WorldWideScience

Sample records for boltzmann transport equation

  1. The relativistic linear Boltzmann transport equation

    International Nuclear Information System (INIS)

    In this thesis the relativistic linear Boltzmann transport equation is applied to an experiment in pion production by 740 MeV protons incident on a variety of nuclei. This equation is solved by the Monte Carlo method of generating a single particle intranuclear cascade. The transport equation is derived starting with the N-body equation of motion for quantum mechanics in phase in order to determine under what conditions it is a valid approximation. It is shown that it should be a valid semi-classical approximation provided that: (1) The kinetic energy of the transport particle is much greater than its energy of interaction with the mean nuclear potential field. (2) The two-body collision interactions which make up the single particle intranuclear cascade take place over space and time intervals which are small relative to the internucleon space and time intervals for interactions within the nucleus and also compared to the space and time scales over which the probability distribution undergoes variation. In the pion production calculation condition (2) is only approximately met but reasonable agreement with the experimental data is obtained similar to that obtained in other theoretical calculations compared to this experiment

  2. The Boltzmann equation theory of charged particle transport

    International Nuclear Information System (INIS)

    It is shown how a formally exact Kubo-like response theory equivalent to the Boltzmann equation theory of charged particle transport can be constructed. The response theory gives the general wavevector and time-dependent velocity distribution at any time in terms of an initial distribution function, to which is added the response induced by a generalized perturbation over the intervening time. The usual Kubo linear response result for the distribution function is recovered by choosing the initial velocity distribution to be Maxwellian. For completeness the response theory introduces an exponential convergence function into the response time integral. This is equivalent to using a modified Boltzmann equation but the general form of the transport theory is not changed. The modified transport theory can be used to advantage where possible convergence difficulties occur in numerical solutions of the Boltzmann equation. This paper gives a systematic development of the modified transport theory and shows how the response theory fits into the broader scheme of solving the Boltzmann equation. The discussion extends both the work of Kumar et al. (1980), where the distribution function is expanded out in terms of tensor functions, and the propagator description where the non-hydrodynamic time development of the distribution function is related to the wavevector dependent Green function of the Boltzmann equation

  3. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    International Nuclear Information System (INIS)

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials

  4. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    We consider the splitting of the straight-ahead Boltzmann transport equation in the Boltzmann-Fokker-Planck equation, decomposing the differential cross-section into a singular part, corresponding to small energy transfer events, and in a regular one, which corresponds to large energy transfer. The convergence of implantation profile, nuclear and electronic energy depositions, calculated from the Boltzmann-Fokker-Planck equation, to the respective exact distributions, calculated from Monte-Carlo method, was exanimate in a large-energy interval for various values of splitting parameter and for different ion-target mass relations. It is shown that for the universal potential there exists an optimal value of splitting parameter, for which range and deposited energy distributions, calculated from the Boltzmann-Fokker-Planck equation, accurately approximate the exact distributions and which minimizes the computational expenses

  5. Boltzmann-Fourier transformed transport equation in half space

    International Nuclear Information System (INIS)

    Using eigenfunctions of the stationary transport equation and analytical expressions of semigroups generated by linear collision transport operator, an analytical solution of the transport equation in a compact form is being derived for semi-infinite medium. (author)

  6. MULTI-FLUX FORMULATION OF THE BOLTZMANN EQUATION FOR CARRIER TRANSPORT IN SEMICONDUCTORS

    OpenAIRE

    Banoo, Kausar; Lundstrom, Mark

    1998-01-01

    This report describes how the Boltzmann Transport Equation for carrier transport in s~~miconductocrasn be formulated in a manner suit able for numerical simulation. It arose from an effort to generalise earlier work which used pre-computed scattering matrices to solve the Boltzmann Transport Equation. It also generalises the formulation used to treat neutron transport so that energy band-structure, scattering in semiconductors and electric fields can be treated. We present two different, but ...

  7. ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation

    OpenAIRE

    Faghaninia, Alireza; Ager III, Joel W.; Lo, Cynthia S.

    2015-01-01

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semi-empirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport propert...

  8. A generalized linear Boltzmann equation for non-classical particle transport

    International Nuclear Information System (INIS)

    This paper presents a derivation and initial study of a new generalized linear Boltzmann equation (GLBE), which describes particle transport for random statistically homogeneous systems in which the distribution function for chord lengths between scattering centers is non-exponential. Such problems have recently been proposed for the description of photon transport in atmospheric clouds; this paper is a first attempt to develop a Boltzmann-like equation for these and other related applications.

  9. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

    OpenAIRE

    Punshon-Smith, Samuel; Smith, Scott

    2016-01-01

    This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kin...

  10. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  11. An overview of the Boltzmann transport equation solution for neutrons, photons and electrons in cartesian geometry

    International Nuclear Information System (INIS)

    Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even with modern supercomputers. The most versatile and widely used deterministic methods are the PN approximation, the SN method (discrete ordinates method) and their variants. In the discrete ordinates (SN) formulations of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the Laplace transform technique applied to SN two dimensional transport equation in a rectangular domain considering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea relies on applying the PN approximation, a recent advance in the class of deterministic methods, in the angular variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented. (author)

  12. Calculation of electronic transport coefficients by a variational method for the linearized Boltzmann equation

    International Nuclear Information System (INIS)

    A variational procedure is applied to a linearized Boltzmann equation to calculate electric conductivity, thermal conductivity and Seebeck coefficient. Interaction of electrons with vacancies and impurities as well as with magnetic ions and phonons are taken into consideration. As an example these three transport coefficients are evaluated for GdAl2 in the temperature range 0-300 0K. (G.Q.)

  13. Radiative or neutron transport modeling using a lattice Boltzmann equation framework

    Science.gov (United States)

    Bindra, H.; Patil, D. V.

    2012-07-01

    In this paper, the lattice Boltzmann equation (LBE)-based framework is used to obtain the solution for the linear radiative or neutron transport equation. The LBE framework is devised for the integrodifferential forms of these equations which arise due to the inclusion of the scattering terms. The interparticle collisions are neglected, hence omitting the nonlinear collision term. Furthermore, typical representative examples for one-dimensional or two-dimensional geometries and inclusion or exclusion of the scattering term (isotropic and anisotropic) in the Boltzmann transport equation are illustrated to prove the validity of the method. It has been shown that the solution from the LBE methodology is equivalent to the well-known Pn and Sn methods. This suggests that the LBE can potentially provide a more convenient and easy approach to solve the physical problems of neutron and radiation transport.

  14. Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation

    Science.gov (United States)

    Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.

    2015-06-01

    Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.

  15. Pseudospectral Methods of Solution of the Linear and Linearized Boltzmann Equations; Transport and Relaxation

    Science.gov (United States)

    Shizgal, Bernie D.

    2011-05-01

    The study of the solution of the linearized Boltzmann equation has a very long history arising from the classic work by Chapman and Cowling. For small departures from a Maxwellian, the nonlinear Boltzmann equation can be linearized and the transport coefficients calculated with the Chapman-Enskog approach. This procedure leads to a set of linear integral equations which are generally solved with the expansion of the departure from Maxwellian in Sonine polynomials. The method has been used successfully for many decades to compare experimental transport data in atomic gases with theory generally carried out for realistic atom-atom differential cross sections. There are alternate pseudospectral methods which involve the discretization of the distribution function on a discrete grid. This paper considers a pseudospectral method of solution of the linearized hard sphere Boltzmann equation for the viscosity in a simple gas. The relaxation of a small departure from a Maxwellian is also considered for the linear test particle problem with unit mass ratio which is compared with the relaxation for the linearized one component Boltzmann equation.

  16. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  17. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    International Nuclear Information System (INIS)

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations 〈100〉, 〈110〉, and 〈111〉. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results

  18. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    Science.gov (United States)

    Rhyner, Reto; Luisier, Mathieu

    2013-12-01

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations ⟨100⟩, ⟨110⟩, and ⟨111⟩. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  19. Derivation of the generalized Fokker-Planck equation from the Boltzmann transport equation for particles with Zitterbewegung

    International Nuclear Information System (INIS)

    The Aron equation is a generalization of the Fokker-Planck equation allowing for diffusion motion with finite maximal velocity. The Aron equation can be regarded as a semi-phenomenological equation because it is based on phenomenological laws such as the Fick diffusion law. It is shown that the one-dimensional case of the Aron equation can be derived from the Boltzmann transport equation for particles in Zitterbewegung. The extension to the three-dimensional case, however, leads to an equation different from the Aron one

  20. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  1. Chebyshev spectral hexahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    This paper describes a new second generation spherical wavelet method for discretising the angular dimension of the Boltzmann transport equation. The approximation scheme provides a spectrally accurate expansion of the angular domain using Chebyshev collocation polynomials mapped into a wavelet space. Our method extends the work in Buchan et al. [Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., submitted for publication. Linear and quadratic hexahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Nucl. Sci. Eng.; Buchan, A., Pain, C.C., Eaton, M.D., Smedley-Stevenson, R., Goddard, A., Oliveira, C.D., 2005. Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation. Ann. Nucl. Energy 32, 1224-1273] of using low order finite element based wavelets. Here we show the spectral wavelets can improve on these techniques by providing more accurate representation of the angular fluxes. This also implies the method can provide improved solutions to those of the established methods SN and PN by reducing ray-effects and possibly Gibbs oscillations. We demonstrate this using a set of demanding mono-energetic particle transport problems

  2. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

    International Nuclear Information System (INIS)

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano’s and Lewis’ approaches are stated in this new equation. Fano’s theorem is found not to apply in the presence of electromagnetic fields. Lewis’ theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms. (paper)

  3. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

    Science.gov (United States)

    Bouchard, Hugo; Bielajew, Alex

    2015-07-01

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano’s and Lewis’ approaches are stated in this new equation. Fano’s theorem is found not to apply in the presence of electromagnetic fields. Lewis’ theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms.

  4. Application of the Boltzmann transport equation to ion implantation in semiconductors and multilayer targets

    International Nuclear Information System (INIS)

    Calculations and comparisons with experimental data indicate that the Boltzmann transport equation provides a comprehensive treatment of the general ion implantation problem. The primary ion distribution in a multilayer target can be calculated directly and is found to be in good agreement with experiments. The transport equation predicts the spatial distribution of recoils and thus provides the theoretical information needed to determine the fractional atomic displacement necessary for amorphization of silicon and the degree of stoichiometric imbalance that is produced when energetic ions are incident on a target having more than one type of host atom

  5. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Rhyner, Reto, E-mail: rhyner@iis.ee.ethz.ch; Luisier, Mathieu, E-mail: mluisier@iis.ee.ethz.ch [Integrated Systems Laboratory, ETH Zürich, Gloriastr. 35, 8092 Zürich (Switzerland)

    2013-12-14

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations 〈100〉, 〈110〉, and 〈111〉. In both QT and LB simulations, we use the same sp{sup 3}d{sup 5}s{sup *} tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  6. On Existence of $L^2$-solutions of Coupled Boltzmann Continuous Slowing Down Transport Equation System

    CERN Document Server

    Tervo, J; Frank, M; Herty, M

    2016-01-01

    The paper considers a coupled system of linear Boltzmann transport equation (BTE), and its Continuous Slowing Down Approximation (CSDA). This system can be used to model the relevant transport of particles used e.g. in dose calculation in radiation therapy. The evolution of charged particles (e.g. electrons and positrons) are in practice often modelled using the CSDA version of BTE because of the so-called forward peakedness of scattering events contributing to the particle fluencies (or particle densities), which causes severe problems for numerical methods. First, we prove the existence and uniqueness of solutions, under sufficient criteria and in appropriate $L^2$-based spaces, of a single (particle) CSDA-equation by using two complementary techniques, the Lions-Lax-Milgram Theorem (variational approach), and the theory evolution operators (semigroup approach). The necessary a priori estimates are shown. In addition, we prove the corresponding results and estimates for the system of coupled transport equat...

  7. Transport methods: general. 7. Formulation of a Fourier-Boltzmann Transformation to Solve the Three-Dimensional Transport Equation

    International Nuclear Information System (INIS)

    This paper presents some elements of a new approach to solve analytically the linearized three-dimensional (3-D) transport equation of neutral particles. Since this task is of such special importance, we present some results of a paper that is still in progress. The most important is that using this transformation, an integro-differential equation with an analytical solution is obtained. For this purpose, a simplest 3-D equation is being considered which describes the transport process in an infinite medium. Until now, this equation has been analytically considered either using the Laplace transform with respect to time parameter t or applying the Fourier transform over the space coordinate. Both of them reduce the number of differential terms in the equation; however, evaluation of the inverse transformation is complicated. In this paper, we introduce for the first time a Fourier transform induced by the Boltzmann operator. For this, we use a complete set of 3-D eigenfunctions of the Boltzmann transport operator defined in a similar way as those that have been already used in 3-D transport theory as a basic set to transform the transport equation. This set consists of a continuous part and a discrete one with spectral measure. The density distribution equation shows the known form asymptotic behavior. Several applications are to be performed using this equation and compared to the benchmark one. Such an analysis certainly would be out of the available space

  8. Linear and quadratic octahedral wavelets on the sphere for angular discretisations of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    In this paper, two new wavelet bases are developed for discretising the angular term of the first-order Boltzmann transport equation. The wavelets proposed are based on Sweldens second generation wavelets [Sweldens, W., 1993. The lifting scheme: a construction of second generation wavelets. SIAM J. Math. 1, 54], which are constructed through the lifting procedure [Sweldens, W., 1995. The lifting scheme: a new philosophy in biorthogonal wavelet construction. Wavelet Applications in Signal and Image Processing III]. In this paper, the wavelets are built on an octahedral domain, Fig. 2, and the angular flux approximation takes the form of finite element linear and quadratic representations. Full details of the meshing over the octahedron and derivation of the wavelet functions are given. The wavelets discussed are similar to the wavelets developed in Buchan [Buchan, A., 2003 c. Angular discretisation of the first order Boltzmann transport equation. Part 2: linear spherical wavelets. Technical Report, Imperial College, London, Dep. Earth Sci. Eng.] and [Buchan, A., 2003b. Angular discretisation of the first order Boltzmann transport equation. Part 3: quadratic spherical wavelets. Technical Report, Imperial College, London, Dep. Earth Sci. Eng.], in this paper the bases use a new fundamental amendment for mitigating the inaccuracies observed with the earlier bases. The performance of the new angular discretisation techniques are demonstrated using 2 one-dimensional and 4 two-dimensional test problems. These problems demonstrate the accuracy and susceptibility to ray effects of the proposed methods. Comparisons of all calculations are made with the conventional S N and P N approximations. Benchmark solutions are provided by the established code EVENT

  9. Range profile calculations by direct numerical solution of linearized Boltzmann transport equations

    International Nuclear Information System (INIS)

    A new method to determine the depth distributions of implanted ions and recoil target atoms in amorphous targets is developed. Our procedure is based on the direct numerical solution of one-dimensional linearized Boltzmann transport equations for the scalar fluxes of the ions and the recoils. We consider characteristic examples of ion implantation into homogeneous and layered targets. The profiles calculated by the new method are compared with range distributions obtained from TRIM Monte Carlo simulations. Our program BOTE is up to two orders of magnitude faster than the TRIM calculations. (author)

  10. Wave operators for the linearized Boltzmann equation in one-speed transport theory

    International Nuclear Information System (INIS)

    A dissipative integro-differential operator L arising in the linearization of Boltzmann's equation in one-speed particle transport theory is considered. Under assumptions ensuring that the point spectrum of L is finite a scalar multiple of the characteristic functions of L is found and a condition for the absence of spectral singularities is indicated. Using the techniques of non-stationary scattering theory and the Sz.-Nagy-Foias functional model direct and inverse wave operators with the completeness property are constructed. The structure of the operator L in the invariant subspace corresponding to its continuous spectrum is studied

  11. Variational approach to extracting the phonon mean free path distribution from the spectral Boltzmann transport equation

    Science.gov (United States)

    Chiloyan, Vazrik; Zeng, Lingping; Huberman, Samuel; Maznev, Alexei A.; Nelson, Keith A.; Chen, Gang

    2016-04-01

    The phonon Boltzmann transport equation (BTE) is a powerful tool for studying nondiffusive thermal transport. Here, we develop a new universal variational approach to solving the BTE that enables extraction of phonon mean free path (MFP) distributions from experiments exploring nondiffusive transport. By utilizing the known Fourier heat conduction solution as a trial function, we present a direct approach to calculating the effective thermal conductivity from the BTE. We demonstrate this technique on the transient thermal grating experiment, which is a useful tool for studying nondiffusive thermal transport and probing the MFP distribution of materials. We obtain a closed form expression for a suppression function that is materials dependent, successfully addressing the nonuniversality of the suppression function used in the past, while providing a general approach to studying thermal properties in the nondiffusive regime.

  12. Quadratic inner element subgrid scale discretisation of the Boltzmann transport equation

    International Nuclear Information System (INIS)

    This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution’s coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution’s convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.

  13. Multiple pass application of the Boltzmann transport equation to ion implantation calculation in multilayer targets

    International Nuclear Information System (INIS)

    An improved solution of the Boltzmann transport equation was developed for calculating the results of ion implantation into a multilayer target. A multiple pass scheme is used to integrate the coupled, linearized transport equations describing the momentum distributions of the implanted ion and the recoil particles. The multiple-pass approach correctly treats the case of ions scattered by more than 900, whereas in previous calculations these ions were assumed to be stopped at the scattering point. The accurate treatment of these ions is essential for calculations involving light ions and/or low ion energies, and also an essential prerequisite for two-dimensional calculations. The nuclear cross section used is improved over previous TE calculations by removing the small-angle approximation in the LSS formation of nuclear scattering. Implanted and recoil ion range and damage distributions can be calculated directly for multilayer targets, including stoichiometric disturbances in compounds and recoil yields between target layers

  14. Boltzmann equation and hydrodynamic fluctuations.

    Science.gov (United States)

    Colangeli, Matteo; Kröger, Martin; Ottinger, Hans Christian

    2009-11-01

    We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics. PMID:20364972

  15. Boltzmann equation and hydrodynamic fluctuations

    OpenAIRE

    Colangeli, M.; Kroger, M.; Ottinger, H. C.

    2009-01-01

    We apply the method of invariant manifolds to derive equations of generalized hydrodynamics from the linearized Boltzmann equation and determine exact transport coefficients, obeying Green-Kubo formulas. Numerical calculations are performed in the special case of Maxwell molecules. We investigate, through the comparison with experimental data and former approaches, the spectrum of density fluctuations and address the regime of finite Knudsen numbers and finite frequencies hydrodynamics.

  16. Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    Science.gov (United States)

    Romano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.

    2016-01-01

    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17 % to heat transport, compared to 5 % in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K engineering, in which the bulk material and geometry are optimized concurrently.

  17. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes

    International Nuclear Information System (INIS)

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S4 with expansions of the dispersion cross sections until P3 order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  18. Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation.

    Science.gov (United States)

    Radtke, Gregg A; Hadjiconstantinou, Nicolas G

    2009-05-01

    We present an efficient variance-reduced particle simulation technique for solving the linearized Boltzmann transport equation in the relaxation-time approximation used for phonon, electron, and radiative transport, as well as for kinetic gas flows. The variance reduction is achieved by simulating only the deviation from equilibrium. We show that in the limit of small deviation from equilibrium of interest here, the proposed formulation achieves low relative statistical uncertainty that is also independent of the magnitude of the deviation from equilibrium, in stark contrast to standard particle simulation methods. Our results demonstrate that a space-dependent equilibrium distribution improves the variance reduction achieved, especially in the collision-dominated regime where local equilibrium conditions prevail. We also show that by exploiting the physics of relaxation to equilibrium inherent in the relaxation-time approximation, a very simple collision algorithm with a clear physical interpretation can be formulated. PMID:19518597

  19. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  20. The relativistic linear Boltzmann transport equation applied to nucleon-nucleus and pion-nucleus transport

    International Nuclear Information System (INIS)

    Starting from the phase space formulation of quantum mechanics, a relativistic transport equation describing the propagation of a particle through a medium is developed. In the second part of the paper, a transport equation of this type is solved using the Monte Carlo method (C.P.)

  1. Numerical and analytic solutions of the Boltzmann equation for cosmic ray transport

    International Nuclear Information System (INIS)

    A method for accurately determining the longitudinal transport of cosmic rays in a disordered, diverging magnetic field is described. Eigenfunctions of the operator in the Boltzmann equation which describes the effects of adiabatic focusing and pitch angle scattering are defined and numerically evaluated. When the particle distribution function is expressed as a series of these focusing eigenfunctions, the Boltzmann equation is transformed into a matrix equation. A computer program was written which uses this matrix representation to calculate the distribution function as a function of distance, time, and pitch angle. In addition, an analytic expression for pseudodiffusion, which replaces classical diffusion when the guiding magnetic field is not rectilinear, is derived. It is shown that the theory of focused transport predicts many of the observed features of solar cosmic ray events. Application of the theory to extragalactic radio sources is also considered. To enable other investigators to apply this method, documented listings of the requisite computer programs are included. In a separate analysis, the effect that energy loss due to synchrotron radiation has on electron propagation in a rectilinear magnetic field is considered. It is shown that a synchrotron radiation region, defined as the region in which the density of electrons of a specific energy is nonzero, has a double-lobed structure even when the electrons are injected into the field isotropically. It is also shown that, because the electrons decay to a given energy almost simultaneously over a large area, a synchrotron radiation region can expand with a superluminal velocity. Application of the theory to radio galaxies and quasars is considered

  2. A constitutive equation for nano-to-macro-scale heat conduction based on the Boltzmann transport equation

    Science.gov (United States)

    Ordonez-Miranda, J.; Yang, Ronggui; Alvarado-Gil, J. J.

    2011-04-01

    A constitutive equation for heat conduction is derived from the exact solution of the Boltzmann transport equation under the relaxation time approximation. This is achieved by a series expansion on multiple space derivatives of the temperature and introducing the concept of thermal multipoles, where the thermal conductivity defined under the framework of the Fourier law of heat conduction is just the first thermal pole. It is shown that this equation generalizes the Fourier law and Cattaneo equation of heat conduction, and it depends strongly on the relative values of the length and time scales compared with the mean-free path and mean-free time of the energy carriers, respectively. In the limiting case of steady-state heat conduction, it is shown that the heat flux vector depends on a spatial scale ratio whose effects are remarkable in the micro-scale spatial domains. By applying a first-order approximation of the obtained thermal multipole expansion to the problem of transient heat conduction across a thin film and comparing the results with the predictions for the same problem using the Fourier, Cattaneo and Boltzmann transport equations, it is shown that our results could be useful in the study of the heat transport in short as well as in long scales of space and time. The common and different features of the multipole expansion compared with the Ballistic-diffusive model of heat conduction are also discussed. Special emphasis is put to the cases where the physical scales of space and time are comparable to the mean-free path and mean-free time of the energy carriers.

  3. Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation

    International Nuclear Information System (INIS)

    The interaction between drifting carriers and traveling electromagnetic waves is considered within the context of the classical Boltzmann transport equation to compute the Casimir-Lifshitz force between media with small density of charge carriers, including dielectrics and intrinsic semiconductors. We expand upon our previous work (Phys. Rev. Lett. 2008, in press; arXiv:0805.1676) and derive in some detail the frequency-dependent reflection amplitudes in this theory and compute the corresponding Casimir free energy for a parallel plate configuration. We critically discuss the the issue of verification of the Nernst theorem of thermodynamics in Casimir physics, and explicitly show that our theory satisfies that theorem. Finally, we show how the theory of drifting carriers connects to previous computations of Casimir forces using spatial dispersion for the material boundaries.

  4. Cumulant solution of the elastic Boltzmann transport equation in an infinite uniform medium

    International Nuclear Information System (INIS)

    We consider an analytical solution of the time-dependent elastic Boltzmann transport equation in an infinite uniform isotropic medium with an arbitrary phase function. We obtain (1) the exact distribution in angle, (2) the exact first and second spatial cumulants at any angle, and (3) an approximate combined distribution in position and angle and a spatial distribution whose central position and half-width of spread are always exact. The resulting Gaussian distribution has a center that advances in time, and an ellipsoidal contour that grows and changes shape providing a clear picture of the time evolution of the particle migration from near ballistic, through snakelike and into the final diffusive regime. (c) 2000 The American Physical Society

  5. Low-variance Monte Carlo Solutions of the Boltzmann Transport Equation

    CERN Document Server

    Hadjiconstantinou, Nicolas G; Baker, Lowell L

    2009-01-01

    We present and discuss a variance-reduced stochastic particle method for simulating the relaxation-time model of the Boltzmann transport equation. The present paper focuses on the dilute gas case, although the method is expected to directly extend to all fields (carriers) for which the relaxation-time approximation is reasonable. The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage compared to traditional stochastic particle methods in the limit of small deviation from equilibrium. More specifically, the proposed method can efficiently simulate arbitrarily small deviations from equilibrium at a computational cost that is independent of the deviation from equilibrium, which is in sharp contrast to traditional particle methods.

  6. Optimal discontinuous finite element methods for the Boltzmann transport equation with arbitrary discretisation in angle

    International Nuclear Information System (INIS)

    This paper describes the development of two optimal discontinuous finite element (FE) Riemann methods and their application to the one-speed Boltzmann transport equation in the steady-state. The proposed methods optimise the amount of dissipation applied in the streamline direction. This dissipation is applied within an element using a novel Riemann FE method, which is based on an analogy between control volume discretisation methods and finite element methods when integration by parts is applied to the transport terms. In one-dimension the optimal finite element solutions match the analytical solution exactly at each outlet node. Both schemes couple elements in space via a Riemann approach. The first of the two schemes is a Petrov-Galerkin (PG) method which introduces dissipation via the equation residual. The second scheme uses a streamline diffusion stabilisation term in the discretisation. These two methods provide a discontinuous Petrov-Galerkin (DPG) scheme that can stabilise an element across the full range of radiation regimes, obtaining robust solutions with suppressed oscillation. Three basis functions in angle of particle travel have been implemented in an optimal DPG Riemann solver, which include the PN (spherical harmonic), SN (discrete ordinate) and LWN (linear octahedral wavelet) angular expansions. These methods are applied to a series of demanding two-dimensional radiation transport problems

  7. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  8. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan;

    1999-01-01

    the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear...

  9. TH-E-BRE-02: A Forward Scattering Approximation to Dose Calculation Using the Linear Boltzmann Transport Equation

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of the linear Boltzmann transport equation as a dose calculation tool which can account for interface effects, while still having faster computation times than Monte Carlo methods. In particular, we introduce a forward scattering approximation, in hopes of improving calculation time without a significant hindrance to accuracy. Methods: Two coupled Boltzmann transport equations were constructed, one representing the fluence of photons within the medium, and the other, the fluence of electrons. We neglect the scattering term within the electron transport equation, resulting in an extreme forward scattering approximation to reduce computational complexity. These equations were then solved using a numerical technique for solving partial differential equations, known as a finite difference scheme, where the fluence at each discrete point in space is calculated based on the fluence at the previous point in the particle's path. Using this scheme, it is possible to develop a solution to the Boltzmann transport equations by beginning with boundary conditions and iterating across the entire medium. The fluence of electrons can then be used to find the dose at any point within the medium. Results: Comparisons with Monte Carlo simulations indicate that even simplistic techniques for solving the linear Boltzmann transport equation yield expected interface effects, which many popular dose calculation algorithms are not capable of predicting. Implementation of a forward scattering approximation does not appear to drastically reduce the accuracy of this algorithm. Conclusion: Optimized implementations of this algorithm have been shown to be very accurate when compared with Monte Carlo simulations, even in build up regions where many models fail. Use of a forward scattering approximation could potentially give a reasonably accurate dose distribution in a shorter amount of time for situations where a completely accurate dose distribution is not

  10. High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Bihari, B L; Brown, P N

    2005-03-29

    The authors apply the nonlinear WENO (Weighted Essentially Nonoscillatory) scheme to the spatial discretization of the Boltzmann Transport Equation modeling linear particle transport. The method is a finite volume scheme which ensures not only conservation, but also provides for a more natural handling of boundary conditions, material properties and source terms, as well as an easier parallel implementation and post processing. It is nonlinear in the sense that the stencil depends on the solution at each time step or iteration level. By biasing the gradient calculation towards the stencil with smaller derivatives, the scheme eliminates the Gibb's phenomenon with oscillations of size O(1) and reduces them to O(h{sup r}), where h is the mesh size and r is the order of accuracy. The current implementation is three-dimensional, generalized for unequally spaced meshes, fully parallelized, and up to fifth order accurate (WENO5) in space. For unsteady problems, the resulting nonlinear spatial discretization yields a set of ODE's in time, which in turn is solved via high order implicit time-stepping with error control. For the steady-state case, they need to solve the non-linear system, typically by Newton-Krylov iterations. There are several numerical examples presented to demonstrate the accuracy, non-oscillatory nature and efficiency of these high order methods, in comparison with other fixed-stencil schemes.

  11. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  12. Classical non-Markovian Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Alexanian, Moorad, E-mail: alexanian@uncw.edu [Department of Physics and Physical Oceanography, University of North Carolina Wilmington, Wilmington, North Carolina 28403-5606 (United States)

    2014-08-01

    The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.

  13. A high-order Petrov-Galerkin method for the Boltzmann transport equation

    International Nuclear Information System (INIS)

    We describe a new Petrov-Galerkin method using high-order terms to introduce dissipation in a residual-free formulation. The method is developed following both a Taylor series analysis and a variational principle, and the result has much in common with traditional Petrov-Galerkin, Self Adjoint Angular Flux (SAAF) and Even Parity forms of the Boltzmann transport equation. In addition, we consider the subtleties in constructing appropriate boundary conditions. In sub-grid scale (SGS) modelling of fluids the advantages of high-order dissipation are well known. Fourth-order terms, for example, are commonly used as a turbulence model with uniform dissipation. They have been shown to have superior properties to SGS models based upon second-order dissipation or viscosity. Even higher-order forms of dissipation (e.g. 16.-order) can offer further advantages, but are only easily realised by spectral methods because of the solution continuity requirements that these higher-order operators demand. Higher-order operators are more effective, bringing a higher degree of representation to the solution locally. Second-order operators, for example, tend to relax the solution to a linear variation locally, whereas a high-order operator will tend to relax the solution to a second-order polynomial locally. The form of the dissipation is also important. For example, the dissipation may only be applied (as it is in this work) in the streamline direction. While for many problems, for example Large Eddy Simulation (LES), simply adding a second or fourth-order dissipation term is a perfectly satisfactory SGS model, it is well known that a consistent residual-free formulation is required for radiation transport problems. This motivated the consideration of a new Petrov-Galerkin method that is residual-free, but also benefits from the advantageous features that SGS modelling introduces. We close with a demonstration of the advantages of this new discretization method over standard Petrov

  14. The Non-Classical Boltzmann Equation, and Diffusion-Based Approximations to the Boltzmann Equation

    CERN Document Server

    Frank, Martin; Larsen, Edward W; Vasques, Richard

    2014-01-01

    We show that several diffusion-based approximations (classical diffusion or SP1, SP2, SP3) to the linear Boltzmann equation can (for an infinite, homogeneous medium) be represented exactly by a non-classical transport equation. As a consequence, we indicate a method to solve diffusion-based approximations to the Boltzmann equation via Monte Carlo, with only statistical errors - no truncation errors.

  15. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  16. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    International Nuclear Information System (INIS)

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0–8.0 g/cm3) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support

  17. Generalized linear Boltzmann equation, describing non-classical particle transport, and related asymptotic solutions for small mean free paths

    Science.gov (United States)

    Rukolaine, Sergey A.

    2016-05-01

    In classical kinetic models a particle free path distribution is exponential, but this is more likely to be an exception than a rule. In this paper we derive a generalized linear Boltzmann equation (GLBE) for a general free path distribution in the framework of Alt's model. In the case that the free path distribution has at least first and second finite moments we construct an asymptotic solution to the initial value problem for the GLBE for small mean free paths. In the special case of the one-speed transport problem the asymptotic solution results in a diffusion approximation to the GLBE.

  18. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    International Nuclear Information System (INIS)

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K+ variational principle for slab geometry. The program has a core K+ module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 102 has been achieved using the new approach in some cases

  19. Quantum corrections for Boltzmann equation

    Institute of Scientific and Technical Information of China (English)

    M.; Levy; PETER

    2008-01-01

    We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.

  20. The Milne problem for the Boltzmann equation

    International Nuclear Information System (INIS)

    Existence, uniqueness and asymptotic properties are proved for the solution of the Milne problem for the Boltzmann equation, in which the incoming velocity distribution and the total mass flux are specified arbitrarily. The collision law corresponds to a hard sphere gas. The solution uses energy estimates and is similar to that of Bardos, Santos and Sentis for neutron transport. From the Milne problem one can then easily deduce the solution of the Kramers problem

  1. Effective ionization coefficients and transport parameters in binary and ultradilute SF6-Ar mixtures using Boltzmann equation analysis

    Science.gov (United States)

    Cekmen, Z. C.; Dincer, M. S.

    2009-07-01

    The effective ionization coefficients and transport parameters such as electron mean energy drift velocity and transverse diffusion coefficient in binary and ultradilute SF6-Ar gas mixtures have been calculated for density reduced electric field strength E/N values from 10 to 400 Td. These calculations have been performed by using the two-term spherical harmonic expansion to obtain the numerical solution of the Boltzmann transport equation based on the finite element method under steady-state Townsend condition. In order to confirm the model and code developed in this study, the Reid ramp model has been used as a benchmark test and then effective ionization coefficients and transport parameters have been evaluated for SF6 contents of 1%, 10%, 25%, 50%, 70% and 100% in the binary mixture. Finally SF6 contents in the ultradilute mixtures of 0.1%, 0.3%, 0.5% and 0.7% are taken into account with the evaluated effective ionizations and transport parameters of electron mean energy, drift velocity and transverse diffusion coefficients.

  2. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes

    International Nuclear Information System (INIS)

    This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, keff, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for keff with directional dependence. General error estimators are derived for any given functional of the flux and applied to keff to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The keff goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained

  3. Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    The kinetic theory of charged particles in gases has come a long way in the last 60 years or so, but many of the advances have yet to find their way into contemporary studies of low-temperature plasmas. This review explores the way in which this gap might be bridged, and focuses in particular on the analytic framework and numerical techniques for the solution of Boltzmann's equation for both electrons and ions, as well as on the development of fluid models and semi-empirical formulae. Both hydrodynamic and non-hydrodynamic regimes are considered and transport properties are calculated in various configurations of dc and ac electric and magnetic fields. We discuss in particular the duality in transport coefficients arising from non-conservative collisions (attachment, ionization). (review article)

  4. A space–angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement

    International Nuclear Information System (INIS)

    In this paper a new method for the discretization of the radiation transport equation is presented, based on a discontinuous Galerkin method in space and angle that allows for local refinement in angle where any spatial element can support its own angular discretization. To cope with the discontinuous spatial nature of the solution, a generalized Riemann procedure is required to distinguish between incoming and outgoing contributions of the numerical fluxes. A new consistent framework is introduced that is based on the solution of a generalized eigenvalue problem. The resulting numerical fluxes for the various possible cases where neighboring elements have an equal, higher or lower level of refinement in angle are derived based on tensor algebra and the resulting expressions have a very clear physical interpretation. The choice of discontinuous trial functions not only has the advantage of easing local refinement, it also facilitates the use of efficient sweep-based solvers due to decoupling of unknowns on a large scale thereby approaching the efficiency of discrete ordinates methods with local angular resolution. The approach is illustrated by a series of numerical experiments. Results show high orders of convergence for the scalar flux on angular refinement. The generalized Riemann upwinding procedure leads to stable and consistent solutions. Further the sweep-based solver performs well when used as a preconditioner for a Krylov method

  5. A space-angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement

    Science.gov (United States)

    Kópházi, József; Lathouwers, Danny

    2015-09-01

    In this paper a new method for the discretization of the radiation transport equation is presented, based on a discontinuous Galerkin method in space and angle that allows for local refinement in angle where any spatial element can support its own angular discretization. To cope with the discontinuous spatial nature of the solution, a generalized Riemann procedure is required to distinguish between incoming and outgoing contributions of the numerical fluxes. A new consistent framework is introduced that is based on the solution of a generalized eigenvalue problem. The resulting numerical fluxes for the various possible cases where neighboring elements have an equal, higher or lower level of refinement in angle are derived based on tensor algebra and the resulting expressions have a very clear physical interpretation. The choice of discontinuous trial functions not only has the advantage of easing local refinement, it also facilitates the use of efficient sweep-based solvers due to decoupling of unknowns on a large scale thereby approaching the efficiency of discrete ordinates methods with local angular resolution. The approach is illustrated by a series of numerical experiments. Results show high orders of convergence for the scalar flux on angular refinement. The generalized Riemann upwinding procedure leads to stable and consistent solutions. Further the sweep-based solver performs well when used as a preconditioner for a Krylov method.

  6. A space–angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement

    Energy Technology Data Exchange (ETDEWEB)

    Kópházi, József, E-mail: j.kophazi@imperial.ac.uk; Lathouwers, Danny, E-mail: d.lathouwers@tudelft.nl

    2015-09-15

    In this paper a new method for the discretization of the radiation transport equation is presented, based on a discontinuous Galerkin method in space and angle that allows for local refinement in angle where any spatial element can support its own angular discretization. To cope with the discontinuous spatial nature of the solution, a generalized Riemann procedure is required to distinguish between incoming and outgoing contributions of the numerical fluxes. A new consistent framework is introduced that is based on the solution of a generalized eigenvalue problem. The resulting numerical fluxes for the various possible cases where neighboring elements have an equal, higher or lower level of refinement in angle are derived based on tensor algebra and the resulting expressions have a very clear physical interpretation. The choice of discontinuous trial functions not only has the advantage of easing local refinement, it also facilitates the use of efficient sweep-based solvers due to decoupling of unknowns on a large scale thereby approaching the efficiency of discrete ordinates methods with local angular resolution. The approach is illustrated by a series of numerical experiments. Results show high orders of convergence for the scalar flux on angular refinement. The generalized Riemann upwinding procedure leads to stable and consistent solutions. Further the sweep-based solver performs well when used as a preconditioner for a Krylov method.

  7. Monte Carlo simulation and Boltzmann equation analysis of non-conservative positron transport in H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bankovic, A., E-mail: ana.bankovic@gmail.com [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Dujko, S. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Centrum Wiskunde and Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam (Netherlands); ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); White, R.D. [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); Buckman, S.J. [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia); Petrovic, Z.Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2012-05-15

    This work reports on a new series of calculations of positron transport properties in molecular hydrogen under the influence of spatially homogeneous electric field. Calculations are performed using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Values and general trends of the mean energy, drift velocity and diffusion coefficients as a function of the reduced electric field E/n{sub 0} are reported here. Emphasis is placed on the explicit and implicit effects of positronium (Ps) formation on the drift velocity and diffusion coefficients. Two important phenomena arise; first, for certain regions of E/n{sub 0} the bulk and flux components of the drift velocity and longitudinal diffusion coefficient are markedly different, both qualitatively and quantitatively. Second, and contrary to previous experience in electron swarm physics, there is negative differential conductivity (NDC) effect in the bulk drift velocity component with no indication of any NDC for the flux component. In order to understand this atypical manifestation of the drift and diffusion of positrons in H{sub 2} under the influence of electric field, the spatially dependent positron transport properties such as number of positrons, average energy and velocity and spatially resolved rate for Ps formation are calculated using a Monte Carlo simulation technique. The spatial variation of the positron average energy and extreme skewing of the spatial profile of positron swarm are shown to play a central role in understanding the phenomena.

  8. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields

    International Nuclear Information System (INIS)

    Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today’s treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm2 field as well as a smaller 2 × 2 cm2 field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm’s high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization. Conclusions: The

  9. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    OpenAIRE

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optim...

  10. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  11. An exact solution of the linearized Boltzmann transport equation and its application to mobility calculations in graphene bilayers

    Science.gov (United States)

    Paussa, A.; Esseni, D.

    2013-03-01

    This paper revisits the problem of the linearized Boltzmann transport equation (BTE), or, equivalently, of the momentum relaxation time, momentum relaxation time (MRT), for the calculation of low field mobility, which in previous works has been almost universally solved in approximated forms. We propose an energy driven discretization method that allows an exact determination of the relaxation time by solving a linear, algebraic problem, where multiple scattering mechanisms are naturally accounted for by adding the corresponding scattering rates before the calculation of the MRT, and without resorting to the semi-empirical Matthiessen's rule for the relaxation times. The application of our rigorous solution of the linearized BTE to a graphene bilayer reveals that, for a non monotonic energy relation, the relaxation time can legitimately take negative values with no unphysical implications. We finally compare the mobility calculations provided by an exact solution of the MRT problem with the results obtained with some of the approximations most frequently employed in the literature and so discuss their accuracy.

  12. Analysis of transport coefficients for electrons in weakly ionized gases by Boltzmann equation (N2 or O2)

    International Nuclear Information System (INIS)

    The fundamental process for determining the electric discharge phenomena of gas which take various forms depending on the kinds of gas, gas pressure, relative position of electrodes and applied voltage, is the mutual collision of electrons, atoms, molecular ions and neutral atoms and molecules. The initial stage before the establishment of electric discharge seems to be in Townsend discharge region where the collision of electrons with neutral molecules and atoms mainly occurs, being the weakly ionized condition at low gas temperature. Recently, the breakdown phenomena of N2-O2 gas mixture is being examined for the purpose of clarifying the impulse break mechanism in low pressure air, and the energy distribution of electrons and the transport coefficients in N2, O2 and N2-O2 mixed gases are required to investigate closely the results. Here, the energy distribution and the transport coefficients of electrons in steady Townsend discharge region in N2 and O2 gases respectively were analyzed by using Boltzmann equation, as a preparatory stage. The analyzed results and the discussions on them are reported in each paragraph of the energy distribution and the mean energy of electrons, ionization coefficients and adhesion coefficients, electron drift speed and diffusion coefficients, and excitation frequencies for various electron levels. It was confirmed that each collision process for electrons and the cross-section used for the analysis were properly selected. The excitation frequencies of electrons for N2 and O2 gases concerning the band spectra emitted from discharge channels and the electron energy distribution at 200 V/cm-Torr or below of E/P0 were newly calculated, where E is electric field, and P0 is gas pressure at 0 deg C. (Wakatsuki, Y.)

  13. Finite differences numerical method for two-dimensional superlattice Boltzmann transport equation and case comparison of CPU(C) and GPGPU(CUDA) implementations

    CERN Document Server

    Priimak, Dmitri

    2014-01-01

    We present finite differences numerical algorithm for solving 2D spatially homogeneous Boltzmann transport equation for semiconductor superlattices (SL) subject to time dependant electric field along SL axis and constant perpendicular magnetic field. Algorithm is implemented in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPUs. We compare performance and merits of one implementation versus another and discuss various methods of optimization.

  14. Dosimetric impact of an 192Ir brachytherapy source cable length modeled using a grid-based Boltzmann transport equation solver

    International Nuclear Information System (INIS)

    Purpose: To evaluate the dose distributions of an 192Ir source (model VS2000) in homogeneous water geometry calculated using a deterministic grid-based Boltzmann transport equation solver (GBBS) in the commercial treatment planning system (TPS) (BRACHYVISION-ACUROS v8.8). Methods: Using percent dose differences (%ΔD), the GBBS (BV-ACUROS) was compared to the (1) published TG-43 data, (2) MCNPX Monte Carlo (MC) simulations of the 192Ir source centered in a 15 cm radius water sphere, and (3) TG-43 output from the TPS using vendor supplied (BV-TG43-vendor) and user extended (BV-TG43-extended) 2D anisotropy functions F(r,θ). BV-ACUROS assumes 1 mm of NiTi cable, while the TPS TG-43 algorithm uses data based on a 15 cm cable. MC models of various cable lengths were simulated. Results: The MC simulations resulted in >20% dose deviations along the cable for 1, 2, and 3 mm cable lengths relative to 15 cm. BV-ACUROS comparisons with BV-TG43-vendor and BV-TG43-extended yielded magnitude of differences, consistent with those seen in MC simulations. However, differences >20% extended further (θ≤10 deg.) when using the vendor supplied anisotropy function Fven(r,θ). These differences were also seen in comparisons of F(r,θ) derived from the TPS output. Conclusions: The results suggest that %ΔD near the cable region is larger than previously estimated. The spatial distribution of the dose deviation is highly dependent on the reference TG-43 data used to compare to GBBS. The differences observed, while important to realize, should not have an impact on clinical dosimetry in homogeneous water.

  15. Electron swarm transport coefficients in mixtures of H2O with He and Ar: Experiment and Boltzmann equation calculations

    Science.gov (United States)

    de Urquijo, Jaime; Basurto, E.; Juarez, A. M.; Ness, Kevin; Robson, Robert; Brunger, Michael; White, Ron

    2014-10-01

    The drift velocity of electrons in mixtures of gaseous water with helium and argon are measured over the range of reduced electric fields from 0--300 Td using a pulsed-Townsend technique. Small admixtures of water to both helium and argon are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. Comparison of the measured drift velocities with those calculated from a multi-term solution of Boltzmann's equation provides a further discriminative assessment on the accuracy and completeness of electron water vapour cross-sections. Funding acknowledgements: ARC, Mexican govt (PAPIIT IN 111014).

  16. Existence of the scattering operator for the linear Boltzmann equation

    International Nuclear Information System (INIS)

    Existence theorems are proven in a study of the scattering problem for the linear Boltzmann equation (transport equation), describing the motion of a cloud of nonself-interacting particles (neutrons) in phase space. Also Simon's weak coupling result is discussed, and a meaningful wave operator in the presence of trapped particles is defined and its existence proven. 7 references

  17. The Quantum Boltzmann Equation in Semiconductor Physics

    OpenAIRE

    Snoke, D. W.

    2010-01-01

    The quantum Boltzmann equation, or Fokker-Planck equation, has been used to successfully explain a number of experiments in semiconductor optics in the past two decades. This paper reviews some of the developments of this work, including models of excitons in bulk materials, electron-hole plasmas, and polariton gases.

  18. Extending the range of validity of Fourier's law into the kinetic transport regime via asymptotic solution of the phonon Boltzmann transport equation

    OpenAIRE

    Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.

    2015-01-01

    We derive the continuum equations and boundary conditions governing phonon-mediated heat transfer in the limit of small but finite mean free path from asymptotic solution of the linearized Boltzmann equation in the relaxation time approximation. Our approach uses the ratio of the mean free path to the characteristic system lengthscale, also known as the Knudsen number, as the expansion parameter to study the effects of boundaries on the breakdown of the Fourier descrition. We show that, in th...

  19. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  20. The Boltzmann equation in the difference formulation

    International Nuclear Information System (INIS)

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  1. Pair Production in the Quantum Boltzmann Equation

    OpenAIRE

    Rau, Jochen

    1994-01-01

    A source term in the quantum Boltzmann equation, which accounts for the spontaneous creation of $e^+e^-$-pairs in external electric fields, is derived from first principles and evaluated numerically. Careful analysis of time scales reveals that this source term is generally non-Markovian. This implies in particular that there may be temporary violations of the $H$-theorem.

  2. Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS2

    Science.gov (United States)

    Li, Wu

    2015-08-01

    We demonstrate the ab initio electrical transport calculation limited by electron-phonon coupling by using the full solution of the Boltzmann transport equation (BTE), which applies equally to metals and semiconductors. Numerical issues are emphasized in this work. We show that the simple linear interpolation of the electron-phonon coupling matrix elements from a relatively coarse grid to an extremely fine grid can ease the calculational burden, which makes the calculation feasible in practice. For the Brillouin zone (BZ) integration of the transition probabilities involving one δ function, the Gaussian smearing method with a physical choice of locally adaptive broadening parameters is employed. We validate the calculation in the cases of n -type Si and Al. The calculated conductivity and mobility are in good agreement with experiments. In the metal case we also demonstrate that the Gaussian smearing method with locally adaptive broadening parameters works excellently for the BZ integration with double δ functions involved in the Eliashberg spectral function and its transport variant. The simpler implementation is the advantage of the Gaussian smearing method over the tetrahedron method. The accuracy of the relaxation time approximation and the approximation made by Allen [Phys. Rev. B 17, 3725 (1978), 10.1103/PhysRevB.17.3725] has been examined by comparing with the exact solution of BTE. We also apply our method to n -type monolayer MoS2, for which a mobility of 150 cm2 v-1 s-1 is obtained at room temperature. Moreover, the mean free paths are less than 9 nm, indicating that in the presence of grain boundaries the mobilities should not be effectively affected if the grain boundary size is tens of nanometers or larger. The ab initio approach demonstrated in this paper can be directly applied to other materials without the need for any a priori knowledge about the electron-phonon scattering processes, and can be straightforwardly extended to study cases with

  3. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation

    Institute of Scientific and Technical Information of China (English)

    冯士德; 杨京龙; 郜宪林; 季仲贞

    2002-01-01

    A lattice Boltzmann equation model in a rotating system is developed by introducing the Coriolis force effect.The geophysical hydrodynamic equation can be derived from this model. Numerical computations are performed to simulate the cylindrical annulus experiment and Benard convection. The numerical results have shown the flow behaviour of large-scale geostrophic current and Benard convection cells, which verifies the applicability of this model to both theory and experiment.

  4. Rigorous Navier-Stokes Limit of the Lattice Boltzmann Equation

    OpenAIRE

    Junk, Michael; Yong, Wen-An

    2001-01-01

    Here we riqorously investigate the diffusive limit of a velocity-discrete Boltzmann equation which is used in the lattice Boltzmann method to construct approximate solutions of the incompressible Navier-Stokes equation.

  5. On the full Boltzmann equations for Leptogenesis

    CERN Document Server

    Garayoa, J; Pinto, T; Rius, N; Vives, O

    2009-01-01

    We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T=0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ~< 1) the final lepton asymmetry can change up to a factor four with respect to previous...

  6. Test of Information Theory on the Boltzmann Equation

    OpenAIRE

    Hyeon-Deuk, Kim; Hayakawa, Hisao

    2002-01-01

    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.

  7. Test of Information Theory on the Boltzmann Equation

    OpenAIRE

    Kim, Hyeon-Deuk; Hayakawa, Hisao

    2003-01-01

    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.

  8. COG: A particle transport code designed to solve the Boltzmann equation for deep-penetration (shielding) problems: Benchmark problems: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, T.P. Jr.; Lent, E.M.

    1988-12-02

    COG is a Monte Carlo computer code designed to solve the Boltzmann equation for transporting neutrons and photons and in future versions, charged particles. Sixty-four different problems were run using the current versions of the COG code on Cray-1 and Cray/X-MP computers. In all cases, the calculated COG results either agree with the values known analytically for some problems or are within the statistical and uncertainties determined experimentally for the others. Problems such as these are referred to benchmark problems and form an important part of the validation of any new computer code. Benchmark problems are of value in that they are used to: check that the code works correctly; check that the physical data used in the code are correct; check that the user has learned to run the code properly; and understand the inherent errors associated with the calculated results. 22 refs., 21 figs., 10 tabs.

  9. Extending the range of validity of Fourier's law into the kinetic transport regime via asymptotic solution of the phonon Boltzmann transport equation

    Science.gov (United States)

    Péraud, Jean-Philippe M.; Hadjiconstantinou, Nicolas G.

    2016-01-01

    We derive the continuum equations and boundary conditions governing phonon-mediated heat transfer in the limit of a small but finite mean-free path from the asymptotic solution of the linearized Boltzmann equation in the relaxation time approximation. Our approach uses the ratio of the mean-free path to the characteristic system length scale, also known as the Knudsen number, as the expansion parameter to study the effects of boundaries on the breakdown of the Fourier description. We show that, in the bulk, the traditional heat conduction equation using Fourier's law as a constitutive relation is valid at least up to second order in the Knudsen number for steady problems and first order for time-dependent problems. However, this description does not hold within distances on the order of a few mean-free paths from the boundary; this breakdown is a result of kinetic effects that are always present in the boundary vicinity and require solution of a Boltzmann boundary layer problem to be determined. Matching the inner, boundary layer solution to the outer, bulk solution yields boundary conditions for the Fourier description as well as additive corrections in the form of universal kinetic boundary layers; both are found to be proportional to the bulk-solution gradients at the boundary and parametrized by the material model and the phonon-boundary interaction model (Boltzmann boundary condition). Our derivation shows that the traditional no-jump boundary condition for prescribed temperature boundaries and the no-flux boundary condition for diffusely reflecting boundaries are appropriate only to zeroth order in the Knudsen number; at higher order, boundary conditions are of the jump type. We illustrate the utility of the asymptotic solution procedure by demonstrating that it can be used to predict the Kapitza resistance (and temperature jump) associated with an interface between two materials. All results are validated via comparisons with low-variance deviational Monte

  10. A non-negative moment-preserving spatial discretization scheme for the linearized Boltzmann transport equation in 1-D and 2-D Cartesian geometries

    Science.gov (United States)

    Maginot, Peter G.; Morel, Jim E.; Ragusa, Jean C.

    2012-08-01

    We present a new nonlinear spatial finite-element method for the linearized Boltzmann transport equation with Sn angular discretization in 1-D and 2-D Cartesian geometries. This method has two central characteristics. First, it is equivalent to the linear-discontinuous (LD) Galerkin method whenever that method yields a strictly non-negative solution. Second, it always satisfies both the zeroth and first spatial moment equations. Because it yields the LD solution when that solution is non-negative, one might interpret our method as a classical fix-up to the LD scheme. However, fix-up schemes for the LD equations derived in the past have given up solution of the first moment equations when the LD solution is negative in order to satisfy positivity in a simple manner. We present computational results comparing our method in 1-D to the strictly non-negative linear exponential-discontinuous method and to the LD method. We present computational results in 2-D comparing our method to a recently developed LD fix-up scheme and to the LD scheme. It is demonstrated that our method is a valuable alternative to existing methods.

  11. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, A.K.

    1995-08-01

    We have developed and successfully implemented a two-dimensional bilinear discontinuous in space and time, used in conjunction with the S{sub N} angular approximation, to numerically solve the time dependent, one-dimensional, one-speed, slab geometry, (ion) transport equation. Numerical results and comparison with analytical solutions have shown that the bilinear-discontinuous (BLD) scheme is third-order accurate in the space ad time dimensions independently. Comparison of the BLD results with diamond-difference methods indicate that the BLD method is both quantitavely and qualitatively superior to the DD scheme. We note that the form of the transport operator is such that these conclusions carry over to energy dependent problems that include the constant-slowing-down-approximation term, and to multiple space dimensions or combinations thereof. An optimized marching or inversion scheme or a parallel algorithm should be investigated to determine if the increased accuracy can compensate for the extra overhead required for a BLD solution, and then could be compared to other discretization methods such as nodal or characteristic schemes.

  12. Multigroup discrete ordinates solution of Boltzmann-Fokker-Planck equations and cross section library development of ion transport

    International Nuclear Information System (INIS)

    We have developed and successfully implemented a two-dimensional bilinear discontinuous in space and time, used in conjunction with the SN angular approximation, to numerically solve the time dependent, one-dimensional, one-speed, slab geometry, (ion) transport equation. Numerical results and comparison with analytical solutions have shown that the bilinear-discontinuous (BLD) scheme is third-order accurate in the space ad time dimensions independently. Comparison of the BLD results with diamond-difference methods indicate that the BLD method is both quantitavely and qualitatively superior to the DD scheme. We note that the form of the transport operator is such that these conclusions carry over to energy dependent problems that include the constant-slowing-down-approximation term, and to multiple space dimensions or combinations thereof. An optimized marching or inversion scheme or a parallel algorithm should be investigated to determine if the increased accuracy can compensate for the extra overhead required for a BLD solution, and then could be compared to other discretization methods such as nodal or characteristic schemes

  13. A Fluctuating Lattice Boltzmann Method for the Diffusion Equation

    CERN Document Server

    Wagner, Alexander J

    2016-01-01

    We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic features of this first exact derivation of a fluctuating lattice Boltzmann method.

  14. Dynamics of annihilation. I. Linearized Boltzmann equation and hydrodynamics.

    Science.gov (United States)

    García de Soria, María Isabel; Maynar, Pablo; Schehr, Grégory; Barrat, Alain; Trizac, Emmanuel

    2008-05-01

    We study the nonequilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of ballistic annihilation therefore constantly loses particles. The dynamics of perturbations around the free decay regime is investigated using the spectral properties of the linearized Boltzmann operator, which characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of molecular dynamics simulations that validate the theoretical predictions. PMID:18643046

  15. Boltzmann equation integration in thermionic converter conditions. Part II. Terms in Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Stoenescu, M.L.

    1977-06-01

    The terms in Boltzmann kinetic equation corresponding to elastic short range collisions, inelastic excitational collisions, coulomb interactions and electric field acceleration are evaluated numerically for a standard distribution function minimizing the computational volume by expressing the terms as linear combinations with recalculable coefficients, of the distribution function and its derivatives. The present forms are suitable for spatial distribution calculations.

  16. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  17. A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I

    International Nuclear Information System (INIS)

    This paper presents a new multigrid method applied to the most common Sn discretizations (Petrov-Galerkin, diamond-differenced, corner-balanced, and discontinuous Galerkin) of the mono-energetic Boltzmann transport equation in the optically thick and thin regimes, and with strong anisotropic scattering. Unlike methods that use scalar DSA diffusion preconditioners for the source iteration, this multigrid method is applied directly to an integral equation for the scalar flux. Thus, unlike the former methods that apply a multigrid strategy to the scalar DSA diffusion operator, this method applies a multigrid strategy to the integral source iteration operator, which is an operator for 5 independent variables in spatial 3-d (3 in space and 2 in angle) and 4 independent variables in spatial 2-d (2 in space and 2 in angle). The core smoother of this multigrid method involves applications of the integral operator. Since the kernel of this integral operator involves the transport sweeps, applying this integral operator requires a transport sweep (an inversion of an upper triangular matrix) for each of the angles used. As the equation is in 5-space or 4-space, the multigrid approach in this paper coarsens in both angle and space, effecting efficient applications of the coarse integral operators. Although each V-cycle of this method is more expensive than a V-cycle for the DSA preconditioner, since the DSA equation does not have angular dependence, the overall computational efficiency is about the same for problems where DSA preconditioning is effective. This new method also appears to be more robust over all parameter regimes than DSA approaches. Moreover, this new method is applicable to a variety of Sn spatial discretizations, to problems involving a combination of optically thick and thin regimes, and more importantly, to problems with anisotropic scattering cross-sections, all of which DSA approaches perform poorly or not applicable at all. This multigrid approach is

  18. Jet propagation within a Linearized Boltzmann Transport Model

    CERN Document Server

    Luo, Tan; Wang, Xin-Nian; Zhu, Yan

    2015-01-01

    A Linear Boltzmann Transport (LBT) model has been developed for the study of jet propagation inside a quark-gluon plasma. Both leading and thermal recoiled partons are transported according to the Boltzmann equations to account for jet-induced medium excitations. In this talk, we present our study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate elastic energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons are found to have significant influences on the jet energy loss and transverse profile.

  19. Scattering theory for the linearized Boltzmann equation

    International Nuclear Information System (INIS)

    Scattering theory for a cloud of mutually non-interacting particles that in its passage through R3 undergoes absorption and production in a region D is contained in R3 through interaction with the medium in D is investigated. The motion for such a model is given by the linearized Boltzmann equation. Let n(x,v,t) denote the particle density in phase space at time t. The dynamics is described by a 1-parameter semigroup, W(t), which is in general not isometric. The existence of the wave operators Ω/sub +/ = s - lim W0(-t)W(t) (t →+infinity) and Ω/sub -/ = s - lim W(-t)W0(t) (t →-infinity), where W0(t) is the free dynamics, is examined at length

  20. Asymptotic-preserving Boltzmann model equations for binary gas mixture

    Science.gov (United States)

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.

  1. A hybrid method for the solution of linear Boltzmann equation

    International Nuclear Information System (INIS)

    Highlights: • The paper presents a novel method for the solution of linear Boltzmann equation. • The hybrid method, based on multiple collisions, combines transport with diffusion. • The physical basis of the method is discussed together with the mathematical model. • Results show its performance in terms of accuracy and computational time. • The extension of the method to more general configurations is discussed. - Abstract: This paper presents a novel approach devised to solve the transport of neutral particles in scattering and absorbing media. The solution to the linear Boltzmann equation is sought starting from a multi-collision approach of the integro-differential equation which is combined with an approximate model for the description of the residue after truncation of the Neumann series. In the paper, the theoretical basis of such hybrid method is discussed together with the physical intuition at the basis of the methodology. Results for both steady-state and transient problems are presented and an extension to general multi-dimensional, anisotropic problem is reported

  2. Analysis of Jeans instability from Boltzmann equation

    CERN Document Server

    Kremer, Gilberto M

    2015-01-01

    The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. The equilibrium distribution function takes into account the expansion of the Universe and a pressureless fluid in the matter dominated Universe. Without invoking Jeans "swindle" a dispersion relation is obtained by considering small perturbations of the equilibrium values of the distribution function and gravitational potential. The collapse criterion -- which happens in an unstable region where the solution grows exponentially with time -- is determined from the dispersion relation. The collapse criterion in a static Universe occurs when the wavenumber $k$ is smaller than the Jeans wavenumber $k_J$, which was the solution found by Jeans. For an expanding Universe it is shown that this criterion is $k\\leq\\sqrt{7/6}\\,k_J$. As a consequence the ratio of the mass contained in a sphere of diameter equal to the wavelength $\\lambda=2\\pi/k$ to t...

  3. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  4. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  5. Linearized Boltzmann Equation and Hydrodynamics for Granular Gases

    OpenAIRE

    Brey, J. Javier; Dufty, James W.; Ruiz-Montero, M. J.

    2003-01-01

    The linearized Boltzmann equation is considered to describe small spatial perturbations of the homogeneous cooling state. The corresponding macroscopic balance equations for the density, temperature, and flow velocity are derived from it as the basis for a hydrodynamic description. Hydrodynamics is defined in terms of the spectrum of the generator for the dynamics of the linearized Boltzmann equation. The hydrodynamic eigenfunctions and eigenvalues are calculated in the long wavelength limit....

  6. Thermal equation of state for lattice Boltzmann gases

    Institute of Scientific and Technical Information of China (English)

    Ran Zheng

    2009-01-01

    The Galilean invaxiance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model axe proposed together with their rigorous theoretical background. From the viewpoint of group invariance,recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  7. Thermal equation of state for lattice Boltzmann gases

    Science.gov (United States)

    Ran, Zheng

    2009-06-01

    The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  8. A probabilistic view on the general relativistic Boltzmann equation

    CERN Document Server

    Bailleul, Ismael

    2011-01-01

    A new probalistic approach to general relativistic kinetic theory is proposed. The general relativistic Boltzmann equation is linked to a new Markov process in a completely intrinsic way. This treatment is then used to prove the causal character of the relativistic Boltzmann model.

  9. Langevin theory of fluctuations in the discrete Boltzmann equation

    CERN Document Server

    Gross, M; Varnik, F; Adhikari, R

    2010-01-01

    The discrete Boltzmann equation for both the ideal and a non-ideal fluid is extended by adding Langevin noise terms in order to incorporate the effects of thermal fluctuations. After casting the fluctuating discrete Boltzmann equation in a form appropriate to the Onsager-Machlup theory of linear fluctuations, the statistical properties of the noise are determined by invoking a fluctuation-dissipation theorem at the kinetic level. By integrating the fluctuating discrete Boltzmann equation, the fluctuating lattice Boltzmann equation is obtained, which provides an efficient way to solve the equations of fluctuating hydrodynamics for ideal and non-ideal fluids. Application of the framework to a generic force-based non-ideal fluid model leads to ideal gas-type thermal noise. Simulation results indicate proper thermalization of all degrees of freedom.

  10. On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics

    International Nuclear Information System (INIS)

    Solutions are analyzed of the linearized relativistic Boltzmann equation for initial data from L2(r, p) in long-time and/or small-mean-free-path limits. In both limits solutions of this equation converge to approximate ones constructed with solutions of the set of differential equations called the equations of relativistic hydrodynamics

  11. Second-order Boltzmann equation: gauge dependence and gauge invariance

    International Nuclear Information System (INIS)

    In the context of cosmological perturbation theory, we derive the second-order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: (i) the polarization of light is incorporated in this formalism by using a tensor-valued distribution function; (ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; (iii) we perform a separation between temperature and spectral distortion, both for the intensity and polarization for the first time; (iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gauge dependence for the observed temperature. (paper)

  12. Second order Boltzmann equation : gauge dependence and gauge invariance

    CERN Document Server

    Naruko, Atsushi; Koyama, Kazuya; Sasaki, Misao

    2013-01-01

    In the context of cosmological perturbation theory, we derive the second order Boltzmann equation describing the evolution of the distribution function of radiation without a specific gauge choice. The essential steps in deriving the Boltzmann equation are revisited and extended given this more general framework: i) the polarisation of light is incorporated in this formalism by using a tensor-valued distribution function; ii) the importance of a choice of the tetrad field to define the local inertial frame in the description of the distribution function is emphasized; iii) we perform a separation between temperature and spectral distortion, both for the intensity and for polarisation for the first time; iv) the gauge dependence of all perturbed quantities that enter the Boltzmann equation is derived, and this enables us to check the correctness of the perturbed Boltzmann equation by explicitly showing its gauge-invariance for both intensity and polarization. We finally discuss several implications of the gaug...

  13. Electric Conductivity from the solution of the Relativistic Boltzmann Equation

    CERN Document Server

    Puglisi, A; Greco, V

    2014-01-01

    We present numerical results of electric conductivity $\\sigma_{el}$ of a fluid obtained solving the Relativistic Transport Boltzmann equation in a box with periodic boundary conditions. We compute $\\sigma_{el}$ using two methods: the definition itself, i.e. applying an external electric field, and the evaluation of the Green-Kubo relation based on the time evolution of the current-current correlator. We find a very good agreement between the two methods. We also compare numerical results with analytic formulas in Relaxation Time Approximation (RTA) where the relaxation time for $\\sigma_{el}$ is determined by the transport cross section $\\sigma_{tr}$, i.e. the differential cross section weighted with the collisional momentum transfer. We investigate the electric conductivity dependence on the microscopic details of the 2-body scatterings: isotropic and anisotropic cross-section, and massless and massive particles. We find that the RTA underestimates considerably $\\sigma_{el}$; for example at screening masses $...

  14. Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects

    CERN Document Server

    Philippi, P C; Surmas, R; Philippi, Paulo Cesar; Santos, Luis Orlando Emerich dos; Surmas, Rodrigo

    2005-01-01

    The particles model, the collision model, the polynomial development used for the equilibrium distribution, the time discretization and the velocity discretization are factors that let the lattice Boltzmann framework (LBM) far away from its conceptual support: the continuous Boltzmann equation (BE). Most collision models are based on the BGK, single parameter, relaxation-term leading to constant Prandtl numbers. The polynomial expansion used for the equilibrium distribution introduces an upper-bound in the local macroscopic speed. Most widely used time discretization procedures give an explicit numerical scheme with second-order time step errors. In thermal problems, quadrature did not succeed in giving discrete velocity sets able to generate multi-speed regular lattices. All these problems, greatly, difficult the numerical simulation of LBM based algorithms. In present work, the systematic derivation of lattice-Boltzmann models from the continuous Boltzmann equation is discussed. The collision term in the li...

  15. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  16. The Boltzmann-Hamel Equations for Optimal Control

    OpenAIRE

    Maruskin, Jared M.; Bloch, Anthony M.

    2007-01-01

    We extend the Boltzmann-Hamel equations to the optimal control setting, producing a set of equations for both kinematic and dynamic nonholonomic optimal control problems. In particular, we will show the dynamic optimal control problem can be written as a minimal set of 4n-2m first order differential equations of motion.

  17. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.;

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows the...

  18. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  19. Kapitza conductance, temperature gradients, and solutions to the Boltzmann equation

    International Nuclear Information System (INIS)

    In the belief that the study of heat transport requires the study of the transport equation, we present an approach to the problem of the Kapitza conductance h/subK/ between two materials which involves the solutions of the Boltzmann equation. One of our purposes is to investigate the origin of the apparent temperature discontinuity ΔT that is associated with this phenomenon. The hydrodynamic solutions of the Boltzmann equation, which (by definition) are describable in terms of local thermohydrodynamic variables, can transfer heat but are not at all responsible for ΔT; whereas the nonhydrodynamic solutions are completely responsible for ΔT but do not transfer heat. An effective temperature T tilde is defined which approaches the thermodynamic temperature T far from the interface, and which is assumed to be continuous across the interface. With this assumption, formal expressions for ΔT and h/subK/ are derived. In the limit as the properties of the two materials become identical, R/subK/ (=h/subK//sup -1/) approaches zero, as should be the case. Further, this approach has a natural generalization to finite frequencies and includes lifetime effects. It is pointed out that thermometers do not measure T tilde but rather T/subR/ which reflects, in a complicated fashion, the presence of the nonhydrodynamic modes, whose amplitudes fall off exponentially as one moves from the interface. In He II, determination of the exponential damping lengths (as a function of temperature and pressure) would provide information about phonon dispersion and phonon interactions which is at least as detailed as could be obtained by other means

  20. The non-linear Boltzmann equation and its application to time and space dependent problems

    International Nuclear Information System (INIS)

    This thesis is divided into two parts which both involve finding solutions of the Boltzmann Equation. The motivation behind Part 1 is laser fusion where energy transport is by electrons but the temperature gradients are so large in relation to their mean free paths that classical conduction theory breaks down. In this treatment the electron distribution function is found from an appropriate space-dependent Boltzmann Equation and thus physical quantities (in particular heat flux) are calculated for typical parameters from laser fusion. In part 2, an analytic solution of a certain non-linear one-dimensional Boltzmann Equation is obtained which describes the temporal relaxation to equilibrium of a system of particles. Solutions to the corresponding linearised equation and two E.G.K models (with energy-dependent and ''averaged'' collision times) are also derived and compared with that of the non-linear equation. (author)

  1. Lattice Boltzmann Equation On a 2D Rectangular Grid

    Science.gov (United States)

    Bouzidi, MHamed; DHumieres, Dominique; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    We construct a multi-relaxation lattice Boltzmann model on a two-dimensional rectangular grid. The model is partly inspired by a previous work of Koelman to construct a lattice BGK model on a two-dimensional rectangular grid. The linearized dispersion equation is analyzed to obtain the constraints on the isotropy of the transport coefficients and Galilean invariance for various wave propagations in the model. The linear stability of the model is also studied. The model is numerically tested for three cases: (a) a vortex moving with a constant velocity on a mesh periodic boundary conditions; (b) Poiseuille flow with an arbitrasy inclined angle with respect to the lattice orientation: and (c) a cylinder &symmetrically placed in a channel. The numerical results of these tests are compared with either analytic solutions or the results obtained by other methods. Satisfactory results are obtained for the numerical simulations.

  2. Celebrating Cercignani's conjecture for the Boltzmann equation

    CERN Document Server

    Desvillettes, Laurent; Villani, Cédric

    2010-01-01

    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.

  3. Axisymmetric multiphase Lattice Boltzmann method for generic equations of state

    CERN Document Server

    Reijers, Sten A; Toschi, Federico

    2015-01-01

    We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid-gas density ratios up to $10^3$. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation equations. We validate the model by showing that a stationary droplet obeys the Young-Laplace law, comparing the second oscillation mode of a droplet with respect to an analytical solution and showing correct mass conservation of a propagating density wave.

  4. Relativistic Causal Hydrodynamics Derived from Boltzmann Equation: a novel reduction theoretical approach

    OpenAIRE

    Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji

    2015-01-01

    We derive the second-order hydrodynamic equation and the microscopic formulae of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the non-relativistic second-order hydrodynamic equation Our theory nicely gives a compact expression of the deviation of...

  5. From the Boltzmann Equation to the Euler Equations in the Presence of Boundaries

    CERN Document Server

    Golse, François

    2011-01-01

    The fluid dynamic limit of the Boltzmann equation leading to the Euler equations for an incompressible fluid with constant density in the presence of material boundaries shares some important features with the better known inviscid limit of the Navier-Stokes equations. The present paper slightly extends recent results from [C. Bardos, F. Golse, L. Paillard, Comm. Math. Sci., 10 (2012), 159--190] to the case of boundary conditions for the Boltzmann equation more general than Maxwell's accomodation condition.

  6. From the Boltzmann Equation to the Euler Equations in the Presence of Boundaries

    OpenAIRE

    Golse, François

    2011-01-01

    The fluid dynamic limit of the Boltzmann equation leading to the Euler equations for an incompressible fluid with constant density in the presence of material boundaries shares some important features with the better known inviscid limit of the Navier-Stokes equations. The present paper slightly extends recent results from [C. Bardos, F. Golse, L. Paillard, Comm. Math. Sci., 10 (2012), 159--190] to the case of boundary conditions for the Boltzmann equation more general than Maxwell's accomoda...

  7. Thermal creep problems by the discrete Boltzmann equation

    Directory of Open Access Journals (Sweden)

    L. Preziosi

    1991-05-01

    Full Text Available This paper deals with an initial-boundary value problem for the discrete Boltzmann equation confined between two moving walls at different temperature. A model suitable for the quantitative analysis of the initial boundary value problem and the relative existence theorem are given.

  8. Weighted particle method for solving the Boltzmann equation

    International Nuclear Information System (INIS)

    We propose a new, deterministic, method of solution of the nuclear Boltzmann equation. In this Weighted Particle Method two-body collisions are treated by a Master equation for an occupation probability of each numerical particle. We apply the method to the quadrupole motion of 12C. A comparison with usual stochastic methods is made. Advantages and disadvantages of the Weighted Particle Method are discussed

  9. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    OpenAIRE

    Molnar, E.; Niemi, H.; Rischke, D. H.

    2016-01-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break dow...

  10. The Nonclassical Diffusion Approximation to the Nonclassical Linear Boltzmann Equation

    CERN Document Server

    Vasques, Richard

    2015-01-01

    We show that, by correctly selecting the probability distribution function $p(s)$ for a particle's distance-to-collision, the nonclassical diffusion equation can be represented exactly by the nonclassical linear Boltzmann equation for an infinite homogeneous medium. This choice of $p(s)$ preserves the $true$ mean-squared free path of the system, which sheds new light on the results obtained in previous work.

  11. On generalized Boltzmann equations for reacting systems

    Science.gov (United States)

    Veguillas, Juan; Rivas, Martin

    A quantum-statistical treatment of chemical kinetics is presented which does not differ between non-reactive scattering and rearrangement processes. This treatment is done in such a way that the standard methods of nonequilibrium statistical mechanics become applicable. Kinetics equations of the Waldmann-Snider, and Wang Chang and Uhlenbeck type are derived for the reduced density operator of different species related to an homo-geneous, dilute gaseous system of the type AB+C⇌2AC+B⇌2BC+A. Global rate coefficients for the different rearrangement processes are defined and derived when starting with Waldmann-Snider type equations.

  12. A lattice based solution of the collisional Boltzmann equation with applications to microchannel flows

    International Nuclear Information System (INIS)

    An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework. (paper)

  13. Shock-wave structure using nonlinear model Boltzmann equations.

    Science.gov (United States)

    Segal, B. M.; Ferziger, J. H.

    1972-01-01

    The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.

  14. Transport Equations for Oscillating Neutrinos

    CERN Document Server

    Zhang, Yunfan

    2013-01-01

    We derive a suite of generalized Boltzmann equations, based on the density-matrix formalism, that incorporates the physics of neutrino oscillations for two- and three-flavor oscillations, matter refraction, and self-refraction. The resulting equations are straightforward extensions of the classical transport equations that nevertheless contain the full physics of quantum oscillation phenomena. In this way, our broadened formalism provides a bridge between the familiar neutrino transport algorithms employed by supernova modelers and the more quantum-heavy approaches frequently employed to illuminate the various neutrino oscillation effects. We also provide the corresponding angular-moment versions of this generalized equation set. Our goal is to make it easier for astrophysicists to address oscillation phenomena in a language with which they are familiar. The equations we derive are simple and practical, and are intended to facilitate progress concerning oscillation phenomena in the context of core-collapse su...

  15. From Conformal Invariance towards Dynamical Symmetries of the Collisionless Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Stoimen Stoimenov

    2015-09-01

    Full Text Available Dynamical symmetries of the collisionless Boltzmann transport equation, or Vlasov equation, but under the influence of an external driving force, are derived from non-standard representations of the 2D conformal algebra. In the case without external forces, the symmetry of the conformally-invariant transport equation is first generalized by considering the particle momentum as an independent variable. This new conformal representation can be further extended to include an external force. The construction and possible physical applications are outlined.

  16. Solving the Homogeneous Boltzmann Equation with Arbitrary Scattering Kernel

    CERN Document Server

    Hohenegger, A

    2008-01-01

    With applications in astroparticle physics in mind, we generalize a method for the solution of the nonlinear, space homogeneous Boltzmann equation with isotropic distribution function to arbitrary matrix elements. The method is based on the expansion of the matrix element in terms of two cosines of the "scattering angles". The scattering functions used by previous authors in particle physics for matrix elements in Fermi-approximation are retrieved as lowest order results in this expansion. The method is designed for the unified treatment of reactive mixtures of particles obeying different scattering laws, including the quantum statistical terms for blocking or stimulated emission, in possibly large networks of Boltzmann equations. Although our notation is the relativistic one, as it is used in astroparticle physics, the results can also be applied in the classical case.

  17. Solving the homogeneous Boltzmann equation with arbitrary scattering kernel

    International Nuclear Information System (INIS)

    With applications in astroparticle physics in mind, we generalize a method for the solution of the nonlinear, space-homogeneous Boltzmann equation with an isotropic distribution function to arbitrary matrix elements. The method is based on the expansion of the scattering kernel in terms of two cosines of the 'scattering angles'. The scattering functions used by previous authors in particle physics for matrix elements in the Fermi approximation are retrieved as lowest order results in this expansion. The method is designed for the unified treatment of reactive mixtures of particles obeying different scattering laws, including the quantum statistical terms for blocking or stimulated emission, in possibly large networks of Boltzmann equations. Although our notation is the relativistic one, as it is used in astroparticle physics, the results can also be applied in the classical case.

  18. Solving the Homogeneous Boltzmann Equation with Arbitrary Scattering Kernel

    OpenAIRE

    Hohenegger, A.

    2008-01-01

    With applications in astroparticle physics in mind, we generalize a method for the solution of the nonlinear, space homogeneous Boltzmann equation with isotropic distribution function to arbitrary matrix elements. The method is based on the expansion of the matrix element in terms of two cosines of the "scattering angles". The scattering functions used by previous authors in particle physics for matrix elements in Fermi-approximation are retrieved as lowest order results in this expansion. Th...

  19. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.)

  20. On half-space problems for the discrete Boltzmann equation

    International Nuclear Information System (INIS)

    We study typical half-space problems of rarefied gas dynamics, including the problems of Milne and Kramer, for the discrete Boltzmann equation (a general discrete velocity model, DVM, with an arbitrary finite number of velocities). Then the discrete Boltzmann equation reduces to a system of Odes. The data for the outgoing particles at the boundary are assigned, possibly linearly depending on the data for the incoming particles. A classification of well-posed half-space problems for the homogeneous, as well as the inhomogeneous, linearized discrete Boltzmann equation is made. In the non-linear case the solutions are assumed to tend to an assigned Maxwellian at infinity. The conditions on the data at the boundary needed for the existence of a unique (in a neighborhood of the assigned Maxwellian) solution of the problem are investigated. In the non-degenerate case (corresponding, in the continuous case, to the case when the Mach number at the Maxwellian at infinity is different of (1, 0 and 1) implicit conditions are found. Furthermore, under certain assumptions explicit conditions are found, both in the non-degenerate and degenerate cases. An application to axially symmetric models is also studied.

  1. LATTICE BOLTZMANN EQUATION MODEL IN THE CORIOLIS FIELD

    Institute of Scientific and Technical Information of China (English)

    FENG SHI-DE; MAO JIANG-YU; ZHANG QIONG

    2001-01-01

    In a large-scale field of rotational fluid, various unintelligible and surprising dynamic phenomena are produced due to the effect of the Coriolis force. The lattice Boltzmann equation (LBE) model in the Coriolis field is developed based on previous works.[1-4] Geophysical fluid dynamics equations are derived from the model. Numerical simulations have been made on an ideal atmospheric circulation of the Northern Hemisphere by using the model and they reproduce the Rossby wave motion well. Hence the applicability of the model is verified in both theory and experiment.

  2. Derivation of the Linear Landau Equation and Linear Boltzmann Equation from the Lorentz Model with Magnetic Field

    Science.gov (United States)

    Marcozzi, M.; Nota, A.

    2016-03-01

    We consider a test particle moving in a random distribution of obstacles in the plane, under the action of a uniform magnetic field, orthogonal to the plane. We show that, in a weak coupling limit, the particle distribution behaves according to the linear Landau equation with a magnetic transport term. Moreover, we show that, in a low density regime, when each obstacle generates an inverse power law potential, the particle distribution behaves according to the linear Boltzmann equation with a magnetic transport term. We provide an explicit control of the error in the kinetic limit by estimating the contributions of the configurations which prevent the Markovianity. We compare these results with those ones obtained for a system of hard disks in Bobylev et al. (Phys Rev Lett 75:2, 1995), which show instead that the memory effects are not negligible in the Boltzmann-Grad limit.

  3. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    Science.gov (United States)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  4. Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renormalization-group method

    International Nuclear Information System (INIS)

    We review our work on the application of the renormalization-group method to obtain first- and second-order relativistic hydrodynamics from the relativistic Boltzmann equation (RBE) as a dynamical system, with some corrections and new unpublished results. For the first-order equation, we explicitly obtain the distribution function in the asymptotic regime as the invariant manifold of the dynamical system, which turns out to be nothing but the matching condition defining the energy frame, i.e., the Landau-Lifshitz one. It is argued that the frame on which the flow of the relativistic hydrodynamic equation is defined must be the energy frame, if the dynamics should be consistent with the underlying RBE. A sketch is also given for derivation of the second-order hydrodynamic equation, i.e., extended thermodynamics, which is accomplished by extending the invariant manifold so that it is spanned by excited modes as well as the zero modes (hydrodynamic modes) of the linearized collision operator. On the basis of thus constructed resummed distribution function, we propose a novel ansatz for the functional form to be used in Grad moment method; it is shown that our theory gives the same expressions for the transport coefficients as those given in the Chapman-Enskog theory as well as the novel expressions for the relaxation times and lengths allowing natural interpretation. (orig.)

  5. Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renormalization-group method

    Energy Technology Data Exchange (ETDEWEB)

    Tsumura, Kyosuke [Fujifilm Corporation, Analysis Technology Center, Kanagawa (Japan); Kunihiro, Teiji [Kyoto University, Department of Physics, Kyoto (Japan)

    2012-11-15

    We review our work on the application of the renormalization-group method to obtain first- and second-order relativistic hydrodynamics from the relativistic Boltzmann equation (RBE) as a dynamical system, with some corrections and new unpublished results. For the first-order equation, we explicitly obtain the distribution function in the asymptotic regime as the invariant manifold of the dynamical system, which turns out to be nothing but the matching condition defining the energy frame, i.e., the Landau-Lifshitz one. It is argued that the frame on which the flow of the relativistic hydrodynamic equation is defined must be the energy frame, if the dynamics should be consistent with the underlying RBE. A sketch is also given for derivation of the second-order hydrodynamic equation, i.e., extended thermodynamics, which is accomplished by extending the invariant manifold so that it is spanned by excited modes as well as the zero modes (hydrodynamic modes) of the linearized collision operator. On the basis of thus constructed resummed distribution function, we propose a novel ansatz for the functional form to be used in Grad moment method; it is shown that our theory gives the same expressions for the transport coefficients as those given in the Chapman-Enskog theory as well as the novel expressions for the relaxation times and lengths allowing natural interpretation. (orig.)

  6. Solution of spatially homogeneous model Boltzmann equations by means of Lie groups of transformations

    International Nuclear Information System (INIS)

    The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)

  7. Fermion particle production in semiclassical Boltzmann-Vlasov transport theory

    International Nuclear Information System (INIS)

    We present numerical solutions of the semiclassical Boltzmann-Vlasov equation for fermion particle-antiparticle production by strong electric fields in boost-invariant coordinates in (1+1) and (3+1) dimensional QED. We compare the Boltzmann-Vlasov results with those of recent quantum field theory calculations and find good agreement. We conclude that extending the Boltzmann-Vlasov approach to the case of QCD should allow us to do a thorough investigation of how backreaction affects recent results on the dependence of the transverse momentum distribution of quarks and antiquarks on a second Casimir invariant of color SU(3).

  8. Hydrodynamic limit with geometric correction of stationary Boltzmann equation

    Science.gov (United States)

    Wu, Lei

    2016-05-01

    We consider the hydrodynamic limit of a stationary Boltzmann equation in a unit plate with in-flow boundary. The classical theory claims that the solution can be approximated by the sum of interior solution which satisfies steady incompressible Navier-Stokes-Fourier system, and boundary layer derived from Milne problem. In this paper, we construct counterexamples to disprove such formulation in L∞ both for its proof and result. Also, we show the hydrodynamic limit with a different boundary layer expansion with geometric correction.

  9. Existence of the scattering matrix for the linearized Boltzmann equation

    International Nuclear Information System (INIS)

    Following Hejtmanek, we consider neutrons in infinite space obeying a linearized Boltzmann equation describing their interaction with matter in some compact set D. We prove existence of the S-matrix and subcriticality of the dynamics in the (weak-coupling) case where the mean free path is larger than the diameter of D uniform in the velocity. We prove existence of the S-matrix also for the case where D is convex and filled with uniformly absorbent material. In an appendix, we present an explicit example where the dynamics is not invertible on L+1, the cone of positive elements in L1. (orig.)

  10. Pointwise Behavior of the Linearized Boltzmann Equation on Torus

    OpenAIRE

    Wu, Kung-Chien

    2013-01-01

    We study the pointwise behavior of the linearized Boltzmann equation on torus for non-smooth initial perturbation. The result reveals both the fluid and kinetic aspects of this model. The fluid-like waves are constructed as part of the long-wave expansion in the spectrum of the Fourier mode for the space variable, the time decay rate of the fluid-like waves depends on the size of the domain. We design a Picard-type iteration for constructing the increasingly regular kinetic-like waves, which ...

  11. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  12. Phonon Boltzmann equation-based discrete unified gas kinetic scheme for multiscale heat transfer

    CERN Document Server

    Guo, Zhaoli

    2016-01-01

    Numerical prediction of multiscale heat transfer is a challenging problem due to the wide range of time and length scales involved. In this work a discrete unified gas kinetic scheme (DUGKS) is developed for heat transfer in materials with different acoustic thickness based on the phonon Boltzmann equation. With discrete phonon direction, the Boltzmann equation is discretized with a second-order finite-volume formulation, in which the time-step is fully determined by the Courant-Friedrichs-Lewy (CFL) condition. The scheme has the asymptotic preserving (AP) properties for both diffusive and ballistic regimes, and can present accurate solutions in the whole transition regime as well. The DUGKS is a self-adaptive multiscale method for the capturing of local transport process. Numerical tests for both heat transfers with different Knudsen numbers are presented to validate the current method.

  13. Generalizing the Boltzmann equation in complex phase space.

    Science.gov (United States)

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421

  14. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    Science.gov (United States)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  15. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear Boltzmann transport in arbitrary dimension

    OpenAIRE

    d'Eon, Eugene

    2013-01-01

    We derive new diffusion solutions to the monoenergetic generalized linear Boltzmann transport equation (GLBE) for the stationary collision density and scalar flux about an isotropic point source in an infinite $d$-dimensional absorbing medium with isotropic scattering. We consider both classical transport theory with exponentially-distributed free paths in arbitrary dimensions as well as a number of non-classical transport theories (non-exponential random flights) that describe a broader clas...

  16. Reciprocal relations based on the non-stationary Boltzmann equation

    Science.gov (United States)

    Sharipov, Felix

    2012-03-01

    The reciprocal relations for open gaseous systems are obtained on the basis of main properties of the non-stationary Boltzmann equation and gas-surface interaction law. It is shown that the main principles to derive the kinetic coefficients satisfying the reciprocal relations remain the same as those used for time-independent gaseous systems [F. Sharipov, Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction law single gas, Phys. Rev. 73 (2006) 026110]. First, the kinetic coefficients are obtained from the entropy production expression; then it is proved that the coefficient matrix calculated for time reversed source functions is symmetric. The proof is based on the reversibility of the gas-gas and gas-surface interactions. Three examples of applications of the present theory are given. None of these examples can be treated in the frame of the classical Onsager-Casimir reciprocal relations, which are valid only in a particular case, when the kinetic coefficients are odd or even with respect to the time reversion. The approach is generalized for gaseous mixtures.

  17. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  18. Boltzmann Equation Solver Adapted to Emergent Chemical Non-equilibrium

    CERN Document Server

    Birrell, Jeremiah

    2014-01-01

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature $T(t)$ and phase space occupation factor $\\Upsilon(t)$. In this first paper we address (effectively) massless fermions and derive dynamical equations for $T(t)$ and $\\Upsilon(t)$ such that the zeroth order term of the basis alone captures the number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component ($e^\\pm$-annihilation).

  19. Backward mapping solutions of the Boltzmann equation in cylindrically symmetric, uniformly charged auroral ionosphere

    Science.gov (United States)

    Ma, John Z. G.; St.-Maurice, J.-P.

    2015-06-01

    By applying a backward mapping technique, we solve the Boltzmann equation to investigate the effects of ion-neutral collisions on the ion velocity distribution and related transport properties in cylindrically symmetric, uniformly charged auroral ionosphere. Such a charge geometry introduces a radial electric field which increases linearly with distance from the axis of symmetry. In order to obtain complete analytical solutions for gaining physical insights into more complicated problems, we have substituted a relaxation collision model for the Boltzmann collision integral in the Boltzmann equation. Our calculations show that collisions drive the velocity distribution to a "horseshoe" shape after a few collision times. This feature extends to all radial positions as long as the electric field keeps increasing linearly versus radius. If the electric field is introduced suddenly, there is a transition from the collision-free pulsating Maxwellian distributions obtained in previous work (Ma and St.-Maurice, J. Geophys. Res., 113:A05312, 2008) to the "horseshoe" shapes on a time scale of within the few collision times. We also show how the transport properties evolve in a similar fashion, from oscillating to a non-oscillating features over the same time interval.

  20. Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renormalization-group method

    OpenAIRE

    Tsumura, Kyosuke; Kunihiro, Teiji

    2012-01-01

    We review our work on the application of the renormalization-group method to obtain first- and second-order relativistic hydrodynamics of the relativistic Boltzmann equation (RBE) as a dynamical system, with some corrections and new unpublished results. For the first-order equation, we explicitly obtain the distribution function in the asymptotic regime as the invariant manifold of the dynamical system, which turns out to be nothing but the matching condition defining the energy frame, i.e., ...

  1. Unbiased minimum variance estimator of a matrix exponential function. Application to Boltzmann/Bateman coupled equations solving

    International Nuclear Information System (INIS)

    This paper derives an unbiased minimum variance estimator (UMVE) of a matrix exponential function of a normal wean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. The last section will present numerical results on a simple example. (authors)

  2. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  3. The linear Boltzmann equation in slab geometry - Development and verification of a reliable and efficient solution

    Science.gov (United States)

    Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.

    1991-01-01

    The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.

  4. Relativistic Causal Hydrodynamics Derived from Boltzmann Equation: a novel reduction theoretical approach

    CERN Document Server

    Tsumura, Kyosuke; Kunihiro, Teiji

    2015-01-01

    We derive the second-order hydrodynamic equation and the microscopic formulae of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the non-relativistic second-order hydrodynamic equation Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamica...

  5. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    CERN Document Server

    Molnar, E; Rischke, D H

    2016-01-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. To zeroth order this expansion yields ideal fluid dynamics, to first order Navier-Stokes theory, and to second order transient theories of dissipative fluid dynamics. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, so-called anisotropic fluid dynamics, in terms of an expansion around a single-particle distribution function which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. In this paper we derive, up to terms of second order in this expansion, the equations of mo...

  6. High order numerical methods for the space non-homogeneous Boltzmann equation

    International Nuclear Information System (INIS)

    In this paper we present accurate methods for the numerical solution of the Boltzmann equation of rarefied gas. The methods are based on a time splitting technique. The transport is solved by a third order accurate (in space) positive and flux conservative (PFC) method. The collision step is treated by a Fourier approximation of the collision integral, which guarantees spectral accuracy in velocity, coupled with several high order integrators in time. Strang splitting is used to achieve second order accuracy in space and time. Several numerical tests illustrate the properties of the methods

  7. TH-E-BRE-01: A 3D Solver of Linear Boltzmann Transport Equation Based On a New Angular Discretization Method with Positivity for Photon Dose Calculation Benchmarked with Geant4

    International Nuclear Information System (INIS)

    Purpose: The Linear Boltzmann Transport Equation (LBTE) solved through statistical Monte Carlo (MC) method provides the accurate dose calculation in radiotherapy. This work is to investigate the alternative way for accurately solving LBTE using deterministic numerical method due to its possible advantage in computational speed from MC. Methods: Instead of using traditional spherical harmonics to approximate angular scattering kernel, our deterministic numerical method directly computes angular scattering weights, based on a new angular discretization method that utilizes linear finite element method on the local triangulation of unit angular sphere. As a Result, our angular discretization method has the unique advantage in positivity, i.e., to maintain all scattering weights nonnegative all the time, which is physically correct. Moreover, our method is local in angular space, and therefore handles the anisotropic scattering well, such as the forward-peaking scattering. To be compatible with image-guided radiotherapy, the spatial variables are discretized on the structured grid with the standard diamond scheme. After discretization, the improved sourceiteration method is utilized for solving the linear system without saving the linear system to memory. The accuracy of our 3D solver is validated using analytic solutions and benchmarked with Geant4, a popular MC solver. Results: The differences between Geant4 solutions and our solutions were less than 1.5% for various testing cases that mimic the practical cases. More details are available in the supporting document. Conclusion: We have developed a 3D LBTE solver based on a new angular discretization method that guarantees the positivity of scattering weights for physical correctness, and it has been benchmarked with Geant4 for photon dose calculation

  8. Boltzmann

    International Nuclear Information System (INIS)

    This paper reports the development of an object-oriented programming methodology for particle simulations. It is established on the [m reductionist] view that many physical phenomena cana be reduced to many-body problems. By doing the reduction, many seemly unrelated physical phenomena can be simulated in a systematic way and a high-level programming system can be constructed to facilitate the programming and the solution of the simulations. In the object-oriented particle simulation methodology, a hierarchy of abstract particles is defined to represent a variety of characteristics in physical system simulations. A simulation program is constructed from particles derived from the abstract particles. The object- oriented particle simulation methodology provides a unifying modeling and simulation framework for a variety of simulation applications with the use of particle methods. It allows easy composition of simulation programs from predefined software modules and facilitates software reusability. It greatly increase the productivity of simulation program constructions. Boltzmann (after Ludwig Boltzmann, 1844-1906) is a prototype programming system in the object-oriented particle simulation methodology. Boltzmann is implemented in C++ and the X Window System. It contains a library of data types and functions that support simulations in particle methods. Moreover, it provides a visualization window to support friendly user-computer interaction. Examples of the application of the Boltzmann programming system are presented. The effectiveness of the object-oriented particle simulation methodology is demonstrated. A user's manual is included in the appendix

  9. Incompressible Navier–Stokes equations from Boltzmann equations for reacting mixtures

    International Nuclear Information System (INIS)

    Incompressible Navier–Stokes equations for gas mixtures are derived from Boltzmann kinetic models in a suitable fluid dynamic limit. We consider polyatomic gases, each one endowed with a discrete set of internal energy levels. Specifically, we deal with a mixture of four polyatomic gases also undergoing chemical reactions. In the Maxwell molecule case, diffusion coefficients and contributions due to inelastic scattering and to chemical reactions may be explicitly computed. (paper)

  10. Spherical harmonics and energy polynomial solution of the Boltzmann equation for neutrons, 1

    International Nuclear Information System (INIS)

    The approximate solution of the source-free energy-dependent Boltzmann transport equation for neutrons in plane geometry and isotropic scattering case was given by Leonard and Ferziger using a truncated development in a series of energy-polynomials for the energy dependent neutron flux and solving exactly for the angular dependence. The presence in the general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult analytical problems in the application of their method even to simple problems. To avoid such difficulties, the angular dependence is treated by a spherical harmonics method and a general solution of the energy-dependent transport equation in plane geometry and isotropic scattering is obtained, in spite of the appearance of matrices as argument of the angular polynomials

  11. A hybrid multigroup/continuous-energy Monte Carlo method for solving the Boltzmann-Fokker-Planck equation

    International Nuclear Information System (INIS)

    A hybrid multigroup/continuous-energy Monte Carlo algorithm is developed for solving the Boltzmann-Fokker-Planck equation. This algorithm differs significantly from previous charged-particle Monte Carlo algorithms. Most importantly, it can be used to perform both forward and adjoint transport calculations, using the same basic multigroup cross-section data. The new algorithm is fully described, computationally tested, and compared with a standard condensed history algorithm for coupled electron-photon transport calculations

  12. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  13. A deterministic particle method for the linearized Boltzmann equation

    International Nuclear Information System (INIS)

    We present a conservative particle method of approximation of integral operators which enables us to derive a numerical method of resolution of linear transport equations including integral terms. We prove the L∞ convergence of the method at the order ε2 + hm/εm for any bounded time as soon as the cut-off belongs to Wm1

  14. Lattice Boltzmann Hydrodynamic and Transport Modeling of Everglades Mangrove Estuaries

    Science.gov (United States)

    Sukop, M. C.; Engel, V.

    2010-12-01

    Lattice Boltzmann methods are being developed and applied to simulate groundwater and surface water flows, and heat, solute, and particle transport. Their ability to solve Navier-Stokes, St. Venant, or Darcy equations with closely coupled solute transport and density-dependent flow effects in geometrically complex domains is attractive for inverse modeling of tracer release data and forward modeling of carbon transport in mangrove estuaries under various future conditions. Key physical processes to be simulated include tidal cycles, storm surge, sea level change, variable upstream stage, subsurface groundwater inputs, and precipitation/recharge and their effects on estuary salinity and carbon transport in the estuaries and groundwater beneath the mangroves. Carbon sources and storage in the aquifer and exchanges at the mangrove-estuary interface and carbon transformations in the water column also need to be simulated. Everglades tidal mangrove estuaries are characterized by relatively high velocity (approaching 1 m s-1) tidal flows. The channels are generally less than 2 m in depth. Tidal fluctuations approach 2 m leading to significant areas of periodic inundation and emergence of oyster beds, shell beaches, mangrove root masses, and sandy beaches. Initial models are two-dimensional, although a three-dimensional model explicitly incorporating bathymetry, density-dependent flow, and wind-driven circulation could be developed. Preliminary work highlights some of the abilities of early models. A satellite image of a 64-km2 area surrounding a CO2 flux tower is used to provide the model geometry. Model resolution is 15 m per grid node. A sinusoidal tidal stage variation and constant, high salinity are applied to the Gulf side of the model while a constant stage (corresponding to mean tide), zero salinity boundary is applied on the inland side. The Navier-Stokes equations coupled with the advection-diffusion equation are solved in the open channels. The mangrove areas

  15. A Stability Notion for the viscous Shallow Water Lattice Boltzmann Equations

    CERN Document Server

    Banda, Mapundi K

    2015-01-01

    The stability of Lattice Boltzmann Equations modelling Shallow Water Equations in the special case of reduced gravity is investigated theoretically. A stability notion is defined as applied in incompressible Navier-Stokes equations in Banda, M. K., Yong, W.- A. and Klar, A: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. {\\bf 27(6)}, 2098-2111 (2006). It is found that to maintain stability a careful choice of the value of the reduced gravity must be made. The stability notion is employed to investigate different shallow water lattice Boltzmann Equations. The effect of the reduced gravity on the mechanism of instability is investigated. Results are tested using the Lattice Boltzmann Method for various values of the governing parameters of the flow. It is observed that even for the discrete model the reduced gravity has a significant effect on the stability.

  16. On the solution of ion transport equation

    International Nuclear Information System (INIS)

    Two different techniques have been used to solve the Boltzmann-transport equation describing the penetration of light ions through solids in the continuous slowing down approximation (CSDA), namely maximum entropy and flux-limited.The solution- obtained for the scalar flux function θο(ξ,s) by using the flux-limited as well by means of the maximum entropy are agree with obtained by Chandrasekhar method

  17. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  18. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations

    International Nuclear Information System (INIS)

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  19. An Entropy Stable Discontinuous Galerkin Finite-Element Moment Method for the Boltzmann Equation

    CERN Document Server

    Abdelmalik, M R A

    2016-01-01

    This paper presents a numerical approximation technique for the Boltzmann equation based on a moment system approximation in velocity dependence and a discontinuous Galerkin finite-element approximation in position dependence. The closure relation for the moment systems derives from minimization of a suitable {\\phi}-divergence. This divergence-based closure yields a hierarchy of tractable symmetric hyperbolic moment systems that retain the fundamental structural properties of the Boltzmann equation. The resulting combined discontinuous Galerkin moment method corresponds to a Galerkin approximation of the Boltzmann equation in renormalized form. We present a new class of numerical flux functions, based on the underlying renormalized Boltzmann equation, that ensure entropy dissipation of the approximation scheme. Numerical results are presented for a one-dimensional test case.

  20. Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential

    International Nuclear Information System (INIS)

    A numerical procedure to solve the linearized Boltzmann equation with an arbitrary intermolecular potential by the discrete velocity method is elaborated. The equation is written in terms of the kernel, which contains the differential cross section and represents a singularity. As an example, the Lennard-Jones potential is used and the corresponding differential cross section is calculated and tabulated. Then, the kernel is calculated so that to overcome its singularity. Once, the kernel is known and stored it can be used for many kinds of gas flows. In order to test the method, the transport coefficients, i.e. thermal conductivity and viscosity for all noble gases, are calculated and compared with those obtained by the variational method using the Sonine polynomials expansion. The fine agreement between the results obtained by the two different methods shows the feasibility of application of the proposed technique to calculate rarefied gas flows over the whole range of the Knudsen number.

  1. Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons

    OpenAIRE

    Nguyen, Toan T.; Tran, Minh-Binh

    2016-01-01

    We consider the quantum Boltzmann equation, which describes the growth of the condensate, or in other words, models the interaction between excited atoms and a condensate. In this work, the full form of Bogoliubov dispersion law is considered, which leads to a detailed study of surface integrals inside the collision operator on energy manifolds. We prove that positive radial solutions of the quantum Boltzmann equation are bounded from below by a Gaussian, uniformly in time.

  2. Relativistic causal hydrodynamics derived from Boltzmann equation: A novel reduction theoretical approach

    Science.gov (United States)

    Tsumura, Kyosuke; Kikuchi, Yuta; Kunihiro, Teiji

    2015-10-01

    We derive the second-order hydrodynamic equation and the microscopic formulas of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the nonrelativistic second-order hydrodynamic equation. Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Furthermore, we show that the microscopic expressions of the relaxation times have natural and physically plausible forms. We prove that the propagating velocities of the fluctuations of the hydrodynamical variables do not exceed the light velocity, and hence our second-order equation ensures the desired causality. It is also confirmed that the equilibrium state is stable for any perturbation described by our equation.

  3. A hybrid block-oriented discrete ordinates and characteristics method algorithm for solving linear Boltzmann equation

    International Nuclear Information System (INIS)

    In this paper, we present a hybrid algorithm to solve the Linear Boltzmann Equation, specifically for application to problems containing regions of low scattering. The hybrid approach uses the Characteristics Method in low scattering regions, while the remaining regions are treated with the Discrete Ordinates Method (Sn). A new 3-D transport code (TITAN) has been developed based on the hybrid approach. In the TITAN code, a physical problem model is divided into a number of coarse meshes (blocks) in Cartesian geometry. TITAN allows different individual fine meshing schemes and angular quadrature sets for each coarse mesh. Either the characteristics solver or the Sn solver can be chosen to solve the Linear Boltzmann Equation within a coarse mesh. A shared scattering kernel allows an arbitrary order of anisotropic scattering in both block-oriented solvers. Angular and spatial projection techniques are developed to transfer angular fluxes on the interfaces of the coarse meshes. We have tested the performance and accuracy of the TITAN code on a number of benchmark problems. The results of a CT model are presented in this paper. The hybrid method shows higher computation efficiency than the regular Sn method. (authors)

  4. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  5. Simulation of a Natural Convection by the Hybrid Thermal Lattice Boltzmann Equation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seungyeob; Kang, Hanok; Seo, Jaekwang; Yun, Juhyeon; Zee, Sung-Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. In spite of its success in solving various challenging problems involving athermal fluids, the LBM has not been able to handle realistic thermal fluids with a satisfaction. The difficulty encountered in the thermal LBM seems to be the numerical instabilities. The existing thermal lattice Boltzmann models may be classified into three categories based on their approach in solving the Boltzmann equation, namely, the multispeed, the passive scalar and the thermal energy distribution approach. For more details see Ref. In the present work, the hybrid thermal lattice Boltzmann scheme proposed by Lallemand and Luo is used for simulating a natural convection in a square cavity. They proposed a hybrid thermal lattice Boltzmann equation(HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time(MRT) model, whereas the diffusion-advection equations for the temperature are solved separately by using finite-difference technique. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of temperature fields at high Rayleigh numbers.

  6. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  7. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  8. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Science.gov (United States)

    Liu, Chang; Xu, Kun; Sun, Quanhua; Cai, Qingdong

    2016-06-01

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region

  9. Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations

    CERN Document Server

    Zhang, Jingfeng; Ouyang, Jie

    2014-01-01

    A numerical method, based on discrete lattice Boltzmann equation, is presented for solving the volume-averaged Navier-Stokes equations. With a modified equilibrium distribution and an additional forcing term, the volume-averaged Navier-Stokes equations can be recovered from the lattice Boltzmann equation in the limit of small Mach number by the Chapman-Enskog analysis and Taylor expansion. Due to its advantages such as explicit solver and inherent parallelism, the method appears to be more competitive with traditional numerical techniques. Numerical simulations show that the proposed model can accurately reproduce both the linear and nonlinear drag effects of porosity in the fluid flow through porous media.

  10. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of moment of the Boltzmann equation

    CERN Document Server

    Molnár, Etele; Rischke, Dirk H

    2016-01-01

    In Moln\\'ar et al. [Phys. Rev. D 93, 114025 (2016)] the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.

  11. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  12. Weak and strong coupling limits of the Boltzmann equation in the relaxation-time approximation

    CERN Document Server

    Jaiswal, Amaresh; Redlich, Krzysztof

    2016-01-01

    We consider a momentum dependent relaxation time for the Boltzmann equation in the relaxation time approximation. We employ a power law parametrization for the momentum dependence of the relaxation time, and calculate the shear and bulk viscosity, as well as, the charge and heat conductivity. We show, that for the two popular parametrizations, referred to as the linear and quadratic ansatz, one can obtain transport coefficients which corresponds to the weak and strong coupling regimes, respectively. We also show that, for a system of massless particles with vanishing chemical potential, the off-equilibrium corrections to the phase-space distribution function calculated with the quadratic ansatz are identical with those of the Grad's 14-moment method.

  13. Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations.

    Science.gov (United States)

    Obliger, Amaël; Duvail, Magali; Jardat, Marie; Coelho, Daniel; Békri, Samir; Rotenberg, Benjamin

    2013-07-01

    We report the calculation of all the transfer coefficients which couple the solvent and ionic fluxes through a charged pore under the effect of pressure, electrostatic potential, and concentration gradients. We use a combination of analytical calculations at the Poisson-Nernst-Planck and Navier-Stokes levels of description and mesoscopic lattice simulations based on kinetic theory. In the absence of added salt, i.e., when the only ions present in the fluid are the counterions compensating the charge of the surface, exact analytical expressions for the fluxes in cylindrical pores allow us to validate a new lattice-Boltzmann electrokinetics (LBE) scheme which accounts for the osmotic contribution to the transport of all species. The influence of simulation parameters on the numerical accuracy is thoroughly investigated. In the presence of an added salt, we assess the range of validity of approximate expressions of the fluxes computed from the linearized Poisson-Boltzmann equation by a systematic comparison with LBE simulations. PMID:23944561

  14. Jet propagation within a Linearized Boltzmann Transport model

    International Nuclear Information System (INIS)

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile

  15. Jet propagation within a Linearized Boltzmann Transport model

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)

    2014-12-15

    A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.

  16. Supersymmetric electroweak baryogenesis, non-equilibrium field theory and quantum Boltzmann equations

    Energy Technology Data Exchange (ETDEWEB)

    Riotto, A. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.

    1998-05-04

    The closed time path (CTP) formalism is a powerful Green function formulation to describe non-equilibrium phenomena in field theory and it leads to a complete non-equilibrium quantum kinetic theory. In this paper we make use of the CTP formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ````memory```` effects which are typical of the quantum transport theory and are not present in the classical approach. The slowdown of the relaxation processes may keep the system out of equilibrium for longer times and therefore enhance the final baryon asymmetry. We also stress that the classical approximation is not adequate to describe the quantum interference nature of CP violation and that a quantum approach should be adopted to compute the sources since they are most easily built up by the transmission of low momentum particles. (orig.). 26 refs.

  17. Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lema\\^itre-Robertson-Walker spacetime

    CERN Document Server

    Bazow, D; Heinz, U; Martinez, M; Noronha, J

    2016-01-01

    The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lema\\^itre-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of non-hydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the non-hydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation...

  18. Discrete Boltzmann model of shallow water equations with polynomial equilibria

    CERN Document Server

    Meng, Jianping; Emerson, David R; Peng, Yong; Zhang, Jianmin

    2016-01-01

    A hierarchy of discrete Boltzmann model is proposed for simulating shallow water flows. By using the Hermite expansion and Gauss-Hermite quadrature, the conservation laws are automatically satisfied without extra effort. Moreover, the expansion order and quadrature can be chosen flexibly according to the problem for striking the balance of accuracy and efficiency. The models are then tested using the classical one-dimensional dam-breaking problem, and successes are found for both supercritical and subcritical flows.

  19. Dynamics of Annihilation I : Linearized Boltzmann Equation and Hydrodynamics

    OpenAIRE

    de Soria, M. I. Garcia; Maynar, P.; Schehr, G.; Barrat, A.; Trizac, E.

    2008-01-01

    We study the non-equilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of {\\em ballistic annihilation} therefore constantly looses particles. The dynamics of perturbations around the free decay regime is investigated from the spectral properties of the linearized Boltzmann operator, that characterize linear excitations on all time scales. The linearized Boltzma...

  20. Consistent Algorithms Marching Along Characteristics for the Numerical Solution of the Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Nilson C. Roberty

    2011-01-01

    Full Text Available We introduce algorithms marching over a polygonal mesh with elements consistent with the propagation directions of the particle (radiation flux. The decision for adopting this kind of mesh to solve the one-speed Boltzmann transport equation is due to characteristics of the domain of the transport operator which controls derivatives only in the direction of propagation of the particles (radiation flux in the absorbing and scattering media. This a priori adaptivity has the advantages that it formulates a consistent scheme which makes appropriate the application of the Lax equivalence theorem framework to the problem. In this work, we present the main functional spaces involved in the formalism and a description of the algorithms for the mesh generation and the transport equation solution. Some numerical examples related to the solution of a transmission problem in a high-contrast model with absorption and scattering are presented. Also, a comparison with benchmarks problems for source and reactor criticality simulations shows the compatibility between calculations with the algorithms proposed here and theoretical results.

  1. Uniform Polynomial Equations Providing Higher-order Multi-dimensional Models in Lattice Boltzmann Theory

    International Nuclear Information System (INIS)

    We present a set of polynomial equations that provides models of the lattice Boltzmann theory for any required level of accuracy and for any dimensional space in a general form. We explicitly derive two- and three-dimensional models applicable to describe thermal compressible flows of the level of the Navier-Stokes equations.

  2. Novel diagrammatic method for computing transport coefficients - beyond the Boltzmann approximation

    International Nuclear Information System (INIS)

    We propose a novel diagrammatic method for computing transport coefficients in relativistic quantum field theory. Our method is based on a reformulation and extension of the diagrammatic method by Eliashberg given in the imaginary-time formalism to the relativistic quantum field theory in the real-time formalism, in which the cumbersome analytical continuation problem can be avoided. The transport coefficients are obtained from a two-point function via Kubo formula. It is know that naive perturbation theory breaks down owing to a so called pinch singularity, and hence a resummation is required for getting a finite and sensible result. As a novel resummation method, we first decompose the two point function into the singular part and the regular part, and then reconstruct the diagrams. We find that a self-consistent equation for the two-point function has the same structure as the linearized Boltzmann equation. It is known that the two-point function at the leading order is equivalent to the linearized Boltzmann equation. We find the higher order corrections are nicely summarized as a renormalization of the vertex function, spectral function, and collision term. We also discuss the critical behavior of the transport coefficients near a phase transition, applying our method. (author)

  3. Transport equation solving methods

    International Nuclear Information System (INIS)

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method

  4. Improved Multiple-Coarsening Methods for Sn Discretizations of the Boltzmann Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B

    2008-12-01

    In a recent series of articles, the author presented a multiple-coarsening multigrid method for solving S{sub n} discretizations of the Boltzmann transport equation. This algorithm is applied to an integral equation for the scalar flux or moments. Although this algorithm is very efficient over parameter regimes that describe realistic neutron/photon transport applications, improved methods that can reduce the computational cost are presented in this paper. These improved methods are derived through a careful examination of the frequencies, particularly the near-nullspace, of the integral equation. In the earlier articles, the near-nullspace components were shown to be smooth in angle in the sense that the angular fluxes generated by these components are smooth in angle. In this paper, we present a spatial description of these near-nullspace components. Using the angular description of the earlier papers together with the spatial description reveals the intrinsic space-angle dependence of the integral equation's frequencies. This space-angle dependence is used to determine the appropriate space-angle grids to represent and efficiently attenuate the near-nullspace error components on. It will be shown that these components can have multiple spatial scales. By using only the appropriate space-angle grids that can represent these spatial scales in the original multiple-coarsening algorithm, an improved algorithm is obtained. Moreover, particularly for anisotropic scattering, recognizing the strong angle dependence of the angular fluxes generated by the high frequencies of the integral equation, another improved multiple-coarsening scheme is derived. Restricting this scheme to the appropriate space-angle grids produces a very efficient method.

  5. Diffusive limits for linear transport equations

    International Nuclear Information System (INIS)

    The authors show that the Hibert and Chapman-Enskog asymptotic treatments that reduce the nonlinear Boltzmann equation to the Euler and Navier-Stokes fluid equations have analogs in linear transport theory. In this linear setting, these fluid limits are described by diffusion equations, involving familiar and less familiar diffusion coefficients. Because of the linearity extant, one can carry out explicitly the initial and boundary layer analyses required to obtain asymptotically consistent initial and boundary conditions for the diffusion equations. In particular, the effects of boundary curvature and boundary condition variation along the surface can be included in the boundary layer analysis. A brief review of heuristic (nonasymptotic) diffusion description derivations is also included in our discussion

  6. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    Science.gov (United States)

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!). PMID:24249776

  7. The scattering kernel of the nonlinear Boltzmann equation and its expansion into spherical harmonics

    International Nuclear Information System (INIS)

    The method of polynomial approximation i.e. the expansion of the particle density into spherical harmonics, well-known in the linear transport theory, has been generalized by F. Schuerrer 1984 to the nonlinear Boltzmann equation. For practical purposes, a truncation of the series expansion after a few terms requires a good convergence of the scattering kernel expansion into Legendre polynomials. In the present work a few simple examples are used to investigate the convergence. In the most simple case, the elastic collision on a fixed target, the PN-approximations of the scattering kernel in the linear theory serves as a standard of reference for the nonlinear case. A parameter study shows the different approximations as compared to the exact function. Then a more realistic model, a Maxwell gas of target particles, of different temperatures is investigated. The results of this parameter study are represented by three-dimensional computer graphics. In the last chapter the results are applied to the system of moment equations where a considerable simplification is justified for nearly isotropic velocity distributions. It is concluded that nonlinear transport not-too-far from equilibrium can be well described by a Pn approximation. 8 refs., 35 figs. (qui)

  8. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  9. Fast Maximum Entropy Moment Closure Approach to Solving the Boltzmann Equation

    Science.gov (United States)

    Summy, Dustin; Pullin, Dale

    2015-11-01

    We describe a method for a moment-based solution of the Boltzmann Equation (BE). This is applicable to an arbitrary set of velocity moments whose transport is governed by partial-differential equations (PDEs) derived from the BE. The equations are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy reconstruction of the velocity distribution function f (c , x , t) , from the known moments, within a finite-box domain of single-particle velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using any desired method. This allows integration of the moment PDEs in time. The high computational cost of the general method is greatly reduced by careful choice of the velocity moments, allowing the necessary integrals to be reduced from three- to one-dimensional in the case of strictly 1D flows. A method to extend this enhancement to fully 3D flows is discussed. Comparison with relaxation and shock-wave problems using the DSMC method will be presented. Partially supported by NSF grant DMS-1418903.

  10. Solution of the nonlinear Poisson–Boltzmann equation: Application to ionic diffusion in cementitious materials

    International Nuclear Information System (INIS)

    A robust numerical solution of the nonlinear Poisson–Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson–Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined.

  11. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

    Science.gov (United States)

    Lu, Jianfeng; Mendl, Christian B.

    2015-06-01

    We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 × 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as a special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

  12. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

    CERN Document Server

    Lu, Jianfeng

    2014-01-01

    We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 x 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

  13. Well-Posedness of the Cauchy Problem for a Space-Dependent Anyon Boltzmann Equation

    OpenAIRE

    Arkeryd, Leif; Nouri, Anne

    2015-01-01

    A fully non-linear kinetic Boltzmann equation for anyons is studied in a periodic 1d setting with large initial data. Strong L 1 solutions are obtained for the Cauchy problem. The main results concern global existence, uniqueness and stabililty. We use the Bony functional, the two-dimensional velocity frame specific for anyons, and an initial layer analysis that moves the solution away from a critical value. 1 Anyons and the Boltzmann equation. Let us first recall the definition of anyon. Con...

  14. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number

    CERN Document Server

    Mathiaud, J

    2015-01-01

    We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics. This is obtained by replacing the diffusion coefficient (which is the equilibrium temperature) by a non diagonal temperature tensor, like the Ellipsoidal-Statistical model (ES) is obtained from the Bathnagar-Gross-Krook model (BGK) of the Boltzmann equation. Our model is proved to satisfy the properties of conservation and a H-theorem. A Chapman-Enskog analysis and two numerical tests show that a correct Prandtl number of 2/3 can be obtained.

  15. Variational formulation of the steady Boltzmann equation for semiconductors and applications

    International Nuclear Information System (INIS)

    We present a variational formulation of the steady Boltzmann equation for semiconductors. In this formulation, the distribution function is replaced by a weighted distribution function, and the symmetry of the drift operator is obtained by using the parity operator. We show that the solutions of the Boltzmann equation for the weighted distribution function are stationary functions of a suitable functional, which takes into account realistic boundary conditions. After introducing a general numerical framework, the approach proposed is tested in the bulk case, by computing an approximate expression for carrier mobility in silicon.

  16. Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation

    Science.gov (United States)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-08-01

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann-Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin-orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  17. Derivation of relativistic hydrodynamic equations consistent with relativistic Boltzmann equation by renoramalization-group method

    CERN Document Server

    Tsumura, Kyosuke

    2012-01-01

    We apply the renormalization-group method to obtain the first-order relativistic hydrodynamics of the relativistic Boltzmann equation (RBE) as a dynamical system: We explicitly obtain the distribution function in the asymptotic regime as the invariant manifold of the dynamical system, which turns out to be nothing but the matching condition defining the energy frame. It is argued that the frame on which the flow of relativistic hydrodynamic equation is defined must be the energy frame, i.e., the Landau-Lifshitz one, if the dynamics should be consistent with the underlying RBE. A sketch is also given for derivation of the second-order hydrodynamic equation, i.e., extended thermodynamics, which is accomplished by extending the invariant manifold so that it is spanned by excited modes as well as the zero modes (hydrodynamic modes) of the linearized collision operator. On the basis of thus constructed resummed distribution function, we propose a novel ansatz for the functional form to be used in Grad moment metho...

  18. Regularized lattice Boltzmann model for a class of convection-diffusion equations.

    Science.gov (United States)

    Wang, Lei; Shi, Baochang; Chai, Zhenhua

    2015-10-01

    In this paper, a regularized lattice Boltzmann model for a class of nonlinear convection-diffusion equations with variable coefficients is proposed. The main idea of the present model is to introduce a set of precollision distribution functions that are defined only in terms of macroscopic moments. The Chapman-Enskog analysis shows that the nonlinear convection-diffusion equations can be recovered correctly. Numerical tests, including Fokker-Planck equations, Buckley-Leverett equation with discontinuous initial function, nonlinear convection-diffusion equation with anisotropic diffusion, are carried out to validate the present model, and the results show that the present model is more accurate than some available lattice Boltzmann models. It is also demonstrated that the present model is more stable than the traditional single-relaxation-time model for the nonlinear convection-diffusion equations. PMID:26565368

  19. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear Boltzmann transport in d dimensions

    CERN Document Server

    d'Eon, Eugene

    2013-01-01

    We derive new diffusion solutions to the monoenergetic generalized linear Boltzmann transport equation (GLBE) for the stationary collision density and scalar flux about an isotropic point source in an infinite $d$-dimensional absorbing medium with isotropic scattering. We consider both classical transport theory with exponentially-distributed free paths in arbitrary dimensions as well as a number of non-classical transport theories (non-exponential random flights) that describe a broader class of transport processes within partially-correlated random media. New rigorous asymptotic diffusion approximations are derived where possible. We also generalize Grosjean's moment-preserving approach of separating the first (or uncollided) distribution from the collided portion and approximating only the latter using diffusion. We find that for any spatial dimension and for many free-path distributions Grosjean's approach produces compact, analytic approximations that are, overall, more accurate for high absorption and f...

  20. The telegraph equation in charged particle transport

    Science.gov (United States)

    Gombosi, T. I.; Jokipii, J. R.; Kota, J.; Lorencz, K.; Williams, L. L.

    1993-01-01

    We present a new derivation of the telegraph equation which modifies its coefficients. First, an infinite order partial differential equation is obtained for the velocity space solid angle-averaged phase-space distribution of particles which underwent at least a few collisions. It is shown that, in the lowest order asymptotic expansion, this equation simplifies to the well-known diffusion equation. The second-order asymptotic expansion for isotropic small-angle scattering results in a modified telegraph equation with a signal propagation speed of v(5/11) exp 1/2 instead of the usual v/3 exp 1/2. Our derivation of a modified telegraph equation follows from an expansion of the Boltzmann equation in the relevant smallness parameters and not from a truncation of an eigenfunction expansion. This equation is consistent with causality. It is shown that, under steady state conditions in a convecting plasma, the telegraph equation may be regarded as a diffusion equation with a modified transport coefficient, which describes a combination of diffusion and cosmic-ray inertia.

  1. Numerical investigations of low-density nozzle flow by solving the Boltzmann equation

    Science.gov (United States)

    Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen

    1995-01-01

    A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.

  2. Group analysis of the Fourier transform of the spatially homogeneous and isotropic Boltzmann equation with a source term

    OpenAIRE

    Suriyawichitseranee, A.; Grigoriev, Yu. N.; Meleshko, S. V.

    2014-01-01

    The paper is devoted to group analysis of the spatially homogeneous and isotropic Boltzmann equation with a source term. In fact, the Fourier transform of the Boltzmann equation with respect to the molecular velocity variable is considered. Using a particular class of solutions, the determining equation for the admitted Lie group is reduced to a partial differential equation for the source function. The latter equation is analyzed by an algebraic method. A complete group classification of the...

  3. Generalized Boltzmann equations for on-shell particle production in a hot plasma

    CERN Document Server

    Jakovác, A

    2002-01-01

    A novel refinement of the conventional treatment of Kadanoff--Baym equations is suggested. Besides the Boltzmann equation another differential equation is used for calculating the evolution of the non-equilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in smearing out of the non-analytic threshold behaviour of the spectral function. Possible consequences for the dilepton production are discussed.

  4. Monitoring derivation of the quantum linear Boltzmann equation

    OpenAIRE

    Hornberger, Klaus; Vacchini, Bassano

    2007-01-01

    We show how the effective equation of motion for a distinguished quantum particle in an ideal gas environment can be obtained by means of the monitoring approach introduced in [EPL 77, 50007 (2007)]. The resulting Lindblad master equation accounts for the quantum effects of the scattering dynamics in a non-perturbative fashion and it describes decoherence and dissipation in a unified framework. It incorporates various established equations as limiting cases and reduces to the classical linear...

  5. The Green's function for the three-dimensional linear Boltzmann equation via Fourier transform

    Science.gov (United States)

    Machida, Manabu

    2016-04-01

    The linear Boltzmann equation with constant coefficients in the three-dimensional infinite space is revisited. It is known that the Green's function can be calculated via the Fourier transform in the case of isotropic scattering. In this paper, we show that the three-dimensional Green's function can be computed with the Fourier transform even in the case of arbitrary anisotropic scattering.

  6. A Revisiting of the -Stability Theory of the Boltzmann Equation Near Global Maxwellians

    Science.gov (United States)

    Ha, Seung-Yeal; Xiao, Qinghua

    2015-07-01

    We study the -stability theory of the Boltzmann equation near a global Maxwellian. When an initial datum is a perturbation of a global Maxwellian, we show that the -distance between two classical solutions can be controlled by the initial data in a Lipschitz manner, which illustrates the Lipschitz continuity of the solution operator for the Boltzmann equation in -topology. Our local-in-time -stability results cover cutoff very soft potentials as well as non-cutoff hard and soft potentials. These cases were not treated in the previous work (Ha et al. in Arch Ration Mech Anal 197:657-688, 2010). Thus, our results together with the results in Ha et al. (2010) complete the -stability theory for the Boltzmann equation near a global Maxwellian. For this -stability estimate, we use the coercivity estimate of the linearized collision operator, the smallness of perturbation in a mixed Lebesgue norm, and Strichartz-type estimates of perturbation. We also show that for all classical solutions available in the literature, the Lipschitz constant can be chosen as independent of time to obtain the uniform -stability of the Boltzmann equation.

  7. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  8. Simulations of the fusion of necklace-ring pattern in the complex Ginzburg-Landau equation by lattice Boltzmann method

    Science.gov (United States)

    Zhang, Jianying; Yan, Guangwu

    2016-04-01

    A lattice Boltzmann model for solving the (2+1) dimensional cubic-quintic complex Ginzburg-Landau equation (CQCGLE) is proposed. Different from the classic lattice Boltzmann models, this lattice Boltzmann model is based on uniformly distributed lattice points in a two-dimensional space, and the evolution of the model is about a spatial axis rather than time. The algorithm provides advantages similar to the lattice Boltzmann method in that it is easily adapted to complex Ginzburg-Landau equations. Numerical results reproduce the phenomena of the fusion of necklace-ring pattern and the effect of non-linearity on the soliton in the CQCGLE.

  9. Stability of Global Solution to Boltzmann-Enskog Equation with External Force

    Institute of Scientific and Technical Information of China (English)

    JIANG ZHENG-LU; MA LI-JUN; YAO ZHENG-AN

    2012-01-01

    In the presence of external forces depending only on the time and space variables,the Boltzmann-Enskog equation formally conserves only the mass of the system,and its entropy functional is also nonincreasing.Corresponding to this type of equation,we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals:one is to describe interactions between particles with different velocities and the other is to measure the L1 distance between two mild solutions.The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the verification of the L1 stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the influence of external forces.

  10. From Newton's law to the linear Boltzmann equation without cut-off

    OpenAIRE

    Ayi, Nathalie

    2016-01-01

    We provide a rigorous derivation of the linear Boltzmann equation without cutoff starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combin...

  11. A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation

    OpenAIRE

    Crouseilles, Nicolas; Degond, Pierre; Lemou, Mohammed

    2004-01-01

    International audience Our purpose s toderive a hybrid model for particles systems which combines a kinetic description of the fast particles with a fluid description of the thermal ones. Fats particles will be described through a collisional kinetic equation of Boltzmann-BGK type while thermal particles will be modeled by means of a system of a Euler type equations. A conservative numerical scheme is constructed and enables us to validate the approach on various numerical tests.

  12. The Incompressible Navier-Stokes Limit of the Boltzmann Equation for Hard Cutoff Potentials

    OpenAIRE

    Golse, François; Saint-Raymond, Laure

    2008-01-01

    The present paper proves that all limit points of sequences of renormalized solutions of the Boltzmann equation in the limit of small, asymptotically equivalent Mach and Knudsen numbers are governed by Leray solutions of the Navier-Stokes equations. This convergence result holds for hard cutoff potentials in the sense of H. Grad, and therefore completes earlier results by the same authors [Invent. Math. 155, 81-161 (2004)] for Maxwell molecules.

  13. Steady detonation waves via the Boltzmann equation for a reacting mixture

    International Nuclear Information System (INIS)

    Based on the Boltzmann equation, the detonation problem is dealt with on a mesoscopic level. The model is based on the assumption that ahead of a shock an explosive gas mixture is in meta stable equilibrium. Starting from the Von Neumann point the chemical reaction, initiated by the pressure jump, proceeds until the chemical equilibrium is reached. Numerical solutions of the derived macroscopic equations as well as the corresponding Hugoniot diagrams which reveal the physical relevance of the mathematical model are provided

  14. Application of Boltzmann equation to electron transmission and seconary electron emission

    International Nuclear Information System (INIS)

    A method is presented for numerical treatment of integro-differential equation, based upon finite difference techniques. This method allows to formulate in a satisfactory manner the Boltzmann's equation applied to backscattering, transmission and secondary emission of metallic targets, avoiding must of the restrictive hypothesis, used until now in these models. For aluminium, the calculated energy spectra, angular distribution, transmission and backscattering coefficients, and secondary emission yield, are found to be in good agreement with experiment

  15. Steady detonation waves via the Boltzmann equation for a reacting mixture

    CERN Document Server

    Conforto, F; Schürrer, F; Ziegler, I

    2003-01-01

    Based on the Boltzmann equation, the detonation problem is dealt with on a mesoscopic level. The model is based on the assumption that ahead of a shock an explosive gas mixture is in meta stable equilibrium. Starting from the Von Neumann point the chemical reaction, initiated by the pressure jump, proceeds until the chemical equilibrium is reached. Numerical solutions of the derived macroscopic equations as well as the corresponding Hugoniot diagrams which reveal the physical relevance of the mathematical model are provided.

  16. Spherical Harmonic Expansion Method for Coupled Electron-Phonon Boltzmann Transport

    Science.gov (United States)

    Santia, Marco; Albrecht, John

    2014-03-01

    Thermoelectric transport modeling often relies on independent Boltzmann transport equations (BTEs) for electrons and phonons which work best near equilibrium (linearized) and steady-state. Device design relies heavily on this baseline approximation. Monte Carlo methods can allow for complex physical interactions (e.g., anharmonicity) but their stochastic nature has practical limits. Distribution functions with wide disparities in population (e.g., ratios >108 between majority and minority carriers.[1]) are a computational challenge. We present a coupled BTE solver based on a k-space spherical harmonic expansion (SHE) of the distribution functions and eigenstates of electrons and phonons. The method is deterministic and allows for detailed treatments of scattering processes, yet ameliorates the issues with population disparity within phase space. We set the formalism and examine the accuracy of the SHE for phonon band structures, calculate scattering rates determined within that representation, and compare our preliminary results for distribution statistics in control examples such as thermal conductivity and drift velocity.

  17. Two-relaxation-times Lattice Boltzmann schemes for solute transport in unsaturated water flow, with a focus on stability

    OpenAIRE

    Hammou, H.; Ginzburg, I.; Boulerhcha, M.

    2011-01-01

    We develop two-relaxation-times Lattice Boltzmann schemes (TRT) with two relaxation functions Kð~r; tÞ for solving highly non-linear equations for groundwater modeling in d-dimensions, namely, the Richards equation for water content distribution hð~r; tÞ in unsaturated flow and the associated transport equation for solute concentration Cð~r; tÞ, advected by the local Darcian water flux. The method is verified against the analytical solutions and the HYDRUS code where the TRT schemes behave mo...

  18. Diffusive Boltzmann equation, its fluid dynamics, Couette flow and Knudsen layers

    CERN Document Server

    Abramov, Rafail V

    2016-01-01

    In the current work we propose a diffusive modification of the Boltzmann equation. This naturally leads to the corresponding diffusive fluid dynamics equations, which we numerically investigate in a simple Couette flow setting. This diffusive modification is based on the assumption of the "imperfect" model collision term, which is unable to track all collisions in the corresponding real gas particle system. The effect of missed collisions is then modeled by an appropriately scaled long-term homogenization process of the particle dynamics. The corresponding diffusive fluid dynamics equations are produced in a standard way by closing the hierarchy of the moment equations using either the Euler or the Grad closure. In the numerical experiments with the Couette flow, we discover that the diffusive Euler equations behave similarly to the conventional Navier-Stokes equations, while the diffusive Grad equations additionally exhibit Knudsen-like velocity boundary layers. We compare the simulations with the correspond...

  19. A novel protocol for linearization of the Poisson-Boltzmann equation

    CERN Document Server

    Tsekov, R

    2014-01-01

    A new protocol for linearization of the Poisson-Boltzmann equation is proposed and the resultant electrostatic equation coincides formally with the Debye-Huckel equation, the solution of which is well known for many electrostatic problems. The protocol is examined on the example of electrostatically stabilized nano-bubbles and it is shown that stable nano-bubbles could be present in aqueous solutions of anionic surfactants near the critical temperature, if the surface potential is constant. At constant surface charge non nano-bubbles could exist.

  20. Generation of isotropic and anisotropic scattering cross sections for Boltzmann-Fokker-Planck equation via decomposition and minimized RMS errors

    International Nuclear Information System (INIS)

    Handling the highly anisotropic scattering of fast neutrons with conventional methods usually means that high-order Legendre expansions are necessary to obtain correct angular fluxes. This drawback in standard transport calculations is avoided by applying the Boltzmann-Fokker-Planck (BEP) equation approach which has been used in both neutral and charged-particle transport problems. Previously, Caro and Ligou, and Morel have introduced Fokker-Planck decomposition methods, which decompose elastic scattering cross section into forward-peaked and smooth components. A new method for decomposing scattering cross sections for Boltzmann-Fokker-Planck equation is presented. We start from the basic data σs(μ)(given by ENDF/B-VI) to get more correctly determined BFP data. In this method, we use Legendre expansion for smooth component and exponential function, which Caro and Ligou used in their paper, for forward-peaked component. In addition, by using RMS errors and an extra degree of freedom (Y), we conserve both moment and scattering cross section

  1. Conductivity tensor of graphene dominated by spin-orbit coupling scatterers: A comparison between the results from Kubo and Boltzmann transport theories

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-01-01

    The diagonal and Hall conductivities of graphene arising from the spin-orbit coupling impurity scattering are theoretically studied. Based on the continuous model, i.e. the massless Dirac equation, we derive analytical expressions of the conductivity tensor from both the Kubo and Boltzmann transport theories. By performing numerical calculations, we find that the Kubo quantum transport result of the diagonal conductivity within the self-consistent Born approximation exhibits an insulating gap around the Dirac point. And in this gap a well-defined quantized spin Hall plateau occurs. This indicates the realization of the quantum spin Hall state of graphene driven by the spin-orbit coupling impurities. In contrast, the semi-classical Boltzmann theory fails to predict such a topological insulating phase. The Boltzmann diagonal conductivity is nonzero even in the insulating gap, in which the Boltzmann spin Hall conductivity does not exhibit any quantized plateau. PMID:27029398

  2. Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation

    CERN Document Server

    Holst, Michael; Yu, Zeyun; Zhou, Yongcheng; Zhu, Yunrong

    2010-01-01

    We develop an efficient and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the regularization technique of Chen, Holst, and Xu; this technique made possible the first a priori pointwise estimates and the first complete solution and approximation theory for the Poisson-Boltzmann equation. It also made possible the first provably convergent discretization of the PBE, and allowed for the development of a provably convergent AFEM for the PBE. However, in practice the regularization turns out to be numerically ill-conditioned. In this article, we examine a second regularization, and establish a number of basic results to ensure that the new approach produces the same mathematical advantages of the original regularization, without the ill-conditioning property. We then design an AFEM scheme based on the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This res...

  3. Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation

    CERN Document Server

    Aksoylu, Burak; Cyr, Eric; Holst, Michael

    2011-01-01

    In this article, we develop goal-oriented error indicators to drive adaptive refinement algorithms for the Poisson-Boltzmann equation. Empirical results for the solvation free energy linear functional demonstrate that goal-oriented indicators are not sufficient on their own to lead to a superior refinement algorithm. To remedy this, we propose a problem-specific marking strategy using the solvation free energy computed from the solution of the linear regularized Poisson-Boltzmann equation. The convergence of the solvation free energy using this marking strategy, combined with goal-oriented refinement, compares favorably to adaptive methods using an energy-based error indicator. Due to the use of adaptive mesh refinement, it is critical to use multilevel preconditioning in order to maintain optimal computational complexity. We use variants of the classical multigrid method, which can be viewed as generalizations of the hierarchical basis multigrid and Bramble-Pasciak-Xu (BPX) preconditioners.

  4. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  5. Sliding periodic boundary conditions for lattice Boltzmann and lattice kinetic equations

    OpenAIRE

    Adhikari, R.; Desplat, J. -C.; Stratford, K.

    2005-01-01

    We present a method to impose linear shear flow in discrete-velocity kinetic models of hydrodynamics through the use of sliding periodic boundary conditions. Our method is derived by an explicit coarse-graining of the Lees-Edwards boundary conditions for Couette flow in molecular dynamics, followed by a projection of the resulting equations onto the subspace spanned by the discrete velocities of the lattice Boltzmann method. The boundary conditions are obtained without resort to perturbative ...

  6. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    OpenAIRE

    José Colmenares; Antonella Galizia; Jesús Ortiz; Andrea Clematis; Walter Rocchia

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is ...

  7. Spherical-harmonic type expansion for the Boltzmann equation in semiconductor devices

    Directory of Open Access Journals (Sweden)

    Armando Majorana

    1998-10-01

    Full Text Available The Boltzmann equation for an electron gas in a semiconductor is considered. The electron energy is assumed to have a very general form, so that, for instance, parabolic or non parabolic band approximations can be treated. A technique, which recalls the classical moment method due to Grad, to deduce an approximate quasi-hydrodynamical model is shown and compared with the spherical harmonic expansion. Some characteristics of the model, as entropy inequality, are explicitly presented.

  8. A Spectral Study of the Linearized Boltzmann Equation for Diffusively Excited Granular Media

    OpenAIRE

    Rey, Thomas

    2013-01-01

    In this work, we are interested in the spectrum of the diffusively excited granular gases equation, in a space inhomogeneous setting, linearized around an homogeneous equilibrium. We perform a study which generalizes to a non-hilbertian setting and to the inelastic case the seminal work of Ellis and Pinsky about the spectrum of the linearized Boltzmann operator. We first give a precise localization of the spectrum, which consists in an essential part lying on the left of the imaginary axis an...

  9. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    CERN Document Server

    Lahanas, A B; Nanopoulos, Dimitri V

    2006-01-01

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  10. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    Science.gov (United States)

    Lahanas, Ab; Mavromatos, Ne; Nanopoulos, Dv

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  11. Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics

    OpenAIRE

    Biro, T. S.; Molnar, E.

    2011-01-01

    We derive equations for fluid dynamics from a non-extensive Boltzmann transport equation consistent with Tsallis' non-extensive entropy formula. We evaluate transport coefficients employing the relaxation time approximation and investigate non-extensive effects in leading order dissipative phenomena at relativistic energies, like heat conductivity, shear and bulk viscosity.

  12. A combined Lattice Boltzmann and Immersed Boundary approach for predicting the vascular transport of differently shaped particles

    CERN Document Server

    Coclite, Alessandro; Pascazio, Giuseppe; Decuzzi, Paolo

    2016-01-01

    Modelling the vascular transport and adhesion of man-made particles is crucial for optimizing their efficacy in the detection and treatment of diseases. Here, a Lattice Boltzmann and Immersed Boundary methods are combined together for predicting the near wall dynamics of particles with different shapes in a laminar flow. For the lattice Boltzmann modelling, a Gauss-Hermite projection is used to derive the lattice equation, wall boundary conditions are imposed through the Zou-He framework, and a moving least squares algorithm accurately reconstructs the forcing term accounting for the immersed boundary. First, the computational code is validated against two well-known test cases: the sedimentation of circular and elliptical cylinders in a quiescent fluid. A very good agreement is observed between the present results and those available in the literature. Then, the transport of circular, elliptical, rectangular, square and triangular particles is analyzed in a Couette flow, at Re=20. All particles drifted later...

  13. Bistable solutions for the electron energy distribution function in electron swarms in xenon via Boltzmann equation analysis and particle simulations

    OpenAIRE

    Dyatko, Nikolay; Donko, Zoltan

    2015-01-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This "bistability effect" - in which electron-electron (Coulomb) collisions play an essential role - is analyzed here for Xe with a Boltzmann equation approach and with a first principles particle simulation method. The solution of the Boltzmann equation adopts the usual approximations of (i) searching for the distribution function in the form of two terms ("two-term app...

  14. Estimates of solutions of linear Boltzmann equation at large time and spectral singularities

    CERN Document Server

    Romanov, Roman

    2010-01-01

    The spectral analysis of the dissipative linear transport (Boltzmann) operator with polynomial collision integral by the Szokefalvi-Nagy - Foias functional model is given. An exact estimate for the reminder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case. In the general case, it is shown that the operator has finitely many eigenvalues and spectral singularities and an absolutely continuous essential spectrum, and an upper estimate for the reminder is established.

  15. Solution Poisson-Boltzmann equation: Application in the Human Neuron Membrane

    CERN Document Server

    Soares, M A G; Cortez, C M

    2008-01-01

    With already demonstrated in previous work the equations that describe the space dependence of the electric potential are determined by the solution of the equation of Poisson-Boltzmann. In this work we consider these solutions for the membrane of the human neuron, using a model simplified for this structure considering the distribution of electrolytes in each side of the membrane, as well as the effect of glycocalyx and the lipidic bilayer. It was assumed that on both sides of the membrane the charges are homogeneously distributed and that the potential depends only on coordinate z.

  16. Parallel FE Approximation of the Even/Odd Parity Form of the Linear Boltzmann Equation

    International Nuclear Information System (INIS)

    A novel solution method has been developed to solve the linear Boltzmann equation on an unstructured triangular mesh. Instead of tackling the first-order form of the equation, this approach is based on the even/odd-parity form in conjunction with the conventional mdtigroup discrete-ordinates approximation. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, and the method is well suited for massively parallel computers

  17. A numerical solution to the Boltzmann equation for use in calculating pumping rates in a CO2 discharge laser

    Science.gov (United States)

    Honey, David Alan

    1989-12-01

    The collisional Boltzmann equation was solved numerically to obtain excitation rates for use in a CO2 laser design program. The program was written in Microsoft QuickBasic for use on the IBM Personal Computer or equivalent. Program validation involved comparisons of computed transport coefficients with experimental data and previous theoretical work. Four different numerical algorithms were evaluated in terms of accuracy and efficiency. L-U decomposition was identified as the preferred approach. The calculated transport coefficients were found to agree with empirical data within one to five percent. The program was integrated into a CO2 laser design program. Studies were then performed to evaluate the effects on predicted laser output power and energy density as parameters affecting electron kinetics were changed. Plotting routines were written for both programs.

  18. A variational treatment for the time dependent Boltzmann equation as a basis for numerical solutions conserving neutrons

    International Nuclear Information System (INIS)

    A maximum principle for the time-dependent first-order Boltzmann equation is established in two independent ways:- by a generalized least squares method and by a method based on the properties of an appropriate bi-linear form. The second derivation suggests a metric for a Hilbert space which provides a geometrical interpretation of the variational principle. This interpretation leads to a Petrov-Galerkin method of Martin for time dependent transport. The maximum principle is used to define a figure of merit for the global error of any numerical solution for time dependent transport. The principle is used also to demonstrate the neutron conservation property of optimized numerical solutions, and the convergence of finite element methods based on the variational principle. (Author)

  19. A multi-term solution of the space-time Boltzmann equation for electrons in gaseous and liquid Argon

    CERN Document Server

    Boyle, G J; Tattersall, W J; McEachran, R P; White, R D

    2015-01-01

    In a recent paper [1] the scattering and transport of excess electrons in liquid argon in the hydrodynamic regime was investigated, generalizing the seminal works of Lekner and Cohen [2,3] with modern scattering theory techniques and kinetic theory. In this paper, the discussion is extended to the non-hydrodynamic regime through the development of a full multi-term space-time solution of Boltzmann's equation for electron transport in gases and liquids using a novel operator-splitting method. A Green's function formalism is considered that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the hydrodynamic regime is studied for a benchmark model Percus-Yevick liquid as well as for liquid argon. The temporal evolution of Franck-Hertz oscillations are observed for liquids, with striking differences in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations in arg...

  20. Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis

    Science.gov (United States)

    Sun, Hao; Wu, Yi; Rong, Mingzhe; Guo, Anxiang; Han, Guiquan; Lu, Yanhui

    2016-03-01

    In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, CO2/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solving the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there are high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CF4 (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature. supported in part by the National Key Basic Research Program of China (973 Program) (No. 2015CB251002), the Science and Technology Project Funds of the Grid State Corporation of China (No. SGSNK00KJJS1501564), National Natural Science Foundation of China (Nos. 51221005, 51577145), the Fundamental Research Funds for the Central Universities of China, and the Program for New Century Excellent Talents in University, China

  1. A general multiple-relaxation-time lattice Boltzmann model for nonlinear anisotropic convection-diffusion equations

    CERN Document Server

    Chai, Zhenhua; Guo, Zhaoli

    2016-01-01

    In this paper, based on the previous work [B. Shi, Z. Guo, Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys. Rev. E 79 (2009) 016701], we develop a general multiple-relaxation-time (MRT) lattice Boltzmann model for nonlinear anisotropic convection-diffusion equation (NACDE), and show that the NACDE can be recovered correctly from the present model through the Chapman-Enskog analysis. We then test the MRT model through some classic CDEs, and find that the numerical results are in good agreement with analytical solutions or some available results. Besides, the numerical results also show that similar to the single-relaxation-time (SRT) lattice Boltzmann model or so-called BGK model, the present MRT model also has a second-order convergence rate in space. Finally, we also perform a comparative study on the accuracy and stability of the MRT model and BGK model by using two examples. In terms of the accuracy, both the theoretical analysis and numerical results show that a \\emph{numerical}...

  2. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    Science.gov (United States)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  3. Diffusion equations and turbulent transport

    International Nuclear Information System (INIS)

    One scrutinized transport equations differing essentially in form from the classical diffusion one. Description of diffusion under strong nonequilibrium and turbulence involved application of equations that took account of transport nonlocality and memory effects. One analyzed ways to derive the mentioned equations starting from quasi-linear approximation and up to equations with fractional derivatives. One points out the generality of the applied theoretical concepts in spite of the essential difference of the exact physical problems. One demonstrated the way of application of the theoretical and probabilistic ideas

  4. A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures

    Science.gov (United States)

    Bisi, M.; Rossani, A.; Spiga, G.

    2015-11-01

    Starting from a simple kinetic model for a quaternary mixture of gases undergoing a bimolecular chemical reaction, multi-group integro-differential equations are derived for the particle distribution functions of all species. The procedure takes advantage of a suitable probabilistic formulation, based on the underlying collision frequencies and transition probabilities, of the relevant reactive kinetic equations of Boltzmann type. Owing to an appropriate choice of a sufficiently large number of weight functions, it is shown that the proposed multi-group equations are able to fulfil exactly, at any order of approximation, the correct conservation laws that must be inherited from the original kinetic equations, where speed was a continuous variable. Future developments are also discussed.

  5. Saturation and linear transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Kutak, K.

    2009-03-15

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  6. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  7. A new scheme for solving inhomogeneous Boltzmann equation for electrons in weakly ionised gases

    International Nuclear Information System (INIS)

    In the case of weakly ionized gases, the numerical treatment of non-hydrodynamic regime involving spatial variation of distribution function due to boundaries (walls, electrodes, electron source, etc hor-ellipsis) by using direct Boltzmann equation always constitute a challenge if the main collisional processes occurring in non thermal plasmas are to be considered (elastic, inelastic and super-elastic collisions, Penning ionisation, Coulomb interactions, etc hor-ellipsis). In the non-thermal discharge modelling, the inhomogeneous electron Boltzmann equation is needed in order to be coupled for example to a fluid model to take into account the electron non-hydrodynamic effects. This is for example the case of filamentary discharge, in which the space charge electric field due to streamer propagation has a very sharp spatial profile thus leading to important space non-hydrodynamic effects. It is also the case of the cathodic zone of glow discharge where electric field has a rapid spatial decrease until the negative glow. In the present work, a new numerical scheme is proposed to solve the inhomogeneous Boltzmann equation for electrons in the framework of two-term approximation (TTA) taking into account elastic and inelastic processes. Such a method has the usual drawbacks associated with the TTA i.e. not an accurate enough at high E/N values or in presence of high inelastic processes. But the accuracy of this method is considered sufficient because in a next step it is destinated to be coupled to fluid model for charged particles and a chemical kinetic model where the accuracy is of the same order of magnitude or worse. However there are numerous advantages of this method concerning time computing, treatment of non-linear collision processes (Coulomb, Penning, etc hor-ellipsis)

  8. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Science.gov (United States)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  9. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  10. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  11. A Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids

    OpenAIRE

    Horbach, Juergen; Frenkel, Daan

    2001-01-01

    We present a new simulation scheme based on the Lattice-Boltzmann method to simulate the dynamics of charged colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simulation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the reduced sedimentation velocity U/U_0 for a cubic array of charged spheres...

  12. Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids

    OpenAIRE

    Horbach, J.; Frenkel, D

    2001-01-01

    We present a simulation scheme based on the lattice-Boltzmann method to simulate the dynamics of charged colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simulation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the reduced sedimentation velocity U/U0 for a cubic array of charged spheres in a...

  13. Numerical solution of the Boltzmann equation for the shock wave in a gas mixture

    CERN Document Server

    Raines, A A

    2014-01-01

    We study the structure of a shock wave for a two-, three- and four-component gas mixture on the basis of numerical solution of the Boltzmann equation for the model of hard sphere molecules. For the evaluation of collision integrals we use the Conservative Projection Method developed by F.G. Tscheremissine which we extended to gas mixtures in cylindrical coordinates. The transition from the upstream to downstream uniform state is presented by macroscopic values and distribution functions. The obtained results were compared with numerical and experimental results of other authors.

  14. Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime

    International Nuclear Information System (INIS)

    We derive and analyze an effective quantum Boltzmann equation in the kinetic regime for the interactions of four distinguishable types of fermionic spin-(1/2) particles, starting from a general quantum field Hamiltonian. Each particle type is described by a time-dependent, 2 × 2 spin-density (‘Wigner’) matrix. We show that density and energy conservation laws as well as the H-theorem hold, and enumerate additional conservation laws depending on the interaction. The conserved quantities characterize the t→∞ thermal (Fermi–Dirac) equilibrium state. We illustrate the approach to equilibrium by numerical simulations in the isotropic three-dimensional setting. (paper)

  15. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation

    Science.gov (United States)

    Khurana, Saheba; Thachuk, Mark

    2016-03-01

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation.

  16. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation.

    Science.gov (United States)

    Khurana, Saheba; Thachuk, Mark

    2016-03-14

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation. PMID:26979675

  17. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    CERN Document Server

    Zheng, Lin; Zhai, Qinglan

    2014-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface fore (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter visa Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is also solved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and a two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then ...

  18. First-principles particle simulation and Boltzmann equation analysis of Negative Differential Conductivity and Transient Negative Mobility effects in xenon

    CERN Document Server

    Donko, Zoltan

    2015-01-01

    The Negative Differential Conductivity and Transient Negative Mobility effects in xenon gas are analyzed by a first-principles particle simulation technique and via an approximate solution of the Boltzmann transport equation (BE). The particle simulation method is devoid of the approximations that are traditionally adopted in the BE solutions in which (i) the distribution function is searched for in a two-term form, (ii) the Coulomb part of the collision integral for the anisotropic part of the distribution function is neglected, (iii) Coulomb collisions are treated as binary events, and (iv) the range of the electron-electron interaction is limited to a cutoff distance. The results obtained from the two methods are, for both effects, in good qualitative agreement, small differences are attributed to the approximations listed above.

  19. 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method

    International Nuclear Information System (INIS)

    In this paper we combine a stochastic 3D microstructure model of a fiber based gas diffusion layer of polymer electrolyte fuel cells with a Lattice Boltzmann model for fluid transport. We focus on a simple approach of compressing the planar oriented virtual geometry of paper-type gas diffusion layer from Toray. Material parameters – permeability and tortuosity – are calculated from simulation of one phase, one component gas flow in stochastic geometries. We analyze the statistical spread of simulation results on ensembles of the virtual geometry, both uncompressed and compressed. The influence of the compression is discussed with regard to the Kozeny–Carman equation. The effective transport properties calculated from transport simulations in compressed gas diffusion layers agree well with a trend based on the Kozeny–Carman equation

  20. Diffusion equations and turbulent transport

    International Nuclear Information System (INIS)

    Diffusion equations are considered that differ substantially in structure from classical ones. A description of diffusion under strongly nonequilibrium conditions in a highly turbulent plasma requires the use of equations that take into account memory effects and the nonlocal nature of transport. Different methods are developed for constructing such equations, ranging from those in the quasilinear approximation to those with fractional derivatives. It is emphasized that the theoretical concepts underlying the equations proposed are common for a very wide variety of specific physical problems. The ways of applying theoretical probabilistic ideas are demonstrated

  1. Opinion dynamics: inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation

    CERN Document Server

    Düring, Bertram

    2015-01-01

    We propose and investigate different kinetic models for opinion formation, when the opinion formation process depends on an additional independent variable, e.g. a leadership or a spatial variable. More specifically, we consider:(i) opinion dynamics under the effect of opinion leadership, where each individual is characterised not only by its opinion, but also by another independent variable which quantifies leadership qualities; (ii) opinion dynamics modelling political segregation in the `The Big Sort', a phenomenon that US citizens increasingly prefer to live in neighbourhoods with politically like-minded individuals. Based on microscopic opinion consensus dynamics such models lead to inhomogeneous Boltzmann-type equations for the opinion distribution. We derive macroscopic Fokker-Planck-type equations in a quasi-invariant opinion limit and present results of numerical experiments.

  2. Probabilistic representation for the solution of the homogeneous Boltzmann equation for Maxwellian molecules

    CERN Document Server

    Dolera, Emanuele

    2011-01-01

    Consider the homogeneous Boltzmann equation for Maxwellian molecules. We provide a new representation for its solution in the form of expectation of a random probability measure M. We also prove that the Fourier transform of M is a conditional characteristic function of a sum of independent random variables, given a suitable sigma-algebra. These facts are then used to prove a CLT for Maxwellian molecules, that is the statement of a necessary and sufficient condition for the weak convergence of the solution of the equation. Such a condition reduces to the finiteness of the second moment of the initial distribution \\mu_0. As a further application, we give a refinement of some inequalities, due to Elmroth, concerning the evolution of the moments of the solution.

  3. Linear electronic transport in dense plasmas. I. Specific features of Boltzmann-Ziman formalism within the Lorentzian approximation

    International Nuclear Information System (INIS)

    This is the first paper in a series devoted to a systematic investigation of linear electronic transport properties in strongly coupled plasmas consisting of a multicomponent and classical ionic mixture embedded in a highly degenerate electron jellium. The basic formalism rests upon suitable extensions of the Boltzmann-Ziman theory as explained in this work. It is hereafter specialized in a thorough investigation of thermoelectronic and mechanical transport coefficients. Validity conditions for the Lorentzian approximation are first carefully examined. High temperature and inelastic corrections are emphasized. Basic transport quantities are expressed under an analytic and compact form both in the elastic and inelastic cases, through exact and variational solutions of the transport equation, respectively. This allows for an easy algebraic treatment of finite degeneracy and inelastic corrections, to be given in the next paper II in this series. Finally, the validity of the method is demonstrated by recovering Ziman's and Edwards' resistivity formula, and other well-known results, in the appropriate limits

  4. 2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons

    International Nuclear Information System (INIS)

    In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)

  5. AQUASOL: An efficient solver for the dipolar Poisson-Boltzmann-Langevin equation.

    Science.gov (United States)

    Koehl, Patrice; Delarue, Marc

    2010-02-14

    The Poisson-Boltzmann (PB) formalism is among the most popular approaches to modeling the solvation of molecules. It assumes a continuum model for water, leading to a dielectric permittivity that only depends on position in space. In contrast, the dipolar Poisson-Boltzmann-Langevin (DPBL) formalism represents the solvent as a collection of orientable dipoles with nonuniform concentration; this leads to a nonlinear permittivity function that depends both on the position and on the local electric field at that position. The differences in the assumptions underlying these two models lead to significant differences in the equations they generate. The PB equation is a second order, elliptic, nonlinear partial differential equation (PDE). Its response coefficients correspond to the dielectric permittivity and are therefore constant within each subdomain of the system considered (i.e., inside and outside of the molecules considered). While the DPBL equation is also a second order, elliptic, nonlinear PDE, its response coefficients are nonlinear functions of the electrostatic potential. Many solvers have been developed for the PB equation; to our knowledge, none of these can be directly applied to the DPBL equation. The methods they use may adapt to the difference; their implementations however are PBE specific. We adapted the PBE solver originally developed by Holst and Saied [J. Comput. Chem. 16, 337 (1995)] to the problem of solving the DPBL equation. This solver uses a truncated Newton method with a multigrid preconditioner. Numerical evidences suggest that it converges for the DPBL equation and that the convergence is superlinear. It is found however to be slow and greedy in memory requirement for problems commonly encountered in computational biology and computational chemistry. To circumvent these problems, we propose two variants, a quasi-Newton solver based on a simplified, inexact Jacobian and an iterative self-consistent solver that is based directly on the PBE

  6. A combined MPI-CUDA parallel solution of linear and nonlinear Poisson-Boltzmann equation.

    Science.gov (United States)

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  7. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  8. The electron Boltzmann equation in a plasma generated by fission fragments

    Science.gov (United States)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material show that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux but increases sharply in the presence of a sustainer electric field.

  9. Collisionless Boltzmann equation with an external periodic traveling force: Analytical solution and application to molecular optics

    International Nuclear Information System (INIS)

    We present an analytical solution to the collisionless Boltzmann equation for describing the distribution function of molecular ensembles subject to an external periodic traveling force of pulsed optical fields. We apply our solution to study a pulsed standing wave mirror for neutral molecules, recently proposed [P. Ryytty et al., Phys. Rev. Lett. 84, 5074 (2000)]. Using our analytical solution we study the effects of the anharmonicity of optical potential on the reflectivity of the molecular mirror and the corresponding optimal pulse duration. We demonstrate that the reflectivity of the molecular mirror can be significantly improved by optimizing the pulse duration of the external optical fields when taking into account the anharmonicity of molecular motion

  10. Planetary Ring Dynamics -- The Streamline Formalism -- 1. From Boltzmann Equation to Celestial Mechanics

    CERN Document Server

    Longaretti, Pierre-Yves

    2016-01-01

    These 1992 lectures notes present a powerful formalism mostly developed in the 1980s by Borderies, Goldreich and Tremaine to address planetary ring dynamical issues. These notes make a special emphasis on ring microphysics, quantified with the help of the moments of the Boltzmann equation. They also focus on the standard self-gravity model of narrow ring rigid precession, and on the physics of linear and nonlinear density waves. These notes have been corrected but only very marginally extended and not updated. They are provided both as an introduction to the streamline formalism and as a complement on some technical issues for my upcoming review ("Theory of Narrow rings and Sharp Edges") that will cover the physics not addressed here along with more recent developments. This review will appear in the "Planetary Ring System" book (C. Murray and M. Tiscareno, eds.), to be published later on this year at Cambridge University Press.

  11. A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies

    Science.gov (United States)

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2015-12-01

    In this article, we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, properly separating entropy fluxes and production rates, and determining a dissipation matrix. Our approach takes advantage of both extended irreversible thermodynamics and GENERIC formalisms and shows a direct correspondence with Levermore's moment-closure hierarchies for the Boltzmann equation. As a direct application, a new ten-moment model beyond the classical hierarchies is constructed and is shown to recover the Euler equations in the equilibrium state. These interesting results may put various macroscopic modeling approaches, starting from the general principles of non-equilibrium thermodynamics, on a solid microscopic foundation based on the Boltzmann equation.

  12. Conservative Moment Equations for Neutrino Radiation Transport with Limited Relativity

    CERN Document Server

    Endeve, Eirik; Mezzacappa, Anthony

    2012-01-01

    We derive conservative, multidimensional, energy-dependent moment equations for neutrino transport in core-collapse supernovae and related astrophysical systems, with particular attention to the consistency of conservative four-momentum and lepton number transport equations. After taking angular moments of conservative formulations of the general relativistic Boltzmann equation, we specialize to a conformally flat spacetime, which also serves as the basis for four further limits. Two of these---the multidimensional special relativistic case, and a conformally flat formulation of the spherically symmetric general relativistic case---are given in appendices for the sake of comparison with extant literature. The third limit is a weak-field, `pseudo-Newtonian' approach \\citep{kim_etal_2009,kim_etal_2012} in which the source of the gravitational potential includes the trace of the stress-energy tensor (rather than just the mass density), and all orders in fluid velocity $v$ are retained. Our primary interest here ...

  13. Metallic transport near a quantum critical point in organic superconductors from a renormalized Boltzmann theory

    Science.gov (United States)

    Shahbazi, Maryam; Bourbonnais, Claude

    2015-03-01

    The electrical and thermal transport properties of the normal state of quasi-1D superconductors like Bechgaard salts are investigated by combining the linearised Boltzmann equation and the renormalisation group (RG) method. The collision integral operator is calculated using the Umklapp scattering amplitudes obtained by the RG method yielding the electrical resistivity(ρ) and Seebeck coefficient(S). The power law dependence, ρ (T) ~Tα , for resistivity is obtained by changing the antinesting parameter t⊥' simulating the pressure distance from the quantum critical point (QCP) between spin-density-wave (SDW) and d-wave SC (SCd) in the phase diagram. The resistivity evolves from a linear component (α ~= 1) at the QCP towards a Fermi liquid component (α ~= 2) with increasing t⊥', which confirms an extended region of quantum criticality as a result of interference between SCd and SDW causing an anomalous growth of Umklapp scattering. Its anisotropy is also tied to the k⊥-dependence of hot/cold scattering regions along the Fermi surface. Similar calculations for the Seebeck coefficient show deviations from the usual linear temperature dependence and also a change of sign near a SDW instability.

  14. Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation.

    Science.gov (United States)

    Fillion-Gourdeau, F; Herrmann, H J; Mendoza, M; Palpacelli, S; Succi, S

    2013-10-18

    We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially far-reaching implications for both classical and quantum computing, because it shows that, by splitting time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates in space-time as a classical statistical process (Boltzmann distribution). PMID:24182245

  15. A self-consistent numerical method for simulation of quantum transport in high electron mobility transistor; part I: The Boltzmann-Poisson-Schrödinger solver

    Directory of Open Access Journals (Sweden)

    Khoie R.

    1996-01-01

    Full Text Available A self-consistent Boltzmann-Poisson-Schrödinger solver for High Electron Mobility Transistor is presented. The quantization of electrons in the quantum well normal to the heterojunction is taken into account by solving the two higher moments of Boltzmann equation along with the Schrödinger and Poisson equations, self-consistently. The Boltzmann transport equation in the form of a current continuity equation and an energy balance equation are solved to obtain the transient and steady-state transport behavior. The numerical instability problems associated with the simulator are presented, and the criteria for smooth convergence of the solutions are discussed. The current-voltage characteristics, transconductance, gate capacitance, and unity-gain frequency of a single quantum well HEMT is discussed. It has been found that a HEMT device with a gate length of 0.7 μ m , and with a gate bias voltage of 0.625 V, has a transconductance of 579.2 mS/mm, which together with the gate capacitance of 19.28 pF/cm, can operate at a maximum unity-gain frequency of 47.8 GHz.

  16. Diffusion equation and spin drag in spin-polarized transport

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Jensen, Thomas Stibius; Mortensen, Asger

    2001-01-01

    We study the role of electron-electron interactions for spin-polarized transport using the Boltzmann equation, and derive a set of coupled transport equations. For spin-polarized transport the electron-electron interactions are important, because they tend to equilibrate the momentum of the two-spin...... species. This "spin drag" effect enhances the resistivity of the system. The enhancement is stronger the lower the dimension is, and should be measurable in, for example, a two-dimensional electron gas with ferromagnetic contacts. We also include spin-flip scattering, which has two effects: it...... equilibrates the spin density imbalance and, provided it has a non-s-wave component, also a current imbalance....

  17. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Science.gov (United States)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  18. Numerical flow solutions on a backward-facing step using the lattice Boltzmann equation method

    Directory of Open Access Journals (Sweden)

    Elkin Florez

    2011-05-01

    Full Text Available  Numerical solutions of 2-D laminar flow over a backward-facing step using the lattice Boltzmann equation method (LBEM are presented in this article. Unlike conventional numerical schemes based on macroscopic continuum equation  (mass conservation and Navier-Stokes discretisation, the LBEM is based on microscopic models and mesoscopic kinetic equations. The simulations were validated for a wide range of Reynolds numbers (100 £ Re £ 1,000, comparing them to previous studies. Several flow features, such as primary and secondary vortex location at the bottom and top of the wall, respectively, were investigated regarding Reynolds number. Two typical classes of boundary condition were implemented in the LBEM model: the Drichlet condition at the inlet flow (parabolic speed profile and the Newman condition at the outlet flow (zero gradient speed. The results showed that the LBEM gave accurate results over a wide range of Reynolds number; these were compared with other numerical methods and experimental data. 

  19. Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations

    International Nuclear Information System (INIS)

    The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations

  20. Theory of Electron Transport in Small Semiconductor Devices Using the Pauli Master Equation

    OpenAIRE

    M. V. Fischetti

    1998-01-01

    It is argued that the Pauli master equation can be used to simulate electron transport in very small electronic devices under steady-state conditions. Written in a basis of suitable wavefunctions and with the appropriate open boundary conditions, this equation removes some of the approximations which render the Boltzmann equation unsatisfactory at small length-scales. The main problems consist in describing the interaction of the system with the reservoirs and in assessing the ...

  1. Adomian decomposition method for solving the telegraph equation in charged particle transport

    International Nuclear Information System (INIS)

    In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems

  2. Lattice-Boltzmann method for the simulation of transport phenomena in charged colloids.

    Science.gov (United States)

    Horbach, J; Frenkel, D

    2001-12-01

    We present a simulation scheme based on the lattice-Boltzmann method to simulate the dynamics of charged colloids in an electrolyte. In our model we describe the electrostatics on the level of a Poisson-Boltzmann equation and the hydrodynamics of the fluid by the linearized Navier-Stokes equations. We verify our simulation scheme by means of a Chapman-Enskog expansion. Our method is applied to the calculation of the reduced sedimentation velocity U/U(0) for a cubic array of charged spheres in an electrolyte. We show that we recover the analytical solution first derived by Booth [F. Booth, J. Chem. Phys. 22, 1956 (1954)] for a weakly charged, isolated sphere in an unbounded electrolyte. The present method makes it possible to go beyond the Booth theory, and we discuss the dependence of the sedimentation velocity on the charge of the spheres. Finally we compare our results to experimental data. PMID:11736191

  3. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    International Nuclear Information System (INIS)

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated

  4. Multiterm spherical tensor representation of Boltzmann's equation for a nonhydrodynamic weakly ionized plasma.

    Science.gov (United States)

    Robson, R E; Winkler, R; Sigeneger, F

    2002-05-01

    The Boltzmann equation corresponding to a general "multiterm" representation of the phase space distribution function f(r,c,t) for charged particles in a gas in an electric field was reformulated entirely in terms of spherical tensors f(l)(m) some time ago, and numerous applications, including extension to time varying and crossed electric and magnetic fields, have followed. However, these applications have, by and large, been limited to the hydrodynamic conditions that prevail in swarm experiments and the full potential of the tensor formalism has thus never been realized. This paper resumes the discussion in the context of the more general nonhydrodynamic situation. Geometries for which a simple Legendre polynomial expansion suffices to represent f are discussed briefly, but the emphasis is upon cylindrical geometry, where such simplification does not arise. In particular, we consider an axisymmetric cylindrical column of weakly ionized plasma, and derive an infinite hierarchy of integrodifferential equations for the expansion coefficients of the phase space distribution function, valid for both electrons and ions, and for all types of binary interaction with neutral gas molecules. PMID:12059718

  5. Boltzmann-equation simulations of radio-frequency-driven, low-temperature plasmas

    International Nuclear Information System (INIS)

    We present a method for the numerical solution of the Boltzmann equation (BE) describing plasma electrons. We apply the method to a capacitively-coupled, radio-frequency-driven He discharge in parallel-plate (quasi-1D) geometry which contains time scales for physical processes spanning six orders of magnitude. Our BE solution procedure uses the method of characteristics for the Vlasov operator with interpolation in phase space at early time, allowing storage of the distribution function on a fixed phase-space grid. By alternating this BE method with a fluid description of the electrons, or with a novel time-cycle-average equation method, we compute the periodic steady state of a He plasma by time evolution from startup conditions. We find that the results compare favorably with measured current-voltage, plasma density, and ''cited state densities in the ''GEC'' Reference Cell. Our atomic He model includes five levels (some are summed composites), 15 electronic transitions, radiation trapping, and metastable-metastable collisions

  6. Lagrange Discrete Ordinates: a new angular discretization for the three dimensional linear Boltzmann equation

    CERN Document Server

    Ahrens, Cory D

    2014-01-01

    The classical $S_n$ equations of Carlson and Lee have been a mainstay in multi-dimensional radiation transport calculations. In this paper, an alternative to the $S_n$ equations, the "Lagrange Discrete Ordinate" (LDO) equations are derived. These equations are based on an interpolatory framework for functions on the unit sphere in three dimensions. While the LDO equations retain the formal structure of the classical $S_n$ equations, they have a number of important differences. The LDO equations naturally allow the angular flux to be evaluated in directions other than those found in the quadrature set. To calculate the scattering source in the LDO equations, no spherical harmonic moments are needed--only values of the angular flux. Moreover, the LDO scattering source preserves the eigenstructure of the continuous scattering operator. The formal similarity of the LDO equations with the $S_n$ equations should allow easy modification of mature 3D $S_n$ codes such as PARTISN or PENTRAN to solve the LDO equations. ...

  7. Reflection of slow ions from solids; exact solution of transport equation

    International Nuclear Information System (INIS)

    Reflection of low energy light ions from solids has been calculated in a multiple collision model. Exact solutions of the Boltzmann transport equation have been found for the reflected energy spectra, particle and energy reflection coefficients, as well as analytical formulas derived from these solutions (author)

  8. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations

    International Nuclear Information System (INIS)

    Numerous lattice Boltzmann (LB) methods have been proposed for solution of the convection-diffusion equations (CDE). For the 2D problem, D2Q9, D2Q5 or D2Q4 velocity models are usually used. When LB convection-diffusion models are used to solve a CDE coupled with Navier-Stokes equations, boundary conditions are found to be critically important for accurately solving the coupled simulations. Following the idea of a regularized scheme (Latt et al 2008 Phys. Rev.E 77 056703), a regularized boundary condition for solving a CDE is proposed. A simple extrapolation scheme is also proposed for the Neumann boundary condition. Spatial accuracies of three existing and the proposed boundary conditions are discussed in details. The numerical evaluations are based on simulations of steady and unsteady natural convection flows in a cavity and an unsteady Taylor-Couette flow. Our studies show that the simplest D2Q4 model with terms of O(u) in the equilibrium distribution function is capable of obtaining results of equal accuracy as D2Q5 or D2Q9 models for the CDE. A slightly revised LB equation for solving a CDE that is used to cancel some unwanted terms does not seem to be necessary for incompressible flows. The regularized boundary condition for solving the CDE has second-order spatial accuracy and it is the best one in terms of the spatial accuracy. The regularized scheme and non-equilibrium extrapolation scheme are applicable to handle both the Dirichlet and Neumann boundary conditions. For the Neumann boundary condition with zero flux, all the five boundary conditions are applicable to give accurate results and the bounce-back scheme is the simplest one.

  9. Analysis of transport of collimated radiation in a participating media using the lattice Boltzmann method

    International Nuclear Information System (INIS)

    Application of the lattice Boltzmann method (LBM) recently proposed by Asinari et al. [Asinari P, Mishra SC, Borchiellini R. A lattice Boltzmann formulation to the analysis of radiative heat transfer problems in a participating medium. Numer Heat Transfer B 2010; 57:126–146] is extended to the analysis of transport of collimated radiation in a planar participating medium. To deal with azimuthally symmetric radiation in planar medium, a new lattice structure for the LBM is used. The transport of the collimated component in the medium is analysed by two different, viz., flux splitting and direct approaches. For different angles of incidence of the collimated radiation, the LBM formulation is tested for the effects of the extinction coefficient, the anisotropy factor, and the boundary emissivities on heat flux and emissive power distributions. Results are compared with the benchmark results obtained using the finite volume method. Both the approaches in LBM provide accurate results. -- Highlights: ► Transport of collimated radiation in participating media is studied. ► Usage of Lattice Boltzmann method (LBM) is extended in this study. ► In LBM, flux splitting and direct approaches are proposed. ► Effects of various parameters are studied on heat flux and temperature profiles. ► In all cases, LBM provides correct results.

  10. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  11. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    Science.gov (United States)

    Hu, Zexi; Huang, Juntao; Yong, Wen-An

    2016-04-01

    In this work, we propose an interfacial scheme accompanying the lattice Boltzmann method for convection-diffusion equations with general interfacial conditions, including conjugate conditions with or without jumps in heat and mass transfer, continuity of macroscopic variables and normal fluxes in ion diffusion in porous media with different porosity, and the Kapitza resistance in heat transfer. The construction of this scheme is based on our boundary schemes [Huang and Yong, J. Comput. Phys. 300, 70 (2015), 10.1016/j.jcp.2015.07.045] for Robin boundary conditions on straight or curved boundaries. It gives second-order accuracy for straight interfaces and first-order accuracy for curved ones. In addition, the new scheme inherits the advantage of the boundary schemes in which only the current lattice nodes are involved. Such an interfacial scheme is highly desirable for problems with complex geometries or in porous media. The interfacial scheme is numerically validated with several examples. The results show the utility of the constructed scheme and very well support our theoretical predications.

  12. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases.

    Science.gov (United States)

    Zheng, Lin; Lee, Taehun; Guo, Zhaoli; Rumschitzki, David

    2014-03-01

    One characteristic of multiphase lattice Boltzmann equation (LBE) methods is that the interfacial region has a finite (i.e., noninfinitesimal) thickness known as a diffuse interface. In simulations of, e.g., bubble or drop dynamics, for problems involving nonideal gases, one frequently observes that the diffuse interface method produces a spontaneous, nonphysical shrinkage of the bubble or drop radius. In this paper, we analyze in detail a single-fluid two-phase model and use a LBE model for nonideal gases in order to explain this fundamental problem. For simplicity, we only investigate the static bubble or droplet problem. We find that the method indeed produces a density shift, bubble or droplet shrinkage, as well as a critical radius below which the bubble or droplet eventually vanishes. Assuming that the ratio between the interface thickness D and the initial bubble or droplet radius r0 is small, we analytically show the existence of this density shift, bubble or droplet radius shrinkage, and critical bubble or droplet survival radius. Numerical results confirm our analysis. We also consider droplets on a solid surface with different curvatures, contact angles, and initial droplet volumes. Numerical results show that the curvature, contact angle, and the initial droplet volume have an effect on this spontaneous shrinkage process, consistent with the survival criterion. PMID:24730962

  13. Inhomogeneous similarity solutions of the Boltzmann equation with confining external forces

    International Nuclear Information System (INIS)

    The Nikolskii transform makes it possible to construct inhomogeneous solutions of the Boltzmann equation from homogeneous ones. These solutions correspond to a gas in expansion, but if the authors introduce external forces, they can relax toward absolute Maxwellians. This property holds independently of the assumed intermolecular inverse power force. Consequently, for Maxwell molecules and from energy-dependent homogeneous distributions, they construct effectively a class of inhomogeneous similarity distributions with Maxwellian equilibrium relaxation. They review and investigate again the homogeneous distributions which can be written in closed form, for instance, they show that an elliptic exact solution proposed some years ago violates positivity. For Maxwell interaction with singular cross sections, they numerically construct inhomogeneous distributions having Maxwellian equilibrium states and study the Tjon overshoot effect. They show that both the sign and the time decrease of the external force as well as the microscopic model of the cross section contribute to the asymptotic behavior of the distribution. These inhomogeneous similarity solutions include a class of distributions that asymptotically oscillate between different Maxwellians. Two classes of external forces are considered: linear spatial-dependent forces or linear velocity-dependent forces plus source term

  14. On anisotropy function in crystal growth simulations using Lattice Boltzmann equation

    CERN Document Server

    Younsi, Amina

    2016-01-01

    In this paper, we present the ability of the Lattice Boltzmann (LB) equation, usually applied to simulate fluid flows, to simulate various shapes of crystals. Crystal growth is modeled with a phase-field model for a pure substance, numerically solved with a LB method in 2D and 3D. This study focuses on the anisotropy function that is responsible for the anisotropic surface tension between the solid phase and the liquid phase. The anisotropy function involves the unit normal vectors of the interface, defined by gradients of phase-field. Those gradients have to be consistent with the underlying lattice of the LB method in order to avoid unwanted effects of numerical anisotropy. Isotropy of the solution is obtained when the directional derivatives method, specific for each lattice, is applied for computing the gradient terms. With the central finite differences method, the phase-field does not match with its rotation and the solution is not any more isotropic. Next, the method is applied to simulate simultaneous...

  15. Microscopic description of quantum Lorentz gas and extension of the Boltzmann equation to entire space-time scale

    Science.gov (United States)

    Hashimoto, K.; Kanki, K.; Tanaka, S.; Petrosky, T.

    2016-02-01

    Irreversible processes of weakly coupled one-dimensional quantum perfect Lorentz gas are studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouville-von Neumann operator. Without any phenomenological operations, such as a coarse-graining of space-time, or a truncation of the higher order correlation, we obtained irreversible processes in a purely dynamical basis in all space and time scale including the microscopic atomic interaction range that is much smaller than the mean-free length. Based on this solution, a limitation of the usual phenomenological Boltzmann equation, as well as an extension of the Boltzmann equation to entire space-time scale, is discussed.

  16. Boundary layers and incompressible Navier-Stokes-Fourier limit of the Boltzmann Equation in Bounded Domain (I)

    OpenAIRE

    Jiang, Ning; Masmoudi, Nader

    2015-01-01

    We establish the incompressible Navier-Stokes-Fourier limit for solutions to the Boltzmann equation with a general cut-off collision kernel in a bounded domain. Appropriately scaled families of DiPerna-Lions-(Mischler) renormalized solutions with Maxwell reflection boundary conditions are shown to have fluctuations that converge as the Knudsen number goes to zero. Every limit point is a weak solution to the Navier-Stokes-Fourier system with different types of boundary conditions depending on ...

  17. The Green's function for the three-dimensional linear Boltzmann equation via Fourier transform

    International Nuclear Information System (INIS)

    The linear Boltzmann equation with constant coefficients in the three-dimensional infinite space is revisited. It is known that the Green's function can be calculated via the Fourier transform in the case of isotropic scattering. In this paper, we show that the three-dimensional Green's function can be computed with the Fourier transform even in the case of arbitrary anisotropic scattering. (paper)

  18. Fokker-Planck equation for transport of wave packets in nonlinear disordered media

    OpenAIRE

    Cherroret, Nicolas; Wellens, Thomas

    2011-01-01

    Starting from first principles, we formulate a theory of wave packet propagation in a nonlinear, disordered medium of any dimension, through the derivation of a Fokker-Planck transport equation. Our theory is based on a diagrammatic expansion of the wave packet's density, and is supported by a heuristic picture that involves a Boltzmann equation with an effective, external potential. Our approach also confirms results obtained in previous work for two-dimensional, nonlinear disordered media.

  19. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  20. On Exact Solutions to the Cylindrical Poisson-Boltzmann Equation with Applications to Polyelectrolytes

    OpenAIRE

    Tracy, C. A.; Widom, H.

    1997-01-01

    Using exact results from the theory of completely integrable systems of the Painleve/Toda type, we examine the consequences for the theory of polyelectrolytes in the (nonlinear) Poisson-Boltzmann approximation.

  1. Reflection of fast electrons in DPO approximation of transport equation

    International Nuclear Information System (INIS)

    Reflection of high energy electrons from solids is treated by the approximative analytic solution of linearized transport equation. For the scattering of electrons on target atoms determined by screened Coulomb interaction and energy loss defined by Be-the-Bloch formula, the mean number of large angle deflections of an electron before slowing down to rest has been introduced. The approach is applicable in wide range of electron energy - from several tens of keV to several MeV - and for materials where the mean number of large angle deflections is large. The isotropic approximation of collision integral is accepted and the Boltzmann equation in Laplace transformed form over relative path length is analytically treated by the ordinary DPN method. In the lowest order of approximation, we derived the expressions for energy distributions of backscattered electrons as well as particle and energy reflection coefficients. Comparison of our results with data of the computational bipartition model is presented. (author)

  2. Analytical Tests for Ray Effect Errors in Discrete Ordinate Methods for Solving the Neutron Transport Equation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B

    2004-03-22

    This paper contains three analytical solutions of transport problems which can be used to test ray-effect errors in the numerical solutions of the Boltzmann Transport Equation (BTE). We derived the first two solutions and the third was shown to us by M. Prasad. Since this paper is intended to be an internal LLNL report, no attempt was made to find the original derivations of the solutions in the literature in order to cite the authors for their work.

  3. Telegrapher's equation for light derived from the transport equation

    OpenAIRE

    Hoenders, Bernhard J.; Graaff, R.

    2005-01-01

    Shortcomings of diffusion theory when applied to turbid media such as biological tissue makes the development of more accurate equations desirable. Several authors developed telegrapher's equations in the well known P-1 approximation. The method used in this paper is different: it is based on the asymptotic evaluation of the solutions of the equation of radiative transport with respect to place and time for all values of the albedo. Various coefficients for the telegrapher's equations were de...

  4. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  5. Locally upwinded discontinuous finite element discretizations for the transport equation

    International Nuclear Information System (INIS)

    Numerical solutions of transport processes are plagued by difficulties in representing the first-order advecting terms. Standard (continuous) finite element discretizations are known to have difficulty in accurately modeling problems in which the solution varies abruptly or shows nearly discontinuous behavior at material interfaces or wave fronts. In this paper, the authors describe a class of discontinuous finite element (DFE) discretizations that are capable of producing accurate and physically meaningful (nonnegative) solutions to the space-time linear Boltzmann transport equation. The novelty of the approach is the presence of an upwinding term within an element that may enforce the positivity of the solutions. This works by reducing the order of the finite element approximation where appropriate, thus suppressing numerical oscillations. The method also enforces elementwise particle conservation and is easily generalized to multidimensions

  6. Numerical solution to the Boltzmann equation for use in calculating pumping rates in a CO sub 2 discharge laser. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Honey, D.A.

    1989-12-01

    The collisional Boltzmann equation was solved numerically to obtain excitation rates for use in a CO{sub 2} laser design program. The program was written in Microsoft QuickBasic for use on the IBM Personal Computer or equivalent. Program validation involved comparisons of computed transport coefficients with experimental data and previous theoretical work. Four different numerical algorithms were evaluated in terms of accuracy and efficiency. L-U decomposition was identified as the preferred approach. The calculated transport coefficients were found to agree with empirical data within one to five percent. The program was integrated into a CO{sub 2} laser design program. Studies were then performed to evaluate the effects on predicted laser output power and energy density as parameters affecting electron kinetics were changed. Plotting routines were written for both programs.

  7. Homogenization of ordinary and linear transport equations

    OpenAIRE

    Peirone, Roberto

    1996-01-01

    The homogenization of first order ordinary differential equations in $\\mathbb{R}^N$ and associated linear transport equations are studied. We prove the equivalence between $G$-convergence and strong $G$-convergence for the ordinary equations. We give a sufficient condition, which is also necessary in the autonomous case, for the weak homogenization of the linear transport equations. This condition is satisfied when div$_x f=0$.

  8. Inverse problems for stochastic transport equations

    International Nuclear Information System (INIS)

    Inverse problems for stochastic linear transport equations driven by a temporal or spatial white noise are discussed. We analyse stochastic linear transport equations which depend on an unknown potential and have either additive noise or multiplicative noise. We show that one can approximate the potential with arbitrary small error when the solution of the stochastic linear transport equation is observed over time at some fixed point in the state space. (paper)

  9. A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice

    Science.gov (United States)

    Min, Haoda; Peng, Cheng; Wang, Lian-Ping

    2015-11-01

    The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.

  10. Angular dependent rebalance method for solving the neutron transport equation

    International Nuclear Information System (INIS)

    The behavior of neutrons in a medium is described mathematically by the Boltzmann transport equation. But the equation cannot be solved analytically even in one-dimensional geomerties. Therefore, for most realistic neutron transport problems and all production transport codes, the transport equation is numerically solved through discretization of the variables. To solve the discretized transport equation, the most widely used method is a form of Von Neumann's series solution referred to as iteration on the scattering source. It is simply called as the scattering source iteration (SI) method. However, it is well known that the scattering source iteration method converges arbitrary slowly for highly scattering dominant problems. Hence, many techniques for accelerating the scattering source iteration have been developed. Typically, the acceleration method consists of two equations. The first is the higher-order equation that is the general discretized transport equation and the second is the lower-order equation that improves the result of the higher-order equation. The most popular lower-order equation is the diffusion equation that is derived based on consistency with the higher-order equation. This type of methods are called as the diffusion synthetic acceleration method (DSA). Although this type of methods works very effectively, it is very difficult to devise diffusion acceleration equations that are both effective at reducing iteration counts and easy to solve computationally. Also, implementing the DSA method in an existing transport code usually requires a significant effort. The difficulty in solving the diffusion equation relative to that of the transport equation increases with additional spatial dimensions. This further complicates the task of devising efficient DSA methods for multidimensional problems. Also, development of new transport methods requires a complicated effort in deriving DSA equations or may be impossible to derive DSA equations. The

  11. Gas-kinetic theory and Boltzmann equation of share price within an equilibrium market hypothesis and ad hoc strategy

    Science.gov (United States)

    Ausloos, M.

    2000-09-01

    Recent observations have indicated that the traditional equilibrium market hypothesis (EMH; also known as Efficient Market Hypothesis) is unrealistic. It is shown here that it is the analog of a Boltzmann equation in physics, thus having some bad properties of mean-field approximations like a Gaussian distribution of price fluctuations. A kinetic theory for prices can be simply derived, considering in a first approach that market actors have all identical relaxation times, and solved within a Chapman-Enskog like formalism. In closing the set of equations, (i) an equation of state with a pressure and (ii) the equilibrium (isothermal) equation for the price (taken as the order parameter) of a stock as a function of the volume of money available are obtained.

  12. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    CERN Document Server

    Hammond, L A; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.

  13. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  14. On convergence to equilibrium for solutions to the linear, space-inhomogeneous Boltzmann equation

    International Nuclear Information System (INIS)

    In this paper, the linear space-inhomogeneous transport equation for a distribution function (describing, for instance, a neutron distribution) in a bounded body with general boundary conditions is considered. Results on weak convergence to equilibrium, when t→ infinity, are given for general initial data, first in the cutoff case and then for infinite-range collision forces. To handle these problems, general H theorems (concerning monotonicity in time of convex entropy functionals) are presented. Furthermore, general results on collision invariants, i.e., on functions satisfying detailed balance relations in a binary collision, are given

  15. Thermal Lattice Boltzmann Model for Compressible Fluid

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    We formulate a new thermal lattice Boltzmann model to simulate compressible flows with a high Mach number.The main difference from the standard lattice Boltzmann models is that the particle velocities are no longer a constant, varying with the mean velocity and internal energy. The proper heat conduction term in the energy equation is recovered by modification of the fluctuating kinetic energy transported by particles. The simulation of Couette flow is in good agreement with the analytical solutions.

  16. The gBL transport equations

    International Nuclear Information System (INIS)

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  17. Three-Dimensional Lattice Boltzmann Simulation of Liquid Water Transport in Porous Layer of PEMFC

    Directory of Open Access Journals (Sweden)

    Bo Han

    2015-12-01

    Full Text Available A three-dimensional two-phase lattice Boltzmann model (LBM is implemented and validated for qualitative study of the fundamental phenomena of liquid water transport in the porous layer of a proton exchange membrane fuel cell (PEMFC. In the present study, the three-dimensional microstructures of a porous layer are numerically reconstructed by a random generation method. The LBM simulations focus on the effects of the porous layer porosity and boundary liquid saturation on liquid water transport in porous materials. Numerical results confirm that liquid water transport is strongly affected by the microstructures in a porous layer, and the transport process prefers the large pores as its main pathway. The preferential transport phenomenon is more profound with a decreased porous layer porosity and/or boundary liquid saturation. In the transport process, the breakup of a liquid water stream can occur under certain conditions, leading to the formation of liquid droplets inside the porous layer. This phenomenon is related to the connecting bridge or neck resistance dictated by the surface tension, and happens more frequently with a smaller porous layer porosity. Results indicate that an optimized design of porous layer porosity and the combination of various pore sizes may improve both the liquid water removal and gaseous reactant transport in the porous layer of a PEMFC.

  18. Improved negative fixup with cell rebalance for Bolzmann-Fokker-Planck transport equation

    International Nuclear Information System (INIS)

    The Boltzmann-Fokker-Planck (BFP) equation for highly anisotropic scattering problems such as charged particle transport combines the advantages of the Boltzmann transport equation and the Fokker-Planck equation. Because the BFP equation involves angular flux derivatives with respect to energy and direction, the standard neutron transport codes cannot be used directly to solve the BFP equation. The diamond difference scheme can be applied to the BFP equation with respect to energy and space. This scheme is accurate for finite mesh size, but it is subject to negative flux. If negative flux comes out of one mesh, then the solution can be completely wrong. So, the diamond difference scheme needs a negative flux fixup, and a conservative up scheme was used by Przybylski and Ligou. In this study, a negative flux fixup scheme with cell-rebalanced average flux is developed, improving the results of Przybylski and Ligou. Because the nonlinearity introduced by negative flux fixup has in fluence on solution, the nodal method (constant-constant) is also applied to the BFP equation with respect to energy and space. Since the nodal method is a more positive scheme than the diamond difference scheme, it can be alternative for the BFP equation

  19. Particle fluid interactivity deteriorates buoyancy driven thermal transport in nanosuspensions : A multi component lattice Boltzmann approach

    CERN Document Server

    S, Savithiri; Pattamatta, Arvind; Das, Sarit K

    2015-01-01

    Severe contradictions exist between experimental observations and computational predictions regarding natural convective thermal transport in nanosuspensions. The approach treating nanosuspensions as homogeneous fluids in computations has been pin pointed as the major contributor to such contradictions. To fill the void, inter particle and particle fluid interactivities (slip mechanisms), in addition to effective thermophysical properties, have been incorporated within the present formulation. Through thorough scaling analysis, the dominant slip mechanisms have been identified. A Multi Component Lattice Boltzmann Model (MCLBM) approach has been proposed, wherein the suspension has been treated as a non homogeneous twin component mixture with the governing slip mechanisms incorporated. The computations based on the mathematical model can accurately predict and quantify natural convection thermal transport in nanosuspensions. The role of slip mechanisms such as Brownian diffusion, thermophoresis, drag, Saffman ...

  20. On global boundedness of higher velocity moments for solutions to the linear Boltzmann equation with hard sphere collisions

    International Nuclear Information System (INIS)

    This paper considers the time- and space-dependent linear Boltzmann equation for elastic or inelastic (granular) collisions. First, in the angular cut-off case or with hard sphere collisions, mild L1-solutions are constructed as limits of iterate functions. Then, in the case of hard sphere collisions together with, e.g., specular boundary conditions, global boundedness in time of higher velocity moments is proved, using our old collision velocity estimates together with a Jensen inequality. This generalizes our earlier results for hard inverse collision forces, and also results given by other authors from the space-homogeneous case to our space-dependent one.

  1. Uniqueness and regularity of steady states of the Boltzmann equation for viscoelastic hard-spheres driven by a thermal bath

    CERN Document Server

    Alonso, Ricardo J

    2011-01-01

    We study the uniqueness and regularity of the steady states of the diffusively driven Boltzmann equation in the physically relevant case where the restitution coefficient depends on the impact velocity including, in particular, the case of viscoelastic hard-spheres. We adopt a strategy which is novel in several aspects, in particular, the study of regularity does not requires a priori knowledge of the time-dependent problem. Furthermore, the uniqueness result is obtained in the small thermalization regime by studying the so-called quasi-elastic limit for the problem. An important new aspect lies in the fact that no entropy functional inequality is needed in the limiting process.

  2. Solution of the one-dimensional linear Boltzmann equation for charged Maxwellian particles in an external field

    International Nuclear Information System (INIS)

    The one-dimensional linear homogeneous Boltzmann equation is solved for a binary mixture of quasi-Maxwellian particles in the presence of a time-dependent external field. It is assumed that the charged particles move in a bath of neutral scatterers. The neutral scatterers are in thermal equilibrium and the concentration of the charged particles is low enough to neglect collisions between them. Two cases are considered in detail, the constant and the periodic external field. The quantities calculated are the equilibrium and the stationary distribution function, respectively, from which any desired property can be derived. The solution of the Boltzmann equation for Maxwellian particles can be reduced to the solution of the so-called cold gas equation by employing the one-dimensional variant of a convolution theorem due to Wannier. The two limiting cases, the Lorentz gas (m/sub A/ → 0) and the Rayleigh gas (m/sub a/ → ∞) are treated explicitly. Furthermore, by computing the central moments, the deviations from the Gaussian approximation are discussed, and in particular the large-velocity tails are evaluated

  3. Application of the theory of dynamical systems to the Boltzmann equation for gas mixtures with constant collision frequencies

    International Nuclear Information System (INIS)

    This thesis looks into some qualitative properties, of dynamical systems occurring as ordinary differential equations. Essential information about the structure of the solution can be obtained without explicitly solving a linear system of differential equations with constant coefficients. This can be achieved by decomposing the operator of such a system into a semisimple and a nilpotent part. Fundamental theorems, concerning the existence of the solutions are discussed as well as the problem of stability of equilibrium points in dynamical systems (Liapunov's theorem). Gradient systems, special forms of dynamical systems, have particular properties that simplify the analysis of their flow. Finally, by applying the theory of dynamical systems to the Boltzmann equation with constant collision frequencies an investigation of equilibrium points is carried out. A mixture of three gases consisting of particles that interact through different collision mechanisms serves as the physical model. (Suda)

  4. Onsager equations and time dependent neutron transport

    International Nuclear Information System (INIS)

    The diffusion of neutrons following an abrupt, localized temperature fluctuation can be conducted in the framework of Onsager-type transport equations. Considering Onsager equations as a generalized Fick's law, time-dependent particle and energy 'generalized diffusion equations' can be obtained. Aim of the present paper is to obtain the time-dependent diffusion Onsager-type equations for the diffusion of neutrons and to apply them to simple trial cases to gain a feeling for their behaviour. (author)

  5. 2D/1D approximations to the 3D neutron transport equation. I: Theory

    International Nuclear Information System (INIS)

    A new class of '2D/1D' approximations is proposed for the 3D linear Boltzmann equation. These approximate equations preserve the exact transport physics in the radial directions x and y and diffusion physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the 3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme for solving the discrete system of equations. In a companion paper [1], we give numerical results that confirm the theoretical predictions of accuracy and iterative stability. (authors)

  6. A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio

    CERN Document Server

    Hu, Kainan; Geng, Shaojuan

    2016-01-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e. the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion...

  7. Nanoscale simulation of shale transport properties using the lattice Boltzmann method: permeability and diffusivity

    CERN Document Server

    Chen, Li; Kang, Qinjun; Yao, Jun; Tao, Wenquan

    2014-01-01

    Porous structures of shales are reconstructed based on scanning electron microscopy (SEM) images of shale samples from Sichuan Basin, China. Characterization analyzes of the nanoscale reconstructed shales are performed, including porosity, pore size distribution, specific surface area and pore connectivity. The multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) fluid flow model and single-relaxation-time (SRT) LBM diffusion model are adopted to simulate the fluid flow and Knudsen diffusion process within the reconstructed shales, respectively. Tortuosity, intrinsic permeability and effective Knudsen diffusivity are numerically predicted. The tortuosity is much higher than that commonly employed in Bruggeman equation. Correction of the intrinsic permeability by taking into consideration the contribution of Knudsen diffusion, which leads to the apparent permeability, is performed. The correction factor under different Knudsen number and pressure are estimated and compared with existing corrections re...

  8. An adaptive finite element approach for neutron transport equation

    International Nuclear Information System (INIS)

    Highlights: → Using uniform grid solution gives high local residuals errors. → Element refinement in the region where the flux gradient is large improves accuracy of results. → It is not necessary to use high density element throughout problem domain. → The method provides great geometrical flexibility. → Implementation of different density of elements lowers computational cost. - Abstract: In this paper, we develop an adaptive element refinement strategy that progressively refines the elements in appropriate regions of domain to solve even-parity Boltzmann transport equation. A posteriori error approach has been used for checking the approximation solutions for various sizes of elements. The local balance of neutrons in elements is utilized as an error assessment. To implement the adaptive approach a new neutron transport code FEMPT, finite element modeling of particle transport, for arbitrary geometry has been developed. This code is based on even-parity spherical harmonics and finite element method. A variational formulation is implemented for the even-parity neutron transport equation for the general case of anisotropic scattering and sources. High order spherical harmonic functions expansion for angle and finite element method in space is used as trial function. This code can be used to solve the multi-group neutron transport equation in highly complex X-Y geometries with arbitrary boundary condition. Due to powerful element generator tools of FEMPT, the description of desired and complicated 2D geometry becomes quite convenient. The numerical results show that the locally adaptive element refinement approach enhances the accuracy of solution in comparison with uniform meshing approach.

  9. Transport in the spatially tempered, fractional Fokker-Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Kullberg, A. [University of California, Los Angeles; Del-Castillo-Negrete, Diego B [ORNL

    2012-01-01

    A study of truncated Levy flights in super-diffusive transport in the presence of an external potential is presented. The study is based on the spatially tempered, fractional Fokker-Planck (TFFP) equation in which the fractional diffusion operator is replaced by a tempered fractional diffusion (TFD) operator. We focus on harmonic (quadratic) potentials and periodic potentials with broken spatial symmetry. The main objective is to study the dependence of the steady-state probability density function (PDF), and the current (in the case of periodic potentials) on the level of tempering, lambda, and on the order of the fractional derivative in space, alpha. An expansion of the TFD operator for large lambda is presented, and the corresponding equation for the coarse grained PDF is obtained. The steady-state PDF solution of the TFFP equation for a harmonic potential is computed numerically. In the limit lambda -> infinity, the PDF approaches the expected Boltzmann distribution. However, nontrivial departures from this distribution are observed for finite (lambda > 0) truncations, and alpha not equal 2. In the study of periodic potentials, we use two complementary numerical methods: a finite-difference scheme based on the Grunwald-Letnikov discretization of the truncated fractional derivatives and a Fourier-based spectral method. In the limit lambda -> infinity, the PDFs converges to the Boltzmann distribution and the current vanishes. However, for alpha not equal 2, the PDF deviates from the Boltzmann distribution and a finite non-equilibrium ratchet current appears for any lambda > 0. The current is observed to converge exponentially in time to the steady-state value. The steady-state current exhibits algebraical decay with lambda, as J similar to lambda(-zeta), for alpha >= 1.75. However, for alpha <= 1.5, the steady-state current decays exponentially with lambda, as J similar to e(-xi lambda). In the presence of an asymmetry in the TFD operator, the tempering can lead

  10. Transport in the spatially tempered, fractional Fokker-Planck equation

    Science.gov (United States)

    Kullberg, A.; del-Castillo-Negrete, D.

    2012-06-01

    A study of truncated Lévy flights in super-diffusive transport in the presence of an external potential is presented. The study is based on the spatially tempered, fractional Fokker-Planck (TFFP) equation in which the fractional diffusion operator is replaced by a tempered fractional diffusion (TFD) operator. We focus on harmonic (quadratic) potentials and periodic potentials with broken spatial symmetry. The main objective is to study the dependence of the steady-state probability density function (PDF), and the current (in the case of periodic potentials) on the level of tempering, λ, and on the order of the fractional derivative in space, α. An expansion of the TFD operator for large λ is presented, and the corresponding equation for the coarse grained PDF is obtained. The steady-state PDF solution of the TFFP equation for a harmonic potential is computed numerically. In the limit λ → ∞, the PDF approaches the expected Boltzmann distribution. However, nontrivial departures from this distribution are observed for finite (λ > 0) truncations, and α ≠ 2. In the study of periodic potentials, we use two complementary numerical methods: a finite-difference scheme based on the Grunwald-Letnikov discretization of the truncated fractional derivatives and a Fourier-based spectral method. In the limit λ → ∞, the PDFs converges to the Boltzmann distribution and the current vanishes. However, for α ≠ 2, the PDF deviates from the Boltzmann distribution and a finite non-equilibrium ratchet current appears for any λ > 0. The current is observed to converge exponentially in time to the steady-state value. The steady-state current exhibits algebraical decay with λ, as J ˜ λ-ζ, for α ⩾ 1.75. However, for α ⩽ 1.5, the steady-state current decays exponentially with λ, as J ˜ e-ξλ. In the presence of an asymmetry in the TFD operator, the tempering can lead to a current reversal. A detailed numerical study is presented on the dependence of the

  11. Transport in the spatially tempered, fractional Fokker–Planck equation

    International Nuclear Information System (INIS)

    A study of truncated Lévy flights in super-diffusive transport in the presence of an external potential is presented. The study is based on the spatially tempered, fractional Fokker–Planck (TFFP) equation in which the fractional diffusion operator is replaced by a tempered fractional diffusion (TFD) operator. We focus on harmonic (quadratic) potentials and periodic potentials with broken spatial symmetry. The main objective is to study the dependence of the steady-state probability density function (PDF), and the current (in the case of periodic potentials) on the level of tempering, λ, and on the order of the fractional derivative in space, α. An expansion of the TFD operator for large λ is presented, and the corresponding equation for the coarse grained PDF is obtained. The steady-state PDF solution of the TFFP equation for a harmonic potential is computed numerically. In the limit λ → ∞, the PDF approaches the expected Boltzmann distribution. However, nontrivial departures from this distribution are observed for finite (λ > 0) truncations, and α ≠ 2. In the study of periodic potentials, we use two complementary numerical methods: a finite-difference scheme based on the Grunwald–Letnikov discretization of the truncated fractional derivatives and a Fourier-based spectral method. In the limit λ → ∞, the PDFs converges to the Boltzmann distribution and the current vanishes. However, for α ≠ 2, the PDF deviates from the Boltzmann distribution and a finite non-equilibrium ratchet current appears for any λ > 0. The current is observed to converge exponentially in time to the steady-state value. The steady-state current exhibits algebraical decay with λ, as J ∼ λ−ζ, for α ⩾ 1.75. However, for α ⩽ 1.5, the steady-state current decays exponentially with λ, as J ∼ e−ξλ. In the presence of an asymmetry in the TFD operator, the tempering can lead to a current reversal. A detailed numerical study is presented on the dependence of

  12. Anomalous transport equations in toroidal plasmas

    International Nuclear Information System (INIS)

    Reduced transport equations for a toroidal plasma with fluctuations are derived. These equations include the effects of both anomalous and standard neoclassical transport, and allow clarification of the structure of convective fluxes caused by electrostatic and magnetic fluctuations. Special attention is paid to the combined effects of fluctuations and toroidicity on the transport. The formulation retains the effects of a magnetic field inhomogeneity on the anomalous transport. It is shown that phase space diffusion caused by the gradient in the equilibrium magnetic field appears as a pinch flux in the real space

  13. Lattice Boltzmann technique for heat transport phenomena coupled with melting process

    Science.gov (United States)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy

    2016-04-01

    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  14. Asymptotic Analysis of the Boltzmann Equation for Dark Matter Relics in the presence of a Running Dilaton and Space-Time Defects

    CERN Document Server

    Bender, Carl M; Sarkar, Sarben

    2013-01-01

    The interplay of dilatonic effects in dilaton cosmology and stochastic quantum space-time defects within the framework of string/brane cosmologies is examined. The Boltzmann equation describes the physics of thermal dark-matter-relic abundances in the presence of rolling dilatons. These dilatons affect the coupling of stringy matter to D-particle defects, which are generic in string theory. This coupling leads to an additional source term in the Boltzmann equation. The techniques of asymptotic matching and boundary-layer theory, which were recently applied by two of the authors (CMB and SS) to a Boltzmann equation, are used here to find the detailed asymptotic relic abundances for all ranges of the expectation value of the dilaton field. The phenomenological implications for the search of supersymmetric dark matter in current colliders, such as the LHC, are discussed.

  15. Dual Diagonalization of Reactive Transport Equations

    Science.gov (United States)

    Yeh, G.; Tsai, C.

    2013-12-01

    One solves a system of species transport equations in the primitive approach to reactive transport modeling. This approach is not able to decouple equilibrium reaction rates from species concentrations. This problem has been overcome with the approach to diagonalizing the reaction matrix since mid 1990's, which yields the same number of transport equations for reaction-extents. In the diagonalization approach, first, a subset of reaction- extent transport equations is solved for concentrations of components and kinetic-variables. Then, the component, kinetic-variable, and mass action equations are solved for all species concentrations. Finally, the equilibrium reaction rates are posterior computed. The difficulty in this approach is that the solution of species concentrations in the second step is a stiff problem when the concentrations of master species are small compared to those of equilibrium species. To overcome the problem of stiffness, we propose a dual diagonalization approach. Here, a second diagonalization is performed on the decomposed unit matrix to yield species concentrations, each as a linear function of reaction extents. In this dual diagonalization approach, four steps are needed to complete the modeling. First, component and kinetic-variable transport equations are solved for the concentrations of components (a subset of reaction-extents) and kinetic-variables (another subset of reaction-extents). Second, the set of mass action equations written in terms of reaction extents are solved for equilibrium-variables (yet another subset of reaction-extents). Third, species concentrations are posterior obtained by solving the set of linear equations defining reaction-extents. Fourth, equilibrium rates are posterior calculated with transport equations for equilibrium-variables. Several example problems will be used to demonstrate the efficiency of this approach. Keywords: Reactive Transport, Reaction-Extent, Component, Kinetic-Variable, Equilibrium

  16. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    CERN Document Server

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  17. A closure for stochastic transport equations

    International Nuclear Information System (INIS)

    The problem of particle transport through a stochastic mixture of two immiscible materials is considered. The material mixing process is assumed to obey Markovian statistics. An ensemble average of this stochastic transport equations leads to two equations containing four different ensemble-averaged intensities. To close these equations to a set of two equations in two unknowns, certain rod geometry problems are considered. In this geometry, two distinct exact analyses are possible, namely a small correlation length analysis, and a non stochastic mean number of secondaries per collision analysis. The closure philosophy is to demand that the closed set of two equations reproduces these exact limiting behaviors. Numerical results are given which compare the predictions of this new closure with exact benchmark results as well as with the standard closure available in literature. (authors). 12 refs., 2 figs

  18. Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method

    Science.gov (United States)

    Halliday, I.; Lishchuk, S. V.; Spencer, T. J.; Pontrelli, G.; Evans, P. C.

    2016-08-01

    We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013), 10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.

  19. Energy-Dependent Boltzmann Equation with Fission and Slowing-Down Kernels

    International Nuclear Information System (INIS)

    This paper presents a study of the energy-dependent neutron transport equation, using Case's method of singular eigenfunctions and considering a continuous energy variable (rather than a multigroup scheme). Both fission and slowing-down kernels are included in the analysis. Under the assumption of simple cross-sections laws, and plane symmetry, a completeness theorem and the Green's function are found for-the infinite medium, for both isotropic and anisotropic scattering, using rather general assumptions as to the slowing-down kernels (including convolution kernels) and, only in the anisotropic case, the generalized Greuling-Goertzel kernel. The crux of the completeness theorem is the inversion and analysis of the spectral properties of a continuous operator which acts upon the energy variable, and depends parametrically upon a complex variable z (with analyticity in some cut complex plane). For half-space problems, the Wiener-Hopf factorization of such an operator is a remarkably difficult problem. However, it can be performed if, for the slowing-down kernel, the Greuling-Goertzel approximation generalized to all its anisotropic components is used, in which case the Wiener-Hopf factorization gives another convolution operator. In this approximation the Milne problem is solved, and a study is made of the extrapolation length. There is a discussion of the difficulties introduced by fission kernels, with emphasis on the coexistence of space-energy separable modes with slowing-down transient modes. (author)

  20. Mathematical methods for the Boltzmann equation in the context of chemically reactive gases

    OpenAIRE

    Carvalho, Filipe Manuel Sampaio de

    2013-01-01

    Nesta tese desenvolveram-se alguns métodos matemáticos para tratar a equação de Boltzmann no contexto dos gases quimicamente reativos. Os problemas aqui abordados têm diversas aplicações práticas, refira-se por exemplo a combusto e outras aplicações da engenharia bem como da física e química. Primeiro estuda-se a influência do calor de reação na onda de detonação estacionária. Em seguida, analisa-se a influência do calor de reação, bem como da energia de ativação, no espetro de estabilidad...

  1. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  2. Periodic structures in the Franck-Hertz experiment with neon: Boltzmann equation and Monte-Carlo analysis

    Science.gov (United States)

    White, R. D.; Robson, R. E.; Nicoletopoulos, P.; Dujko, S.

    2012-05-01

    The Franck-Hertz experiment with neon gas is modelled as an idealised steady-state Townsend experiment and analysed theoretically using (a) multi-term solution of Boltzmann equation and (b) Monte-Carlo simulation. Theoretical electron periodic electron structures, together with the `window' of reduced fields in which they occur, are compared with experiment, and it is explained why it is necessary to account for all competing scattering processes in order to explain the observed experimental `wavelength'. The study highlights the fundamental flaws in trying to explain the observations in terms of a single, assumed dominant electronic excitation process, as is the case in text books and the myriad of misleading web sites.

  3. Global well-posedness for the Fokker-Planck-Boltzmann equation in Besov-Chemin-Lerner type spaces

    Science.gov (United States)

    Liu, Zhengrong; Tang, Hao

    2016-06-01

    In this paper, motivated by [16], we use the Littlewood-Paley theory to establish some estimates on the nonlinear collision term, which enable us to investigate the Cauchy problem of the Fokker-Planck-Boltzmann equation. When the initial data is a small perturbation of the Maxwellian equilibrium state, under the Grad's angular cutoff assumption, the unique global solution for the hard potential case is obtained in the Besov-Chemin-Lerner type spaces C ([ 0 , ∞) ; L˜>ξ 2 (B2,rs)) with 1 ≤ r ≤ 2 and s > 3 / 2 or s = 3 / 2 and r = 1. Besides, we also obtain the uniform stability of the dependence on the initial data.

  4. Two-relaxation-times Lattice Boltzmann schemes for solute transport in unsaturated water flow, with a focus on stability

    Science.gov (United States)

    Hammou, H.; Ginzburg, I.; Boulerhcha, M.

    2011-06-01

    We develop two-relaxation-times Lattice Boltzmann schemes (TRT) with two relaxation functions Λ±(r→,t) for solving highly non-linear equations for groundwater modeling in d-dimensions, namely, the Richards equation for water content distribution θ(r→,t) in unsaturated flow and the associated transport equation for solute concentration C(r→,t), advected by the local Darcian water flux. The method is verified against the analytical solutions and the HYDRUS code where the TRT schemes behave more robustly for small diffusion coefficients and sharp infiltration profiles. The focus is on the stability and efficiency of two transport schemes. The first scheme conventionally prescribes C for diffusive flux equilibrium variable while conserving θC. The second scheme prescribes θC for both variables, expecting to retain the stable parameter areas and velocity amplitudes recently predicted by linear von Neumann stability analysis. We show that the first scheme reduces the stable diffusion range, e.g. from Λ-/ d to θΛ-/ d for simplest velocity sets, but it also modifies the linearized numerical diffusion, from - Λ-UαUβ to - θΛ-UαUβ, giving rise to possible enhancement of stable velocity U2, max by a factor 1/ θ. This analysis indicates that the first scheme is most efficient for infiltration into dry soil. When the product Λ+Λ- is kept constant, we find a good agreement between the attainable velocity and our predictions providing that Λ- does not exceed ≈5. Otherwise, approaching two opposite stability limits, Λ+ → 0 when Λ- → ∞ , the stable velocity amplitude drastically falls for the two transport TRT schemes. At the same time, their BGK submodels Λ+ = Λ- may keep the optimal stability for diffusion-dominant problems but their boundary and bulk approximations are completely destroyed. The analysis presented here may serve as a starting point for construction of the suitable equilibrium transformations, based on the analytical stability

  5. Role of non-ideality for the ion transport in porous media: derivation of the macroscopic equations using upscaling

    CERN Document Server

    Allaire, Gregoire; Dufreche, Jean-Francois; Mikelic, Andro; Piatnitski, Andrey

    2013-01-01

    This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the mean spherical approximation (MSA) model which takes into account finite size ions and screening effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant of Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this nonlinear equation has no monotone structure. However, based on invariant region estimates for Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove existence of at least one solution. To our knowledge this existence result is new at this level of generality...

  6. Study on the unified algorithm for three-dimensional complex problems covering various flow regimes using Boltzmann model equation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Boltzmann simplified velocity distribution function equation describing the gas transfer phenomena from various flow regimes will be explored and solved numerically in this study. The discrete velocity ordinate method of the gas kinetic theory is studied and applied to simulate the complex multi-scale flows. Based on the uncoupling technique on molecular movement and colliding in the DSMC method, the gas-kinetic finite difference scheme is constructed to directly solve the discrete velocity distribution functions by extending and applying the unsteady time-splitting method from computational fluid dynamics. The Gauss-type discrete velocity numerical quadrature technique for different Mach number flows is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established to study the three-dimensional complex flows from rarefied transition to continuum regimes. The parallel strategy adapted to the gas-kinetic numerical algorithm is investigated by analyzing the inner parallel degree of the algorithm, and then the HPF parallel processing program is developed. To test the reliability of the present gas-kinetic numerical method, the three-dimensional complex flows around sphere and spacecraft shape with various Knudsen numbers are simulated by HPF parallel computing. The computational results are found in high resolution of the flow fields and good agreement with the theoretical and experimental data. The computing practice has confirmed that the present gas-kinetic algorithm probably provides a promising approach to resolve the hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view of solving the Boltzmann model equation.

  7. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  8. On Benney type hydrodynamical systems and their Boltzmann-Vlasov equations kinetic models

    International Nuclear Information System (INIS)

    Some years ago Zakharov and Gibbon observed a very nice relation between the Benney type equation in hydrodynamics and the Vlasov equation of kinetic theory. These equations are generalized and put into the framework of infinite-dimensional Lie algebras associated to Lie algebra structures on rings of functions on finite-dimensional manifolds. This gives rise to a complete description of the Hamiltonian structure of both types of equations under consideration. In particular, their Lax type representations together with an infinite involutive hierarchy of conservation laws are obtained in an exact form. Some applications to chaotic many particle dynamical systems, turbulent fluid flows and swept volume analysis are considered. (author)

  9. 4-Velocity distribution function using Maxwell-Boltzmann's original approach and a new form of the relativistic equation of state

    CERN Document Server

    Basu, Prasad

    2011-01-01

    Following the original approach of Maxwell-Boltzmann(MB), we derive a 4-velocity distribution function for the relativistic ideal gas. This distribution function perfectly reduces to original MB distribution in the non-relativistic limit. We express the relativistic equation of state(EOS), $\\rho-\\rho_0=(\\gamma-1)^{-1}p$,\\ in the two equations: $\\rho=\\rho_0 f(\\lambda)$,\\ and $p=\\rho_0 g(\\lambda)$, where $\\lambda$\\ is a parameter related to the kinetic energy, hence the temperature, of the gas. In the both extreme limits, they give correct EOS:\\ $\\rho=3p$\\ in the ultra-relativistic, and\\ $\\rho-\\rho_0=3/2p$ in the non-relativistic regime. Using these equations the adiabatic index $\\gamma$ (=$\\frac{c_p}{c_v}$) and the sound speed $a_s$ are calculated as a function of $\\lambda$. They also satisfy the inequalities: $4/3 \\le \\gamma \\le 5/3$ and $a_s \\le \\frac{1}{\\sqrt{3}}$ perfectly.

  10. Lattice Boltzmann method for short-pulsed laser transport in a multi-layered medium

    International Nuclear Information System (INIS)

    We construct a lattice Boltzmann method (LBM) for transient radiative transfer in one-dimensional multi-layered medium with distinct refractive index in each layer. The left boundary is irradiated normally by a short-pulsed laser. The Fresnel interfaces conditions, which incorporate reflection and refraction, are used at the boundaries and the interfaces. Based on the Fresnel's law and Snell's law, the interfacial intensity formulas are introduced. The collimated and diffuse intensities are treated individually. At a transient time step, the collimated component is first solved by LBM and then embedded into the transient radiative transfer equation as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the intensities at the interfaces is adopted. The transient radiative transfer in a two-layer medium is first investigated, and the time-resolved results are validated by comparing with those by the Monte Carlo method (MCM). Of particular interest, the angular intensities along the slab at different times are presented to illustrate a variety of interesting phenomena, and the discontinuous nature of the intensity at the interfaces is discussed. The effects of various parameters on the time-resolved signals are examined. - Highlights: • Transient radiative transfer in a multi-layered medium is solved by LBM. • The boundary and interfaces are all considered as Fresnel surfaces. • The LBM solution for the collimated pulse is derived. • Discontinuous nature of the intensity at the interface is illustrated and discussed

  11. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  12. Lattice Boltzmann pore-scale model for multi-component reactive transport

    Science.gov (United States)

    Kang, Qinjun; Lichtner, Peter; Zhang, Dongxiao; Tsimpanogiannis, Ioannis

    2004-11-01

    A better understanding of multi-component flow and reaction in natural and man-made porous media is critical to a wide range of fields, including hydrology (groundwater quality), fossil energy (oil, gas, coalbed methane, clathrates), economic geology (mineral processing and development), geologic carbon sequestration (hydrodynamic and mineral trapping of carbon), and materials manufacturing and degradation (polymer composites, concrete, building materials). This problem is notoriously difficult because it usually involves multiple processes (convection, diffusion, and chemical reaction) and complex geometries and boundaries. In this work, we present a multi-component lattice Boltzmann model for simulating reactive transport in porous media at the pore scale. This model takes into account convection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and the minerals, as well as the resulting geometrical changes in pore space. Homogeneous reactions are described through local equilibrium mass action relations. Mineral reactions are treated kinetically through boundary conditions at the surface. We have applied this model to a hypothetical two-component system in a synthetically constructed medium, and analyzed the effects of convection, diffusion, reaction rate constants, and chemical compositions on mineral alteration of the porous medium.

  13. Boltzmann-Equation Based Derivation of Balance Laws in Irreversible Thermodynamics

    OpenAIRE

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2014-01-01

    In this paper we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, separating entropy fluxes and production rates properly, and determining a dissipation matrix. Our approach takes the advantage of both EIT and GENERIC form...

  14. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation

    OpenAIRE

    Glangetas, Leo; Li, Hao-Guang; Xu, Chao-Jiang

    2014-01-01

    Accepted to publish by "Kinetic and Related Models" In this work, we study the Cauchy problem for the spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. We prove that this Cauchy problem enjoys Gelfand-Shilov regularizing effect, that means the smoothing properties is same as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator. The power of this fractional is exactly the singular index of non-cutoff collisional ker...

  15. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  16. Generalized Poisson-Boltzmann Equation Taking into Account Ionic Interaction and Steric Effects

    Institute of Scientific and Technical Information of China (English)

    刘新敏; 李航; 李睿; 田锐; 许晨阳

    2012-01-01

    Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.

  17. The method of spherical harmonics as an ansatz for the solution of non-linear Boltzmann equations

    International Nuclear Information System (INIS)

    A new coordinate-free representation of the differential scattering probability function of the binary self-collision leads to a scattering kernel which is particularly appropriate for the expansion in Legendre polynomials. Thus, the non-linear transport equation can be treated using the spherical harmonics method. Assuming the scattering in the centre-of-mass system to be isotropic, the non-linear moment equations of the particle distribution function are derived. (orig.)

  18. Phonon-limited resistivity of graphene by first-principles calculations: Electron-phonon interactions, strain-induced gauge field, and Boltzmann equation

    Science.gov (United States)

    Sohier, Thibault; Calandra, Matteo; Park, Cheol-Hwan; Bonini, Nicola; Marzari, Nicola; Mauri, Francesco

    2014-09-01

    We use first-principles calculations, at the density-functional-theory (DFT) and GW levels, to study both the electron-phonon interaction for acoustic phonons and the "synthetic" vector potential induced by a strain deformation (responsible for an effective magnetic field in case of a nonuniform strain). In particular, the interactions between electrons and acoustic phonon modes, the so-called gauge-field and deformation potential, are calculated at the DFT level in the framework of linear response. The zero-momentum limit of acoustic phonons is interpreted as a strain of the crystal unit cell, allowing the calculation of the acoustic gauge-field parameter (synthetic vector potential) within the GW approximation as well. We find that using an accurate model for the polarizations of the acoustic phonon modes is crucial to obtain correct numerical results. Similarly, in the presence of a strain deformation, the relaxation of atomic internal coordinates cannot be neglected. The role of electronic screening on the electron-phonon matrix elements is carefully investigated. We then solve the Boltzmann equation semianalytically in graphene, including both acoustic and optical phonon scattering. We show that, in the Bloch-Grüneisen and equipartition regimes, the electronic transport is mainly ruled by the unscreened acoustic gauge field, while the contribution due to the deformation potential is negligible and strongly screened. We show that the contribution of acoustic phonons to resistivity is doping and substrate independent, in agreement with experimental observations. The first-principles calculations, even at the GW level, underestimate this contribution to resistivity by ≈30%. At high temperature (T >270 K), the calculated resistivity underestimates the experimental one more severely, the underestimation being larger at lower doping. We show that, besides remote phonon scattering, a possible explanation for this disagreement is the electron-electron interaction

  19. Application of the renormalization-group method to the reduction of transport equations

    International Nuclear Information System (INIS)

    We first give a comprehensive review of the renormalization-group method for global and asymptotic analysis, putting an emphasis on the relevance to the classical theory of envelopes and on the importance of the existence of invariant manifolds of the dynamics under consideration. We clarify that an essential point of the method is to convert the problem from solving differential equations to obtaining suitable initial (or boundary) conditions: the RG equation determines the slow motion of the would-be integral constants in the unperturbative solution on the invariant manifold. The RG method is applied to derive the Navier-Stokes equation from the Boltzmann equation, as an example of the reduction of dynamics. We work out how to obtain the transport coefficients in terms of the one-body distribution function

  20. Immersed boundary-lattice Boltzmann method for simulation of muco-ciliary transport: effect of mucus depth at various amounts of cilia beat frequency

    Science.gov (United States)

    Shahmardan, M. M.; Sedaghat, M. H.; Norouzi, M.; Nazari, M.

    2015-12-01

    Numerical simulation based on immersed boundary-lattice Boltzmann method has been employed to study 2D muco-ciliary transport problem. The periciliary liquid (PCL) and mucus layers in this study are considered as the Newtonian and viscoelastic fluid respectively. An Oldroyd-B model is used as the constitutive equations of mucus layer. To simulate accurate effects of the cilia and PCL-mucus interface on the fluid, immersed boundary method is used. Numerical simulations have been performed to investigate the effects of mucus depth on the muco-ciliary clearance at various values of cilia beat frequencies. Our results show that, by increasing mucus depth, which results from air pollution and smoking, mean mucus velocity decreases. But it can be completely modified by increasing cilia beat frequency and the cilia beat frequency has great effect on the muco-ciliary clearance.

  1. Analysis of the insulation characteristics of c-C4F8 and N2 gas mixtures by Boltzmann equation method

    Science.gov (United States)

    Deng, Y. K.; Xiao, D. M.

    2012-02-01

    The present paper concerns itself with the insulation characteristics of c-C4F8/N2 gas mixtures and studies the possibility of applying in the gas insulation of power equipments. We aim to use the theoretical framework of the Boltzmann equation to calculate the density-normalized effective ionization coefficients (α-ƞ)/N and transport parameters of c-C4F8/N2 gas mixtures for E/N values from 180 to 550 Td (1 Td = 10-17 V cm2) in the condition of steady-state Townsend (SST) experiment. From the variation curve of (α-ƞ)/N with the c-C4F8 mixture ratio k, the limiting field strength (E/N)lim of the gas mixtures at different gas content is determined. In order to confirm the validity of the results obtained, comparisons with Monte Carlo simulation and experimental data have been performed. It is found that the insulation properties of c-C4F8 and N2 gas mixtures are much better than those of SF6 and N2 mixtures for applying in the high voltage apparatus as an insulation medium, especially if we take the global warming potential into account.

  2. Boundary value problem for the linearized Boltzmann equation in a weakly ionized plasma

    International Nuclear Information System (INIS)

    A simulated problem for transport of charged particles in a neutral gas and weakly ionized plasma is considered. Boundary value problem for the model is formulated and its estimation by a given boundary function is performed. Galerkin method is applied for obtaining an approximate solution of the problem. (author)

  3. Pdf - Transport equations for chemically reacting flows

    Science.gov (United States)

    Kollmann, W.

    1989-01-01

    The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.

  4. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    Science.gov (United States)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  5. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    International Nuclear Information System (INIS)

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10−17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process. (low temperature plasma)

  6. Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

    Science.gov (United States)

    Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred

    2016-03-01

    Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.

  7. Uniqueness in the weakly inelastic regime of the equilibrium state of the inelastic Boltzmann equation driven by a particle bath

    CERN Document Server

    Bisi, Marzia; Lods, Bertrand

    2011-01-01

    We consider the spatially homogeneous Boltzmann equation for inelastic hard-spheres (with constant restitution coefficient $\\alpha \\in (0,1)$) under the thermalization induced by a host medium with a fixed Maxwellian distribution. We prove uniqueness of the stationary solution (with given mass) in the weakly inelastic regime; i.e., for any inelasticity parameter $\\alpha \\in (\\alpha_0,1)$, with some constructive $\\alpha_0 \\in [0, 1)$. Our analysis is based on a perturbative argument which uses the knowledge of the stationary solution in the elastic limit and quantitative estimates of the convergence of stationary solutions as the inelasticity parameter goes to 1. In order to achieve this we give an accurate spectral analysis of the associated linearized collision operator in the elastic limit. Several qualitative properties of this unique steady state $F_\\alpha$ are also derived; in particular, we prove that $F_\\alpha$ is bounded from above and from below by two explicit universal (i.e. independent of $\\alpha$...

  8. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  9. Solving the equation of neutron transport

    International Nuclear Information System (INIS)

    This work is devoted to the study of some numerical methods of resolution of the problem of transport of the neutrons. We started by introducing the equation integro-differential transport of the neutrons. Then we applied the finite element method traditional for stationary and nonstationary linear problems in 2D. A great part is reserved for the presentation of the mixed numerical diagram and mixed hybrid with two types of uniform grids: triangular and rectangular. Thereafter we treated some numerical examples by implementations in Matlab in order to test the convergence of each method. To finish, we had results of simulation by the Monte Carlo method on a problem of two-dimensional transport with an aim of comparing them with the results resulting from the finite element method mixed hybrids. Some remarks and prospects conclude this work.

  10. Coupling of neutron transport equations. First results

    International Nuclear Information System (INIS)

    To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs

  11. Analytical numerical methods applied to linear discontinuous angular approximations of the transport equation in slab geometry

    International Nuclear Information System (INIS)

    In this paper we describe two analytical numerical methods applied to one-speed slab-geometry deep penetration transport problems. The linear discontinuous (LDN) equations are used to approximate the monoenergetic Boltzmann equation in slab geometry; they are obtained by considering a linear expansion of the angular flux inside each of the N elements of a uniform angular grid. The two analytical numerical methods are referred to as the spectral Green's function (SGF) nodal method and the Laplace transform (LTLDN) method. The SGF nodal method and the LTLDN method generate numerical solutions to the LDN equations that are completely free of spatial approximations, apart from finite arithmetic considerations. Numerical results to typical model problems and suggestions for future work are also presented. (orig.)

  12. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

    International Nuclear Information System (INIS)

    The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author)

  13. The Poisson-Boltzmann equation for aqueous solutions of stong polyelectrolytes without added salt: The cell model revisited

    International Nuclear Information System (INIS)

    An extensive discussion of the analytical solution for the Poisson-Boltzmann equation in cylindrical symmetry for strong polyelectrolytes in the cell model is presented. The reduced mean electrostatic potential μ at finite dilutions is discussed in terms of its dependence on the polyelectrolyte equivalent concentration Ce, its charge density parameter ξ, and the distance of closest approach a of the counterions to the polyion. It is shown that in the limit a → 0 counterion condensation is expected. For more realistic nonzero values of a, the reduced potential μ at a given relative position r/R in the cell with radius R is practically independent of the linear charge density for ξ > 2, but its value depends on the product a2Ce. The value μ(a) of the reduced potential near the surface of the polyion is ξ-dependent, however, under the same conditions. A large fraction of all the counterions in the cell accumulate, on the average, in the neighborhood of the polyion, this fraction being larger the higher ξ is and the lower the product a2Ce is. The fraction of ions accumulated between the polyion surface at a and a distance from the polyion axis equal to the screening length 1/χ is high, reaching values exceeding 80% and being higher the smaller a2Ce is. This fraction of counterions (the open-quotes associatedclose quotes counterions) occupies a smaller part of the total cell volume than the counterions situated between 1/χ and R, which are characterized by a relatively low electrostatic interaction energy with the polyion, μ < 1 (the open-quotes freeclose quotescounterions). 22 refs., 11 figs

  14. On the equivalence of discontinuous finite element methods and discrete ordinates methods for the angular discretization of the linearized Boltzmann equation in slab geometry

    International Nuclear Information System (INIS)

    We describe the equivalence of discontinuous finite element methods and discrete ordinates methods for the angular discretization of the Boltzmann equation in slab geometry. We use the spectral Green's function (SGF) numerical method to solve the discrete ordinates equations on a digital computer. The SGF method is completely free from spatial truncation errors; therefore, we use the 'exact' solution generated by the SGF method to reconstruct the flux profile inside each node of the spatial grid. This scheme is referred to as the domain decomposition reconstruction scheme. Numerical results to three typical problems are presented. (author)

  15. Reduction of the nonlinear Boltzmann equation with electron-electron interaction to a Fokker-Planck equation and its steady-state solution for doped silicon

    International Nuclear Information System (INIS)

    The non-linear Boltzmann equation for free electrons in doped silicon in the presence of an electric field when also the electron-electron interactions are taken into account is reduced to a nonlinear Fokker-Planck equation that is solved by a strongly convergent iterative procedure starting from the linearized solution. In steady-state conditions an explicit solution for the electron distribution function f0(v) is given which is of a Chapman-Cowling-Davydov type. By means of the found f0(v) and a convenient extrapolation (beyond its validity range) of the Brooks-Herring cross-section for the impurity ions, the total collision frequency vm(v) for monumentum transfer in doped silicon is derived. In some v ranges, vm (v) ∝ 1/v which corresponds to the threshold of runaway conditions with consequent long time tails of the distribution function f0(v, t). Since f0(v) is the limit of f0(v, t) for t → ∞, reliable results for f0(v) obtained by the Monte Carlo method (which is the only one at present able to derive f0(v) when electron-electron interactions are not neglected) would demand 107 y of calculation. Limiting the Monte Carlo calculations to few months, the errors in f0(v) can be remarkable and are still appreciable in the calculations of the mobility μ and the transversal diffusion coefficient D (where the average over f0(v) reduces the errors that appear in f0(v) in narrow v ranges). Applications to μ and D are made using our explicit solutions for f0(v) and vm(v)

  16. Boltzmann equation for fluctuation Cooper pairs in Lawrence-Doniach model. Possible out-of-plane negative differential conductivity

    OpenAIRE

    Mishonov, Todor M.; Maneva, Yana G.

    2006-01-01

    The differential conductivity for the out-of-plane transport in layered cuprates is calculated for Lawrence-Doniach model in the framework of time-dependent Ginzburg-Landau (TDGL) theory. The TDGL equation for the superconducting order parameter is solved in the presence of Langevin external noise, describing the birth of fluctuation Cooper pairs. The TDGL correlator of the superconducting order parameter is calculated in momentum representation and it is shown that the so defined number of p...

  17. Maximal stochastic transport in the Lorenz equations

    Science.gov (United States)

    Agarwal, Sahil; Wettlaufer, J. S.

    2016-01-01

    We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Bénard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

  18. Global existence for some transport equations with nonlocal velocity

    OpenAIRE

    Bae, Hantaek; Granero-Belinchón, Rafael

    2014-01-01

    In this paper, we study transport equations with nonlocal velocity fields with rough initial data. We address the global existence of weak solutions of an one dimensional model of the surface quasi-geostrophic equation and the incompressible porous media equation, and one dimensional and $n$ dimensional models of the dissipative quasi-geostrophic equations and the dissipative incompressible porous media equation.

  19. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  20. Spatially adaptive hp refinement approach for PN neutron transport equation using spectral element method

    International Nuclear Information System (INIS)

    Highlights: • Powerful hp-SEM refinement approach for PN neutron transport equation has been presented. • The method provides great geometrical flexibility and lower computational cost. • There is a capability of using arbitrary high order and non uniform meshes. • Both posteriori and priori local error estimation approaches have been employed. • High accurate results are compared against other common adaptive and uniform grids. - Abstract: In this work we presented the adaptive hp-SEM approach which is obtained from the incorporation of Spectral Element Method (SEM) and adaptive hp refinement. The SEM nodal discretization and hp adaptive grid-refinement for even-parity Boltzmann neutron transport equation creates powerful grid refinement approach with high accuracy solutions. In this regard a computer code has been developed to solve multi-group neutron transport equation in one-dimensional geometry using even-parity transport theory. The spatial dependence of flux has been developed via SEM method with Lobatto orthogonal polynomial. Two commonly error estimation approaches, the posteriori and the priori has been implemented. The incorporation of SEM nodal discretization method and adaptive hp grid refinement leads to high accurate solutions. Coarser meshes efficiency and significant reduction of computer program runtime in comparison with other common refining methods and uniform meshing approaches is tested along several well-known transport benchmarks

  1. Numerical solution of the radionuclide transport equation

    International Nuclear Information System (INIS)

    A numerical solution of the one-dimensional geospheric radionuclide chain transport equation based on the pseudospectral method is developed. The advantages of this approach are flexibility in incorporating space and time dependent migration parameters, arbitrary boundary conditions and solute rock interactions as well as efficiency and reliability. As an application the authors investigate the impact of non-linear sorption isotherms on migration in crystalline rock. It is shown that non-linear sorption, in the present case a Freundlich isotherm, may reduce concentration at the geosphere outlet by orders of magnitude provided the migration time is comparable or larger than the half-life of the nuclide in question. The importance of fixing dispersivity within the continuum approach is stressed. (Auth.)

  2. A Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution

    CERN Document Server

    Cao, Shanshan; Qin, Guang-You; Wang, Xin-Nian

    2016-01-01

    A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $\\sqrt{s_\\mathrm{NN}}$=5.02 TeV is provided.

  3. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received 192Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm3 muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm3 bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o’clock, and D2cm3 to the bladder, rectum, and sigmoid. Results: Points A and B, D2 cm3 bladder, ICRU bladder, and three and nine o’clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D2cm3 rectum (n = 3), D2cm3 sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden. Conclusions: The GBBS has minimal impact on clinical

  4. Problems of interaction of a supersonic gas mixture with a wall solved by the projection method applied to the full Boltzmann equation

    CERN Document Server

    Raines, Alla

    2015-01-01

    Numerical solution of non-steady problems of supersonic inflow of a binary mixture of a rarefied gas on a normally posed wall with mirror and diffuse reflection laws is obtained on the basis of the kinetic Boltzmann equation for the model of hard sphere molecules. For calculation of collision integrals we apply the projection method, developed by Tcheremissine for a one-component gas and generalized by the author for a binary gas mixture in the case of cylindrical symmetry. We demonstrate a good qualitative agreement of our results with other authors for one-component gases.

  5. Collisionless self-gravitating systems in f(R)-gravity within Palatini approach and relativistic Boltzmann equation in the Newtonian approach

    CERN Document Server

    André, Raíla

    2014-01-01

    In this work we analyze the dynamics of collisionless self-gravitating systems described by the f(R)-gravity and Boltzmann equation in the weak field approximation, focusing on the Jeans instability for theses systems. The field equations in this approximation were obtained within the Palatini formalism. Through the solution of coupled equations we achieved the collapse criterion for infinite homogeneous fluid and stellar systems, which is given by a dispersion relation. This result is compared with the results of the standard case and the case for f(R)-gravity in metric formalism, in order to see the difference among them. The limit of instability varies according to which theory of gravity is adopted.

  6. Numerical Study of Charge Transport of Overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$ within Semiclassical Boltzmann Transport Theory

    OpenAIRE

    Buhmann, Jonathan M.; Ossadnik, Matthias; Rice, T. M.; Sigrist, Manfred

    2012-01-01

    The in-plane resistivity of the high-temperature oxide superconductor La$_{2-x}$Sr$_{x}$CuO$_{4}$ [LSCO] shows a strong growth of a contribution linear in temperature as the doping is reduced in the overdoped region toward optimal. This linear term is a signature of non-Fermi liquid behavior. We find that the appearance of a linear term in the resistivity can arise in a semiclassical Boltzmann transport theory which uses renormalized quasiparticle scattering rates and an empirical band struct...

  7. Some results on the neutron transport and the coupling of equations

    International Nuclear Information System (INIS)

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author)

  8. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in $\\mathrm{AdS}_{2}\\otimes \\mathrm{S}_{2}$

    CERN Document Server

    Noronha, Jorge

    2015-01-01

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime $\\mathrm{AdS}_{2}\\otimes \\mathrm{S}_{2}$. We further derive explicit analytic expressions for the momentum dependence of the single particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The non-equilibrium contribution to the entropy density is shown to be due to higher order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic d...

  9. Ludwig Boltzmann: Atomic genius

    International Nuclear Information System (INIS)

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  10. A stochastic method of solution of the Parker transport equation

    CERN Document Server

    Wawrzynczak, A; Gil, A

    2015-01-01

    We present the stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Based on the solution of the Parker transport equation we developed models of the short-time variation of the GCR intensity, i.e. the Forbush decrease (Fd) and the 27-day variation of the GCR intensity. Parker transport equation being the Fokker-Planck type equation delineates non-stationary transport of charged particles in the turbulent medium. The presented approach of the numerical solution is grounded on solving of the set of equivalent stochastic differential equations (SDEs). We demonstrate the method of deriving from Parker transport equation the corresponding SDEs in the heliocentric spherical coordinate system for the backward approach. Features indicative the preeminence of the backward approach over the forward is stressed. We compare the outcomes of the stochastic model of the Fd and 27-day variation of the GCR intensity with our former models established by the finite difference method. Both ...

  11. A new DPN formulation of neutron transport equation

    International Nuclear Information System (INIS)

    Neutron transport equation where integration over variable μ was carried out in segment [0,1] instead of segment [-1,1] was formulated for anisotropic scattering function. A new system of DPN equations is obtained by applying flux expansion in double Legendre polynomial over variable μ. This procedure enables an approximate analytical solution of transport equation with high accuracy, even in low order approximation. (author). 6 refs., 2 tabs

  12. Solution to the transport equation for electron backscattering on massive materials

    International Nuclear Information System (INIS)

    The scattering of a monoenergetic electron beam (Albedo problem) vertical to the plane of the boundary layer of a massive material is treated as transportproblem using the Boltzmann Transport Equation (BTE). The strong anistropic to 1 standardized differential effective cross section (DEC) of the single scattering of the electrons enters into the integral term. A complete, orthogonal set of solution units of the BTE can be given by a new type of approximation of the DEC in a generalization of a solution method from CASE 1960. By continuously changing an anisotropy parameter, the region of strong anisotropic and isotropic single scattering is simultaneously determined, the case results are taken as special case. (orig./RW)

  13. Scattering theory of the linear Boltzmann operator

    International Nuclear Information System (INIS)

    In time dependent scattering theory we know three important examples: the wave equation around an obstacle, the Schroedinger and the Dirac equation with a scattering potential. In this paper another example from time dependent linear transport theory is added and considered in full detail. First the linear Boltzmann operator in certain Banach spaces is rigorously defined, and then the existence of the Moeller operators is proved by use of the theorem of Cook-Jauch-Kuroda, that is generalized to the case of a Banach space. (orig.)

  14. Advanced method of solution of neutron transport equation in nuclear reactor cell - 361

    International Nuclear Information System (INIS)

    Method of solution of neutron transport integral equation has been developed. It is aimed into calculation analysis of neutron flux in nuclear reactor cell with complicated geometry and different boundary conditions. On this stage of nuclear reactor calculation it is important to take into account special futures of neutron flux behavior included anisotropy scattering. Modern computational strategy requires the ability to accurately solution of Boltzmann transport equation in the shortest possible time. This approach is based on neutron flux expansion with orthogonal polynomial system in every uniform mesh of the cell. As result of this approximation the system of linear integral equation is reduced to algebraic system with coefficients that are the six-fold integrals over the cell area in general case. In this paper formulae for calculation of these values are given. The algorithm of computer code for neutron flux calculation is described. The results obtained with general version of collision probabilities method code are given. The advantage of above described approach has been demonstrated. (authors)

  15. Theory of contributon transport

    International Nuclear Information System (INIS)

    A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi+, where phi and phi+ are the solutions to the forward and adjoint Boltzmann transport equations

  16. Discontinuous Galerkin for the Radiative Transport Equation

    KAUST Repository

    Guermond, Jean-Luc

    2013-10-11

    This note presents some recent results regarding the approximation of the linear radiative transfer equation using discontinuous Galerkin methods. The locking effect occurring in the diffusion limit with the upwind numerical flux is investigated and a correction technique is proposed.

  17. Numerical solutions of the monoenergetic neutron transport equation with anisotropic scattering

    International Nuclear Information System (INIS)

    The Boltzmann equation for monoenergetic neutrons has been solved numerically with high accuracy for homogeneous slabs and spheres with various degree of linear anisotropy. Vacuum boundary conditions are used. The numerical method is based on previous work by Carlvik. Benchmark values of the criticality factor and higher order eigenvalues are given for multiplying systems of thickness or diameter from 10 -5 to 20 mean free paths and with anisotropy coefficients from 0.0 to 0.3. For slab geometry, both even and odd mode eigenvalues are treated. With increasing anisotropy, an increasing number of complex eigenvalues is observer. The total flux is calculated from the eigenvector and tables of the fundamental mode flux are given. Accurate extrapolation distances are derived for various dimensions and anisotropy coefficients from our eigenvalue results on slabs and spheres and from the work by Sanchez on infinite cylinders.The time eigenvalue spectrum in subcritical systems has also been studied. First, the connection between the eigenvalues arising from the time dependent and stationary transport equation is established. Based on this, the spectrum of real time eigenvalues in slabs and spheres is calculated. For spheres, the existence of complex time eigenvalues in the region beyond the value corresponding to the Corngold limit is numerically established. The presence of such eigenvalues has earlier not been proved. It is further shown that the Boltzmann equation for a sphere is significantly simplified when the decay constant is at the Corngold limit. The spectrum of sphere diameters corresponding to this decay constant is calculated for various linear anisotropies, and detailed numerical results are given. (Author)

  18. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  19. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    International Nuclear Information System (INIS)

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation

  20. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [ITER Organization, route de Vinon-sur-Verdon, 13067 St. Paul lez Durance Cedex (France); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium)

    2016-01-15

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.

  1. Development of interfacial area transport equation - modeling and experimental benchmark

    International Nuclear Information System (INIS)

    A dynamic treatment of interfacial area concentration has been studied over the last decade by employing the interfacial area transport equation. When coupled with the two-fluid model, the interfacial area transport equation replaces the flow regime dependent correlations for interfacial area concentration and eliminates potential artificial bifurcation or numerical oscillations stemming from these static correlations. An extensive database has been established to evaluate the model under various two-phase flow conditions. These include adiabatic and heated conditions, vertical and horizontal flow orientations, round, rectangular, annulus and 8×8 rod bundle channel geometries, and normal-gravity and simulated reduced-gravity conditions. This paper reviews the current state-of-the-art in the development of the interfacial area transport equation, available experimental databases and 1D and 3D benchmarking work of the interfacial area transport equation. (author)

  2. UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 闫伟

    2003-01-01

    In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.

  3. Transport and fluctuations in granular fluids from Boltzmann equation to hydrodynamics, diffusion and motor effects

    CERN Document Server

    Puglisi, Andrea

    2015-01-01

    This brief offers a concise presentation of granular fluids from the  point of view of non-equilibrium statistical physics. The emphasis is on fluctuations, which can be large in granular fluids due to the small system size (the number of grains is many orders of magnitude smaller than in molecular fluids). Firstly, readers will be introduced to the most intriguing experiments on fluidized granular fluids. Then granular fluid theory, which goes through increasing levels of coarse-graining and emerging collective phenomena, is described. Problems and questions are initially posed at the level of kinetic theory, which describes particle densities in full or reduced phase-space. Some answers become clear through hydrodynamics, which describes the evolution of slowly evolving fields. Granular fluctuating hydrodynamics, which builds a bridge to the most recent results in non-equilibrium statistical mechanics, is also introduced. Further and more interesting answers come when the dynamics of a massive intruder are...

  4. STABILITY OF P2 METHODS FOR NEUTRON TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    袁光伟; 沈智军; 沈隆钧; 周毓麟

    2002-01-01

    In this paper the P2 approximation to the one-group planar neutron transport theory is discussed. The stability of the solutions for P2 equations with general boundary conditions, including the Marshak boundary condition, is proved. Moreover,the stability of the up-wind difference scheme for the P2 equation is demonstrated.

  5. Unconditionally stable diffusion-acceleration of the transport equation

    International Nuclear Information System (INIS)

    The standard iterative procedure for solving fixed-source discrete-ordinates problems converges very slowly for problems in optically large regions with scattering ratios c near unity. The diffusion-synthetic acceleration method has been proposed to make use of the fact that for this class of problems the diffusion equation is often an accurate approximation to the transport equation. However, stability difficulties have historically hampered the implementation of this method for general transport differencing schemes. In this article we discuss a recently developed procedure for obtaining unconditionally stable diffusion-synthetic acceleration methods for various transport differencing schemes. We motivate the analysis by first discussing the exact transport equation; then we illustrate the procedure by deriving a new stable acceleration method for the linear discontinuous transport differencing scheme. We also provide some numerical results

  6. New transport equation taking account of the momentum conservation law

    International Nuclear Information System (INIS)

    We investigate transport theory for anisotropic transport of neutrons in finite medium or injected externally. When anisotropic transport is treated by the usual transport equation, on which reversibility of collisions is shown imposed, successive collisions always induce 'self-collision' or sham collision; the fact is unavoidable as long as statistical ensemble is constructed from the reductionistic mechanical-systems. Then, irreductionistic elements, or spatial cells containing assembly of free neutrons (and implicit medium nuclei) uniformly are introduced, from which alternative Liouville equation is constructed. Successive collisions are expressed by fusing three cells; for reviving mechanical law in the collisions the law of action and reaction is applied to between first fused-cell and third cell. Extended transport equation can thus describe the process of chaotically mixing anisotropic momentum, i.e., the well-known deep penetration. (author)

  7. Solution of the Boltzmann and Rate Equations for the Electron Distribution Function and State Populations in Non-Equilibrium MHD Plasmas

    International Nuclear Information System (INIS)

    Many calculations of the electrical conductivity of non-equilibrium MHD plasmas have been based on a simple two-temperature theory. This theory assumes that (a) the electron number density has the equilibrium (Saha) value corresponding to the electron temperature Te , and (b) the free electron energy distribution function f(u) is Maxwellian. The validity of assumption (a) has been studied by several authors who, however, used assumption (b) in their analyses. Assumption (b) has been less thoroughly studied. Because both excitation and ionization rates are sensitive to f(u) and bound states may be out of equilibrium due to radiative transitions, it is unrealistic to treat these two assumptions separately. This paper reports preliminary results of an investigation undertaken to establish the range of validity of the two-temperature theory for MHD plasmas by solving the Boltzmann equation for f(u) and the steady-state rate equations for the bound electronic states. The problem was attacked in three stages. First, f(u) was calculated from a Boltzmann equation including only the electric field and the elastic collision terms. The results showed that for typical MHD systems (e.g., Ar + K at 1 atm) .electron-electron collisions drive f(u) to Maxwellian. Second, the solution of the rate equations for a Maxwellian f(u), using a five-level caesium atomic model, demonstrated the importance of radiative transitions in determining the bound-state populations and magnitudes of the inelastic collision terms. The model atom consisted of four discrete states (6S; 6P,P'; 5D, D'; 7S) and a lumped state, to which were assigned various binding energies and degeneracies. Criteria for selecting the latter were based on the maximum stable orbit radius that would be likely for the plasmas of interest. Both the classical Bohr-Thomson and Gryzinski cross-sections were used to calculate the rate coefficients and collision terms for excitation, de-excitation, ionization, and three-body capture

  8. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  9. PALLAS-2DCY-FX: a code for direct integration of transport equation in two-dimensional (R, Z) geometry

    International Nuclear Information System (INIS)

    The PALLAS-2DCY-FX program is the revised version of the PALLAS-2DCY code, which was designed in 1973 and revised in 1980, based on a method of direct integration of the Boltzmann transport equation to describe the radiation transport in (r,z) two-dimensional geometry. It has been developed for shielding problems involving the transport of neutrons and photons. A special feature of the present code is inclusion of the routine for analytical calculation of uncollided flux for accurate calculation of duct and void streaming or skyshine. The document gives a full description of input and output data, as well as code implementation information and a description of several demonstration problems. (author)

  10. Ion transport in porous media: derivation of the macroscopic equations using up-scaling and properties of the effective coefficients

    International Nuclear Information System (INIS)

    In this work, we undertake a numerical study of the effective coefficients arising in the up-scaling of a system of partial differential equations describing transport of a dilute N-component electrolyte in a Newtonian solvent through a rigid porous medium. The motion is governed by a small static electric field and a small hydrodynamic force, around a nonlinear Poisson-Boltzmann equilibrium with given surface charges of arbitrary size. This approach allows us to calculate the linear response regime in a way initially proposed by O'Brien. The O'Brien linearization requires a fast and accurate solution of the underlying Poisson-Boltzmann equation. We present an analysis of it, with the discussion of the boundary layer appearing as the Debye-Huckel parameter becomes large. Next, we briefly discuss the corresponding two-scale asymptotic expansion and reduce the obtained two-scale equations to a coarse scale model. Our previous rigorous study proves that the homogenized coefficients satisfy Onsager properties, namely they are symmetric positive definite tensors. We illustrate with numerical simulations several characteristic situations and discuss the behavior of the effective coefficients when the Debye-Huckel parameter is large. Simulated qualitative behavior differs significantly from the situation when the surface potential is given (instead of the surface charges). In particular, we observe the Donnan effect (exclusion of co-ions for small pores). (authors)

  11. Polarised photon and flavoured lepton quantum Boltzmann equations in the early universe; Polarisierte Photon- und geflavourte Lepton-Quantenboltzmanngleichungen im fruehen Universum

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian

    2011-12-16

    Polarisation and Nongaussianity are expected to play a central role in future studies of the cosmic microwave background radiation. Polarisation can be split into a divergence-like E-mode and a curl-like B-mode, of which the later can only be induced by primordial gravitational waves (tensor fluctuations of the metric) at leading order. Nongaussianity is not generated at first order and is directly proportional to the primordial Nongaussianity of inflation. Thus B-mode polarisation and Nongaussianity constrain inflation models directly. While E-mode polarisation has already been detected and is being observed with increasing precision, B-mode polarisation and Nongaussianity remains elusive. The absence of B-mode polarisation when the primordial fluctuations are purely scalar holds, however, only in linear perturbation theory. B-mode polarisation is also generated from scalar sources in second order, which may constitute an important background to the search for primordial gravitational waves. While such an effect would naturally be expected to be relevant at tensor-to-scalar ratios of order 10{sup -5}, which is the size of perturbations in the microwave background, only a full second order calculation can tell whether there are no enhancements. For Nongaussianity the situation is analogous: At second order intrinsic Nongaussianities are induced to the spectrum, which may be an important background to the primordial Nongaussianity. After the full second-order Boltzmann equations for the cosmological evolution of the polarised radiation distribution have become available, I focused on the novel sources to B-mode polarisation that appear in the second-order collision term, which have not been calculated before. In my PHD thesis I developed a numerical code, which solves the second order Boltzmann hierarchy and calculates the C{sub l}{sup BB}-spectrum.

  12. A ''transport'' condensed history method

    International Nuclear Information System (INIS)

    In this paper we describe a new condensed history algorithm that is a transport process. That is, the proposed new method constitutes an exact Monte Carlo simulation of a ''stretched'' Boltzmann equation. This ''stretched'' equation permits a larger mean free path - which is user-specified - and a larger scattering angle than the physical transport equation. (orig.)

  13. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  14. Femtosecond laser irradiation induced-high electronic excitation in band gap materials: A quantum-kinetic model based on Boltzmann equation

    International Nuclear Information System (INIS)

    A quantum kinetic approach based on the Boltzmann equation is employed to describe the response of dielectric and semiconductor materials to high electronic excitation induced by laser irradiation. The formalism describes from the initial photo-ionization inter-band processes through free carrier absorption inducing additional impact ionization to the final heat up by electron–phonon coupling. Swift thermalization through electron–electron scattering, Auger recombination and formation of free excitons, their self-trapping and subsequent non-radiative decay are included. The energy exchange between the electrons and phonons are given by a separate equation for the lattice temperature where the rates of energy transfer from the electrons to the lattice per unit volume are defined quantum mechanically. As a result of our calculations the electron energy distribution function, average kinetic energy of the electron system and electron density are obtained as a function of laser intensity, laser photon energy (wavelength) and laser pulse duration. Examples of application in fs-laser irradiated-silica are discussed

  15. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  16. Magnetohydrodynamic transport equations for high current propagation in overdense plasmas

    Science.gov (United States)

    Zha, Xuejun; Wang, Yan; Han, Shensheng

    2008-10-01

    In this paper, it is presented that the full set of magnetohydrodynamic (MHD) equations which may be used to study the transport mechanism for the high current relativistic electron beams (current intensity 100˜1000 MA, electron energy ˜ MeV) by the laser in background overdense plasma (1022-1026cm). The transport of intense relativistic electron beams (REB) has two basic characteristics: the first is that the forward current is a giga-ampere and the forward current density is about 10 14 A/cm 2 which exceeds the Alfven current limit [M. Tabak et al., Phys. Plasmas 12, 057305 (2005)]; the second is the propagation of the intense forward current in the presence of a background overdense plasma which may have very strong MHD instability. The transport problem can be solved by MHD equations that describe the dynamic, self consistent collisional and electromagnetic interaction of REB with overdense hydrogenic plasmas or arbitrary atomic-number plasmas. The full set of equations consists of the REB transport equations which are coupled to Maxwell's equations through the electromagnetic-field terms and two-fluid plasma dynamical equations for the background overdense plasma through the collision term.

  17. Finite Element Solution of the Self-Adjoint Angular Flux Equation for Coupled Electron-Photon Transport

    International Nuclear Information System (INIS)

    A novel approach is proposed for charged particle transport calculations using a recently developed second-order, self-adjoint angular flux (SAAF) form of the Boltzmann transport equation with continuous slowing-down. A finite element discretization that is linear continuous in space and linear discontinuous (LD) in energy is described and implemented in a one-dimensional, planar geometry, multigroup, discrete ordinates code for charged particle transport. The cross-section generating code CEPXS is used to generate the electron and photon transport cross sections employed in this code. The discrete ordinates SAAF transport equation is solved using source iteration in conjunction with an inner iteration acceleration scheme and an outer iteration acceleration scheme. Outer iterations are required with the LD energy discretization scheme because the two angular flux unknowns within each group are coupled, which gives rise to effective upscattering. The inner iteration convergence is accelerated using diffusion synthetic acceleration, and the outer iteration convergence is accelerated using a diamond difference approximation to the LD energy discretization. Computational results are given that demonstrate the effectiveness of our convergence acceleration schemes and the accuracy of our discretized SAAF equation

  18. Role of non-ideality for the ion transport in porous media: Derivation of the macroscopic equations using upscaling

    Science.gov (United States)

    Allaire, Grégoire; Brizzi, Robert; Dufrêche, Jean-François; Mikelić, Andro; Piatnitski, Andrey

    2014-07-01

    This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the mean spherical approximation (MSA) model which takes into account finite size ions and screening effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant of the Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this nonlinear equation has no monotone structure. However, based on invariant region estimates for the Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove existence of at least one solution. To our knowledge this existence result is new at this level of generality. When the motion is governed by a small static electric field and a small hydrodynamic force, we generalize O'Brien's argument to deduce a linearized model. Our second main result is the rigorous homogenization of these linearized equations and the proof that the effective tensor satisfies Onsager properties, namely is symmetric positive definite. We eventually make numerical comparisons with the ideal case. Our numerical results show that the MSA model confirms qualitatively the conclusions obtained using the ideal model but there are quantitative differences arising that can be important at high charge or high concentrations.

  19. Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics

    OpenAIRE

    Ahmad, Mushfiq; Talukder, Muhammad O. G.

    2007-01-01

    The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.

  20. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Dept. and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Dept., Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)

    2014-11-15

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study.

  1. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul [Institut de Physique Théorique, CNRS/URA 2306, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China)

    2013-12-20

    In this paper, we study the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. In the present study we ignore the effect of the longitudinal expansion, i.e., we restrict ourselves to spatially uniform systems, with spherically symmetric momentum distributions. Furthermore we take into account only elastic scattering, i.e., we neglect inelastic, number changing, processes. We solve the transport equation for various initial conditions that correspond to small or large initial gluon phase-space densities. For a small initial phase-space density, the system evolves towards thermal equilibrium, as expected. For a large enough initial phase-space density the equilibrium state contains a Bose condensate. We present numerical evidence that such over-populated systems reach the onset of Bose–Einstein condensation in a finite time. The approach to condensation is characterized by a scaling behavior that we briefly analyze.

  2. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    To understand the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions, is an important and challenging problem. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. The role of Bose statistical factors in amplifying the rapid growth of the population of the soft modes is essential. With these factors properly taken into account, one finds that elastic scattering alone provides an efficient mechanism for populating soft modes, and in fact leads to rapid infrared local thermalization. Furthermore, recent developments suggest that high initial overpopulation plays a key role and may lead to dynamical Bose–Einstein condensation. The kinetics of condensation is an interesting problem in itself. By solving the transport equation for initial conditions with a large enough initial phase-space density the equilibrium state contains a Bose condensate, and we present numerical evidence that such over-occupied systems reach the onset of Bose–Einstein condensation in a finite time. It is also found that the approach to condensation is characterized by a scaling behavior. Finally we discuss a number of extensions of the present study

  3. Gluon transport equation in the small angle approximation and the onset of Bose–Einstein condensation

    International Nuclear Information System (INIS)

    In this paper, we study the evolution of a dense system of gluons, such as those produced in the early stages of ultra-relativistic heavy ion collisions. We describe the approach to thermal equilibrium using the small angle approximation for gluon scattering in a Boltzmann equation that includes the effects of Bose statistics. In the present study we ignore the effect of the longitudinal expansion, i.e., we restrict ourselves to spatially uniform systems, with spherically symmetric momentum distributions. Furthermore we take into account only elastic scattering, i.e., we neglect inelastic, number changing, processes. We solve the transport equation for various initial conditions that correspond to small or large initial gluon phase-space densities. For a small initial phase-space density, the system evolves towards thermal equilibrium, as expected. For a large enough initial phase-space density the equilibrium state contains a Bose condensate. We present numerical evidence that such over-populated systems reach the onset of Bose–Einstein condensation in a finite time. The approach to condensation is characterized by a scaling behavior that we briefly analyze

  4. A rain splash transport equation assimilating field and laboratory measurements

    Science.gov (United States)

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  5. Coupling of discrete ordinates methods by transmission of boundary conditions in solving the neutron transport equation in slab geometry

    International Nuclear Information System (INIS)

    Neutron transport in nuclear reactors is quite well modelled by the linear Boltzmann transport equation. Its solution is relatively easy, but unfortunately too expensive to achieve whole core computations. Thus, we have to simplify it, for example by homogenizing some physical characteristics. However, the solution may then be inaccurate. Moreover, in strongly homogeneous areas, the error may be too big. Then we would like to deal with such an inconvenient by solving the equation accurately on this area, but more coarsely away from it, so that the computation is not too expensive. This problem is the subject of a thesis. We present here some results obtained for slab geometry. The couplings between the fine and coarse discretization regions could be conceived in a number of approaches. Here, we only deal with the coupling at crossing the interface between two sub-domains. In the first section, we present the coupling of discrete ordinate methods for solving the homogeneous, isotropic and mono-kinetic equation. Coupling operators are defined and shown to be optimal. The second and the third sections are devoted to an extension of the previous results when the equation is non-homogeneous, anisotropic and multigroup (under some restrictive assumptions). Some numerical results are given in the case of isotropic and mono-kinetic equations. (author)

  6. The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis

    Institute of Scientific and Technical Information of China (English)

    Deng Yun-Kun; Xiao Deng-Ming

    2013-01-01

    The electron swarm parameters including the density-normalized effective ionization coefficients (α-η)/N and the electron drift velocities Ve are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td (1 Td =10-17 V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of (α-η)/N with the CF3I mixture ratio k,the limiting field strength (E/N)lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of (E/N)lim are essentially the same as that for pure SF6.Additionally,the global warming potential (GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.

  7. The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis

    Science.gov (United States)

    Deng, Yun-Kun; Xiao, Deng-Ming

    2013-03-01

    The electron swarm parameters including the density-normalized effective ionization coefficients (α-η)/N and the electron drift velocities Ve are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment. The overall density-reduced electric field strength is from 100 Td to 1000 Td (1 Td = 10-17 V·cm2), while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%. From the variation of (α-η)/N with the CF3I mixture ratio k, the limiting field strength (E/N)lim for each CF3I concentration is derived. It is found that for the mixtures with 70% CF3I, the values of (E/N)lim are essentially the same as that for pure SF6. Additionally, the global warming potential (GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.

  8. Analysis of the insulation characteristics of CF3I gas mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann equation method

    Science.gov (United States)

    Deng, Yunkun; Xiao, Dengming

    2014-09-01

    The present study is devoted to the calculation of electron swarm parameters, including the reduced effective ionization coefficient, electron mean energy, and electron drift velocity, for the gas mixtures of CF3I with Ar, Xe, He, N2, and CO2. These data are computed by employing the Boltzmann equation method with two-term approximation in the condition of steady-state Townsend (SST) discharge. For the purpose of evaluating the insulation strength of CF3I gas mixtures, values of the limiting field strength (E/N)lim for which the ionization exactly balances the electron attachment are determined from the variation curves of (α - η)/N. The results indicate that mixtures of CF3I-N2 present the greatest insulation strength among all the combinations for CF3I content varied from 20 to 90%. Furthermore, the gas mixture with 70% CF3I can achieve a very similar dielectric strength to that of SF6. The concerned liquefaction issues are also taken into account to fully assess the possibility of applying CF3I gas mixtures in power equipment as an insulation medium.

  9. Electron attachment coefficient in low E/N regions and a discussion of discharge-instability in KrF laser. ; Analysis by logarithm transformed Boltzmann equation. Tei E/N ryoiki no denshi fuchaku keisu to KrF laser reiki hoden no fuanteisei ni kansuru ichi kosatsu. ; Tai su henkan Boltzmann hoteishiki ni yoru kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Urabe, J.; Yukimura, K. (Doshisha Univ., Kyoto (Japan))

    1991-03-20

    In a discharge excitation rare gas halide excima laser, uniform generation and stable maintenance of the excited discharge determines the laser characteristics. In this report, an approximate solution was obtained on the Boltzmann equation (frequently used for the theoretical analysis of this laser) to examine the nature of the solution. By optimizing the conversion of the variables, calculation of an electron swarm parameter in the hitherto uncertain range of the low conversion electric field was made possible, giving a generation mechanism of the uncertainty of the excited dischareg. The results are summarized as below. (1) The Boltzmann equation gives a linear solution for a logarithmic value of an electron energy in the range of low conversion electric field. (2) Time-wise responce ability between the measured voltage, current characteristics of the excitation discharge was clarified and the attachment and ionization coefficients calculated by Boltzmann equation. (3) Dependency of the attachment coefficient on the partial pressure of fluorine and kripton was examined, and the attachment coefficient was found to increase with the increase of the partial pressure for the both cases. 20 refs., 9 figs., 2 tabs.

  10. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  11. New developments in differencing the spherical geometry neutron transport equation

    International Nuclear Information System (INIS)

    Early differencing methods due to Carlson, Lathrop, and others have continued to be used to approximate the spherical geometry neutron transport equations. Nonphysical depressions in the scalar flux profiles continue to cause problems when these early techniques are used. Recent developments, however, provide better understanding of the behavior of these methods and have led to a simple approach to improve numerical solutions

  12. A vector field method for relativistic transport equations with applications

    CERN Document Server

    Fajman, David; Smulevici, Jacques

    2015-01-01

    We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless transport equations, without any compact support requirements (in $x$ or $v$) for the distribution functions. In the second part of this article, we apply our method to the study of the massive and massless Vlasov-Nordstr\\"om systems. In the massive case, we prove global existence and (almost) optimal decay estimates for solutions in dimensions $n \\geq 4$ under some smallness assumptions. In the massless case, the system decouples and we prove optimal decay estimates for the solutions in dimensions $n \\geq 4$ for arbitrarily large data, and in dimension $3$ under some smallness assumptions, exploiting a certain form of the null condition satisfied by the equations. The $3$-dimensional massive case requires an extension of our method and will be treated in future work.

  13. Renormalized equations for transport in random media with parametric noise

    International Nuclear Information System (INIS)

    Particle transport in rod geometry random media is considered. The cross section is assumed to be a continuous random function of position, with fluctuations about the mean taken as Gaussian distributed. An exact closure is constructed for semi-infinite media that yields exact equations for the ensemble averaged angular flux components (or scalar flux φ and current J). The same closure scheme yields a Fokker-Planck equation for the joint probability distribution function of φ and J, from which ensemble averaged equations for higher order quantities are derived. For a purely scattering semi-infinite medium, the Fokker-Planck equation is solved to get the interesting result that the flux and current are non-random quantities. It is argued that this observation is independent of the stochastic model for cross section fluctuations in the problem considered here

  14. A Nonlinera Krylov Accelerator for the Boltzmann k-Eigenvalue Problem

    CERN Document Server

    Calef, Matthew T; Warsa, James S; Berndt, Markus; Carlson, Neil N

    2011-01-01

    We compare variants of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and strengthen theoretical results of Anderson Mixing applied to linear problems.

  15. Transport coefficients for inelastic Maxwell mixtures

    OpenAIRE

    Garzo, Vicente; Astillero, Antonio

    2004-01-01

    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in $d$ dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transpor...

  16. Phase-space finite elements in a least-squares solution of the transport equation

    International Nuclear Information System (INIS)

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshing tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)

  17. DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS

    International Nuclear Information System (INIS)

    We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the Vlasov-Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly. The integration scheme is based on the positive flux conservation method recently developed in plasma physics. We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions. The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs efficiently on massively parallel supercomputers.

  18. Direct Integration of the Collisionless Boltzmann Equation in Six-dimensional Phase Space: Self-gravitating Systems

    CERN Document Server

    Yoshikawa, Kohji; Umemura, Masayuki

    2012-01-01

    We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the Vlasov--Poisson equations in six-dimensional phase space. By the results from a suite of large-scale numerical simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly. The integration scheme is based on the positive flux conservation method recently developed in plasma physics. We test the accuracy of our code by performing several test calculations including the stability of King spheres, the gravitational instability and the Landau damping. We show that the mass and the energy are accurately conserved for all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions. The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are run on 64^6 grids. The computation speed scales well with the number of processors, and thus our co...

  19. Bistable solutions for the electron energy distribution function in electron swarms in xenon: a comparison between the results of first-principles particle simulations and conventional Boltzmann equation analysis

    Science.gov (United States)

    Dyatko, Nikolay; Donkó, Zoltán

    2015-08-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This ‘bistability effect’—in which electron-electron (Coulomb) collisions play an essential role—is analyzed here for Xe with a Boltzmann equation approach and with a first principles particle simulation method. The solution of the Boltzmann equation adopts the usual approximations of (i) searching for the distribution function in the form of two terms (‘two-term approximation’), (ii) neglecting the Coulomb part of the collision integral for the anisotropic part of the distribution function, (iii) treating Coulomb collisions as binary events, and (iv) truncating the range of the electron-electron interaction beyond a characteristic distance. The particle-based simulation method avoids these approximations: the many-body interactions within the electron gas with a true (un-truncated) Coulomb potential are described by a molecular dynamics algorithm, while the collisions between electrons and the background gas atoms are treated with Monte Carlo simulation. We find a good general agreement between the results of the two techniques, which confirms, to a certain extent, the approximations used in the solution of the Boltzmann equation. The differences observed between the results are believed to originate from these approximations and from the presence of statistical noise in the particle simulations.

  20. Energy-transport models for spin transport in ferromagnetic semiconductors

    OpenAIRE

    Jüngel, Ansgar; Shpartko, Polina; Zamponi, Nicola

    2016-01-01

    Explicit energy-transport equations for the spinorial carrier transport in ferromagnetic semiconductors are calculated from a general spin energy-transport system that was derived by Ben Abdallah and El Hajj from a spinorial Boltzmann equation. The novelty of our approach are the simplifying assumptions leading to explicit models which extend both spin drift-diffusion and semiclassical energy-transport equations. The explicit models allow us to examine the interplay between the spin and charg...

  1. An anisotropic scattering treatment for the even parity transport equation

    International Nuclear Information System (INIS)

    This work introduces an extension of the even-odd parity flux formulation to the treatment of anisotropic scattering with the finite element formulation. To keep a similar form to the even parity transport equation in the isotropic case, we define a 'direction-dependent cross section'. We have only two unkown functions (the even parity flux, and the direction dependent cross section), that are calculated via an iterative process. We consider the multigroup equation for the eigenvalue problem and we present some numerical tests to prove the effectiveness of this method. (orig.)

  2. Solution of modified neutron transport equation in plane geometry

    International Nuclear Information System (INIS)

    Neutron transport equation was formulated for universal anisotropic scattering function with integration over variable μ carried out segment (0,1) instead of segment (-1,1). A modified system of DPN equations was derived and solved by applying flux expansion in double Legendre polynomials over variable μ. As an example, case of neutron isotropic scattering was treated in detail and Green functions for infinitive medium were computed. The application of the eighth order analytical approximation achieved the accuracy to the unit on the sixth significant digit in the whole range of parameter c, angle cosine μ and distances x up ten optical lengths from the neutron source. 13 refs., 5 tabs

  3. Non-linear transport equations: Properties deduced through transformation groups

    International Nuclear Information System (INIS)

    Transport equations in configuration space (linear and non-linear heat equations) and in phase space (Vlasov-Poisson systems for plasmas, beams and gravitating gases) are considered in the frame of transformation group techniques. Both self-similar and more general groups are introduced to find specially interesting solutions. Two kinds of results are obtained: time evolution of given initial situations and systematic derivation of possible scaling laws for a given mathematical model. These last results are specially interesting for extrapolating performances of Fusion Machines. (orig.)

  4. Pointwise Description for the Linearized Fokker-Planck-Boltzmann Model

    Science.gov (United States)

    Wu, Kung-Chien

    2015-09-01

    In this paper, we study the pointwise (in the space variable) behavior of the linearized Fokker-Planck-Boltzmann model for nonsmooth initial perturbations. The result reveals both the fluid and kinetic aspects of this model. The fluid-like waves are constructed as the long-wave expansion in the spectrum of the Fourier modes for the space variable, and it has polynomial time decay rate. We design a Picard-type iteration for constructing the increasingly regular kinetic-like waves, which are carried by the transport equations and have exponential time decay rate. The Mixture Lemma plays an important role in constructing the kinetic-like waves, this lemma was originally introduced by Liu-Yu (Commun Pure Appl Math 57:1543-1608, 2004) for Boltzmann equation, but the Fokker-Planck term in this paper creates some technical difficulties.

  5. Sn approach applied to the solution of transport equation

    International Nuclear Information System (INIS)

    In this work the origin of the Transport Theory is considered and the Transport Equation for the movement of the neutron in a system is established in its more general form, using the laws of nuclear physics. This equation is used as the starting point for development, under adequate assumptions, of simpler models that render the problem suitable for numerical solution. Representation of this model in different geometries is presented. The different processes of nuclear physics are introduced briefly and discussed. In addition, the boundary conditions for the different cases and a general procedure for the application of the Conservation Law are stated. The last chapter deals specifically with the Sn method, its development, definitions and generalities. Computational schemes for obtaining the Sn solution in spherical and cylindrical geometry, and convergence acceleration methods are also developed. (author)

  6. Fundamental solution of an integro-differential transport equation

    International Nuclear Information System (INIS)

    The problems connected with the construction of generalized functions of the fundamental solution of a stationary single-velocity integro-differential neutron transport equation on the basis of the integral transformation technique and its applications are analyzed. A number of concrete expressions for the fundamental solutions in the tree-dimensional (spherical coordinates) and two-dimensional (cylindrical coordinates) geometries are derived. The most of the formula are apparently published for the first time

  7. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    International Nuclear Information System (INIS)

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture

  8. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author)

  9. Extension to the integral transport equation of an iterative method

    Energy Technology Data Exchange (ETDEWEB)

    Jehouani, A. [EPRA, Department of Physics, Faculty of Sciences, Semlalia, PO Box 2390, 40000 Marrakech (Morocco)]. E-mail: jehouani@ucam.ac.ma; Elmorabiti, A. [Centre d' Etudes Nucleaires de Maamoura, CNESTEN (Morocco); Ghassoun, J. [EPRA, Department of Physics, Faculty of Sciences, Semlalia, PO Box 2390, 40000 Marrakech (Morocco)

    2006-09-15

    In this paper we describe an extension to the neutron integral transport equation of an iterative method. Indeed an iterative scheme is used for both energy and space including external iteration for the multiplication factor and internal iteration for flux calculations. The Monte Carlo method is used to evaluate the spatial transfer integrals. The results were compared with those obtained by using the APOLLO2 code for a cylindrical cell.

  10. Extension to the integral transport equation of an iterative method

    International Nuclear Information System (INIS)

    In this paper we describe an extension to the neutron integral transport equation of an iterative method. Indeed an iterative scheme is used for both energy and space including external iteration for the multiplication factor and internal iteration for flux calculations. The Monte Carlo method is used to evaluate the spatial transfer integrals. The results were compared with those obtained by using the APOLLO2 code for a cylindrical cell

  11. Moment transport equations and their application to the perturbed universe

    CERN Document Server

    Sierra, Carlos A

    2015-01-01

    There are many inflationary models that allow the formation of the large-scale structure of the observable universe. The non-gaussianity parameter $f_{NL}$ is a useful tool to discriminate among these cosmological models when comparing the theoretical predictions with the satellite survey results like those from WMAP and Planck. The goal of this proceeding contribution is to review the moment transport equations methodology and the subsequent calculation of the $f_{NL}$ parameter.

  12. Deterministic methods to solve the integral transport equation in neutronic

    International Nuclear Information System (INIS)

    We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

  13. Deterministic methods to solve the differential transport equation in neutronic

    International Nuclear Information System (INIS)

    We present a synthesis of the methods used to solve the integro-differential form of the transport equation. This form is used above all to achieve whole core calculations in 2 and 3D. First, we discretize the equation in energy and it leads us to an one group energy equation. For each of these groups, the scope of the calculation is so big that we have to calculate our solution on homogenized cells. On this homogenized medium, we describe different angular and spatial discretizations with acceleration methods. Finally we select some promising schemes to test: - SN Linear Nodal method with a Diffusion Synthetic Acceleration method; - Variational Nodal Method. These methods could be compared with more classical ones. To say, finite element or finite difference methods. (author). 65 refs., 3 annexes

  14. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  15. Relativistic Entropy and Related Boltzmann Kinetics

    CERN Document Server

    Kaniadakis, G

    2009-01-01

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmman equation, fix univocally the entropy of the system, which turn out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitely remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle, suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativ...

  16. Stochastic equations in the invariant imbedding formulation of particle transport

    International Nuclear Information System (INIS)

    Invariant imbedding theory is an alternative formulation of particle transport theory. Although stochastic foundations of invariant imbedding have been known from the beginnings, the method itself has so far exclusively been used for calculating first moments, i.e. expectations. The present paper attempts to set up a probability balance equation in the invariant imbedding approach from which equations for the first and second order densities are derived. It is shown that only the equations for the first order densities are non-linear, while subsequent order densities obey linear equations. This is expected to considerably simplify solution to those problems which involve second order density calculations where invariant imbedding techniques may be profitably used. Examples of such quantities are the variance or correlations between particles detected at two different energies or angles or the higher moments of the emitted multiplicity distribution such as the variance from a target bombarded by incident particles. One possible area of application of our equations is non-destructive estimation of fissile material by the active neutron assay technique. Another area is the study of particle cascade development in sputtering and positron backscattering from surfaces. The approach is illustrated by a simple forward-backward scattering model for these two problems.

  17. Modeling of gas transport with electrochemical reaction in nickel-yttria-stabilized zirconia anode during thermal cycling by Lattice Boltzmann method

    Science.gov (United States)

    Guo, Pengfei; Guan, Yong; Liu, Gang; Liang, Zhiting; Liu, Jianhong; Zhang, Xiaobo; Xiong, Ying; Tian, Yangchao

    2016-09-01

    This work reports an investigation of the impact of microstructure on the performance of solid oxide fuel cells (SOFC) composed of nickel yttria-stabilized zirconia (Ni YSZ). X-ray nano computed tomography (nano-CT) was used to obtain three-dimensional (3D) models of Ni-YSZ composite anode samples subjected to different thermal cycles. Key parameters, such as triple phase boundary (TPB) density, were calculated using 3D reconstructions. The electrochemical reaction occurring at active-TPB was modeled by the Lattice Boltzmann Method for simulation of multi-component mass transfer in porous anodes. The effect of different electrode geometries on the mass transfer and the electrochemical reaction in anodes was studied by TPB distributions measured by nano CT for samples subjected to different thermal cycles. The concentration polarization and the activation polarization were estimated respectively. The results demonstrate that a combined approach involving nano-CT experiments in conjunction with simulations of gas transport and electrochemical reactions using the Lattice Boltzmann method can be used to better understand the relationship between electrode microstructure and performance of nickel yttria-stabilized zirconia anodes.

  18. Application of the Broyden method to stiff transport equations

    Science.gov (United States)

    Carlsson, Johan; Cary, John R.; Cohen, Ron

    2002-11-01

    Plasma turbulence generates fluxes (of particles, energy, etc.) that are said to be stiff, that is a small change in temperature, density, or some other quantity, can lead to a large change in flux. The dependence of the diffusivities on the temperature and density profiles, and their gradients, also introduces nonlinearity. Irrespective of whether the fluxes are given by transport models, such as IFS/PPPL, GLF23, or MMM95, or are directly calculated, the resulting system of transport equations is thus numerically challenging to solve. Efficient transport solvers must also take into account that the evaluation of the diffusivities (or their gradients: the fluxes) is numerically costly. We have developed a new iterative transport solver that combines the stability of a relaxation scheme with the fast convergence of a Newton solver. The new solver uses a gradually decreasing relaxation parameter for the first few iterations and once it is inside the radius of convergence it switches over to a quasi-Newton method where a Broyden-like scheme is used to approximate the Jacobian. By taking advantage of the structure of the matrix (tri-diagonal if a second-order spatial finite differencing is used) the Broyden algorithm[1] gives a good approximation of the Jacobian after only a few iterations. We have implemented the new transport solver in the form of a C++ library called the Transport Analysis Tool. To make the library easy to access from codes written in other languages, a C interface is also provided. We will present the new transport solver in detail, as well as benchmark results and examples of how to use the Transport Analysis Tool library. [1] C. G. Broyden, in Mathematics of Computation, vol. 19, 1965, pp. 577--593.

  19. Solution of neutron transport equation by Method of Characteristics

    International Nuclear Information System (INIS)

    Highlights: • A neutron transport theory code, based on Method of Characteristics (MOC), is developed. • The code is able to simulate square, circular, hexagonal geometries and their combinations. • Delaunay triangulation together with Bower–Watson algorithm is used for mesh generation. • The code is benchmarked against different geometry and boundary conditions. • Results corroborate well with the results available in literature. - Abstract: A computer code based on Method of Characteristics (MOC) is developed to solve neutron transport equation for mainly assembly level lattice calculation with reflective and periodic boundary conditions and to some extent core level calculation with vacuum boundary condition. The code is able to simulate square, circular and hexagonal geometries and their combinations. Delaunay triangulation together with the Bower–Watson algorithm is used to divide the problem geometry into triangular meshes. Ray tracing technique is developed to draw characteristics lines along different directions over the geometry and the transport equation is solved over these lines to obtain neutron flux distribution and multiplication factor for the geometry. A number of benchmark problems available in literature are analyzed to demonstrate the capability and validity of the code

  20. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  1. Vorticity Preserving Flux Corrected Transport Scheme for the Acoustic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Tyler B. [Los Alamos National Laboratory; Roe, Phil [University of Michigan; Morgan, Nathaniel R. [Los Alamos National Laboratory

    2012-08-15

    Long term research goals are to develop an improved cell-centered Lagrangian Hydro algorithm with the following qualities: 1. Utilizes Flux Corrected Transport (FCT) to achieve second order accuracy with multidimensional physics; 2. Does not rely on the one-dimensional Riemann problem; and 3. Implements a form of vorticity control. Short term research goals are to devise and implement a 2D vorticity preserving FCT solver for the acoustic equations on an Eulerian mesh: 1. Develop a flux limiting mechanism for systems of governing equations with symmetric wave speeds; 2. Verify the vorticity preserving properties of the scheme; and 3. Compare the performance of the scheme to traditional MUSCL-Hancock and other algorithms.

  2. Approximate solution to neutron transport equation with linear anisotropic scattering

    International Nuclear Information System (INIS)

    A method to obtain an approximate solution to the transport equation, when both sources and collisions show a linearly anisotropic behavior, is outlined and the possible implications for numerical calculations in applied neutronics as well as shielding evaluations are investigated. The form of the differential system of equations taken by the method is quite handy and looks simpler and more manageable than any other today available technique. To go deeper into the efficiency of the method, some typical calculations concerning critical dimension of multiplying systems are then performed and the results are compared with the ones coming from the classical Ssub(N) approximations. The outcome of such calculations leads us to think of interesting developments of the method which could be quite useful in alternative to other today widespread approximate procedures, for any geometry, but especially for curved ones. (author)

  3. A closed-form solution for the two-dimensional Fokker-Planck equation for electron transport in the range of Compton Effect

    International Nuclear Information System (INIS)

    In this paper we solve the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation for charged particles in a rectangular domain. To construct the solution we begin applying the PN approximation in the angular variable and the Laplace Transform in the x-variable, thus obtaining a first order linear differential equation in y-variable, which the solution is straightforward. The angular flux of electrons and the parameters of the medium are used for the calculation of the energy deposited by the secondary electrons generated by Compton Effect. The remaining effects will not be taken into account. The results will be presented under absorbed energy form in several points of interested. We present numerical simulations and comparisons with results obtained by using Geant4 (version 8) program which applies the Monte Carlo's technique to low energy libraries for a two-dimensional problem assuming the screened Rutherford differential scattering cross-section

  4. Monte Carlo solution of a semi-discrete transport equation

    International Nuclear Information System (INIS)

    The authors present the S∞ method, a hybrid neutron transport method in which Monte Carlo particles traverse discrete space. The goal of any deterministic/stochastic hybrid method is to couple selected characters from each of the methods in hopes of producing a better method. The S∞ method has the features of the lumped, linear-discontinuous (LLD) spatial discretization, yet it has no ray-effects because of the continuous angular variable. They derive the S∞ method for the solid-state, mono-energetic transport equation in one-dimensional slab geometry with isotropic scattering and an isotropic internal source. They demonstrate the viability of the S∞ method by comparing their results favorably to analytic and deterministic results

  5. Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production

    Science.gov (United States)

    Liao, Qiang; Yang, Yan-Xia; Zhu, Xun; Wang, Hong; Ding, Yu-Dong

    2015-06-01

    The lattice Boltzmann method is adopted to simulate hydrodynamics and mass transfer accompanying with biochemical reaction in a channel with cylinder bundle, which is the scenario of biohydrogen production by photosynthetic bacteria in the biofilm attached on the surface of cylinder bundle in photobioreactor. The effects of cylinder spacing, Reynolds number and cylinder arrangement are investigated. The numerical results reveal that highest glucose concentration and the lowest hydrogen concentration are obtained at the front of the first row cylinders for all cases. The staggered arrangement leads to an increment in average drag coefficient, Sherwood number and consumption efficiency of substrate under a given condition, and the increment in Sherwood number reaches up to 30 %, while that in drag coefficient is around 1 %, moreover, the increment in consumption efficiency reaches the maximum value of 12 %. The results indicate that the staggered arrangement is beneficial to the mass transfer and biochemical reaction.

  6. Transport methods: general. 8. Formulation of Transport Equation in a Split Form

    International Nuclear Information System (INIS)

    The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)

  7. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    Science.gov (United States)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  8. Propagator solutions of partial differential equations applied to plasma transport

    International Nuclear Information System (INIS)

    A variety of partial differential equations may be solved efficiently and easily, using a single algorithm which is based on the propagator (or Green's function) for equations of the Fokker-Planck type. The numerical method employed is always at least as fast as finite differencing, but is especially efficient in cases where flow dominates over diffusion, and is consequently potentially widely applicable in fluid dynamics. Two transport problems in a small toroidal magnetic confinement device (IMS) have been considered. First, the ion distribution function and the potential in the sheath were calculated in the presence of charge exchange collisions for a wide range of neutral densities. Second, radial particle transport was modeled allowing for strong convection in the bulk plasma, and the density n(r,θ) was obtained for various plausible forms of the flow velocity, consistent with the observed average radial velocity. The best agreement with experiment is obtained with a vertical flow, which is also suggested by the measured potential profiles. 17 refs., 10 figs., 1 tab

  9. Modeling of Flow Transition Using an Intermittency Transport Equation

    Science.gov (United States)

    Suzen, Y. B.; Huang, P. G.

    1999-01-01

    A new transport equation for intermittency factor is proposed to model transitional flows. The intermittent behavior of the transitional flows is incorporated into the computations by modifying the eddy viscosity, mu(sub t), obtainable from a turbulence model, with the intermittency factor, gamma: mu(sub t, sup *) = gamma.mu(sub t). In this paper, Menter's SST model (Menter, 1994) is employed to compute mu(sub t) and other turbulent quantities. The proposed intermittency transport equation can be considered as a blending of two models - Steelant and Dick (1996) and Cho and Chung (1992). The former was proposed for near-wall flows and was designed to reproduce the streamwise variation of the intermittency factor in the transition zone following Dhawan and Narasimha correlation (Dhawan and Narasimha, 1958) and the latter was proposed for free shear flows and was used to provide a realistic cross-stream variation of the intermittency profile. The new model was used to predict the T3 series experiments assembled by Savill (1993a, 1993b) including flows with different freestream turbulence intensities and two pressure-gradient cases. For all test cases good agreements between the computed results and the experimental data are observed.

  10. Poisson-Boltzmann-Nernst-Planck model

    International Nuclear Information System (INIS)

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  11. PALLAS-1D(VII): a code for direct integration of transport equation in one-dimensional plane and spherical geometries

    International Nuclear Information System (INIS)

    The PALLAS-1D (VII) program is the revised version of the PALLAS-PL, SP-Br code which has been developed in 1981 on the basis of a method of direct integration of the Boltzmann transport equation to neutron and gamma-ray transport in one-dimensional plane and spherical geometries. The PALLAS-1D (VII) code can treat transport of both neutrons and gamma rays, in particular of secondary gamma rays including the bremsstrahlung and annihilation photons or secondary photons from nuclear reactions of neutrons. The document gives a full description of theoretical calculation, input and output data, as well as code implementation information and the input description of several sample problems. (author)

  12. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  13. A unified transport equation for both cosmic rays and thermal particles

    Science.gov (United States)

    Williams, L. L.; Schwadron, N.; Jokipii, J. R.; Gombosi, T. I.

    1993-01-01

    We present a unified transport equation that is valid for particles of all energies if the particle mean free paths are much smaller than macroscopic fluid length scales. If restricted to particles with random speeds much greater than fluid flow speeds, this equation reduces to the previously discussed extended cosmic-ray transport equation. It is significant that this allows one to describe the acceleration of particles from thermal energies to cosmic-ray energies using one transport equation. This is in contrast to previous transport equations (the Parker equation and the extended cosmic-ray transport equation), which were restricted to fast particles. The close connection to the extended cosmic-ray transport equation is demonstrated.

  14. Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture

    Science.gov (United States)

    Davey, K.; Darvizeh, R.

    2016-03-01

    Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.

  15. On standard forms for transport equations and fluxes: Part 2

    International Nuclear Information System (INIS)

    Quasilinear expressions for anomalous particle and energy fluxes arising from electrostatic plasma turbulence in a tokamak are reviewed yet again. Further clarifications are made, and the position taken in a previous report is modified. There, the total energy flux, Qj, and the conductive heat flux, qj, were correctly defined, and the anomalous Qj was correctly calculated. It was shown that the anomalous energy transport can be correctly described by ∇·Q*j, where Q*j = 3/5 Qj, with all remaining source terms such as left-angle pj∇·Vj} cancelling. Here, a revised discussion is given of the identification of the anomalous conductive flux, qj, in which the distinction between Qj and Q*j is reconsidered. It is shown that there is more than one consistent way to define qj. Transport calculations involving only theoretical electrostatic turbulent fluxes are unaffected by these distinctions since Qj or Q*j, rather than qj, is the quantity naturally calculated in the theory. However, an ambiguity remains in experimental transport analysis if the measured particle flux Γj = njVj is to be used in the energy equation. This is because we cannot be sure how properly to treat the source terms pj ∇·Vj or { pj ∇·Vj}. 17 refs

  16. Boltzmann's Concept of Reality

    OpenAIRE

    Ribeiro, Marcelo B.; Videira, Antonio A. P.

    2007-01-01

    In this article we describe and analyze the concept of reality developed by the Austrian theoretical physicist Ludwig Boltzmann. It is our thesis that Boltzmann was fully aware that reality could, and actually was, described by different points of view. In spite of this, Boltzmann did not renounce the idea that reality is real. We also discuss his main motivations to be strongly involved with philosophy of science, as well as further developments made by Boltzmann himself of his main philosop...

  17. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  18. A non-linear optimal Discontinuous Petrov-Galerkin method for stabilising the solution of the transport equation

    International Nuclear Information System (INIS)

    This paper describes a new Non-Linear Discontinuous Petrov-Galerkin (NDPG) method and application to the one-speed Boltzmann Transport Equation (BTE) for space-time problems. The purpose of the method is to remove unwanted oscillations in the transport solution which occur in the vicinity of sharp flux gradients, while improving computational efficiency and numerical accuracy. This is achieved by applying artificial dissipation in the solution gradient direction, internal to an element using a novel finite element (FE) Riemann approach. The amount of dissipation added acts internal to each element. This is done using a gradient-informed scaling of the advection velocities in the stabilisation term. This makes the method in its most general form non-linear. The method is designed to be independent of angular expansion framework. This is demonstrated for the both discrete ordinates (SN) and spherical harmonics (PN) descriptions of the angular variable. Results show the scheme performs consistently well in demanding time dependent and multi-dimensional radiation transport problems. (authors)

  19. A discrete formulation of the Wigner transport equation

    Science.gov (United States)

    Kim, Kyoung-Youm

    2007-12-01

    A discrete formulation of the Wigner distribution function (WDF) and the Wigner transport equation (WTE) is proposed, where the "discreteness" of the WDF and WTE is not just a practical, mathematical feature of discretization for the possible computations, but reveals a fundamental physics regarding the maximum correlation length of potentials (an essential quantum-mechanical feature of the WTE): it is set by the positional uncertainty due to the discrete values of momentum in evaluating the discrete WDF. Our formulation also shows that the weighting function to the potential-correlation term can be derived naturally from a mathematical necessity related to the antiperiodicity of the discrete density operator. In addition, we propose a mutually independent discretization scheme for the diagonal and cross-diagonal coordinates of the density operator, which results in a numerically effective discrete WTE in that it requires much less computational resources without significant loss in accuracy.

  20. Multigroup neutron transport equation in the diffusion and P1 approximation

    International Nuclear Information System (INIS)

    Investigations of the properties of the multigroup transport operator, width and without delayed neutrons in the diffusion and P1 approximation, is performed using Keldis's theory of operator families as well as a technique . recently used for investigations into the properties of the general linearized Boltzmann operator. It is shown that in the case without delayed neutrons, multigroup transport operator in the diffusion and P1 approximation possesses a complete set of generalized eigenvectors. A formal solution to the initial value problem is also given. (author)