moritz; Lenz, Stefan; Blätte, Tamara J; Bullinger, Lars; Binder, Harald
2017-10-15
Learning the joint distributions of measurements, and in particular identification of an appropriate low-dimensional manifold, has been found to be a powerful ingredient of deep leaning approaches. Yet, such approaches have hardly been applied to single nucleotide polymorphism (SNP) data, probably due to the high number of features typically exceeding the number of studied individuals. After a brief overview of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted to SNP data in principle, we specifically present a way to alleviate the dimensionality problem by partitioned learning. We propose a sparse regression approach to coarsely screen the joint distribution of SNPs, followed by training several DBMs on SNP partitions that were identified by the screening. Aggregate features representing SNP patterns and the corresponding SNPs are extracted from the DBMs by a combination of statistical tests and sparse regression. In simulated case-control data, we show how this can uncover complex SNP patterns and augment results from univariate approaches, while maintaining type 1 error control. Time-to-event endpoints are considered in an application with acute myeloid leukemia patients, where SNP patterns are modeled after a pre-screening based on gene expression data. The proposed approach identified three SNPs that seem to jointly influence survival in a validation dataset. This indicates the added value of jointly investigating SNPs compared to standard univariate analyses and makes partitioned learning of DBMs an interesting complementary approach when analyzing SNP data. A Julia package is provided at 'http://github.com/binderh/BoltzmannMachines.jl'. binderh@imbi.uni-freiburg.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Boltzmann electron PIC simulation of the E-sail effect
Directory of Open Access Journals (Sweden)
P. Janhunen
2015-12-01
Full Text Available The solar wind electric sail (E-sail is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.
U.S. stock market interaction network as learned by the Boltzmann machine
Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.
2015-12-01
We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities.
Constant pressure and temperature discrete-time Langevin molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)
2014-11-21
We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.
Boltzmann babies in the proper time measure
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng
2007-12-20
After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.
The Lattice Boltzmann method principles and practice
Krüger, Timm; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus
2017-01-01
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a va...
Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.
2011-09-01
A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.
Boltzmann-Gaussian transition under specific noise effect
International Nuclear Information System (INIS)
Anh, Chu Thuy; Lan, Nguyen Tri; Viet, Nguyen Ai
2014-01-01
It is observed that a short time data set of market returns presents almost symmetric Boltzmann distribution whereas a long time data set tends to show a Gaussian distribution. To understand this universal phenomenon, many hypotheses which are spreading in a wide range of interdisciplinary research were proposed. In current work, the effects of background fluctuations on symmetric Boltzmann distribution is investigated. The numerical calculation is performed to show that the Gaussian noise may cause the transition from initial Boltzmann distribution to Gaussian one. The obtained results would reflect non-dynamic nature of the transition under consideration.
First results of the (n,gamma) EXILL campaigns at the Institut Laue Langevin
Energy Technology Data Exchange (ETDEWEB)
Jolie, Jan; Regis, Jean-Marc; Wilmsen, Dennis; Ahmed, Samer; Pfeiffer, Michael; Saed Samii, Nima; Warr, Nigel [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str 77, 50937 Koeln (Germany); Thirolf, Peter; Habs, Dieter [Fakultaet fuer Physik, Ludwig Maximilian Universitaet, 85748 Garching (Germany); Collaboration: EXILL Collaboration; FATIMA Collaboration
2014-07-01
At the PF1B cold neutron beam line at the Institut Laue Langevin the EXILL array consisting of EXOGAM, GASP and LOHENGRIN detectors was used to perform (n,γ) measurements under very high coincidence rates. About ten different reactions were then measured in autumn 2012. In spring 2013 the EXOGAM array was combined with 16 LaBr{sub 3}(Ce) scintillators in the FATIMA rate at EXILL campaign for the measurement of lifetimes using the generalised centroid difference method. We report on the properties of both set-ups and present first results on Pt isotopes from both campaigns.
Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach
International Nuclear Information System (INIS)
Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.
2007-01-01
We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Brownian motion of classical spins: Anomalous dissipation and generalized Langevin equation
Bandyopadhyay, Malay; Jayannavar, A. M.
2017-10-01
In this work, we derive the Langevin equation (LE) of a classical spin interacting with a heat bath through momentum variables, starting from the fully dynamical Hamiltonian description. The derived LE with anomalous dissipation is analyzed in detail. The obtained LE is non-Markovian with multiplicative noise terms. The concomitant dissipative terms obey the fluctuation-dissipation theorem. The Markovian limit correctly produces the Kubo and Hashitsume equation. The perturbative treatment of our equations produces the Landau-Lifshitz equation and the Seshadri-Lindenberg equation. Then we derive the Fokker-Planck equation corresponding to LE and the concept of equilibrium probability distribution is analyzed.
Numerical simulation of direct methanol fuel cells using lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Delavar, Mojtaba Aghajani; Farhadi, Mousa; Sedighi, Kurosh [Faculty of Mechanical Engineering, Babol University of Technology, Babol, P.O. Box 484 (Iran)
2010-09-15
In this study Lattice Boltzmann Method (LBM) as an alternative of conventional computational fluid dynamics method is used to simulate Direct Methanol Fuel Cell (DMFC). A two dimensional lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the problem. The computational domain includes all seven parts of DMFC: anode channel, catalyst and diffusion layers, membrane and cathode channel, catalyst and diffusion layers. The model has been used to predict the flow pattern and concentration fields of different species in both clear and porous channels to investigate cell performance. The results have been compared well with results in literature for flow in porous and clear channels and cell polarization curves of the DMFC at different flow speeds and feed methanol concentrations. (author)
Electron kinetics with attachment and ionization from higher order solutions of Boltzmann's equation
International Nuclear Information System (INIS)
Winkler, R.; Wilhelm, J.; Braglia, G.L.
1989-01-01
An appropriate approach is presented for solving the Boltzmann equation for electron swarms and nonstationary weakly ionized plasmas in the hydrodynamic stage, including ionization and attachment processes. Using a Legendre-polynomial expansion of the electron velocity distribution function the resulting eigenvalue problem has been solved at any even truncation-order. The technique has been used to study velocity distribution, mean collision frequencies, energy transfer rates, nonstationary behaviour and power balance in hydrodynamic stage, of electrons in a model plasma and a plasma of pure SF 6 . The calculations have been performed for increasing approximation-orders, up to the converged solution of the problem. In particular, the transition from dominant attachment to prevailing ionization when increasing the field strength has been studied. Finally the establishment of the hydrodynamic stage for a selected case in the model plasma has been investigated by solving the nonstationary, spatially homogeneous Boltzmann equation in twoterm approximation. (author)
Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method
Directory of Open Access Journals (Sweden)
Ahmed M. Ibrahem
Full Text Available In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0–2% added to water-base fluid and Rayleigh numbers of 103–105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied. Keywords: Lattice Boltzmann method, Nanofluids, Conduction melting, Convection melting, BGK collision model
Fellner, Klemens; Kovtunenko, Victor A
2016-01-01
A nonlinear Poisson-Boltzmann equation with inhomogeneous Robin type boundary conditions at the interface between two materials is investigated. The model describes the electrostatic potential generated by a vector of ion concentrations in a periodic multiphase medium with dilute solid particles. The key issue stems from interfacial jumps, which necessitate discontinuous solutions to the problem. Based on variational techniques, we derive the homogenisation of the discontinuous problem and establish a rigorous residual error estimate up to the first-order correction.
A partial entropic lattice Boltzmann MHD simulation of the Orszag-Tang vortex
Flint, Christopher; Vahala, George
2018-02-01
Karlin has introduced an analytically determined entropic lattice Boltzmann (LB) algorithm for Navier-Stokes turbulence. Here, this is partially extended to an LB model of magnetohydrodynamics, on using the vector distribution function approach of Dellar for the magnetic field (which is permitted to have field reversal). The partial entropic algorithm is benchmarked successfully against standard simulations of the Orszag-Tang vortex [Orszag, S.A.; Tang, C.M. J. Fluid Mech. 1979, 90 (1), 129-143].
An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation
International Nuclear Information System (INIS)
Hui-Lin, Lai; Chang-Feng, Ma
2008-01-01
We establish an implicit scheme of lattice Boltzmann method for simulating the sine-Gordon equation, which can be transformed into the explicit one, so the computation of the scheme is simple. Moreover, the parameter θ of the implicit scheme is independent of the relaxation time, which makes the model more flexible. The numerical results show that this method is very effective. (fundamental areas of phenomenology (including applications))
Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework
Neumann, Philipp
2015-09-01
© 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.
Application of Boltzmann equation to electron transmission and seconary electron emission
International Nuclear Information System (INIS)
Lanteri, H.; Bindi, R.; Rostaing, P.
1979-01-01
A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr
International Nuclear Information System (INIS)
Battaglia, Onofrio Rosario; Di Paola, Benedetto
2015-01-01
This paper describes a quantitative method to analyse an openended questionnaire. Student responses to a specially designed written questionnaire are quantitatively analysed by not hierarchical clustering called k-means method. Through this we can characterise behaviour students with respect their expertise to formulate explanations for phenomena or processes and/or use a given model in the different context. The physics topic is about the Boltzmann Factor, which allows the students to have a unifying view of different phenomena in different contexts.
Metamaterial characterization using Boltzmann's kinetic equation for electrons
DEFF Research Database (Denmark)
Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.
2013-01-01
Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis
2011-04-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Normal solutions of the Boltzmann equation with small Knudsen number
International Nuclear Information System (INIS)
Ding, E.J.; Huang, Z.Q.
1986-01-01
A singular perturbation method is used to find the normal solutions of the Boltzmann equation with small Knudsen number. It is proved that the secular terms may be removed by improving the Hilbert expansion and the Enskog expansion
Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I
National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis; Mouhot, Clé ment
2011-01-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Boltzmann, Gibbs and Darwin-Fowler approaches in parastatistics
International Nuclear Information System (INIS)
Ponczek, R.L.; Yan, C.C.
1976-01-01
Derivations of the equilibrium values of occupation numbers are made using three approaches, namely, the Boltzmann 'elementary' one, the ensemble method of Gibbs, and that of Darwin and Fowler as well [pt
Lattice Boltzmann method fundamentals and engineering applications with computer codes
Mohamad, A A
2014-01-01
Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.
Boltzmann Solver with Adaptive Mesh in Velocity Space
International Nuclear Information System (INIS)
Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.
2011-01-01
We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.
Transport-level description of the 252Cf-source method using the Langevin technique
International Nuclear Information System (INIS)
Stolle, A.M.; Akcasu, A.Z.
1991-01-01
The fluctuations in the neutron number density and detector outputs in a nuclear reactor can be analyzed conveniently by using the Langevin equation approach. This approach can be implemented at any level of approximation to describe the time evolution of the neutron population, from the most complete transport-level description to the very basic point reactor analysis of neutron number density fluctuations. In this summary, the complete space- and velocity-dependent transport-level formulation of the Langevin equation approach is applied to the analysis of the 252 Cf-source-driven noise analysis (CSDNA) method, an experimental technique developed by J.T. Mihalczo at Oak Ridge National Laboratory, which makes use of noise analysis to determine the reactivity of subcritical media. From this analysis, a theoretical expression for the subcritical multiplication factor is obtained that can then be used to interpret the experimental data. Results at the transport level are in complete agreement with an independent derivation performed by Sutton and Doub, who used the probability density method to interpret the CSDNA experiment, but differed from other expressions that have appeared in the literature
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Leung, Chun Sing [Polytechnic University, Department of Applied Mathematics, Hong Kong (China); Mocanu, Gabriela [Babes-Bolyai University, Faculty of Physics, Cluj-Napoca (Romania)
2014-05-15
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
International Nuclear Information System (INIS)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-01-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-05-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.
Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems
Directory of Open Access Journals (Sweden)
Josh Fass
2018-04-01
Full Text Available While Langevin integrators are popular in the study of equilibrium properties of complex systems, it is challenging to estimate the timestep-induced discretization error: the degree to which the sampled phase-space or configuration-space probability density departs from the desired target density due to the use of a finite integration timestep. Sivak et al., introduced a convenient approach to approximating a natural measure of error between the sampled density and the target equilibrium density, the Kullback-Leibler (KL divergence, in phase space, but did not specifically address the issue of configuration-space properties, which are much more commonly of interest in molecular simulations. Here, we introduce a variant of this near-equilibrium estimator capable of measuring the error in the configuration-space marginal density, validating it against a complex but exact nested Monte Carlo estimator to show that it reproduces the KL divergence with high fidelity. To illustrate its utility, we employ this new near-equilibrium estimator to assess a claim that a recently proposed Langevin integrator introduces extremely small configuration-space density errors up to the stability limit at no extra computational expense. Finally, we show how this approach to quantifying sampling bias can be applied to a wide variety of stochastic integrators by following a straightforward procedure to compute the appropriate shadow work, and describe how it can be extended to quantify the error in arbitrary marginal or conditional distributions of interest.
Generalized Boltzmann equations for on-shell particle production in a hot plasma
International Nuclear Information System (INIS)
Jakovac, A.
2002-01-01
A novel refinement of the conventional treatment of Kadanoff-Baym equations is suggested. In addition to the Boltzmann equation, another differential equation is used for calculating the evolution of the nonequilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in a smearing out of the nonanalytic threshold behavior of the spectral function. The possible consequences for the dilepton production are discussed
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad
2013-01-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed
2013-06-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities
Allen, Rebecca
2016-06-29
We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.
International Nuclear Information System (INIS)
Mozolevski, I.E.
2001-01-01
We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses
Entropic Lattice Boltzmann: an implicit Large-Eddy Simulation?
Tauzin, Guillaume; Biferale, Luca; Sbragaglia, Mauro; Gupta, Abhineet; Toschi, Federico; Ehrhardt, Matthias; Bartel, Andreas
2017-11-01
We study the modeling of turbulence implied by the unconditionally stable Entropic Lattice Boltzmann Method (ELBM). We first focus on 2D homogeneous turbulence, for which we conduct numerical simulations for a wide range of relaxation times τ. For these simulations, we analyze the effective viscosity obtained by numerically differentiating the kinetic energy and enstrophy balance equations averaged over sub-domains of the computational grid. We aim at understanding the behavior of the implied sub-grid scale model and verify a formulation previously derived using Chapman-Enskog expansion. These ELBM benchmark simulations are thus useful to understand the range of validity of ELBM as a turbulence model. Finally, we will discuss an extension of the previously obtained results to the 3D case. Supported by the European Unions Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 642069 and by the European Research Council under the ERC Grant Agreement No. 339032.
Ludwig Boltzmann, Albert Einstein and Franz Joseph
International Nuclear Information System (INIS)
Broda, E.
1983-01-01
Under the Emperor Francis Joseph (1848-1916) the natural sciences were less weIl supported in Austria than in other countries of Europe. This is explained by the fact that the German speaking middle classes accepted the preeminence of the feudal forces with their antiscientific attitude. The reason for this readiness to subordination was that those middle classes feIt threatened in their relatively favourable situation by Slavs and Latins. Francis Joseph was the typical representative of the aristocracy. Personally, he did his duty conscientiously and was not corrupt, but progressive ideas and scientific thought were alien to him. From his desk he treated Boltzmann benevolently, but he had no wish to meet personally the greatest mind of the Empire or in any respect to ask his views. Another famous subject of the Emperor, Albert Einstein, was apparently ignored altogether. The structural weakness of Austria, due to the national problems, led to immobilism in her scientific life, but also, up to a point, to tolerance. The impression of Victor Adler on Einstein is considered in this historical context. (author) [de
A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide
Allen, Rebecca
2013-01-01
The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently
Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems
Directory of Open Access Journals (Sweden)
Florian Thüroff
2014-11-01
Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.