WorldWideScience

Sample records for boltzmann langevin model

  1. A LES-Langevin model for turbulence

    Science.gov (United States)

    Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe

    2006-11-01

    The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.

  2. Langevin equations for competitive growth models.

    Science.gov (United States)

    Silveira, F A; Aarão Reis, F D A

    2012-01-01

    Langevin equations for several competitive growth models in one dimension are derived. For models with crossover from random deposition (RD) to some correlated deposition (CD) dynamics, with small probability p of CD, the surface tension ν and the nonlinear coefficient λ of the associated equations have linear dependence on p due solely to this random choice. However, they also depend on the regularized step functions present in the analytical representations of the CD, whose expansion coefficients scale with p according to the divergence of local height differences when p→0. The superposition of those scaling factors gives ν~p(2) for random deposition with surface relaxation (RDSR) as the CD, and ν~p, λ~p(3/2) for ballistic deposition (BD) as the CD, in agreement with simulation and other scaling approaches. For bidisperse ballistic deposition (BBD), the same scaling of RD-BD model is found. The Langevin equation for the model with competing RDSR and BD, with probability p for the latter, is also constructed. It shows linear p dependence of λ, while the quadratic dependence observed in previous simulations is explained by an additional crossover before the asymptotic regime. The results highlight the relevance of scaling of the coefficients of step function expansions in systems with steep surfaces, which is responsible for noninteger exponents in some p-dependent stochastic equations, and the importance of the physical correspondence of aggregation rules and equation coefficients. © 2012 American Physical Society

  3. Langevin model of low-energy fission

    Science.gov (United States)

    Sierk, Arnold J.

    2017-09-01

    Background: Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. Purpose: In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. Method: I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses is tabulated on a mesh of approximately 107 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. Results: The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions

  4. Langevin processes, agent models and socio-economic systems

    Science.gov (United States)

    Richmond, Peter; Sabatelli, Lorenzo

    2004-05-01

    We review some approaches to the understanding of fluctuations of financial asset prices. Our approach builds on the development of a simple Langevin equation that characterises stochastic processes. This provides a unifying approach that allows first a straightforward description of the early approaches of Bachelier. We generalize the approach to stochastic equations that model interacting agents. The agent models recently advocated by Marsilli and Solomon are motivated. Using a simple change of variable, we show that the peer pressure model of Marsilli and the wealth dynamics model of Solomon are essentially equivalent. The methods are further shown to be consistent with a global free energy functional that invokes an entropy term based on the Boltzmann formula. There follows a brief digression on the Heston model that extends the simple model to one that, in the language of physics, exhibits a temperature this is subject to stochastic fluctuations. Mathematically the model corresponds to a Feller process. Dragulescu and Yakovenko have shown how the model yields some of the stylised features of asset prices. A more recent approach by Michael and Johnson maximised a Tsallis entropy function subject to simple constraints. They obtain a distribution function for financial returns that exhibits power law tails and which can describe the distribution of returns not only over low but also high frequencies (minute by minute) data for the Dow Jones index. We show how this approach can be developed from an agent model, where the simple Langevin process is now conditioned by local rather than global noise. Such local noise may of course be the origin of speculative frenzy or herding in the market place. The approach yields a BBGKY type hierarchy of equations for the system correlation functions. Of especial interest is that the results can be obtained from a new free energy functional similar to that mentioned above except that a Tsallis like entropy term replaces the

  5. Bayesian inference with information content model check for Langevin equations

    DEFF Research Database (Denmark)

    Krog, Jens F. C.; Lomholt, Michael Andersen

    2017-01-01

    The Bayesian data analysis framework has been proven to be a systematic and effective method of parameter inference and model selection for stochastic processes. In this work we introduce an information content model check which may serve as a goodness-of-fit, like the chi-square procedure......, to complement conventional Bayesian analysis. We demonstrate this extended Bayesian framework on a system of Langevin equations, where coordinate dependent mobilities and measurement noise hinder the normal mean squared displacement approach....

  6. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  7. Is the Langevin phase equation an efficient model for oscillating neurons?

    International Nuclear Information System (INIS)

    Ota, Keisuke; Tsunoda, Takamasa; Aonishi, Toru; Omori, Toshiaki; Okada, Masato; Watanabe, Shigeo; Miyakawa, Hiroyoshi

    2009-01-01

    The Langevin phase model is an important canonical model for capturing coherent oscillations of neural populations. However, little attention has been given to verifying its applicability. In this paper, we demonstrate that the Langevin phase equation is an efficient model for neural oscillators by using the machine learning method in two steps: (a) Learning of the Langevin phase model. We estimated the parameters of the Langevin phase equation, i.e., a phase response curve and the intensity of white noise from physiological data measured in the hippocampal CA1 pyramidal neurons. (b) Test of the estimated model. We verified whether a Fokker-Planck equation derived from the Langevin phase equation with the estimated parameters could capture the stochastic oscillatory behavior of the same neurons disturbed by periodic perturbations. The estimated model could predict the neural behavior, so we can say that the Langevin phase equation is an efficient model for oscillating neurons.

  8. Essentially Entropic Lattice Boltzmann Model

    Science.gov (United States)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  9. Boltzmann-Electron Model in Aleph.

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Thomas Patrick; Hooper, Russell

    2014-11-01

    We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model

  10. Comparison of Langevin and Markov channel noise models for neuronal signal generation.

    Science.gov (United States)

    Sengupta, B; Laughlin, S B; Niven, J E

    2010-01-01

    The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.

  11. Modeling of piezoelectric Langevin transducers by using mixed transfer matrix methods

    International Nuclear Information System (INIS)

    Fu, Bo; Li, Chao; Zhang, Jianming; Huang, Zhenwei; Hemsel, Tobias

    2010-01-01

    In the modeling of piezoelectric Langevin transducers using the usual transfer matrix methods, some simplifications have been adopted. This leads to a reduction in the model quality. A mixed transfer matrix method is employed in the modeling of Langevin transducers, where the pre-stressed bolt is modeled as a separate four-pole element connected to other elements in parallel. Based on the mixed transfer matrix method, the four (six)-pole element description of the piezoelectric Langevin transducer is built up, and the total transfer matrix relation is derived. The resonance frequencies of the transducer are calculated and then measured using an impedance analyzer (HP4192). Experimental results show that the mixed transfer matrix method has better modeling quality than the usual transfer matrix method for the vibration analysis of piezoelectric Langevin transducers.

  12. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  13. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Jacques [Univ. of Regensburg (Germany). Inst. for Theorectical Physics; Glesaan, Jonas [Swansea Univ., Swansea U.K.; Verbaarschot, Jacobus [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy; Zafeiropoulos, Savvas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik

    2018-04-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  14. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    Abstract. An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice. Boltzmann equation through the ...

  15. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  16. On some asymptotic relations in the Boltzmann-Enskog model

    International Nuclear Information System (INIS)

    Sadovnikov, B.I.; Inozemtseva, N.G.

    1977-04-01

    The coefficients in the tsup(-3/2) asymptotics of the time autocorrelation functions are successively determined in the framework of the non-linear Boltzmann-Enskog model. The left and right eigenfunction systems are constructed for the Boltzmann-Enskog operator

  17. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for

  18. Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation

    OpenAIRE

    Dunkel, Jörn; Hänggi, Peter (Prof. Dr. Dr. h.c. mult.)

    2006-01-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy point-like Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, non-relativistic LE is deduced from this model, by taking into account the non-relativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativi...

  19. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network

    Science.gov (United States)

    Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.

    2018-01-01

    We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.

  20. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2013-06-26

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  1. Model reduction of multiscale chemical langevin equations: a numerical case study.

    Science.gov (United States)

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  2. Adaptive Langevin sampler for separation of t-distribution modelled astrophysical maps.

    Science.gov (United States)

    Kayabol, Koray; Kuruoglu, Ercan E; Sanz, José Luis; Sankur, Bülent; Salerno, Emanuele; Herranz, Diego

    2010-09-01

    We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains.

  3. Paul Langevin

    Indian Academy of Sciences (India)

    fascist and peace activist and later joined the French communist party. In 1940 he was arrested by the Nazis after their invasion of France. He escaped to Switzerland in. 1944 and returned later to France after the end of the war. Langevin died in 1946. Abhishek Dhar. Raman Research Institute, Bangalore 560 080, India.

  4. Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks

    Science.gov (United States)

    Powell, Sean K.; Momot, Konstantin I.

    2012-09-01

    In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0∘ to 90∘. The corresponding diffusion ellipsoids are prolate for θθMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

  5. A Parallel Lattice Boltzmann Model of a Carotid Artery

    Science.gov (United States)

    Boyd, J.; Ryan, S. J.; Buick, J. M.

    2008-11-01

    A parallel implementation of the lattice Boltzmann model is considered for a three dimensional model of the carotid artery. The computational method and its parallel implementation are described. The performance of the parallel implementation on a Beowulf cluster is presented, as are preliminary hemodynamic results.

  6. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  7. Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.

    Science.gov (United States)

    Dunkel, Jörn; Hänggi, Peter

    2006-11-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.

  8. Modelling the IDV Emissions of the BL Lac Objects with a Langevin ...

    Indian Academy of Sciences (India)

    random, white noise type force. Furthermore, preliminary numerical sim- ulation results are presented, which are based on the numerical analysis of the Langevin stochastic differential equation. Key words. Langevin type stochastic differential equation—BL Lac objects. 1. Introduction. Intraday variability is usually defined as ...

  9. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  11. Lattice Boltzmann model for thermal binary-mixture gas flows.

    Science.gov (United States)

    Kang, Jinfen; Prasianakis, Nikolaos I; Mantzaras, John

    2013-05-01

    A lattice Boltzmann model for thermal gas mixtures is derived. The kinetic model is designed in a way that combines properties of two previous literature models, namely, (a) a single-component thermal model and (b) a multicomponent isothermal model. A comprehensive platform for the study of various practical systems involving multicomponent mixture flows with large temperature differences is constructed. The governing thermohydrodynamic equations include the mass, momentum, energy conservation equations, and the multicomponent diffusion equation. The present model is able to simulate mixtures with adjustable Prandtl and Schmidt numbers. Validation in several flow configurations with temperature and species concentration ratios up to nine is presented.

  12. Entropic multirelaxation lattice Boltzmann models for turbulent flows.

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S; Karlin, Ilya V

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  13. A population-level model from the microscopic dynamics in Escherichia coli chemotaxis via Langevin approximation

    International Nuclear Information System (INIS)

    He Zhuo-Ran; Wu Tai-Lin; Ouyang Qi; Tu Yu-Hai

    2012-01-01

    Recent extensive studies of Escherichia coli (E. coli) chemotaxis have achieved a deep understanding of its microscopic control dynamics. As a result, various quantitatively predictive models have been developed to describe the chemotactic behavior of E. coli motion. However, a population-level partial differential equation (PDE) that rationally incorporates such microscopic dynamics is still insufficient. Apart from the traditional Keller–Segel (K–S) equation, many existing population-level models developed from the microscopic dynamics are integro-PDEs. The difficulty comes mainly from cell tumbles which yield a velocity jumping process. Here, we propose a Langevin approximation method that avoids such a difficulty without appreciable loss of precision. The resulting model not only quantitatively reproduces the results of pathway-based single-cell simulators, but also provides new inside information on the mechanism of E. coli chemotaxis. Our study demonstrates a possible alternative in establishing a simple population-level model that allows for the complex microscopic mechanisms in bacterial chemotaxis

  14. Complex Langevin analysis of the spontaneous symmetry breaking in dimensionally reduced super Yang-Mills models

    Science.gov (United States)

    Anagnostopoulos, Konstantinos N.; Azuma, Takehiro; Ito, Yuta; Nishimura, Jun; Papadoudis, Stratos Kovalkov

    2018-02-01

    In recent years the complex Langevin method (CLM) has proven a powerful method in studying statistical systems which suffer from the sign problem. Here we show that it can also be applied to an important problem concerning why we live in four-dimensional spacetime. Our target system is the type IIB matrix model, which is conjectured to be a nonperturbative definition of type IIB superstring theory in ten dimensions. The fermion determinant of the model becomes complex upon Euclideanization, which causes a severe sign problem in its Monte Carlo studies. It is speculated that the phase of the fermion determinant actually induces the spontaneous breaking of the SO(10) rotational symmetry, which has direct consequences on the aforementioned question. In this paper, we apply the CLM to the 6D version of the type IIB matrix model and show clear evidence that the SO(6) symmetry is broken down to SO(3). Our results are consistent with those obtained previously by the Gaussian expansion method.

  15. NMR signals within the generalized Langevin model for fractional Brownian motion

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  16. Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-02-01

    Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.

  17. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  18. Simulating the Langevin force by simple noise in nuclear one-body dynamics

    International Nuclear Information System (INIS)

    Chomaz, Ph.; Colonna, M.; Burgio, G.F.; Toro, M. Di; Randrup, J.

    1992-01-01

    For the purpose of addressing catastrophic phenomena in nuclear dynamics, the possibility of simulating the stochastic part of the collision integral is explored in the Boltzmann-Langevin model by the numerical noise associated with the finite number of test particles in the ordinary BUU treatment. Considering idealized two-dimensional matter, for which it is practical to simulate the Boltzmann-Langevin equation directly, it is demonstrated that the number of test-particles per nucleon can be adjusted so that the corresponding BUU calculation yields a good reproduction of the spontaneous clusterization occurring inside the spinodal region. This approximate method may therefore provide a relatively easy way to introduce meaningful fluctuations in simulations of unstable nuclear dynamics. (author) 18 refs.; 3 figs

  19. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  20. Modelling Protein-induced Membrane Deformation using Monte Carlo and Langevin Dynamics Simulations

    Science.gov (United States)

    Radhakrishnan, R.; Agrawal, N.; Ramakrishnan, N.; Kumar, P. B. Sunil; Liu, J.

    2010-11-01

    In eukaryotic cells, internalization of extracellular cargo via the cellular process of endocytosis is orchestrated by a variety of proteins, many of which are implicated in membrane deformation/bending. We model the energetics of deformations membranes by using the Helfrich Hamiltonian using two different formalisms: (i) Cartesian or Monge Gauge using Langevin dynamics; (ii) Curvilinear coordinate system using Monte Carlo (MC). Monge gauge approach which has been extensively studied is limited to small deformations of the membrane and cannot describe extreme deformations. Curvilinear coordinate approach can handle large deformation limits as well as finite-temperature membrane fluctuations; here we employ an unstructured triangular mesh to compute the local curvature tensor, and we evolve the membrane surface using a MC method. In our application, we compare the two approaches (i and ii above) to study how the spatial assembly of curvature inducing proteins leads to vesicle budding from a planar membrane. We also quantify how the curvature field of the membrane impacts the spatial segregation of proteins.

  1. Lattice Boltzmann modeling and simulation of liquid jet breakup

    Science.gov (United States)

    Saito, Shimpei; Abe, Yutaka; Koyama, Kazuya

    2017-07-01

    A three-dimensional color-fluid lattice Boltzmann model for immiscible two-phase flows is developed in the framework of a three-dimensional 27-velocity (D3Q27) lattice. The collision operator comprises the D3Q27 versions of three suboperators: a multiple-relaxation-time (MRT) collision operator, a generalized Liu-Valocchi-Kang perturbation operator, and a Latva-Kokko-Rothman recoloring operator. A D3Q27 version of an enhanced equilibrium distribution function is also incorporated into this model to improve the Galilean invariance. Three types of numerical tests, namely, a static droplet, an oscillating droplet, and the Rayleigh-Taylor instability, show a good agreement with analytical solutions and numerical simulations. Following these numerical tests, this model is applied to liquid-jet-breakup simulations. The simulation conditions are matched to the conditions of the previous experiments. In this case, numerical stability is maintained throughout the simulation, although the kinematic viscosity for the continuous phase is set as low as 1.8 ×10-4 , in which case the corresponding Reynolds number is 3.4 ×103 ; the developed lattice Boltzmann model based on the D3Q27 lattice enables us to perform the simulation with parameters directly matched to the experiments. The jet's liquid column transitions from an asymmetrical to an axisymmetrical shape, and entrainment occurs from the side of the jet. The measured time history of the jet's leading-edge position shows a good agreement with the experiments. Finally, the reproducibility of the regime map for liquid-liquid systems is assessed. The present lattice Boltzmann simulations well reproduce the characteristics of predicted regimes, including varicose breakup, sinuous breakup, and atomization.

  2. Lattice Boltzmann model capable of mesoscopic vorticity computation.

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  3. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  4. Operational derivation of Boltzmann distribution with Maxwell's demon model.

    Science.gov (United States)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2015-11-24

    The resolution of the Maxwell's demon paradox linked thermodynamics with information theory through information erasure principle. By considering a demon endowed with a Turing-machine consisting of a memory tape and a processor, we attempt to explore the link towards the foundations of statistical mechanics and to derive results therein in an operational manner. Here, we present a derivation of the Boltzmann distribution in equilibrium as an example, without hypothesizing the principle of maximum entropy. Further, since the model can be applied to non-equilibrium processes, in principle, we demonstrate the dissipation-fluctuation relation to show the possibility in this direction.

  5. Lattice Boltzmann modeling an introduction for geoscientists and engineers

    CERN Document Server

    Sukop, Michael C

    2005-01-01

    Lattice Boltzmann models have a remarkable ability to simulate single- and multi-phase fluids and transport processes within them. A rich variety of behaviors, including higher Reynolds numbers flows, phase separation, evaporation, condensation, cavitation, buoyancy, and interactions with surfaces can readily be simulated. This book provides a basic introduction that emphasizes intuition and simplistic conceptualization of processes. It avoids the more difficult mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those with more interest in model application than detailed mathematical foundations will find this a powerful "quick start" guide. Example simulations, exercises, and computer codes are included. Working code is provided on the Internet.

  6. Modeling near-barrier collisions of heavy ions based on a Langevin-type approach

    Science.gov (United States)

    Karpov, A. V.; Saiko, V. V.

    2017-08-01

    Background: Multinucleon transfer in low-energy nucleus-nucleus collisions is proposed as a method of production of yet-unknown neutron-rich nuclei hardly reachable by other methods. Purpose: Modeling of dynamics of nuclear reactions induced by heavy ions in their full complexity of competing reaction channels remains to be a challenging task. The work is aimed at development of such a model and its application to the analysis of multinucleon transfer in deep inelastic collisions of heavy ions leading, in particular, to formation of neutron-rich isotopes in the vicinity of the N =126 shell closure. Method: Multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations has been proposed. It is combined with a statistical model for simulation of de-excitation of primary reaction fragments. The model provides a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. Results: A rather complete set of experimental data available for reactions 136Xe+198Pt,208Pb,209Bi was analyzed within the developed model. The model parameters have been determined. The calculated energy, mass, charge, and angular distributions of reaction products, their various correlations as well as cross sections for production of specific isotopes agree well with the data. On this basis, optimal experimental conditions for synthesizing the neutron-rich nuclei in the vicinity of the N =126 shell were formulated and the corresponding cross sections were predicted. Conclusions: The production yields of neutron-rich nuclei with N =126 weakly depend on the incident energy. At the same time, the corresponding angular distributions are strongly energy dependent. They are peaked at grazing angles for larger energies and extend up to the forward angles at low near-barrier collision energies. The corresponding cross sections exceed 100 nb for

  7. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  8. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  9. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  10. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  11. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    Science.gov (United States)

    Lim, S. C.; Teo, L. P.

    2009-08-01

    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann-Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion.

  12. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  13. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  14. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  15. Lattice-Boltzmann Modeling of Interfacial Dynamics in Porous Media

    Science.gov (United States)

    Porter, M. L.; Coon, E. T.; Kang, Q.; Carey, J. W.

    2012-12-01

    Traditional continuum scale multiphase flow models rely heavily on average properties and constitutive relationships that do not always accurately represent the underlying physics affecting flow and transport at the pore scale. These models are typically based on heuristic extensions of Darcy's law, rather than formally upscaling conservation principles that account for the microscale physics. As a result, constitutive relationships, such as capillary pressure and relative permeability, are highly simplified. It has been recognized that continuum scale multiphase flow models must include gradients of saturation and specific fluid-fluid interfacial area, in addition to the Darcy pressure gradient, as driving forces for the flow of multiple fluids in porous media. In this work, we investigate interfacial dynamics in porous media using a multicomponent lattice-Boltzmann simulator. We present simulations of drainage and imbibition in 2D and 3D heterogeneous porous media. We validate the simulations by comparing specific interfacial area estimates with those obtained from experiments. In addition, we present estimates of continuum scale interfacial velocity and the production/destruction of specific interfacial area.

  16. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  17. Multicomponent gas mixture air bearing modeling via lattice Boltzmann method

    Science.gov (United States)

    Tae Kim, Woo; Kim, Dehee; Hari Vemuri, Sesha; Kang, Soo-Choon; Seung Chung, Pil; Jhon, Myung S.

    2011-04-01

    As the demand for ultrahigh recording density increases, development of an integrated head disk interface (HDI) modeling tool, which considers the air bearing and lubricant film morphology simultaneously is of paramount importance. To overcome the shortcomings of the existing models based on the modified Reynolds equation (MRE), the lattice Boltzmann method (LBM) is a natural choice in modeling high Knudsen number (Kn) flows owing to its advantages over conventional methods. The transient and parallel nature makes this LBM an attractive tool for the next generation air bearing design. Although LBM has been successfully applied to single component systems, a multicomponent system analysis has been thwarted because of the complexity in coupling the terms for each component. Previous studies have shown good results in modeling immiscible component mixtures by use of an interparticle potential. In this paper, we extend our LBM model to predict the flow rate of high Kn pressure-driven flows in multicomponent gas mixture air bearings, such as the air-helium system. For accurate modeling of slip conditions near the wall, we adopt our LBM scheme with spatially dependent relaxation times for air bearings in HDIs. To verify the accuracy of our code, we tested our scheme via simple two-dimensional benchmark flows. In the pressure-driven flow of an air-helium mixture, we found that the simple linear combination of pure helium and pure air flow rates, based on helium and air mole fraction, gives considerable error when compared to our LBM calculation. Hybridization with the existing MRE database can be adopted with the procedure reported here to develop the state-of-the-art slider design software.

  18. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  19. Implementing the lattice Boltzmann model on commodity graphics hardware

    International Nuclear Information System (INIS)

    Kaufman, Arie; Fan, Zhe; Petkov, Kaloian

    2009-01-01

    Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the

  20. Non-Gaussian statistics, classical field theory, and realizable Langevin models

    International Nuclear Information System (INIS)

    Krommes, J.A.

    1995-11-01

    The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example

  1. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  2. Development and Application of a Coarse-Grained Model for PNIPAM by Iterative Boltzmann Inversion and Its Combination with Lattice Boltzmann Hydrodynamics.

    Science.gov (United States)

    Boţan, Vitalie; Ustach, Vincent D; Leonhard, Kai; Faller, Roland

    2017-11-16

    The polymer poly(N-isopropylacrylamide) (PNIPAM) is studied using a novel combination of multiscale modeling methodologies. We develop an iterative Boltzmann inversion potential of concentrated PNIPAM solutions and combine it with lattice Boltzmann as a Navier-Stokes equation solver for the solvent. We study in detail the influence of the methodology on statics and dynamics of the system. The combination is successful and significantly simpler and faster than other mapping techniques for polymer solution while keeping the correct hydrodynamics. The model can semiquantitatively describe the correct phase behavior and polymer dynamics.

  3. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  4. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  5. Models, Their Application, and Scientific Anticipation: Ludwig Boltzmann's Work as Tacit Knowing

    Science.gov (United States)

    Schmitt, Richard Henry

    2011-01-01

    Ludwig Boltzmann's work in theoretical physics exhibits an approach to the construction of theory that he transmitted to the succeeding generation by example. It involved the construction of clear models, allowed more than one, and was not based solely on the existing facts, with the intent of examining and criticizing the assumptions that made…

  6. PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation

    International Nuclear Information System (INIS)

    Calif, Rudy

    2012-01-01

    Highlights: ► Probability Density Functions are proposed to fit the wind speed fluctuations distributions for three representative classes. ► Stochastic simulations are performed using a Langevin equation for each class. ► The properties of simulated and measured wind speed sequences are close. -- Abstract: Wind energy production is very sensitive to turbulent wind speed. Thus rapid variation of wind speed due to changes in the local meteorological conditions can lead to electrical power variations of the order of the nominal power output, in particular when wind power variations on very short time scales, range at few seconds to 1 h, are considered. In small grid as they exist on islands (Guadeloupean Archipelago: French West Indies) such fluctuations can cause instabilities in case of intermediate power shortages. The developed analysis in reveals three main classes of time series for the wind speed fluctuations. In this work, Probability Density Functions (PDFs) are proposed to fit the wind speed fluctuations distributions in each class. After, to simulate wind speed fluctuations sequences, we use a stochastic differential equation, the Langevin equation considering Gaussian turbulence PDF (class I), Gram–Charlier PDF (class II) and a mixture of gaussian PDF (class III). The statistical and dynamical properties of simulated wind sequences are close to those of measured wind sequences, for each class.

  7. Chaotic Boltzmann machines

    Science.gov (United States)

    Suzuki, Hideyuki; Imura, Jun-ichi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-01-01

    The chaotic Boltzmann machine proposed in this paper is a chaotic pseudo-billiard system that works as a Boltzmann machine. Chaotic Boltzmann machines are shown numerically to have computing abilities comparable to conventional (stochastic) Boltzmann machines. Since no randomness is required, efficient hardware implementation is expected. Moreover, the ferromagnetic phase transition of the Ising model is shown to be characterised by the largest Lyapunov exponent of the proposed system. In general, a method to relate probabilistic models to nonlinear dynamics by derandomising Gibbs sampling is presented. PMID:23558425

  8. Modelling the IDV Emissions of the BL Lac Objects with a Langevin ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we introduce a simplified model for explain- ing the observations of optical intra-day variability (IDV) of the BL. Lac Objects. We assume that the source of the IDV are the stochastic oscillations of an accretion disk around a supermassive black hole. The stochastic fluctuations on the vertical direction of ...

  9. Error statistics of hidden Markov model and hidden Boltzmann model results

    Directory of Open Access Journals (Sweden)

    Newberg Lee A

    2009-07-01

    Full Text Available Abstract Background Hidden Markov models and hidden Boltzmann models are employed in computational biology and a variety of other scientific fields for a variety of analyses of sequential data. Whether the associated algorithms are used to compute an actual probability or, more generally, an odds ratio or some other score, a frequent requirement is that the error statistics of a given score be known. What is the chance that random data would achieve that score or better? What is the chance that a real signal would achieve a given score threshold? Results Here we present a novel general approach to estimating these false positive and true positive rates that is significantly more efficient than are existing general approaches. We validate the technique via an implementation within the HMMER 3.0 package, which scans DNA or protein sequence databases for patterns of interest, using a profile-HMM. Conclusion The new approach is faster than general naïve sampling approaches, and more general than other current approaches. It provides an efficient mechanism by which to estimate error statistics for hidden Markov model and hidden Boltzmann model results.

  10. Langevin diffusions on the torus

    DEFF Research Database (Denmark)

    García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.

    2018-01-01

    We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues......) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate...

  11. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    Science.gov (United States)

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  12. Two-dimensional Langevin modeling of fission dynamics of the excited compound nuclei 188Pt, 227Pa and 251Es

    Science.gov (United States)

    Eslamizadeh, H.

    2016-02-01

    A stochastic approach based on one- and two-dimensional Langevin equations is applied to calculate the pre-scission neutron multiplicity, fission probability, anisotropy of fission fragment angular distribution, fission cross section and the evaporation cross section for the compound nuclei 188Pt, 227Pa and 251Es in an intermediate range of excitation energies. The chaos weighted wall and window friction formula are used in the Langevin equations. The elongation parameter, c, is used as the first dimension and projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in Langevin dynamical calculations. A constant dissipation coefficient of K, γK = 0.077(MeV zs)-1/2, is used in two-dimensional calculations to reproduce the above mentioned experimental data. Comparison of the theoretical results of the pre-scission neutron multiplicity, fission probability, fission cross section and the evaporation cross section with the experimental data shows that the results of two-dimensional calculations are in better agreement with the experimental data. Furthermore, it is shown that the two-dimensional Langevin equations together with a dissipation coefficient of K, γK = 0.077(MeV zs)-1/2, can satisfactorily reproduce the anisotropy of fission fragment angular distribution for the heavy compound nucleus 251Es. However, a larger value of γK = 0.250(MeV zs)-1/2 is needed to reproduce the anisotropy of fission fragment angular distribution for the lighter compound nucleus 227Pa.

  13. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Science.gov (United States)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  14. A Lattice-Boltzmann model for simulating bedform-induced hyporheic exchange

    Science.gov (United States)

    Dapelo, D.; Bridgeman, J.; Krause, S.

    2016-12-01

    Bedform-induced hyporheic exchange plays a fundamental role in the ecohydrological and biogeochemical functioning of aquifer-river interfaces. The understanding of the complex interchange of hyporheic exchange fluxes, solute and energy transport between surface and groundwater is fundamental to design effective management, restoration and pollution mitigation strategies. For the first time, the Lattice-Boltzmann method was used to simulate 2D hyporheic exchange flow across a succession of dunes. The velocity field in both surface and groundwater was simulated directly; then, residence times were computed through post-processing. As a novelty to most previous applications of similar computational fluid dynamics models, a grid-independence test was performed for to analyse independence of the results from the mesh choice. The Lattice-Boltzmann simulation results are compared to previous fluid dynamic models of similar bedforms, and the impact of the bedform on hyporheic exchange flow dynamics is discussed. As an advantage, both the free-flow and the hyporheic exchange flow are simulated within the same model, thus removing the need of developing two distinct models as well as the coupling between them: the model dynamically reproduces turbulent Navier-Stokes (surface water) or generalized Darcian (groundwater) flow, depending only on the local value of the porosity field. Through this model, the critical advantages of the Lattice-Boltzmann method, consisting of unparalleled computational parsimony, meshing simplicity and attitude towards diffuse computing, are made available for a wide range of similar applications.

  15. Spectral model selection in the electronic measurement of the Boltzmann constant by Johnson noise thermometry

    Science.gov (United States)

    Coakley, Kevin J.; Qu, Jifeng

    2017-04-01

    In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation—a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset

  16. On the asymptotic behavior of a boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2014-01-01

    In this paper we study the asymptotic behavior of a Boltzmann-type price formation model, which describes the trading dynamics in a financial market. In many of these markets trading happens at high frequencies and low transaction costs. This observation motivates the study of the limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka=const. Furthermore we illustrate the price dynamics with numerical simulations © 2014 International Press.

  17. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  18. Improved convergence of Complex Langevin simulations

    DEFF Research Database (Denmark)

    Attanasio, Felipe; Jäger, Benjamin

    2018-01-01

    The sign problem appears in lattice QCD as soon as a non-zero chemical potential is introduced. This prevents direct simulations to determine the phase structure of the strongly interacting matter. Complex Langevin methods have been successfully used for various models or approximations of QCD...

  19. Modeling of thermal processes proceeding in a thin gold film using the lattice Boltzmann method with interval source function

    Science.gov (United States)

    Piasecka-Belkhayat, Alicja; Korczak, Anna

    2018-01-01

    The interval coupled lattice Boltzmann equations for electrons and phonons are used to analyse the heating process of thin metal films. The interval lattice Boltzmann method (ILBM) with the uncertainly defined external source function associated with the laser irradiation is used to simulate the heat transfer. The solution of the interval Boltzmann transport equations has been obtained taking into account the rules of directed interval arithmetic. A similar analysis has been done using the sensitivity model where the Boltzmann transport equations and boundary-initial conditions have been differentiated with respect to the no-interval laser parameter. The knowledge of the sensitivity function distribution and the application of the Taylor formula allow one to find the border solutions of the problem analysed which correspond to the solution obtained assuming the uncertainly defined source function. In the final part of the paper the results of numerical computations obtained using both methods are presented.

  20. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce 'spurious velocity'. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent ...

  1. Langevin Dynamics with Variable Coefficients and Nonconservative Forces: From Stationary States to Numerical Methods

    Directory of Open Access Journals (Sweden)

    Matthias Sachs

    2017-11-01

    Full Text Available Langevin dynamics is a versatile stochastic model used in biology, chemistry, engineering, physics and computer science. Traditionally, in thermal equilibrium, one assumes (i the forces are given as the gradient of a potential and (ii a fluctuation-dissipation relation holds between stochastic and dissipative forces; these assumptions ensure that the system samples a prescribed invariant Gibbs-Boltzmann distribution for a specified target temperature. In this article, we relax these assumptions, incorporating variable friction and temperature parameters and allowing nonconservative force fields, for which the form of the stationary state is typically not known a priori. We examine theoretical issues such as stability of the steady state and ergodic properties, as well as practical aspects such as the design of numerical methods for stochastic particle models. Applications to nonequilibrium systems with thermal gradients and active particles are discussed.

  2. From hard thermal loops to Langevin dynamics

    International Nuclear Information System (INIS)

    Boedeker, Dietrich

    1999-01-01

    In hot non-Abelian gauge theories, processes characterized by the momentum scale g 2 T (such as electroweak baryon number violation in the very early universe) are non-perturbative. An effective theory for the soft (vertical bar p vertical bar ∼ g 2 T) field modes is obtained by integrating out momenta larger than than g 2 T. Starting from the hard thermal loop effective theory, which is the result of integrating out the scale T, it is shown how to integrate out the scale gT in an expansion in the gauge coupling g. At leading order in g, one obtains Vlasov-Boltzmann equations for the soft field modes, which contain a Gaussian noise and a collision term. The 2-point function of the noise and the collision term are explicitly calculated in a leading logarithmic approximation. In this approximation the Boltzmann equation is solved. The resulting effective theory for the soft field modes is described by a Langevin equation. It determines the parametric form of the hot baryon number violation rate as Γ = κg 10 log(1/g)gT 4 , and it allows for a calculation for κ on the lattice

  3. Gray free-energy multiphase lattice Boltzmann model with effective transport and wetting properties

    Science.gov (United States)

    Zalzale, Mohamad; Ramaioli, M.; Scrivener, K. L.; McDonald, P. J.

    2016-11-01

    The paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media models are designed to mimic the properties of porous materials with porosity much finer than the scale of the simulation lattice. In the partial bounce-back approach, an effective media parameter or bounce-back fraction controls fluid transport. In the combined model, a wetting potential is additionally introduced that controls the wetting properties of the fluid with respect to interfaces between free space (white nodes), effective media (gray nodes), and solids (black nodes). The use of the wetting potential combined with the bounce-back parameter gives the model the ability to simulate transport and sorption of a wide range of fluid in material systems. Results for phase separation, permeability, contact angle, and wicking in gray media are shown. Sorption is explored in small sections of model multiscale porous systems to demonstrate two-step desorption, sorption hysteresis, and the ink-bottle effect.

  4. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  5. A free-surface lattice Boltzmann method for modelling the filling of expanding cavities by Bingham fluids.

    Science.gov (United States)

    Ginzburg, Irina; Steiner, Konrad

    2002-03-15

    The filling process of viscoplastic metal alloys and plastics in expanding cavities is modelled using the lattice Boltzmann method in two and three dimensions. These models combine the regularized Bingham model for viscoplastic fluids with a free-interface algorithm. The latter is based on a modified immiscible lattice Boltzmann model in which one species is the fluid and the other one is considered to be a vacuum. The boundary conditions at the curved liquid-vacuum interface are met without any geometrical front reconstruction from a first-order Chapman-Enskog expansion. The numerical results obtained with these models are found in good agreement with available theoretical and numerical analysis.

  6. Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2

    Science.gov (United States)

    Kwang-Hua, Chu Rainer

    2018-05-01

    The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.

  7. A Non-Isothermal Chemical Lattice Boltzmann Model Incorporating Thermal Reaction Kinetics and Enthalpy Changes

    Directory of Open Access Journals (Sweden)

    Stuart Bartlett

    2017-08-01

    Full Text Available The lattice Boltzmann method is an efficient computational fluid dynamics technique that can accurately model a broad range of complex systems. As well as single-phase fluids, it can simulate thermohydrodynamic systems and passive scalar advection. In recent years, it also gained attention as a means of simulating chemical phenomena, as interest in self-organization processes increased. This paper will present a widely-used and versatile lattice Boltzmann model that can simultaneously incorporate fluid dynamics, heat transfer, buoyancy-driven convection, passive scalar advection, chemical reactions and enthalpy changes. All of these effects interact in a physically accurate framework that is simple to code and readily parallelizable. As well as a complete description of the model equations, several example systems will be presented in order to demonstrate the accuracy and versatility of the method. New simulations, which analyzed the effect of a reversible reaction on the transport properties of a convecting fluid, will also be described in detail. This extra chemical degree of freedom was utilized by the system to augment its net heat flux. The numerical method outlined in this paper can be readily deployed for a vast range of complex flow problems, spanning a variety of scientific disciplines.

  8. A pore-scale approach to colloid-surface interaction in liquid using lattice Boltzmann models.

    Science.gov (United States)

    Larsen, J. D.; Schaap, M. G.

    2016-12-01

    Knowledge of colloid transport and collection efficiency is important for understanding the transport of some contaminants of emerging concern (CEC) and for developing environmental remediation systems such as geologic filters. The interaction forces between colloids and soil materials are central to colloid transport and retention or immobilization. In this study a physical modeling approach to represent colloidal transport through porous media has been developed, using the lattice Boltzmann methodology. Lattice Boltzmann models have the uncanny ability to represent pore scale fluid flow through complex structures such as geological material. A cellular approach to computing colloid forces is applied for computational efficiency, and colloids are tracked continuously through the model. Grid refinement effects are quantified to balance computational efficiency with discretization effects. Representation of physical forces including DLVO create a natural fluid solid boundary condition for colloid transport. Collector efficiencies of geologic materials and colloid distribution curves can be produced. The present work focuses on simple porous media with a single wetting fluid phase, but the approach can be extended to heterogeneous geologic materials and multiphase systems.

  9. Cole-Hopf Transformation Based Lattice Boltzmann Model for One-dimensional Burgers’ Equation

    Science.gov (United States)

    Qi, Xiao-Tong; Shi, Bao-Chang; Chai, Zhen-Hua

    2018-03-01

    In this paper, we present a Cole-Hopf transformation based lattice Boltzmann (LB) model for solving one-dimensional Burgers’ equation, and compared to available LB models, the effect of nonlinear convection term can be eliminated. Through Chapman-Enskog analysis, it can be found that the converted diffusion equation based on the Cole-Hopf transformation can be recovered correctly from present LB model. Some numerical tests are also performed to validate the present LB model, and the numerical results show that, similar to previous LB models, the present model also has a second-order convergence rate in space, but it is more accurate than the previous ones. Supported by the National Natural Science Foundation of China under Grant No. 51576079

  10. Thermal equilibrium properties of surface hopping with an implicit Langevin bath.

    Science.gov (United States)

    Sherman, M C; Corcelli, S A

    2015-01-14

    The ability of fewest switches surface hopping (FSSH) approach, where the classical degrees of freedom are coupled to an implicit Langevin bath, to establish and maintain an appropriate thermal equilibrium was evaluated in the context of a three site model for electron transfer. The electron transfer model consisted of three coupled diabatic states that each depends harmonically on the collective bath coordinate. This results in three states with increasing energy in the adiabatic representation. The adiabatic populations and distributions of the collective solvent coordinate were monitored during the course of 250 ns FSSH-Langevin (FSSH-L) simulations performed at a broad range of temperatures and for three different nonadiabatic coupling strengths. The agreement between the FSSH-L simulations and numerically exact results for the adiabatic population ratios and solvent coordinate distributions was generally favorable. The FSSH-L method produces a correct Boltzmann distribution of the solvent coordinate on each of the adiabats, but the integrated populations are slightly incorrect because FSSH does not rigorously obey detailed balance. The overall agreement is better at high temperatures and for high nonadiabatic coupling, which agrees with a previously reported analytical and simulation analysis [J. R. Schmidt, P. V. Parandekar, and J. C. Tully, J. Chem. Phys. 129, 044104 (2008)] on a two-level system coupled to a classical bath.

  11. Fourier-accelerated Langevin simulation of the frustrated XY model and simulation of the spinless and spin one-half Hubbard model

    International Nuclear Information System (INIS)

    Scheinine, A.L.

    1992-01-01

    The frustrated XY model was studied on a lattice, primarily to test Fourier transform acceleration technique for a phase transition having more field structure than just spinwaves and vortices. Also, the spinless Hubbard model without hopping was simulated using continuous variables for the auxiliary field that mediates coupling between fermions. Finally, spin one-half Hubbard model was studied with a technique that sampled the fermion occupation configurations. The frustrated two-dimensional XY model was simulated using the Langevin equation with Fourier transform acceleration. Speedup due to Fourier acceleration was measured for frustration one-half at the transition temperature. The unfrustrated XY model was also studied. For the frustrated case, only long-distance spin correlation and the autocorrelation of the spin showed significant speedup. The frustrated case has Ising-like domains. It was found that Fourier acceleration speeds the evolution of spinwaves but has negligible effect on the Ising-like domains. In the Hubbard model, fermion determinant weight factor in the partition function changes sign, causing large statistical fluctuations of observables. A technique was found for sampling configuration space using continuous auxiliary fields, despite energy barriers where the fermion determinant changes sign. For two-dimensional spinless Hubbard model with no hopping, an exact solution was found for a 4 x 4 lattice; which could be compared to numerical simulations. The sign problem remained, and was found to be related to the sign problem encountered when a discrete variable is used for the auxiliary field. For spin one-half Hubbard model, a Monte Carlo simulation was done in which the fermion occupation configurations were varied. Rather than integrate-out the fermions and make a numerical estimate of the sum over the auxiliary field, the auxiliary field was integrated-out and a numerical estimate was made of the sum over fermion configurations

  12. Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method

    DEFF Research Database (Denmark)

    Skocek, Jan; Svec, Oldrich; Spangenberg, Jon

    2011-01-01

    To predict correctly the castings process of self compacting concrete a numerical model capable of simulating flow patterns at the structural scale and at the same time the impact of the varying volume fraction of aggregates and other phenomena at the scale of aggregates on the flow evolution...... is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...... are presented and discussed with the emphasis on a newly developed algorithm for the dynamics of particles whose interactions strongly depend on velocities of particles. The application of the model is demonstrated by a parametric study with varying volume fractions of aggregates and speed of shearing used...

  13. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  14. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  15. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Luo, Kai Hong; Li, Yingjun

    2017-11-01

    A discrete Boltzmann model (DBM) is proposed to probe the Rayleigh-Taylor instability (RTI) in two-component compressible flows. Each species has a flexible specific-heat ratio and is described by one discrete Boltzmann equation (DBE). Independent discrete velocities are adopted for the two DBEs. The collision and force terms in the DBE account for the molecular collision and external force, respectively. Two types of force terms are exploited. In addition to recovering the modified Navier-Stokes equations in the hydrodynamic limit, the DBM has the capability of capturing detailed nonequilibrium effects. Furthermore, we use the DBM to investigate the dynamic process of the RTI. The invariants of tensors for nonequilibrium effects are presented and studied. For low Reynolds numbers, both global nonequilibrium manifestations and the growth rate of the entropy of mixing show three stages (i.e., the reducing, increasing, and then decreasing trends) in the evolution of the RTI. On the other hand, the early reducing tendency is suppressed and even eliminated for high Reynolds numbers. Relevant physical mechanisms are analyzed and discussed.

  16. Lattice Boltzmann model for free-surface flow and its application to filling process in casting

    CERN Document Server

    Ginzburg, I

    2003-01-01

    A generalized lattice Boltzmann model to simulate free-surface is constructed in both two and three dimensions. The proposed model satisfies the interfacial boundary conditions accurately. A distinctive feature of the model is that the collision processes is carried out only on the points occupied partially or fully by the fluid. To maintain a sharp interfacial front, the method includes an anti-diffusion algorithm. The unknown distribution functions at the interfacial region are constructed according to the first-order Chapman-Enskog analysis. The interfacial boundary conditions are satisfied exactly by the coefficients in the Chapman-Enskog expansion. The distribution functions are naturally expressed in the local interfacial coordinates. The macroscopic quantities at the interface are extracted from the least-square solutions of a locally linearized system obtained from the known distribution functions. The proposed method does not require any geometric front construction and is robust for any interfacial ...

  17. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  18. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth

    KAUST Repository

    Burger, Martin

    2016-11-18

    In this paper we study balanced growth path solutions of a Boltzmann mean field game model proposed by Lucas and Moll [15] to model knowledge growth in an economy. Agents can either increase their knowledge level by exchanging ideas in learning events or by producing goods with the knowledge they already have. The existence of balanced growth path solutions implies exponential growth of the overall production in time. We prove existence of balanced growth path solutions if the initial distribution of individuals with respect to their knowledge level satisfies a Pareto-tail condition. Furthermore we give first insights into the existence of such solutions if in addition to production and knowledge exchange the knowledge level evolves by geometric Brownian motion.

  19. Hybrid modeling of CO2 sequestration processes using the lattice-Boltzmann method and PFLOTRAN

    Science.gov (United States)

    Porter, M. L.; Coon, E. T.; Kang, Q.; Lichtner, P. C.; Carey, J. W.

    2011-12-01

    Successful CO2 injection and sequestration requires fundamental understanding of many complex processes encountered in multiphase flow and reactive transport through porous media. Although these processes are inherently governed by microscopic interfacial phenomena, they must be described at much larger scales for many practical engineering applications. In this work we present a parallel hybrid modeling scheme that couples a lattice-Boltzmann (LB) simulator for porescale multiphase flow to PFLOTRAN for continuum (Darcy) scale multiphase flow and both continuum and porescale reactive transport. We discuss details regarding the LB method, PFLOTRAN, and the coupling of the two simulators. In addition, we present a number of simulations that validate and highlight both the porescale and hybrid modeling capabilities for applications involving CO2 sequestration.

  20. Study of nonequilibrium work distributions from a fluctuating lattice Boltzmann model.

    Science.gov (United States)

    Nasarayya Chari, S Siva; Murthy, K P N; Inguva, Ramarao

    2012-04-01

    A system of ideal gas is switched from an initial equilibrium state to a final state not necessarily in equilibrium, by varying a macroscopic control variable according to a well-defined protocol. The distribution of work performed during the switching process is obtained. The equilibrium free energy difference, ΔF, is determined from the work fluctuation relation. Some of the work values in the ensemble shall be less than ΔF. We term these as ones that "violate" the second law of thermodynamics. A fluctuating lattice Boltzmann model has been employed to carry out the simulation of the switching experiment. Our results show that the probability of violation of the second law increases with the increase of switching time (τ) and tends to one-half in the reversible limit of τ→∞.

  1. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    Science.gov (United States)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  2. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    OpenAIRE

    Song-Gui Chen; Chuan-Hu Zhang; Yun-Tian Feng; Qi-Cheng Sun; Feng Jin

    2016-01-01

    This paper presents a three-dimensional (3D) parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM) for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK) model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-L...

  3. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows

    Science.gov (United States)

    Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang

    2018-03-01

    In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.

  4. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  5. Langevin formulation of quantum dynamics

    International Nuclear Information System (INIS)

    Roncadelli, M.

    1989-03-01

    We first show that nonrelativistic quantum mechanics formulated at imaginary-(h/2 π) can formally be viewed as the Fokker-Planck description of a frictionless brownian motion, which occurs (in general) in an absorbing medium. We next offer a new formulation of quantum mechanics, which is basically the Langevin treatment of this brownian motion. Explicitly, we derive a noise-average representation for the transition probability W(X'',t''|X',t'), in terms of the solutions to a Langevin equation with a Gaussian white-noise. Upon analytic continuation back to real-(h/2 π),W(X'',t''|X',t') becomes the propagator of the original Schroedinger equation. Our approach allows for a straightforward application to quantum dynamical problems of the mathematical techniques of classical stochastic processes. Moreover, computer simulations of quantum mechanical systems can be carried out by using numerical programs based on the Langevin dynamics. (author). 19 refs, 1 tab

  6. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  7. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process

    Science.gov (United States)

    Song, Wenyu; Zhang, Yaning; Li, Bingxi; Xu, Fei; Fu, Zhongbin

    2017-06-01

    In the current study, a macroscopic lattice Boltzmann model for simulating the heat and moisture transport phenomenon in unsaturated porous media during the freezing process was proposed. The proposed model adopted percolation threshold to reproduce the extra resistance in frozen fringe during the freezing process. The freezing process in Kanagawa sandy loam soil was demonstrated by the proposed model. The numerical result showed good agreement with the experimental result. The proposed model also offered higher computational efficiency and better agreement with the experimental result than the existing numerical models. Lattice Boltzmann method is suitable for simulating complex heat and mass transfer process in porous media at macroscopic scale under proper dimensionless criterion, which makes it a potentially powerful tool for engineering application.

  8. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    Science.gov (United States)

    Liu, Qing; He, Ya-Ling

    2015-11-01

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  9. Poisson-Boltzmann theory of charged colloids: limits of the cell model for salty suspensions

    International Nuclear Information System (INIS)

    Denton, A R

    2010-01-01

    Thermodynamic properties of charge-stabilized colloidal suspensions and polyelectrolyte solutions are commonly modelled by implementing the mean-field Poisson-Boltzmann (PB) theory within a cell model. This approach models a bulk system by a single macroion, together with counterions and salt ions, confined to a symmetrically shaped, electroneutral cell. While easing numerical solution of the nonlinear PB equation, the cell model neglects microion-induced interactions and correlations between macroions, precluding modelling of macroion ordering phenomena. An alternative approach, which avoids the artificial constraints of cell geometry, exploits the mapping of a macroion-microion mixture onto a one-component model of pseudo-macroions governed by effective interparticle interactions. In practice, effective-interaction models are usually based on linear-screening approximations, which can accurately describe strong nonlinear screening only by incorporating an effective (renormalized) macroion charge. Combining charge renormalization and linearized PB theories, in both the cell model and an effective-interaction (cell-free) model, we compute osmotic pressures of highly charged colloids and monovalent microions, in Donnan equilibrium with a salt reservoir, over a range of concentrations. By comparing predictions with primitive model simulation data for salt-free suspensions, and with predictions from nonlinear PB theory for salty suspensions, we chart the limits of both the cell model and linear-screening approximations in modelling bulk thermodynamic properties. Up to moderately strong electrostatic couplings, the cell model proves accurate for predicting osmotic pressures of deionized (counterion-dominated) suspensions. With increasing salt concentration, however, the relative contribution of macroion interactions to the osmotic pressure grows, leading predictions from the cell and effective-interaction models to deviate. No evidence is found for a liquid

  10. A MECHANISTIC MODEL FOR PARTICLE DEPOSITION IN DIESEL PARTICLUATE FILTERS USING THE LATTICE-BOLTZMANN TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark L.; Rector, David R.; Muntean, George G.; Maupin, Gary D.

    2004-08-01

    Cordierite diesel particulate filters (DPFs) offer one of the most promising aftertreatment technologies to meet the quickly approaching EPA 2007 heavy-duty emissions regulations. A critical, yet poorly understood, component of particulate filter modeling is the representation of soot deposition. The structure and distribution of soot deposits upon and within the ceramic substrate directly influence many of the macroscopic phenomenon of interest, including filtration efficiency, back pressure, and filter regeneration. Intrinsic soot cake properties such as packing density and permeability coefficients remain inadequately characterized. The work reported in this paper involves subgrid modeling techniques which may prove useful in resolving these inadequacies. The technique involves the use of a lattice Boltzmann modeling approach. This approach resolves length scales which are orders of magnitude below those typical of a standard computational fluid dynamics (CFD) representation of an aftertreatment device. Individual soot particles are introduced and tracked as they move through the flow field and are deposited on the filter substrate or previously deposited particles. Electron micrographs of actual soot deposits were taken and compared to the model predictions. Descriptions of the modeling technique and the development of the computational domain are provided. Preliminary results are presented, along with some comparisons with experimental observations.

  11. An immersed boundary-lattice Boltzmann model for biofilm growth in porous media

    Science.gov (United States)

    Benioug, M.; Golfier, F.; Oltéan, C.; Buès, M. A.; Bahar, T.; Cuny, J.

    2017-09-01

    In this paper, we present a two-dimensional pore-scale numerical model to investigate the main mechanisms governing biofilm growth in porous media. The fluid flow and solute transport equations are coupled with a biofilm evolution model. Fluid flow is simulated with an immersed boundary-lattice Boltzmann model while solute transport is described with a volume-of-fluid-type approach. A cellular automaton algorithm combined with immersed boundary methods was developed to describe the spreading and distribution of biomass. Bacterial attachment and detachment mechanisms are also taken into account. The capability of this model to describe correctly the couplings involved between fluid circulation, nutrient transport and bacterial growth is tested under different hydrostatic and hydrodynamic conditions (i) on a flat medium and (ii) for a complex porous medium. For the second case, different regimes of biofilm growth are identified and are found to be related to the dimensionless parameters of the model, Damköhler and Péclet numbers and dimensionless shear stress. Finally, the impact of biofilm growth on the macroscopic properties of the porous medium is investigated and we discuss the unicity of the relationships between hydraulic conductivity and biofilm volume fraction.

  12. Langevin dynamics for ramified structures

    Science.gov (United States)

    Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel

    2017-06-01

    We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.

  13. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...

  14. Nonequilibrium generalised Langevin equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths.

    Science.gov (United States)

    Ness, H; Stella, L; Lorenz, C D; Kantorovich, L

    2017-04-28

    We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.

  15. A study of the Boltzmann and Gibbs entropies in the context of a stochastic toy model

    Science.gov (United States)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2018-05-01

    In this article we reconsider a stochastic toy model of thermal contact, first introduced in Onorato et al (2017 Eur. J. Phys. 38 045102), showing its educational potential for clarifying some current issues in the foundations of thermodynamics. The toy model can be realized in practice using dice and coins, and can be seen as representing thermal coupling of two subsystems with energy bounded from above. The system is used as a playground for studying the different behaviours of the Boltzmann and Gibbs temperatures and entropies in the approach to steady state. The process that models thermal contact between the two subsystems can be proved to be an ergodic, reversible Markov chain; thus the dynamics produces an equilibrium distribution in which the weight of each state is proportional to its multiplicity in terms of microstates. Each one of the two subsystems, taken separately, is formally equivalent to an Ising spin system in the non-interacting limit. The model is intended for educational purposes, and the level of readership of the article is aimed at advanced undergraduates.

  16. Quasiequilibrium lattice Boltzmann models with tunable bulk viscosity for enhancing stability.

    Science.gov (United States)

    Asinari, Pietro; Karlin, Ilya V

    2010-01-01

    Taking advantage of a closed-form generalized Maxwell distribution function [P. Asinari and I. V. Karlin, Phys. Rev. E 79, 036703 (2009)] and splitting the relaxation to the equilibrium in two steps, an entropic quasiequilibrium (EQE) kinetic model is proposed for the simulation of low Mach number flows, which enjoys both the H theorem and a free-tunable parameter for controlling the bulk viscosity in such a way as to enhance numerical stability in the incompressible flow limit. Moreover, the proposed model admits a simplification based on a proper expansion in the low Mach number limit (LQE model). The lattice Boltzmann implementation of both the EQE and LQE is as simple as that of the standard lattice Bhatnagar-Gross-Krook (LBGK) method, and practical details are reported. Extensive numerical testing with the lid driven cavity flow in two dimensions is presented in order to verify the enhancement of the stability region. The proposed models achieve the same accuracy as the LBGK method with much rougher meshes, leading to an effective computational speed-up of almost three times for EQE and of more than four times for the LQE. Three-dimensional extension of EQE and LQE is also discussed.

  17. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces

    Science.gov (United States)

    Li, Qing; Kang, Q. J.; Francois, M. M.; Hu, A. J.

    In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet moving velocity. Furthermore, the processes that the Leidenfrost droplets climb uphill on inclined ratchet surfaces are also studied. Numerical results show that the maximum inclination angle at which a Leidenfrost droplet can still climb uphill successfully is affected by the initial radius of the droplet.

  18. Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures.

    Science.gov (United States)

    Ju, Yang; Zhang, Qingang; Zheng, Jiangtao; Chang, Chun; Xie, Heping

    2017-02-01

    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass-Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures.

  19. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  20. Lattice-Boltzmann modeling of experimental fluid displacement patterns, interfacial area and capillary trapped CO2

    Science.gov (United States)

    Porter, M. L.; Kang, Q.; Tarimala, S.; Abdel-Fattah, A.; Backhaus, S.; Carey, J. W.

    2010-12-01

    Successful sequestration of CO2 into deep saline aquifers presents an enormous challenge that requires fundamental understanding of reactive-multiphase flow and transport across many temporal and spatial scales. Of critical importance is accurately predicting the efficiency of CO2 trapping mechanisms. At the pore scale (e.g., microns to millimeters) the interfacial area between CO2 and brine, as well as CO2 and the solid phase, directly influences the amount of CO2 trapped due to capillary forces, dissolution and mineral precipitation. In this work, we model immiscible displacement micromodel experiments using the lattice-Boltzmann (LB) method. We focus on quantifying interfacial area as a function of capillary numbers and viscosity ratios typically encountered in CO2 sequestration operations. We show that the LB model adequately predicts the steady-state experimental flow patterns and interfacial area measurements. Based on the steady-state agreement, we use the LB model to investigate interfacial dynamics (e.g., fluid-fluid interfacial velocity and the rate of production of fluid-fluid interfacial area). In addition, we quantify the amount of interfacial area and the interfacial dynamics associated with the capillary trapped nonwetting phase. This is expected to be important for predicting the amount of nonwetting phase subsequently trapped due to dissolution and mineral precipitation.

  1. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  2. Numerical Modeling of Non-Newtonian and Viscoelastic Flows using Central Moment Lattice Boltzmann Approach

    Science.gov (United States)

    Adam, Saad; Premnath, Kannan

    2017-11-01

    Non-Newtonian fluid flows with nonlinear rheological behavior occur in a number of applications such as in chemical, biological and materials processing contexts. In addition, viscoelastic fluids exhibit peculiar normal stress and memory effects. Lattice Boltzmann (LB) methods involving the use of central moments provide improved numerical stability and better physical coherence. Here, first, we present a LB model based on central moments with extended moment equilibria involving strain rates and an adjustable parameter to represent non-Newtonian power-law fluids in three-dimensions, and its numerical validation for flows encompassing both shear thinning and shear thickening fluids. Next, we discuss a LB scheme using central moments and a source term to represent the evolution of the viscoelastic stresses modeled using the upper convected Oldroyd-B model, which transform objectively - a key physical requirement. The viscoelastic stresses are then coupled to the LB flow solver as additional contributions to the latter's second order moment equilibria in the collision step. The resulting scheme is validated for various viscoelastic benchmark flows for which prior analytical and/or numerical solutions available at different Weissenberg numbers and viscosity ratios.

  3. Effective Simulation Strategy of Multiscale Flows using a Lattice Boltzmann model with a Stretched Lattice

    Science.gov (United States)

    Yahia, Eman; Premnath, Kannan

    2017-11-01

    Resolving multiscale flow physics (e.g. for boundary layer or mixing layer flows) effectively generally requires the use of different grid resolutions in different coordinate directions. Here, we present a new formulation of a multiple relaxation time (MRT)-lattice Boltzmann (LB) model for anisotropic meshes. It is based on a simpler and more stable non-orthogonal moment basis while the use of MRT introduces additional flexibility, and the model maintains a stream-collide procedure; its second order moment equilibria are augmented with additional velocity gradient terms dependent on grid aspect ratio that fully restores the required isotropy of the transport coefficients of the normal and shear stresses. Furthermore, by introducing additional cubic velocity corrections, it maintains Galilean invariance. The consistency of this stretched lattice based LB scheme with the Navier-Stokes equations is shown via a Chapman-Enskog expansion. Numerical study for a variety of benchmark flow problems demonstrate its ability for accurate and effective simulations at relatively high Reynolds numbers. The MRT-LB scheme is also shown to be more stable compared to prior LB models for rectangular grids, even for grid aspect ratios as small as 0.1 and for Reynolds numbers of 10000.

  4. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    Science.gov (United States)

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme

  5. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Science.gov (United States)

    Pravinraj, T.; Patrikar, Rajendra

    2017-07-01

    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  6. Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows

    Science.gov (United States)

    Hajabdollahi, Farzaneh; Premnath, Kannan

    2017-11-01

    Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.

  7. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway's dual relaxation model

    Science.gov (United States)

    Guo, Yangyu; Wang, Moran

    2017-10-01

    The single mode relaxation time approximation has been demonstrated to greatly underestimate the lattice thermal conductivity of two-dimensional materials due to the collective effect of phonon normal scattering. Callaway's dual relaxation model represents a good approximation to the otherwise ab initio solution of the phonon Boltzmann equation. In this work we develop a discrete-ordinate-method (DOM) scheme for the numerical solution of the phonon Boltzmann equation under Callaway's model. Heat transport in a graphene ribbon with different geometries is modeled by our scheme, which produces results quite consistent with the available molecular dynamics, Monte Carlo simulations, and experimental measurements. Callaway's lattice thermal conductivity model with empirical boundary scattering rates is examined and shown to overestimate or underestimate the direct DOM solution. The length convergence of the lattice thermal conductivity of a rectangular graphene ribbon is explored and found to depend appreciably on the ribbon width, with a semiquantitative correlation provided between the convergence length and the width. Finally, we predict the existence of a phonon Knudsen minimum in a graphene ribbon only at a low system temperature and isotope concentration so that the average normal scattering rate is two orders of magnitude stronger than the intrinsic resistive one. The present work will promote not only the methodology for the solution of the phonon Boltzmann equation but also the theoretical modeling and experimental detection of hydrodynamic phonon transport in two-dimensional materials.

  8. Lattice Boltzmann model for high-order nonlinear partial differential equations

    Science.gov (United States)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  9. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  10. Coupled Boltzmann computation of mixed axion neutralino dark matter in the SUSY DFSZ axion model

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyu Jung; Baer, Howard; Serce, Hasan [Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks, Norman, OK 73019 (United States); Lessa, Andre, E-mail: bae@nhn.ou.edu, E-mail: baer@nhn.ou.edu, E-mail: lessa@fma.if.usp.br, E-mail: serce@ou.edu [Instituto de Física, Universidade de São Paulo, São Paulo – SP (Brazil)

    2014-10-01

    The supersymmetrized DFSZ axion model is highly motivated not only because it offers solutions to both the gauge hierarchy and strong CP problems, but also because it provides a solution to the SUSY μ-problem which naturally allows for a Little Hierarchy. We compute the expected mixed axion-neutralino dark matter abundance for the SUSY DFSZ axion model in two benchmark cases—a natural SUSY model with a standard neutralino underabundance (SUA) and an mSUGRA/CMSSM model with a standard overabundance (SOA). Our computation implements coupled Boltzmann equations which track the radiation density along with neutralino, axion, axion CO (produced via coherent oscillations), saxion, saxion CO, axino and gravitino densities. In the SUSY DFSZ model, axions, axinos and saxions go through the process of freeze-in—in contrast to freeze-out or out-of-equilibrium production as in the SUSY KSVZ model—resulting in thermal yields which are largely independent of the re-heat temperature. We find the SUA case with suppressed saxion-axion couplings (ξ=0) only admits solutions for PQ breaking scale f{sub a}∼< 6× 10{sup 12} GeV where the bulk of parameter space tends to be axion-dominated. For SUA with allowed saxion-axion couplings (ξ =1), then f{sub a} values up to ∼ 10{sup 14} GeV are allowed. For the SOA case, almost all of SUSY DFSZ parameter space is disallowed by a combination of overproduction of dark matter, overproduction of dark radiation or violation of BBN constraints. An exception occurs at very large f{sub a}∼ 10{sup 15}–10{sup 16} GeV where large entropy dilution from CO-produced saxions leads to allowed models.

  11. Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow

    Science.gov (United States)

    Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan

    2018-03-01

    An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.

  12. Investigating Dynamic Behavior in Experimental Capillary Pressure-Saturation Curves Using a Lattice-Boltzmann Model

    Science.gov (United States)

    Porter, M. L.; Wildenschild, D.; Schaap, M. G.

    2005-12-01

    The capillary pressure-saturation curve is widely used to characterize hydraulic properties of porous media. It is often assumed that curves measured under equilibrium or steady-state flow conditions can be applied to transient flow conditions, and vice versa. Yet, substantial experimental evidence suggests that capillary pressure-saturation curves obtained during transient conditions differ from those obtained under equilibrium or steady-state conditions. It has been shown that the capillary pressure-saturation curve changes with the inflow/outflow rate applied. The exact cause of the shift is not yet fully understood, but most likely it is caused by interfacial phenomena at the pore scale. In this investigation, results from wetting/drying experiments on a column of packed glass beads under various inflow/outflow rates will be presented. The dynamic effects have been examined using conceptual 2D/3D lattice-Boltzmann (LB) simulations. The LB model used for these simulations is the multi-component model developed by Shan and Chen. The LB model is generally considered a mesoscale method, which includes pore scale properties and makes it possible to infer macroscopic dynamics from pore scale properties. The LB model also allows for representation of complex pore space geometries. These features of the LB model make it highly suitable for studying interfacial phenomena. The conceptual LB simulations provide insights into pore-scale interfacial phenomena and demonstrate the dynamic behavior observed in the experiments. The scaling of time and space from LB parameters to physical parameters was performed to make comparisons between simulation and experimental results possible.

  13. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  14. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

    Science.gov (United States)

    Sohrabi, Salman; Liu, Yaling

    2018-03-01

    Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modified method can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBM through the immersed boundary method. Looking into strain and stress distribution of a cell membrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words, membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the

  15. Ionic screening of charged impurities in electrolytically gated graphene: A partially linearized Poisson-Boltzmann model.

    Science.gov (United States)

    Sharma, P; Mišković, Z L

    2015-10-07

    We present a model describing the electrostatic interactions across a structure that consists of a single layer of graphene with large area, lying above an oxide substrate of finite thickness, with its surface exposed to a thick layer of liquid electrolyte containing salt ions. Our goal is to analyze the co-operative screening of the potential fluctuation in a doped graphene due to randomness in the positions of fixed charged impurities in the oxide by the charge carriers in graphene and by the mobile ions in the diffuse layer of the electrolyte. In order to account for a possibly large potential drop in the diffuse later that may arise in an electrolytically gated graphene, we use a partially linearized Poisson-Boltzmann (PB) model of the electrolyte, in which we solve a fully nonlinear PB equation for the surface average of the potential in one dimension, whereas the lateral fluctuations of the potential in graphene are tackled by linearizing the PB equation about the average potential. In this way, we are able to describe the regime of equilibrium doping of graphene to large densities for arbitrary values of the ion concentration without restrictions to the potential drop in the electrolyte. We evaluate the electrostatic Green's function for the partially linearized PB model, which is used to express the screening contributions of the graphene layer and the nearby electrolyte by means of an effective dielectric function. We find that, while the screened potential of a single charged impurity at large in-graphene distances exhibits a strong dependence on the ion concentration in the electrolyte and on the doping density in graphene, in the case of a spatially correlated two-dimensional ensemble of impurities, this dependence is largely suppressed in the autocovariance of the fluctuating potential.

  16. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Department of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth PO1 3DJ (United Kingdom)

    2008-10-21

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  17. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. Model and velocity analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Numerical modelling is a powerful tool in the investigation of human blood flow and arterial diseases such as atherosclerosis. It is known that near wall velocity and shear are important in the pathogenesis and progression of atherosclerosis. In this paper results for a simulation of blood flow in a three-dimensional carotid artery geometry using the lattice Boltzmann method are presented. The velocity fields in the body of the fluid are analysed at six times of interest during a physiologically accurate velocity waveform. It is found that the three-dimensional model agrees well with previous literature results for carotid artery flow. Regions of low near wall velocity and circulatory flow are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery, which are regions that are typically prone to atherosclerosis.

  18. Lattice Boltzmann flow simulations with applications of reduced order modeling techniques

    KAUST Repository

    Brown, Donald

    2014-01-01

    With the recent interest in shale gas, an understanding of the flow mechanisms at the pore scale and beyond is necessary, which has attracted a lot of interest from both industry and academia. One of the suggested algorithms to help understand flow in such reservoirs is the Lattice Boltzmann Method (LBM). The primary advantage of LBM is its ability to approximate complicated geometries with simple algorithmic modificatoins. In this work, we use LBM to simulate the flow in a porous medium. More specifically, we use LBM to simulate a Brinkman type flow. The Brinkman law allows us to integrate fast free-flow and slow-flow porous regions. However, due to the many scales involved and complex heterogeneities of the rock microstructure, the simulation times can be long, even with the speed advantage of using an explicit time stepping method. The problem is two-fold, the computational grid must be able to resolve all scales and the calculation requires a steady state solution implying a large number of timesteps. To help reduce the computational complexity and total simulation times, we use model reduction techniques to reduce the dimension of the system. In this approach, we are able to describe the dynamics of the flow by using a lower dimensional subspace. In this work, we utilize the Proper Orthogonal Decomposition (POD) technique, to compute the dominant modes of the flow and project the solution onto them (a lower dimensional subspace) to arrive at an approximation of the full system at a lowered computational cost. We present a few proof-of-concept examples of the flow field and the corresponding reduced model flow field.

  19. An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for restricted primitive model electrolytes

    Directory of Open Access Journals (Sweden)

    E.O. Ulloa-Dávila

    2017-12-01

    Full Text Available An approximate analytical solution to the fluctuation potential problem in the modified Poisson-Boltzmann theory of electrolyte solutions in the restricted primitive model is presented. The solution is valid for all inter-ionic distances, including contact values. The fluctuation potential solution is implemented in the theory to describe the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25·10^{-10} m, relative permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann, and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the contact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo results and some improvement for osmotic coefficients and radial distribution functions contact values relative to these theories. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up to 1 mol/dm^3.

  20. Langevin- Science and vigilance; Langevin - Science et vigilance

    Energy Technology Data Exchange (ETDEWEB)

    Bensaude-Vincent, B.

    1987-12-31

    Paul Langevin personifies the figure of popular scientist, buried in the Pantheon, because he was in all great fights: to diffuse knowledge, for improvement and democratization of teaching, for justice and peace. Great theoretician of physics, comparable to Einstein whom he rejoined the approach, he was a fertile discoverer, author, in particular, of a proceeding to detect submarines. He fought politically, regardless of his career, in the ranges of pacifists and opponents of fascism. This book reveals, in his warm diversity, a badly known personality, in spite of the legend in his lifetime. (N.C.).

  1. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J; Cosgrove, J A; Stansell, P

    2005-01-01

    The lattice Boltzmann model is used to observe changes in the velocity flow and shear stress in a carotid artery model during a simulated stenosis growth. Near wall shear stress in the unstenosed artery is found to agree with literature values. The model also shows regions of low velocity, rotational flow and low near wall shear stress along parts of the walls of the carotid artery that have been identified as being prone to atherosclerosis. These regions persist during the simulated stenosis growth, suggesting that atherosclerotic plaque build-up creates regions of flow with properties that favour atherosclerotic progression

  2. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.

  3. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    International Nuclear Information System (INIS)

    Melenev, Petr

    2017-01-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.

  4. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  5. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  6. Modeling cardiovascular hemodynamics using the lattice Boltzmann method on massively parallel supercomputers

    Science.gov (United States)

    Randles, Amanda Elizabeth

    Accurate and reliable modeling of cardiovascular hemodynamics has the potential to improve understanding of the localization and progression of heart diseases, which are currently the most common cause of death in Western countries. However, building a detailed, realistic model of human blood flow is a formidable mathematical and computational challenge. The simulation must combine the motion of the fluid, the intricate geometry of the blood vessels, continual changes in flow and pressure driven by the heartbeat, and the behavior of suspended bodies such as red blood cells. Such simulations can provide insight into factors like endothelial shear stress that act as triggers for the complex biomechanical events that can lead to atherosclerotic pathologies. Currently, it is not possible to measure endothelial shear stress in vivo, making these simulations a crucial component to understanding and potentially predicting the progression of cardiovascular disease. In this thesis, an approach for efficiently modeling the fluid movement coupled to the cell dynamics in real-patient geometries while accounting for the additional force from the expansion and contraction of the heart will be presented and examined. First, a novel method to couple a mesoscopic lattice Boltzmann fluid model to the microscopic molecular dynamics model of cell movement is elucidated. A treatment of red blood cells as extended structures, a method to handle highly irregular geometries through topology driven graph partitioning, and an efficient molecular dynamics load balancing scheme are introduced. These result in a large-scale simulation of the cardiovascular system, with a realistic description of the complex human arterial geometry, from centimeters down to the spatial resolution of red-blood cells. The computational methods developed to enable scaling of the application to 294,912 processors are discussed, thus empowering the simulation of a full heartbeat. Second, further extensions to enable

  7. Geometric integrator for Langevin systems with quaternion-based rotational degrees of freedom and hydrodynamic interactions

    Science.gov (United States)

    Davidchack, R. L.; Ouldridge, T. E.; Tretyakov, M. V.

    2017-12-01

    We introduce new Langevin-type equations describing the rotational and translational motion of rigid bodies interacting through conservative and non-conservative forces and hydrodynamic coupling. In the absence of non-conservative forces, the Langevin-type equations sample from the canonical ensemble. The rotational degrees of freedom are described using quaternions, the lengths of which are exactly preserved by the stochastic dynamics. For the proposed Langevin-type equations, we construct a weak 2nd order geometric integrator that preserves the main geometric features of the continuous dynamics. The integrator uses Verlet-type splitting for the deterministic part of Langevin equations appropriately combined with an exactly integrated Ornstein-Uhlenbeck process. Numerical experiments are presented to illustrate both the new Langevin model and the numerical method for it, as well as to demonstrate how inertia and the coupling of rotational and translational motion can introduce qualitatively distinct behaviours.

  8. Lattices for the lattice Boltzmann method.

    Science.gov (United States)

    Chikatamarla, Shyam S; Karlin, Iliya V

    2009-04-01

    A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.

  9. Lattice Boltzmann simulation of solute transport in heterogeneous porous media with conduits to estimate macroscopic continuous time random walk model parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anwar, S.; Cortis, A.; Sukop, M.

    2008-10-20

    Lattice Boltzmann models simulate solute transport in porous media traversed by conduits. Resulting solute breakthrough curves are fitted with Continuous Time Random Walk models. Porous media are simulated by damping flow inertia and, when the damping is large enough, a Darcy's Law solution instead of the Navier-Stokes solution normally provided by the lattice Boltzmann model is obtained. Anisotropic dispersion is incorporated using a direction-dependent relaxation time. Our particular interest is to simulate transport processes outside the applicability of the standard Advection-Dispersion Equation (ADE) including eddy mixing in conduits. The ADE fails to adequately fit any of these breakthrough curves.

  10. Deep Appearance Models: A Deep Boltzmann Machine Approach for Face Modeling

    OpenAIRE

    Duong, Chi Nhan; Luu, Khoa; Quach, Kha Gia; Bui, Tien D.

    2016-01-01

    The "interpretation through synthesis" approach to analyze face images, particularly Active Appearance Models (AAMs) method, has become one of the most successful face modeling approaches over the last two decades. AAM models have ability to represent face images through synthesis using a controllable parameterized Principal Component Analysis (PCA) model. However, the accuracy and robustness of the synthesized faces of AAM are highly depended on the training sets and inherently on the genera...

  11. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group, Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Mechanical and Design Engineering, Anglesea Building, Anglesea Road, University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)

    2008-10-21

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  12. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  13. Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Mahshid Hadavand

    2011-01-01

    Full Text Available Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM. This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.

  14. An adaptive stepsize method for the chemical Langevin equation

    Science.gov (United States)

    Ilie, Silvana; Teslya, Alexandra

    2012-05-01

    Mathematical and computational modeling are key tools in analyzing important biological processes in cells and living organisms. In particular, stochastic models are essential to accurately describe the cellular dynamics, when the assumption of the thermodynamic limit can no longer be applied. However, stochastic models are computationally much more challenging than the traditional deterministic models. Moreover, many biochemical systems arising in applications have multiple time-scales, which lead to mathematical stiffness. In this paper we investigate the numerical solution of a stochastic continuous model of well-stirred biochemical systems, the chemical Langevin equation. The chemical Langevin equation is a stochastic differential equation with multiplicative, non-commutative noise. We propose an adaptive stepsize algorithm for approximating the solution of models of biochemical systems in the Langevin regime, with small noise, based on estimates of the local error. The underlying numerical method is the Milstein scheme. The proposed adaptive method is tested on several examples arising in applications and it is shown to have improved efficiency and accuracy compared to the existing fixed stepsize schemes.

  15. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  16. Deformation of Two-Dimensional Nonuniform-Membrane Red Blood Cells Simulated by a Lattice Boltzmann Model

    International Nuclear Information System (INIS)

    Hua-Bing, Li; Li, Jin; Bing, Qiu

    2008-01-01

    To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))

  17. Application of a flexible lattice Boltzmann method based simulation tool for modelling physico-chemical processes at different scales

    Science.gov (United States)

    Patel, Ravi A.; Perko, Janez; Jacques, Diederik

    2017-04-01

    Often, especially in the disciplines related to natural porous media, such as for example vadoze zone or aquifer hydrology or contaminant transport, the relevant spatial and temporal scales on which we need to provide information is larger than the scale where the processes actually occur. Usual techniques used to deal with these problems assume the existence of a REV. However, in order to understand the behavior on larger scales it is important to downscale the problem onto the relevant scale of the processes. Due to the limitations of resources (time, memory) the downscaling can only be made up to the certain lower scale. At this lower scale still several scales may co-exist - the scale which can be explicitly described and a scale which needs to be conceptualized by effective properties. Hence, models which are supposed to provide effective properties on relevant scales should therefor be flexible enough to represent complex pore-structure by explicit geometry on one side, and differently defined processes (e.g. by the effective properties) which emerge on lower scale. In this work we present the state-of-the-art lattice Boltzmann method based simulation tool applicable to advection-diffusion equation coupled to geochemical processes. The lattice Boltzmann transport solver can be coupled with an external geochemical solver which allows to account for a wide range of geochemical reaction networks through thermodynamic databases. The applicability to multiphase systems is ongoing. We provide several examples related to the calculation of an effective diffusion properties, permeability and effective reaction rate based on a continuum scale based on the pore scale geometry.

  18. Using x-ray tomography and lattice Boltzmann modeling to evaluate pore-scale processes in porous media

    DEFF Research Database (Denmark)

    Christensen, Britt Stenhøj Baun

    En kombination af eksperimentelt arbejde og numerisk modellering blev anvendt til undersøgelse af poreskala to-fase strømning i porøse medie systemer af sand og glasperler. Det eksperimentelle arbejde gjorde brug af den ikke-indtrængende og ikke-destruktive røntgenstråle billedmetode CT-teknik (C......En kombination af eksperimentelt arbejde og numerisk modellering blev anvendt til undersøgelse af poreskala to-fase strømning i porøse medie systemer af sand og glasperler. Det eksperimentelle arbejde gjorde brug af den ikke-indtrængende og ikke-destruktive røntgenstråle billedmetode CT......-teknik (Computed Tomography) til at visualisere og kvantificere de eksperimentelle poreskala systemer. Både en medicinsk CT-scanner og et synkrotron baseret skanningssystem med høj billede opløselighed blev anvendt. Numerisk modellering af poreskala processerne blev gjort ved hjælp af en lattice Boltzmann model...... overfladeareal mellem faserne udledt fra de eksperimentelle billeder. De opnåede forsøgsdata kan udgøre en nyttig database til hjælp med udvikling af teorier for poreskala processer, men dataene kan især fremme udvikling og testning af poreskala modeller. Olie-vand-glasperle forsøgene blev brugt som udgangspunkt...

  19. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  20. Acoustic field of an ultrasonic cavity resonator with two open ends: Experimental measurements and lattice Boltzmann method modeling

    Science.gov (United States)

    Shan, Feng; Tu, Juan; Cheng, Jianchun; Zhang, Dong; Li, Faqi; Wang, Zhibiao

    2017-03-01

    High-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for noninvasive tumor treatment. The key component of HIFU systems is the acoustic transducer, which generates a focal region of high-intensity focused ultrasonic energy. A key determinant of safety in HIFU treatment is the size of the focal region. To achieve subwavelength focusing, we previously investigated the feasibility of an ultrasonic spherical cavity resonator (USCR) with two open ends. To further investigate the properties of the USCR, experiments and simulations were performed to comprehensively characterize the acoustic field generated. The emphasis was on the field formation process, the pressure distribution, the frequency dependence, and the acoustic nonlinearity. As a novel simulation approach, an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model was used to numerically analyze the acoustic field. The reliability of this model was verified by comparing the results generated with those from experiments. The MRT-LBM model gave new insight into conventional acoustic numerical simulations and provided significant indications for USCR parameter optimization. The USCR demonstrated its feasibility for application in HIFU treatment or in other fields that demand high-precision focusing.

  1. Evaluation of macroscopic polarization and actuation abilities of electrostrictive dipolar polymers using the microscopic Debye/Langevin formalism

    International Nuclear Information System (INIS)

    Capsal, Jean-Fabien; Lallart, Mickaël; Galineau, Jeremy; Cottinet, Pierre-Jean; Sebald, Gaël; Guyomar, Daniel

    2012-01-01

    Electrostrictive polymers, as an important category of electroactive polymers, are known to have non-linear response in terms of actuation that strongly affects their dynamic performance and limits their applications. Very few models exist in the literature, and even fewer are capable of making reliable predictions under an electric field. In this paper, electrostrictive strain of dipolar polymeric systems is discussed through constitutive equations derived from the Boltzmann statistics and Debye/Langevin formalism. Macroscopic polarization is expressed as a function of the inherent microscopic parameters of the dielectric material. Electrostrictive strain, polarization and dielectric permittivity are described well by the model in terms of dipole moment and saturation of dipole orientation, allowing the physical definition of the electrostrictive coefficient Q. Maxwell forces generated by dipolar orientation inducing surface charges are also used to explain the electrostrictive strain of polymers. The assessment of this analysis through a comparison with experimental data shows good agreement between reported values and theoretical predictions. These materials are generally used in low-frequency applications, thus the interfacial phenomena that are responsible for low saturation electric field should not be omitted so as not to underestimate or overestimate the low electric field response of the electrostrictive strain. (paper)

  2. A modified Lattice Boltzmann model for pore-scale simulation of desorption process at surface water-groundwater interface

    Science.gov (United States)

    Zhang, Pei; Galindo Torres, Sergio; Tang, Hongwu; Scheuermann, Alexander; Jin, Guangqiu; Li, Ling

    2017-04-01

    A pore-scale numerical model is introduced to simulate the desorption process at surface water-groundwater interface. The Navier-Stokes equations for fluid and Advection-Diffusion equation for scalar transport are solved by Lattice Boltzmann Method (LBM). In previous studies, the macroscopic desorption kinetic equations are usually applied as a boundary condition. However, it may be problematic for pore-scale simulation since most desorption kinetic equations are fitted from macroscopic global variables. We avoid this problem by discretizing the particle surface into a large number of adsorption sites to mimic the microscopic desorption process. The state of each adsorption site follows the Langmuir's theory. Furthermore, benefiting from the mesoscopic inherent of the LBM, the total number of adsorbate which really contacted with the particle surface can be calculated rather than the local concentration. The predicted desorption Isotherm and concentration profile match well with theoretical solutions and experimental data. By using presented model, we find that the desorption process at surface water-groundwater interface shows a complex response to surface water flow.

  3. Generalized Langevin Equation Description of Stochastic ...

    Indian Academy of Sciences (India)

    Generalized Langevin equation for stochastic oscillations of accretion disks. We consider that the particles in the disk are in contact with an isotropic and homoge- neous external medium. The interaction of the particles with the cosmic environment is described by a friction force and a random force. The vertical oscillations ...

  4. Generalized Langevin Equation Description of Stochastic ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Generalized Langevin Equation Description of Stochastic Oscillations of General Relativistic Disks. Chun Sing Leung Gabriela Mocanu Tiberiu Harko. Part VI: Combined Multi-Waveband Observations Volume 35 Issue 3 September 2014 pp 449- ...

  5. Modeling coupled transport and electrochemical reaction phenomena in polymer electrolyte fuel cell electrode by Lattice Boltzmann method

    Science.gov (United States)

    Tarokh, Atefeh; Tarokh, Ali; Hejazi, Hossein; Karan, Kunal

    2015-11-01

    Fuel cells convert chemical energy of a fuel directly into electricity. The overall process is a result of coupled reaction-transport processes. The electrochemical reactions occur in porous composite catalysts layers with intermingled material phases, often made up of nano-sized particles and nano/micrometers pores. In a polymer electrolye fuel cell (PEFC) catalyst layer, the focus of this work, transport of electrons through carbon, transport of protons through ion-conducting polymer (ionomer), diffusion of gases through pores must be considered. The three different reacting species, viz. protons, electrons and reactive molecule (H2 or O2) must co-exist at the reactive interface formed by Pt catalyst surface covered by an ionomer film. We use Lattice Boltzmann Method to capture the interactions between chemistry, transport and porous medium geometries in a PEFC catalyst layer. We report the simulation results for a model but novel catalyst architecture made of a continuous carbon phase with organized pore structure. The Pt catalyst is dispersed on the internal surface of the carbon. This Pt-catalyst decorated surface is covered by a thin ionomer film. In particular, we are interested in explicitly capturing the complexity of the pore geometry and Knudsen diffusion effects.

  6. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  7. An immersed boundary-lattice Boltzmann model for biofilm growth and its impact on the NAPL dissolution in porous media

    Science.gov (United States)

    Benioug, M.; Yang, X.

    2017-12-01

    The evolution of microbial phase within porous medium is a complex process that involves growth, mortality, and detachment of the biofilm or attachment of moving cells. A better understanding of the interactions among biofilm growth, flow and solute transport and a rigorous modeling of such processes are essential for a more accurate prediction of the fate of pollutants (e.g. NAPLs) in soils. However, very few works are focused on the study of such processes in multiphase conditions (oil/water/biofilm systems). Our proposed numerical model takes into account the mechanisms that control bacterial growth and its impact on the dissolution of NAPL. An Immersed Boundary - Lattice Boltzmann Model (IB-LBM) is developed for flow simulations along with non-boundary conforming finite volume methods (volume of fluid and reconstruction methods) used for reactive solute transport. A sophisticated cellular automaton model is also developed to describe the spatial distribution of bacteria. A series of numerical simulations have been performed on complex porous media. A quantitative diagram representing the transitions between the different biofilm growth patterns is proposed. The bioenhanced dissolution of NAPL in the presence of biofilms is simulated at the pore scale. A uniform dissolution approach has been adopted to describe the temporal evolution of trapped blobs. Our simulations focus on the dissolution of NAPL in abiotic and biotic conditions. In abiotic conditions, we analyze the effect of the spatial distribution of NAPL blobs on the dissolution rate under different assumptions (blobs size, Péclet number). In biotic conditions, different conditions are also considered (spatial distribution, reaction kinetics, toxicity) and analyzed. The simulated results are consistent with those obtained from the literature.

  8. Numerical modelling of transient heat transport in a two-layered metal film using the fuzzy lattice Boltzmann method with α-cuts

    Science.gov (United States)

    Piasecka-Belkhayat, Alicja; Korczak, Anna

    2018-01-01

    In the paper a description of heat transfer in a one-dimensional two-layered metal film is considered. The fuzzy coupled lattice Boltzmann equations for electrons and phonons supplemented by appropriate boundary and initial conditions are applied to analyse the thermal process in a thin metal film. The model with fuzzy values of relaxation times and boundary-initial conditions for gold and titanium is proposed. The problem considered is solved by the fuzzy lattice Boltzmann method using α-cuts and the rules of directed interval arithmetic. The application of α-cuts allows one to avoid complicated arithmetical operations in the fuzzy numbers set. In the final part of the paper an example for a numerical solution is presented.

  9. Heisenberg-Langevin versus quantum master equation

    Science.gov (United States)

    Boyanovsky, Daniel; Jasnow, David

    2017-12-01

    The quantum master equation is an important tool in the study of quantum open systems. It is often derived under a set of approximations, chief among them the Born (factorization) and Markov (neglect of memory effects) approximations. In this article we study the paradigmatic model of quantum Brownian motion of a harmonic oscillator coupled to a bath of oscillators with a Drude-Ohmic spectral density. We obtain analytically the exact solution of the Heisenberg-Langevin equations, with which we study correlation functions in the asymptotic stationary state. We compare the exact correlation functions to those obtained in the asymptotic long time limit with the quantum master equation in the Born approximation with and without the Markov approximation. In the latter case we implement a systematic derivative expansion that yields the exact asymptotic limit under the factorization approximation only. We find discrepancies that could be significant when the bandwidth of the bath Λ is much larger than the typical scales of the system. We study the exact interaction energy as a proxy for the correlations missed by the Born approximation and find that its dependence on Λ is similar to the discrepancy between the exact solution and that of the quantum master equation in the Born approximation. We quantify the regime of validity of the quantum master equation in the Born approximation with or without the Markov approximation in terms of the system's relaxation rate γ , its unrenormalized natural frequency Ω and Λ : γ /Ω ≪1 and also γ Λ /Ω2≪1 . The reliability of the Born approximation is discussed within the context of recent experimental settings and more general environments.

  10. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  11. Computation of transitional flow past a circular cylinder using multiblock lattice Boltzmann method with a dynamic subgrid scale model

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Kannan N [Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, CO 80217 (United States); Pattison, Martin J [HyPerComp Inc., 2629 Townsgate Road, Suite 105, Westlake Village, CA 91361 (United States); Banerjee, Sanjoy, E-mail: kannan.premnath@ucdenver.edu, E-mail: kannan.np@gmail.com [Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031 (United States)

    2013-10-15

    Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)

  12. Computation of transitional flow past a circular cylinder using multiblock lattice Boltzmann method with a dynamic subgrid scale model

    International Nuclear Information System (INIS)

    Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy

    2013-01-01

    Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)

  13. Causal influence in linear Langevin networks without feedback

    Science.gov (United States)

    Auconi, Andrea; Giansanti, Andrea; Klipp, Edda

    2017-04-01

    The intuition of causation is so fundamental that almost every research study in life sciences refers to this concept. However, a widely accepted formal definition of causal influence between observables is still missing. In the framework of linear Langevin networks without feedback (linear response models) we propose a measure of causal influence based on a new decomposition of information flows over time. We discuss its main properties and we compare it with other information measures like the transfer entropy. We are currently unable to extend the definition of causal influence to systems with a general feedback structure and nonlinearities.

  14. Calibrating the Shan-Chen lattice Boltzmann model for immiscible displacement in porous media

    DEFF Research Database (Denmark)

    Christensen, Britt Stenhøj Baun; Schaap, M.G.; Wildenschild, D.

    2006-01-01

    of the observed experimental system. The model calibration procedure does not result in a unique parameter set; instead several parameter sets that appear equally reasonable are obtained. We discuss 2 problems and limitations of the approach as applied using a multicomponent version of the Shan-Chen LB model....

  15. Kinetic Boltzmann approach adapted for modeling highly ionized matter created by x-ray irradiation of a solid

    Czech Academy of Sciences Publication Activity Database

    Ziaja, B.; Saxena, V.; Son, S.-K.; Medvedev, N.; Barbrel, B.; Woloncewicz, B.; Stránský, Michal

    2016-01-01

    Roč. 93, č. 5 (2016), 1-6, č. článku 053210. ISSN 2470-0045 R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:68378271 Keywords : X-ray * Boltzmann equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.366, year: 2016

  16. Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method

    Science.gov (United States)

    Gao, Jinfang; Xing, Huilin; Tian, Zhiwei; Pearce, Julie K.; Sedek, Mohamed; Golding, Suzanne D.; Rudolph, Victor

    2017-01-01

    Injection of CO2 subsurface may lead to chemical reactivity of rock where CO2 is dissolved in groundwater. This process can modify pore networks to increase or decrease porosity through mineral dissolution and precipitation. A lattice Boltzmann (LB) based computational model study on the pore scale reactive transport in three dimensional heterogeneous porous media (sandstone consisting of both reactive and non-reactive minerals) is described. This study examines how fluid transport in porous materials subject to reactive conditions is affected by unsteady state local reactions and unstable dissolution fronts. The reaction of a calcite cemented core sub-plug from the Hutton Sandstone of the Surat Basin, Australia, is used as a study case. In particular, the work studies the interaction of acidic fluid (an aqueous solution with an elevated concentration of carbonic acid) with reactive (e.g. calcite) and assumed non-reactive (e.g. quartz) mineral surfaces, mineral dissolution and mass transfer, and resultant porosity change. The proposed model is implemented in our custom LBM code and suitable for studies of multiple mineral reactions with disparate reaction rates. A model for carbonic acid reaction with calcite cemented sandstone in the CO2-water-rock system is verified through laboratory experimental data including micro-CT characterization before and after core reaction at reservoir conditions. The experimentally validated model shows: (1) the dissolution of calcite cement forms conductive channels at the pore scale, and enables the generation of pore throats and connectivity; (2) the model is able to simulate the reaction process until the reaction equilibrium status is achieved (around 1440 days); (3) calcite constituting a volume of around 9.6% of the whole core volume is dissolved and porosity is consequently increased from 1.1% to 10.7% on reaching equilibrium; (4) more than a third of the calcite (constituting 7.4% of the total core volume) is unaffected

  17. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  18. Supplementary analyses regarding Langevin, Langevin, and Curnoe's (2007) findings on fraternal birth order in homosexual men.

    Science.gov (United States)

    Blanchard, Ray

    2007-08-01

    A recent article by Langevin, Langevin, and Curnoe (2007) reported mixed results regarding the fraternal birth order effect, that is, the repeatedly observed finding that older brothers correlate with homosexuality in later-born males. Using a fraternal birth order index computed as older brothers minus younger brothers, Langevin et al. found that the "homoerotic" probands were born later among their brothers than were the "heteroerotic" probands in their full sample (N = 1194) and in their subsample over age 19 (N = 1122), but not in their subsample over age 31 (N = 698) or in their subsample with mothers over age 46 at the proband's birth (N = 727). The present writer concluded that the results obtained with the larger samples are more reliable, based on analyses demonstrating that (1) the larger samples are unlikely to be seriously affected by incomplete sibships, and (2) the smaller samples have poor statistical power. A separate analysis, based on an approximate reconstruction of Langevin et al.'s raw data, indicated that their heteroerotic probands reported a ratio of 104 older brothers per 100 older sisters, which is close to the normative population value of 106, whereas their homoerotic probands reported a ratio of 137, indicating a statistically significant excess of older brothers. These results suggest that Langevin et al.'s data showed significant evidence of a fraternal birth order effect and that their data were consistent with previous studies of this phenomenon.

  19. A subjective supply–demand model: the maximum Boltzmann/Shannon entropy solution

    International Nuclear Information System (INIS)

    Piotrowski, Edward W; Sładkowski, Jan

    2009-01-01

    The present authors have put forward a projective geometry model of rational trading. The expected (mean) value of the time that is necessary to strike a deal and the profit strongly depend on the strategies adopted. A frequent trader often prefers maximal profit intensity to the maximization of profit resulting from a separate transaction because the gross profit/income is the adopted/recommended benchmark. To investigate activities that have different periods of duration we define, following the queuing theory, the profit intensity as a measure of this economic category. The profit intensity in repeated trading has a unique property of attaining its maximum at a fixed point regardless of the shape of demand curves for a wide class of probability distributions of random reverse transactions (i.e. closing of the position). These conclusions remain valid for an analogous model based on supply analysis. This type of market game is often considered in research aiming at finding an algorithm that maximizes profit of a trader who negotiates prices with the Rest of the World (a collective opponent), possessing a definite and objective supply profile. Such idealization neglects the sometimes important influence of an individual trader on the demand/supply profile of the Rest of the World and in extreme cases questions the very idea of demand/supply profile. Therefore we put forward a trading model in which the demand/supply profile of the Rest of the World induces the (rational) trader to (subjectively) presume that he/she lacks (almost) all knowledge concerning the market but his/her average frequency of trade. This point of view introduces maximum entropy principles into the model and broadens the range of economic phenomena that can be perceived as a sort of thermodynamical system. As a consequence, the profit intensity has a fixed point with an astonishing connection with Fibonacci classical works and looking for the quickest algorithm for obtaining the extremum of a

  20. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the

  1. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference

    Science.gov (United States)

    Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao

    2015-09-01

    Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008), 10.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of

  2. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2017-02-15

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from the Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.

  3. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    Science.gov (United States)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  4. Accuracy assessment of the linear Poisson-Boltzmann equation and reparametrization of the OBC generalized Born model for nucleic acids and nucleic acid-protein complexes.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2015-04-05

    The generalized Born model in the Onufriev, Bashford, and Case (Onufriev et al., Proteins: Struct Funct Genet 2004, 55, 383) implementation has emerged as one of the best compromises between accuracy and speed of computation. For simulations of nucleic acids, however, a number of issues should be addressed: (1) the generalized Born model is based on a linear model and the linearization of the reference Poisson-Boltmann equation may be questioned for highly charged systems as nucleic acids; (2) although much attention has been given to potentials, solvation forces could be much less sensitive to linearization than the potentials; and (3) the accuracy of the Onufriev-Bashford-Case (OBC) model for nucleic acids depends on fine tuning of parameters. Here, we show that the linearization of the Poisson Boltzmann equation has mild effects on computed forces, and that with optimal choice of the OBC model parameters, solvation forces, essential for molecular dynamics simulations, agree well with those computed using the reference Poisson-Boltzmann model. © 2015 Wiley Periodicals, Inc.

  5. Gli atomi di Boltzmann

    CERN Document Server

    Lindley, David

    2002-01-01

    Ludwig Boltzmann (1844-1906) è il fisico e matematico austriaco che negli ultimi decenni dell'Ottocento e ancora ai primi del Novecento lottò contro l'opinione dominante tra gli scienziati dell'epoca per affermare la teoria atomica della materia. È noto come con Albert Einstein e fino a oggi la fisica si sia sviluppata e abbia celebrato i propri trionfi lungo le linee anticipate da Boltzmann. La controversia con Mach non riguardava soltanto l'esistenza degli atomi, ma l'intero modo di fare fisica che Boltzmann non riteneva di dover limitare allo studio di quantità misurabili, introducendo invece spiegazioni più elaborate basate su ipotesi più ampie.

  6. Institut Max von Laue-Paul Langevin

    International Nuclear Information System (INIS)

    Whereas the first volume of the Annual Report gives a general survey of the activities of the different sections of the ILL (Institut Laue-Langevin), this second volume titled Annex to the 1975 annual report is dealing in more details with the scientific work carried out at the ILL from November the 1st 1974 to October the 1st 1975. Scientific works for which reports are available are presented grouped as possible, by college: theory; nuclear physics; excitations; structures; liquids, gas and amorphous materials; imperfections; physical biochemistry; and chemistry [fr

  7. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    Science.gov (United States)

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  8. Multiple-relaxation-time lattice Boltzmann model for incompressible miscible flow with large viscosity ratio and high Péclet number

    Science.gov (United States)

    Meng, Xuhui; Guo, Zhaoli

    2015-10-01

    A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.

  9. Entropy a la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034. Author Affiliations.

  10. Entropy à la Boltzmann

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy à la Boltzmann. Jayanta K Bhattacharjee. General Article Volume 6 Issue 9 September 2001 pp 19-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0019-0034 ...

  11. Exploring cluster Monte Carlo updates with Boltzmann machines.

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  12. Exploring cluster Monte Carlo updates with Boltzmann machines

    Science.gov (United States)

    Wang, Lei

    2017-11-01

    Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.

  13. The Langevin and generalised Langevin approach to the dynamics of atomic, polymeric and colloidal systems

    CERN Document Server

    Snook, Ian

    2007-01-01

    The Langevin and Generalised Langevin Approach To The Dynamics Of Atomic, Polymeric And Colloidal Systems is concerned with the description of aspects of the theory and use of so-called random processes to describe the properties of atomic, polymeric and colloidal systems in terms of the dynamics of the particles in the system. It provides derivations of the basic equations, the development of numerical schemes to solve them on computers and gives illustrations of application to typical systems.Extensive appendices are given to enable the reader to carry out computations to illustrate many of the points made in the main body of the book.* Starts from fundamental equations* Gives up-to-date illustration of the application of these techniques to typical systems of interest* Contains extensive appendices including derivations, equations to be used in practice and elementary computer codes

  14. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  15. The Boltzmann project

    Science.gov (United States)

    Fischer, J.; Fellmuth, B.; Gaiser, C.; Zandt, T.; Pitre, L.; Sparasci, F.; Plimmer, M. D.; de Podesta, M.; Underwood, R.; Sutton, G.; Machin, G.; Gavioso, R. M.; Madonna Ripa, D.; Steur, P. P. M.; Qu, J.; Feng, X. J.; Zhang, J.; Moldover, M. R.; Benz, S. P.; White, D. R.; Gianfrani, L.; Castrillo, A.; Moretti, L.; Darquié, B.; Moufarej, E.; Daussy, C.; Briaudeau, S.; Kozlova, O.; Risegari, L.; Segovia, J. J.; Martín, M. C.; del Campo, D.

    2018-04-01

    The International Committee for Weights and Measures (CIPM), at its meeting in October 2017, followed the recommendation of the Consultative Committee for Units (CCU) on the redefinition of the kilogram, ampere, kelvin and mole. For the redefinition of the kelvin, the Boltzmann constant will be fixed with the numerical value 1.380 649  ×  10-23 J K-1. The relative standard uncertainty to be transferred to the thermodynamic temperature value of the triple point of water will be 3.7  ×  10-7, corresponding to an uncertainty in temperature of 0.10 mK, sufficiently low for all practical purposes. With the redefinition of the kelvin, the broad research activities of the temperature community on the determination of the Boltzmann constant have been very successfully completed. In the following, a review of the determinations of the Boltzmann constant k, important for the new definition of the kelvin and performed in the last decade, is given.

  16. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  17. The fundamental and universal nature of Boltzmann`s constant

    Energy Technology Data Exchange (ETDEWEB)

    Biedenharn, L.C. [Univ. of Texas, Austin, TX (United States); Solem, J.C. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1996-07-01

    The nature of Boltzmann`s constant is very unclear in the physics literature. In the first part of this paper, on general considerations, the authors examine this situation in detail and demonstrate the conclusion that Boltzmann`s constant is indeed both fundamental and universal. As a consequence of their development they find there is an important implication of this work for the problem of the entropy of information. In the second part they discuss, Szilard`s famous construction showing in detail how his result is incompatible with the demonstrations in both parts 1 and 2.

  18. Singularities in the nonisotropic Boltzmann equation

    International Nuclear Information System (INIS)

    Garibotti, C.R.; Martiarena, M.L.; Zanette, D.

    1987-09-01

    We consider solutions of the nonlinear Boltzmann equation (NLBE) with anisotropic singular initial conditions, which give a simplified model for the penetration of a monochromatic beam on a rarified target. The NLBE is transformed into an integral equation which is solved iteratively and the evolution of the initial singularities is discussed. (author). 5 refs

  19. THE EFFECT OF CHEMICAL-STRUCTURE UPON THE THERMODYNAMICS OF MICELLIZATION OF MODEL ALKYLARENESULPHONATES - PREDICTION OF MICELLAR PROPERTIES WITH THE POISSON-BOLTZMANN MODEL

    NARCIS (Netherlands)

    Bijma, K; Engberts, J B F N

    This paper describes how the theory of the ''dressed micelle'', which is based on the nonlinear Poisson-Boltzmann equation, can be used to calculate a number of thermodynamic quantities for micellization of sodium p-alkylbenzenesulphonates. From the Gibbs energy of micellization, the enthalpy of

  20. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation

    Science.gov (United States)

    Ilie, Silvana

    2012-12-01

    Stochastic modeling is essential for an accurate description of the biochemical network dynamics at the level of a single cell. Biochemically reacting systems often evolve on multiple time-scales, thus their stochastic mathematical models manifest stiffness. Stochastic models which, in addition, are stiff and computationally very challenging, therefore the need for developing effective and accurate numerical methods for approximating their solution. An important stochastic model of well-stirred biochemical systems is the chemical Langevin Equation. The chemical Langevin equation is a system of stochastic differential equation with multidimensional non-commutative noise. This model is valid in the regime of large molecular populations, far from the thermodynamic limit. In this paper, we propose a variable time-stepping strategy for the numerical solution of a general chemical Langevin equation, which applies for any level of randomness in the system. Our variable stepsize method allows arbitrary values of the time-step. Numerical results on several models arising in applications show significant improvement in accuracy and efficiency of the proposed adaptive scheme over the existing methods, the strategies based on halving/doubling of the stepsize and the fixed step-size ones.

  1. Particle methods for Boltzmann equation

    International Nuclear Information System (INIS)

    Hermeline, F.

    1985-05-01

    This work is aimed at showing how to discretize an equation such as Boltzmann equation in its most general form, by particle methods. Then method is applied to some equations of plasma physics which appear as peculiar cases of Boltzmann equation, such as Vlasov equation, Bhatnager-Gross-Krook equation, Fokker-Planck equation and neutron transport equation [fr

  2. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete

    2017-01-01

    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  3. Remarks on the chemical Fokker-Planck and Langevin equations: Nonphysical currents at equilibrium.

    Science.gov (United States)

    Ceccato, Alessandro; Frezzato, Diego

    2018-02-14

    The chemical Langevin equation and the associated chemical Fokker-Planck equation are well-known continuous approximations of the discrete stochastic evolution of reaction networks. In this work, we show that these approximations suffer from a physical inconsistency, namely, the presence of nonphysical probability currents at the thermal equilibrium even for closed and fully detailed-balanced kinetic schemes. An illustration is given for a model case.

  4. Langevin equation with multiplicative white noise: Transformation of diffusion processes into the Wiener process in different prescriptions

    International Nuclear Information System (INIS)

    Kwok, Sau Fa

    2012-01-01

    A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.

  5. Gaussian approximations for stochastic systems with delay: Chemical Langevin equation and application to a Brusselator system

    International Nuclear Information System (INIS)

    Brett, Tobias; Galla, Tobias

    2014-01-01

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period

  6. Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system.

    Science.gov (United States)

    Brett, Tobias; Galla, Tobias

    2014-03-28

    We present a heuristic derivation of Gaussian approximations for stochastic chemical reaction systems with distributed delay. In particular, we derive the corresponding chemical Langevin equation. Due to the non-Markovian character of the underlying dynamics, these equations are integro-differential equations, and the noise in the Gaussian approximation is coloured. Following on from the chemical Langevin equation, a further reduction leads to the linear-noise approximation. We apply the formalism to a delay variant of the celebrated Brusselator model, and show how it can be used to characterise noise-driven quasi-cycles, as well as noise-triggered spiking. We find surprisingly intricate dependence of the typical frequency of quasi-cycles on the delay period.

  7. Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation

    Science.gov (United States)

    Rossi, Mariana; Kapil, Venkat; Ceriotti, Michele

    2018-03-01

    Generalized Langevin Equation (GLE) thermostats have been used very effectively as a tool to manipulate and optimize the sampling of thermodynamic ensembles and the associated static properties. Here we show that a similar, exquisite level of control can be achieved for the dynamical properties computed from thermostatted trajectories. We develop quantitative measures of the disturbance induced by the GLE to the Hamiltonian dynamics of a harmonic oscillator, and show that these analytical results accurately predict the behavior of strongly anharmonic systems. We also show that it is possible to correct, to a significant extent, the effects of the GLE term onto the corresponding microcanonical dynamics, which puts on more solid grounds the use of non-equilibrium Langevin dynamics to approximate quantum nuclear effects and could help improve the prediction of dynamical quantities from techniques that use a Langevin term to stabilize dynamics. Finally we address the use of thermostats in the context of approximate path-integral-based models of quantum nuclear dynamics. We demonstrate that a custom-tailored GLE can alleviate some of the artifacts associated with these techniques, improving the quality of results for the modeling of vibrational dynamics of molecules, liquids, and solids.

  8. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    Science.gov (United States)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  9. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...... equation for electrons in Wannier-Stark states. We find good quantitative agreement of the approximations (ii) and (iii) with (i) in their respective ranges of validity. (C) 1999 Elsevier Science B.V. All rights reserved....

  10. Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion

    Science.gov (United States)

    Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin

    2018-02-01

    Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.

  11. Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel

    Science.gov (United States)

    Baczewski, Andrew D.; Bond, Stephen D.

    2013-07-01

    Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.

  12. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale

    Science.gov (United States)

    Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.

    2018-04-01

    We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.

  13. Charge reversal and surface charge amplification in asymmetric valence restricted primitive model planar electric double layers in the modified Poisson-Boltzmann theory

    Directory of Open Access Journals (Sweden)

    L.B. Bhuiyan

    2017-12-01

    Full Text Available The modified Poisson-Boltzmann theory of the restricted primitive model double layer is revisited and recast in a fresh, slightly broader perspective. Derivation of relevant equations follow the techniques utilized in the earlier MPB4 and MPB5 formulations and clarifies the relationship between these. The MPB4, MPB5, and a new formulation of the theory are employed in an analysis of the structure and charge reversal phenomenon in asymmetric 2:1/1:2 valence electrolytes. Furthermore, polarization induced surface charge amplification is studied in 3:1/1:3 systems. The results are compared to the corresponding Monte Carlo simulations. The theories are seen to predict the "exact" simulation data to varying degrees of accuracy ranging from qualitative to almost quantitative. The results from a new version of the theory are found to be of comparable accuracy as the MPB5 results in many situations. However, in some cases involving low electrolyte concentrations, theoretical artifacts in the form of un-physical "shoulders" in the singlet ionic distribution functions are observed.

  14. Ludwig Boltzmann, mechanics and vitalism

    International Nuclear Information System (INIS)

    Broda, E.

    1990-01-01

    During most of his life Boltzmann considered classical mechanics, based on the ideas of material points and central forces, as the fundament of physics. On this basis he became one of the founders of Statistical Mechanics, through which thermodynamics was interpreted on an atomistic basis. In this work, Boltzmann was opposed by his colleague, Ernst Mach. Boltzmann also devoted much work to attempts to interpret Maxwell's theory of the electromagnetic field, of which he was a main protagonist in Central Europe, through mechanics. However, as a supporter of mechanics Boltzmann was by no means dogmatic. While he was adamant in his rejection of Wilhelm Ostwald's energism, he was openminded in respect to the relationship of mechanics, electromagnetism and atomistics. Personally, Boltzmann wanted to conserve and transmit the enormous achievements of mechanics, especially in connection with the mechanical theory of heat, so that these results should not be lost to future generations, but he encouraged attempts to proceed in new directions. While within the framework of statistical mechanics the atoms were treated like the material points of classical mechanics, Boltzmann resisted the initial, unwarranted, ideas about the structure and the properties of the atoms. When later valid ideas were evolved, Boltzmann warmly welcomed this progress, without however personally taking part in the new developments. In his later years, Boltzmann took an intense interest in biology. He supported Darwin's theories, and he contributed to them. He may be called an 'absolute Darwinist'. In his search for a natural explanation of the phenomena of life, he used the term 'mechanical', without meaning to limit them to the realm of classical mechanics. This terminological laxity is considered as unfortunate. Extending his application of Darwinian principles to advanced species, including man, Boltzmann put forward 'mechanical' explanations of thought

  15. Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Soyoun Son

    2016-02-01

    Full Text Available In porous media, pore geometry and wettability are determinant factors for capillary flow in drainage or imbibition. Pores are often considered as cylindrical tubes in analytical or computational studies. Such simplification prevents the capture of phenomena occurring in pore corners. Considering the corners of pores is crucial to realistically study capillary flow and to accurately estimate liquid distribution, degree of saturation and dynamic liquid behavior in pores and in porous media. In this study, capillary flow in polygonal tubes is studied with the Shan-Chen pseudopotential multiphase lattice Boltzmann model (LBM. The LB model is first validated through a contact angle test and a capillary intrusion test. Then capillary rise in square and triangular tubes is simulated and the pore meniscus height is investigated as a function of contact angle θ. Also, the occurrence of fluid in the tube corners, referred to as corner arc menisci, is studied in terms of curvature versus degree of saturation. In polygonal capillary tubes, the number of sides leads to a critical contact angle θc which is known as a key parameter for the existence of the two configurations. LBM succeeds in simulating the formation of a pore meniscus at θ > θc or the occurrence of corner arc menisci at θ < θc. The curvature of corner arc menisci is known to decrease with increasing saturation and decreasing contact angle as described by the Mayer and Stoewe-Princen (MS-P theory. We obtain simulation results that are in good qualitative and quantitative agreement with the analytical solutions in terms of height of pore meniscus versus contact angle and curvature of corner arc menisci versus saturation degree. LBM is a suitable and promising tool for a better understanding of the complicated phenomena of multiphase flow in porous media.

  16. Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model

    Science.gov (United States)

    Ahrenholz, B.; Tölke, J.; Lehmann, P.; Peters, A.; Kaestner, A.; Krafczyk, M.; Durner, W.

    2008-09-01

    In this work we use two numerical methods which rely only on the geometry and material parameters to predict capillary hysteresis in a porous material. The first numerical method is a morphological pore network (MPN) model, where structural elements are inserted into the imaged pore space to quantify the local capillary forces. Then, based on an invasion-percolation mechanism, the fluid distribution is computed. The second numerical method is a lattice-Boltzmann (LB) approach which solves the coupled Navier-Stokes equations for both fluid phases and describes the dynamics of the fluid/fluid interface. We have developed an optimized version of the model proposed in [Tölke J, Freudiger S, Krafczyk M. An adaptive scheme for LBE multiphase flow simulations on hierarchical grids, Comput. Fluids 2006;35:820-30] for the type of flow problems encountered in this work. A detailed description of the model and an extensive validation of different multiphase test cases have been carried out. We investigated pendular rings in a sphere packing, static and dynamic capillary bundle models and the residual saturation in a sphere packing. A sample of 15 mm in diameter filled with sand particles ranging from 100 to 500 μm was scanned using X-rays from a synchrotron source with a spatial resolution of 11 μm. Based on this geometry we computed the primary drainage, the first imbibition and the secondary drainage branch of the hysteresis loop using both approaches. For the LB approach, we investigated the dependence of the hysteresis loop on the speed of the drainage and the imbibition process. Furthermore we carried out a sensitivity analysis by simulating the hysteretic effect in several subcubes of the whole geometry with extremal characteristic properties. The predicted hysteretic water retention curves were compared to the results of laboratory experiments using inverse modeling based on the Richards equation. A good agreement for the hysteresis loop between the LB and MPN model

  17. Understanding price discovery in interconnected markets: Generalized Langevin process approach and simulation

    Science.gov (United States)

    Schenck, Natalya A.; Horvath, Philip A.; Sinha, Amit K.

    2018-02-01

    While the literature on price discovery process and information flow between dominant and satellite market is exhaustive, most studies have applied an approach that can be traced back to Hasbrouck (1995) or Gonzalo and Granger (1995). In this paper, however, we propose a Generalized Langevin process with asymmetric double-well potential function, with co-integrated time series and interconnected diffusion processes to model the information flow and price discovery process in two, a dominant and a satellite, interconnected markets. A simulated illustration of the model is also provided.

  18. Geometric and Hydrodynamic Characteristics of Three-dimensional Saturated Prefractal Porous Media Determined with Lattice Boltzmann Modeling

    Science.gov (United States)

    Fractal and prefractal geometric models have substantial potential of contributing to the analysis of flow and transport in porous media such as soils and reservoir rocks. In this study, geometric and hydrodynamic parameters of saturated 3D mass and pore-solid prefractal porous media were characteri...

  19. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  20. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  1. Langevin description of fission fragment charge distribution from excited nuclei

    CERN Document Server

    Karpov, A V

    2002-01-01

    A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied

  2. Langevin approach to synchronization of hyperchaotic time-delay dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budini, Adrian A [Consejo Nacional de Investigaciones CientIficas y Tecnicas, Centro Atomico Bariloche, Av. E Bustillo Km 9.5, (8400) Bariloche (Argentina); Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2008-11-07

    In this paper, we characterize the synchronization phenomenon of hyperchaotic scalar nonlinear delay dynamics in a fully-developed chaos regime. Our results rely on the observation that, in that regime, the stationary statistical properties of a class of hyperchaotic attractors can be reproduced with a linear Langevin equation, defined by replacing the nonlinear delay force by a delta-correlated noise. Therefore, the synchronization phenomenon can be analytically characterized by a set of coupled Langevin equations. We apply this formalism to study anticipated synchronization dynamics subject to external noise fluctuations as well as for characterizing the effects of parameter mismatch in a hyperchaotic communication scheme. The same procedure is applied to second-order differential delay equations associated with synchronization in electro-optical devices. In all cases, the departure with respect to perfect synchronization is measured through a similarity function. Numerical simulations in discrete maps associated with the hyperchaotic dynamics support the formalism.

  3. Langevin Representation of Coulomb Collisions for bi-Maxwellian Plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2010-01-01

    Roč. 229, č. 14 (2010), s. 5432-5439 ISSN 0021-9991 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517 Keywords : Coulomb collisions * Langevin equation * Bi-Maxwellian distribution function * Stochastic differential equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.345, year: 2010 http://www.elsevier.com/locate/jcp

  4. Langevin representation of Coulomb collisions for bi-Maxwellian plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2010-01-01

    Roč. 229, č. 14 (2010), s. 5432-5439 ISSN 0021-9991 Grant - others:Akademie věd - GA AV ČR(CZ) IAA300420702; Akademie věd - GA AV ČR(CZ) IAA300420602 Program:IA; IA Institutional research plan: CEZ:AV0Z10030501 Keywords : Coulomb collisions * Langevin equation * Bi-Maxwellian distribution function Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.345, year: 2010

  5. Quantum Difference Langevin System with Nonlocal q-Derivative Conditions

    Directory of Open Access Journals (Sweden)

    Surang Sitho

    2016-01-01

    Full Text Available We introduce a new class of boundary value problems for Langevin quantum difference systems. Some new existence and uniqueness results for coupled systems are obtained by using fixed point theorems. The existence and uniqueness of solutions are established by Banach’s contraction mapping principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. The obtained results are well illustrated with the aid of examples.

  6. Langevin theory of anomalous Brownian motion made simple

    International Nuclear Information System (INIS)

    Tothova, Jana; Vasziova, Gabriela; Lisy, VladimIr; Glod, Lukas

    2011-01-01

    During the century from the publication of the work by Einstein (1905 Ann. Phys. 17 549) Brownian motion has become an important paradigm in many fields of modern science. An essential impulse for the development of Brownian motion theory was given by the work of Langevin (1908 C. R. Acad. Sci., Paris 146 530), in which he proposed an 'infinitely more simple' description of Brownian motion than that by Einstein. The original Langevin approach has however strong limitations, which were rigorously stated after the creation of the hydrodynamic theory of Brownian motion (1945). Hydrodynamic Brownian motion is a special case of 'anomalous Brownian motion', now intensively studied both theoretically and in experiments. We show how some general properties of anomalous Brownian motion can be easily derived using an effective method that allows one to convert the stochastic generalized Langevin equation into a deterministic Volterra-type integro-differential equation for the mean square displacement of the particle. Within the Gibbs statistics, the method is applicable to linear equations of motion with any kind of memory during the evolution of the system. We apply it to memoryless Brownian motion in a harmonic potential well and to Brownian motion in fluids, taking into account the effects of hydrodynamic memory. Exploring the mathematical analogy between Brownian motion and electric circuits, which are at nanoscales also described by the generalized Langevin equation, we calculate the fluctuations of charge and current in RLC circuits that are in contact with the thermal bath. Due to the simplicity of our approach it could be incorporated into graduate courses of statistical physics. Once the method is established, it allows bringing to the attention of students and effectively solving a number of attractive problems related to Brownian motion.

  7. Tomography and generative training with quantum Boltzmann machines

    Science.gov (United States)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  8. Lattice Boltzmann method with the cell-population equilibrium

    International Nuclear Information System (INIS)

    Zhou Xiaoyang; Cheng Bing; Shi Baochang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium. In this paper, a multi-speed 1D cell-model of Boltzmann equation is proposed, in which the cell-population equilibrium, a direct non-negative approximation to the continuous Maxwellian distribution, plays an important part. By applying the explicit one-order Chapman–Enskog distribution, the model reduces the transportation and collision, two basic evolution steps in LBM, to the transportation of the non-equilibrium distribution. Furthermore, 1D dam-break problem is performed and the numerical results agree well with the analytic solutions

  9. Boltzmann learning of parameters in cellular neural networks

    DEFF Research Database (Denmark)

    Hansen, Lars Kai

    1992-01-01

    The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified ...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery......The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...

  10. Identifying product order with restricted Boltzmann machines

    Science.gov (United States)

    Rao, Wen-Jia; Li, Zhenyu; Zhu, Qiong; Luo, Mingxing; Wan, Xin

    2018-03-01

    Unsupervised machine learning via a restricted Boltzmann machine is a useful tool in distinguishing an ordered phase from a disordered phase. Here we study its application on the two-dimensional Ashkin-Teller model, which features a partially ordered product phase. We train the neural network with spin configuration data generated by Monte Carlo simulations and show that distinct features of the product phase can be learned from nonergodic samples resulting from symmetry breaking. Careful analysis of the weight matrices inspires us to define a nontrivial machine-learning motivated quantity of the product form, which resembles the conventional product order parameter.

  11. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  12. An Analysis of Vehicular Traffic Flow Using Langevin Equation

    Directory of Open Access Journals (Sweden)

    Çağlar Koşun

    2015-08-01

    Full Text Available Traffic flow data are stochastic in nature, and an abundance of literature exists thereof. One way to express stochastic data is the Langevin equation. Langevin equation consists of two parts. The first part is known as the deterministic drift term, the other as the stochastic diffusion term. Langevin equation does not only help derive the deterministic and random terms of the selected portion of the city of Istanbul traffic empirically, but also sheds light on the underlying dynamics of the flow. Drift diagrams have shown that slow lane tends to get congested faster when vehicle speeds attain a value of 25 km/h, and it is 20 km/h for the fast lane. Three or four distinct regimes may be discriminated again from the drift diagrams; congested, intermediate, and free-flow regimes. At places, even the intermediate regime may be divided in two, often with readiness to congestion. This has revealed the fact that for the selected portion of the highway, there are two main states of flow, namely, congestion and free-flow, with an intermediate state where the noise-driven traffic flow forces the flow into either of the distinct regimes.

  13. Four-dimensional Langevin approach to low-energy nuclear fission of 236U

    Science.gov (United States)

    Ishizuka, Chikako; Usang, Mark D.; Ivanyuk, Fedir A.; Maruhn, Joachim A.; Nishio, Katsuhisa; Chiba, Satoshi

    2017-12-01

    We developed a four-dimensional (4D) Langevin model, which can treat the deformation of each fragment independently and applied it to low-energy fission of 236U, the compound system of the reaction n +235U . The potential energy is calculated with the deformed two-center Woods-Saxon (TCWS) and the Nilsson-type potential with the microscopic energy corrections following the Strutinsky method and BCS pairing. The transport coefficients are calculated by macroscopic prescriptions. It turned out that the deformation for the light and heavy fragments behaves differently, showing a sawtooth structure similar to that of the neutron multiplicities of the individual fragments ν (A ) . Furthermore, the measured total kinetic energy TKE (A ) and its standard deviation are reproduced fairly well by the 4D Langevin model based on the TCWS potential in addition to the fission fragment mass distributions. The developed model allows a multiparametric correlation analysis among, e.g., the three key fission observables, mass, TKE, and neutron multiplicity, which should be essential to elucidate several longstanding open problems in fission such as the sharing of the excitation energy between the fragments.

  14. Bistable systems with stochastic noise: virtues and limits of effective one-dimensional Langevin equations

    Directory of Open Access Journals (Sweden)

    V. Lucarini

    2012-01-01

    Full Text Available The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.

  15. Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-01-01

    The entropic lattice Boltzmann algorithm of Karlin et al. [Phys. Rev. E 90, 031302 (2014), 10.1103/PhysRevE.90.031302] is partially extended to magnetohydrodynamics, based on the Dellar model of introducing a vector distribution for the magnetic field. This entropic ansatz is now applied only to the scalar particle distribution function so as to permit the many problems entailing magnetic field reversal. A 9-bit lattice is employed for both particle and magnetic distributions for our two-dimensional simulations. The entropic ansatz is benchmarked against our earlier multiple relaxation lattice-Boltzmann model for the Kelvin-Helmholtz instability in a magnetized jet. Other two-dimensional simulations are performed and compared to results determined by more standard direct algorithms: in particular the switch over between the Kelvin-Helmholtz or tearing mode instability of Chen et al. [J. Geophys. Res.: Space Phys. 102, 151 (1997), 10.1029/96JA03144], and the generalized Orszag-Tang vortex model of Biskamp-Welter [Phys. Fluids B 1, 1964 (1989), 10.1063/1.859060]. Very good results are achieved.

  16. Generalized Langevin Equation Description of Stochastic ...

    Indian Academy of Sciences (India)

    general retarded effects of the frictional force, and on the fluctuation– dissipation theorems. The vertical displacements ... modelled via a friction force and a random force, respectively. By taking into account the presence of a .... Kubo, R. 1966, Report on Progress in Phys., 29, 255. Leung, C. S., Wei, J. Y., Harko, T., Kovacs, ...

  17. Large Time Behavior of the Vlasov-Poisson-Boltzmann System

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.

  18. Langevin formulation of a subdiffusive continuous-time random walk in physical time

    Science.gov (United States)

    Cairoli, Andrea; Baule, Adrian

    2015-07-01

    Systems living in complex nonequilibrated environments often exhibit subdiffusion characterized by a sublinear power-law scaling of the mean square displacement. One of the most common models to describe such subdiffusive dynamics is the continuous-time random walk (CTRW). Stochastic trajectories of a CTRW can be described in terms of the subordination of a normal diffusive process by an inverse Lévy-stable process. Here, we propose an equivalent Langevin formulation of a force-free CTRW without subordination. By introducing a different type of non-Gaussian noise, we are able to express the CTRW dynamics in terms of a single Langevin equation in physical time with additive noise. We derive the full multipoint statistics of this noise and compare it with the scaled Brownian motion (SBM), an alternative stochastic model describing subdiffusive dynamics. Interestingly, these two noises are identical up to the second order correlation functions, but different in the higher order statistics. We extend our formalism to general waiting time distributions and force fields and compare our results with those of the SBM. In the presence of external forces, our proposed noise generates a different class of stochastic processes, resembling a CTRW but with forces acting at all times.

  19. Lattice Boltzmann implementation of the three-dimensional Ben-Naim potential for water-like fluids.

    Science.gov (United States)

    Moradi, Nasrollah; Greiner, Andreas; Rao, Francesco; Succi, Sauro

    2013-03-28

    We develop a three-dimensional lattice Boltzmann (LB) model accounting for directional interactions between water-like molecules, based on the so-called Ben-Naim (BN) potential [A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions: Part I: Understanding Water (World Scientific Publishing Company, 2010); "Statistical mechanics of 'waterlike' particles in two dimensions. I. Physical model and application of the Percus-Yevick equation," J. Chem. Phys. 54, 3682 (1971)]. The water-like molecules are represented by rigid tetrahedra, with two donors and two acceptors at the corners and interacting with neighboring tetrahedra, sitting on the nodes of a regular lattice. The tetrahedra are free to rotate about their centers under the drive of the torque arising from the interparticle potential. The orientations of the water molecules are evolved in time via an overdamped Langevin dynamics for the torque, which is solved by means of a quaternion technique. The resulting advection-diffusion-reaction equation for the quaternion components is solved by a LB method, acting as a dynamic minimizer for the global energy of the fluid. By adding thermal fluctuations to the torque equation, the model is shown to reproduce some microscopic features of real water, such as an average number of hydrogen bonds per molecules (HBs) between 3 and 4, in a qualitative agreement with microscopic water models. Albeit slower than a standard LB solver for ordinary fluids, the present scheme opens up potentially far-reaching scenarios for multiscale applications based on a coarse-grained representation of the water solvent.

  20. Low- and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France); Talon, Laurent, E-mail: talon@fast.u-psud.fr [CNRS (UMR 7608), Laboratoire FAST, Batiment 502, Campus University, 91405 Orsay (France); Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr [Irstea, Antony Regional Centre, HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony cedex (France)

    2017-04-15

    The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM

  1. Generalized Langevin Theory Of The Brownian Motion And The Dynamics Of Polymers In Solution

    International Nuclear Information System (INIS)

    Tothova, J.; Lisy, V.

    2015-01-01

    The review deals with a generalization of the Rouse and Zimm bead-spring models of the dynamics of flexible polymers in dilute solutions. As distinct from these popular theories, the memory in the polymer motion is taken into account. The memory naturally arises as a consequence of the fluid and bead inertia within the linearized Navier-Stokes hydrodynamics. We begin with a generalization of the classical theory of the Brownian motion, which forms the basis of any theory of the polymer dynamics. The random force driving the Brownian particles is not the white one as in the Langevin theory, but “colored”, i.e., statistically correlated in time, and the friction force on the particles depends on the history of their motion. An efficient method of solving the resulting generalized Langevin equations is presented and applied to the solution of the equations of motion of polymer beads. The memory effects lead to several peculiarities in the time correlation functions used to describe the dynamics of polymer chains. So, the mean square displacement of the polymer coils contains algebraic long-time tails and at short times it is ballistic. It is shown how these features reveal in the experimentally observable quantities, such as the dynamic structure factors of the scattering or the viscosity of polymer solutions. A phenomenological theory is also presented that describes the dependence of these quantities on the polymer concentration in solution. (author)

  2. Four-dimensional Langevin dynamics of heavy-ion-induced fission

    Science.gov (United States)

    Nadtochy, P. N.; Ryabov, E. G.; Gegechkori, A. E.; Anischenko, Yu. A.; Adeev, G. D.

    2012-06-01

    A four-dimensional dynamical model based on Langevin equations was developed and applied to calculate a wide set of experimental observables for the reactions 16O+208Pb→224Th and 16O+232Th→248Cf over a wide range of excitation energy. The fusion-fission and evaporation residue cross sections, fission fragment mass-energy distribution parameters, prescission neutron multiplicities, and anisotropy of angular distribution of fission fragments could be reasonably reproduced using a modified one-body mechanism for nuclear friction with a reduction coefficient of the contribution from a wall formula ks≃0.25 and a dissipation coefficient for the orientation degree of freedom (K coordinate) γK≃ 0.077 (MeVzs)-1/2. Inclusion of the K coordinate into calculation of potential energy changes the stiffness of the nucleus with respect to mass asymmetry coordinate for the values of K≠0 and results in a shift of the Businaro-Gallone point towards larger Z2/A values. The experimental data on the fission fragment mass-energy distribution parameters together with mean prescission neutron multiplicity for heavy fissioning nuclei are reproduced through the four-dimensional Langevin calculations more accurately than through three-dimensional calculations.

  3. Force-linearization closure for non-Markovian Langevin systems with time delay

    Science.gov (United States)

    Loos, Sarah A. M.; Klapp, Sabine H. L.

    2017-07-01

    This paper is concerned with the Fokker-Planck (FP) description of classical stochastic systems with discrete time delay. The non-Markovian character of the corresponding Langevin dynamics naturally leads to a coupled infinite hierarchy of FP equations for the various n -time joint distribution functions. Here, we present an approach to close the hierarchy at the one-time level based on a linearization of the deterministic forces in all members of the hierarchy starting from the second one. This leads to a closed equation for the one-time probability density in the steady state. Considering two generic nonlinear systems, a colloidal particle in a sinusoidal or bistable potential supplemented by a linear delay force, we demonstrate that our approach yields a very accurate representation of the density as compared to quasiexact numerical results from direct solution of the Langevin equation. Moreover, the results are significantly improved against those from a small-delay approximation and a perturbation-theoretical approach. We also discuss the possibility of accessing transport-related quantities, such as escape times, based on an additional Kramers approximation. Our approach applies to a wide class of models with nonlinear deterministic forces.

  4. Coupling Boltzmann and Navier-Stokes Equations by Friction

    OpenAIRE

    Bourgat, Jean-François; Le Tallec, Patrick; Tidriri, Moulay D.

    1995-01-01

    Projet MENUSIN; The aim of this paper is to introduce and validate a coupled Navier-Stokes Boltzmann approach for the calculation of hypersonic rarefied flows around manoeuvering vehicles. The proposed strategy uses locally a kinetic model in the boundary layer coupled through wall friction forces to a global Navier-Stokes solver. Different numerical experiments illustrate the potentialities of the method.

  5. Comparison of Einstein-Boltzmann solvers for testing general relativity

    Science.gov (United States)

    Bellini, E.; Barreira, A.; Frusciante, N.; Hu, B.; Peirone, S.; Raveri, M.; Zumalacárregui, M.; Avilez-Lopez, A.; Ballardini, M.; Battye, R. A.; Bolliet, B.; Calabrese, E.; Dirian, Y.; Ferreira, P. G.; Finelli, F.; Huang, Z.; Ivanov, M. M.; Lesgourgues, J.; Li, B.; Lima, N. A.; Pace, F.; Paoletti, D.; Sawicki, I.; Silvestri, A.; Skordis, C.; Umiltà, C.; Vernizzi, F.

    2018-01-01

    We compare Einstein-Boltzmann solvers that include modifications to general relativity and find that, for a wide range of models and parameters, they agree to a high level of precision. We look at three general purpose codes that primarily model general scalar-tensor theories, three codes that model Jordan-Brans-Dicke (JBD) gravity, a code that models f (R ) gravity, a code that models covariant Galileons, a code that models Hořava-Lifschitz gravity, and two codes that model nonlocal models of gravity. Comparing predictions of the angular power spectrum of the cosmic microwave background and the power spectrum of dark matter for a suite of different models, we find agreement at the subpercent level. This means that this suite of Einstein-Boltzmann solvers is now sufficiently accurate for precision constraints on cosmological and gravitational parameters.

  6. Stoichiometry Calculation in BaxSr1−xTiO3 Solid Solution Thin Films, Prepared by RF Cosputtering, Using X-Ray Diffraction Peak Positions and Boltzmann Sigmoidal Modelling

    Directory of Open Access Journals (Sweden)

    J. Reséndiz-Muñoz

    2017-01-01

    Full Text Available A novel procedure based on the use of the Boltzmann equation to model the x parameter, the film deposition rate, and the optical band gap of BaxSr1−xTiO3 thin films is proposed. The BaxSr1−xTiO3 films were prepared by RF cosputtering from BaTiO3 and SrTiO3 targets changing the power applied to each magnetron to obtain different Ba/Sr contents. The method to calculate x consisted of fitting the angular shift of (110, (111, and (211 diffraction peaks observed as the density of substitutional Ba2+ increases in the solid solution when the applied RF power increases, followed by a scale transformation from applied power to x parameter using the Boltzmann equation. The Ba/Sr ratio was obtained from X-ray energy dispersive spectroscopy; the comparison with the X-ray diffraction derived composition shows a remarkable coincidence while the discrepancies offer a valuable diagnosis on the sputtering flux and phase composition. The proposed method allows a quick setup of the RF cosputtering system to control film composition providing a versatile tool to optimization of the process.

  7. Solving the generalized Langevin equation with the algebraically correlated noise

    International Nuclear Information System (INIS)

    Srokowski, T.; Ploszajczak, M.

    1997-01-01

    The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)

  8. Fluctuation-dissipation relation for nonlinear Langevin equations.

    Science.gov (United States)

    Kumaran, V

    2011-04-01

    It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown that the fluctuation-dissipation relation is satisfied at each order in the expansion. ©2011 American Physical Society

  9. Classifying images using restricted Boltzmann machines and convolutional neural networks

    Science.gov (United States)

    Zhao, Zhijun; Xu, Tongde; Dai, Chenyu

    2017-07-01

    To improve the feature recognition ability of deep model transfer learning, we propose a hybrid deep transfer learning method for image classification based on restricted Boltzmann machines (RBM) and convolutional neural networks (CNNs). It integrates learning abilities of two models, which conducts subject classification by exacting structural higher-order statistics features of images. While the method transfers the trained convolutional neural networks to the target datasets, fully-connected layers can be replaced by restricted Boltzmann machine layers; then the restricted Boltzmann machine layers and Softmax classifier are retrained, and BP neural network can be used to fine-tuned the hybrid model. The restricted Boltzmann machine layers has not only fully integrated the whole feature maps, but also learns the statistical features of target datasets in the view of the biggest logarithmic likelihood, thus removing the effects caused by the content differences between datasets. The experimental results show that the proposed method has improved the accuracy of image classification, outperforming other methods on Pascal VOC2007 and Caltech101 datasets.

  10. Flux Limiter Lattice Boltzmann for Compressible Flows

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Asymmetrically extremely dilute neural networks with Langevin dynamics and unconventional results

    International Nuclear Information System (INIS)

    Hatchett, J P L; Coolen, A C C

    2004-01-01

    We study graded response attractor neural networks with asymmetrically extremely dilute interactions and Langevin dynamics. We solve our model in the thermodynamic limit using generating functional analysis, and find (in contrast to the binary neurons case) that even in statics, for T > 0 or large α, one cannot eliminate the non-persistent order parameters, atypically for recurrent neural network models. The macroscopic dynamics is driven by the (non-trivial) joint distribution of neurons and fields, rather than just the (Gaussian) field distribution. We calculate phase transition lines and find, as may be expected for this asymmetric model, that there is no spin-glass phase, only recall and paramagnetic phases. We present simulation results in support of our theory

  12. On the non-stationary generalized Langevin equation

    Science.gov (United States)

    Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja

    2017-12-01

    In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.

  13. Boltzmann factor and Hawking radiation

    International Nuclear Information System (INIS)

    Ryskin, Gregory

    2014-01-01

    Hawking radiation has thermal spectrum corresponding to the temperature T H =(8πM) −1 , where M is the mass (energy) of the black hole. Corrections to the Hawking radiation spectrum were discovered by Kraus and Wilczek (1995) and Parikh and Wilczek (2000). Here I show that these corrections follow directly from the basic principles of thermodynamics and statistical mechanics. In essence, it is the Boltzmann factor that ought to be corrected; corrections to the Hawking (or any other) radiation spectrum then follow necessarily

  14. Return of the Boltzmann brains

    Science.gov (United States)

    Page, Don N.

    2008-09-01

    Linde in J. Cosmol. Astropart. Phys.1475-7516 01 (2007) 02210.1088/1475-7516/2007/01/022 shows that some (though not all) versions of the global (volume-weighted) description avoid the “Boltzmann brain” problem raised by Page [Phys. Rev. D 78, 063535 (2008)] if the universe does not have a decay time less than 20 Gyr. Here I give an apparently natural version of the volume-weighted description in which the problem persists, highlighting the ambiguity of taking the ratios of infinite volumes that appear to arise from eternal inflation.

  15. Inelastic X-ray scattering on liquid benzene analyzed using a generalized Langevin equation

    Science.gov (United States)

    Yoshida, Koji; Fukuyama, Nami; Yamaguchi, Toshio; Hosokawa, Shinya; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-07-01

    The dynamic structure factor, S(Q,ω), of liquid benzene was measured by meV-resolved inelastic X-ray scattering (IXS) and analyzed using a generalized Langevin model with a memory function including fast, μ-relaxation and slow, structural, α-relaxation. The model well reproduced the experimental S(Q,ω) of liquid benzene. The dispersion relation of the collective excitation energy yields the high-frequency sound velocity for liquid benzene as related to the α-relaxation. The ratio of the high-frequency to the adiabatic sound velocity is approximately 1.5, larger to that of carbon tetrachloride and smaller than those of methanol and water, reflecting the nature of intermolecular interactions.

  16. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; Boghosian, B.; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  17. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  18. Lattice-Boltzmann Simulation of Tablet Disintegration

    Science.gov (United States)

    Jiang, Jiaolong; Sun, Ning; Gersappe, Dilip

    Using the lattice-Boltzmann method, we developed a 2D model to study the tablet disintegration involving the swelling and wicking mechanisms. The surface area and disintegration profile of each component were obtained by tracking the tablet structure in the simulation. Compared to pure wicking, the total surface area is larger for swelling and wicking, which indicates that the swelling force breaks the neighboring bonds. The disintegration profiles show that the tablet disintegrates faster than pure wicking, and there are more wetted active pharmaceutical ingredient particles distributed on smaller clusters. Our results indicate how the porosity would affect the disintegration process by changing the wetting area of the tablet as well as by changing the swelling force propagation.

  19. Boltzmann, Einstein, Natural Law and Evolution

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    Like Boltzmann, Einstein was a protagonist of atomistics. As a physicist, he has been called Boltzmann's true successor. Also in epistemology, after overcoming the positivist influence of Mach, Einstein approached Boltzmann. Any difference between Boltzmann's realism, or even materialism, and Einstein's pantheism may be merely a matter of emphasis. Yet a real difference exists in another respect. Boltzmann explained man's power of thinking and feeling, his morality and his esthetic sense, on an evolutionary, Darwinian, basis. In contrast, evolution had no role in Einstein's thought, though Darwin was accepted by him. This lack of appreciation of the importance of evolution is now attributed to socio-political factors. (author)

  20. A Langevin Canonical Approach to the Study of Quantum Stochastic Resonance in Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Germán Rojas-Lorenzo

    2016-09-01

    Full Text Available A Langevin canonical framework for a chiral two-level system coupled to a bath of harmonic oscillators is used within a coupling scheme different from the well-known spin-boson model to study the quantum stochastic resonance for chiral molecules. This process refers to the amplification of the response to an external periodic signal at a certain value of the noise strength, being a cooperative effect of friction, noise, and periodic driving occurring in a bistable system. Furthermore, from this stochastic dynamics within the Markovian regime and Ohmic friction, the competing process between tunneling and the parity violating energy difference present in this type of chiral systems plays a fundamental role. This mechanism is finally proposed to observe the so-far elusive parity-violating energy difference in chiral molecules.

  1. SELF-CONSISTENT LANGEVIN SIMULATION OF COULOMB COLLISIONS IN CHARGED-PARTICLE BEAMS

    International Nuclear Information System (INIS)

    QIANG, J.; RYNE, R.; HABIB, S.

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators

  2. Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique

    Science.gov (United States)

    Nagata, Keitro; Nishimura, Jun; Shimasaki, Shinji

    2018-03-01

    We study QCD at finite density and low temperature by using the complex Langevin method. We employ the gauge cooling to control the unitarity norm and intro-duce a deformation parameter in the Dirac operator to avoid the singular-drift problem. The reliability of the obtained results are judged by the probability distribution of the magnitude of the drift term. By making extrapolations with respect to the deformation parameter using only the reliable results, we obtain results for the original system. We perform simulations on a 43 × 8 lattice and show that our method works well even in the region where the reweighing method fails due to the severe sign problem. As a result we observe a delayed onset of the baryon number density as compared with the phase-quenched model, which is a clear sign of the Silver Blaze phenomenon.

  3. Accelerating the convergence of path integral dynamics with a generalized Langevin equation

    Science.gov (United States)

    Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele

    2011-02-01

    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.

  4. Accelerating the convergence of path integral dynamics with a generalized Langevin equation.

    Science.gov (United States)

    Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele

    2011-02-28

    The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.

  5. Self-consistent langevin simulation of coulomb collisions in charged-particle beams

    CERN Document Server

    Qiang, J; Ryne, Robert D

    2000-01-01

    In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach implemented on high-performance parallel computers. We perform, for the first time, a fully self-consistent simulation, in which the FR-iction and diffusion coefficients are computed FR-om first principles. We employ a two-dimensional domain decomposition approach within a message passing programming paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate details of the communication syntax as well as to enhance reusability and extensibility. Performance tests on the SGI Origin 2000 and the Cray T3E-900 have demonstrated good scalability. Work is in progress to apply our technique to intrabeam scattering in accelerators.

  6. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  7. Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle

    International Nuclear Information System (INIS)

    Salazar, Domingos S P; Lira, Sérgio A

    2016-01-01

    In this work, we study the nonequilibrium statistical properties of the relaxation dynamics of a nanoparticle trapped in a harmonic potential. We report an exact time-dependent analytical solution to the Langevin dynamics that arises from the stochastic differential equation of our system’s energy in the underdamped regime. By utilizing this stochastic thermodynamics approach, we are able to completely describe the heat exchange process between the nanoparticle and the surrounding environment. As an important consequence of our results, we observe the validity of the heat exchange fluctuation theorem in our setup, which holds for systems arbitrarily far from equilibrium conditions. By extending our results for the case of N noninterating nanoparticles, we perform analytical asymptotic limits and direct numerical simulations that corroborate our analytical predictions. (paper)

  8. Bifurcation dynamics of the tempered fractional Langevin equation

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Caibin, E-mail: macbzeng@scut.edu.cn; Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Mathematics, South China University of Technology, Guangzhou 510640 (China); Chen, YangQuan, E-mail: ychen53@ucmerced.edu [MESA LAB, School of Engineering, University of California, Merced, 5200 N. Lake Road, Merced, California 95343 (United States)

    2016-08-15

    Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.

  9. Ludwig Boltzmann - The Man and His Work

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    It is argued that Ludwig Boltzmann was, along with Newton and Maxwell, one of the three greatest theoretical physicists of classical times. It is less generally known that he was also a powerful realist-materialist philosopher and a keen opponent of Ernst Mach's positivism and of the philosophical idealism of Berkeley, Hegel and Schopenhauer. Boltzmann was also opposed to Kant. Moreover, he had a lively interest in biology and especially in Darwinian evolution, and he should be taken as one of the founders of biophysics. Boltzmann discussed the origin of life and of the mind. Finally, he also was a most vigorous, colourful and attractive person. (author)

  10. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  11. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  12. Determination of the Lowest-Energy States for the Model Distribution of Trained Restricted Boltzmann Machines Using a 1000 Qubit D-Wave 2X Quantum Computer.

    Science.gov (United States)

    Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A

    2017-07-01

    The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.

  13. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  14. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  15. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  16. Riemann-Theta Boltzmann Machine arXiv

    CERN Document Server

    Krefl, Daniel; Haghighat, Babak; Kahlen, Jens

    A general Boltzmann machine with continuous visible and discrete integer valued hidden states is introduced. Under mild assumptions about the connection matrices, the probability density function of the visible units can be solved for analytically, yielding a novel parametric density function involving a ratio of Riemann-Theta functions. The conditional expectation of a hidden state for given visible states can also be calculated analytically, yielding a derivative of the logarithmic Riemann-Theta function. The conditional expectation can be used as activation function in a feedforward neural network, thereby increasing the modelling capacity of the network. Both the Boltzmann machine and the derived feedforward neural network can be successfully trained via standard gradient- and non-gradient-based optimization techniques.

  17. Heat dissipation and information flow for delayed bistable Langevin systems near coherence resonance.

    Science.gov (United States)

    Xiao, Tiejun

    2016-11-01

    In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.

  18. Simulating Electric Double Layer Capacitance by Using Lattice Boltzmann Method

    Science.gov (United States)

    Sun, Ning; Gersappe, Dilip

    2015-03-01

    By using the Lattice Boltzmann Method (LBM) we studied diffuse-charge dynamics in electrochemical systems. We use the LBM to solve Poisson-Nernst-Planck equations (PNP) and Modified Poisson-Nernst-Planck equations (MPNP). The isotropic permittivity of electrolyte is modeled using the Booth model. The results show that both steric effect (MPNP) and isotropic permittivity (Booth model) can have large influence on diffuse-charge dynamics, especially when electrolyte concentration or applied potential is high. This model can be applied to simulate electric double layer capacitance of super capacitors with complex geometry and also incorporate other effects such as heat convection in a modular manner.

  19. Comparing Boltzmann and Gibbs definitions of entropy in small systems

    Science.gov (United States)

    Ferrari, Loris

    2017-11-01

    The long-standing contrast between Boltzmann's and Gibbs' approach to statistical thermodynamics has been recently rekindled by Dunkel and Hilbert, who criticize the notion of negative absolute temperature (NAT) as a misleading consequence of Boltzmann's definition of entropy. A different definition, due to Gibbs, has been proposed, which forbids NAT and makes the energy equipartition rigorous in arbitrarily sized systems. The two approaches, however, are shown to converge to the same results in the thermodynamical limit. A vigorous debate followed Dunkel and Hilbert's work, with arguments against and in favor of Gibbs' entropy. In an attempt to leave the speculative level and give the discussion some deal of concreteness, we analyze the practical consequences of Gibbs' definition in two finite-size systems: a non-interacting gas of N atoms with two-level internal spectrum, and an Ising model of N interacting spins. It is shown that, for certain measurable quantities, the difference resulting from Boltzmann's and Gibbs' approach vanishes as N -1/2 , much less rapidly than the 1/ N slope expected. As shown by numerical estimates, this makes the experimental solution of the controversy a feasible task.

  20. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms

    Science.gov (United States)

    2018-01-01

    In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958

  1. Simulating density-dependent flows using the lattice Boltzmann method

    Science.gov (United States)

    Bardsley, K. J.; Sukop, M. C.

    2008-12-01

    Seawater intrusion is a classic density-dependent problem in hydrogeology. It must be fully understood in order to be able to predict and prevent groundwater deterioration in coastal areas. All of the current programs used to study this issue are either finite difference or finite element methods. Density-dependent flow problems are exceptionally challenging for conventional numerical methods due to inherent non-linearity; definitive solutions are often elusive and a completely different modeling approach may be advantageous. The lattice Boltzmann method (LBM) represents such a numerical tool because it is not based on discretization of a series of differential equations. Instead, its foundation lies in the kinetic theory of gasses as proposed by Boltzmann. A key advantage of lattice Boltzmann method is that it has the ability to solve the Navier-Stokes equations in larger conduits and pores. Recent advances in lattice Boltzmann modeling permit simulation of large-scale density-dependent ground water flow and heat/solute transport. These simulations can be accomplished while retaining the advantages of 'regular' lattice Boltzmann methods, such as solute/heat transport at high Reynolds numbers. Hence it allows for eddy diffusion brought on by inertial components of flow at higher Reynolds numbers, which may occur in some coastal aquifers. This may prove to be an advantage for freshwater/seawater interface simulations especially given the highly macroporous nature of the aquifers underlying south Florida. Simulation of these phenomena is not possible with traditional Darcy's law-based groundwater models. Some geologists and engineers have been able to successfully apply LBM to fluid flow and contaminant transport problems. There are only a handful of scientists attempting to apply LBM to density-dependent flows in general; even fewer have considered seawater intrusion. We show how this method can be applied to density-dependent flows. We present two sets of results

  2. Income distribution: Boltzmann analysis and its extension

    Science.gov (United States)

    Yuqing, He

    2007-04-01

    The paper aims at describing income distribution in moderate income regions. Starting with dividing income behaviors into the two parts: random and deterministic, and by introducing “instantaneous model” for theoretical derivations and “cumulative model” for positive tests, this paper applies the equilibrium approach of statistical mechanics in the study of nonconserved individual income course. The random income follows a stationary distribution similar to the Maxwell-Boltzmann distribution in the instantaneous model. Combining this result with marginal analysis, the probability distribution of individual income process that is composed of the random and deterministic income courses approximately obeys a distribution law mixing exponential function with a logarithmic prefactor. Using the census or income survey data of USA, UK, Japan, and New Zealand, the distribution law has been tested. The results show that it agrees very well with most of the empirical data. The discussion suggests that there might be essentially different income processes to happen in moderate and high income regions.

  3. Mittag-Leffler noise induced resonance behavior in a fractional generalized Langevin equation with random trichotomous inherent frequency

    Science.gov (United States)

    He, Guitian; Tian, Yan; Luo, Maokang

    2018-03-01

    The resonance behavior in a generalized Langevin equation and fractional generalized Langevin equation with random trichotomous inherent frequency and a generalized Mittag-Leffler noise are extensively investigated. An expression for the noise spectral of the generalized Mittag-Leffler noise is studied. Using the Shapiro–Loginov formula and Laplace transformation technique, exact expressions for the spectral amplification of generalized Langevin equation and fractional generalized Langevin equation are obtained. The simulation results turn out to show that the spectral amplification is a non-monotonic function of the characteristics of noise parameters and system parameters. In particular, the influence of generalized Mittag-Leffler noise is able to induce the generalized stochastic resonance phenomenon. The influence of the driving frequency is able to induce bona fide stochastic resonance and stochastic multi-resonance phenomena. It is found that the resonance behavior of the fractional generalized Langevin equation has more material results than that of the (non-fractional) generalized Langevin equation.

  4. The Acoustic Limit for the Boltzmann Equation

    Science.gov (United States)

    Bardos, Claude; Golse, François; Levermore, C. David

    The acoustic equations are the linearization of the compressible Euler equations about a spatially homogeneous fluid state. We first derive them directly from the Boltzmann equation as the formal limit of moment equations for an appropriately scaled family of Boltzmann solutions. We then establish this limit for the Boltzmann equation considered over a periodic spatial domain for bounded collision kernels. Appropriately scaled families of DiPerna-Lions renormalized solutions are shown to have fluctuations that converge entropically (and hence strongly in L1) to a unique limit governed by a solution of the acoustic equations for all time, provided that its initial fluctuations converge entropically to an appropriate limit associated to any given L2 initial data of the acoustic equations. The associated local conservation laws are recovered in the limit.

  5. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  6. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  7. Langevin dynamics simulation on the translocation of polymer through α-hemolysin pore

    International Nuclear Information System (INIS)

    Sun, Li-Zhen; Luo, Meng-Bo

    2014-01-01

    The forced translocation of a polymer through an α-hemolysin pore under an electrical field is studied using a Langevin dynamics simulation. The α-hemolysin pore is modelled as a connection of a spherical vestibule and a cylindrical β-barrel and polymer-pore attraction is taken into account. The results show that polymer-pore attraction can help the polymer enter the vestibule and the β-barrel as well; however, a strong attraction will slow down the translocation of the polymer through the β-barrel. The mean translocation time for the polymer to thread through the β-barrel increases linearly with the polymer length. By comparing our results with that of a simple pore without a vestibule, we find that the vestibule helps the polymer enter and thread through the β-barrel. Moreover, we find that it is easier for the polymer to thread through the β-barrel if the polymer is located closer to the surface of the vestibule. Some simulation results are explained qualitatively by theoretically analyzing the free-energy landscape of polymer translocation. (paper)

  8. Calculations of the anisotropy of the fission fragment angular distribution and neutron emission multiplicities prescission from Langevin dynamics

    Science.gov (United States)

    Jia, Ying; Bao, Jing-Dong

    2007-03-01

    The anisotropy of the fission fragment angular distribution defined at the saddle point and the neutron multiplicities emitted prior to scission for fissioning nuclei Th224, Np229, Cf248, and Fm254 are calculated simultaneously by using a set of realistic coupled two-dimensional Langevin equations, where the {c,h,α=0} nuclear parametrization is employed. In comparison with the one-dimensional stochastic model without neck variation, our two-dimensional model produces results that are in better agreement with the experimental data, and the one-dimensional model is available only for low excitation energies. Indeed, to determine the temperature of the nucleus at the saddle point, we investigate the neutron emission during nucleus oscillation around the saddle point for different friction mechanisms. It is shown that the neutrons emitted during the saddle oscillation cause the temperature of a fissioning nuclear system at the saddle point to decrease and influence the fission fragment angular distribution.

  9. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    Science.gov (United States)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  10. Complex saddle points and the sign problem in complex Langevin simulation

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2016-10-01

    Full Text Available We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  11. Complex saddle points and the sign problem in complex Langevin simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 (Japan); Hidaka, Yoshimasa [Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Tanizaki, Yuya [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-10-15

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  12. Complex saddle points and the sign problem in complex Langevin simulation

    International Nuclear Information System (INIS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Tanizaki, Yuya

    2016-01-01

    We show that complex Langevin simulation converges to a wrong result within the semiclassical analysis, by relating it to the Lefschetz-thimble path integral, when the path-integral weight has different phases among dominant complex saddle points. Equilibrium solution of the complex Langevin equation forms local distributions around complex saddle points. Its ensemble average approximately becomes a direct sum of the average in each local distribution, where relative phases among them are dropped. We propose that by taking these phases into account through reweighting, we can solve the wrong convergence problem. However, this prescription may lead to a recurrence of the sign problem in the complex Langevin method for quantum many-body systems.

  13. Quantum Heat Engine and Negative Boltzmann Temperature

    Science.gov (United States)

    Xi, Jing-Yi; Quan, Hai-Tao

    2017-09-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. Support from the National Science Foundation of China under Grants Nos. 11375012, 11534002, and The Recruitment Program of Global Youth Experts of China

  14. Quantum Heat Engine and Negative Boltzmann Temperature

    International Nuclear Information System (INIS)

    Xi Jing-Yi; Quan Hai-Tao

    2017-01-01

    To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent “violation” of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over “absolute ZERO” in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. (paper)

  15. Phase transitions in restricted Boltzmann machines with generic priors

    Science.gov (United States)

    Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele

    2017-10-01

    We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.

  16. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    Science.gov (United States)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  17. Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We investigate the importance of including quantized initial conditions in Langevin dynamics for adsorbates interacting with a thermal reservoir of electrons. For quadratic potentials the time evolution is exactly described by a classical Langevin equation and it is shown how to rigorously obtain...... mechanical master equation approach. With CO on Cu(100) as an example, we demonstrate the effect for a system with ab initio frictional tensor and potential energy surfaces and show that quantizing the initial conditions can have a large impact on both the desorption probability and the distribution...

  18. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh...

  19. Saltwater Intrusion Simulation in Heterogeneous Aquifer Using Lattice Boltzmann Method

    Science.gov (United States)

    Servan-Camas, B.; Tsai, F. T.

    2006-12-01

    This study develops a saltwater intrusion simulation model using a lattice Boltzmann method (LBM) in a two- dimensional coastal confined aquifer. The saltwater intrusion phenomenon is described by density-varied groundwater flow and mass transport equations, where a freshwater-saltwater mixing zone is considered. Although primarily developed using the mesoscopic approach to solve macroscopic fluid dynamic problems (e.g. Navier-Stoke equation), LBM is able to be adopted to solve physical-based diffusion-type governing equations as for the groundwater flow and mass transport equations. The challenge of using LBM in saltwater intrusion modeling is to recover hydraulic conductivity heterogeneity. In this study, the Darcy equation and the advection-dispersion equation (ADE) are recovered in the lattice Boltzmann modeling. Specifically, the hydraulic conductivity heterogeneity is represented by the speed of sound in LBM. Under the consideration on the steady-state groundwater flow due to low storativity, in each time step the flow problem is modified to be a Poisson equation and solved by LBM. Nevertheless, the groundwater flow is still a time-marching problem with spatial-temporal variation in salinity concentration as well as density. The Henry problem is used to compare the LBM results against the Henry analytic solution and SUTRA result. Also, we show that LBM is capable of handling the Dirichlet, Neumann, and Cauchy concentration boundary conditions at the sea side. Finally, we compare the saltwater intrusion results using LBM in the Henry problem when heterogeneous hydraulic conductivity is considered.

  20. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation

    KAUST Repository

    Mélykúti, Bence

    2010-01-01

    The Chemical Langevin Equation (CLE), which is a stochastic differential equation driven by a multidimensional Wiener process, acts as a bridge between the discrete stochastic simulation algorithm and the deterministic reaction rate equation when simulating (bio)chemical kinetics. The CLE model is valid in the regime where molecular populations are abundant enough to assume their concentrations change continuously, but stochastic fluctuations still play a major role. The contribution of this work is that we observe and explore that the CLE is not a single equation, but a parametric family of equations, all of which give the same finite-dimensional distribution of the variables. On the theoretical side, we prove that as many Wiener processes are sufficient to formulate the CLE as there are independent variables in the equation, which is just the rank of the stoichiometric matrix. On the practical side, we show that in the case where there are m1 pairs of reversible reactions and m2 irreversible reactions there is another, simple formulation of the CLE with only m1 + m2 Wiener processes, whereas the standard approach uses 2 m1 + m2. We demonstrate that there are considerable computational savings when using this latter formulation. Such transformations of the CLE do not cause a loss of accuracy and are therefore distinct from model reduction techniques. We illustrate our findings by considering alternative formulations of the CLE for a human ether a-go-go related gene ion channel model and the Goldbeter-Koshland switch. © 2010 American Institute of Physics.

  1. A lattice Boltzmann coupled to finite volumes method for solving phase change problems

    Directory of Open Access Journals (Sweden)

    El Ganaoui Mohammed

    2009-01-01

    Full Text Available A numerical scheme coupling lattice Boltzmann and finite volumes approaches has been developed and qualified for test cases of phase change problems. In this work, the coupled partial differential equations of momentum conservation equations are solved with a non uniform lattice Boltzmann method. The energy equation is discretized by using a finite volume method. Simulations show the ability of this developed hybrid method to model the effects of convection, and to predict transfers. Benchmarking is operated both for conductive and convective situation dominating solid/liquid transition. Comparisons are achieved with respect to available analytical solutions and experimental results.

  2. Contributions to the spectral theory of the linear Boltzmann operator for various geometries

    International Nuclear Information System (INIS)

    Protopopescu, V.

    1975-01-01

    The linear monoenergetic Boltzmann operator with isotropic scattering is studied for various geometries and boundary conditions as the infinitesimal generator of a positivity preserving contractive semigroup in an appropriate Hilbert space. General results about the existence and the uniqueness of the solutions of the corresponding evolution problems are reviewed. The spectrum of the Boltzmann operator is analyzed for semi-infinite, slab and parallelepipedic geometries with vacuum, periodic, perfectly reflecting, generalized and diffusely reflecting boundary condition respectively. The main features of these spectra, their importance for determining the asymptotic evolution and possible generalizations to more realistic models are put together in a final section. (author)

  3. Impressions from a visit by the ASN of the Laue Langevin Institute research reactor in Grenoble

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    After having recalled some specific characteristics of the Laue Langevin Institute research reactor (fuel type, cooling system, power, fuel management, fuel storage pool), the author reports the examination of the emergency procedures and of the reactor maintenance. He describes two exercises which respectively simulated the occurrence of an earthquake and that of a flooding due to a dam breaching

  4. A Boltzmann Transport Simulation Using Open Source Physics

    Science.gov (United States)

    Hasbun, Javier

    2004-03-01

    The speed of a charged particle, under an applied electric field, in a conducting media, is, usually, simply modelled by writing Newton's 2nd law in the form mfrac ddtv=qE-mfrac vτ ; (1), where v is the speed, E is the applied electric field, q is the charge, m is the mass, and τ is the scattering time between collisions. Here, we simulate a numerical solution of the Boltzmann transport equation,frac partial partial tf+ vot nabla _rf+Fot nabla _pf=frac partial partial tf|_coll (2), where in general the Boltzmann distribution function f=f(r,p,t) depends on position, momentum, and time. Our numerical solution is made possible by neglecting the 2nd term on the LHS, and by modelling the RHS collision term as fracpartial partial tf|_coll=-frac 1τ . With these approximations, in addition to considering only one dimension, we find, our numerical solution of (2). The average velocity numerically obtained through the resulting distribution is compared to that obtained by the analytic solution of (1). An efficient method of carrying out the numerical solution of (2) due to P. Drallos and M. Wadehra [Journal of Applied Physics 63, 5601(1988)] is incorporated here. A final version of an applet that performs the full Java simulation will be located at http://www.westga.edu/ jhasbun/osp/osp.htm.

  5. A Study of the Boltzmann Sequence-Structure Channel.

    Science.gov (United States)

    Magner, Abram; Kihara, Daisuke; Szpankowski, Wojciech

    2017-02-01

    We rigorously study a channel that maps sequences from a finite alphabet to self-avoiding walks in the two-dimensional grid, inspired by a model of protein folding from statistical physics and studied empirically by biophysicists. This channel, which we call the Boltzmann sequence-structure channel, is characterized by a Boltzmann/Gibbs distribution with a free parameter corresponding to temperature. In our previous work, we verified empirically that the channel capacity appears to have a phase transition for small temperature and decays to zero for high temperature. In this paper, we make some progress toward theoretically explaining these phenomena. We first estimate the conditional entropy between the input sequence and the output fold, giving an upper bound which exhibits a phase transition with respect to temperature. Next, we formulate a class of parameter settings under which the dependence between walk energies is governed by their number of shared contacts. In this setting, we derive a lower bound on the conditional entropy. This lower bound allows us to conclude that the mutual information tends to zero in a nontrivial regime of high temperature, giving some support to the empirical fact regarding capacity. Finally, we construct an example setting of the parameters of the model for which the conditional entropy is exactly calculable and which does not exhibit a phase transition.

  6. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  7. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Science.gov (United States)

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  8. Energy Dependent Streaming in Lattice Boltzmann Simulations

    Czech Academy of Sciences Publication Activity Database

    Pavlo, Pavol; Vahala, G.; Vahala, L.

    2001-01-01

    Roč. 46, č. 8 (2001), s. 241 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/43rd./. Long Beach, CA, 29.10.2001-02.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann Simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  9. Lattice Boltzmann Approach to Resistive MHD

    Czech Academy of Sciences Publication Activity Database

    Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.

    2002-01-01

    Roč. 47, č. 9 (2002), s. 51 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics of the American Physical Society/44th./. Orlando , Florida, 11.11.2001-15.11.2001] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Lattice Boltzmann, magnetic fields Subject RIV: BL - Plasma and Gas Discharge Physics

  10. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  11. Contact Angle Measurement in Lattice Boltzmann Method

    OpenAIRE

    Wen, Binghai; Huang, Bingfang; Qin, Zhangrong; Wang, Chunlei; Zhang, Chaoying

    2017-01-01

    Contact angle is an essential characteristic in wetting, capillarity and moving contact line; however, although contact angle phenomena are effectively simulated, an accurate and real-time measurement for contact angle has not been well studied in computational fluid dynamics, especially in dynamic environments. Here, we design a geometry-based mesoscopic scheme to onthesport measure the contact angle in the lattice Boltzmann method. The computational results without gravity effect are in exc...

  12. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Hendriks, E.M.

    1983-01-01

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  13. How good is the generalized Langevin equation to describe the dynamics of photo-induced electron transfer in fluid solution?

    Science.gov (United States)

    Angulo, Gonzalo; Jedrak, Jakub; Ochab-Marcinek, Anna; Pasitsuparoad, Pakorn; Radzewicz, Czesław; Wnuk, Paweł; Rosspeintner, Arnulf

    2017-06-28

    The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability

  14. Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines

    Science.gov (United States)

    Triwijoyo, B. K.; Pradipto, Y. D.

    2017-01-01

    hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.

  15. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico; Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México, Mexico; Departamento de Ingeniería Agrícola, DICIVA, Universidad de Guanajuato, Campus ...

  16. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    2017-08-18

    Aug 18, 2017 ... 1Ingeniería-Química, COARA—Universidad Autónoma de San Luis Potosí, Matehuala, San Luis Potosí, Mexico. 2Instituto Politécnico Nacional, CICATA Legaria, Calzada Legaria No. 694, Colonia Irrigación, 11500 Ciudad de México,. Mexico. 3Departamento de Ingeniería Agrícola, DICIVA, Universidad de ...

  17. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    2017-08-18

    Aug 18, 2017 ... deposits of BST on substrates of nichrome under the same experimental conditions, showing differences in the ratio Ba/Sr of the BST due to ... process conditions to be expected to control crosslinking so as to make the best ... value of the independent variable, the function is continuous; on the other hand, ...

  18. Mathematical model of Boltzmann's sigmoidal equation applicable ...

    Indian Academy of Sciences (India)

    boms/040/05/1043- ... J RESÉNDIZ-MUÑOZ1 M A CORONA-RIVERA1 J L FERNÁNDEZ-MUÑOZ2 M ZAPATA-TORRES2 A MÁRQUEZ-HERRERA3 V M OVANDO-MEDINA1. Ingeniería-Química, COARA—Universidad Autónoma de San Luis ...

  19. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  20. Conditional High-Order Boltzmann Machines for Supervised Relation Learning.

    Science.gov (United States)

    Huang, Yan; Wang, Wei; Wang, Liang; Tan, Tieniu

    2017-09-01

    Relation learning is a fundamental problem in many vision tasks. Recently, high-order Boltzmann machine and its variants have shown their great potentials in learning various types of data relation in a range of tasks. But most of these models are learned in an unsupervised way, i.e., without using relation class labels, which are not very discriminative for some challenging tasks, e.g., face verification. In this paper, with the goal to perform supervised relation learning, we introduce relation class labels into conventional high-order multiplicative interactions with pairwise input samples, and propose a conditional high-order Boltzmann Machine (CHBM), which can learn to classify the data relation in a binary classification way. To be able to deal with more complex data relation, we develop two improved variants of CHBM: 1) latent CHBM, which jointly performs relation feature learning and classification, by using a set of latent variables to block the pathway from pairwise input samples to output relation labels and 2) gated CHBM, which untangles factors of variation in data relation, by exploiting a set of latent variables to multiplicatively gate the classification of CHBM. To reduce the large number of model parameters generated by the multiplicative interactions, we approximately factorize high-order parameter tensors into multiple matrices. Then, we develop efficient supervised learning algorithms, by first pretraining the models using joint likelihood to provide good parameter initialization, and then finetuning them using conditional likelihood to enhance the discriminant ability. We apply the proposed models to a series of tasks including invariant recognition, face verification, and action similarity labeling. Experimental results demonstrate that by exploiting supervised relation labels, our models can greatly improve the performance.

  1. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

    Science.gov (United States)

    Karani, Hamid; Huber, Christian

    2015-02-01

    In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

  2. A viscosity adaption method for Lattice Boltzmann simulations

    Science.gov (United States)

    Conrad, Daniel; Schneider, Andreas; Böhle, Martin

    2014-11-01

    In this work, we consider the limited fitness for practical use of the Lattice Boltzmann Method for non-Newtonian fluid flows. Several authors have shown that the LBM is capable of correctly simulating those fluids. However, due to stability reasons the modeled viscosity range has to be truncated. The resulting viscosity boundaries are chosen arbitrarily, because the correct simulation Mach number for the physical problem is unknown a priori. This easily leads to corrupt simulation results. A viscosity adaption method (VAM) is derived which drastically improves the applicability of LBM for non-Newtonian fluid flows by adaption of the modeled viscosity range to the actual physical problem. This is done through tuning of the global Mach number to the solution-dependent shear rate. We demonstrate that the VAM can be used to accelerate LBM simulations and improve their accuracy, for both steady state and transient cases.

  3. Velocity-Field Theory, Boltzmann's Transport Equation and Geometry

    Science.gov (United States)

    Ichinose, Shoichi

    Boltzmann equation describes the time development of the velocity distribution in the continuum fluid matter. We formulate the equation using the field theory where the velocity-field plays the central role. The matter (constituent particles) fields appear as the density and the viscosity. Fluctuation is examined, and is clearly discriminated from the quantum effect. The time variable is emergently introduced through the computational process step. The collision term, for the (velocity)**4 potential (4-body interaction), is explicitly obtained and the (statistical) fluctuation is closely explained. The present field theory model does not conserve energy and is an open-system model. (One dimensional) Navier-Stokes equation or Burger's equation, appears. In the latter part, we present a way to directly define the distribution function by use of the geometry, appearing in the mechanical dynamics, and Feynman's path-integral.

  4. Boltzmann, Darwin and Directionality theory

    International Nuclear Information System (INIS)

    Demetrius, Lloyd A.

    2013-01-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and

  5. Boltzmann, Darwin and Directionality theory

    Energy Technology Data Exchange (ETDEWEB)

    Demetrius, Lloyd A., E-mail: ldemetr@oeb.harvard.edu

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and

  6. A new topological structure for the Langevin-type ultrasonic transducer.

    Science.gov (United States)

    Lu, Xiaolong; Hu, Junhui; Peng, Hanmin; Wang, Yuan

    2017-03-01

    In this paper, a new topological structure for the Langevin-type ultrasonic transducer is proposed and investigated. The two cylindrical terminal blocks are conically shaped with four supporting plates each, and two cooling fins are disposed at the bottom of terminal blocks, adjacent to the piezoelectric rings. Experimental results show that it has larger vibration velocity, lower temperature rise and higher electroacoustic energy efficiency than the conventional Langevin transducer. The reasons for the phenomena can be well explained by the change of mass, heat dissipation surface and force factor of the transducer. The proposed design may effectively improve the performance of ultrasonic transducers, in terms of the working effect, energy consumption and working life. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Emergence of nonwhite noise in Langevin dynamics with magnetic Lorentz force

    Science.gov (United States)

    Chun, Hyun-Myung; Durang, Xavier; Noh, Jae Dong

    2018-03-01

    We investigate the low mass limit of Langevin dynamics for a charged Brownian particle driven by a magnetic Lorentz force. In the low mass limit, velocity variables relaxing quickly are coarse-grained out to yield effective dynamics for position variables. Without the Lorentz force, the low mass limit is equivalent to the high friction limit. Both cases share the same Langevin equation that is obtained by setting the mass to zero. The equivalence breaks down in the presence of the Lorentz force. The low mass limit cannot be achieved by setting the mass to zero. The limit is also distinct from the large friction limit. We derive the effective equations of motion in the low mass limit. The resulting stochastic differential equation involves a nonwhite noise whose correlation matrix has antisymmetric components. We demonstrate the importance of the nonwhite noise by investigating the heat dissipation by a driven Brownian particle, where the emergent nonwhite noise has a physically measurable effect.

  8. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion

    Science.gov (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2017-10-01

    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  9. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    Science.gov (United States)

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  10. V-Langevin equations, continuous time random walks and fractional diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R. [Association Euratom-Etat Belge, Universite Libre de Bruxelles, CP 231, Campus Plaine ULB, Bd du Triomphe, 1050 Brussels (Belgium)

    2007-10-15

    The following question is addressed: under what conditions can a strange diffusive process, defined by a semi-dynamical V-Langevin equation or its associated hybrid kinetic equation (HKE), be described by an equivalent purely stochastic process, defined by a continuous time random walk (CTRW) or by a fractional differential equation (FDE)? More specifically, does there exist a class of V-Langevin equations with long-range (algebraic) velocity temporal correlation, that leads to a time-fractional superdiffusive process? The answer is always affirmative in one dimension. It is always negative in two dimensions: any algebraically decaying temporal velocity correlation (with a Gaussian spatial correlation) produces a normal diffusive process. General conditions relating the diffusive nature of the process to the temporal exponent of the Lagrangian velocity correlation (in Corrsin approximation) are derived. It is shown that a bifurcation occurs as the latter parameter is varied. Above that bifurcation value the process is always diffusive.

  11. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    Hejtmanek, J.

    1975-01-01

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.) [de

  12. Boltzmann, Darwin and Directionality theory

    Science.gov (United States)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and

  13. Vulnerability in Popular Molecular Dynamics Packages Concerning Langevin and Andersen Dynamics

    OpenAIRE

    Cerutti, David S.; Duke, Robert; Freddolino, Peter L.; Fan, Hao; Lybrand, Terry P.

    2008-01-01

    We report a serious problem associated with a number of current implementations of Andersen and Langevin dynamics algorithms. When long simulations are run in many segments, it is sometimes possible to have a repeating sequence of pseudorandom numbers enter the calcuation. We show that, if the sequence repeats rapidly, the resulting artifacts can quickly denature biomolecules and are then easily detectable. However, if the sequence repeats less frequently, the artifacts become subtle and easi...

  14. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    Science.gov (United States)

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  15. Immersed Boundary-Lattice Boltzmann Method Using Two Relaxation Times

    Directory of Open Access Journals (Sweden)

    Kosuke Hayashi

    2012-06-01

    Full Text Available An immersed boundary-lattice Boltzmann method (IB-LBM using a two-relaxation time model (TRT is proposed. The collision operator in the lattice Boltzmann equation is modeled using two relaxation times. One of them is used to set the fluid viscosity and the other is for numerical stability and accuracy. A direct-forcing method is utilized for treatment of immersed boundary. A multi-direct forcing method is also implemented to precisely satisfy the boundary conditions at the immersed boundary. Circular Couette flows between a stationary cylinder and a rotating cylinder are simulated for validation of the proposed method. The method is also validated through simulations of circular and spherical falling particles. Effects of the functional forms of the direct-forcing term and the smoothed-delta function, which interpolates the fluid velocity to the immersed boundary and distributes the forcing term to fixed Eulerian grid points, are also examined. As a result, the following conclusions are obtained: (1 the proposed method does not cause non-physical velocity distribution in circular Couette flows even at high relaxation times, whereas the single-relaxation time (SRT model causes a large non-physical velocity distortion at a high relaxation time, (2 the multi-direct forcing reduces the errors in the velocity profile of a circular Couette flow at a high relaxation time, (3 the two-point delta function is better than the four-point delta function at low relaxation times, but worse at high relaxation times, (4 the functional form of the direct-forcing term does not affect predictions, and (5 circular and spherical particles falling in liquids are well predicted by using the proposed method both for two-dimensional and three-dimensional cases.

  16. Boltzmann and Einstein: Statistics and dynamics –An unsolved ...

    Indian Academy of Sciences (India)

    The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...

  17. Boltzmann and Einstein: Statistics and dynamics–An unsolved ...

    Indian Academy of Sciences (India)

    The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...

  18. Adaptive Non-Boltzmann Monte Carlo

    International Nuclear Information System (INIS)

    Fitzgerald, M.; Picard, R.R.; Silver, R.N.

    1998-01-01

    This manuscript generalizes the use of transition probabilities (TPs) between states, which are efficient relative to histogram procedures in deriving system properties. The empirical TPs of the simulation depend on the importance weights and are temperature-specific, so they are not conducive to accumulating statistics as weights change or to extrapolating in temperature. To address these issues, the authors provide a method for inferring Boltzmann-weighted TPs for one temperature from simulations run at other temperatures and/or at different adaptively varying importance weights. They refer to these as canonical transition probabilities (CTPs). System properties are estimated from CTPs. Statistics on CTPs are gathered by inserting a low-cost easily-implemented bookkeeping step into the Metropolis algorithm for non-Boltzmann sampling. The CTP method is inherently adaptive, can take advantage of partitioning of the state space into small regions using either serial or (embarrassingly) parallel architectures, and reduces variance by avoiding histogramming. They also demonstrate how system properties may be extrapolated in temperature from CTPs without the extra memory required by using energy as a microstate label. Nor does it require the solution of non-linear equations used in histogram methods

  19. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  20. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    International Nuclear Information System (INIS)

    Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi

    2008-01-01

    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows

  1. An Implementation of Hydrostatic Boundary Conditions for Variable Density Lattice Boltzmann Methods

    Science.gov (United States)

    Bardsley, K. J.; Thorne, D. T.; Lee, J. S.; Sukop, M. C.

    2006-12-01

    Lattice Boltzmann Methods (LBMs) have been under development for the last two decades and have become another capable numerical method for simulating fluid flow. Recent advances in lattice Boltzmann applications involve simulation of density-dependent fluid flow in closed (Dixit and Babu, 2006; D'Orazio et al., 2004) or periodic (Guo and Zhao, 2005) domains. However, standard pressure boundary conditions (BCs) are incompatible with concentration-dependent density flow simulations that use a body force for gravity. An implementation of hydrostatic BCs for use under these conditions is proposed here. The basis of this new implementation is an additional term in the pressure BC. It is derived to account for the incorporation of gravity as a body force and the effect of varying concentration in the fluid. The hydrostatic BC expands the potential of density-dependent LBM to simulate domains with boundaries other than the closed or periodic boundaries that have appeared in previous literature on LBM simulations. With this new implementation, LBM will be able to simulate complex concentration-dependent density flows, such as salt water intrusion in the classic Henry and Henry-Hilleke problems. This is demonstrated using various examples, beginning with a closed box system, and ending with a system containing two solid walls, one velocity boundary and one pressure boundary, as in the Henry problem. References Dixit, H. N., V. Babu, (2006), Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transfer, 49, 727-739. D'Orazio, A., M. Corcione, G.P. Celata, (2004), Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary conditions, Int. J. Thermal Sci., 43, 575-586. Gou, Z., T.S. Zhao, (2005), Lattice Boltzmann simulation of natural convection with temperature-dependant viscosity in a porous cavity, Numerical Heat Transfer, Part B

  2. An Algorithm of Quantum Restricted Boltzmann Machine Network Based on Quantum Gates and Its Application

    Directory of Open Access Journals (Sweden)

    Peilin Zhang

    2015-01-01

    Full Text Available We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.

  3. Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.

    Science.gov (United States)

    Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew

    2014-12-26

    Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.

  4. U.S. stock market interaction network as learned by the Boltzmann machine

    Science.gov (United States)

    Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.

    2015-12-01

    We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities.

  5. Simulating anomalous transport and multiphase segregation in porous media with the Lattice Boltzmann Method

    Science.gov (United States)

    Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim

    2015-04-01

    Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  6. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.

    Science.gov (United States)

    Kim, Seung Hyun; Pitsch, Heinz; Boyd, Iain D

    2008-02-01

    We present mesoscopic fluid-wall interaction models for lattice Boltzmann (LB) model simulations of microscale flows. The exact solution of the slip velocity for the LB equation with the Bhatnagar-Gross-Krook collision operator is obtained for Poiseuille flow at finite Knudsen numbers. With a consistent definition of the Knudsen number, the slip coefficients of the LB equation with the standard D2Q9 scheme are found to be slightly larger than those of the Boltzmann equation with the same boundary condition, which makes the standard LB method remain quantitatively accurate only for small Knudsen numbers. By modifying the nonequilibrium energy flux or introducing the effective relaxation time, the LB method is analytically shown to reproduce the slip phenomena up to second order in the Knudsen number. For the standard LB method, the Knudsen layer is captured only with modification of the relaxation dynamics such as in the effective relaxation time model.

  7. Boltzmann babies in the proper time measure

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng

    2007-12-20

    After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.

  8. The Lattice Boltzmann method principles and practice

    CERN Document Server

    Krüger, Timm; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus

    2017-01-01

    This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a va...

  9. A Stochastic Sharpening Method for the Propagation of Phase Boundaries in Multiphase Lattice Boltzmann Simulations

    KAUST Repository

    Reis, T.

    2010-09-06

    Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting.

  10. Beyond standard Poisson-Boltzmann theory: ion-specific interactions in aqueous solutions

    International Nuclear Information System (INIS)

    Ben-Yaakov, Dan; Andelman, David; Harries, Daniel; Podgornik, Rudi

    2009-01-01

    The Poisson-Boltzmann mean-field description of ionic solutions has been successfully used in predicting charge distributions and interactions between charged macromolecules. While the electrostatic model of charged fluids, on which the Poisson-Boltzmann description rests, and its statistical mechanical consequences have been scrutinized in great detail, much less is understood about its probable shortcomings when dealing with various aspects of real physical, chemical and biological systems. These shortcomings are not only a consequence of the limitations of the mean-field approximation per se, but perhaps are primarily due to the fact that the purely Coulombic model Hamiltonian does not take into account various additional interactions that are not electrostatic in their origin. We explore several possible non-electrostatic contributions to the free energy of ions in confined aqueous solutions and investigate their ramifications and consequences on ionic profiles and interactions between charged surfaces and macromolecules.

  11. Simulating Anomalous Dispersion and Multiphase Segregation in Porous Media with the Lattice Boltzmann Method

    Science.gov (United States)

    Matin, Rastin; Misztal, Marek K.; Hernandez-Garcia, Anier; Mathiesen, Joachim

    2015-11-01

    Many hydrodynamic phenomena such as flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated numerically using the lattice Boltzmann method. By solving the Lattice Boltzmann Equation on three-dimensional unstructured meshes, we efficiently model single-phase fluid flow in real rock samples. We use the flow field to estimate the permeability and further investigate the anomalous dispersion of passive tracers in porous media. By extending our single-phase model with a free-energy based method, we are able to simulate binary systems with moderate density ratios in a thermodynamically consistent way. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.

  12. Numerical study of convection in phase change material based on Lattice-Boltzmann method

    Science.gov (United States)

    Zhang, Tianyu; Feng, Ying; Zhao, Zhening

    2017-06-01

    In this paper, the lattice Boltzmann method was studied for the phase change process with convective heat transfer in phase change energy storage materials. Firstly, the macroscopic heat transfer equations for the phase change process with convective heat transfer was given, by which we built the lattice Boltzmann equations for solving the problems. In the model, the speed model of D2Q9 was selected, and the boundary conditions including of non-equilibrium extrapolation and bounce back scheme were selected. Then, the effects of different Rayleigh number on the temperature field and velocity field were analyzed. Further research in a square cavity heat transfer processes with high temperature object and low temperature object were studied, in order to observe the effects of different temperature objects in the phase change process using the changes of phase field.

  13. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Science.gov (United States)

    Melenev, Petr

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces.

  14. Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise

    Science.gov (United States)

    Uma, B.; Swaminathan, T. N.; Ayyaswamy, P. S.; Eckmann, D. M.; Radhakrishnan, R.

    2011-09-01

    A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.

  15. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Ahmed M. Ibrahem

    Full Text Available In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0–2% added to water-base fluid and Rayleigh numbers of 103–105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied. Keywords: Lattice Boltzmann method, Nanofluids, Conduction melting, Convection melting, BGK collision model

  16. Solution of the inverse Langevin problem for open dissipative systems with anisotropic interparticle interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lisin, E. A.; Lisina, I. I.; Vaulina, O. S.; Petrov, O. F. [Joint Institute for High Temperatures of the Russian Academy of Sciences, 13 bd.2 Izhorskaya St., Moscow 125412, Russia and Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, Moscow Region 141700 (Russian Federation)

    2015-03-15

    Solution of the inverse Langevin problem is presented for open dissipative systems with anisotropic interparticle interaction. Possibility of applying this solution for experimental determining the anisotropic interaction forces between dust particles in complex plasmas with ion flow is considered. For this purpose, we have tested the method on the results of numerical simulation of chain structures of particles with quasidipole-dipole interaction, similar to the one occurring due to effects of ion focusing in gas discharges. Influence of charge spatial inhomogeneity and fluctuations on the results of recovery is also discussed.

  17. Quantum qubit measurement by a quantum point contact with a quantum Langevin equation approach

    International Nuclear Information System (INIS)

    Dong, Bing; Lei, X.L.; Horing, N.J.M.; Cui, H.L.

    2007-01-01

    We employ a microscopic quantum Heisenberg-Langevin equation approach to establish a set of quantum Bloch equations for a two-level system (coupled quantum dots) capacitively coupled to a quantum point contact (QPC). The resulting Bloch equations facilitate our analysis of qubit relaxation and decoherence in coupled quantum dots induced by measurement processes at arbitrary bias-voltage and temperature. We also examine the noise spectrum of the meter output current for a symmetric qubit. These results help resolve a recent debate about a quantum oscillation peak in the noise spectrum. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Massively parallel simulations of multiphase flows using Lattice Boltzmann methods

    Science.gov (United States)

    Ahrenholz, Benjamin

    2010-03-01

    In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.

  19. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    Lanteri, H.; Bindi, R.; Rostaing, P.

    1979-01-01

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment [fr

  20. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  1. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    OpenAIRE

    Darquié Benoît; Mejri Sinda; Sow Papa Lat Tabara; Lemarchand Cyril; Triki Meriam; Tokunaga Sean K.; Bordé Christian J.; Chardonnet Christian; Daussy Christophe

    2013-01-01

    proceedings of the ICAP 2012 conference (23rd International Conference on Atomic Physics); International audience; Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 µm enables a determination of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke...

  2. Some progress in the development of lattice Boltzmann methods for dissipative MHD

    Czech Academy of Sciences Publication Activity Database

    Macnab, A.; Vahala, G.; Vahala, L.; Pavlo, Pavol; Soe, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 59-64 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] R&D Projects: GA ČR GA202/00/1216 Institutional research plan: CEZ:AV0Z2043910 Keywords : Boltzmann models Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  3. A quantitative method to analyse an open answer questionnaire: A case study about the Boltzmann Factor

    International Nuclear Information System (INIS)

    Battaglia, Onofrio Rosario; Di Paola, Benedetto

    2015-01-01

    This paper describes a quantitative method to analyse an openended questionnaire. Student responses to a specially designed written questionnaire are quantitatively analysed by not hierarchical clustering called k-means method. Through this we can characterise behaviour students with respect their expertise to formulate explanations for phenomena or processes and/or use a given model in the different context. The physics topic is about the Boltzmann Factor, which allows the students to have a unifying view of different phenomena in different contexts.

  4. Lattice Boltzmann simulation of fluid flow induced by thermal effect in heterogeneity porous media

    Directory of Open Access Journals (Sweden)

    Hou Peng

    2017-01-01

    Full Text Available In this paper, a coupled lattice Boltzmann model is used to visually study fluid flow induced by thermal effect in heterogeneity porous media reconstructed by the quartet structure generation set. The fluid flow behavior inside porous media is presented and analyzed under different conditions. The simulation results indicate that the pore morphological properties of porous media and the Rayleigh number have noticeable impact on the velocity distribution and flow rate of fluid.

  5. Paul Langevin

    Indian Academy of Sciences (India)

    In 1905 Albert Einstein presented the first detailed mathematical analysis of Brownian motion. Einstein's derivation basically involved looking at the diffusion of a large number ... equation of motion for the individual Brownian particle. ... sample and showed how one could get the Curie law for temperature dependence of the.

  6. Lattice Boltzmann method fundamentals and engineering applications with computer codes

    CERN Document Server

    Mohamad, A A

    2014-01-01

    Introducing the Lattice Boltzmann Method in a readable manner, this book provides detailed examples with complete computer codes. It avoids the most complicated mathematics and physics without scarifying the basic fundamentals of the method.

  7. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  8. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  9. Boltzmann, Gibbs and Darwin-Fowler approaches in parastatistics

    International Nuclear Information System (INIS)

    Ponczek, R.L.; Yan, C.C.

    1976-01-01

    Derivations of the equilibrium values of occupation numbers are made using three approaches, namely, the Boltzmann 'elementary' one, the ensemble method of Gibbs, and that of Darwin and Fowler as well [pt

  10. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  11. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions

    Science.gov (United States)

    Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.

    2017-06-01

    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015), 10.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B . Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016), 10.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re =40 000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.

  12. Implicitly charge-conserving solver for Boltzmann electrons

    International Nuclear Information System (INIS)

    Carlsson, Johan; Manente, Marco; Pavarin, Daniele

    2009-01-01

    An implicitly charge-conserving algorithm has been developed for solving the nonlinear Poisson equation that results from the use of Boltzmann electrons. The new algorithm solves for the Boltzmann density parameter and, in the case of a Neumann boundary condition, the surface-charge density, simultaneously as it solves for the discretized electrostatic potential. Numerical stability is demonstrated for time steps exceeding the electron plasma period and spatial resolutions much coarser than the Debye length.

  13. From Pore Scale to Turbulent Flow with the Unstructured Lattice Boltzmann Method

    DEFF Research Database (Denmark)

    Matin, Rastin

    region depends on the method of time integration. The formulation based on the finite element method exhibits improved stability and is therefore used for two applications. Firstly, together with a free-energy model two-phase flow is simulated at large density and kinematic viscosity contrasts including......Abstract: The lattice Boltzmann method is a class of methods in computational fluid dynamics for simulating fluid flow. Implementations on unstructured grids are particularly relevant for various engineering applications, where geometric flexibility or high resolution near a body or a wall...... is required. The main topic of this thesis is to further develop unstructured lattice Boltzmann methods for simulations of Newtonian fluid flow in three dimensions, in particular porous flow. Two methods are considered in this thesis based on the finite volume method and finite element method, respectively...

  14. Prediction of sound absorption in rigid porous media with the lattice Boltzmann method

    Science.gov (United States)

    da Silva, Andrey Ricardo; Mareze, Paulo; Brandão, Eric

    2016-02-01

    In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques.

  15. Prediction of sound absorption in rigid porous media with the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Silva, Andrey Ricardo da; Mareze, Paulo; Brandão, Eric

    2016-01-01

    In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques. (paper)

  16. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca

    2016-06-29

    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.

  17. On the Stability of the Finite Difference based Lattice Boltzmann Method

    KAUST Repository

    El-Amin, Mohamed

    2013-06-01

    This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.

  18. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-01-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)

  19. Transport-level description of the 252Cf-source method using the Langevin technique

    International Nuclear Information System (INIS)

    Stolle, A.M.; Akcasu, A.Z.

    1991-01-01

    The fluctuations in the neutron number density and detector outputs in a nuclear reactor can be analyzed conveniently by using the Langevin equation approach. This approach can be implemented at any level of approximation to describe the time evolution of the neutron population, from the most complete transport-level description to the very basic point reactor analysis of neutron number density fluctuations. In this summary, the complete space- and velocity-dependent transport-level formulation of the Langevin equation approach is applied to the analysis of the 252 Cf-source-driven noise analysis (CSDNA) method, an experimental technique developed by J.T. Mihalczo at Oak Ridge National Laboratory, which makes use of noise analysis to determine the reactivity of subcritical media. From this analysis, a theoretical expression for the subcritical multiplication factor is obtained that can then be used to interpret the experimental data. Results at the transport level are in complete agreement with an independent derivation performed by Sutton and Doub, who used the probability density method to interpret the CSDNA experiment, but differed from other expressions that have appeared in the literature

  20. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    Science.gov (United States)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  1. Entropic Lattice Boltzmann: an implicit Large-Eddy Simulation?

    Science.gov (United States)

    Tauzin, Guillaume; Biferale, Luca; Sbragaglia, Mauro; Gupta, Abhineet; Toschi, Federico; Ehrhardt, Matthias; Bartel, Andreas

    2017-11-01

    We study the modeling of turbulence implied by the unconditionally stable Entropic Lattice Boltzmann Method (ELBM). We first focus on 2D homogeneous turbulence, for which we conduct numerical simulations for a wide range of relaxation times τ. For these simulations, we analyze the effective viscosity obtained by numerically differentiating the kinetic energy and enstrophy balance equations averaged over sub-domains of the computational grid. We aim at understanding the behavior of the implied sub-grid scale model and verify a formulation previously derived using Chapman-Enskog expansion. These ELBM benchmark simulations are thus useful to understand the range of validity of ELBM as a turbulence model. Finally, we will discuss an extension of the previously obtained results to the 3D case. Supported by the European Unions Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 642069 and by the European Research Council under the ERC Grant Agreement No. 339032.

  2. Ludwig Boltzmann, Albert Einstein and Franz Joseph

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    Under the Emperor Francis Joseph (1848-1916) the natural sciences were less weIl supported in Austria than in other countries of Europe. This is explained by the fact that the German speaking middle classes accepted the preeminence of the feudal forces with their antiscientific attitude. The reason for this readiness to subordination was that those middle classes feIt threatened in their relatively favourable situation by Slavs and Latins. Francis Joseph was the typical representative of the aristocracy. Personally, he did his duty conscientiously and was not corrupt, but progressive ideas and scientific thought were alien to him. From his desk he treated Boltzmann benevolently, but he had no wish to meet personally the greatest mind of the Empire or in any respect to ask his views. Another famous subject of the Emperor, Albert Einstein, was apparently ignored altogether. The structural weakness of Austria, due to the national problems, led to immobilism in her scientific life, but also, up to a point, to tolerance. The impression of Victor Adler on Einstein is considered in this historical context. (author) [de

  3. An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept.

    Science.gov (United States)

    Sotiropoulos, Vassilios; Kaznessis, Yiannis N

    2008-01-07

    Models involving stochastic differential equations (SDEs) play a prominent role in a wide range of applications where systems are not at the thermodynamic limit, for example, biological population dynamics. Therefore there is a need for numerical schemes that are capable of accurately and efficiently integrating systems of SDEs. In this work we introduce a variable size step algorithm and apply it to systems of stiff SDEs with multiple multiplicative noise. The algorithm is validated using a subclass of SDEs called chemical Langevin equations that appear in the description of dilute chemical kinetics models, with important applications mainly in biology. Three representative examples are used to test and report on the behavior of the proposed scheme. We demonstrate the advantages and disadvantages over fixed time step integration schemes of the proposed method, showing that the adaptive time step method is considerably more stable than fixed step methods with no excessive additional computational overhead.

  4. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  5. Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems

    Directory of Open Access Journals (Sweden)

    Florian Thüroff

    2014-11-01

    Full Text Available Kinetic theories constitute one of the most promising tools to decipher the characteristic spatiotemporal dynamics in systems of actively propelled particles. In this context, the Boltzmann equation plays a pivotal role, since it provides a natural translation between a particle-level description of the system’s dynamics and the corresponding hydrodynamic fields. Yet, the intricate mathematical structure of the Boltzmann equation substantially limits the progress toward a full understanding of this equation by solely analytical means. Here, we propose a general framework to numerically solve the Boltzmann equation for self-propelled particle systems in two spatial dimensions and with arbitrary boundary conditions. We discuss potential applications of this numerical framework to active matter systems and use the algorithm to give a detailed analysis to a model system of self-propelled particles with polar interactions. In accordance with previous studies, we find that spatially homogeneous isotropic and broken-symmetry states populate two distinct regions in parameter space, which are separated by a narrow region of spatially inhomogeneous, density-segregated moving patterns. We find clear evidence that these three regions in parameter space are connected by first-order phase transitions and that the transition between the spatially homogeneous isotropic and polar ordered phases bears striking similarities to liquid-gas phase transitions in equilibrium systems. Within the density-segregated parameter regime, we find a novel stable limit-cycle solution of the Boltzmann equation, which consists of parallel lanes of polar clusters moving in opposite directions, so as to render the overall symmetry of the system’s ordered state nematic, despite purely polar interactions on the level of single particles.

  6. Analysis of a bubble coalescence in the multiphase lattice Boltzmann method

    International Nuclear Information System (INIS)

    Ryu, Seung Yeob; Park, Cheon Tae; Lee, Chung Chan; Kim, Keung Koo

    2008-01-01

    Recently, the lattice Boltzmann method (LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over a conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. To study the effect of the mobility coefficient Γ and the width of the interface layer, two stationary bubbles without a collision are considered. The gap of the two bubbles is taken as 4, while the width of the interface (w) and the mobility coefficient Γ are varied. In the present work, the lattice Boltzmann model for multiphase flows proposed by Zheng et al. is used for simulating two stationary bubbles without a collision. By adopting a finite difference gradient operator of a sufficient isotropy, the spurious currents can be made smaller. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of multiphase or multi-component flows

  7. Measurement of the Boltzmann constant by Johnson noise thermometry using a superconducting integrated circuit

    Science.gov (United States)

    Urano, C.; Yamazawa, K.; Kaneko, N.-H.

    2017-12-01

    We report on our measurement of the Boltzmann constant by Johnson noise thermometry (JNT) using an integrated quantum voltage noise source (IQVNS) that is fully implemented with superconducting integrated circuit technology. The IQVNS generates calculable pseudo white noise voltages to calibrate the JNT system. The thermal noise of a sensing resistor placed at the temperature of the triple point of water was measured precisely by the IQVNS-based JNT. We accumulated data of more than 429 200 s in total (over 6 d) and used the Akaike information criterion to estimate the fitting frequency range for the quadratic model to calculate the Boltzmann constant. Upon detailed evaluation of the uncertainty components, the experimentally obtained Boltzmann constant was k=1.380 6436× {{10}-23} J K-1 with a relative combined uncertainty of 10.22× {{10}-6} . The value of k is relatively -3.56× {{10}-6} lower than the CODATA 2014 value (Mohr et al 2016 Rev. Mod. Phys. 88 035009).

  8. Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Rizwan

    2012-01-01

    This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.

  9. New Monte Carlo approach to the adjoint Boltzmann equation

    International Nuclear Information System (INIS)

    De Matteis, A.; Simonini, R.

    1978-01-01

    A class of stochastic models for the Monte Carlo integration of the adjoint neutron transport equation is described. Some current general methods are brought within this class, thus preparing the ground for subsequent comparisons. Monte Carlo integration of the adjoint Boltzmann equation can be seen as a simulation of the transport of mathematical particles with reaction kernels not normalized to unity. This last feature is a source of difficulty: It can influence the variance of the result negatively and also often leads to preparation of special ''libraries'' consisting of tables of normalization factors as functions of energy, presently used by several methods. These are the two main points that are discussed and that are taken into account to devise a nonmultigroup method of solution for a certain class of problems. Reactions considered in detail are radiative capture, elastic scattering, discrete levels and continuum inelastic scattering, for which the need for tables has been almost completely eliminated. The basic policy pursued to avoid a source of statistical fluctuations is to try to make the statistical weight of the traveling particle dependent only on its starting and current energies, at least in simple cases. The effectiveness of the sampling schemes proposed is supported by numerical comparison with other more general adjoint Monte Carlo methods. Computation of neutron flux at a point by means of an adjoint formulation is the problem taken as a test for numerical experiments. Very good results have been obtained in the difficult case of resonant cross sections

  10. Equivalence of restricted Boltzmann machines and tensor network states

    Science.gov (United States)

    Chen, Jing; Cheng, Song; Xie, Haidong; Wang, Lei; Xiang, Tao

    2018-02-01

    The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.

  11. Lattice Boltzmann study of droplet motion inside a grooved channel

    Science.gov (United States)

    Huang, Jun Jie; Shu, Chang; Chew, Yong Tian

    2009-02-01

    A droplet moving inside a grooved channel is studied by using a new lattice Boltzmann model for multiphase flows with large density ratio. A constant body force is applied to drive the droplet. Flows under different surface tensions, driving forces, density ratios, wall wettabilities, and groove geometries are investigated. It is found that the drag on the droplet and the flow pattern are strongly affected by the wall wettability and topography when the system scale is small. The effects of the driving force on the droplet are investigated through comparison of two different ways of applying it. Besides, the density ratio is varied over a wide range to assess its effects in the present setup. Special attention is paid to grooved hydrophilic walls which tend to enhance the droplet-wall contact. For such walls, two distinctive types of shape of the interface inside the groove are found and series of numerical investigations are carried out to find the critical wall contact angle, groove width and depth that determine which kind of shape the droplet assumes. Some typical cases are chosen for detailed analyses and compared to some other work. This study is expected to improve our understanding on the lotus effect and the physics of small scale flows near rough walls.

  12. The intellectual quadrangle: Mach-Boltzmann-Planck-Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    These four men were influential in the transition from classical to modern physics. They interacted as scientists, often antagonistically. Thus Boltzmann was the greatest champion of the atom, while Mach remained unconvinced all his life. As a aphysicist, Einstein was greatly influenced by both Mach and Boltzmann, although Mach in the end rejected relativity as well. Because of his work on statistical mechanics, fluctuations, and quantum theory, Einstein has been called the natural successor to Boltzmann. Planck also was influenced by Mach at first. Hence he and Boltzmann were adversaries antil Planck converted to atomistics in 1900 and used the statistical interpretation of entropy to establish his radiation law. Planck accepted relativity early, but in quantum theory he was for a long time partly opposed to Einstein, and vice versa - Einstein considered Planck's derivation of his radiation law as unsound, while Planck could not accept the light quantum. In the case of all four physicists, science was interwoven with philosophy. Boltzmann consistently fought Mach's positivism, while Planck and Einstein moved from positivism to realism. All were also, though in very different ways, actively interested in public affairs. (orig.)

  13. Improving the transient response of a bolt-clamped Langevin transducer using a parallel resistor.

    Science.gov (United States)

    Chang, Kuo Tsi

    2003-08-01

    This paper suggests a parallel resistor to reduce DC time constant and DC response time of the transient response, induced immediately after an AC voltage connected to a bolt-clamped Langevin transducer (BLT) is switched off. An equivalent circuit is first expressed. Then, an open-circuit transient response at the terminals induced by initial states is derived and measured, and thus parameters for losses of the BLT device are estimated by DC and AC time constants of the transient response. Moreover, a driving and measuring system is designed to determine transient response and steady-state responses of the BLT device, and a parallel resistor is connected to the BLT device to reduce the DC time constant. Experimental results indicate that the DC time constant greatly exceeds the AC time constant without the parallel resistor, and greatly decreases from 42 to 1 ms by a 100-kOmega parallel resistor.

  14. Langevin dynamics of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Alberico, W M; De Pace, A; Molinari, A; Monteno, M; Nardi, M; Prino, F

    2011-01-01

    We study the stochastic dynamics of c and b quarks, produced in hard initial processes, in the hot medium created after the collision of two relativistic heavy ions. This is done through the numerical solution of the relativistic Langevin equation. The latter requires the knowledge of the friction and diffusion coefficients, whose microscopic evaluation is performed treating separately the contribution of soft and hard collisions. The evolution of the background medium is described by ideal/viscous hydrodynamics. Below the critical temperature the heavy quarks are converted into hadrons, whose semileptonic decays provide single-electron spectra to be compared with the current experimental data measured at RHIC. We focus on the nuclear modification factor R_AA and on the elliptic-flow coefficient v_2, getting, for sufficiently large p_T, a reasonable agreement.

  15. A Langevin Approach to a Classical Brownian Oscillator in an Electromagnetic Field

    International Nuclear Information System (INIS)

    Espinoza Ortiz, J. S.; Bauke, F. C.; Lagos, R. E.

    2016-01-01

    We consider a charged Brownian particle bounded by an harmonic potential, embedded in a Markovian heat bath and driven from equilibrium by external electric and magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward and elegant fashion, we compute the exact solution for the resulting generalized Langevin equation, for the case of a constant magnetic field. For the case the source electromagnetic fields satisfy Maxwell's equations, yielding spinor-like Mathieu equations, we compute the solutions within the JWKB approximation. With the solutions at hand we further compute spatial, velocities and crossed time correlations. In particular we study the (kinetically defined) nonequilbrium temperature. Therefore, we can display the system's time evolution towards equilibrium or towards non equilibrium (steady or not) states. (paper)

  16. A Langevin Approach to a Classical Brownian Oscillator in an Electromagnetic Field

    Science.gov (United States)

    Espinoza Ortiz, J. S.; Bauke, F. C.; Lagos, R. E.

    2016-08-01

    We consider a charged Brownian particle bounded by an harmonic potential, embedded in a Markovian heat bath and driven from equilibrium by external electric and magnetic fields. We develop a quaternionic-like (or Pauli spinor-like) representation, hitherto exploited in classical Lorentz related dynamics. Within this formalism, in a very straight forward and elegant fashion, we compute the exact solution for the resulting generalized Langevin equation, for the case of a constant magnetic field. For the case the source electromagnetic fields satisfy Maxwell's equations, yielding spinor-like Mathieu equations, we compute the solutions within the JWKB approximation. With the solutions at hand we further compute spatial, velocities and crossed time correlations. In particular we study the (kinetically defined) nonequilbrium temperature. Therefore, we can display the system's time evolution towards equilibrium or towards non equilibrium (steady or not) states.

  17. Langevin equation with time dependent linear force and periodic load force: stochastic resonance

    Science.gov (United States)

    Sau Fa, Kwok

    2017-11-01

    The motion of a particle described by the Langevin equation with constant diffusion coefficient, time dependent linear force (ω (1+α \\cos ({ω }1t))x) and periodic load force ({A}0\\cos ({{Ω }}t)) is investigated. Analytical solutions for the probability density function (PDF) and n-moment are obtained and analysed. For {ω }1\\gg α ω the influence of the periodic term α \\cos ({ω }1t) is negligible to the PDF and n-moment for any time; this result shows that the statistical averages such as n-moments and the PDF have no access to some information of the system. For small and intermediate values of {ω }1 the influence of the periodic term α \\cos ({ω }1t) to the system is also analysed; in particular the system may present multiresonance. The solutions are obtained in a direct and pedagogical manner readily understandable by graduate students.

  18. Entropy production and fluctuation theorems for Langevin processes under continuous non-Markovian feedback control.

    Science.gov (United States)

    Munakata, T; Rosinberg, M L

    2014-05-09

    Continuous feedback control of Langevin processes may be non-Markovian due to a time lag between the measurement and the control action. We show that this requires one to modify the basic relation between dissipation and time reversal and to include a contribution arising from the noncausal character of the reverse process. We then propose a new definition of the quantity measuring the irreversibility of a path in a nonequilibrium stationary state, which can also be regarded as the trajectory-dependent total entropy production. This leads to an extension of the second law, which takes a simple form in the long-time limit. As an illustration, we apply the general approach to linear systems that are both analytically tractable and experimentally relevant.

  19. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    International Nuclear Information System (INIS)

    Reeves, Daniel B.; Weaver, John B.

    2015-01-01

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges

  20. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    Science.gov (United States)

    Reeves, Daniel B.; Weaver, John B.

    2015-11-01

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.

  1. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Weaver, John B. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire 03755 (United States)

    2015-11-30

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.

  2. Stabilizing the thermal lattice Boltzmann method by spatial filtering.

    Science.gov (United States)

    Gillissen, J J J

    2016-10-01

    We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference solutions for a number of standardized test cases, including natural convection in two dimensions.

  3. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  4. Lattice Boltzmann simulations of leukocyte rolling and deformation in a three-dimensional shear flow

    Science.gov (United States)

    Luo, Ye; Qi, Dewei; He, Guowei

    2013-11-01

    Lattice Boltzmann simulation is used to simulate the motion of a leukocyte in fluid. The cell membrane is built by lattice spring model. The interaction between the fluid flow and the solid surface is treated by immersed boundary method. Stochastic Monte Carlo method is used to deal with receptor/ligand interaction. It is shown that the model can correctly predict the characteristic ``stop-and-g'' motion of rolling leukocytes. Effects of cell deformation, shear rates, bonding force, microvilli distribution on rolling are studied and compared with experiments.

  5. Exploiting Restricted Boltzmann Machines and Deep Belief Networks in Compressed Sensing

    Science.gov (United States)

    Polania, Luisa F.; Barner, Kenneth E.

    2017-09-01

    This paper proposes a CS scheme that exploits the representational power of restricted Boltzmann machines and deep learning architectures to model the prior distribution of the sparsity pattern of signals belonging to the same class. The determined probability distribution is then used in a maximum a posteriori (MAP) approach for the reconstruction. The parameters of the prior distribution are learned from training data. The motivation behind this approach is to model the higher-order statistical dependencies between the coefficients of the sparse representation, with the final goal of improving the reconstruction. The performance of the proposed method is validated on the Berkeley Segmentation Dataset and the MNIST Database of handwritten digits.

  6. Multi-component Lattice Boltzmann simulation of the hydrodynamics in drip emitters

    Directory of Open Access Journals (Sweden)

    Giacomo Falcucci

    2017-09-01

    Full Text Available In this paper, we propose a fast and efficient numerical technique based on the Lattice Boltzmann method (LBM to model the flow through a reference drip emitter geometry. The aim of the study is to demonstrate the applicability of the LBM as a reliable simulation tool for the hydraulic optimisation of irrigation systems. Results for the water flow through a rectangular drip emitter are in good agreement with literature numerical and experimental data. Furthermore, we demonstrate the feasibility of the proposed model to simulate a multi-component flow that could be used to simulate the presence of additives, contaminants, and suspended particles.

  7. Lattice Boltzmann method for simulation of compressible flows on standard lattices.

    Science.gov (United States)

    Prasianakis, Nikolaos I; Karlin, Iliya V

    2008-07-01

    The recently introduced lattice Boltzmann model for thermal flow simulation on a standard lattice [Prasianakis and Karlin, Phys. Rev. E 76, 016702 (2007)] is studied numerically in the case where compressibility effects are essential. It is demonstrated that the speed of sound and shock propagation are described correctly in a wide temperature range, and that it is possible to take into account additional physics such as heat sources and sinks. A remarkable simplicity of the model makes it viable for engineering applications in subsonic flows with large temperature and density variations.

  8. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    Energy Technology Data Exchange (ETDEWEB)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe [Laboratoire Informatique Signal et Image de la Côte d' Opale, 50 rue Ferdinand Buisson, 62100 Calais (France); Université du Littoral Côte d' Opale, 1 place de l' Yser, 59140, Dunkerque (France); Association INNOCOLD, MREI 1, 145 (France)

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  9. Ethic and Evolution in Boltzmann's and Einstein's Thought

    International Nuclear Information System (INIS)

    Broda, E.

    1980-01-01

    In physics and to a large extent in epistomology, Einstein was the natural successor to Boltzmann. But while Boltzmann was an ardent evolutionist, Einstein cared little for biology. Boltzmann applied Darwinian principles also to ethics, but remained aloof from politics. In contrast, Einstein's morality, though expressed in magnificent and selfless activity, lacked a firm theoretical basis. (author)

  10. A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow.

    Science.gov (United States)

    Dupin, M M; Halliday, I; Care, C M

    2006-01-01

    While blood at the macroscopic scale is frequently treated as a continuum by techniques such as computational fluid dynamics, its mesoscale behaviour is not so well investigated or understood. At this scale, the deformability of each cell within the plasma is important and cannot be ignored. However there is currently a lack of efficient computational techniques able to simulate a large number of deformable particles such as blood cells. This paper addresses this problem and demonstrates the applicability of the authors' recent multi-component lattice Boltzmann method for the simulation of a large number of mutually immiscible liquid species [Dupin MM, Halliday I, Care CM. Multi-component lattice boltzmann equation for mesoscale blood flow. J Phys A: Math Gen 2003;36:8517-34]. In here, biological cells are treated as immiscible, deformable, and relatively viscous drops (compared to the surrounding fluid). The validation of the model is based on the work of Goldsmith on the flow of solid particles, deformable particles and red blood cells [Goldsmith HL, Marlow JC. Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. J Colloid Interf Sci 1979;71:383-407]. We demonstrate, in particular, that the model recovers Goldsmith's observations on the flow properties of red blood cells and also the experimental observations of Frank on the flow of solid beads [Frank M, Anderson D, Weeks ER, Morris JF. Particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 2003;493:363-78]. The current article is the first validation of our new lattice Boltzmann model for a large number of deformable particles in this context and demonstrates that the method provides a new, and effective, approach for the modeling of mesoscale blood flow.

  11. Dynamic permeability of porous media by the lattice Boltzmann method

    Science.gov (United States)

    Adler, P.; Pazdniakou, A.

    2012-04-01

    The main objective of our work is to determine the dynamic permeability of three dimensional porous media by means of the Lattice Boltzmann method (LBM). The Navier-Stokes equation can be numerically solved by LBM which is widely used to address various fluid dynamics problems. Space is discretized by a three-dimensional cubic lattice and time is discretized as well. The generally accepted notation for lattice Boltzmann models is DdQq where D stands for space dimension and Q for the number of discrete velocities. The present model is denoted by D3Q19. Moreover, the Two Relaxation Times variant of the Multi Relaxation Times model is implemented. Bounce back boundary conditions are used on the solid-fluid interfaces. The porous medium is spatially periodic. Reconstructed media were used; they are obtained by imposing a porosity and a correlation function characterized by a correlation length. Real samples can be obtained by MicroCT. In contrast with other previous contributions, the dynamic permeability K(omega) which is a complex number, is derived by imposing an oscillating body force of pulsation omega on the unit cell and by deriving the amplitude and the phase shift of the resulting time dependent seepage velocity. The influence of two limiting parameters, namely the Knudsen number Kn and the discretization for high frequencies, on K(omega) is carefully studied for the first time. Kn is proportional to nu/(cs H) where nu is the kinematic viscosity, cs the speed of sound in the fluid and H a characteristic length scale of the porous medium. Several porous media such as the classical plane Poiseuille flow and the reconstructed media are used to show that it is only for small enough values of Kn that reliable results are obtained. Otherwise, the data depend on Kn and may even be totally unphysical. However, it should be noticed that the limiting value of Kn could not be derived in general since it depends very much on the structure of the medium. Problems occur at

  12. Coupled lattice Boltzmann method for numerical simulations of fully coupled heart and torso bidomain system in electrocardiology

    OpenAIRE

    Corre , Samuel; Belmiloudi , Aziz

    2016-01-01

    International audience; In this work, a modified coupling Lattice Boltzmann Model (LBM) in simulation of cardiac electrophysiology is developed in order to capture the detailed activities of macro- to micro-scale transport processes. The propagation of electrical activity in the human heart through torso is mathematically modeled by bidomain type systems. As transmembrane potential evolves, we take into account domain anisotropical properties using intracellular and extracellular conductivity...

  13. Boltzmann and Einstein: Statistics and dynamics – An unsolved ...

    Indian Academy of Sciences (India)

    ... of watching the ever-shifting battle!” (not to see its outcome). Acknowledgements. The author would like to express my deep appreciation to the IUPAP Commission on Statistical Physics for awarding me the Boltzmann medal 2004. The author is also indebted for financial assistance to the Organizers of STATPHYS 22, T V ...

  14. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  15. Revisiting Boltzmann learning: parameter estimation in Markov random fields

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Andersen, Lars Nonboe; Kjems, Ulrik

    1996-01-01

    and generalization in the context of Boltzmann machines. We provide an illustrative example concerning parameter estimation in an inhomogeneous Markov field. The regularized adaptation produces a parameter set that closely resembles the “teacher” parameters, hence, will produce segmentations that closely reproduce...

  16. Some properties of the Boltzmann elastic collision operator

    International Nuclear Information System (INIS)

    Delcroix, J. L.; Salmon, J.

    1959-01-01

    The authors point out some properties (an important one is a variational property) of the Boltzmann elastic collision operator, valid in a more general framework than that of the Lorentz gas. Reprint of a paper published in 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596 [fr

  17. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    International Nuclear Information System (INIS)

    Guyon, H.

    2006-01-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10 15 n.cm -2 .s -1 with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the microbiology expertise of the EMBL

  18. Presentation of the High-Flux Reactor of the Institut Laue-Langevin

    Energy Technology Data Exchange (ETDEWEB)

    Guyon, H. [Institut Laue-Langevin, Grenoble (France)

    2006-07-01

    Full text of publication follows: The High-Flux Reactor (HFR) of the Institut Laue-Langevin is the world's most intense source of neutrons for fundamental research. Thanks to its extremely compact core, which is made up of a single fuel element, the HFR is capable of producing a neutron flux of up to 1.5.10{sup 15} n.cm{sup -2}.s{sup -1} with a moderate power output of 58 MW. Its heavy water reflector thermalizes these neutrons, giving them a wave length of the order of one angstrom. They then become an excellent tool for exploring the atomic structure of matter. In order to provide a full neutron spectrum, the reactor is also equipped with a hot source (a block of graphite heated to 2000 deg. C) and two cold sources (a volume of liquid deuterium at 25 K). All the reactor's components can be replaced and adapted in order to keep pace with both changing scientific needs and changing safety requirements. For example, in 1992 the reactor block was replaced, a second cold source was installed in 1985, and the beam tubes are replaced at regularly intervals and are also occasionally modified. In the same way, the reactor's civil engineering structures are currently being reinforced in order to comply with the reassessment of the reference earthquake spectra. Finally, the Institut Laue-Langevin's reactor is equipped with three solid containment barriers: - the fuel cladding: during the 35 years the reactor has been in operation, a cladding failure has never been detected; - the leak-tight primary cooling system: this is partly submerged in a pool which provides radiological shielding; - the double-wall containment: an overpressure of air is maintained between the inner reinforced concrete wall and the outer metal wall. The High-Flux Reactor is therefore all set to provide the scientific community with top quality service for the next 20 years to come, on a site which: - is home to the brightest synchrotron in the world (ESRF); - benefits from the

  19. Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine

    DEFF Research Database (Denmark)

    Mocanu, Elena; Nguyen, Phuong H.; Gibescu, Madeleine

    2016-01-01

    approaches have been proposed in the literature. As an evolution of neural network-based prediction methods, deep learning techniques are expected to increase the prediction accuracy by allowing stochastic formulations and bi-directional connections between neurons. In this paper, we investigate a newly...... developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for electrical demand forecasting. The assessment is made on the EcoGrid dataset, originating from the Bornholm island experiment in Denmark, consisting of aggregated...

  20. Massively parallel simulations of multiphase- and multicomponent flows using lattice Boltzmann methods

    OpenAIRE

    Ahrenholz, Benjamin

    2009-01-01

    Die vorliegende Dissertation gibt im Wesentlichen die Arbeiten wieder, die im Rahmen des FIMOTUM Projektes durchgeführt worden sind, welches sich vornehmlich auf die Untersuchung von Transporteigenschaften in ungesättigten porösen Medien fokussierte. Hierfür wurde ein Software-Prototyp auf Basis der Gitter Boltzmann Methode (LBM) entwickelt und ausführlich validiert. Die vorgestellte LB-Methode basiert auf dem Multiple-Relaxation-Time (MRT) Modell und verwendet Fluid/Wand Randbedingungen mit ...

  1. A fast iterative scheme for the linearized Boltzmann equation

    Science.gov (United States)

    Wu, Lei; Zhang, Jun; Liu, Haihu; Zhang, Yonghao; Reese, Jason M.

    2017-06-01

    Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient for highly rarefied gas flows, but can be very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation by penalizing the collision operator L into the form L = (L + Nδh) - Nδh, where δ is the gas rarefaction parameter, h is the velocity distribution function, and N is a tuning parameter controlling the convergence rate. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion-type equation that is asymptotic-preserving into the Navier-Stokes limit. The efficiency of this new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. We find that the fastest convergence of our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close to the average collision frequency. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum gas flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative scheme does not need high spatial resolution in the near-continuum flow regime, which makes it even faster than the conventional iterative scheme. Using this synthetic scheme, with the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones intermolecular potential for the first time, and the difference

  2. Viscous flow computations with the lattice-Boltzmann equation method

    Science.gov (United States)

    Yu, Dazhi

    2002-09-01

    The lattice Boltzmann equation (LBE) method is a kinetics-based approach for fluid flow computations, and it is amenable to parallel computing. Compared to the well-established Navier-Stokes (NS) approaches, critical issues remain with the LBE method, noticeably flexible spatial resolution, boundary treatments, and dispersion and relaxation time mode. Those issues are addressed in this dissertation with improved practice presented. At the formulation level, both the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) models are analyzed. The SRT model involves no artificial parameters, with a constant relaxation time regulating the physical value of fluid viscosity. The MRT model allows different relaxation time scales for different variables. Computational assessment shows that the MRT model has advantages over the SRT model in maintaining stability, reducing the oscillation, and improving the convergence rate in the computation. A multi-block method is developed for both the SRT and MRT model to facilitate flexible spatial resolutions according to the flow structures. The formulae for information exchange at the interface between coarse and fine grids are derived to ensure the mass and momentum conservation while maintaining the second-order accuracy. A customized time matching between coarse and fine grids is also presented to ensure smooth exchange information. Results show that the multi-block method can greatly increase the computational efficiency of the LBE method without losing the accuracy. Two methods of force evaluation in LBE are examined: one based on stress integration on the solid boundary and the other momentum exchange between fluid and solid. The momentum exchange method is found to be simpler to implement while the integration of stress requires evaluation of the detailed surface geometry and extrapolation of stress-related variables to the same surface. The momentum exchange method performs better overall. Improved treatments for

  3. Lattice Boltzmann methods for the simulation of heat transfer in particle suspensions

    International Nuclear Information System (INIS)

    McCullough, J.W.S.; Leonardi, C.R.; Jones, B.D.; Aminossadati, S.M.; Williams, J.R.

    2016-01-01

    Highlights: • Development of a lattice Boltzmann heat transfer model for curved boundaries. • Thermodynamic coupling aims to ensure continuity of both temperature and heat flux. • Good correlation found in transient comparison of results to analytical solutions. • Illustration of the developed model applied to a moving particle test case. - Abstract: This study examines the use of a lattice Boltzmann method framework to study heat transfer behaviours within particle suspensions. This has been done through the use of an adapted interface condition to attempt to resolve the required continuity of temperature and flux at the boundary between the solid and fluid phases. The proposed method is tested against analytical solutions for layered media in both a 1D bar and a radial layout. These tests showed that the model was able to generate results with first order convergence towards the analytical outcomes. The model was then used to examine the behaviour of two moving particles travelling along a channel to illustrate its potential for resolving complex suspension flows.

  4. Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.

    Science.gov (United States)

    Rogers, Emily; Murrugarra, David; Heitsch, Christine

    2017-07-25

    Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones. Copyright © 2017. Published by Elsevier Inc.

  5. Stochastic thermodynamics of Langevin systems under time-delayed feedback control: Second-law-like inequalities

    Science.gov (United States)

    Rosinberg, M. L.; Munakata, T.; Tarjus, G.

    2015-04-01

    Response lags are generic to almost any physical system and often play a crucial role in the feedback loops present in artificial nanodevices and biological molecular machines. In this paper, we perform a comprehensive study of small stochastic systems governed by an underdamped Langevin equation and driven out of equilibrium by a time-delayed continuous feedback control. In their normal operating regime, these systems settle in a nonequilibrium steady state in which work is permanently extracted from the surrounding heat bath. By using the Fokker-Planck representation of the dynamics, we derive a set of second-law-like inequalities that provide bounds to the rate of extracted work. These inequalities involve additional contributions characterizing the reduction of entropy production due to the continuous measurement process. We also show that the non-Markovian nature of the dynamics requires a modification of the basic relation linking dissipation to the breaking of time-reversal symmetry at the level of trajectories. The modified relation includes a contribution arising from the acausal character of the reverse process. This, in turn, leads to another second-law-like inequality. We illustrate the general formalism with a detailed analytical and numerical study of a harmonic oscillator driven by a linear feedback, which describes actual experimental setups.

  6. Equilibrium properties of polymers from the Langevin equation: Gaussian self-consistent approach

    International Nuclear Information System (INIS)

    Timoshenko, E.G.; Dawson, K.A.

    1995-01-01

    We investigate here the dynamics of polymers at equilibrium by means of a self-consistent approximation that can be applied to arbitrary Hamiltonians. In particular we show that for the case of two-and three-body excluded volume effects, and the Oseen hydrodynamic interaction, the Gaussian self-consistent approach can recapture what we believe to be the essential features across the collapse transition. This method is based on the approximation of the complete Langevin equation by a Gaussian stochastic ensemble obeying a linear equation of motion with some unknown effective potential ΔV q (t) and friction. Self-consistency equations for this potential are derived and studied in a variety of regimes across the collapse transition. Here we have calculated the friction ζ q scaling behavior. The results of a simple power counting analysis of the equations, applicable for sufficiently large polymers, confirm the expected law ζ q ∝N ν q 1-ν , and give exponent values ν=3/5 for the Flory coil, ν=1/2 for so-called θ point, and ν=1/3 for the collapsed globule phase. Further applications of the method for various experimental observables of interest, e.g., the dynamic structure factor of light scattering, are presented, and again simple applications are discussed

  7. Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems

    Science.gov (United States)

    Stella, L.; Lorenz, C. D.; Kantorovich, L.

    2014-04-01

    The generalized Langevin equation (GLE) has been recently suggested to simulate the time evolution of classical solid and molecular systems when considering general nonequilibrium processes. In this approach, a part of the whole system (an open system), which interacts and exchanges energy with its dissipative environment, is studied. Because the GLE is derived by projecting out exactly the harmonic environment, the coupling to it is realistic, while the equations of motion are non-Markovian. Although the GLE formalism has already found promising applications, e.g., in nanotribology and as a powerful thermostat for equilibration in classical molecular dynamics simulations, efficient algorithms to solve the GLE for realistic memory kernels are highly nontrivial, especially if the memory kernels decay nonexponentially. This is due to the fact that one has to generate a colored noise and take account of the memory effects in a consistent manner. In this paper, we present a simple, yet efficient, algorithm for solving the GLE for practical memory kernels and we demonstrate its capability for the exactly solvable case of a harmonic oscillator coupled to a Debye bath.

  8. Multidimensional Langevin approach to describing the 18O + 208Pb fusion-fission reaction

    International Nuclear Information System (INIS)

    Kosenko, G.I.; Ivanyuk, F.A.; Pashkevich, V.V.

    2002-01-01

    The fusion-fission reaction is treated as a multistep process. Langevin equations are used to describe the evolution of the system at each reaction stage. The parameters of the fusion process are calculated at the first stage. The results obtained in the input channel are employed as initial conditions in calculating the features of the fission process. The cross sections for fusion and fission are successfully described, and the cross sections for the formation of evaporation residues are estimated. In addition, the procedure used makes it possible to describe the mass distribution of fission fragments and the fragment-mass dependence of the multiplicity of prefission neutrons and to determine the mass-energy distribution of fission fragments. From the calculations, it follows that all the fission features of the reaction in question can be reproduced without considering the formation of a classical compound nucleus. The reaction times are so long that it is impossible to separate experimentally such events from the case of true fission through a compound nucleus

  9. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  10. Effects of Nanoparticles on Melting Process with Phase-Change Using the Lattice Boltzmann Method

    KAUST Repository

    Ibrahem, Ahmed M.

    2017-05-04

    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatangar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103to105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  11. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.

    Science.gov (United States)

    Botello-Smith, Wesley M; Luo, Ray

    2015-10-26

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membranes into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multigrid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations.

  12. Lattice Boltzmann simulations of the time evolution of living multicellular systems.

    Science.gov (United States)

    Cristea, Artur; Neagu, Adrian; Sofonea, Victor

    2011-01-01

    Embryonic tissues and multicellular aggregates of adult cells mimic the behavior of highly viscous liquids. The liquid analogy helps to understand morphogenetic phenomena, such as cell sorting and tissue fusion, observed in developmental biology and tissue engineering. Tissue fusion is vital in tissue printing, an emergent technique based on computer-controlled deposition of tissue fragments and biocompatible materials. Computer simulations proved useful in predicting post-printing shape changes of tissue constructs. The simulation methods available to date, however, are unable to describe the time evolution of living systems made of millions of cells. The Lattice Boltzmann (LB) approach allows the implementation of interaction forces between the constituents of the system and yields time evolution in terms of distribution functions. With tissue engineering applications in mind, we have developed a finite difference Lattice Boltzmann model of a multicellular system and applied it to simulate the sidewise fusion of two contiguous cylinders made of cohesive cells and embedded in a medium (hydrogel). We have identified a biologically relevant range of model parameters. The proposed LB model may be extended to describe the time evolution of more complex multicellular structures such as sheets or tubes produced by tissue printing. © 2011 – IOS Press and the authors. All rights reserved

  13. An efficient numerical method for solving the Boltzmann equation in multidimensions

    Science.gov (United States)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  14. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach

    Science.gov (United States)

    Gendre, Félix; Ricot, Denis; Fritz, Guillaume; Sagaut, Pierre

    2017-08-01

    This study focuses on grid refinement techniques for the direct simulation of aeroacoustics, when using weakly compressible lattice Boltzmann models, such as the D3Q19 athermal velocity set. When it comes to direct noise computation, very small errors on the density or pressure field may have great negative consequences. Even strong acoustic density fluctuations have indeed a clearly lower amplitude than the hydrodynamic ones. This work deals with such very weak spurious fluctuations that emerge when a vortical structure crosses a refinement interface, which may contaminate the resulting aeroacoustic field. We show through an extensive literature review that, within the framework described above, this issue has never been addressed before. To tackle this problem, we develop an alternative algorithm and compare its behavior to a classical one, which fits our in-house vertex-centered data structure. Our main idea relies on a directional splitting of the continuous discrete velocity Boltzmann equation, followed by an integration over specific characteristics. This method can be seen as a specific coupling between finite difference and lattice Boltzmann, locally on the interface between the two grids. The method is assessed considering two cases: an acoustic pulse and a convected vortex. We show how very small errors on the density field arise and propagate throughout the domain when a vortical flow crosses the refinement interface. We also show that an increased free stream Mach number (but still within the weakly compressible regime) strongly deteriorates the situation, although the magnitude of the errors may remain negligible for purely aerodynamic studies. A drastically reduced level of error for the near-field spurious noise is obtained with our approach, especially for under-resolved simulations, a situation that is crucial for industrial applications. Thus, the vortex case is proved useful for aeroacoustic validations of any grid refinement algorithm.

  15. The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells.

    Science.gov (United States)

    Fischer, Lukas P; Peter, Toni; Holm, Christian; de Graaf, Joost

    2015-08-28

    The so-called "raspberry" model refers to the hybrid lattice-Boltzmann and Langevin molecular dynamics scheme for simulating the dynamics of suspensions of colloidal particles, originally developed by Lobaskin and Dünweg [New J. Phys. 6, 54 (2004)], wherein discrete surface points are used to achieve fluid-particle coupling. This technique has been used in many simulation studies on the behavior of colloids. However, there are fundamental questions with regards to the use of this model. In this paper, we examine the accuracy with which the raspberry method is able to reproduce Stokes-level hydrodynamic interactions when compared to analytic expressions for solid spheres in simple-cubic crystals. To this end, we consider the quality of numerical experiments that are traditionally used to establish these properties and we discuss their shortcomings. We show that there is a discrepancy between the translational and rotational mobility reproduced by the simple raspberry model and present a way to numerically remedy this problem by adding internal coupling points. Finally, we examine a non-convex shape, namely, a colloidal dumbbell, and show that the filled raspberry model replicates the desired hydrodynamic behavior in bulk for this more complicated shape. Our investigation is continued in de Graaf et al. [J. Chem. Phys. 143, 084108 (2015)], wherein we consider the raspberry model in the confining geometry of two parallel plates.

  16. An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun

    2012-01-01

    We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971

  17. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  18. Comment on ''Boltzmann equation and the conservation of particle number''

    International Nuclear Information System (INIS)

    Zanette, D.

    1990-09-01

    In a recent paper (Z. Banggu, Phys. Rev. A 42, 761 (1990)) it is argued that some solutions of the Boltzmann equation do not satisfy particle conservation as a consequence of the independence of velocity on position. In this comment, the arguments and conclusions of that paper are discussed. In particular, it is stressed that the temporal series used for solving the kinetic equation are generally divergent. A discussion about the particle conservation in its solutions is also provided. (author). 4 refs

  19. Finite-Temperature Non-equilibrium Quasicontinuum Method based on Langevin Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Marian, J; Venturini, G; Hansen, B; Knap, J; Ortiz, M; Campbell, G

    2009-05-08

    The concurrent bridging of molecular dynamics and continuum thermodynamics presents a number of challenges, mostly associated with energy transmission and changes in the constitutive description of a material across domain boundaries. In this paper, we propose a framework for simulating coarse dynamic systems in the canonical ensemble using the Quasicontinuum method (QC). The equations of motion are expressed in reduced QC coordinates and are strictly derived from dissipative Lagrangian mechanics. The derivation naturally leads to a classical Langevin implementation where the timescale is governed by vibrations emanating from the finest length scale occurring in the computational cell. The equations of motion are integrated explicitly via Newmark's ({beta} = 0; {gamma} = 1/2) method, leading to a robust numerical behavior and energy conservation. In its current form, the method only allows for wave propagations supported by the less compliant of the two meshes across a heterogeneous boundary, which requires the use of overdamped dynamics to avoid spurious heating due to reflected vibrations. We have applied the method to two independent crystallographic systems characterized by different interatomic potentials (Al and Ta) and have measured thermal expansion in order to quantify the vibrational entropy loss due to homogenization. We rationalize the results in terms of system size, mesh coarseness, and nodal cluster diameter within the framework of the quasiharmonic approximation. For Al, we find that the entropy loss introduced by mesh coarsening varies linearly with the element size, and that volumetric effects are not critical in driving the anharmonic behavior of the simulated systems. In Ta, the anomalies of the interatomic potential employed result in negative and zero thermal expansion at low and high temperatures, respectively.

  20. Finite Element Based Formulation of Lattice Boltzmann Equation

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Kwon, Young W.; Kwon, Young W.

    2008-01-01

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Recently, the technique was also applied to fluid-structure interaction problems. Most of those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. There have been different kinds of approaches to address the problems. The most common technique was using the finite volume formulation of the lattice Boltzmann equation. Another approach was a point-wise interpolation technique for irregular grids. Other techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the isoparametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, there are variety of choices of finite elements such as triangular or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general six-sided solids in 3-D. As a result, the present study presents a new finite element formulation for the lattice Boltzmann equation using the general weighted residual technique. Among the weighted residual formulations, the collocation method, Galerkin method or method of moments are used to develop the finite element based LBM

  1. Low uncertainty Boltzmann constant determinations and the kelvin redefinition.

    Science.gov (United States)

    Fischer, J

    2016-03-28

    At its 25th meeting, the General Conference on Weights and Measures (CGPM) approved Resolution 1 'On the future revision of the International System of Units, the SI', which sets the path towards redefinition of four base units at the next CGPM in 2018. This constitutes a decisive advance towards the formal adoption of the new SI and its implementation. Kilogram, ampere, kelvin and mole will be defined in terms of fixed numerical values of the Planck constant, elementary charge, Boltzmann constant and Avogadro constant, respectively. The effect of the new definition of the kelvin referenced to the value of the Boltzmann constant k is that the kelvin is equal to the change of thermodynamic temperature T that results in a change of thermal energy kT by 1.380 65×10(-23) J. A value of the Boltzmann constant suitable for defining the kelvin is determined by fundamentally different primary thermometers such as acoustic gas thermometers, dielectric constant gas thermometers, noise thermometers and the Doppler broadening technique. Progress to date of the measurements and further perspectives are reported. Necessary conditions to be met before proceeding with changing the definition are given. The consequences of the new definition of the kelvin on temperature measurement are briefly outlined. © 2016 The Author(s).

  2. Lattice Boltzmann simulations of immiscible displacement process with large viscosity ratios

    Science.gov (United States)

    Rao, Parthib; Schaefer, Laura

    2017-11-01

    Immiscible displacement is a key physical mechanism involved in enhanced oil recovery and carbon sequestration processes. This multiphase flow phenomenon involves a complex interplay of viscous, capillary, inertial and wettability effects. The lattice Boltzmann (LB) method is an accurate and efficient technique for modeling and simulating multiphase/multicomponent flows especially in complex flow configurations and media. In this presentation we present numerical simulation results of displacement process in thin long channels. The results are based on a new psuedo-potential multicomponent LB model with multiple relaxation time collision (MRT) model and explicit forcing scheme. We demonstrate that the proposed model is capable of accurately simulating the displacement process involving fluids with a wider range of viscosity ratios (>100) and which also leads to viscosity-independent interfacial tension and reduction of some important numerical artifacts.

  3. Modelling the IDV Emissions of the BL Lac Objects with a Langevin ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... C. S. Leung1 J. Y. Wei1 T. Harko2 Z. Kovacs2. National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, China. Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road, Hong ...

  4. Multilevel Methods for the Poisson-Boltzmann Equation

    Science.gov (United States)

    Holst, Michael Jay

    We consider the numerical solution of the Poisson -Boltzmann equation (PBE), a three-dimensional second order nonlinear elliptic partial differential equation arising in biophysics. This problem has several interesting features impacting numerical algorithms, including discontinuous coefficients representing material interfaces, rapid nonlinearities, and three spatial dimensions. Similar equations occur in various applications, including nuclear physics, semiconductor physics, population genetics, astrophysics, and combustion. In this thesis, we study the PBE, discretizations, and develop multilevel-based methods for approximating the solutions of these types of equations. We first outline the physical model and derive the PBE, which describes the electrostatic potential of a large complex biomolecule lying in a solvent. We next study the theoretical properties of the linearized and nonlinear PBE using standard function space methods; since this equation has not been previously studied theoretically, we provide existence and uniqueness proofs in both the linearized and nonlinear cases. We also analyze box-method discretizations of the PBE, establishing several properties of the discrete equations which are produced. In particular, we show that the discrete nonlinear problem is well-posed. We study and develop linear multilevel methods for interface problems, based on algebraic enforcement of Galerkin or variational conditions, and on coefficient averaging procedures. Using a stencil calculus, we show that in certain simplified cases the two approaches are equivalent, with different averaging procedures corresponding to different prolongation operators. We also develop methods for nonlinear problems based on a nonlinear multilevel method, and on linear multilevel methods combined with a globally convergent damped-inexact-Newton method. We derive a necessary and sufficient descent condition for the inexact-Newton direction, enabling the development of extremely

  5. Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

    International Nuclear Information System (INIS)

    Bošnjaković, D; Petrović, Z Lj; Dujko, S; White, R D

    2014-01-01

    A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in Resistive Plate Chambers (RPCs) that are used for timing and triggering purposes in many high energy physics experiments at CERN and elsewhere. Using cross sections for electron scattering in C 2 H 2 F 4 , iso-C 4 H 10 and SF 6 as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric field E/N in various C 2 H 2 F 4 /iso-C 4 H 10 /SF 6 gas mixtures used in RPCs in the ALICE, CMS and ATLAS experiments. Emphasis is placed upon the explicit and implicit effects of non-conservative collisions (e.g. electron attachment and/or ionization) on the drift and diffusion. Among many interesting and atypical phenomena induced by the explicit effects of non-conservative collisions, we note the existence of negative differential conductivity (NDC) in the bulk drift velocity component with no indication of any NDC for the flux component in the ALICE timing RPC system. We systematically study the origin and mechanisms for such phenomena as well as the possible physical implications which arise from their explicit inclusion into models of RPCs. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena. (paper)

  6. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  7. Investigating Interfacial Area in a Multiphase Porous System Using Computed Microtomography and Lattice-Boltzmann Simulations

    Science.gov (United States)

    Porter, M. L.; Wildenschild, D.; Schaap, M. G.

    2007-12-01

    The interface that exists between immiscible fluids plays an important role in multiphase flow and transport in subsurface environments. In this study interfacial area per volume was investigated using computed microtomographic image data and lattice-Boltzmann simulations. A multicomponent lattice-Boltzmann model was used to simulate air-water drainage and imbibition experiments. The pore geometry for the simulations was generated using computed microtomographic image data from the experiments. Based on analysis of the Reynolds, Capillary and Bond number it was determined that capillarity was the dominating force in the experiments, thus gravity, viscous and inertial forces were not taken into account in the simulations. Both pressure and flux boundary conditions were investigated with the simulations. The flux boundary conditions reflect the conditions in the experiments. The pressure boundary conditions are consistent with the more traditional methods for measuring capillary pressure - saturation curves. Simulations with both boundary conditions are in good agreement for the capillary pressure saturation curves. Comparisons between experimental and simulated capillary pressure - saturation curves show relatively good agreement. A preliminary comparison between nonwetting - wetting phase interfacial area per volume estimates indicates good agreement for drainage, however, the simulated interfacial area estimates for imbibition were significantly higher than those obtained in the experiments. The exact cause of the high estimates during imbibition is currently under investigation.

  8. Non-Boltzmann Ensembles and Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Murthy, K. P. N.

    2016-01-01

    Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc . This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g ( E , M ), as a function of both energy E , and order parameter M . This is carried out in two stages. We estimate g ( E ) in the first stage

  9. The Interaction of Boltzmann with Mach, Ostwald and Planck, and his influence on Nernst and Einstein

    International Nuclear Information System (INIS)

    Broda, E.

    1981-01-01

    Boltzmann esteemed both Mach and Ostwald personally and as experimentalists, but consistently fought them in epistemology. He represented atomism and realism against energism and positivism. In the early period Boltzmann also had to struggle against Planck as a phenomenologist, but he welcomed his quantum hypothesis. As a scientist Nernst was also under Boltzmann's influence. Einstein learned atomism from (Maxwell and) Boltzmann. After Einstein had overcome Mach's positivist influence, he unknowingly approached Boltzmann's philosophical views. Some sociopolitlcal aspects of the lives of the great physicists will be discussed. It will be shown how they all, and many of Boltzmann's most eminent students, in one way or other conflicted with evil tendencies and developments in existing society. (author)

  10. Fully Quantum Description of the Zundel Ion: Combining Variational Quantum Monte Carlo with Path Integral Langevin Dynamics.

    Science.gov (United States)

    Mouhat, Félix; Sorella, Sandro; Vuilleumier, Rodolphe; Saitta, Antonino Marco; Casula, Michele

    2017-06-13

    We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo solution of the electronic part with the path integral formalism for the quantum nuclear dynamics. On the one hand, the path integral molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational quantum Monte Carlo can provide Born-Oppenheimer potential energy surfaces with a precision comparable to the most-advanced post-Hartree-Fock approaches, and with a favorable scaling with the system size. In order to cope with the intrinsic noise due to the stochastic nature of quantum Monte Carlo methods, we generalize the path integral molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of quantum Monte Carlo nuclear forces. The variational parameters of the quantum Monte Carlo wave function are evolved during the nuclear dynamics, such that the Born-Oppenheimer potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well-controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated, even in the presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be also very efficient in the case of noiseless (deterministic) ionic forces. The new implementation is validated on the Zundel ion (H 5 O 2 + ) by direct comparison with standard path integral Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well

  11. Errors in a nonlinear graphic-semantic mapping task resulting from lesions in Boltzmann machine: is it relevant to dyslexia?

    Science.gov (United States)

    Geva, A B; Shtram, L; Policker, S

    2000-07-01

    One of the most fascinating aspects of brain research is the subject of language. As in many other cases, the malfunctions that occur in different persons for various reasons give us insight on the mechanisms that support our ability to talk, read and listen. Following the work of Plaut and associates, we deal with the dyslexia disorder, which is the overall name for a large number of reading disorders. A Boltzmann machine neural network scheme was trained to implement the nonlinear mapping task of graphic representation into semantic representation, which may model the brain sections responsible for the translation of a written word into meanings and syllables. After training, various types of lesions were applied and the performance of the network was tested in order to measure the effect of each lesion on the error rate and type distribution that were detected. The system's errors were classified into several categories and the distribution of errors between the categories was studied. Using the simulations, it is demonstrated that a finite scheduling process in the Boltzmann machine causes the distribution of the network's errors to be unique and different from its expected error distribution. The phenomenon is given a mathematical explanation rooted in the statistical mechanics basics of the Boltzmann machine. Test results suggest the localization of certain reading functions within the network. Comparison is made to relevant types of dyslexia and shows resemblance in major symptoms as well as in certain known side effects.

  12. Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods

    Science.gov (United States)

    Sukop, Michael C.; Huang, Haibo; Alvarez, Pedro F.; Variano, Evan A.; Cunningham, Kevin J.

    2013-01-01

    Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy's law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy's law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy's law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.

  13. From Boltzmann equations to steady wall velocities

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Rues, Ingo; Nardini, Germano; California Univ., Santa Barbara, CA

    2014-07-01

    By means of a relativistic microscopic approach we calculate the expansion velocity of bubbles generated during a first-order electroweak phase transition. In particular, we use the gradient expansion of the Kadanoff-Baym equations to set up the fluid system. This turns out to be equivalent to the one found in the semi-classical approach in the non-relativistic limit. Finally, by including hydrodynamic deflagration effects and solving the Higgs equations of motion in the fluid, we determine velocity and thickness of the bubble walls. Our findings are compared with phenomenological models of wall velocities. As illustrative examples, we apply these results to three theories providing first-order phase transitions with a particle content in the thermal plasma that resembles the Standard Model.

  14. Application of the lattice Boltzmann method to transition in oscillatory channel flow

    CERN Document Server

    Cosgrove, J A; Tonge, S J; Munro, C G; Greated, C A; Campbell, D M

    2003-01-01

    In this study the applicability of the lattice Boltzmann method to oscillatory channel flow with a zero mean velocity has been evaluated. The model has been compared to exact analytical solutions in the laminar case (Re subdelta < 100, where Re subdelta is the Reynolds number based on the Stokes layer) for the Womersley parameter 1 < alpha < 31. In this regime, there was good agreement between numerical and exact analytical solutions. The model was then applied to study the primary instability of oscillatory channel flow with a zero mean velocity. For these transitionary flows the parameters were varied in the range 400 < Re subdelta < 1000 and 4 < alpha < 16. Disturbances superimposed on the numerical solution triggered the two-dimensional primary instability. This phenomenon has not been numerically evaluated over the range of alpha or Re subdelta currently investigated. The results are consistent with quasi-steady linear stability theories and previous numerical investigations.

  15. Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics

    Science.gov (United States)

    Chen, Yu-Zhong; Lai, Ying-Cheng

    2018-03-01

    Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.

  16. Lattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection

    Directory of Open Access Journals (Sweden)

    J. Alinejad

    2016-01-01

    Full Text Available The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treated as points moving in the computational domain as a result of the fluid motion. Entropy generation due to heat transfer irreversibility, isotherms, streamlines and Nusselt numbers were obtained and discussed. Total entropy generations in various cases are also reported and optimum case is presented based on minimum entropy generation.

  17. Extended Lattice Boltzmann Method with Application to Predict Aerodynamic Loads of Long Span Bridge

    Science.gov (United States)

    Liu, Tiancheng; Liu, Gao; Li, Yi; Ge, Yaojun

    2010-05-01

    The lattice Boltzmann (LB) method, a new conceptual approach to solve the fluid dynamics problem, is presented at first. The turbulence model is incorporated into the normal LB equation to simulate turbulence flow in the form of turbulence relaxation time determined by the nonequilibrium particle distribution function and Smagorinsky model. The total relaxation time is defined as the contribution of molecule viscosity and turbulence eddy viscosity. The aerodynamic forces on bridge girders are predicted by present LB method and the analysis of flow state is performed. The validity of LB method is verified through comparing the present results with the available experimental data and those obtained from the solutions of Navier-Stockes equation like Reynolds averaged Navier-Stokes (RANS) and discrete vortex method (DVM).

  18. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  19. Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems

    Science.gov (United States)

    Sun, Ning

    Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface

  20. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  1. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  2. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion of so...

  3. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-01-01

    We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  4. A modified Poisson-Boltzmann equation applied to protein adsorption.

    Science.gov (United States)

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  6. The Fluid Dynamical Limits of the Linearized Boltzmann Equation.

    Science.gov (United States)

    Campini, Marco

    The old question concerning the mathematical formulation of the fluid dynamic limits of kinetic theory is examined by studying the solution of the Cauchy problem for two differently scaled linearized Boltzmann equations on periodic domain as the mean free path of the particles becomes small. Under minimal assumptions on the initial data, by using an a priori estimate, it is possible, in a Hilbert space functional frame, to prove the weak convergence of solutions toward a function that has the form of an infinitesimal maxwellian in the velocity variable. The velocity moments of this function are then proved to satisfy either the linearized Euler or the Stokes system of equations (depending on the chosen scaling), by passing to the limit in the conservation relations derived from the Boltzmann equation. A theorem injecting continuously the intersection of certain weak spaces into a normed one is proved. Together with properties of the Euler semigroup, this allows to show strong convergence of the first three moments of the distribution function toward the macroscopic quantities density, bulk velocity and temperature, solutions of the linearized Euler system. The Stokes case is treated somewhat differently, through the introduction of a result, proved by using the adjoint formulation for linear kinetic equations, that extends the averaging theory of Golse-Lions-Perthame-Sentis. The desired convergence for the divergence-free component of the second moment toward the macroscopic velocity is then shown.

  7. Well-Posedness of the Iterative Boltzmann Inversion

    Science.gov (United States)

    Hanke, Martin

    2018-02-01

    The iterative Boltzmann inversion is a fixed point iteration to determine an effective pair potential for an ensemble of identical particles in thermal equilibrium from the corresponding radial distribution function. Although the method is reported to work reasonably well in practice, it still lacks a rigorous convergence analysis. In this paper we provide some first steps towards such an analysis, and we show under quite general assumptions that the associated fixed point operator is Lipschitz continuous (in fact, differentiable) in a suitable neighborhood of the true pair potential, assuming that such a potential exists. In other words, the iterative Boltzmann inversion is well-defined in the sense that if the kth iterate of the scheme is sufficiently close to the true pair potential then the k+1st iterate is an admissible pair potential, which again belongs to the domain of the fixed point operator. On our way we establish important properties of the cavity distribution function and provide a proof of a statement formulated by Groeneveld concerning the rate of decay at infinity of the Ursell function associated with a Lennard-Jones type potential.

  8. An interpolation boundary treatment for the Lattice Boltzmann method

    Science.gov (United States)

    Deladisma, Marnico D.; Smith, Marc K.

    2003-11-01

    A new boundary condition for the Lattice Boltzmann method based on bounce-back and spatial interpolations is presented. The boundary condition allows for the placement of a boundary at any position between nodes and tracks the exact position of that boundary. Multi-dimensional interpolation of streaming and bounce-back particle distribution functions from surrounding boundary nodes is used to solve for new distribution values. This allows more information from surrounding nodes to be incorporated into the boundary treatment calculation. Calculations of flow within a 2D rotating annulus (with and without an obstacle placed in the flow) using the present boundary condition are compared with calculations done with the commercial CFD solver Fluent. Results show that the boundary condition is accurate and robust for these cases. The boundary condition also allows for moving boundaries and is easily extended to 3D, which facilitates the simulation of moving 3D particles. The new boundary condition will allow a Lattice Boltzmann simulation of a rotating wall vessel bioreactor with freely suspended tissue constructs whose length scale is about 1 cm.

  9. Element Free Lattice Boltzmann Method for Fluid-Flow Problems

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Young Kwon [US Naval Postgraduate School, New York (United States)

    2007-10-15

    The Lattice Boltzmann Method (LBM) has been developed for application to thermal-fluid problems. Most of the those studies considered a regular shape of lattice or mesh like square and cubic grids. In order to apply the LBM to more practical cases, it is necessary to be able to solve complex or irregular shapes of problem domains. Some techniques were based on the finite element method. Generally, the finite element method is very powerful for solving two or three-dimensional complex or irregular shapes of domains using the iso-parametric element formulation which is based on a mathematical mapping from a regular shape of element in an imaginary domain to a more general and irregular shape of element in the physical domain. In addition, the element free technique is also quite useful to analyze a complex shape of domain because there is no need to divide a domain by a compatible finite element mesh. This paper presents a new finite element and element free formulations for the lattice Boltzmann equation using the general weighted residual technique. Then, a series of validation examples are presented.

  10. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  11. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  12. Hybrid Lattice Boltzmann Method for the Simulation of Blending Process in Static Mixers

    Science.gov (United States)

    Latt, Jonas; Kontaxakis, Dimitrios; Chatagny, Laurent; Muggli, Felix; Chopard, Bastien

    2013-12-01

    A lattice Boltzmann method is proposed to simulate the blending of two fluids in static, laminar mixers. The method uses a mesh-based algorithm to solve for the fluid flow, and a meshless technique to trace the interface between the blended fluids. This hybrid approach is highly accurate, because the position of the interface can be traced beyond the resolution of the grid. The numerical diffusion is negligible in this model, and it is possible to reproduce mixing patterns that contain more than one hundred striations with high fidelity. The implementation of this method in the massively parallel library Palabos is presented, and simulation results are compared with experimental data to emphasize the accuracy of the results.

  13. Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media

    KAUST Repository

    Li, Jun

    2013-01-01

    A lattice Boltzmann method (LBM) for flow simulations in highly heterogeneous porous media at both pore and Darcy scales is proposed in the paper. In the pore scale simulations, flow of two phases (e.g., oil and gas) or two immiscible fluids (e.g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce the computational complexity of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with the averaged results obtained using fine grid.

  14. Rahman Prize Lecture: Lattice Boltzmann simulation of complex states of flowing matter

    Science.gov (United States)

    Succi, Sauro

    Over the last three decades, the Lattice Boltzmann (LB) method has gained a prominent role in the numerical simulation of complex flows across an impressively broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase flows in micro-fluidic devices, all the way down to biopolymer translocation in nanopores and lately, even quark-gluon plasmas. After a brief introduction to the main ideas behind the LB method and its historical developments, we shall present a few selected applications to complex flow problems at various scales of motion. Finally, we shall discuss prospects for extreme-scale LB simulations of outstanding problems in the physics of fluids and its interfaces with material sciences and biology, such as the modelling of fluid turbulence, the optimal design of nanoporous gold catalysts and protein folding/aggregation in crowded environments.

  15. Phase-field-lattice Boltzmann studies for dendritic growth with natural convection

    Science.gov (United States)

    Takaki, Tomohiro; Rojas, Roberto; Sakane, Shinji; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2017-09-01

    Simulating dendritic growth with natural convection is challenging because of the size of the computational domain required when compared to the dendrite scale. In this study, a phase-field-lattice Boltzmann model was used to simulate dendritic growth in the presence of natural convection due to a difference in solute concentration. To facilitate and accelerate the large-scale simulation, a parallel computing code with multiple graphics processing units was developed. The effects of the computational domain size as well as those of gravity on the dendritic morphologies were examined by performing two-dimensional free dendritic growth simulations with natural convection. The effects of the gravity direction on the dendrite spacing and morphology were also investigated by simulating unidirectional solidification from multiple seeds.

  16. Lattice Boltzmann simulation of the behavior of spherical and nonspherical particles in a square pipe flow

    Science.gov (United States)

    Inamuro, Takaji; Hayashi, Hirofumi; Koshiyama, Masahiro

    2008-11-01

    The lattice Boltzmann method (LBM) for multicomponent immiscible fluids is applied to the simulations of solid-fluid mixture flows including spherical and nonspherical particles in a square pipe. A spherical solid particle is modeled by a droplet with strong interfacial tension and large viscosity, and consequently there is no need to track the moving solid-liquid boundary explicitly. Nonspherical (discoid and biconcave discoid) solid particles are made by applying artificial forces to the spherical droplet. It is found that spherical particles move around stable positions between the wall and the center of the pipe. On the other hand, a biconcave discoid particle moves along a helical path around the center of the pipe with periodic oscillations in its orientation. The radius of the helical path and the polar angle of the orientation increase as the hollow of the concave becomes larger.

  17. Lattice-Boltzmann-based simulations of diffusiophoresis of colloids and cells

    Science.gov (United States)

    Kreft Pearce, Jennifer; Castigliego, Joshua

    Increasing environmental degradation due to plastic pollutants requires innovative solutions that facilitate the extraction of pollutants without harming local biota. We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles based on their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. The system described above was simulated with various concentration gradients as well as various Soret coefficients in order to optimize the separation of the particles. This simulation, in particular, was intended to model an oceanic system where the particles of interest were motile and nonmotile plankton and microplastics. The separation of plankton from the microplastics was achieved.

  18. Simulating gas-liquid flow in a micro-channel with the lattice Boltzmann method

    Science.gov (United States)

    Shi, Grace; Lazouskaya, Volha; Jin, Yan; Wang, Lian-Ping

    2007-11-01

    The flows of water in natural soil porous media with air-water interface are important to colloid-facilitated transport of contaminants and other phenomena with groundwater as the carrier. These flows are complex in terms of the geometrical feature and physical and chemical forces involved. As first step, we here demonstrate that a gas-liquid interfacial viscous flow in a 3D micro-channel with a square cross-section can be simulated using the lattice Boltzmann method. The talk will cover the detailed ingredients of the two-phase LBE model including the proper equation of state, surface tension, and the triple-phase boundary conditions. Methods to improve the stability of the code such as using multiple relaxation times will be tested. Preliminary results will be presented and compared to parallel experimental observations using confocal laser scanning microscopy.

  19. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    International Nuclear Information System (INIS)

    Darquie, B.; Mejri, S.; Sow, P. L. T.; Lemarchand, C.; Triki, M.; Tokunaga, S. K.; Borde, C. J.; Chardonnet, C.; Daussy, C.

    2013-01-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 μm enables a determination of the Boltzmann constant k B . We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B , an exciting prospect considering the upcoming redefinition of the International System of Units. (authors)

  20. FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations

    Directory of Open Access Journals (Sweden)

    G Boroni

    2017-03-01

    Full Text Available Lattice Boltzmann Method (LBM has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.

  1. Fluid-Structure Interaction based on Lattice Boltzmann and p-FEM

    Science.gov (United States)

    Ahrenholz, Benjamin; Geller, Sebastian; Krafczyk, Manfred

    2010-03-01

    Over the last decade the Lattice Boltzmann Method (LBM) has matured as an efficient method for solving the Navier-Stokes equations. The p-version of the Finite Element Method (p-FEM) has proved to be highly efficient for a variety of problems in the field of structural mechanics. The focus of this contribution is to investigate the validity and efficiency of the coupling of two completely different numerical methods to simulate transient bidirectional Fluid-Structure Interaction (FSI) problems with very large structural deflections. In this contribution the treatment of moving boundaries in the fluid solver is presented, the computation of tractions and displacements on the boundary as well as the explicit coupling algorithm itself. In addition, efficiency aspects of the two approaches for two- and three-dimensional laminar flow examples at intermediate Reynolds numbers are discussed. Finally we give an outlook on modeling turbulent FSI problems.

  2. Lattice Boltzmann method used to simulate particle motion in a conduit

    Directory of Open Access Journals (Sweden)

    Dolanský Jindřich

    2017-06-01

    Full Text Available A three-dimensional numerical simulation of particle motion in a pipe with a rough bed is presented. The simulation based on the Lattice Boltzmann Method (LBM employs the hybrid diffuse bounce-back approach to model moving boundaries. The bed of the pipe is formed by stationary spherical particles of the same size as the moving particles. Particle movements are induced by gravitational and hydrodynamic forces. To evaluate the hydrodynamic forces, the Momentum Exchange Algorithm is used. The LBM unified computational frame makes it possible to simulate both the particle motion and the fluid flow and to study mutual interactions of the carrier liquid flow and particles and the particle–bed and particle–particle collisions. The trajectories of simulated and experimental particles are compared. The Particle Tracking method is used to track particle motion. The correctness of the applied approach is assessed.

  3. Lattice Boltzmann simulation of antiplane shear loading of a stationary crack

    Science.gov (United States)

    Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf

    2018-01-01

    In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.

  4. Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

    Science.gov (United States)

    Keating, Brian; Vahala, George; Yepez, Jeffrey; Soe, Min; Vahala, Linda

    2007-03-01

    There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

  5. Evaluation of ion binding to DNA duplexes using a size-modified Poisson-Boltzmann theory.

    Science.gov (United States)

    Chu, Vincent B; Bai, Yu; Lipfert, Jan; Herschlag, Daniel; Doniach, Sebastian

    2007-11-01

    Poisson-Boltzmann (PB) theory is among the most widely applied electrostatic theories in biological and chemical science. Despite its reasonable success in explaining a wide variety of phenomena, it fails to incorporate two basic physical effects, ion size and ion-ion correlations, into its theoretical treatment. Recent experimental work has shown significant deviations from PB theory in competitive monovalent and divalent ion binding to a DNA duplex. The experimental data for monovalent binding are consistent with a hypothesis that attributes these deviations to counterion size. To model the observed differences, we have generalized an existing size-modified Poisson-Boltzmann (SMPB) theory and developed a new numerical implementation that solves the generalized theory around complex, atomistic representations of biological molecules. The results of our analysis show that good agreement to data at monovalent ion concentrations up to approximately 150 mM can be attained by adjusting the ion-size parameters in the new size-modified theory. SMPB calculations employing calibrated ion-size parameters predict experimental observations for other nucleic acid structures and salt conditions, demonstrating that the theory is predictive. We are, however, unable to model the observed deviations in the divalent competition data with a theory that only accounts for size but neglects ion-ion correlations, highlighting the need for theoretical descriptions that further incorporate ion-ion correlations. The accompanying numerical solver has been released publicly, providing the general scientific community the ability to compute SMPB solutions around a variety of different biological structures with only modest computational resources.

  6. Third-order perturbative lattice and complex Langevin analyses of the finite-temperature equation of state of nonrelativistic fermions in one dimension

    Science.gov (United States)

    Loheac, Andrew C.; Drut, Joaquín E.

    2017-05-01

    We analyze the pressure and density equations of state of unpolarized nonrelativistic fermions at finite temperature in one spatial dimension with contact interactions. For attractively interacting regimes, we perform a third-order lattice perturbation theory calculation, assess its convergence properties by comparing with hybrid Monte Carlo results (there is no sign problem in this regime), and demonstrate agreement with real Langevin calculations. For repulsive interactions, we present lattice perturbation theory results as well as complex Langevin calculations, with a modified action to prevent uncontrolled excursions in the complex plane. Although perturbation theory is a common tool, our implementation of it is unconventional; we use a Hubbard-Stratonovich transformation to decouple the system and automate the application of Wick's theorem, thus generating the diagrammatic expansion, including symmetry factors, at any desired order. We also present an efficient technique to tackle nested Matsubara frequency sums without relying on contour integration, which is independent of dimension and applies to both relativistic and nonrelativistic systems, as well as all energy-independent interactions. We find exceptional agreement between perturbative and nonperturbative results at weak couplings, and furnish predictions based on complex Langevin at strong couplings. We additionally present perturbative calculations of up to the fifth-order virial coefficient for repulsive and attractive couplings. Both the lattice perturbation theory and complex Langevin formalisms can easily be extended to a variety of situations including polarized systems, bosons, and higher dimension.

  7. On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.

    Science.gov (United States)

    Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2011-11-01

    Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.

  8. Identify Huntington's disease associated genes based on restricted Boltzmann machine with RNA-seq data.

    Science.gov (United States)

    Jiang, Xue; Zhang, Han; Duan, Feng; Quan, Xiongwen

    2017-10-11

    Predicting disease-associated genes is helpful for understanding the molecular mechanisms during the disease progression. Since the pathological mechanisms of neurodegenerative diseases are very complex, traditional statistic-based methods are not suitable for identifying key genes related to the disease development. Recent studies have shown that the computational models with deep structure can learn automatically the features of biological data, which is useful for exploring the characteristics of gene expression during the disease progression. In this paper, we propose a deep learning approach based on the restricted Boltzmann machine to analyze the RNA-seq data of Huntington's disease, namely stacked restricted Boltzmann machine (SRBM). According to the SRBM, we also design a novel framework to screen the key genes during the Huntington's disease development. In this work, we assume that the effects of regulatory factors can be captured by the hierarchical structure and narrow hidden layers of the SRBM. First, we select disease-associated factors with different time period datasets according to the differentially activated neurons in hidden layers. Then, we select disease-associated genes according to the changes of the gene energy in SRBM at different time periods. The experimental results demonstrate that SRBM can detect the important information for differential analysis of time series gene expression datasets. The identification accuracy of the disease-associated genes is improved to some extent using the novel framework. Moreover, the prediction precision of disease-associated genes for top ranking genes using SRBM is effectively improved compared with that of the state of the art methods.

  9. Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Krause, Oswin

    The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum...... of an objective function for which the gradient is not available. The algorithm samples function values from a search distribution and adapts the parameters of the distribution during the optimization process. In the thesis, new update schemes for the covariance matrix used by the CMA-ES are investigated....... An update rule using a triangular Cholesky factor is introduced and the additive covariance matrix update is replaced by a multiplicative rule. Experiments show that the proposed methods improve performance of the CMA-ES either computationally or by allowing simpler handling of constraints. The second part...

  10. Spreading Dynamics of Nanodrops: a Lattice Boltzmann Study

    Science.gov (United States)

    Gross, Markus; Varnik, Fathollah

    2014-01-01

    Spreading of nano-droplets is an interesting and technologically relevant phenomenon, where thermal fluctuations lead to unexpected deviations from well-known deterministic laws. Here, we apply the newly developed fluctuating nonideal lattice Boltzmann (LB) method [M. Gross, M. E. Cates, F. Varnik and R. Adhikari, J. Stat. Mech.2011, P03030 (2011)] for the study of this issue. Confirming the predictions of Davidovich and coworkers [Phys. Rev. Lett.95, 244905 (2005)], we provide the first independent evidence for the existence of an asymptotic, self-similar noise-driven spreading regime in both two- (2D) and three-dimensional (3D) geometry. The cross over from the deterministic Tanner's law, where the drop's base radius b grows (in 3D) with time as b t1/10 and the noise dominated regime, where b t1/6 is also observed by tuning the strength of thermal noise.

  11. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  12. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  13. Multimesh anisotropic adaptivity for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    Baker, C.M.J.; Buchan, A.G.; Pain, C.C.; Farrell, P.E.; Eaton, M.D.; Warner, P.

    2013-01-01

    Highlights: ► We solve the Boltzmann transport equation using anisotropically adaptive finite element meshes. ► The finite element mesh is resolved with minimal user input. ► Anisotropic adaptivity uses less elements than adaptive mesh refinement for the same finite element error. ► This paper also demonstrates the use of separate meshes for each energy group within the multigroup discretisation. ► The methods are applied to a range of fixed source and eigenvalue problems. - Abstract: This article presents a new adaptive finite element based method for the solution of the spatial dimensions of the Boltzmann transport equation. The method applies a curvature based error metric to locate the under and over resolved regions of a solution and this, in turn, is used to guide the refinement and coarsening of the spatial mesh. The error metrics and re-meshing procedures are designed such that they enable anisotropic resolution to form in the mesh should it be appropriate to do so. The adaptive mesh enables the appropriate resolution to be applied throughout the whole domain of a problem and so increase the efficiency of the solution procedure. Another new approach is also described that allows independent adaptive meshes to form for each of the energy group fluxes. The use of independent meshes can significantly improve computational efficiency when solving problems where the different group fluxes require high resolution over different regions. The mesh to mesh interpolation is made possible through the use of a ‘supermeshing’ procedure that ensures the conservation of particles when calculating the group to group scattering sources. Finally it is shown how these methods can be incorporated within a solver to resolve both fixed source and eigenvalue problems. A selection of both fixed source and eigenvalue problems are solved in order to demonstrate the capabilities of these methods

  14. A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations

    KAUST Repository

    Reis, T.

    2011-07-01

    Lattice Boltzmann models that recover a macroscopic description of multiphase flow of immiscible liquids typically represent the boundaries between phases using a scalar function, the phase field, that varies smoothly over several grid points. Attempts to tune the model parameters to minimise the widths of these interfaces typically lead to the interfaces becoming fixed to the underlying grid instead of advecting with the fluid velocity. This phenomenon, known as lattice pinning, is strikingly similar to that associated with the numerical simulation of conservation laws coupled to stiff algebraic source terms. We present a lattice Boltzmann formulation of the model problem proposed by LeVeque and Yee (1990) [3] to study the latter phenomenon in the context of computational combustion, and offer a volume-conserving extension in multiple space dimensions. Inspired by the random projection method of Bao and Jin (2000) [1] we further generalise this formulation by introducing a uniformly distributed quasi-random variable into the term responsible for the sharpening of phase boundaries. This method is mass conserving, gives correct average propagation speeds over many timesteps, and is shown to significantly delay the onset of pinning as the interface width is reduced. © 2010 Elsevier Ltd.

  15. Lattice Boltzmann simulation of flow and heat transfer in random porous media constructed by simulated annealing algorithm

    International Nuclear Information System (INIS)

    Liu, Minghua; Shi, Yong; Yan, Jiashu; Yan, Yuying

    2017-01-01

    Highlights: • A numerical capability combining the lattice Boltzmann method with simulated annealing algorithm is developed. • Digitized representations of random porous media are constructed using limited but meaningful statistical descriptors. • Pore-scale flow and heat transfer information in random porous media is obtained by the lattice Boltzmann simulation. • The effective properties at the representative elementary volume scale are well specified using appropriate upscale averaging. - Abstract: In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contrast to previous studies which simplify porous media as arrays of regularly shaped objects or effective pore networks, the LB + SA method in this article can model statistically meaningful random porous structures in irregular morphology, and simulate pore-scale transport processes inside them. Pore-scale isothermal flow and heat conduction in a set of constructed random porous media characterized by statistical descriptors were then simulated through use of the LB + SA method. The corresponding averages over the computational volumes and the related effective transport properties were also computed based on these pore scale numerical results. Good agreement between the numerical results and theoretical predictions or experimental data on the representative elementary volume scale was found. The numerical simulations in this article demonstrate combination of the LB method with the SA algorithm is a viable and powerful numerical strategy for simulating transport phenomena in random porous media in complex geometries.

  16. Multiple-Relaxation-Time Lattice Boltzmann Approach to Richtmyer-Meshkov Instability

    International Nuclear Information System (INIS)

    Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram-Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701 (R)] is only valid in subsonic flows. The von Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer-Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Lattice Boltzmann Method of a Flooding Accident at Gopeng, Perak, Malaysia

    Directory of Open Access Journals (Sweden)

    Siti Habibah Shafiai

    2017-01-01

    Full Text Available The extraordinary flood had hit the residential area at Taman Raia Mesra, Gopeng, Perak, Malaysia, in November 2016. The event illustrated how the river basin had been fully inundated due to the heavy rainfall and caused the overflow to this affected area. It was reported that the occurrence became worst as the outlet of retention pond which connects to the river is unsuitable for the water outflow. Henceforth, this paper attempts to evaluate the causal factor of this recent disaster by using a model developed from Lattice Boltzmann Method (LBM. The model also incorporated with the rainfall and stormwater in LABSWE™. The simulation was commenced with the basic tests for model validation comprising turbulent and jet-forced flow in a circular channel, which resulted in a good agreement for both models. The simulation continued by using LABSWE model to reveal the water depth and velocity profile at the study site. These results had proven the incompatibility size of the outlet pond which is too small for the water to flow out to the river. The study is capable of providing the authorities with a sustainable design of proper drainage system, especially in Malaysia which is constantly receiving the outrageous heavy rainfall.

  18. Multiple-relaxation-time lattice Boltzmann simulation for flow, mass transfer, and adsorption in porous media

    Science.gov (United States)

    Ma, Qiang; Chen, Zhenqian; Liu, Hao

    2017-07-01

    In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.

  19. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  20. On the Boltzmann-Grad Limit for Smooth Hard-Sphere Systems

    Science.gov (United States)

    Tessarotto, Massimo; Cremaschini, Claudio; Mond, Michael; Asci, Claudio; Soranzo, Alessandro; Tironi, Gino

    2018-03-01

    The problem is posed of the prescription of the so-called Boltzmann-Grad limit operator (L_{BG}) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator L_{BG}, the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is "no time-asymmetric ingredient" in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the "ab initio" axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.