WorldWideScience

Sample records for boltzmann equation analysis

  1. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  2. Analysis of Jeans instability from Boltzmann equation

    CERN Document Server

    Kremer, Gilberto M

    2015-01-01

    The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. The equilibrium distribution function takes into account the expansion of the Universe and a pressureless fluid in the matter dominated Universe. Without invoking Jeans "swindle" a dispersion relation is obtained by considering small perturbations of the equilibrium values of the distribution function and gravitational potential. The collapse criterion -- which happens in an unstable region where the solution grows exponentially with time -- is determined from the dispersion relation. The collapse criterion in a static Universe occurs when the wavenumber $k$ is smaller than the Jeans wavenumber $k_J$, which was the solution found by Jeans. For an expanding Universe it is shown that this criterion is $k\\leq\\sqrt{7/6}\\,k_J$. As a consequence the ratio of the mass contained in a sphere of diameter equal to the wavelength $\\lambda=2\\pi/k$ to t...

  3. Quantum corrections for Boltzmann equation

    Institute of Scientific and Technical Information of China (English)

    M.; Levy; PETER

    2008-01-01

    We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.

  4. Bistable solutions for the electron energy distribution function in electron swarms in xenon via Boltzmann equation analysis and particle simulations

    OpenAIRE

    Dyatko, Nikolay; Donko, Zoltan

    2015-01-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This "bistability effect" - in which electron-electron (Coulomb) collisions play an essential role - is analyzed here for Xe with a Boltzmann equation approach and with a first principles particle simulation method. The solution of the Boltzmann equation adopts the usual approximations of (i) searching for the distribution function in the form of two terms ("two-term app...

  5. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  6. An introduction to the theory of the Boltzmann equation

    CERN Document Server

    Harris, Stewart

    2011-01-01

    Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes

  7. The Boltzmann equation in the difference formulation

    Energy Technology Data Exchange (ETDEWEB)

    Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.

  8. THREE WAY DECOMPOSITION FOR THE BOLTZMANN EQUATION

    Institute of Scientific and Technical Information of China (English)

    Ilgis Ibragimov; Sergej Rjasanow

    2009-01-01

    The initial value problem for the spatially homogeneous Boltzmann equation is considered. A deterministic numerical scheme for this problem is developed by the use of the three way decomposition of the unknown function as well as of the collision integral. On this way, almost linear complexity of the algorithm is achieved. Some numerical examples are presented.

  9. Lattice Boltzmann Model and Geophysical Hydrodynamic Equation

    Institute of Scientific and Technical Information of China (English)

    冯士德; 杨京龙; 郜宪林; 季仲贞

    2002-01-01

    A lattice Boltzmann equation model in a rotating system is developed by introducing the Coriolis force effect.The geophysical hydrodynamic equation can be derived from this model. Numerical computations are performed to simulate the cylindrical annulus experiment and Benard convection. The numerical results have shown the flow behaviour of large-scale geostrophic current and Benard convection cells, which verifies the applicability of this model to both theory and experiment.

  10. Test of Information Theory on the Boltzmann Equation

    OpenAIRE

    Hyeon-Deuk, Kim; Hayakawa, Hisao

    2002-01-01

    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.

  11. Test of Information Theory on the Boltzmann Equation

    OpenAIRE

    Kim, Hyeon-Deuk; Hayakawa, Hisao

    2003-01-01

    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.

  12. Thermal creep problems by the discrete Boltzmann equation

    Directory of Open Access Journals (Sweden)

    L. Preziosi

    1991-05-01

    Full Text Available This paper deals with an initial-boundary value problem for the discrete Boltzmann equation confined between two moving walls at different temperature. A model suitable for the quantitative analysis of the initial boundary value problem and the relative existence theorem are given.

  13. A Fluctuating Lattice Boltzmann Method for the Diffusion Equation

    CERN Document Server

    Wagner, Alexander J

    2016-01-01

    We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic features of this first exact derivation of a fluctuating lattice Boltzmann method.

  14. Boltzmann equation integration in thermionic converter conditions. Part II. Terms in Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Stoenescu, M.L.

    1977-06-01

    The terms in Boltzmann kinetic equation corresponding to elastic short range collisions, inelastic excitational collisions, coulomb interactions and electric field acceleration are evaluated numerically for a standard distribution function minimizing the computational volume by expressing the terms as linear combinations with recalculable coefficients, of the distribution function and its derivatives. The present forms are suitable for spatial distribution calculations.

  15. Analysis of transport coefficients for electrons in weakly ionized gases by Boltzmann equation (N2 or O2)

    International Nuclear Information System (INIS)

    The fundamental process for determining the electric discharge phenomena of gas which take various forms depending on the kinds of gas, gas pressure, relative position of electrodes and applied voltage, is the mutual collision of electrons, atoms, molecular ions and neutral atoms and molecules. The initial stage before the establishment of electric discharge seems to be in Townsend discharge region where the collision of electrons with neutral molecules and atoms mainly occurs, being the weakly ionized condition at low gas temperature. Recently, the breakdown phenomena of N2-O2 gas mixture is being examined for the purpose of clarifying the impulse break mechanism in low pressure air, and the energy distribution of electrons and the transport coefficients in N2, O2 and N2-O2 mixed gases are required to investigate closely the results. Here, the energy distribution and the transport coefficients of electrons in steady Townsend discharge region in N2 and O2 gases respectively were analyzed by using Boltzmann equation, as a preparatory stage. The analyzed results and the discussions on them are reported in each paragraph of the energy distribution and the mean energy of electrons, ionization coefficients and adhesion coefficients, electron drift speed and diffusion coefficients, and excitation frequencies for various electron levels. It was confirmed that each collision process for electrons and the cross-section used for the analysis were properly selected. The excitation frequencies of electrons for N2 and O2 gases concerning the band spectra emitted from discharge channels and the electron energy distribution at 200 V/cm-Torr or below of E/P0 were newly calculated, where E is electric field, and P0 is gas pressure at 0 deg C. (Wakatsuki, Y.)

  16. Asymptotic-preserving Boltzmann model equations for binary gas mixture

    Science.gov (United States)

    Liu, Sha; Liang, Yihua

    2016-02-01

    An improved system of Boltzmann model equations is developed for binary gas mixture. This system of model equations has a complete asymptotic preserving property that can strictly recover the Navier-Stokes equations in the continuum limit with the correct constitutive relations and the correct viscosity, thermal conduction, diffusion, and thermal diffusion coefficients. In this equation system, the self- and cross-collision terms in Boltzmann equations are replaced by single relaxation terms. In monocomponent case, this system of equations can be reduced to the commonly used Shakhov equation. The conservation property and the H theorem which are important for model equations are also satisfied by this system of model equations.

  17. Bistable solutions for the electron energy distribution function in electron swarms in xenon via Boltzmann equation analysis and particle simulations

    CERN Document Server

    Dyatko, Nikolay

    2015-01-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This bistability effect - in which electron-electron (Coulomb) collisions play an essential role - is analyzed here with a Boltzmann equation approach and with a first principles particle simulation method. The latter is based on a combination of a molecular dynamics technique that accounts for the many-body interaction within the electron gas and a Monte Carlo treatment of the collisions between electrons and the background gas atoms. The good agreement found between the results of the two techniques confirms the existence of the two different stable solutions for the EEDF under swarm conditions at low electric fields.

  18. Exact results for the Boltzmann equation and Smoluchowski's coagulation equation

    International Nuclear Information System (INIS)

    Almost no analytical solutions have been found for realistic intermolecular forces, largely due to the complicated structure of the collision term which calls for the construction of simplified models, in which as many physical properties are maintained as possible. In the first three chapters of this thesis such model Boltzmann equations are studied. Only spatially homogeneous gases with isotropic distribution functions are considered. Chapter I considers transition kernels, chapter II persistent scattering models and chapter III very hard particles. The second part of this dissertation deals with Smoluchowski's coagulation equation for the size distribution function in a coagulating system, with chapters devoted to the following topics: kinetics of gelation and universality, coagulation equations with gelation and exactly soluble models of nucleation. (Auth./C.F.)

  19. Thermal equation of state for lattice Boltzmann gases

    Institute of Scientific and Technical Information of China (English)

    Ran Zheng

    2009-01-01

    The Galilean invaxiance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model axe proposed together with their rigorous theoretical background. From the viewpoint of group invariance,recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  20. Thermal equation of state for lattice Boltzmann gases

    Science.gov (United States)

    Ran, Zheng

    2009-06-01

    The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.

  1. A probabilistic view on the general relativistic Boltzmann equation

    CERN Document Server

    Bailleul, Ismael

    2011-01-01

    A new probalistic approach to general relativistic kinetic theory is proposed. The general relativistic Boltzmann equation is linked to a new Markov process in a completely intrinsic way. This treatment is then used to prove the causal character of the relativistic Boltzmann model.

  2. Langevin theory of fluctuations in the discrete Boltzmann equation

    CERN Document Server

    Gross, M; Varnik, F; Adhikari, R

    2010-01-01

    The discrete Boltzmann equation for both the ideal and a non-ideal fluid is extended by adding Langevin noise terms in order to incorporate the effects of thermal fluctuations. After casting the fluctuating discrete Boltzmann equation in a form appropriate to the Onsager-Machlup theory of linear fluctuations, the statistical properties of the noise are determined by invoking a fluctuation-dissipation theorem at the kinetic level. By integrating the fluctuating discrete Boltzmann equation, the fluctuating lattice Boltzmann equation is obtained, which provides an efficient way to solve the equations of fluctuating hydrodynamics for ideal and non-ideal fluids. Application of the framework to a generic force-based non-ideal fluid model leads to ideal gas-type thermal noise. Simulation results indicate proper thermalization of all degrees of freedom.

  3. Effective ionization coefficients and transport parameters in binary and ultradilute SF6-Ar mixtures using Boltzmann equation analysis

    Science.gov (United States)

    Cekmen, Z. C.; Dincer, M. S.

    2009-07-01

    The effective ionization coefficients and transport parameters such as electron mean energy drift velocity and transverse diffusion coefficient in binary and ultradilute SF6-Ar gas mixtures have been calculated for density reduced electric field strength E/N values from 10 to 400 Td. These calculations have been performed by using the two-term spherical harmonic expansion to obtain the numerical solution of the Boltzmann transport equation based on the finite element method under steady-state Townsend condition. In order to confirm the model and code developed in this study, the Reid ramp model has been used as a benchmark test and then effective ionization coefficients and transport parameters have been evaluated for SF6 contents of 1%, 10%, 25%, 50%, 70% and 100% in the binary mixture. Finally SF6 contents in the ultradilute mixtures of 0.1%, 0.3%, 0.5% and 0.7% are taken into account with the evaluated effective ionizations and transport parameters of electron mean energy, drift velocity and transverse diffusion coefficients.

  4. Monte Carlo simulation and Boltzmann equation analysis of non-conservative positron transport in H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bankovic, A., E-mail: ana.bankovic@gmail.com [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Dujko, S. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Centrum Wiskunde and Informatica (CWI), P.O. Box 94079, 1090 GB Amsterdam (Netherlands); ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); White, R.D. [ARC Centre for Antimatter-Matter Studies, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4810 (Australia); Buckman, S.J. [ARC Centre for Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia); Petrovic, Z.Lj. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2012-05-15

    This work reports on a new series of calculations of positron transport properties in molecular hydrogen under the influence of spatially homogeneous electric field. Calculations are performed using a Monte Carlo simulation technique and multi term theory for solving the Boltzmann equation. Values and general trends of the mean energy, drift velocity and diffusion coefficients as a function of the reduced electric field E/n{sub 0} are reported here. Emphasis is placed on the explicit and implicit effects of positronium (Ps) formation on the drift velocity and diffusion coefficients. Two important phenomena arise; first, for certain regions of E/n{sub 0} the bulk and flux components of the drift velocity and longitudinal diffusion coefficient are markedly different, both qualitatively and quantitatively. Second, and contrary to previous experience in electron swarm physics, there is negative differential conductivity (NDC) effect in the bulk drift velocity component with no indication of any NDC for the flux component. In order to understand this atypical manifestation of the drift and diffusion of positrons in H{sub 2} under the influence of electric field, the spatially dependent positron transport properties such as number of positrons, average energy and velocity and spatially resolved rate for Ps formation are calculated using a Monte Carlo simulation technique. The spatial variation of the positron average energy and extreme skewing of the spatial profile of positron swarm are shown to play a central role in understanding the phenomena.

  5. Deriving thermal lattice-Boltzmann models from the continuous Boltzmann equation: theoretical aspects

    CERN Document Server

    Philippi, P C; Surmas, R; Philippi, Paulo Cesar; Santos, Luis Orlando Emerich dos; Surmas, Rodrigo

    2005-01-01

    The particles model, the collision model, the polynomial development used for the equilibrium distribution, the time discretization and the velocity discretization are factors that let the lattice Boltzmann framework (LBM) far away from its conceptual support: the continuous Boltzmann equation (BE). Most collision models are based on the BGK, single parameter, relaxation-term leading to constant Prandtl numbers. The polynomial expansion used for the equilibrium distribution introduces an upper-bound in the local macroscopic speed. Most widely used time discretization procedures give an explicit numerical scheme with second-order time step errors. In thermal problems, quadrature did not succeed in giving discrete velocity sets able to generate multi-speed regular lattices. All these problems, greatly, difficult the numerical simulation of LBM based algorithms. In present work, the systematic derivation of lattice-Boltzmann models from the continuous Boltzmann equation is discussed. The collision term in the li...

  6. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

    OpenAIRE

    Punshon-Smith, Samuel; Smith, Scott

    2016-01-01

    This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kin...

  7. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.;

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows the...

  8. Celebrating Cercignani's conjecture for the Boltzmann equation

    KAUST Repository

    Villani, Cédric

    2011-01-01

    Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.

  9. THE NON-CUTOFF BOLTZMANN EQUATION WITH POTENTIAL FORCE IN THE WHOLE SPACE

    Institute of Scientific and Technical Information of China (English)

    Yuanjie LEI

    2014-01-01

    This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].

  10. Spinor Boltzmann Equation with Two Momenta at the Fermi Level

    Institute of Scientific and Technical Information of China (English)

    王正川

    2012-01-01

    Based on the formalism of Keldysh's nonequilibrium Green function, we establish a two momenta spinor Boltzmann equation for longitudinal scalar distribution function and transverse vector distribution function. The lon- gitudinal charge currents, transverse spin currents and the continuity equations satisfied by them are then studied, it indicates that both the charge currents and spin currents decay oscillately along with position, which is due to the momenta integral over the Fermi surface. We also compare our charge currents and spin currents with the corresponding results of one momentum spinor Boltzmann equation, the differences are obvious.

  11. Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations

    CERN Document Server

    Zhang, Jingfeng; Ouyang, Jie

    2014-01-01

    A numerical method, based on discrete lattice Boltzmann equation, is presented for solving the volume-averaged Navier-Stokes equations. With a modified equilibrium distribution and an additional forcing term, the volume-averaged Navier-Stokes equations can be recovered from the lattice Boltzmann equation in the limit of small Mach number by the Chapman-Enskog analysis and Taylor expansion. Due to its advantages such as explicit solver and inherent parallelism, the method appears to be more competitive with traditional numerical techniques. Numerical simulations show that the proposed model can accurately reproduce both the linear and nonlinear drag effects of porosity in the fluid flow through porous media.

  12. Celebrating Cercignani's conjecture for the Boltzmann equation

    CERN Document Server

    Desvillettes, Laurent; Villani, Cédric

    2010-01-01

    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.

  13. An exactly solvable non-linear Boltzmann equation

    NARCIS (Netherlands)

    Ernst, M.H.; Hendriks, E.M.

    1979-01-01

    The initial value problem for a model Boltzmann equation of a two dimensional gas with a continuous or discrete energy distribution function and a transition probability δ(ε - ε') is solved exactly; ε and ε' are the total energies before and after collision.

  14. Modeling adsorption with lattice Boltzmann equation.

    Science.gov (United States)

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  15. Modeling adsorption with lattice Boltzmann equation

    Science.gov (United States)

    Guo, Long; Xiao, Lizhi; Shan, Xiaowen; Zhang, Xiaoling

    2016-01-01

    The research of adsorption theory has recently gained renewed attention due to its critical relevance to a number of trending industrial applications, hydrogen storage and shale gas exploration for instance. The existing theoretical foundation, laid mostly in the early twentieth century, was largely based on simple heuristic molecular interaction models and static interaction potential which, although being insightful in illuminating the fundamental mechanisms, are insufficient for computations with realistic adsorbent structure and adsorbate hydrodynamics, both critical for real-life applications. Here we present and validate a novel lattice Boltzmann model incorporating both adsorbate-adsorbate and adsorbate-adsorbent interactions with hydrodynamics which, for the first time, allows adsorption to be computed with real-life details. Connection with the classic Ono-Kondo lattice theory is established and various adsorption isotherms, both within and beyond the IUPAC classification are observed as a pseudo-potential is varied. This new approach not only enables an important physical to be simulated for real-life applications, but also provides an enabling theoretical framework within which the fundamentals of adsorption can be studied. PMID:27256325

  16. CORRECTIONS TO THE COLLISION TERM IN THE BGK BOLTZMANN EQUATION

    Institute of Scientific and Technical Information of China (English)

    FENG SHI-DE; REN RONG-CAI; CUI XIAO-PENG; JI ZHONG-ZHEN

    2001-01-01

    With the discrete method of the hexagonal cell and three different velocities of particle population in each cell,a two-dimensional lattice Boltzmann model is developed in this paper.[1,2] The collision operator in the Boltzmann equation is expanded to fourth order using the Taylor expansion.[3,4] With this model, good results have been obtained from the numerical simulation of the reflection phenomenon of the shock wave on the surface of an obstacle, and the numerical stability is also good. Thus the applicability of the D2Q19 model is verified.

  17. The Nonclassical Diffusion Approximation to the Nonclassical Linear Boltzmann Equation

    CERN Document Server

    Vasques, Richard

    2015-01-01

    We show that, by correctly selecting the probability distribution function $p(s)$ for a particle's distance-to-collision, the nonclassical diffusion equation can be represented exactly by the nonclassical linear Boltzmann equation for an infinite homogeneous medium. This choice of $p(s)$ preserves the $true$ mean-squared free path of the system, which sheds new light on the results obtained in previous work.

  18. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    OpenAIRE

    Molnar, E.; Niemi, H.; Rischke, D. H.

    2016-01-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break dow...

  19. Shock-wave structure using nonlinear model Boltzmann equations.

    Science.gov (United States)

    Segal, B. M.; Ferziger, J. H.

    1972-01-01

    The structure of strong plane shock waves in a perfect monatomic gas was studied using four nonlinear models of the Boltzmann equation. The models involved the use of a simplified collision operator with velocity-independent collision frequency, in place of the complicated Boltzmann collision operator. The models employed were the BGK and ellipsoidal models developed by earlier authors, and the polynomial and trimodal gain function models developed during the work. An exact set of moment equations was derived for the density, velocity, temperature, viscous stress, and heat flux within the shock. This set was reduced to a pair of coupled nonlinear integral equations and solved using specially adapted numerical techniques. A new and simple Gauss-Seidel iteration was developed during the work and found to be as efficient as the best earlier iteration methods.

  20. Well-Posedness of the Cauchy Problem for a Space-Dependent Anyon Boltzmann Equation

    OpenAIRE

    Arkeryd, Leif; Nouri, Anne

    2015-01-01

    A fully non-linear kinetic Boltzmann equation for anyons is studied in a periodic 1d setting with large initial data. Strong L 1 solutions are obtained for the Cauchy problem. The main results concern global existence, uniqueness and stabililty. We use the Bony functional, the two-dimensional velocity frame specific for anyons, and an initial layer analysis that moves the solution away from a critical value. 1 Anyons and the Boltzmann equation. Let us first recall the definition of anyon. Con...

  1. A Fokker-Planck model of the Boltzmann equation with correct Prandtl number

    CERN Document Server

    Mathiaud, J

    2015-01-01

    We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics. This is obtained by replacing the diffusion coefficient (which is the equilibrium temperature) by a non diagonal temperature tensor, like the Ellipsoidal-Statistical model (ES) is obtained from the Bathnagar-Gross-Krook model (BGK) of the Boltzmann equation. Our model is proved to satisfy the properties of conservation and a H-theorem. A Chapman-Enskog analysis and two numerical tests show that a correct Prandtl number of 2/3 can be obtained.

  2. Regularized lattice Boltzmann model for a class of convection-diffusion equations.

    Science.gov (United States)

    Wang, Lei; Shi, Baochang; Chai, Zhenhua

    2015-10-01

    In this paper, a regularized lattice Boltzmann model for a class of nonlinear convection-diffusion equations with variable coefficients is proposed. The main idea of the present model is to introduce a set of precollision distribution functions that are defined only in terms of macroscopic moments. The Chapman-Enskog analysis shows that the nonlinear convection-diffusion equations can be recovered correctly. Numerical tests, including Fokker-Planck equations, Buckley-Leverett equation with discontinuous initial function, nonlinear convection-diffusion equation with anisotropic diffusion, are carried out to validate the present model, and the results show that the present model is more accurate than some available lattice Boltzmann models. It is also demonstrated that the present model is more stable than the traditional single-relaxation-time model for the nonlinear convection-diffusion equations. PMID:26565368

  3. The Initial Boundary Value Problem for the Boltzmann Equation with Soft Potential

    Science.gov (United States)

    Liu, Shuangqian; Yang, Xiongfeng

    2016-08-01

    Boundary effects are central to the dynamics of the dilute particles governed by the Boltzmann equation. In this paper, we study both the diffuse reflection and the specular reflection boundary value problems for the Boltzmann equation with a soft potential, in which the collision kernel is ruled by the inverse power law. For the diffuse reflection boundary condition, based on an L 2 argument and its interplay with intricate {L^∞} analysis for the linearized Boltzmann equation, we first establish the global existence and then obtain the exponential decay in {L^∞} space for the nonlinear Boltzmann equation in general classes of bounded domain. It turns out that the zero lower bound of the collision frequency and the singularity of the collision kernel lead to some new difficulties for achieving the a priori {L^∞} estimates and time decay rates of the solution. In the course of the proof, we capture some new properties of the probability integrals along the stochastic cycles and improve the {L^2-L^∞} theory to give a more direct approach to overcome those difficulties. As to the specular reflection condition, our key contribution is to develop a new time-velocity weighted {L^∞} theory so that we could deal with the greater difficulties stemming from the complicated velocity relations among the specular cycles and the zero lower bound of the collision frequency. From this new point, we are also able to prove that the solutions of the linearized Boltzmann equation tend to equilibrium exponentially in {L^∞} space with the aid of the L 2 theory and a bootstrap argument. These methods, in the latter case, can be applied to the Boltzmann equation with soft potential for all other types of boundary condition.

  4. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.)

  5. Inelastic Quantum Transport in Superlattices: Success and Failure of the Boltzmann Equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, Stephan;

    1999-01-01

    the whole held range from linear response to negative differential conductivity. The quantum results are compared with the respective results obtained from a Monte Carlo solution of the Boltzmann equation. Our analysis thus sets the limits of validity for the semiclassical theory in a nonlinear...

  6. LATTICE BOLTZMANN EQUATION MODEL IN THE CORIOLIS FIELD

    Institute of Scientific and Technical Information of China (English)

    FENG SHI-DE; MAO JIANG-YU; ZHANG QIONG

    2001-01-01

    In a large-scale field of rotational fluid, various unintelligible and surprising dynamic phenomena are produced due to the effect of the Coriolis force. The lattice Boltzmann equation (LBE) model in the Coriolis field is developed based on previous works.[1-4] Geophysical fluid dynamics equations are derived from the model. Numerical simulations have been made on an ideal atmospheric circulation of the Northern Hemisphere by using the model and they reproduce the Rossby wave motion well. Hence the applicability of the model is verified in both theory and experiment.

  7. Lattice Boltzmann method for the fractional advection-diffusion equation.

    Science.gov (United States)

    Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  8. Lattice Boltzmann method for the fractional advection-diffusion equation

    Science.gov (United States)

    Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.

    2016-04-01

    Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.

  9. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    Science.gov (United States)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  10. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  11. Convergence Rate to Stationary Solutions for Boltzmann Equation with External Force

    Institute of Scientific and Technical Information of China (English)

    Seiji UKAI; Tong YANG; Huijiang ZHAO

    2006-01-01

    For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.

  12. On the Krook-Wu model of the Boltzmann equation

    Science.gov (United States)

    Cornille, H.

    1980-08-01

    The distribution function of the Krook-Wu model of the nonlinear Boltzmann equation (elastic differential cross sections inversely proportional to the relative speed of the colliding particles) is obtained as a generalized Laguerre polynomial expansion where the only time dependence is provided by the coefficients. In a recent paper M. Barnsley and the present author have shown that these coefficients are recursively determined from the resolution of a nonlinear differential system. Here we explicitly show how to construct the solutions of the Krook-Wu model and study the properties of the corresponding Krook-Wu distribution functions.

  13. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  14. Electron attachment coefficient in low E/N regions and a discussion of discharge-instability in KrF laser. ; Analysis by logarithm transformed Boltzmann equation. Tei E/N ryoiki no denshi fuchaku keisu to KrF laser reiki hoden no fuanteisei ni kansuru ichi kosatsu. ; Tai su henkan Boltzmann hoteishiki ni yoru kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H.; Urabe, J.; Yukimura, K. (Doshisha Univ., Kyoto (Japan))

    1991-03-20

    In a discharge excitation rare gas halide excima laser, uniform generation and stable maintenance of the excited discharge determines the laser characteristics. In this report, an approximate solution was obtained on the Boltzmann equation (frequently used for the theoretical analysis of this laser) to examine the nature of the solution. By optimizing the conversion of the variables, calculation of an electron swarm parameter in the hitherto uncertain range of the low conversion electric field was made possible, giving a generation mechanism of the uncertainty of the excited dischareg. The results are summarized as below. (1) The Boltzmann equation gives a linear solution for a logarithmic value of an electron energy in the range of low conversion electric field. (2) Time-wise responce ability between the measured voltage, current characteristics of the excitation discharge was clarified and the attachment and ionization coefficients calculated by Boltzmann equation. (3) Dependency of the attachment coefficient on the partial pressure of fluorine and kripton was examined, and the attachment coefficient was found to increase with the increase of the partial pressure for the both cases. 20 refs., 9 figs., 2 tabs.

  15. Generalizing the Boltzmann equation in complex phase space.

    Science.gov (United States)

    Zadehgol, Abed

    2016-08-01

    In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)JCTPAH0021-999110.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015)PLEEE81539-375510.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others. PMID:27627421

  16. Exact solutions to the Boltzmann equation by mapping the scattering integral into a differential operator

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte

    2015-07-01

    This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)

  17. Boltzmann Equation Solver Adapted to Emergent Chemical Non-equilibrium

    CERN Document Server

    Birrell, Jeremiah

    2014-01-01

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature $T(t)$ and phase space occupation factor $\\Upsilon(t)$. In this first paper we address (effectively) massless fermions and derive dynamical equations for $T(t)$ and $\\Upsilon(t)$ such that the zeroth order term of the basis alone captures the number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component ($e^\\pm$-annihilation).

  18. Nonaligned shocks for discrete velocity models of the Boltzmann equation

    Directory of Open Access Journals (Sweden)

    J. M. Greenberg

    1991-05-01

    Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.

  19. Global Solutions of the Boltzmann Equation Over {{R}^D} Near Global Maxwellians with Small Mass

    Science.gov (United States)

    Bardos, Claude; Gamba, Irene M.; Golse, François; Levermore, C. David

    2016-09-01

    We study the dynamics defined by the Boltzmann equation set in the Euclidean space {{R}^D} in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a special solution of the Boltzmann equation for which the collision integral vanishes identically. In this setting, the dispersion due to the advection operator quenches the dissipative effect of the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann equation in this regime is given by noninteracting, freely transported states and can be described with the tools of scattering theory.

  20. Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Nicholas G.; Minnich, Austin J. [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-04

    Materials that possess low density, low thermal conductivity, and high stiffness are desirable for engineering applications, but most materials cannot realize these properties simultaneously due to the coupling between them. Nanotrusses, which consist of hollow nanoscale beams architected into a periodic truss structure, can potentially break these couplings due to their lattice architecture and nanoscale features. In this work, we study heat conduction in the exact nanotruss geometry by solving the frequency-dependent Boltzmann transport equation using a variance-reduced Monte Carlo algorithm. We show that their thermal conductivity can be described with only two parameters, solid fraction and wall thickness. Our simulations predict that nanotrusses can realize unique combinations of mechanical and thermal properties that are challenging to achieve in typical materials.

  1. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    CERN Document Server

    Molnar, E; Rischke, D H

    2016-01-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. To zeroth order this expansion yields ideal fluid dynamics, to first order Navier-Stokes theory, and to second order transient theories of dissipative fluid dynamics. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, so-called anisotropic fluid dynamics, in terms of an expansion around a single-particle distribution function which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. In this paper we derive, up to terms of second order in this expansion, the equations of mo...

  2. The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis

    Science.gov (United States)

    Deng, Yun-Kun; Xiao, Deng-Ming

    2013-03-01

    The electron swarm parameters including the density-normalized effective ionization coefficients (α-η)/N and the electron drift velocities Ve are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment. The overall density-reduced electric field strength is from 100 Td to 1000 Td (1 Td = 10-17 V·cm2), while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%. From the variation of (α-η)/N with the CF3I mixture ratio k, the limiting field strength (E/N)lim for each CF3I concentration is derived. It is found that for the mixtures with 70% CF3I, the values of (E/N)lim are essentially the same as that for pure SF6. Additionally, the global warming potential (GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.

  3. Analysis of the insulation characteristics of c-C4F8 and N2 gas mixtures by Boltzmann equation method

    Science.gov (United States)

    Deng, Y. K.; Xiao, D. M.

    2012-02-01

    The present paper concerns itself with the insulation characteristics of c-C4F8/N2 gas mixtures and studies the possibility of applying in the gas insulation of power equipments. We aim to use the theoretical framework of the Boltzmann equation to calculate the density-normalized effective ionization coefficients (α-ƞ)/N and transport parameters of c-C4F8/N2 gas mixtures for E/N values from 180 to 550 Td (1 Td = 10-17 V cm2) in the condition of steady-state Townsend (SST) experiment. From the variation curve of (α-ƞ)/N with the c-C4F8 mixture ratio k, the limiting field strength (E/N)lim of the gas mixtures at different gas content is determined. In order to confirm the validity of the results obtained, comparisons with Monte Carlo simulation and experimental data have been performed. It is found that the insulation properties of c-C4F8 and N2 gas mixtures are much better than those of SF6 and N2 mixtures for applying in the high voltage apparatus as an insulation medium, especially if we take the global warming potential into account.

  4. Analysis of the insulation characteristics of CF3I gas mixtures with Ar, Xe, He, N2, and CO2 using Boltzmann equation method

    Science.gov (United States)

    Deng, Yunkun; Xiao, Dengming

    2014-09-01

    The present study is devoted to the calculation of electron swarm parameters, including the reduced effective ionization coefficient, electron mean energy, and electron drift velocity, for the gas mixtures of CF3I with Ar, Xe, He, N2, and CO2. These data are computed by employing the Boltzmann equation method with two-term approximation in the condition of steady-state Townsend (SST) discharge. For the purpose of evaluating the insulation strength of CF3I gas mixtures, values of the limiting field strength (E/N)lim for which the ionization exactly balances the electron attachment are determined from the variation curves of (α - η)/N. The results indicate that mixtures of CF3I-N2 present the greatest insulation strength among all the combinations for CF3I content varied from 20 to 90%. Furthermore, the gas mixture with 70% CF3I can achieve a very similar dielectric strength to that of SF6. The concerned liquefaction issues are also taken into account to fully assess the possibility of applying CF3I gas mixtures in power equipment as an insulation medium.

  5. The effective ionization coefficients and electron drift velocities in gas mixtures of CF3I with N2 and CO2 obtained from Boltzmann equation analysis

    Institute of Scientific and Technical Information of China (English)

    Deng Yun-Kun; Xiao Deng-Ming

    2013-01-01

    The electron swarm parameters including the density-normalized effective ionization coefficients (α-η)/N and the electron drift velocities Ve are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend (SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td (1 Td =10-17 V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of (α-η)/N with the CF3I mixture ratio k,the limiting field strength (E/N)lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of (E/N)lim are essentially the same as that for pure SF6.Additionally,the global warming potential (GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.

  6. A Lattice Boltzmann Model and Simulation of KdV-Burgers Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANGChao-Ying; TANHui-Li; LIUMu-Ren; KONGLing-Jiang

    2004-01-01

    A lattice Boltzmann model of KdV-Burgers equation is derived by using the single-relaxation form of the lattice Boltzmann equation. With the present model, we simulate the traveling-wave solutions, the solitary-wave solutions, and the sock-wave solutions of KdV-Burgers equation, and calculate the decay factor and the wavelength of the sock-wave solution, which has exponential decay. The numerical results agree with the analytical solutions quite well.

  7. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  8. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...

  9. Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation.

    Science.gov (United States)

    Fillion-Gourdeau, F; Herrmann, H J; Mendoza, M; Palpacelli, S; Succi, S

    2013-10-18

    We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially far-reaching implications for both classical and quantum computing, because it shows that, by splitting time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates in space-time as a classical statistical process (Boltzmann distribution).

  10. Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation.

    Science.gov (United States)

    Fillion-Gourdeau, F; Herrmann, H J; Mendoza, M; Palpacelli, S; Succi, S

    2013-10-18

    We point out a formal analogy between the Dirac equation in Majorana form and the discrete-velocity version of the Boltzmann kinetic equation. By a systematic analysis based on the theory of operator splitting, this analogy is shown to turn into a concrete and efficient computational method, providing a unified treatment of relativistic and nonrelativistic quantum mechanics. This might have potentially far-reaching implications for both classical and quantum computing, because it shows that, by splitting time along the three spatial directions, quantum information (Dirac-Majorana wave function) propagates in space-time as a classical statistical process (Boltzmann distribution). PMID:24182245

  11. Equivalence Between Forward and Backward Boltzmann Equations in Multi-Component Medium

    Institute of Scientific and Technical Information of China (English)

    张竹林

    2002-01-01

    The author generalized the propagator function theory introduced first by Sigmund, and gave a explicitly proof of a equivalence between forward and backward Boltzmann equations in a multi-component medium by using the generalized propagator function theory.

  12. Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity

    OpenAIRE

    Shi-you Lin

    2014-01-01

    The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using analytic techniques, one proves the Gevrey regularity of the ${C}^{\\infty }$ solutions in non-Maxwellian and strong singularity cases.

  13. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation

    Institute of Scientific and Technical Information of China (English)

    RAN Zheng

    2007-01-01

    Invariance of the one-dimensional lattice Boltzmann model is proposed together with its rigorous theoretical background.It is demonstrated that the symmetry inherent in Navier-Stokes equations is not really recovered in the one-dimensional lattice Boltzmann equation (LBE),especially for shock calculation.Symmetry breaking may be the inherent cause for the non-physical oscillations in the vicinity of the shock for LBE calculation.

  14. A generalized linear Boltzmann equation for non-classical particle transport

    International Nuclear Information System (INIS)

    This paper presents a derivation and initial study of a new generalized linear Boltzmann equation (GLBE), which describes particle transport for random statistically homogeneous systems in which the distribution function for chord lengths between scattering centers is non-exponential. Such problems have recently been proposed for the description of photon transport in atmospheric clouds; this paper is a first attempt to develop a Boltzmann-like equation for these and other related applications.

  15. Simulation of a Natural Convection by the Hybrid Thermal Lattice Boltzmann Equation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seungyeob; Kang, Hanok; Seo, Jaekwang; Yun, Juhyeon; Zee, Sung-Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Recently, the lattice Boltzmann method(LBM) has gained much attention for its ability to simulate fluid flows, and for its potential advantages over conventional CFD method. The key advantages of LBM are, (1) suitability for parallel computations, (2) absence of the need to solve the time-consuming Poisson equation for a pressure, and (3) an ease with multiphase flows, complex geometries and interfacial dynamics may be treated. In spite of its success in solving various challenging problems involving athermal fluids, the LBM has not been able to handle realistic thermal fluids with a satisfaction. The difficulty encountered in the thermal LBM seems to be the numerical instabilities. The existing thermal lattice Boltzmann models may be classified into three categories based on their approach in solving the Boltzmann equation, namely, the multispeed, the passive scalar and the thermal energy distribution approach. For more details see Ref. In the present work, the hybrid thermal lattice Boltzmann scheme proposed by Lallemand and Luo is used for simulating a natural convection in a square cavity. They proposed a hybrid thermal lattice Boltzmann equation(HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time(MRT) model, whereas the diffusion-advection equations for the temperature are solved separately by using finite-difference technique. The main objective of the present work is to establish the lattice Boltzmann method as a viable tool for the simulation of temperature fields at high Rayleigh numbers.

  16. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of moment of the Boltzmann equation

    CERN Document Server

    Molnár, Etele; Rischke, Dirk H

    2016-01-01

    In Moln\\'ar et al. [Phys. Rev. D 93, 114025 (2016)] the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.

  17. Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lema\\^itre-Robertson-Walker spacetime

    CERN Document Server

    Bazow, D; Heinz, U; Martinez, M; Noronha, J

    2016-01-01

    The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lema\\^itre-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of non-hydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the non-hydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation...

  18. Discrete Boltzmann model of shallow water equations with polynomial equilibria

    CERN Document Server

    Meng, Jianping; Emerson, David R; Peng, Yong; Zhang, Jianmin

    2016-01-01

    A hierarchy of discrete Boltzmann model is proposed for simulating shallow water flows. By using the Hermite expansion and Gauss-Hermite quadrature, the conservation laws are automatically satisfied without extra effort. Moreover, the expansion order and quadrature can be chosen flexibly according to the problem for striking the balance of accuracy and efficiency. The models are then tested using the classical one-dimensional dam-breaking problem, and successes are found for both supercritical and subcritical flows.

  19. A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off

    Science.gov (United States)

    Silvestre, Luis

    2016-11-01

    We apply recent results on regularity for general integro-differential equations to derive a priori estimates in Hölder spaces for the space homogeneous Boltzmann equation in the non cut-off case. We also show an a priori estimate in {L^∞} which applies in the space inhomogeneous case as well, provided that the macroscopic quantities remain bounded.

  20. Derivation of the generalized Fokker-Planck equation from the Boltzmann transport equation for particles with Zitterbewegung

    International Nuclear Information System (INIS)

    The Aron equation is a generalization of the Fokker-Planck equation allowing for diffusion motion with finite maximal velocity. The Aron equation can be regarded as a semi-phenomenological equation because it is based on phenomenological laws such as the Fick diffusion law. It is shown that the one-dimensional case of the Aron equation can be derived from the Boltzmann transport equation for particles in Zitterbewegung. The extension to the three-dimensional case, however, leads to an equation different from the Aron one

  1. Entropy inequality and hydrodynamic limits for the Boltzmann equation.

    Science.gov (United States)

    Saint-Raymond, Laure

    2013-12-28

    Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!). PMID:24249776

  2. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

    CERN Document Server

    Lu, Jianfeng

    2014-01-01

    We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 x 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

  3. An H Theorem for Boltzmann's Equation for the Yard-Sale Model of Asset Exchange

    Science.gov (United States)

    Boghosian, Bruce M.; Johnson, Merek; Marcq, Jeremy A.

    2015-12-01

    In recent work (Boghosian, Phys Rev E 89:042804-042825, 2014; Boghosian, Int J Mod Phys 25:1441008-1441015, 2014), Boltzmann and Fokker-Planck equations were derived for the "Yard-Sale Model" of asset exchange. For the version of the model without redistribution, it was conjectured, based on numerical evidence, that the time-asymptotic state of the model was oligarchy—complete concentration of wealth by a single individual. In this work, we prove that conjecture by demonstrating that the Gini coefficient, a measure of inequality commonly used by economists, is an H function of both the Boltzmann and Fokker-Planck equations for the model.

  4. Numerical scheme for a spatially inhomogeneous matrix-valued quantum Boltzmann equation

    Science.gov (United States)

    Lu, Jianfeng; Mendl, Christian B.

    2015-06-01

    We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum Boltzmann equation derived from the Hubbard model. The distribution functions are 2 × 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum Boltzmann equation is recovered as a special case when all matrices are proportional to the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet and Maxwell boundary conditions. Model simulations quantify the convergence to local and global thermal equilibrium.

  5. Bistable solutions for the electron energy distribution function in electron swarms in xenon: a comparison between the results of first-principles particle simulations and conventional Boltzmann equation analysis

    Science.gov (United States)

    Dyatko, Nikolay; Donkó, Zoltán

    2015-08-01

    At low reduced electric fields the electron energy distribution function in heavy noble gases can take two distinct shapes. This ‘bistability effect’—in which electron-electron (Coulomb) collisions play an essential role—is analyzed here for Xe with a Boltzmann equation approach and with a first principles particle simulation method. The solution of the Boltzmann equation adopts the usual approximations of (i) searching for the distribution function in the form of two terms (‘two-term approximation’), (ii) neglecting the Coulomb part of the collision integral for the anisotropic part of the distribution function, (iii) treating Coulomb collisions as binary events, and (iv) truncating the range of the electron-electron interaction beyond a characteristic distance. The particle-based simulation method avoids these approximations: the many-body interactions within the electron gas with a true (un-truncated) Coulomb potential are described by a molecular dynamics algorithm, while the collisions between electrons and the background gas atoms are treated with Monte Carlo simulation. We find a good general agreement between the results of the two techniques, which confirms, to a certain extent, the approximations used in the solution of the Boltzmann equation. The differences observed between the results are believed to originate from these approximations and from the presence of statistical noise in the particle simulations.

  6. Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation

    Science.gov (United States)

    Xia, Yin; Xu, Jun; Li, Bao-An; Shen, Wen-Qing

    2016-08-01

    A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann-Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin-orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

  7. Microscopic description of quantum Lorentz gas and extension of the Boltzmann equation to entire space-time scale

    Science.gov (United States)

    Hashimoto, K.; Kanki, K.; Tanaka, S.; Petrosky, T.

    2016-02-01

    Irreversible processes of weakly coupled one-dimensional quantum perfect Lorentz gas are studied on the basis of the fundamental laws of physics in terms of the complex spectral analysis associated with the resonance state of the Liouville-von Neumann operator. Without any phenomenological operations, such as a coarse-graining of space-time, or a truncation of the higher order correlation, we obtained irreversible processes in a purely dynamical basis in all space and time scale including the microscopic atomic interaction range that is much smaller than the mean-free length. Based on this solution, a limitation of the usual phenomenological Boltzmann equation, as well as an extension of the Boltzmann equation to entire space-time scale, is discussed.

  8. Generalized Boltzmann equations for on-shell particle production in a hot plasma

    CERN Document Server

    Jakovác, A

    2002-01-01

    A novel refinement of the conventional treatment of Kadanoff--Baym equations is suggested. Besides the Boltzmann equation another differential equation is used for calculating the evolution of the non-equilibrium two-point function. Although it was usually interpreted as a constraint on the solution of the Boltzmann equation, we argue that its dynamics is relevant to the determination and resummation of the particle production cut contributions. The differential equation for this new contribution is illustrated in the example of the cubic scalar model. The analogue of the relaxation time approximation is suggested. It results in the shift of the threshold location and in smearing out of the non-analytic threshold behaviour of the spectral function. Possible consequences for the dilepton production are discussed.

  9. Monitoring derivation of the quantum linear Boltzmann equation

    OpenAIRE

    Hornberger, Klaus; Vacchini, Bassano

    2007-01-01

    We show how the effective equation of motion for a distinguished quantum particle in an ideal gas environment can be obtained by means of the monitoring approach introduced in [EPL 77, 50007 (2007)]. The resulting Lindblad master equation accounts for the quantum effects of the scattering dynamics in a non-perturbative fashion and it describes decoherence and dissipation in a unified framework. It incorporates various established equations as limiting cases and reduces to the classical linear...

  10. An overview of the Boltzmann transport equation solution for neutrons, photons and electrons in cartesian geometry

    International Nuclear Information System (INIS)

    Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even with modern supercomputers. The most versatile and widely used deterministic methods are the PN approximation, the SN method (discrete ordinates method) and their variants. In the discrete ordinates (SN) formulations of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the Laplace transform technique applied to SN two dimensional transport equation in a rectangular domain considering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea relies on applying the PN approximation, a recent advance in the class of deterministic methods, in the angular variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented. (author)

  11. Stability of Global Solution to Boltzmann-Enskog Equation with External Force

    Institute of Scientific and Technical Information of China (English)

    JIANG ZHENG-LU; MA LI-JUN; YAO ZHENG-AN

    2012-01-01

    In the presence of external forces depending only on the time and space variables,the Boltzmann-Enskog equation formally conserves only the mass of the system,and its entropy functional is also nonincreasing.Corresponding to this type of equation,we first give some hypotheses of its bicharacteristic equations and then get some results about the stablity of its global solution with the help of two new Lyapunov functionals:one is to describe interactions between particles with different velocities and the other is to measure the L1 distance between two mild solutions.The former Lyapunov functional yields the time-asymptotic convergence of global classical solutions to the collision free motion while the latter is applied into the verification of the L1 stability of global mild solutions to the Boltzmann-Enskog equation for a moderately or highly dense gas in the influence of external forces.

  12. From Newton's law to the linear Boltzmann equation without cut-off

    OpenAIRE

    Ayi, Nathalie

    2016-01-01

    We provide a rigorous derivation of the linear Boltzmann equation without cutoff starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combin...

  13. Improved lattice Boltzmann modeling of binary flow based on the conservative Allen-Cahn equation

    Science.gov (United States)

    Ren, Feng; Song, Baowei; Sukop, Michael C.; Hu, Haibao

    2016-08-01

    The primary and key task of binary fluid flow modeling is to track the interface with good accuracy, which is usually challenging due to the sharp-interface limit and numerical dispersion. This article concentrates on further development of the conservative Allen-Cahn equation (ACE) [Geier et al., Phys. Rev. E 91, 063309 (2015), 10.1103/PhysRevE.91.063309] under the framework of the lattice Boltzmann method (LBM), with incorporation of the incompressible hydrodynamic equations [Liang et al., Phys. Rev. E 89, 053320 (2014), 10.1103/PhysRevE.89.053320]. Utilizing a modified equilibrium distribution function and an additional source term, this model is capable of correctly recovering the conservative ACE through the Chapman-Enskog analysis. We also simulate four phase-tracking benchmark cases, including one three-dimensional case; all show good accuracy as well as low numerical dispersion. By coupling the incompressible hydrodynamic equations, we also simulate layered Poiseuille flow and the Rayleigh-Taylor instability, illustrating satisfying performance in dealing with complex flow problems, e.g., high viscosity ratio, high density ratio, and high Reynolds number situations. The present work provides a reliable and efficient solution for binary flow modeling.

  14. A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation

    OpenAIRE

    Crouseilles, Nicolas; Degond, Pierre; Lemou, Mohammed

    2004-01-01

    International audience Our purpose s toderive a hybrid model for particles systems which combines a kinetic description of the fast particles with a fluid description of the thermal ones. Fats particles will be described through a collisional kinetic equation of Boltzmann-BGK type while thermal particles will be modeled by means of a system of a Euler type equations. A conservative numerical scheme is constructed and enables us to validate the approach on various numerical tests.

  15. Steady detonation waves via the Boltzmann equation for a reacting mixture

    CERN Document Server

    Conforto, F; Schürrer, F; Ziegler, I

    2003-01-01

    Based on the Boltzmann equation, the detonation problem is dealt with on a mesoscopic level. The model is based on the assumption that ahead of a shock an explosive gas mixture is in meta stable equilibrium. Starting from the Von Neumann point the chemical reaction, initiated by the pressure jump, proceeds until the chemical equilibrium is reached. Numerical solutions of the derived macroscopic equations as well as the corresponding Hugoniot diagrams which reveal the physical relevance of the mathematical model are provided.

  16. Formulating Weak Lensing from the Boltzmann Equation and Application to Lens-lens Couplings

    CERN Document Server

    Su, S -C

    2014-01-01

    The Planck mission has conclusively detected lensing of the Cosmic Microwave Background (CMB) radiation from foreground sources to an overall significance of greater than $25\\sigma$. The high precision of this measurement motivates the development of a more complete formulation of the calculation of this effect. While most effects on the CMB anisotropies are widely studied through direct solutions of the Boltzmann equation, the non-linear effect of CMB lensing is formulated through the solutions of the geodesic equation. In this paper, we present a new formalism to the calculation of the lensing effect by \\emph{directly solving the Boltzmann equation}, as we did in the calculation of the CMB anisotropies at recombination. In particular, we developed a diagrammatic approach to efficiently keep track of all the interaction terms and calculate all possible non-trivial correlations to arbitrary high orders. Using this formalism, we explicitly articulate the approximations required to recover the usual remapping a...

  17. Boltzmann equation analysis of electrons swarm parameters and properties of excited particle number densities in Xe/Ne plasmas. Laser absorption effect; Xe/Ne plasma chudenshi yuso keisu narabi ni reiki ryushisu mitsudo tokusei no Boltzmann hoteishiki kaiseki. Laser ko kyushu koka

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Sugawara, H.; Ventzek, P.; Sakai, Y. [Hokkaido University, Sapporo (Japan)

    1998-06-01

    Xe/Ne plasmas are important for plasma display panels and VUV light sources. However, reactions between electrons and excited particles in the mixtures are so complicated that influence of the reactions on the plasma properties is not understood well. In this work, taking account of reactions through which electrons are produced, such as cumulative and Penning ionization, and of transition between excited levels, the electron and excited particle properties in Xe/Ne plasmas are calculated using the Boltzmann equation. The ionization coefficient and electron drift velocity agreed with experimental data. The influence of laser absorption in Xe/Ne plasmas on the plasma properties is also discussed. 25 refs., 15 figs.

  18. Diffusive Boltzmann equation, its fluid dynamics, Couette flow and Knudsen layers

    CERN Document Server

    Abramov, Rafail V

    2016-01-01

    In the current work we propose a diffusive modification of the Boltzmann equation. This naturally leads to the corresponding diffusive fluid dynamics equations, which we numerically investigate in a simple Couette flow setting. This diffusive modification is based on the assumption of the "imperfect" model collision term, which is unable to track all collisions in the corresponding real gas particle system. The effect of missed collisions is then modeled by an appropriately scaled long-term homogenization process of the particle dynamics. The corresponding diffusive fluid dynamics equations are produced in a standard way by closing the hierarchy of the moment equations using either the Euler or the Grad closure. In the numerical experiments with the Couette flow, we discover that the diffusive Euler equations behave similarly to the conventional Navier-Stokes equations, while the diffusive Grad equations additionally exhibit Knudsen-like velocity boundary layers. We compare the simulations with the correspond...

  19. A novel protocol for linearization of the Poisson-Boltzmann equation

    CERN Document Server

    Tsekov, R

    2014-01-01

    A new protocol for linearization of the Poisson-Boltzmann equation is proposed and the resultant electrostatic equation coincides formally with the Debye-Huckel equation, the solution of which is well known for many electrostatic problems. The protocol is examined on the example of electrostatically stabilized nano-bubbles and it is shown that stable nano-bubbles could be present in aqueous solutions of anionic surfactants near the critical temperature, if the surface potential is constant. At constant surface charge non nano-bubbles could exist.

  20. Global solutions in the critical Besov space for the non-cutoff Boltzmann equation

    Science.gov (United States)

    Morimoto, Yoshinori; Sakamoto, Shota

    2016-10-01

    The Boltzmann equation is studied without the cutoff assumption. Under a perturbative setting, a unique global solution of the Cauchy problem of the equation is established in a critical Chemin-Lerner space. In order to analyze the collisional term of the equation, a Chemin-Lerner norm is combined with a non-isotropic norm with respect to a velocity variable, which yields an a priori estimate for an energy estimate. Together with local existence following from commutator estimates and the Hahn-Banach extension theorem, the desired solution is obtained.

  1. Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program

    CERN Document Server

    Asinari, Pietro

    2010-01-01

    The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both ...

  2. Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    CERN Document Server

    Premnath, Kannan N; Banerjee, Sanjoy

    2008-01-01

    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extende...

  3. A nonlocal modified Poisson-Boltzmann equation and finite element solver for computing electrostatics of biomolecules

    Science.gov (United States)

    Xie, Dexuan; Jiang, Yi

    2016-10-01

    The nonlocal dielectric approach has been studied for more than forty years but only limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development of this recent work, in this paper, a nonlocal modified Poisson-Boltzmann equation (NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson-Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present an efficient finite element algorithm and a related software package for solving NMPBE. Numerical results are reported to validate this new software package and demonstrate its high performance for protein molecules. They also show the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.

  4. Phonon Boltzmann equation-based discrete unified gas kinetic scheme for multiscale heat transfer

    CERN Document Server

    Guo, Zhaoli

    2016-01-01

    Numerical prediction of multiscale heat transfer is a challenging problem due to the wide range of time and length scales involved. In this work a discrete unified gas kinetic scheme (DUGKS) is developed for heat transfer in materials with different acoustic thickness based on the phonon Boltzmann equation. With discrete phonon direction, the Boltzmann equation is discretized with a second-order finite-volume formulation, in which the time-step is fully determined by the Courant-Friedrichs-Lewy (CFL) condition. The scheme has the asymptotic preserving (AP) properties for both diffusive and ballistic regimes, and can present accurate solutions in the whole transition regime as well. The DUGKS is a self-adaptive multiscale method for the capturing of local transport process. Numerical tests for both heat transfers with different Knudsen numbers are presented to validate the current method.

  5. Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation

    CERN Document Server

    Holst, Michael; Yu, Zeyun; Zhou, Yongcheng; Zhu, Yunrong

    2010-01-01

    We develop an efficient and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the regularization technique of Chen, Holst, and Xu; this technique made possible the first a priori pointwise estimates and the first complete solution and approximation theory for the Poisson-Boltzmann equation. It also made possible the first provably convergent discretization of the PBE, and allowed for the development of a provably convergent AFEM for the PBE. However, in practice the regularization turns out to be numerically ill-conditioned. In this article, we examine a second regularization, and establish a number of basic results to ensure that the new approach produces the same mathematical advantages of the original regularization, without the ill-conditioning property. We then design an AFEM scheme based on the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This res...

  6. A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide

    KAUST Repository

    Allen, Rebecca

    2013-01-01

    The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently

  7. Inhomogeneous relativistic Boltzmann equation near vacuum in the Robertson-Walker space-time

    CERN Document Server

    Takou, Etienne

    2016-01-01

    In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. The collision kernel considered here is for the hard potentials case and the background space-time in which the study is done is the Robertson-Walker space-time. Unique global (in time) mild solution is obtained in a suitable weighted space.

  8. Sliding periodic boundary conditions for lattice Boltzmann and lattice kinetic equations

    OpenAIRE

    Adhikari, R.; Desplat, J. -C.; Stratford, K.

    2005-01-01

    We present a method to impose linear shear flow in discrete-velocity kinetic models of hydrodynamics through the use of sliding periodic boundary conditions. Our method is derived by an explicit coarse-graining of the Lees-Edwards boundary conditions for Couette flow in molecular dynamics, followed by a projection of the resulting equations onto the subspace spanned by the discrete velocities of the lattice Boltzmann method. The boundary conditions are obtained without resort to perturbative ...

  9. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    CERN Document Server

    Lahanas, A B; Nanopoulos, Dimitri V

    2006-01-01

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  10. Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances

    Science.gov (United States)

    Lahanas, Ab; Mavromatos, Ne; Nanopoulos, Dv

    In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.

  11. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    OpenAIRE

    José Colmenares; Antonella Galizia; Jesús Ortiz; Andrea Clematis; Walter Rocchia

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is ...

  12. Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation

    Institute of Scientific and Technical Information of China (English)

    LI; Zhihui; ZHANG; Hanxin; FU; Song

    2005-01-01

    The gas-kinetic unified algorithm using Boltzmann model equation have been extended and developed to solve the micro-scale gas flows in Poiseuille-like micro-channels from Micro-Electro-Mechanical Systems (MEMS). The numerical modeling of the gas kinetic boundary conditions suitable for micro-scale gas flows is presented. To test the present method, the classical Couette flows with various Knudsen numbers, the gas flows from short microchannels like plane Poiseuille and the pressure-driven gas flows in two-dimensional short microchannels have been simulated and compared with the approximate solutions of the Boltzmann equation, the related DSMC results, the modified N-S solutions with slip-flow boundary theory, the gas-kinetic BGK-Burnett solutions and the experimental data. The comparisons show that the present gas-kinetic numerical algorithm using the mesoscopic Boltzmann simplified velocity distribution function equation can effectively simulate and reveal the gas flows in microchannels. The numerical experience indicates that this method may be a powerful tool in the numerical simulation of micro-scale gas flows from MEMS.

  13. Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

    International Nuclear Information System (INIS)

    To establish a theoretical framework for generalizing Monte Carlo transport algorithms by adding external electromagnetic fields to the Boltzmann radiation transport equation in a rigorous and consistent fashion. Using first principles, the Boltzmann radiation transport equation is modified by adding a term describing the variation of the particle distribution due to the Lorentz force. The implications of this new equation are evaluated by investigating the validity of Fano’s theorem. Additionally, Lewis’ approach to multiple scattering theory in infinite homogeneous media is redefined to account for the presence of external electromagnetic fields. The equation is modified and yields a description consistent with the deterministic laws of motion as well as probabilistic methods of solution. The time-independent Boltzmann radiation transport equation is generalized to account for the electromagnetic forces in an additional operator similar to the interaction term. Fano’s and Lewis’ approaches are stated in this new equation. Fano’s theorem is found not to apply in the presence of electromagnetic fields. Lewis’ theory for electron multiple scattering and moments, accounting for the coupling between the Lorentz force and multiple elastic scattering, is found. However, further investigation is required to develop useful algorithms for Monte Carlo and deterministic transport methods. To test the accuracy of Monte Carlo transport algorithms in the presence of electromagnetic fields, the Fano cavity test, as currently defined, cannot be applied. Therefore, new tests must be designed for this specific application. A multiple scattering theory that accurately couples the Lorentz force with elastic scattering could improve Monte Carlo efficiency. The present study proposes a new theoretical framework to develop such algorithms. (paper)

  14. Solution Poisson-Boltzmann equation: Application in the Human Neuron Membrane

    CERN Document Server

    Soares, M A G; Cortez, C M

    2008-01-01

    With already demonstrated in previous work the equations that describe the space dependence of the electric potential are determined by the solution of the equation of Poisson-Boltzmann. In this work we consider these solutions for the membrane of the human neuron, using a model simplified for this structure considering the distribution of electrolytes in each side of the membrane, as well as the effect of glycocalyx and the lipidic bilayer. It was assumed that on both sides of the membrane the charges are homogeneously distributed and that the potential depends only on coordinate z.

  15. Time-Dependent Ginzburg-Landau Equation and Boltzmann Transport Equation for Charge-Density-Wave Conductors

    Science.gov (United States)

    Takane, Yositake; Hayashi, Masahiko; Ebisawa, Hiromichi

    2016-08-01

    The time-dependent Ginzburg-Landau equation and the Boltzmann transport equation for charge-density-wave (CDW) conductors are derived from a microscopic one-dimensional model by applying the Keldysh Green's function approach under a quasiclassical approximation. The effects of an external electric field and impurity pinning of the CDW are fully taken into account without relying on a phenomenological argument. These equations simultaneously describe the spatiotemporal dynamics of both the CDW and quasiparticles; thus, they serve as a starting point to develop a general framework to analyze various nonequilibrium phenomena, such as current conversion between the CDW condensate and quasiparticles, in realistic CDW conductors. It is shown that, in typical situations, the equations correctly describe the nonlinear behavior of electric conductivity in a simpler manner.

  16. Perturbative and non-perturbative aspects non-Abelian Boltzmann-Langevin equation

    Energy Technology Data Exchange (ETDEWEB)

    Boedeker, Dietrich. E-mail: bodeker@physik.uni-bielefeld.de

    2002-12-30

    We study the Boltzmann-Langevin equation which describes the dynamics of hot Yang-Mills fields with typical momenta of order of the magnetic screening scale g{sup 2}T. It is transformed into a path integral and Feynman rules are obtained. We find that the leading log Langevin equation can be systematically improved in a well behaved expansion in log(1/g){sup -1}. The result by Arnold and Yaffe that the leading log Langevin equation is still valid at next-to-leading-log order is confirmed. We also confirm their result for the next-to-leading-log damping coefficient, or color conductivity, which is shown to be gauge fixing independent for a certain class of gauges. The frequency scale g{sup 2}T does not contribute to this result, but it does contribute, by power counting, to the transverse gauge field propagator. Going beyond a perturbative expansion we find 1-loop ultraviolet divergences which cannot be removed by renormalizing the parameters in the Boltzmann-Langevin equation.

  17. Fokker-Planck Equation for Boltzmann-type and Active Particles transfer probability approach

    CERN Document Server

    Trigger, S A

    2002-01-01

    Fokker-Planck equation with the velocity-dependent coefficients is considered for various isotropic systems on the basis of probability transition (PT) approach. This method provides the self-consistent and universal description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown to occur for two dimensional (2-D) and three dimensional (3-D) cases, due to the tensorial character of diffusion. The specific forms of PT are calculated for the Boltzmann-type of collisions and for the absorption-type of collisions (the later are typical for dusty plasmas and some other systems). Validity of the Einstein's relation for the Boltzmann-type collisions is proved for the velocity-dependent friction and diffusion coefficients. For non-Boltzmann collisions, such as, e.g., absorption collisions, the Einstein relation is violated, although some other relations (determined by the structure of PT) can exist. The collecting part of the ion drag force in a dusty plasma, arising...

  18. Nonlinear Boltzmann equation for the homogeneous isotropic case: Some improvements to deterministic methods and applications to relaxation towards local equilibrium

    Science.gov (United States)

    Asinari, P.

    2011-03-01

    Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).

  19. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  20. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  1. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Science.gov (United States)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  2. On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates

    Science.gov (United States)

    Lu, Xuguang; Mouhot, Clément

    The spatially homogeneous Boltzmann equation with hard potentials is considered for measure valued initial data having finite mass and energy. We prove the existence of weak measure solutions, with and without angular cutoff on the collision kernel; the proof in particular makes use of an approximation argument based on the Mehler transform. Moment production estimates in the usual form and in the exponential form are obtained for these solutions. Finally for the Grad angular cutoff, we also establish uniqueness and strong stability estimate on these solutions.

  3. High order numerical methods for the space non-homogeneous Boltzmann equation

    International Nuclear Information System (INIS)

    In this paper we present accurate methods for the numerical solution of the Boltzmann equation of rarefied gas. The methods are based on a time splitting technique. The transport is solved by a third order accurate (in space) positive and flux conservative (PFC) method. The collision step is treated by a Fourier approximation of the collision integral, which guarantees spectral accuracy in velocity, coupled with several high order integrators in time. Strang splitting is used to achieve second order accuracy in space and time. Several numerical tests illustrate the properties of the methods

  4. Numerical solution of the Boltzmann equation for the shock wave in a gas mixture

    CERN Document Server

    Raines, A A

    2014-01-01

    We study the structure of a shock wave for a two-, three- and four-component gas mixture on the basis of numerical solution of the Boltzmann equation for the model of hard sphere molecules. For the evaluation of collision integrals we use the Conservative Projection Method developed by F.G. Tscheremissine which we extended to gas mixtures in cylindrical coordinates. The transition from the upstream to downstream uniform state is presented by macroscopic values and distribution functions. The obtained results were compared with numerical and experimental results of other authors.

  5. Relaxation of hot and massive tracers using numerical solutions of the Boltzmann equation.

    Science.gov (United States)

    Khurana, Saheba; Thachuk, Mark

    2016-03-14

    A numerical method using B-splines is used to solve the linear Boltzmann equation describing the energy relaxation of massive tracer particles moving through a dilute bath gas. The smooth and rough hard sphere and Maxwell molecule models are used with a variety of mass ratios and initial energies to test the capability of the numerical method. Massive tracers are initialized with energies typically found in energy loss experiments in mass spectrometry using biomolecules. The method is also used to examine the applicability of known expressions for the kinetic energy decay from the Fokker-Planck equation for the Rayleigh gas, where we find that results are generally good provided that the initial energy is properly bounded. Otherwise, the energy decay is not constant and a more complex behaviour occurs. The validity of analytical expressions for drag coefficients for spherical particles under specular and diffuse scattering is also tested. We find such expressions are generally good for hard spheres but cannot account, as expected, for the softer repulsive walls of the Maxwell (and real) molecules. Overall, the numerical method performed well even when tracers more than 400 times as massive as the bath were initialized with energies very far from equilibrium. This is a range of applicability beyond many of the standard methods for solving the Boltzmann equation. PMID:26979675

  6. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    CERN Document Server

    Zheng, Lin; Zhai, Qinglan

    2014-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface fore (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter visa Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is also solved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and a two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then ...

  7. Vectorization of the time-dependent Boltzmann transport equation: Application to deep penetration problems

    Science.gov (United States)

    Cobos, Agustín C.; Poma, Ana L.; Alvarez, Guillermo D.; Sanz, Darío E.

    2016-10-01

    We introduce an alternative method to calculate the steady state solution of the angular photon flux after a numerical evolution of the time-dependent Boltzmann transport equation (BTE). After a proper discretization the transport equation was converted into an ordinary system of differential equations that can be iterated as a weighted Richardson algorithm. As a different approach, in this work the time variable regulates the iteration process and convergence criteria is based on physical parameters. Positivity and convergence was assessed from first principles and a modified Courant-Friedrichs-Lewy condition was devised to guarantee convergence. The Penelope Monte Carlo method was used to test the convergence and accuracy of our approach for different phase space discretizations. Benchmarking was performed by calculation of total fluence and photon spectra in different one-dimensional geometries irradiated with 60Co and 6 MV photon beams and radiological applications were devised.

  8. On Existence of $L^2$-solutions of Coupled Boltzmann Continuous Slowing Down Transport Equation System

    CERN Document Server

    Tervo, J; Frank, M; Herty, M

    2016-01-01

    The paper considers a coupled system of linear Boltzmann transport equation (BTE), and its Continuous Slowing Down Approximation (CSDA). This system can be used to model the relevant transport of particles used e.g. in dose calculation in radiation therapy. The evolution of charged particles (e.g. electrons and positrons) are in practice often modelled using the CSDA version of BTE because of the so-called forward peakedness of scattering events contributing to the particle fluencies (or particle densities), which causes severe problems for numerical methods. First, we prove the existence and uniqueness of solutions, under sufficient criteria and in appropriate $L^2$-based spaces, of a single (particle) CSDA-equation by using two complementary techniques, the Lions-Lax-Milgram Theorem (variational approach), and the theory evolution operators (semigroup approach). The necessary a priori estimates are shown. In addition, we prove the corresponding results and estimates for the system of coupled transport equat...

  9. The linear Boltzmann equation in slab geometry - Development and verification of a reliable and efficient solution

    Science.gov (United States)

    Stamnes, K.; Lie-Svendsen, O.; Rees, M. H.

    1991-01-01

    The linear Boltzmann equation can be cast in a form mathematically identical to the radiation-transport equation. A multigroup procedure is used to reduce the energy (or velocity) dependence of the transport equation to a series of one-speed problems. Each of these one-speed problems is equivalent to the monochromatic radiative-transfer problem, and existing software is used to solve this problem in slab geometry. The numerical code conserves particles in elastic collisions. Generic examples are provided to illustrate the applicability of this approach. Although this formalism can, in principle, be applied to a variety of test particle or linearized gas dynamics problems, it is particularly well-suited to study the thermalization of suprathermal particles interacting with a background medium when the thermal motion of the background cannot be ignored. Extensions of the formalism to include external forces and spherical geometry are also feasible.

  10. Asymptotic analysis of the lattice Boltzmann method for generalized Newtonian fluid flows

    CERN Document Server

    Yang, Zai-Bao

    2013-01-01

    In this article, we present a detailed asymptotic analysis of the lattice Boltzmann method with two different collision mechanisms of BGK-type on the D2Q9-lattice for generalized Newtonian fluids. Unlike that based on the Chapman-Enskog expansion leading to the compressible Navier-Stokes equations, our analysis gives the incompressible ones directly and exposes certain important features of the lattice Boltzmann solutions. Moreover, our analysis provides a theoretical basis for using the iteration to compute the rate-of-strain tensor, which makes sense specially for generalized Newtonian fluids. As a by-product, a seemingly new structural condition on the generalized Newtonian fluids is singled out. This condition reads as "the magnitude of the stress tensor increases with increasing the shear rate". We verify this condition for all the existing constitutive relations which are known to us. In addition, it it straightforward to extend our analysis to MRT models or to three-dimensional lattices.

  11. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, S. A. M.; Ansbacher, W. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada); Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada) and Department of Medical Physics, British Columbia Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada)

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  12. Opinion dynamics: inhomogeneous Boltzmann-type equations modelling opinion leadership and political segregation

    CERN Document Server

    Düring, Bertram

    2015-01-01

    We propose and investigate different kinetic models for opinion formation, when the opinion formation process depends on an additional independent variable, e.g. a leadership or a spatial variable. More specifically, we consider:(i) opinion dynamics under the effect of opinion leadership, where each individual is characterised not only by its opinion, but also by another independent variable which quantifies leadership qualities; (ii) opinion dynamics modelling political segregation in the `The Big Sort', a phenomenon that US citizens increasingly prefer to live in neighbourhoods with politically like-minded individuals. Based on microscopic opinion consensus dynamics such models lead to inhomogeneous Boltzmann-type equations for the opinion distribution. We derive macroscopic Fokker-Planck-type equations in a quasi-invariant opinion limit and present results of numerical experiments.

  13. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  14. Effects of density and force discretizations on spurious velocities in lattice Boltzmann equation for two-phase flows

    KAUST Repository

    Xiong, Yuan

    2014-04-28

    Spurious current emerging in the vicinity of phase interfaces is a well-known disadvantage of the lattice Boltzmann equation (LBE) for two-phase flows. Previous analysis shows that this unphysical phenomenon comes from the force imbalance at discrete level inherited in LBE (Guo et al 2011 Phys. Rev. E 83 036707). Based on the analysis of the LBE free of checkerboard effects, in this work we further show that the force imbalance is caused by the different discretization stencils: the implicit one from the streaming process and the explicit one from the discretization of the force term. Particularly, the total contribution includes two parts, one from the difference between the intrinsically discretized density (or ideal gas pressure) gradient and the explicit ones in the force term, and the other from the explicit discretized chemical potential gradients in the intrinsically discretized force term. The former contribution is a special feature of LBE which was not realized previously.

  15. A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    José Colmenares

    2014-01-01

    Full Text Available The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.

  16. A combined MPI-CUDA parallel solution of linear and nonlinear Poisson-Boltzmann equation.

    Science.gov (United States)

    Colmenares, José; Galizia, Antonella; Ortiz, Jesús; Clematis, Andrea; Rocchia, Walter

    2014-01-01

    The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs. PMID:25013789

  17. Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation.

    Science.gov (United States)

    Radtke, Gregg A; Hadjiconstantinou, Nicolas G

    2009-05-01

    We present an efficient variance-reduced particle simulation technique for solving the linearized Boltzmann transport equation in the relaxation-time approximation used for phonon, electron, and radiative transport, as well as for kinetic gas flows. The variance reduction is achieved by simulating only the deviation from equilibrium. We show that in the limit of small deviation from equilibrium of interest here, the proposed formulation achieves low relative statistical uncertainty that is also independent of the magnitude of the deviation from equilibrium, in stark contrast to standard particle simulation methods. Our results demonstrate that a space-dependent equilibrium distribution improves the variance reduction achieved, especially in the collision-dominated regime where local equilibrium conditions prevail. We also show that by exploiting the physics of relaxation to equilibrium inherent in the relaxation-time approximation, a very simple collision algorithm with a clear physical interpretation can be formulated. PMID:19518597

  18. Weak and strong coupling limits of the Boltzmann equation in the relaxation-time approximation

    CERN Document Server

    Jaiswal, Amaresh; Redlich, Krzysztof

    2016-01-01

    We consider a momentum dependent relaxation time for the Boltzmann equation in the relaxation time approximation. We employ a power law parametrization for the momentum dependence of the relaxation time, and calculate the shear and bulk viscosity, as well as, the charge and heat conductivity. We show, that for the two popular parametrizations, referred to as the linear and quadratic ansatz, one can obtain transport coefficients which corresponds to the weak and strong coupling regimes, respectively. We also show that, for a system of massless particles with vanishing chemical potential, the off-equilibrium corrections to the phase-space distribution function calculated with the quadratic ansatz are identical with those of the Grad's 14-moment method.

  19. LATTICE BOLTZMANN METHOD SIMULATIONS FOR MULTIPHASE FLUIDS WITH REDICH-KWONG EQUATION OF STATE

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-kun; QIAN Yue-hong

    2011-01-01

    In this article we state that the compression factor of the Redlich-Kwong Equation Of State (EOS) is smaller than that of van der Waals EOS.The Redlich-Kwong EOS is in better agreement with experimental data on coexistence curves at the critical point than the van der Waals EOS.We implement the Redlich-Kwong EOS in the Lattice Boltzmann Method (LBM) simulations via a pseudo-potential approach.We propose a new force,which can obtain computational stationary and reach larger density ratio.As a result,multi-phase flows with large density ratio (up to 1012 in the stationary case) can be simulated.We perform four numerical simulations,which are respectively related to single liquid droplet,vapor-liquid separation,surface tension and liquid coalescence of two droplets.

  20. Planetary Ring Dynamics -- The Streamline Formalism -- 1. From Boltzmann Equation to Celestial Mechanics

    CERN Document Server

    Longaretti, Pierre-Yves

    2016-01-01

    These 1992 lectures notes present a powerful formalism mostly developed in the 1980s by Borderies, Goldreich and Tremaine to address planetary ring dynamical issues. These notes make a special emphasis on ring microphysics, quantified with the help of the moments of the Boltzmann equation. They also focus on the standard self-gravity model of narrow ring rigid precession, and on the physics of linear and nonlinear density waves. These notes have been corrected but only very marginally extended and not updated. They are provided both as an introduction to the streamline formalism and as a complement on some technical issues for my upcoming review ("Theory of Narrow rings and Sharp Edges") that will cover the physics not addressed here along with more recent developments. This review will appear in the "Planetary Ring System" book (C. Murray and M. Tiscareno, eds.), to be published later on this year at Cambridge University Press.

  1. A novel construction of thermodynamically compatible models and its correspondence with Boltzmann-equation-based moment-closure hierarchies

    Science.gov (United States)

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2015-12-01

    In this article, we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, properly separating entropy fluxes and production rates, and determining a dissipation matrix. Our approach takes advantage of both extended irreversible thermodynamics and GENERIC formalisms and shows a direct correspondence with Levermore's moment-closure hierarchies for the Boltzmann equation. As a direct application, a new ten-moment model beyond the classical hierarchies is constructed and is shown to recover the Euler equations in the equilibrium state. These interesting results may put various macroscopic modeling approaches, starting from the general principles of non-equilibrium thermodynamics, on a solid microscopic foundation based on the Boltzmann equation.

  2. Conjugate heat and mass transfer in the lattice Boltzmann equation method.

    Science.gov (United States)

    Li, Like; Chen, Chen; Mei, Renwei; Klausner, James F

    2014-04-01

    An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes. The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are conveniently obtained from the microscopic distribution functions without finite-difference calculations. The present treatment takes into account the local geometry of the interface so that it can be directly applied to curved interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including (i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and (iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature (concentration), and heat (mass) flux are examined in detail and compared with those obtained from the "half-lattice division" treatment in the literature. The present analysis and numerical results show that the half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For curved

  3. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Science.gov (United States)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  4. Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.

    Science.gov (United States)

    Fraenkel, Dan

    2015-12-01

    The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions.

  5. Improved Multiple-Coarsening Methods for Sn Discretizations of the Boltzmann Equation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B

    2008-12-01

    In a recent series of articles, the author presented a multiple-coarsening multigrid method for solving S{sub n} discretizations of the Boltzmann transport equation. This algorithm is applied to an integral equation for the scalar flux or moments. Although this algorithm is very efficient over parameter regimes that describe realistic neutron/photon transport applications, improved methods that can reduce the computational cost are presented in this paper. These improved methods are derived through a careful examination of the frequencies, particularly the near-nullspace, of the integral equation. In the earlier articles, the near-nullspace components were shown to be smooth in angle in the sense that the angular fluxes generated by these components are smooth in angle. In this paper, we present a spatial description of these near-nullspace components. Using the angular description of the earlier papers together with the spatial description reveals the intrinsic space-angle dependence of the integral equation's frequencies. This space-angle dependence is used to determine the appropriate space-angle grids to represent and efficiently attenuate the near-nullspace error components on. It will be shown that these components can have multiple spatial scales. By using only the appropriate space-angle grids that can represent these spatial scales in the original multiple-coarsening algorithm, an improved algorithm is obtained. Moreover, particularly for anisotropic scattering, recognizing the strong angle dependence of the angular fluxes generated by the high frequencies of the integral equation, another improved multiple-coarsening scheme is derived. Restricting this scheme to the appropriate space-angle grids produces a very efficient method.

  6. Multiterm spherical tensor representation of Boltzmann's equation for a nonhydrodynamic weakly ionized plasma.

    Science.gov (United States)

    Robson, R E; Winkler, R; Sigeneger, F

    2002-05-01

    The Boltzmann equation corresponding to a general "multiterm" representation of the phase space distribution function f(r,c,t) for charged particles in a gas in an electric field was reformulated entirely in terms of spherical tensors f(l)(m) some time ago, and numerous applications, including extension to time varying and crossed electric and magnetic fields, have followed. However, these applications have, by and large, been limited to the hydrodynamic conditions that prevail in swarm experiments and the full potential of the tensor formalism has thus never been realized. This paper resumes the discussion in the context of the more general nonhydrodynamic situation. Geometries for which a simple Legendre polynomial expansion suffices to represent f are discussed briefly, but the emphasis is upon cylindrical geometry, where such simplification does not arise. In particular, we consider an axisymmetric cylindrical column of weakly ionized plasma, and derive an infinite hierarchy of integrodifferential equations for the expansion coefficients of the phase space distribution function, valid for both electrons and ions, and for all types of binary interaction with neutral gas molecules. PMID:12059718

  7. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  8. Consistent Algorithms Marching Along Characteristics for the Numerical Solution of the Boltzmann Equation

    Directory of Open Access Journals (Sweden)

    Nilson C. Roberty

    2011-01-01

    Full Text Available We introduce algorithms marching over a polygonal mesh with elements consistent with the propagation directions of the particle (radiation flux. The decision for adopting this kind of mesh to solve the one-speed Boltzmann transport equation is due to characteristics of the domain of the transport operator which controls derivatives only in the direction of propagation of the particles (radiation flux in the absorbing and scattering media. This a priori adaptivity has the advantages that it formulates a consistent scheme which makes appropriate the application of the Lax equivalence theorem framework to the problem. In this work, we present the main functional spaces involved in the formalism and a description of the algorithms for the mesh generation and the transport equation solution. Some numerical examples related to the solution of a transmission problem in a high-contrast model with absorption and scattering are presented. Also, a comparison with benchmarks problems for source and reactor criticality simulations shows the compatibility between calculations with the algorithms proposed here and theoretical results.

  9. TH-E-BRE-02: A Forward Scattering Approximation to Dose Calculation Using the Linear Boltzmann Transport Equation

    International Nuclear Information System (INIS)

    Purpose: To investigate the use of the linear Boltzmann transport equation as a dose calculation tool which can account for interface effects, while still having faster computation times than Monte Carlo methods. In particular, we introduce a forward scattering approximation, in hopes of improving calculation time without a significant hindrance to accuracy. Methods: Two coupled Boltzmann transport equations were constructed, one representing the fluence of photons within the medium, and the other, the fluence of electrons. We neglect the scattering term within the electron transport equation, resulting in an extreme forward scattering approximation to reduce computational complexity. These equations were then solved using a numerical technique for solving partial differential equations, known as a finite difference scheme, where the fluence at each discrete point in space is calculated based on the fluence at the previous point in the particle's path. Using this scheme, it is possible to develop a solution to the Boltzmann transport equations by beginning with boundary conditions and iterating across the entire medium. The fluence of electrons can then be used to find the dose at any point within the medium. Results: Comparisons with Monte Carlo simulations indicate that even simplistic techniques for solving the linear Boltzmann transport equation yield expected interface effects, which many popular dose calculation algorithms are not capable of predicting. Implementation of a forward scattering approximation does not appear to drastically reduce the accuracy of this algorithm. Conclusion: Optimized implementations of this algorithm have been shown to be very accurate when compared with Monte Carlo simulations, even in build up regions where many models fail. Use of a forward scattering approximation could potentially give a reasonably accurate dose distribution in a shorter amount of time for situations where a completely accurate dose distribution is not

  10. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Science.gov (United States)

    Liu, Chang; Xu, Kun; Sun, Quanhua; Cai, Qingdong

    2016-06-01

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region

  11. Solution of the Boltzmann-Fokker-Planck transport equation using exponential nodal schemes; Solucion de la ecuacion de transporte de Boltzmann-Fokker-Planck usando esquemas nodales exponenciales

    Energy Technology Data Exchange (ETDEWEB)

    Ortega J, R.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: roj@correo.azc.uam.mx

    2003-07-01

    There are carried out charge and energy calculations deposited due to the interaction of electrons with a plate of a certain material, solving numerically the electron transport equation for the Boltzmann-Fokker-Planck approach of first order in plate geometry with a computer program denominated TEOD-NodExp (Transport of Electrons in Discreet Ordinates, Nodal Exponentials), using the proposed method by the Dr. J. E. Morel to carry out the discretization of the variable energy and several spatial discretization schemes, denominated exponentials nodal. It is used the Fokker-Planck equation since it represents an approach of the Boltzmann transport equation that is been worth whenever it is predominant the dispersion of small angles, that is to say, resulting dispersion in small dispersion angles and small losses of energy in the transport of charged particles. Such electrons could be those that they face with a braking plate in a device of thermonuclear fusion. In the present work its are considered electrons of 1 MeV that impact isotropically on an aluminum plate. They were considered three different thickness of plate that its were designated as problems 1, 2 and 3. In the calculations it was used the discrete ordinate method S{sub 4} with expansions of the dispersion cross sections until P{sub 3} order. They were considered 25 energy groups of uniform size between the minimum energy of 0.1 MeV and the maximum of 1.0 MeV; the one spatial intervals number it was considered variable and it was assigned the values of 10, 20 and 30. (Author)

  12. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    Science.gov (United States)

    Hu, Zexi; Huang, Juntao; Yong, Wen-An

    2016-04-01

    In this work, we propose an interfacial scheme accompanying the lattice Boltzmann method for convection-diffusion equations with general interfacial conditions, including conjugate conditions with or without jumps in heat and mass transfer, continuity of macroscopic variables and normal fluxes in ion diffusion in porous media with different porosity, and the Kapitza resistance in heat transfer. The construction of this scheme is based on our boundary schemes [Huang and Yong, J. Comput. Phys. 300, 70 (2015), 10.1016/j.jcp.2015.07.045] for Robin boundary conditions on straight or curved boundaries. It gives second-order accuracy for straight interfaces and first-order accuracy for curved ones. In addition, the new scheme inherits the advantage of the boundary schemes in which only the current lattice nodes are involved. Such an interfacial scheme is highly desirable for problems with complex geometries or in porous media. The interfacial scheme is numerically validated with several examples. The results show the utility of the constructed scheme and very well support our theoretical predications.

  13. Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    Science.gov (United States)

    Romano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.

    2016-01-01

    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17 % to heat transport, compared to 5 % in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K acoustic phonons with long intrinsic MFP and the temperature dependence of the heat capacity. Our findings, which are in qualitative agreement with the temperature trend of thermal conductivities measured in nanoporous Si-based systems, shed light on the origin of the reduction of thermal conductivity in nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.

  14. On anisotropy function in crystal growth simulations using Lattice Boltzmann equation

    CERN Document Server

    Younsi, Amina

    2016-01-01

    In this paper, we present the ability of the Lattice Boltzmann (LB) equation, usually applied to simulate fluid flows, to simulate various shapes of crystals. Crystal growth is modeled with a phase-field model for a pure substance, numerically solved with a LB method in 2D and 3D. This study focuses on the anisotropy function that is responsible for the anisotropic surface tension between the solid phase and the liquid phase. The anisotropy function involves the unit normal vectors of the interface, defined by gradients of phase-field. Those gradients have to be consistent with the underlying lattice of the LB method in order to avoid unwanted effects of numerical anisotropy. Isotropy of the solution is obtained when the directional derivatives method, specific for each lattice, is applied for computing the gradient terms. With the central finite differences method, the phase-field does not match with its rotation and the solution is not any more isotropic. Next, the method is applied to simulate simultaneous...

  15. Third-order analysis of pseudopotential lattice Boltzmann model for multiphase flow

    CERN Document Server

    Huang, Rongzong

    2016-01-01

    In this work, a third-order Chapman-Enskog analysis of the multiple-relaxation-time (MRT) pseudopotential lattice Boltzmann (LB) model for multiphase flow is performed for the first time. The leading terms on the interaction force, consisting of an anisotropic and an isotropic term, are successfully identified in the third-order macroscopic equation recovered by the lattice Boltzmann equation (LBE), and then new mathematical insights into the pseudopotential LB model are provided. For the third-order anisotropic term, numerical tests show that it can cause the stationary droplet to become out-of-round, which suggests the isotropic property of the LBE needs to be seriously considered in the pseudopotential LB model. By adopting the classical equilibrium moment or setting the so-called "magic" parameter to 1/12, the anisotropic term can be eliminated, which is found from the present third-order analysis and also validated numerically. As for the third-order isotropic term, when and only when it is considered, a...

  16. Thermoelectric coefficients of n -doped silicon from first principles via the solution of the Boltzmann transport equation

    Science.gov (United States)

    Fiorentini, Mattia; Bonini, Nicola

    2016-08-01

    We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n -doped silicon. In particular, we discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons, the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.

  17. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Science.gov (United States)

    Li, Zhihui; Wu, Junlin; Ma, Qiang; Jiang, Xinyu; Zhang, Hanxin

    2014-12-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.

  18. On Exact Solutions to the Cylindrical Poisson-Boltzmann Equation with Applications to Polyelectrolytes

    OpenAIRE

    Tracy, C. A.; Widom, H.

    1997-01-01

    Using exact results from the theory of completely integrable systems of the Painleve/Toda type, we examine the consequences for the theory of polyelectrolytes in the (nonlinear) Poisson-Boltzmann approximation.

  19. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...

  20. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  1. Electrostatic component of binding energy: Interpreting predictions from poisson-boltzmann equation and modeling protocols.

    Science.gov (United States)

    Chakavorty, Arghya; Li, Lin; Alexov, Emil

    2016-10-30

    Macromolecular interactions are essential for understanding numerous biological processes and are typically characterized by the binding free energy. Important component of the binding free energy is the electrostatics, which is frequently modeled via the solutions of the Poisson-Boltzmann Equations (PBE). However, numerous works have shown that the electrostatic component (ΔΔGelec ) of binding free energy is very sensitive to the parameters used and modeling protocol. This prompted some researchers to question the robustness of PBE in predicting ΔΔGelec . We argue that the sensitivity of the absolute ΔΔGelec calculated with PBE using different input parameters and definitions does not indicate PBE deficiency, rather this is what should be expected. We show how the apparent sensitivity should be interpreted in terms of the underlying changes in several numerous and physical parameters. We demonstrate that PBE approach is robust within each considered force field (CHARMM-27, AMBER-94, and OPLS-AA) once the corresponding structures are energy minimized. This observation holds despite of using two different molecular surface definitions, pointing again that PBE delivers consistent results within particular force field. The fact that PBE delivered ΔΔGelec values may differ if calculated with different modeling protocols is not a deficiency of PBE, but natural results of the differences of the force field parameters and potential functions for energy minimization. In addition, while the absolute ΔΔGelec values calculated with different force field differ, their ordering remains practically the same allowing for consistent ranking despite of the force field used. © 2016 Wiley Periodicals, Inc.

  2. A lattice-Boltzmann scheme of the Navier-Stokes equations on a 3D cuboid lattice

    Science.gov (United States)

    Min, Haoda; Peng, Cheng; Wang, Lian-Ping

    2015-11-01

    The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or cubic (in 3D) lattice grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-relaxation-time) collision model, by adding a free parameter in the definition of moments or by extending the equilibrium moments. Here we developed a lattice Boltzmann model on 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We designed our MRT-LBM model by matching the moment equations from the Chapman-Enskog expansion with the Navier-Stokes equations. The model guarantees correct hydrodynamics. A second-order term is added to the equilibrium moments in order to restore the isotropy of viscosity on a cuboid lattice. The form and the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit of the model is that the viscosity can be adjusted independent of the stress-moment relaxation parameter, thus improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark simulations using laminar channel flow, turbulent channel flow, and the 3D Taylor-Green vortex flow.

  3. Gas-kinetic theory and Boltzmann equation of share price within an equilibrium market hypothesis and ad hoc strategy

    Science.gov (United States)

    Ausloos, M.

    2000-09-01

    Recent observations have indicated that the traditional equilibrium market hypothesis (EMH; also known as Efficient Market Hypothesis) is unrealistic. It is shown here that it is the analog of a Boltzmann equation in physics, thus having some bad properties of mean-field approximations like a Gaussian distribution of price fluctuations. A kinetic theory for prices can be simply derived, considering in a first approach that market actors have all identical relaxation times, and solved within a Chapman-Enskog like formalism. In closing the set of equations, (i) an equation of state with a pressure and (ii) the equilibrium (isothermal) equation for the price (taken as the order parameter) of a stock as a function of the volume of money available are obtained.

  4. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    CERN Document Server

    Hammond, L A; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.

  5. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.

    Science.gov (United States)

    Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy

    2009-02-01

    In this paper, we present a framework based on the generalized lattice Boltzmann equation (GLBE) using multiple relaxation times with forcing term for eddy capturing simulation of wall-bounded turbulent flows. Due to its flexibility in using disparate relaxation times, the GLBE is well suited to maintaining numerical stability on coarser grids and in obtaining improved solution fidelity of near-wall turbulent fluctuations. The subgrid scale (SGS) turbulence effects are represented by the standard Smagorinsky eddy viscosity model, which is modified by using the van Driest wall-damping function to account for reduction of turbulent length scales near walls. In order to be able to simulate a wider class of problems, we introduce forcing terms, which can represent the effects of general nonuniform forms of forces, in the natural moment space of the GLBE. Expressions for the strain rate tensor used in the SGS model are derived in terms of the nonequilibrium moments of the GLBE to include such forcing terms, which comprise a generalization of those presented in a recent work [Yu, Comput. Fluids 35, 957 (2006)]. Variable resolutions are introduced into this extended GLBE framework through a conservative multiblock approach. The approach, whose optimized implementation is also discussed, is assessed for two canonical flow problems bounded by walls, viz., fully developed turbulent channel flow at a shear or friction Reynolds number (Re) of 183.6 based on the channel half-width and three-dimensional (3D) shear-driven flows in a cubical cavity at a Re of 12 000 based on the side length of the cavity. Comparisons of detailed computed near-wall turbulent flow structure, given in terms of various turbulence statistics, with available data, including those from direct numerical simulations (DNS) and experiments showed good agreement. The GLBE approach also exhibited markedly better stability characteristics and avoided spurious near-wall turbulent fluctuations on coarser grids

  6. Electron swarm transport coefficients in mixtures of H2O with He and Ar: Experiment and Boltzmann equation calculations

    Science.gov (United States)

    de Urquijo, Jaime; Basurto, E.; Juarez, A. M.; Ness, Kevin; Robson, Robert; Brunger, Michael; White, Ron

    2014-10-01

    The drift velocity of electrons in mixtures of gaseous water with helium and argon are measured over the range of reduced electric fields from 0--300 Td using a pulsed-Townsend technique. Small admixtures of water to both helium and argon are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. Comparison of the measured drift velocities with those calculated from a multi-term solution of Boltzmann's equation provides a further discriminative assessment on the accuracy and completeness of electron water vapour cross-sections. Funding acknowledgements: ARC, Mexican govt (PAPIIT IN 111014).

  7. A Discussion on Whether 15-20C Are All Skin Nuclei via Isospin-dependent Boltzmann-Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu; ZHANG Feng-Shou; SU Jun

    2009-01-01

    A new attempt of calculation for the total reaction cross sections (σR) has been carried out within the isospin-dependent Boltzmann-Langevin equation in the intermediate energy heavy-ion collision of isotopes of G. The σR of both stable and exotic nuclei are reproduced rather well. The incident energy and isospin dependencies of σR have been investigated. It is found that the isospin effect is comparatively remarkable at intermediate energy. It is also found that ~(15-18)C are neutron skin nuclei but for ~(19)C and ~(20)C we cannot draw a conclusion whether they have halo structures.

  8. A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio

    CERN Document Server

    Hu, Kainan; Geng, Shaojuan

    2016-01-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e. the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion...

  9. A Hybrid Solver of Size Modified Poisson-Boltzmann Equation by Domain Decomposition, Finite Element, and Finite Difference

    CERN Document Server

    Ying, Jinyong

    2016-01-01

    The size-modified Poisson-Boltzmann equation (SMPBE) is one important variant of the popular dielectric model, the Poisson-Boltzmann equation (PBE), to reflect ionic size effects in the prediction of electrostatics for a biomolecule in an ionic solvent. In this paper, a new SMPBE hybrid solver is developed using a solution decomposition, the Schwartz's overlapped domain decomposition, finite element, and finite difference. It is then programmed as a software package in C, Fortran, and Python based on the state-of-the-art finite element library DOLFIN from the FEniCS project. This software package is well validated on a Born ball model with analytical solution and a dipole model with a known physical properties. Numerical results on six proteins with different net charges demonstrate its high performance. Finally, this new SMPBE hybrid solver is shown to be numerically stable and convergent in the calculation of electrostatic solvation free energy for 216 biomolecules and binding free energy for a DNA-drug com...

  10. Poisson-Boltzmann equation and electro-convective instability in ferroelectric liquid crystals: a mean-field approach

    Science.gov (United States)

    Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.

    2014-07-01

    Commercialization of ferroelectric liquid crystal displays (FLCDs) suffers from mechanical and electro-convective instabilities. Impurity ions play a pivotal role in the latter case, and therefore we developed a mean-field type model to understand the complex role of space charges, particularly ions in a ferroelectric liquid crystal. Considering an effective ion-chirality relation, we obtained a modified Poisson-Boltzmann equation for ions dissolved into a chiral solvent like the ferroelectric smectic phase. A nonuniform director profile induced by the mean electrostatic potential of the ions is then calculated by solving an Euler-Lagrange equation for a helically twisted smectic state. A combination of effects resulting from molecular chirality and an electrostatically driven twist created by the ions seems to produce this nonuniform fluctuation in the director orientation. Finally, both theoretical and experimental points of view are presented on the prediction of this mean-field model.

  11. Coarse-grained transport of a turbulent flow via moments of the Reynolds-averaged Boltzmann equation

    CERN Document Server

    Abramov, Rafail V

    2015-01-01

    Here we introduce new coarse-grained variables for a turbulent flow in the form of moments of its Reynolds-averaged Boltzmann equation. With the exception of the collision moments, the transport equations for the new variables are identical to the usual moment equations, and thus naturally lend themselves to the variety of already existing closure methods. Under the anelastic turbulence approximation, we derive equations for the Reynolds-averaged turbulent fluctuations around the coarse-grained state. We show that the global relative entropy of the coarse-grained state is bounded from above by the Reynolds average of the fine-grained global relative entropy, and thus obeys the time decay bound of Desvillettes and Villani. This is similar to what is observed in the rarefied gas dynamics, which makes the Grad moment closure a good candidate for truncating the hierarchy of the coarse-grained moment equations. We also show that, under additional assumptions on the form of the coarse-grained collision terms, one a...

  12. Local membrane length conservation in two-dimensional vesicle simulation using a multicomponent lattice Boltzmann equation method

    Science.gov (United States)

    Halliday, I.; Lishchuk, S. V.; Spencer, T. J.; Pontrelli, G.; Evans, P. C.

    2016-08-01

    We present a method for applying a class of velocity-dependent forces within a multicomponent lattice Boltzmann equation simulation that is designed to recover continuum regime incompressible hydrodynamics. This method is applied to the problem, in two dimensions, of constraining to uniformity the tangential velocity of a vesicle membrane implemented within a recent multicomponent lattice Boltzmann simulation method, which avoids the use of Lagrangian boundary tracers. The constraint of uniform tangential velocity is carried by an additional contribution to an immersed boundary force, which we derive here from physical arguments. The result of this enhanced immersed boundary force is to apply a physically appropriate boundary condition at the interface between separated lattice fluids, defined as that region over which the phase-field varies most rapidly. Data from this enhanced vesicle boundary method are in agreement with other data obtained using related methods [e.g., T. Krüger, S. Frijters, F. Günther, B. Kaoui, and J. Harting, Eur. Phys. J. 222, 177 (2013), 10.1140/epjst/e2013-01834-y] and underscore the importance of a correct vesicle membrane condition.

  13. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    Science.gov (United States)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  14. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    International Nuclear Information System (INIS)

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10−17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process. (low temperature plasma)

  15. Compressible Fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan-Boltzmann law

    CERN Document Server

    Mendes, Albert C R; Abreu, Everton M C; Neto, Jorge Ananias

    2016-01-01

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac's constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition was obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev-Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan-Boltzmann type law was obtained.

  16. A multi-term solution of the space-time Boltzmann equation for electrons in gaseous and liquid Argon

    CERN Document Server

    Boyle, G J; Tattersall, W J; McEachran, R P; White, R D

    2015-01-01

    In a recent paper [1] the scattering and transport of excess electrons in liquid argon in the hydrodynamic regime was investigated, generalizing the seminal works of Lekner and Cohen [2,3] with modern scattering theory techniques and kinetic theory. In this paper, the discussion is extended to the non-hydrodynamic regime through the development of a full multi-term space-time solution of Boltzmann's equation for electron transport in gases and liquids using a novel operator-splitting method. A Green's function formalism is considered that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the hydrodynamic regime is studied for a benchmark model Percus-Yevick liquid as well as for liquid argon. The temporal evolution of Franck-Hertz oscillations are observed for liquids, with striking differences in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations in arg...

  17. Study on the unified algorithm for three-dimensional complex problems covering various flow regimes using Boltzmann model equation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Boltzmann simplified velocity distribution function equation describing the gas transfer phenomena from various flow regimes will be explored and solved numerically in this study. The discrete velocity ordinate method of the gas kinetic theory is studied and applied to simulate the complex multi-scale flows. Based on the uncoupling technique on molecular movement and colliding in the DSMC method, the gas-kinetic finite difference scheme is constructed to directly solve the discrete velocity distribution functions by extending and applying the unsteady time-splitting method from computational fluid dynamics. The Gauss-type discrete velocity numerical quadrature technique for different Mach number flows is developed to evaluate the macroscopic flow parameters in the physical space. As a result, the gas-kinetic numerical algorithm is established to study the three-dimensional complex flows from rarefied transition to continuum regimes. The parallel strategy adapted to the gas-kinetic numerical algorithm is investigated by analyzing the inner parallel degree of the algorithm, and then the HPF parallel processing program is developed. To test the reliability of the present gas-kinetic numerical method, the three-dimensional complex flows around sphere and spacecraft shape with various Knudsen numbers are simulated by HPF parallel computing. The computational results are found in high resolution of the flow fields and good agreement with the theoretical and experimental data. The computing practice has confirmed that the present gas-kinetic algorithm probably provides a promising approach to resolve the hypersonic aerothermodynamic problems with the complete spectrum of flow regimes from the gas-kinetic point of view of solving the Boltzmann model equation.

  18. Energy-Dependent Boltzmann Equation with Fission and Slowing-Down Kernels

    International Nuclear Information System (INIS)

    This paper presents a study of the energy-dependent neutron transport equation, using Case's method of singular eigenfunctions and considering a continuous energy variable (rather than a multigroup scheme). Both fission and slowing-down kernels are included in the analysis. Under the assumption of simple cross-sections laws, and plane symmetry, a completeness theorem and the Green's function are found for-the infinite medium, for both isotropic and anisotropic scattering, using rather general assumptions as to the slowing-down kernels (including convolution kernels) and, only in the anisotropic case, the generalized Greuling-Goertzel kernel. The crux of the completeness theorem is the inversion and analysis of the spectral properties of a continuous operator which acts upon the energy variable, and depends parametrically upon a complex variable z (with analyticity in some cut complex plane). For half-space problems, the Wiener-Hopf factorization of such an operator is a remarkably difficult problem. However, it can be performed if, for the slowing-down kernel, the Greuling-Goertzel approximation generalized to all its anisotropic components is used, in which case the Wiener-Hopf factorization gives another convolution operator. In this approximation the Milne problem is solved, and a study is made of the extrapolation length. There is a discussion of the difficulties introduced by fission kernels, with emphasis on the coexistence of space-energy separable modes with slowing-down transient modes. (author)

  19. An Algorithm for the calculation of non-isotropic collision integral matrix elements of the non-linear Boltzmann equation by the use of recurrence relations

    CERN Document Server

    Ender, I A; Flegontova, E Yu; Gerasimenko, A B

    2016-01-01

    An algorithm for sequential calculation of non-isotropic matrix elements of the collision integral which are necessary for the solution of the non-linear Boltzmann equation by moment method is proposed. Isotropic matrix elements that we believe are known, are starting ones. The procedure is valid for any interaction law and any mass ratio of the colliding particles.

  20. 4-Velocity distribution function using Maxwell-Boltzmann's original approach and a new form of the relativistic equation of state

    CERN Document Server

    Basu, Prasad

    2011-01-01

    Following the original approach of Maxwell-Boltzmann(MB), we derive a 4-velocity distribution function for the relativistic ideal gas. This distribution function perfectly reduces to original MB distribution in the non-relativistic limit. We express the relativistic equation of state(EOS), $\\rho-\\rho_0=(\\gamma-1)^{-1}p$,\\ in the two equations: $\\rho=\\rho_0 f(\\lambda)$,\\ and $p=\\rho_0 g(\\lambda)$, where $\\lambda$\\ is a parameter related to the kinetic energy, hence the temperature, of the gas. In the both extreme limits, they give correct EOS:\\ $\\rho=3p$\\ in the ultra-relativistic, and\\ $\\rho-\\rho_0=3/2p$ in the non-relativistic regime. Using these equations the adiabatic index $\\gamma$ (=$\\frac{c_p}{c_v}$) and the sound speed $a_s$ are calculated as a function of $\\lambda$. They also satisfy the inequalities: $4/3 \\le \\gamma \\le 5/3$ and $a_s \\le \\frac{1}{\\sqrt{3}}$ perfectly.

  1. Functional Equations and Fourier Analysis

    OpenAIRE

    Yang, Dilian

    2010-01-01

    By exploring the relations among functional equations, harmonic analysis and representation theory, we give a unified and very accessible approach to solve three important functional equations -- the d'Alembert equation, the Wilson equation, and the d'Alembert long equation, on compact groups.

  2. Sedimentation analysis of small ice crystals by Lattice Boltzmann Method

    CERN Document Server

    Giovacchini, Juan P

    2016-01-01

    Lattice Boltzmann Method (LBM) is used to simulate and analyze the sedimentation of small ($16-80 \\,\\mu m$) ice particles in the atmosphere. We are specially interested in evaluating the terminal falling velocity for two ice particle shapes: columnar ice crystals and six bullet-rosettes ice policrystal. The main objective in this paper is to investigate the LBM suitability to solve ice crystal sedimentation problems, as well as to evaluate these numerical methods as a powerful numerical tool to solve these problems for arbitrary ice crystal shapes and sizes. LBM results are presented in comparison with laboratory experimental results and theoretical proposals well known in the literature. The numerical results show good agreement with experimental and theoretical results for both geometrical configurations.

  3. Boltzmann-Equation Based Derivation of Balance Laws in Irreversible Thermodynamics

    OpenAIRE

    Hong, Liu; Yang, Zaibao; Zhu, Yi; Yong, Wen-An

    2014-01-01

    In this paper we propose a novel approach to construct macroscopic balance equations and constitutive equations describing various irreversible phenomena. It is based on the general principles of non-equilibrium thermodynamics and consists of four basic steps: picking suitable state variables, choosing a strictly concave entropy function, separating entropy fluxes and production rates properly, and determining a dissipation matrix. Our approach takes the advantage of both EIT and GENERIC form...

  4. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation

    OpenAIRE

    Glangetas, Leo; Li, Hao-Guang; Xu, Chao-Jiang

    2014-01-01

    Accepted to publish by "Kinetic and Related Models" In this work, we study the Cauchy problem for the spatially homogeneous non-cutoff Boltzamnn equation with Maxwellian molecules. We prove that this Cauchy problem enjoys Gelfand-Shilov regularizing effect, that means the smoothing properties is same as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator. The power of this fractional is exactly the singular index of non-cutoff collisional ker...

  5. Minimising the error in eigenvalue calculations involving the Boltzmann transport equation using goal-based adaptivity on unstructured meshes

    Science.gov (United States)

    Goffin, Mark A.; Baker, Christopher M. J.; Buchan, Andrew G.; Pain, Christopher C.; Eaton, Matthew D.; Smith, Paul N.

    2013-06-01

    This article presents a method for goal-based anisotropic adaptive methods for the finite element method applied to the Boltzmann transport equation. The neutron multiplication factor, k, is used as the goal of the adaptive procedure. The anisotropic adaptive algorithm requires error measures for k with directional dependence. General error estimators are derived for any given functional of the flux and applied to k to acquire the driving force for the adaptive procedure. The error estimators require the solution of an appropriately formed dual equation. Forward and dual error indicators are calculated by weighting the Hessian of each solution with the dual and forward residual respectively. The Hessian is used as an approximation of the interpolation error in the solution which gives rise to the directional dependence. The two indicators are combined to form a single error metric that is used to adapt the finite element mesh. The residual is approximated using a novel technique arising from the sub-grid scale finite element discretisation. Two adaptive routes are demonstrated: (i) a single mesh is used to solve all energy groups, and (ii) a different mesh is used to solve each energy group. The second method aims to capture the benefit from representing the flux from each energy group on a specifically optimised mesh. The k goal-based adaptive method was applied to three examples which illustrate the superior accuracy in criticality problems that can be obtained.

  6. Function-Space-Based Solution Scheme for the Size-Modified Poisson-Boltzmann Equation in Full-Potential DFT.

    Science.gov (United States)

    Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten

    2016-08-01

    The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.

  7. Generalized Poisson-Boltzmann Equation Taking into Account Ionic Interaction and Steric Effects

    Institute of Scientific and Technical Information of China (English)

    刘新敏; 李航; 李睿; 田锐; 许晨阳

    2012-01-01

    Generalized Poisson l3oltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 〈 0.0032 C/dm2, while the ionic interaction is an important effect for electrolyte concentration 〉 0.15 tool/1 in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.

  8. A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    St Aubin, J., E-mail: joel.st.aubin@albertahealthservices.ca; Keyvanloo, A.; Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue Northwest, Edmonton, Alberta T6G 1Z2 (Canada); Vassiliev, O. [Department of Medical Physics, Tom Baker Cancer Center, 1331 29 Street Northwest, Calgary, Alberta T2N 4N2 (Canada)

    2015-02-15

    Purpose: Accurate radiotherapy dose calculation algorithms are essential to any successful radiotherapy program, considering the high level of dose conformity and modulation in many of today’s treatment plans. As technology continues to progress, such as is the case with novel MRI-guided radiotherapy systems, the necessity for dose calculation algorithms to accurately predict delivered dose in increasingly challenging scenarios is vital. To this end, a novel deterministic solution has been developed to the first order linear Boltzmann transport equation which accurately calculates x-ray based radiotherapy doses in the presence of magnetic fields. Methods: The deterministic formalism discussed here with the inclusion of magnetic fields is outlined mathematically using a discrete ordinates angular discretization in an attempt to leverage existing deterministic codes. It is compared against the EGSnrc Monte Carlo code, utilizing the emf-macros addition which calculates the effects of electromagnetic fields. This comparison is performed in an inhomogeneous phantom that was designed to present a challenging calculation for deterministic calculations in 0, 0.6, and 3 T magnetic fields oriented parallel and perpendicular to the radiation beam. The accuracy of the formalism discussed here against Monte Carlo was evaluated with a gamma comparison using a standard 2%/2 mm and a more stringent 1%/1 mm criterion for a standard reference 10 × 10 cm{sup 2} field as well as a smaller 2 × 2 cm{sup 2} field. Results: Greater than 99.8% (94.8%) of all points analyzed passed a 2%/2 mm (1%/1 mm) gamma criterion for all magnetic field strengths and orientations investigated. All dosimetric changes resulting from the inclusion of magnetic fields were accurately calculated using the deterministic formalism. However, despite the algorithm’s high degree of accuracy, it is noticed that this formalism was not unconditionally stable using a discrete ordinate angular discretization

  9. Physical and mathematical justification of the numerical Brillouin zone integration of the Boltzmann rate equation by Gaussian smearing

    Science.gov (United States)

    Illg, Christian; Haag, Michael; Teeny, Nicolas; Wirth, Jens; Fähnle, Manfred

    2016-03-01

    Scatterings of electrons at quasiparticles or photons are very important for many topics in solid-state physics, e.g., spintronics, magnonics or photonics, and therefore a correct numerical treatment of these scatterings is very important. For a quantum-mechanical description of these scatterings, Fermi's golden rule is used to calculate the transition rate from an initial state to a final state in a first-order time-dependent perturbation theory. One can calculate the total transition rate from all initial states to all final states with Boltzmann rate equations involving Brillouin zone integrations. The numerical treatment of these integrations on a finite grid is often done via a replacement of the Dirac delta distribution by a Gaussian. The Dirac delta distribution appears in Fermi's golden rule where it describes the energy conservation among the interacting particles. Since the Dirac delta distribution is a not a function it is not clear from a mathematical point of view that this procedure is justified. We show with physical and mathematical arguments that this numerical procedure is in general correct, and we comment on critical points.

  10. Finite differences numerical method for two-dimensional superlattice Boltzmann transport equation and case comparison of CPU(C) and GPGPU(CUDA) implementations

    CERN Document Server

    Priimak, Dmitri

    2014-01-01

    We present finite differences numerical algorithm for solving 2D spatially homogeneous Boltzmann transport equation for semiconductor superlattices (SL) subject to time dependant electric field along SL axis and constant perpendicular magnetic field. Algorithm is implemented in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPUs. We compare performance and merits of one implementation versus another and discuss various methods of optimization.

  11. Biases and statistical errors in Monte Carlo burnup calculations: an unbiased stochastic scheme to solve Boltzmann/Bateman coupled equations

    International Nuclear Information System (INIS)

    External linking scripts between Monte Carlo transport codes and burnup codes, and complete integration of burnup capability into Monte Carlo transport codes, have been or are currently being developed. Monte Carlo linked burnup methodologies may serve as an excellent benchmark for new deterministic burnup codes used for advanced systems; however, there are some instances where deterministic methodologies break down (i.e., heavily angularly biased systems containing exotic materials without proper group structure) and Monte Carlo burn up may serve as an actual design tool. Therefore, researchers are also developing these capabilities in order to examine complex, three-dimensional exotic material systems that do not contain benchmark data. Providing a reference scheme implies being able to associate statistical errors to any neutronic value of interest like k(eff), reaction rates, fluxes, etc. Usually in Monte Carlo, standard deviations are associated with a particular value by performing different independent and identical simulations (also referred to as 'cycles', 'batches', or 'replicas'), but this is only valid if the calculation itself is not biased. And, as will be shown in this paper, there is a bias in the methodology that consists of coupling transport and depletion codes because Bateman equations are not linear functions of the fluxes or of the reaction rates (those quantities being always measured with an uncertainty). Therefore, we have to quantify and correct this bias. This will be achieved by deriving an unbiased minimum variance estimator of a matrix exponential function of a normal mean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. Numerical tests will be performed with an ad hoc Monte Carlo code on a very simple depletion case and will be compared to the theoretical results obtained with the reference scheme. Finally, the statistical error propagation

  12. Dosimetric impact of an 192Ir brachytherapy source cable length modeled using a grid-based Boltzmann transport equation solver

    International Nuclear Information System (INIS)

    Purpose: To evaluate the dose distributions of an 192Ir source (model VS2000) in homogeneous water geometry calculated using a deterministic grid-based Boltzmann transport equation solver (GBBS) in the commercial treatment planning system (TPS) (BRACHYVISION-ACUROS v8.8). Methods: Using percent dose differences (%ΔD), the GBBS (BV-ACUROS) was compared to the (1) published TG-43 data, (2) MCNPX Monte Carlo (MC) simulations of the 192Ir source centered in a 15 cm radius water sphere, and (3) TG-43 output from the TPS using vendor supplied (BV-TG43-vendor) and user extended (BV-TG43-extended) 2D anisotropy functions F(r,θ). BV-ACUROS assumes 1 mm of NiTi cable, while the TPS TG-43 algorithm uses data based on a 15 cm cable. MC models of various cable lengths were simulated. Results: The MC simulations resulted in >20% dose deviations along the cable for 1, 2, and 3 mm cable lengths relative to 15 cm. BV-ACUROS comparisons with BV-TG43-vendor and BV-TG43-extended yielded magnitude of differences, consistent with those seen in MC simulations. However, differences >20% extended further (θ≤10 deg.) when using the vendor supplied anisotropy function Fven(r,θ). These differences were also seen in comparisons of F(r,θ) derived from the TPS output. Conclusions: The results suggest that %ΔD near the cable region is larger than previously estimated. The spatial distribution of the dose deviation is highly dependent on the reference TG-43 data used to compare to GBBS. The differences observed, while important to realize, should not have an impact on clinical dosimetry in homogeneous water.

  13. The Poisson-Boltzmann equation for aqueous solutions of stong polyelectrolytes without added salt: The cell model revisited

    International Nuclear Information System (INIS)

    An extensive discussion of the analytical solution for the Poisson-Boltzmann equation in cylindrical symmetry for strong polyelectrolytes in the cell model is presented. The reduced mean electrostatic potential μ at finite dilutions is discussed in terms of its dependence on the polyelectrolyte equivalent concentration Ce, its charge density parameter ξ, and the distance of closest approach a of the counterions to the polyion. It is shown that in the limit a → 0 counterion condensation is expected. For more realistic nonzero values of a, the reduced potential μ at a given relative position r/R in the cell with radius R is practically independent of the linear charge density for ξ > 2, but its value depends on the product a2Ce. The value μ(a) of the reduced potential near the surface of the polyion is ξ-dependent, however, under the same conditions. A large fraction of all the counterions in the cell accumulate, on the average, in the neighborhood of the polyion, this fraction being larger the higher ξ is and the lower the product a2Ce is. The fraction of ions accumulated between the polyion surface at a and a distance from the polyion axis equal to the screening length 1/χ is high, reaching values exceeding 80% and being higher the smaller a2Ce is. This fraction of counterions (the open-quotes associatedclose quotes counterions) occupies a smaller part of the total cell volume than the counterions situated between 1/χ and R, which are characterized by a relatively low electrostatic interaction energy with the polyion, μ < 1 (the open-quotes freeclose quotescounterions). 22 refs., 11 figs

  14. A combination of energy method and spectral analysis for study of equations of gas motion

    Institute of Scientific and Technical Information of China (English)

    Renjun DUAN; Seiji UKAI; Tong YANG

    2009-01-01

    There have been extensive studies on the large time behavior of solutions to systems on gas motions, such as the Navier-Stokes equations and the Boltzmann equation. Recently, an approach is introduced by combining the energy method and the spectral analysis to the study of the optimal rates of convergence to the asymptotic profiles. In this paper, we will first illustrate this method by using some simple model and then we will present some recent results on the Navier-Stokes equations and the Boltzmann equation. Precisely, we prove the stability of the non-trivial steady state for the Navier-Stokes equations with potential forces and also obtain the optimal rate of convergence of solutions toward the steady state. The same issue was also studied for the Boltzmann equation in the presence of the general time-space dependent forces. It is expected that this approach can also be applied to other dissipative systems in fluid dynamics and kinetic models such as the model system of radiating gas and the Vlasov-Poisson-Boltzmann system.

  15. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, Justin K. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Klopp, Ann H. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gonzalez, Graciela M.N. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kisling, Kelly D. [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Price, Michael J. [Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, and Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana (United States); Berner, Paula A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Eifel, Patricia J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mourtada, Firas, E-mail: fmourtad@christianacare.org [Department of Radiation Physics-Patient Care, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Experimental Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Helen F. Graham Cancer Center, Newark, Delaware (United States)

    2012-07-01

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received {sup 192}Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm{sup 3} muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm{sup 3} bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o'clock, and {sub D2cm3} to the bladder, rectum, and sigmoid. Results: Points A and B, D{sub 2} cm{sup 3} bladder, ICRU bladder, and three and nine o'clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D{sub 2cm3} rectum (n = 3), D{sub 2cm3} sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden

  16. Impact of Heterogeneity-Based Dose Calculation Using a Deterministic Grid-Based Boltzmann Equation Solver for Intracavitary Brachytherapy

    International Nuclear Information System (INIS)

    Purpose: To investigate the dosimetric impact of the heterogeneity dose calculation Acuros (Transpire Inc., Gig Harbor, WA), a grid-based Boltzmann equation solver (GBBS), for brachytherapy in a cohort of cervical cancer patients. Methods and Materials: The impact of heterogeneities was retrospectively assessed in treatment plans for 26 patients who had previously received 192Ir intracavitary brachytherapy for cervical cancer with computed tomography (CT)/magnetic resonance-compatible tandems and unshielded colpostats. The GBBS models sources, patient boundaries, applicators, and tissue heterogeneities. Multiple GBBS calculations were performed with and without solid model applicator, with and without overriding the patient contour to 1 g/cm3 muscle, and with and without overriding contrast materials to muscle or 2.25 g/cm3 bone. Impact of source and boundary modeling, applicator, tissue heterogeneities, and sensitivity of CT-to-material mapping of contrast were derived from the multiple calculations. American Association of Physicists in Medicine Task Group 43 (TG-43) guidelines and the GBBS were compared for the following clinical dosimetric parameters: Manchester points A and B, International Commission on Radiation Units and Measurements (ICRU) report 38 rectal and bladder points, three and nine o’clock, and D2cm3 to the bladder, rectum, and sigmoid. Results: Points A and B, D2 cm3 bladder, ICRU bladder, and three and nine o’clock were within 5% of TG-43 for all GBBS calculations. The source and boundary and applicator account for most of the differences between the GBBS and TG-43 guidelines. The D2cm3 rectum (n = 3), D2cm3 sigmoid (n = 1), and ICRU rectum (n = 6) had differences of >5% from TG-43 for the worst case incorrect mapping of contrast to bone. Clinical dosimetric parameters were within 5% of TG-43 when rectal and balloon contrast were mapped to bone and radiopaque packing was not overridden. Conclusions: The GBBS has minimal impact on clinical

  17. Collisionless self-gravitating systems in f(R)-gravity within Palatini approach and relativistic Boltzmann equation in the Newtonian approach

    CERN Document Server

    André, Raíla

    2014-01-01

    In this work we analyze the dynamics of collisionless self-gravitating systems described by the f(R)-gravity and Boltzmann equation in the weak field approximation, focusing on the Jeans instability for theses systems. The field equations in this approximation were obtained within the Palatini formalism. Through the solution of coupled equations we achieved the collapse criterion for infinite homogeneous fluid and stellar systems, which is given by a dispersion relation. This result is compared with the results of the standard case and the case for f(R)-gravity in metric formalism, in order to see the difference among them. The limit of instability varies according to which theory of gravity is adopted.

  18. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in $\\mathrm{AdS}_{2}\\otimes \\mathrm{S}_{2}$

    CERN Document Server

    Noronha, Jorge

    2015-01-01

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime $\\mathrm{AdS}_{2}\\otimes \\mathrm{S}_{2}$. We further derive explicit analytic expressions for the momentum dependence of the single particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The non-equilibrium contribution to the entropy density is shown to be due to higher order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic d...

  19. Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows

    CERN Document Server

    Meng, Jianping

    2009-01-01

    In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely assembles the discrete velocity method (DVM). In addition, the order of Hermite expansion for the equilibrium distribution function is found not to be correlated with the approximation order in terms of the Knudsen number to the BGK equation, which was previously suggested by \\cite{2006JFM...550..413S}. Furthermore, we have numerically evaluated the LB models for a standing-shear-wave problem, which is designed specifically for assessing model accuracy by excluding the influence of gas molecule/surface interactions at wall boundaries. The numerical simulation results confirm that the high-order terms in the discrete equili...

  20. Ludwig Boltzmann: Atomic genius

    International Nuclear Information System (INIS)

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  1. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  2. Group analysis of differential equations

    CERN Document Server

    Ovsiannikov, L V

    1982-01-01

    Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations.This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the g

  3. Fluid flow analysis in a rough fracture (type II) using complex networks and lattice Boltzmann method

    CERN Document Server

    Ghaffari, H; Sharifzadeh, M; Young, R P

    2011-01-01

    Complexity of fluid flow in a rough fracture is induced by the complex configurations of opening areas between the fracture planes. In this study, we model fluid flow in an evolvable real rock joint structure, which under certain normal load is sheared. In an experimental study, information regarding about apertures of the rock joint during consecutive 20 mm displacements and fluid flow (permeability) in different pressure heads have been recorded by a scanner laser. Our aim in this study is to simulate the fluid flow in the mentioned complex geometries using the lattice Boltzmann method (LBM), while the characteristics of the aperture field will be compared with the modeled fluid flow permeability To characterize the aperture, we use a new concept in the graph theory, namely: complex networks and motif analysis of the corresponding networks. In this approach, the similar aperture profile along the fluid flow direction is mapped in to a network space. The modeled permeability using the LBM shows good correlat...

  4. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [ITER Organization, route de Vinon-sur-Verdon, 13067 St. Paul lez Durance Cedex (France); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium)

    2016-01-15

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.

  5. Comparison of fluid neutral models for one-dimensional plasma edge modeling with a finite volume solution of the Boltzmann equation

    International Nuclear Information System (INIS)

    We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation

  6. Stability Analysis of Ecomorphodynamic Equations

    CERN Document Server

    Bärenbold, Fabian; Perona, Paolo

    2014-01-01

    Although riparian vegetation is present in or along many water courses of the world, its active role resulting from the interaction with flow and sediment processes has only recently become an active field of research. Especially, the role of vegetation in the process of river pattern formation has been explored and demonstrated mostly experimentally and numerically until now. In the present work, we shed light on this subject by performing a linear stability analysis on a simple model for riverbed vegetation dynamics coupled with the set of classical river morphodynamic equations. The vegetation model only accounts for logistic growth, local positive feedback through seeding and resprouting, and mortality by means of uprooting through flow shear stress. Due to the simplicity of the model, we can transform the set of equations into an eigenvalue problem and assess the stability of the linearized equations when slightly perturbated away from a spatially homogeneous solution. If we couple vegetation dynamics wi...

  7. Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Stockamp, T.

    2006-12-22

    In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)

  8. Polarised photon and flavoured lepton quantum Boltzmann equations in the early universe; Polarisierte Photon- und geflavourte Lepton-Quantenboltzmanngleichungen im fruehen Universum

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Christian

    2011-12-16

    Polarisation and Nongaussianity are expected to play a central role in future studies of the cosmic microwave background radiation. Polarisation can be split into a divergence-like E-mode and a curl-like B-mode, of which the later can only be induced by primordial gravitational waves (tensor fluctuations of the metric) at leading order. Nongaussianity is not generated at first order and is directly proportional to the primordial Nongaussianity of inflation. Thus B-mode polarisation and Nongaussianity constrain inflation models directly. While E-mode polarisation has already been detected and is being observed with increasing precision, B-mode polarisation and Nongaussianity remains elusive. The absence of B-mode polarisation when the primordial fluctuations are purely scalar holds, however, only in linear perturbation theory. B-mode polarisation is also generated from scalar sources in second order, which may constitute an important background to the search for primordial gravitational waves. While such an effect would naturally be expected to be relevant at tensor-to-scalar ratios of order 10{sup -5}, which is the size of perturbations in the microwave background, only a full second order calculation can tell whether there are no enhancements. For Nongaussianity the situation is analogous: At second order intrinsic Nongaussianities are induced to the spectrum, which may be an important background to the primordial Nongaussianity. After the full second-order Boltzmann equations for the cosmological evolution of the polarised radiation distribution have become available, I focused on the novel sources to B-mode polarisation that appear in the second-order collision term, which have not been calculated before. In my PHD thesis I developed a numerical code, which solves the second order Boltzmann hierarchy and calculates the C{sub l}{sup BB}-spectrum.

  9. Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics

    OpenAIRE

    Ahmad, Mushfiq; Talukder, Muhammad O. G.

    2007-01-01

    The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.

  10. Dynamical analysis of contrastive divergence learning: Restricted Boltzmann machines with Gaussian visible units.

    Science.gov (United States)

    Karakida, Ryo; Okada, Masato; Amari, Shun-Ichi

    2016-07-01

    The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also reveal that larger principal components of the input data are extracted at the stable points. Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract independent components at one of stable points. Our analysis demonstrates that the same feature components as those extracted by ML learning are extracted simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD learning in other types of RBMs or in deep networks. PMID:27131468

  11. Boltzmann equation for fluctuation Cooper pairs in Lawrence-Doniach model. Possible out-of-plane negative differential conductivity

    OpenAIRE

    Mishonov, Todor M.; Maneva, Yana G.

    2006-01-01

    The differential conductivity for the out-of-plane transport in layered cuprates is calculated for Lawrence-Doniach model in the framework of time-dependent Ginzburg-Landau (TDGL) theory. The TDGL equation for the superconducting order parameter is solved in the presence of Langevin external noise, describing the birth of fluctuation Cooper pairs. The TDGL correlator of the superconducting order parameter is calculated in momentum representation and it is shown that the so defined number of p...

  12. 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method

    International Nuclear Information System (INIS)

    In this paper we combine a stochastic 3D microstructure model of a fiber based gas diffusion layer of polymer electrolyte fuel cells with a Lattice Boltzmann model for fluid transport. We focus on a simple approach of compressing the planar oriented virtual geometry of paper-type gas diffusion layer from Toray. Material parameters – permeability and tortuosity – are calculated from simulation of one phase, one component gas flow in stochastic geometries. We analyze the statistical spread of simulation results on ensembles of the virtual geometry, both uncompressed and compressed. The influence of the compression is discussed with regard to the Kozeny–Carman equation. The effective transport properties calculated from transport simulations in compressed gas diffusion layers agree well with a trend based on the Kozeny–Carman equation

  13. Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines

    NARCIS (Netherlands)

    G. van Tulder (Gijs); M. de Bruijne (Marleen)

    2016-01-01

    textabstractThe choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann ma

  14. DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS

    International Nuclear Information System (INIS)

    We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the Vlasov-Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly. The integration scheme is based on the positive flux conservation method recently developed in plasma physics. We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions. The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs efficiently on massively parallel supercomputers.

  15. On the Kinetic Properties of Solitons in Nonlinear Schr\\"{o}dinger Equation

    OpenAIRE

    Baryakhtar, I. V.

    1996-01-01

    The Boltzmann type kinetic equation for solitons in Nonlinear Schr\\"{o}dinger equation has been constructed on the base of analysis of two soliton collision. Possible applications for Langmuir solitons in plasma and solitons in optic fiber are discussed.

  16. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-01-01

    describing the training data and for classification. We present experiments with feature learning for lung texture classification and airway detection in CT images. In both applications, a combination of learning objectives outperformed purely discriminative or generative learning, increasing, for instance......The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may...... outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from...

  17. The Einstein-Boltzmann system and positivity

    CERN Document Server

    Lee, Ho

    2012-01-01

    The Einstein-Boltzmann system is studied, with particular attention to the non-negativity of the solution of the Boltzmann equation. A new parametrization of post-collisional momenta in general relativity is introduced and then used to simplify the conditions on the collision cross-section given by Bancel and Choquet-Bruhat. The non-negativity of solutions of the Boltzmann equation on a given curved spacetime has been studied by Bichteler and by Tadmon. By examining to what extent the results of these authors apply in the framework of Bancel and Choquet-Bruhat, the non-negativity problem for the Einstein-Boltzmann system is resolved for a certain class of scattering kernels. It is emphasized that it is a challenge to extend the existing theory of the Cauchy problem for the Einstein-Boltzmann system so as to include scattering kernels which are physically well-motivated.

  18. Thermal sensitivity analysis data utilizing Q10 scanning, Boltzmann slope factor and the change of molar heat capacity.

    Science.gov (United States)

    Kang, KyeongJin

    2016-03-01

    As a further elaboration of the recently devised Q10 scanning analysis ("Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude" [1]), the interval between current data points at two temperatures was shortened and the resulting parameters representing thermal sensitivities such as peak Q10s and temperature points of major thermosensitivity events are presented for two TRPA1 orthologues from rattlesnakes and boas. In addition, the slope factors from Boltzmann fitting and the change of molar heat capacity of temperature-evoked currents were evaluated and compared as alternative ways of thermal sensitivity appraisal of TRPA1 orthologues.

  19. Relativistic Entropy and Related Boltzmann Kinetics

    CERN Document Server

    Kaniadakis, G

    2009-01-01

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmman equation, fix univocally the entropy of the system, which turn out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitely remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle, suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativ...

  20. Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence

    Science.gov (United States)

    Peng, Benli; Wang, Sifang; Lan, Zhong; Xu, Wei; Wen, Rongfu; Ma, Xuehu

    2013-04-01

    Droplet jumping from condensing surfaces induced by droplet coalescence during dropwise condensation of mixed steam on a superhydrophobic surface can significantly enhance condensation heat transfer of mixed steam with non-condensable gas. This phenomenon was visually observed and theoretically analyzed in the present paper. The dynamic evolution of droplet and the velocity distribution inside the droplet during coalescence were simulated using multiphase lattice Boltzmann method. The energy distribution released by droplet coalescence was calculated statistically, and the jumping height induced by droplet coalescence on a superhydrophobic surface was predicted based on the energy conservation method. The theoretical predictions obtained by the modified model proposed in this paper agree well with the experimental observations.

  1. Boltzmann's Concept of Reality

    OpenAIRE

    Ribeiro, Marcelo B.; Videira, Antonio A. P.

    2007-01-01

    In this article we describe and analyze the concept of reality developed by the Austrian theoretical physicist Ludwig Boltzmann. It is our thesis that Boltzmann was fully aware that reality could, and actually was, described by different points of view. In spite of this, Boltzmann did not renounce the idea that reality is real. We also discuss his main motivations to be strongly involved with philosophy of science, as well as further developments made by Boltzmann himself of his main philosop...

  2. Contribution to the solution of the multigroup Boltzmann equation by the determinist methods and the Monte Carlo method; Contribution a la resolution de l`equation de Bolztmann en multigroupe par les methodes deterministes et Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Li, M

    1998-08-01

    In this thesis, two methods for solving the multigroup Boltzmann equation have been studied: the interface-current method and the Monte Carlo method. A new version of interface-current (IC) method has been develop in the TDT code at SERMA, where the currents of interface are represented by piecewise constant functions in the solid angle space. The convergence of this method to the collision probability (CP) method has been tested. Since the tracking technique is used for both the IC and CP methods, it is necessary to normalize he collision probabilities obtained by this technique. Several methods for this object have been studied and implemented in our code, we have compared their performances and chosen the best one as the standard choice. The transfer matrix treatment has been a long-standing difficulty for the multigroup Monte Carlo method: when the cross-sections are converted into multigroup form, important negative parts will appear in the angular transfer laws represented by low-order Legendre polynomials. Several methods based on the preservation of the first moments, such as the discrete angles methods and the equally-probable step function method, have been studied and implemented in the TRIMARAN-II code. Since none of these codes has been satisfactory, a new method, the non equally-probably step function method, has been proposed and realized in our code. The comparisons for these methods have been done in several aspects: the preservation of the moments required, the calculation of a criticality problem and the calculation of a neutron-transfer in water problem. The results have showed that the new method is the best one in all these comparisons, and we have proposed that it should be a standard choice for the multigroup transfer matrix. (author) 76 refs.

  3. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  4. Entransy analysis and optimization of performance of nano-scale irreversible Otto cycle operating with Maxwell-Boltzmann ideal gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad Ali; Pourfayaz, Fathollah; Bidi, Mokhtar

    2016-08-01

    This paper made attempt to investigate thermodynamically a nano scale irreversible Otto cycle for optimizing its performance. This system employed an ideal Maxwell-Boltzmann gas as a working fluid. Two different scenarios were proposed in the multi-objective optimization process and the results of each of the scenarios were examined separately. The first scenario made attempt to maximize the dimensionless ecological function and minimize the dimensionless entransy dissipation of the system. Furthermore, the second scenario tried to maximize the ecological coefficient of performance and minimize the dimensionless entransy dissipation of the system. The multi objective evolutionary method integrated with non-dominated sorting genetic algorithm was used to optimize the proposed objective functions. To determine the final output of each scenario, three efficient decision makers were employed. Finally, error analysis was employed to determine the deviation of solutions chosen by decision makers.

  5. Thermal Lattice Boltzmann Model for Compressible Fluid

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    We formulate a new thermal lattice Boltzmann model to simulate compressible flows with a high Mach number.The main difference from the standard lattice Boltzmann models is that the particle velocities are no longer a constant, varying with the mean velocity and internal energy. The proper heat conduction term in the energy equation is recovered by modification of the fluctuating kinetic energy transported by particles. The simulation of Couette flow is in good agreement with the analytical solutions.

  6. Lattice Boltzmann approach for complex nonequilibrium flows.

    Science.gov (United States)

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion. PMID:26565365

  7. Accurate deterministic solutions for the classic Boltzmann shock profile

    Science.gov (United States)

    Yue, Yubei

    The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.

  8. Relaxation rate, diffusion approximation and Fick's law for inelastic scattering Boltzmann models

    OpenAIRE

    Lods, Bertrand; Mouhot, Clément; Toscani, Giuseppe

    2008-01-01

    We consider the linear dissipative Boltzmann equation describing inelastic interactions of particles with a fixed background. For the simplified model of Maxwell molecules first, we give a complete spectral analysis, and deduce from it the optimal rate of exponential convergence to equilibrium. Moreover we show the convergence to the heat equation in the diffusive limit and compute explicitely the diffusivity. Then for the physical model of hard spheres we use a suitable entropy functional fo...

  9. Analysis of equations of state for polymers

    Directory of Open Access Journals (Sweden)

    Erlí José Padilha Júnior

    2015-06-01

    Full Text Available AbstractIn the literature there are several studies comparing the accuracy of various models in describing the PvT behavior of polymers. However, most of these studies do not provide information about the quality of the estimated parameters or the sensitivity of the prediction of thermodynamic properties to the parameters of the equations. Furthermore, there are few studies exploring the prediction of thermal expansion and compression coefficients. Based on these observations, the objective of this study is to deepen the analysis of Tait, HH (Hartmann-Haque, MCM (modified cell model and SHT (simplified hole theory equations of state in predicting the PvT behavior of polymers, for both molten and solid states. The results showed that all equations of state provide an adequate description of the PvT behavior in the molten state, with low standard deviations in the estimation of parameters, adequate sensitivity of their parameters and plausible prediction of specific volume, thermal expansion and isothermal compression coefficients. In the solid state the Tait equation exhibited similar performance to the molten state, while HH showed satisfactory results for amorphous polymers and difficulty in adjusting the PvT curve for semicrystalline polymers.

  10. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the Maxwell-Bolt

  11. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu [Strategic and Military Space Division, Space Dynamics Laboratory, North Logan, UT 84341 (United States); Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322 (United States); Roadcap, John R., E-mail: john.roadcap@us.af.mil [Air Force Research Laboratory, Kirtland AFB, NM 87117 (United States); Singh, Surendra, E-mail: surendra-singh@utulsa.edu [Department of Electrical Engineering, The University of Tulsa, Tulsa, OK 74104 (United States)

    2014-11-01

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.

  12. A new Green's function Monte Carlo algorithm for the solution of the two-dimensional nonlinear Poisson–Boltzmann equation: Application to the modeling of the communication breakdown problem in space vehicles during re-entry

    International Nuclear Information System (INIS)

    The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications

  13. Crystallographic Lattice Boltzmann Method.

    Science.gov (United States)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-01-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098

  14. Crystallographic Lattice Boltzmann Method

    Science.gov (United States)

    Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh

    2016-06-01

    Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.

  15. Comment on ‘A low-uncertainty measurement of the Boltzmann constant’

    Science.gov (United States)

    Macnaughton, Donald B.

    2016-02-01

    The International Committee for Weights and Measures has projected a major revision of the International System of Units in which all the base units will be defined by fixing the values of certain fundamental constants of nature. To assist, de Podesta et al recently experimentally obtained a precise new estimate of the Boltzmann constant. This estimate is proposed as a basis for the redefinition of the unit of temperature, the kelvin. The present paper reports a reanalysis of de Podesta et al’s data that reveals systematic non-random patterns in the residuals of the key fitted model equation. These patterns violate the assumptions underlying the analysis and thus they raise questions about the validity of de Podesta et al’s estimate of the Boltzmann constant. An approach is discussed to address these issues, which should lead to an accurate estimate of the Boltzmann constant with a lower uncertainty.

  16. Lattice Boltzmann approaches to magnetohydrodynamics and electromagnetism

    Science.gov (United States)

    Dellar, Paul

    2010-03-01

    J u B E g We present a lattice Boltzmann approach for magnetohydrodynamics and electromagnetism that expresses the magnetic field using a discrete set of vector distribution functions i. The i were first postulated to evolve according to a vector Boltzmann equation of the form ti+ ξi.∇i= - 1τ ( i- i^(0) ), where the ξi are a discrete set of velocities. The right hand side relaxes the i towards some specified functions i^(0) of the fluid velocity , and of the macroscopic magnetic field given by = ∑ii. Slowly varying solutions obey the equations of resistive magnetohydrodynamics. This lattice Boltzmann formulation has been used in large-scale (up to 1800^3 resolution) simulations of magnetohydrodynamic turbulence. However, this is only the simplest form of Ohm's law. We may simulate more realistic extended forms of Ohm's law using more complex collision operators. A current-dependent relaxation time yields a current-dependent resistivity η(|∇x|), as used to model ``anomalous'' resistivity created by small-scale plasma processes. Using a hydrodynamic matrix collision operator that depends upon the magnetic field , we may simulate Braginskii's magnetohydrodynamics, in which the viscosity for strains parallel to the magnetic field lines is much larger than the viscosity for strains in perpendicular directions. Changing the collision operator again, from the above vector Boltzmann equation we may derive the full set of Maxwell's equations, including the displacement current, and Ohm's law, - 1c^2 tE+ ∇x= μo,= σ( E + x). The original lattice Boltzmann scheme was designed to reproduce resistive magnetohydrodynamics in the non-relativistic limit. However, the kinetic formulation requires a system of first order partial differential equations with collision terms. This system coincides with the full set of Maxwell's equations and Ohm's law, so we capture a much wider range of electromagnetic phenomena, including electromagnetic waves.

  17. High-order hydrodynamics via lattice Boltzmann methods.

    Science.gov (United States)

    Colosqui, Carlos E

    2010-02-01

    In this work, closure of the Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK) moment hierarchy is accomplished via projection of the distribution function f onto a space H(N) spanned by N-order Hermite polynomials. While successive order approximations retain an increasing number of leading-order moments of f , the presented procedure produces a hierarchy of (single) N-order partial-differential equations providing exact analytical description of the hydrodynamics rendered by ( N-order) lattice Boltzmann-BGK (LBBGK) simulation. Numerical analysis is performed with LBBGK models and direct simulation Monte Carlo for the case of a sinusoidal shear wave (Kolmogorov flow) in a wide range of Weissenberg number Wi=taunuk(2) (i.e., Knudsen number Kn=lambdak=square root Wi); k is the wave number, [corrected] tau is the relaxation time of the system, and lambda approximately tauc(s) is the mean-free path, where c(s) is the speed of sound. The present results elucidate the applicability of LBBGK simulation under general nonequilibrium conditions.

  18. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  19. Approximate Lie Group Analysis of Finite-difference Equations

    OpenAIRE

    Latypov, Azat M.

    1995-01-01

    Approximate group analysis technique, that is, the technique combining the methodology of group analysis and theory of small perturbations, is applied to finite-difference equations approximating ordinary differential equations. Finite-difference equations are viewed as a system of algebraic equations with a small parameter, introduced through the definitions of finite-difference derivatives. It is shown that application of the approximate invariance criterion to this algebraic system results...

  20. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  1. Navier-Stokes Dynamics by a Discrete Boltzmann Model

    Science.gov (United States)

    Rubinstein, Robet

    2010-01-01

    This work investigates the possibility of particle-based algorithms for the Navier-Stokes equations and higher order continuum approximations of the Boltzmann equation; such algorithms would generalize the well-known Pullin scheme for the Euler equations. One such method is proposed in the context of a discrete velocity model of the Boltzmann equation. Preliminary results on shock structure are consistent with the expectation that the shock should be much broader than the near discontinuity predicted by the Pullin scheme, yet narrower than the prediction of the Boltzmann equation. We discuss the extension of this essentially deterministic method to a stochastic particle method that, like DSMC, samples the distribution function rather than resolving it completely.

  2. APPLICATION OF LATTICE BOLTZMANN METHOD AND FIELD SYNERGY PRINCIPLE TO THE HEAT TRANSFER ANALYSIS OF CHANNEL FLOW WITH OBSTACLES INSIDE

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2011-01-01

    Full Text Available In this paper the lattice Boltzmann method and field synergy principle are applied to simulate two-dimensional incompressible steady channel flow under low Reynolds number, and analyze the local influence on velocity field and temperature field caused by inserting cylinder obstacles of different cross-section. Furthermore, field synergy principle of elliptic flow type is applied to demonstrate that the increased interruption within the fluid increases the synergistic level between the velocity field and temperature gradient field. As the intersection angle between the velocity vector and the temperature gradient vector decreases by inserting cylinder obstacles to fluid field, the results of heat transfer will improve significantly.

  3. Training Restricted Boltzmann Machines

    DEFF Research Database (Denmark)

    Fischer, Asja

    Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...

  4. Lattice Boltzmann Large Eddy Simulation Model of MHD

    CERN Document Server

    Flint, Christopher

    2016-01-01

    The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...

  5. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study.

    Science.gov (United States)

    Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico

    2016-02-01

    A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement.

  6. Finite-volume versus streaming-based lattice Boltzmann algorithm for fluid-dynamics simulations: A one-to-one accuracy and performance study.

    Science.gov (United States)

    Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico

    2016-02-01

    A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement. PMID:26986438

  7. How do ants make sense of gravity? A Boltzmann Walker analysis of Lasius niger trajectories on various inclines.

    Directory of Open Access Journals (Sweden)

    Anaïs Khuong

    Full Text Available The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points. At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments, this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.

  8. Meta-analysis a structural equation modeling approach

    CERN Document Server

    Cheung, Mike W-L

    2015-01-01

    Presents a novel approach to conducting meta-analysis using structural equation modeling. Structural equation modeling (SEM) and meta-analysis are two powerful statistical methods in the educational, social, behavioral, and medical sciences. They are often treated as two unrelated topics in the literature. This book presents a unified framework on analyzing meta-analytic data within the SEM framework, and illustrates how to conduct meta-analysis using the metaSEM package in the R statistical environment. Meta-Analysis: A Structural Equation Modeling Approach begins by introducing the impo

  9. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  10. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  11. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    International Nuclear Information System (INIS)

    We present a L2-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L2-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L2-stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L2-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L2-stability estimate. This is the first result on the L2-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions

  12. Analysis of equations of state for polymers

    OpenAIRE

    Erlí José Padilha Júnior; Rafael de Pelegrini Soares; Nilo Sérgio Medeiros Cardozo

    2015-01-01

    AbstractIn the literature there are several studies comparing the accuracy of various models in describing the PvT behavior of polymers. However, most of these studies do not provide information about the quality of the estimated parameters or the sensitivity of the prediction of thermodynamic properties to the parameters of the equations. Furthermore, there are few studies exploring the prediction of thermal expansion and compression coefficients. Based on these observations, the objective o...

  13. Ordinary Differential Equations through Dimensional Analysis

    CERN Document Server

    Belinch'on, J A

    2005-01-01

    In in this paper we show how using D.A. it is found a simple change of variables (c.v.) that brings us to obtain differential equations simpler than the original one. In a pedagogical way (at least we try to do that) and in order to make see that each c.v. corresponds to an invariant solution (induced by a symmetry) or a particular solution, we compare (with all the tedious details, i.e. calculations) the proposed method with the Lie method. The method is checked even in ODEs that do not admit symmetries.

  14. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  15. On Boltzmann's genius and thermodynamics

    CERN Document Server

    Gyftopoulos, Elias P

    2007-01-01

    A recent essay [1] reminds us of how richly Boltzmann deserves to be admiringly commemorated for the originality of his ideas on the occasion of his 150th birthday. Without any doubt, the scientific community owes Boltzmann a great debt of gratitude for his ingenious and pathfinding contributions. However, the essay chooses to illustrate this important memorial by statements and inferences that perhaps are questionable today even to Boltzmann himself. I will comment only on three issues.

  16. Asymptotic Analysis of Transport Equation in Annulus

    Science.gov (United States)

    Wu, Lei; Yang, Xiongfeng; Guo, Yan

    2016-09-01

    We consider the diffusive limit of a steady neutron transport equation with one-speed velocity in a two-dimensional annulus. A classical theorem in Bensoussan et al. (Publ Res Inst Math Sci 15:53-157, 1979) states that the solution can be approximated in L^{∞} by the sum of the interior solution and Knudsen layer derived from Milne problem. However, this result was disproved in Wu and Guo (Commun Math Phys 336:1473-1553, 2015) in a plate via a different boundary layer expansion with geometric correction. In this paper, we established the diffusive limit and provide a counterexample to Bensoussan et al. (1979) in non-convex domains.

  17. Similarity analysis of differential equations by Lie group.

    Science.gov (United States)

    Na, T. Y.; Hansen, A. G.

    1971-01-01

    Methods for transforming partial differential equations into forms more suitable for analysis and solution are investigated. The idea of Lie's infinitesimal contact transformation group is introduced to develop a systematic method which involves mostly algebraic manipulations. A thorough presentation of the application of this general method to the problem of similarity analysis in a broader sense - namely, the similarity between partial and ordinary differential equations, boundary value and initial value problems, and nonlinear and linear equations - is given with new and very general methods evolved for deriving the possible groups of transformations.

  18. A new scheme based on the Hermite expansion to construct lattice Boltzmann models associated with arbitrary specific heat ratio

    OpenAIRE

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-01-01

    A new lattice Boltzmann scheme associated with flexible specific heat ratio is proposed. The new free degree is introduced via the internal energy associated with the internal structure. The evolution equation of the distribution function is reduced to two evolution equations. One is connected to the density and velocity, the other is of the energy. A two-dimensional lattice Boltzmann model and a three-dimensional lattice Boltzmann model are derived via the Hermite expansion. The two lattice ...

  19. Lattice Boltzmann method and its applications in engineering thermophysics

    Institute of Scientific and Technical Information of China (English)

    HE YaLing; LI Qing; WANG Yong; TANG GuiHua

    2009-01-01

    The lattice Boltzmann method (LBM),a mesoscopic method between the molecular dynamics method and the conventional numerical methods,has been developed into a very efficient numerical alternative in the past two decades.Unlike conventional numerical methods,the kinetic theory based LBM simulates fluid flows by tracking the evolution of the particle distribution function,and then accumulates the distribution to obtain macroscopic averaged properties.In this article we review some work on LBM applications in engineering thermophysics:(1) brief introduction to the development of the LBM; (2)fundamental theory of LBM including the Boltzmann equation,Maxwell distribution function,Boltzmann-BGK equation,and the lattice Boltzmann-BGK equation; (3) lattice Boltzmann models for compressible flows and non-equilibrium gas flows,bounce back-specular-reflection boundary scheme for microscale gaseous flows,the mass modified outlet boundary scheme for fully developed flows,and an implicit-explicit finite-difference-based LBM; and (4) applications of the LBM to oscillating flow,compressible flow,porous media flow,non-equilibrium flow,and gas resonant oscillating flow.

  20. Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    OpenAIRE

    Degond, Pierre; Liu, Hailiang; Savelief, Dominique; Vignal, Marie-Hélène

    2012-01-01

    International audience This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare...

  1. Dimensional Equations of Entropy

    CERN Document Server

    Sparavigna, Amelia Carolina

    2015-01-01

    Entropy is a quantity which is of great importance in physics and chemistry. The concept comes out of thermodynamics, proposed by Rudolf Clausius in his analysis of Carnot cycle and linked by Ludwig Boltzmann to the number of specific ways in which a physical system may be arranged. Any physics classroom, in its task of learning physics, has therefore to face this crucial concept. As we will show in this paper, the lectures can be enriched by discussing dimensional equations linked to the entropy of some physical systems.

  2. Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gangawane, Krunal Madhukar; Bharti, Ram Prakash; Kumar, Surendra [Indian Institute of Technology Roorkee, Uttarakhand (India)

    2015-08-15

    Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤ Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.

  3. Analysis of Laminar Boundary Layer Equations

    Directory of Open Access Journals (Sweden)

    R. Yesman

    2012-01-01

    Full Text Available The paper proposes methodology for analysis and calculation of laminar fluid flow processes in a boundary layer.The presented dependences can be used for practical calculations while power carriers of various application are moving in the channels of heat and power devices. 

  4. Lattice Boltzmann Model for Compressible Fluid on a Square Lattice

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Hai

    2000-01-01

    A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated

  5. Accounting for adsorption and desorption in Lattice Boltzmann simulations

    CERN Document Server

    Levesque, Maximilien; Pagonabarraga, Ignacio; Frenkel, Daan; Rotenberg, Benjamin

    2013-01-01

    We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. Associated to the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g. in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic, but also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a Lattice-Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is ...

  6. An integrable 3D lattice model with positive Boltzmann weights

    CERN Document Server

    Mangazeev, Vladimir V; Sergeev, Sergey M

    2013-01-01

    In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0Boltzmann weights.

  7. Measurement Error and Equating Error in Power Analysis

    Science.gov (United States)

    Phillips, Gary W.; Jiang, Tao

    2016-01-01

    Power analysis is a fundamental prerequisite for conducting scientific research. Without power analysis the researcher has no way of knowing whether the sample size is large enough to detect the effect he or she is looking for. This paper demonstrates how psychometric factors such as measurement error and equating error affect the power of…

  8. Solving Generalised Riccati Differential Equations by Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    J. Vahidi

    2013-07-01

    Full Text Available In this paper, the quadratic Riccati differential equation is solved by means of an analytic technique, namely the homotopy analysis method (HAM. Comparisons are made between Adomian’s decomposition method (ADM and the exact solution and the homotopy analysis method. The results reveal that the proposed method is very effective and simple.

  9. Modified Homotopy Analysis Method for Zakharov-Kuznetsov Equations

    Directory of Open Access Journals (Sweden)

    Muhammad USMAN

    2013-01-01

    Full Text Available In this paper, we apply Modified Homotopy Analysis Method (MHAM to find appropriate solutions of Zakharov-Kuznetsov equations which are of utmost importance in applied and engineering sciences. The proposed modification is the elegant coupling of Homotopy Analysis Method (HAM and Taylor’s series. Numerical results coupled with graphical representation explicitly reveal the complete reliability of the proposed algorithm.

  10. Analysis of Quadratic Diophantine Equations with Fibonacci Number Solutions

    Science.gov (United States)

    Leyendekkers, J. V.; Shannon, A. G.

    2004-01-01

    An analysis is made of the role of Fibonacci numbers in some quadratic Diophantine equations. A general solution is obtained for finding factors in sums of Fibonacci numbers. Interpretation of the results is facilitated by the use of a modular ring which also permits extension of the analysis.

  11. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems. PMID:26986435

  12. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  13. Lie Symmetry Analysis of the Hopf Functional-Differential Equation

    Directory of Open Access Journals (Sweden)

    Daniel D. Janocha

    2015-08-01

    Full Text Available In this paper, we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives. We continue the work of Oberlack and Wacławczyk (2006, Arch. Mech. 58, 597, (2013, J. Math. Phys. 54, 072901, where the extended Lie symmetry analysis is performed in the Fourier space. Here, we introduce a method to perform the extended Lie symmetry analysis in the physical space where we have to deal with the transformation of the integration variable in the appearing integral terms. The method is based on the transformation of the product y(xdx appearing in the integral terms and applied to the functional formulation of the viscous Burgers equation. The extended Lie symmetry analysis furnishes all known symmetries of the viscous Burgers equation and is able to provide new symmetries associated with the Hopf formulation of the viscous Burgers equation. Hence, it can be employed as an important tool for applications in continuum mechanics.

  14. A Schrödinger Wave Equation Approach to the Eikonal Equation: Application to Image Analysis

    Science.gov (United States)

    Rangarajan, Anand; Gurumoorthy, Karthik S.

    As Planck’s constant hbar (treated as a free parameter) tends to zero, the solution to the eikonal equation |nabla S(X)|=f(X) can be increasingly closely approximated by the solution to the corresponding Schrödinger equation. When the forcing function f(X) is set to one, we get the Euclidean distance function problem. We show that the corresponding Schrödinger equation has a closed form solution which can be expressed as a discrete convolution and efficiently computed using a Fast Fourier Transform (FFT). The eikonal equation has several applications in image analysis, viz. signed distance functions for shape silhouettes, surface reconstruction from point clouds and image segmentation being a few. We show that the sign of the distance function, its gradients and curvature can all be written in closed form, expressed as discrete convolutions and efficiently computed using FFTs. Of note here is that the sign of the distance function in 2D is expressed as a winding number computation. For the general eikonal problem, we present a perturbation series approach which results in a sequence of discrete convolutions once again efficiently computed using FFTs. We compare the results of our approach with those obtained using the fast sweeping method, closed-form solutions (when available) and Dijkstra’s shortest path algorithm.

  15. Global coupled equations for dynamic analysis of planishing mill

    Institute of Scientific and Technical Information of China (English)

    蔡敢为; 钟掘

    2003-01-01

    The dynamic properties of rolling mill are significantly influenced by many coupling factors. Accordingto the coupled mechanical and electric dynamics theory, the global coupled equations for the dynamic analysis ofplanishing mill CM04 of Shanghai Baosteel Group Corporation were derived, by using finite element methods. Theseelasto-dynamic equations establish the coupling relations among the stand vibration system, torsional vibration sys-tem, driving motors, etc. It provides theoretical basis to a certain extent for globally dynamic simulation, analysis ofstability of motion, prediction of abnormal operating mode, globally optimum design and control, etc.

  16. Geometry of the restricted Boltzmann machine

    OpenAIRE

    Cueto, Maria Angelica; Morton, Jason; Sturmfels, Bernd

    2009-01-01

    The restricted Boltzmann machine is a graphical model for binary random variables. Based on a complete bipartite graph separating hidden and observed variables, it is the binary analog to the factor analysis model. We study this graphical model from the perspectives of algebraic statistics and tropical geometry, starting with the observation that its Zariski closure is a Hadamard power of the first secant variety of the Segre variety of projective lines. We derive a dimension formula for the ...

  17. A new scheme based on the Hermite expansion to construct lattice Boltzmann models associated with arbitrary specific heat ratio

    CERN Document Server

    Hu, Kainan; Geng, Shaojuan

    2016-01-01

    A new lattice Boltzmann scheme associated with flexible specific heat ratio is proposed. The new free degree is introduced via the internal energy associated with the internal structure. The evolution equation of the distribution function is reduced to two evolution equations. One is connected to the density and velocity, the other is of the energy. A two-dimensional lattice Boltzmann model and a three-dimensional lattice Boltzmann model are derived via the Hermite expansion. The two lattice Boltzmann models are applied to simulating the shock tube of one dimension. Good agreement between the numerical results and the analytical solutions are obtained.

  18. Renormalization group analysis of the gluon mass equation

    CERN Document Server

    Aguilar, A C; Papavassiliou, J

    2014-01-01

    In the present work we carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass. A detailed, all-order analysis of the complete kernel appearing in this particular equation reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, whose deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various p...

  19. Partial differential equations modeling, analysis and numerical approximation

    CERN Document Server

    Le Dret, Hervé

    2016-01-01

    This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .

  20. Aplicação da equação de Poisson-Boltzmann ao cálculo de propriedades dependentes do pH em proteínas Aplications of the Poisson-Boltzmann equation to the calculation of pH-dependent properties in proteins

    Directory of Open Access Journals (Sweden)

    Thereza A. Soares

    2004-08-01

    Full Text Available The ability of biomolecules to catalyze chemical reactions is due chiefly to their sensitivity to variations of the pH in the surrounding environment. The reason for this is that they are made up of chemical groups whose ionization states are modulated by pH changes that are of the order of 0.4 units. The determination of the protonation states of such chemical groups as a function of conformation of the biomolecule and the pH of the environment can be useful in the elucidation of important biological processes from enzymatic catalysis to protein folding and molecular recognition. In the past 15 years, the theory of Poisson-Boltzmann has been successfully used to estimate the pKa of ionizable sites in proteins yielding results, which may differ by 0.1 unit from the experimental values. In this study, we review the theory of Poisson-Boltzmann under the perspective of its application to the calculation of pKa in proteins.

  1. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究∗%Gas-kinetic unified algorithm for hyp ersonic aerothermo dynamics covering various flow regimes solving Boltzmann mo del equation

    Institute of Scientific and Technical Information of China (English)

    李志辉; 彭傲平; 方方; 李四新; 张顺玉

    2015-01-01

    How to solve hypersonic aerothermodynamics and complex flow mechanism covering various flow regimes from high rarefied free-molecular flow of outer-layer space to continuum flow of near-ground is one of the frontier basic problems in the field of fluid physics. In this work, the unified Boltzmann model equation based on the molecular velocity distribution function is presented for describing complex hypersonic flow transport phenomena covering all flow regimes by physics analysis and model processing of the collision integral to the Boltzmann equation. The discrete velocity ordinate method is developed to simulate complex flows from low Mach numbers to hypersonic flight, and the gas-kinetic coupling-iteration numerical scheme is constructed directly to solve the evolution and updating of the molecular velocity distribution function by employing the unsteady time-splitting method and the NND finite-difference technique. Then, the gas-kinetic unified algorithm (GKUA) is presented to simulate the three-dimensional hypersonic aerothermodynamics and flow problems around space vehicles covering various flow regimes from free-molecule to continuum. To verify the accuracy and reliability of the present GKUA and simulate gas thermodynamic transport phenomena covering various flow regimes, firstly, the two-dimensional supersonic flows around a circular cylinder are simulated in the continuum regime of Kn∞ = 0.0001 and in the high rarefied regime of Kn∞ = 0.3 through the comparison between the Navier-Stokes (N-S) solution and the direct simulation Monte Carlo (DSMC) result, respectively. It is indicated that the GKUA can exactly converge to the N-S solution in the continuum flow regime, and the computed results of the GKUA are consistent with the DSMC simulation with a small deviation of 0.45%in the high rarefied flow regime. Then, the three-dimensional complex hypersonic flows around reusable satellite shape are studied as one of the engineering applications of the GKUA

  2. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  3. 差异加热腔中自然对流的格子Boltzmann方法数值分析%Numerical Analysis of Free Convection in a Differentially Heated Square Cavity by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    李钊; 梁栋; 余愿

    2016-01-01

    Lattice Boltzmann method has rapidly developed into a effective mesoscopic method to describe the fluid system movement. And it is widespread applied to energy exploitation and utilization, environmental protection, aerospace, chemical engineering, life science and other fields. Lattice Boltzmann method has its unique advantages on complex fluid field such as multiphase flow, multicomponent flow, chemical reaction diffusion, micro-scale flow and heat transfer, porous media flow, non-Newtonian fluid and magnetic fluid. The article proceed from the continuity Boltzmann- BGK equation to deduce the complete D2Q9 type of lattice Boltzmann model. Afterward, by FORTRAN programming program to calculate the temperature distribution of free convection in differentially heated square cavity under different Rayleigh numbers. The calculation results are well consistent with the results by finite volume method.%近年来,格子Boltzmann方法已经迅速发展成为一种有效的描述流体体系运动的介观方法,并广泛地应用于能源开发和利用、环境保护、航空航天、化学工程和生命科学等领域,格子Boltzmann方法在多相流、多组分流、化学反应扩散、微尺度流动与换热、多孔介质流、非牛顿流体、磁流体等复杂流体领域有其独特的优势。从连续Boltzmann-BGK方程出发,可以推导出完整的D2Q9型格子Boltzmann模型。然后通过FORTRAN编程计算不同瑞利数下差异加热腔中自然对流的温度分布情况,模拟结果与有限体积法结果吻合的很好。

  4. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions

    Science.gov (United States)

    Tidriri, M. D.

    1995-01-01

    One of the major applications of the domain decomposition time marching algorithm is the coupling of the Navier-Stokes systems with Boltzmann equations in order to compute transitional flows. Another important application is the coupling of a global Navier-Stokes problem with a local one in order to use different modelizations and/or discretizations. Both of these applications involve a global Navier-Stokes system with nonstandard boundary conditions. The purpose of this work is to prove, using the classical Leray-Schauder theory, that these boundary conditions are admissible and lead to a well posed problem.

  5. Topological interactions in a Boltzmann-type framework

    OpenAIRE

    Blanchet, Adrien; Degond, Pierre

    2015-01-01

    We consider a finite number of particles characterised by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of another particle, the leader. The follower chooses its leader according to the proximity rank of the latter with respect to the former. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit equation is akin to the Boltzmann equation. However , it exhibits...

  6. AD GALERKIN ANALYSIS FOR NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Xia Cui

    2003-01-01

    AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized,and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations,difficulty coming from non-linearity is treated, and optimal H1 and L2 convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.

  7. Heavy Flavor Suppression: Boltzmann vs Langevin

    CERN Document Server

    Das, Santosh K; Plumari, Salvatore; Greco, Vincenzo

    2013-01-01

    The propagation of heavy flavor through the quark gluon plasma has been treated commonly within the framework of Langevin dynamics, i.e. assuming the heavy flavor momentum transfer is much smaller than the light one. On the other hand a similar suppression factor $R_{AA}$ has been observed experimentally for light and heavy flavors. We present a thorough study of the approximations involved by Langevin equation by mean of a direct comparison with the full collisional integral within the framework of Boltzmann transport equation. We have compared the results obtained in both approaches which can differ substantially for charm quark leading to quite different values extracted for the heavy quark diffusion coefficient. In the case of bottom quark the approximation appears to be quite reasonable.

  8. Lattice Boltzmann modelling of intrinsic permeability

    CERN Document Server

    Li, Jun; Wu, Lei; Zhang, Yonghao

    2016-01-01

    Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In this technical note, we elaborate this issue in LBM modelling of porous media flows, which is particularly important for gas flows in ultra-tight media.

  9. Cauchy Annealing Schedule: An Annealing Schedule for Boltzmann Selection Scheme in Evolutionary Algorithms

    OpenAIRE

    Dukkipati, Ambedkar; Murty, Narasimha M; Bhatnagar, Shalabh

    2004-01-01

    Boltzmann selection is an important selection mechanism in evolutionary algorithms as it has theoretical properties which help in theoretical analysis. However, Boltzmann selection is not used in practice because a good annealing schedule for the `inverse temperature' parameter is lacking. In this paper we propose a Cauchy annealing schedule for Boltzmann selection scheme based on a hypothesis that selection-strength should increase as evolutionary process goes on and distance between two sel...

  10. Lattice Boltzmann modeling of three-phase incompressible flows.

    Science.gov (United States)

    Liang, H; Shi, B C; Chai, Z H

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems. PMID:26871191

  11. Lattice Boltzmann modeling of three-phase incompressible flows

    Science.gov (United States)

    Liang, H.; Shi, B. C.; Chai, Z. H.

    2016-01-01

    In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems.

  12. Modular Analysis of Almost Block Diagonal Systems of Equations

    OpenAIRE

    El-Mistikawy, Tarek M. A.

    2013-01-01

    Almost block diagonal linear systems of equations can be exemplified by two modules. This makes it possible to construct all sequential forms of band and/or block elimination methods, six old and fourteen new. It allows easy assessment of the methods on the basis of their operation counts, storage needs, and admissibility of partial pivoting. It unveils a robust partial pivoting strategy- local pivoting. Extension of modular analysis to bordered systems is also included.

  13. Anisotropic rectangular nonconforming finite element analysis for Sobolev equations

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hai-hong; GUO Cheng

    2008-01-01

    An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.

  14. Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids.

    Science.gov (United States)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2016-02-01

    In this paper, we developed a unified lattice Boltzmann model (LBM) to simulate electroconvection in a dielectric liquid induced by unipolar charge injection. Instead of solving the complex set of coupled Navier-Stokes equations, the charge conservation equation, and the Poisson equation of electric potential, three consistent lattice Boltzmann equations are formulated. Numerical results are presented for both strong and weak injection regimes, and different scenarios for the onset and evolution of instability, bifurcation, and chaos are tracked. All LBM results are found to be highly consistent with the analytical solutions and other numerical work.

  15. Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids

    Science.gov (United States)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2016-02-01

    In this paper, we developed a unified lattice Boltzmann model (LBM) to simulate electroconvection in a dielectric liquid induced by unipolar charge injection. Instead of solving the complex set of coupled Navier-Stokes equations, the charge conservation equation, and the Poisson equation of electric potential, three consistent lattice Boltzmann equations are formulated. Numerical results are presented for both strong and weak injection regimes, and different scenarios for the onset and evolution of instability, bifurcation, and chaos are tracked. All LBM results are found to be highly consistent with the analytical solutions and other numerical work.

  16. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary conditi...

  17. Joint Training of Deep Boltzmann Machines

    OpenAIRE

    Goodfellow, Ian; Courville, Aaron; Bengio, Yoshua

    2012-01-01

    We introduce a new method for training deep Boltzmann machines jointly. Prior methods require an initial learning pass that trains the deep Boltzmann machine greedily, one layer at a time, or do not perform well on classifi- cation tasks.

  18. Asymptotic analysis of a monostable equation in periodic media

    Directory of Open Access Journals (Sweden)

    Matthieu Alfaro

    2016-03-01

    Full Text Available We consider a multidimensional monostable reaction-diffusion equation whose nonlinearity involves periodic heterogeneity. This serves as a model of invasion for a population facing spatial heterogeneities. As a rescaling parameter tends to zero, we prove the convergence to a limit interface, whose motion is governed by the minimal speed (in each direction of the underlying pulsating fronts. This dependance of the speed on the (moving normal direction is in contrast with the homogeneous case and makes the analysis quite involved. Key ingredients are the recent improvement \\cite{A-Gil} %[4]of the well-known spreading properties \\cite{Wein02}, %[32], \\cite{Ber-Ham-02}, %[9],and the solution of a Hamilton-Jacobi equation.

  19. Galerkin Boundary Integral Analysis for the 3D Helmholtz Equation

    Energy Technology Data Exchange (ETDEWEB)

    Swager, Melissa [Emporia State University; Gray, Leonard J [ORNL; Nintcheu Fata, Sylvain [ORNL

    2010-01-01

    A linear element Galerkin boundary integral analysis for the three-dimensional Helmholtz equation is presented. The emphasis is on solving acoustic scattering by an open (crack) surface, and to this end both a dual equation formulation and a symmetric hypersingular formulation have been developed. All singular integrals are defined and evaluated via a boundary limit process, facilitating the evaluation of the (finite) hypersingular Galerkin integral. This limit process is also the basis for the algorithm for post-processing of the surface gradient. The analytic integrations required by the limit process are carried out by employing a Taylor series expansion for the exponential factor in the Helmholtz fundamental solutions. For the open surface, the implementations are validated by comparing the numerical results obtained by using the two different methods.

  20. PC analysis of stochastic differential equations driven by Wiener noise

    KAUST Repository

    Le Maître, Olivier Le

    2015-03-01

    A polynomial chaos (PC) analysis with stochastic expansion coefficients is proposed for stochastic differential equations driven by additive or multiplicative Wiener noise. It is shown that for this setting, a Galerkin formalism naturally leads to the definition of a hierarchy of stochastic differential equations governing the evolution of the PC modes. Under the mild assumption that the Wiener and uncertain parameters can be treated as independent random variables, it is also shown that the Galerkin formalism naturally separates parametric uncertainty and stochastic forcing dependences. This enables us to perform an orthogonal decomposition of the process variance, and consequently identify contributions arising from the uncertainty in parameters, the stochastic forcing, and a coupled term. Insight gained from this decomposition is illustrated in light of implementation to simplified linear and non-linear problems; the case of a stochastic bifurcation is also considered.

  1. Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio

    Indian Academy of Sciences (India)

    Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang

    2014-10-01

    An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.

  2. Privacy-Preserving Restricted Boltzmann Machine

    Directory of Open Access Journals (Sweden)

    Yu Li

    2014-01-01

    Full Text Available With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM. The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model.

  3. Privacy-preserving restricted boltzmann machine.

    Science.gov (United States)

    Li, Yu; Zhang, Yuan; Ji, Yue

    2014-01-01

    With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provide a correctness and efficiency analysis of our algorithms. The comparative experiment shows that the accuracy is very close to the original RBM model. PMID:25101139

  4. Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations

    KAUST Repository

    Gomez, Hector

    2010-05-01

    This paper is devoted to the numerical simulation of the Navier-Stokes-Korteweg equations, a phase-field model for water/water-vapor two-phase flows. We develop a numerical formulation based on isogeometric analysis that permits straightforward treatment of the higher-order partial-differential operator that represents capillarity. We introduce a new refinement methodology that desensitizes the numerical solution to the computational mesh and achieves mesh invariant solutions. Finally, we present several numerical examples in two and three dimensions that illustrate the effectiveness and robustness of our approach. © 2010 Elsevier B.V.

  5. Numerical Analysis for Functional Differential and Integral Equations

    Institute of Scientific and Technical Information of China (English)

    Hermann BRUNNER; Tao TANG; Stefan VANDEWALLE

    2009-01-01

    @@ From December 3-6,2007,the Department of Mathematics at Hong Kong Baptist University hosted the International Workshop on Numerical Analysis and Computational Methods for Functional Differential and Integral Equations. This workshop,organized by Hermann Brunner of Memorial University of Newfoundland (Canada) & Hong Kong Baptist University,Leevan Ling and Tao Tang of Hong Kong Baptist University,and Chengjian Zhang of Huazhong University of Science and Technology (China) brought together some 40 members of research groups in Hong Kong,Taiwan and the mainland of China,Belgium,Canada,Japan,and Portugal.

  6. Multi-component lattice-Boltzmann model with interparticle interaction

    OpenAIRE

    Shan, Xiaowen; Doolen, Gary

    1995-01-01

    A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two component...

  7. A Lattice Boltzmann model for diffusion of binary gas mixtures

    OpenAIRE

    Bennett, Sam

    2010-01-01

    This thesis describes the development of a Lattice Boltzmann (LB) model for a binary gas mixture. Specifically, channel flow driven by a density gradient with diffusion slip occurring at the wall is studied in depth. The first part of this thesis sets the foundation for the multi-component model used in the subsequent chapters. Commonly used single component LB methods use a non-physical equation of state, in which the relationship between pressure and density varies according to the sca...

  8. Lattice Boltzmann Method for mixtures at variable Schmidt number

    OpenAIRE

    Monteferrante, Michele; Melchionna, Simone; Marconi, Umberto Marini Bettolo

    2015-01-01

    When simulating multicomponent mixtures via the Lattice Boltzmann Method, it is desirable to control the mutual diffusivity between species while maintaining the viscosity of the solution fixed. This goal is herein achieved by a modification of the multicomponent Bhatnagar-Gross-Krook (BGK) evolution equations by introducing two different timescales for mass and momentum diffusion. Diffusivity is thus controlled by an effective drag force acting between species. Numerical simulations confirm ...

  9. Stochastic particle approximations for generalized Boltzmann models and convergence estimates

    OpenAIRE

    Graham, Carl; Méléard, Sylvie

    1997-01-01

    We specify the Markov process corresponding to a generalized mollified Boltzmann equation with general motion between collisions and nonlinear bounded jump (collision) operator, and give the nonlinear martingale problem it solves. We consider various linear interacting particle systems in order to approximate this nonlinear process. We prove propagation of chaos, in variation norm on path space with a precise rate of convergence, using coupling and interaction graph techniqu...

  10. Renormalization group analysis of the gluon mass equation

    Science.gov (United States)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2014-04-01

    We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.

  11. Ludwig Boltzmann A Pioneer of Modern Physics

    CERN Document Server

    Flamm, D

    1997-01-01

    In two respects Ludwig Boltzmann was a pioneer of quantum mechanics. First because in his statistical interpretation of the second law of thermodynamics he introduced the theory of probability into a fundamental law of physics and thus broke with the classical prejudice, that fundamental laws have to be strictly deterministic. Even Max Planck had not been ready to accept Boltzmann's statistical methods until 1900. With Boltzmann's pioneering work the probabilistic interpretation of quantum mechanics had already a precedent. In fact in a paper in 1897 Boltzmann had already suggested to Planck to use his statistical methods for the treatment of black body radiation. The second pioneering step towards quantum mechanics was Boltzmann's introduction of discrete energy levels. Boltzmann used this method already in his 1872 paper on the H-theorem. One may ask whether Boltzmann considered this procedure only as a mathematical device or whether he attributed physical significance to it. In this connection Ostwald repo...

  12. Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    CERN Document Server

    Degond, Pierre; Savelief, Dominique; Vignal, Marie-Hélène

    2010-01-01

    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately.

  13. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2013-06-26

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  14. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  15. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  16. Analysis of the resonance frequency shift in cylindrical cavities containing a sphere and its prediction based on the Boltzmann-Ehrenfest principle

    DEFF Research Database (Denmark)

    Orozco Santillán, Arturo; Cutanda Henriquez, Vicente

    2008-01-01

    levitation, has numerous applications in containerless study and processing of materials. Although it is possible to levitate a sample for long periods of time, instabilities can appear under certain conditions. One of the causes of oscillational instabilities is the change of the resonance frequency...... of the cavity due to the presence of the levitated object. The Boltzmann-Ehrenfest principle has been used to obtain an analytical expression for the resonance frequency shift in a cylindrical cavity produced by a small sphere, with kR

  17. Multiphase cascaded lattice Boltzmann method

    OpenAIRE

    Lycett-Brown, D.; Luo, K. H.

    2014-01-01

    To improve the stability of the lattice Boltzmann method (LBM) at high Reynolds number the cascaded LBM has recently been introduced. As in the multiple relaxation time (MRT) method the cascaded LBM introduces additional relaxation times into the collision operator, but does so in a co-moving reference frame. This has been shown to significantly increase stability at low viscosity in the single phase case. Here the cascaded LBM is further developed to include multiphase flow. For this the for...

  18. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations

    Science.gov (United States)

    Huang, Ding-jiang; Ivanova, Nataliya M.

    2016-02-01

    In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.

  19. Equation-free analysis of a dynamically evolving multigraph

    CERN Document Server

    Holiday, Alexander

    2016-01-01

    In order to illustrate the adaptation of traditional continuum numerical techniques to the study of complex network systems, we use the equation-free framework to analyze a dynamically evolving multigraph. This approach is based on coupling short intervals of direct dynamic network simulation with appropriately-defined lifting and restriction operators, mapping the detailed network description to suitable macroscopic (coarse-grained) variables and back. This enables the acceleration of direct simulations through Coarse Projective Integration (CPI), as well as the identification of coarse stationary states via a Newton-GMRES method. We also demonstrate the use of data-mining, both linear (principal component analysis, PCA) and nonlinear (diffusion maps, DMAPS) to determine good macroscopic variables (observables) through which one can coarse-grain the model. These results suggest methods for decreasing simulation times of dynamic real-world systems such as epidemiological network models. Additionally, the data...

  20. Applying Meta-Analysis to Structural Equation Modeling

    Science.gov (United States)

    Hedges, Larry V.

    2016-01-01

    Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…

  1. Convolution Inequalities for the Boltzmann Collision Operator

    Science.gov (United States)

    Alonso, Ricardo J.; Carneiro, Emanuel; Gamba, Irene M.

    2010-09-01

    We study integrability properties of a general version of the Boltzmann collision operator for hard and soft potentials in n-dimensions. A reformulation of the collisional integrals allows us to write the weak form of the collision operator as a weighted convolution, where the weight is given by an operator invariant under rotations. Using a symmetrization technique in L p we prove a Young’s inequality for hard potentials, which is sharp for Maxwell molecules in the L 2 case. Further, we find a new Hardy-Littlewood-Sobolev type of inequality for Boltzmann collision integrals with soft potentials. The same method extends to radially symmetric, non-increasing potentials that lie in some {Ls_{weak}} or L s . The method we use resembles a Brascamp, Lieb and Luttinger approach for multilinear weighted convolution inequalities and follows a weak formulation setting. Consequently, it is closely connected to the classical analysis of Young and Hardy-Littlewood-Sobolev inequalities. In all cases, the inequality constants are explicitly given by formulas depending on integrability conditions of the angular cross section (in the spirit of Grad cut-off). As an additional application of the technique we also obtain estimates with exponential weights for hard potentials in both conservative and dissipative interactions.

  2. New Boundary Treatment Methods for Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    Cheng Yong-guang; Suo Li-sheng

    2003-01-01

    In practical fluid dynamic simulations, the boundary condition should be treated carefully because it always has crucial influence on the numerical accuracy, stability and efficiency. Two types of boundary treatment methods for lattice Boltzmann method (LBM) are proposed. One is for the treatment of boundaries situated at lattice nodes, and the other is for the approximation of boundaries that are not located at the regular lattice nodes. The first type of boundary treatment method can deal with various dynamic boundaries on complex geometries by using a general set of formulas, which can maintain second-order accuracy. Based on the fact that the fluid flows simulated by LBM are not far from equilibrium, the unknown distributions at a boundary node are expressed as the analogous forms of their corresponding equilibrium distributions. Therefore, the number of unknowns can be reduced and an always-closed set of equations can be obtained for the solutions to pressure, velocity and special boundary conditions on various geometries. The second type of boundary treatment is a complete interpolation scheme to treat curved boundaries. It comes from careful analysis of the relations between distribution functions at boundary nodes and their neighboring lattice nodes. It is stable for all situations and of second-order accuracy. Basic ideas, implementation procedures and verifications with typical examples for the both treatments are presented. Numerical simulations and analyses show that they are accurate, stable, general and efficient for practical simulations.

  3. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTIC SHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC KOITER SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, the dynamic equatioins of membrane shells and the dynamic equations of flexural shells are obtained from dynamic equations of Koiter shells by the method of asymptotic analysis.

  4. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTICSHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    肖黎明

    2001-01-01

    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of themethod of asymptotic analysis.

  5. Student understanding of the Boltzmann factor

    CERN Document Server

    Smith, Trevor I; Thompson, John R

    2015-01-01

    We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann f...

  6. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    International Nuclear Information System (INIS)

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs

  7. Master equation for a quantum particle in a gas

    OpenAIRE

    Hornberger, Klaus

    2006-01-01

    The equation for the quantum motion of a Brownian particle in a gaseous environment is derived by means of S-matrix theory. This quantum version of the linear Boltzmann equation accounts non-perturbatively for the quantum effects of the scattering dynamics and describes decoherence and dissipation in a unified framework. As a completely positive master equation it incorporates both the known equation for an infinitely massive Brownian particle and the classical linear Boltzmann equation as li...

  8. On the search of more stable second-order lattice-Boltzmann schemes in confined flows

    Science.gov (United States)

    Golbert, D. R.; Blanco, P. J.; Clausse, A.; Feijóo, R. A.

    2015-08-01

    The von Neumann linear analysis, restricted by a heuristic selection of wave-number vectors was applied to the search of explicit lattice Boltzmann schemes which exhibit more stability than existing methods. The relative stability of the family members of quasi-incompressible collision kernels, for the Navier-Stokes equations in confined flows, was analyzed. The linear stability analysis was simplified by assuming a uniform velocity level over the whole domain, where only the wave numbers of the first harmonic normal to the flow direction were permitted. A singular equilibrium function that maximizes the critical velocity level was identified, which was afterwards tested in particular cases of confined flows of interest, validating the resulting procedure.

  9. Lattice Boltzmann method with the cell-population equilibrium

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yang; Cheng Bing; Shi Bao-Chang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium.In this paper,a multi-speed 1D cell-model of Boltzmann equation is proposed,in which the cell-population equilibrium,a direct nonnegative approximation to the continuous Maxwellian distribution,plays an important part.By applying the explicit one-order Chapman-Enskog distribution,the model reduces the transportation and collision,two basic evolution steps in LBM,to the transportation of the non-equilibrium distribution.Furthermore,1D dam-break problem is performed and the numerical results agree well with the analytic solutions.

  10. Quadrature-based Lattice Boltzmann Model for Relativistic Flows

    CERN Document Server

    Blaga, Robert

    2016-01-01

    A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.

  11. Transformation of equations in analysis of proportionality through referent models

    CERN Document Server

    Romay, E O

    2006-01-01

    In proportionality of objects, samples or populations, usually we work with Z score of proportionality calculated through referent models, instead directly with the variables of the objects in itself. In these studies we have the necessity to transform, the equations that use the variables of the object, in equations that directly use like variables Z score. In the present work a method is developed to transform the parametric equations, in equations in variables Z using like example the studies of human proportionality from the Phantom stratagem of Ross and Wilson.

  12. Master equation simulation analysis of immunostained Bicoid morphogen gradient

    Directory of Open Access Journals (Sweden)

    Reinitz John

    2007-11-01

    Full Text Available Abstract Background The concentration gradient of Bicoid protein which determines the developmental pathways in early Drosophila embryo is the best characterized morphogen gradient at the molecular level. Because different developmental fates can be elicited by different concentrations of Bicoid, it is important to probe the limits of this specification by analyzing intrinsic fluctuations of the Bicoid gradient arising from small molecular number. Stochastic simulations can be applied to further the understanding of the dynamics of Bicoid morphogen gradient formation at the molecular number level, and determine the source of the nucleus-to-nucleus expression variation (noise observed in the Bicoid gradient. Results We compared quantitative observations of Bicoid levels in immunostained Drosophila embryos with a spatially extended Master Equation model which represents diffusion, decay, and anterior synthesis. We show that the intrinsic noise of an autonomous reaction-diffusion gradient is Poisson distributed. We demonstrate how experimental noise can be identified in the logarithm domain from single embryo analysis, and then separated from intrinsic noise in the normalized variance domain of an ensemble statistical analysis. We show how measurement sensitivity affects our observations, and how small amounts of rescaling noise can perturb the noise strength (Fano factor observed. We demonstrate that the biological noise level in data can serve as a physical constraint for restricting the model's parameter space, and for predicting the Bicoid molecular number and variation range. An estimate based on a low variance ensemble of embryos suggests that the steady-state Bicoid molecular number in a nucleus should be larger than 300 in the middle of the embryo, and hence the gradient should extend to the posterior end of the embryo, beyond the previously assumed background limit. We exhibit the predicted molecular number gradient together with

  13. Lattice Boltzmann method for bosons and fermions and the fourth order Hermite polynomial expansion

    CERN Document Server

    Coelho, Rodrigo C V; Doria, M M; Pereira, R M; Aibe, Valter Yoshihiko

    2013-01-01

    The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried until the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by J.Y. Yang et al through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded until fourth order in the Hermite polynomials.

  14. Stability analysis of a class of fractional delay differential equations

    Indian Academy of Sciences (India)

    Sachin B Bhalekar

    2013-08-01

    In this paper we analyse stability of nonlinear fractional order delay differential equations of the form $D^{} y(t) = af(y(t - )) - {\\text{by}} (t)$, where $D^{}$ is a Caputo fractional derivative of order 0 < ≤ 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.

  15. Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications

    Directory of Open Access Journals (Sweden)

    Lakshman Mahto

    2013-01-01

    Full Text Available We use Sadovskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and compliment the existing one.

  16. Long-term Analysis of Degenerate Parabolic Equations in RN

    Institute of Scientific and Technical Information of China (English)

    Gao Cheng YUE; Cheng Kui ZHONG

    2015-01-01

    Longtime behavior of degenerate equations with the nonlinearity of polynomial growth of arbitrary order on the whole space RN is considered. By using ?-trajectories methods, we proved that weak solutions generated by degenerate equations possess an (L2U (RN ), L2loc(RN ))-global attractor. Moreover, the upper bounds of the Kolmogorovε-entropy for such global attractor are also obtained.

  17. An analysis of the nonlinear equation = (, ) + (, )$u^2_$ + ℎ(, ) + (, )$

    Indian Academy of Sciences (India)

    R M Edelstein; K S Govinder

    2011-01-01

    We use the method of preliminary group classification to analyse a particular form of the nonlinear diffusion equation in which the inhomogeneity is quadratic in . The method yields an optimal system of one-dimensional subalgebras. As a result we obtain those explicit forms of the unknown functions , , ℎ and for which the equation admits additional point symmetries.

  18. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    Science.gov (United States)

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  19. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    DEFF Research Database (Denmark)

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels;

    2013-01-01

    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  20. Boundary Layer Equations and Lie Group Analysis of a Sisko Fluid

    Directory of Open Access Journals (Sweden)

    Gözde Sarı

    2012-01-01

    Full Text Available Boundary layer equations are derived for the Sisko fluid. Using Lie group theory, a symmetry analysis of the equations is performed. A partial differential system is transferred to an ordinary differential system via symmetries. Resulting equations are numerically solved. Effects of non-Newtonian parameters on the solutions are discussed.

  1. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  2. Autotagging music with conditional restricted Boltzmann machines

    CERN Document Server

    Mandel, Michael; Larochelle, Hugo; Bengio, Yoshua

    2011-01-01

    This paper describes two applications of conditional restricted Boltzmann machines (CRBMs) to the task of autotagging music. The first consists of training a CRBM to predict tags that a user would apply to a clip of a song based on tags already applied by other users. By learning the relationships between tags, this model is able to pre-process training data to significantly improve the performance of a support vector machine (SVM) autotagging. The second is the use of a discriminative RBM, a type of CRBM, to autotag music. By simultaneously exploiting the relationships among tags and between tags and audio-based features, this model is able to significantly outperform SVMs, logistic regression, and multi-layer perceptrons. In order to be applied to this problem, the discriminative RBM was generalized to the multi-label setting and four different learning algorithms for it were evaluated, the first such in-depth analysis of which we are aware.

  3. Flux Limiter Lattice Boltzmann for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    陈峰; 许爱国; 张广财; 李英骏

    2011-01-01

    In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.

  4. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    OpenAIRE

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.

    2013-01-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum l...

  5. SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS

    Institute of Scientific and Technical Information of China (English)

    Yan Guangwu; Hu Shouxin

    2000-01-01

    A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.

  6. Lattice Boltzmann scheme for relativistic fluids

    OpenAIRE

    Mendoza, M.; B. Boghosian; Herrmann, H. J.; Succi, S.

    2009-01-01

    A Lattice Boltzmann formulation for relativistic fluids is presented and numerically verified through quantitative comparison with recent hydrodynamic simulations of relativistic shock-wave propagation in viscous quark-gluon plasmas. This formulation opens up the possibility of exporting the main advantages of Lattice Boltzmann methods to the relativistic context, which seems particularly useful for the simulation of relativistic fluids in complicated geometries.

  7. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  8. Implicit Parallel FEM Analysis of Shallow Water Equations

    Institute of Scientific and Technical Information of China (English)

    JIANG Chunbo; LI Kai; LIU Ning; ZHANG Qinghai

    2005-01-01

    The velocity field in the Wu River at Chongqing was simulated using the shallow water equation implemented on clustered workstations. The parallel computing technique was used to increase the computing power. The shallow water equation was discretized to a linear system of equations with a direct parallel generalized minimum residual algorithm (GMRES) used to solve the linear system. Unlike other parallel GMRES methods, the direct GMRES method does not alter the sequential algorithm, but bases the parallelization on basic operations such as the matrix-vector product. The computed results agree well with observed results. The parallel computing technique significantly increases the solution speed for this large-scale problem.

  9. Non-relativistic BUU equation

    International Nuclear Information System (INIS)

    The Boltzmann-Uhlenbeck (BUU) equation, which is the time evolution of the wigner function of the single particle Green's function, is dervied by using the closed-time Green's function approach. The quantum mechanical approximation in derving the BUU equation is discussed

  10. Thermodynamic analysis of fluorescence enhancement and Quenching theory equations

    Institute of Scientific and Technical Information of China (English)

    Manman YANG; Xiaoli XI; Pin YANG

    2008-01-01

    The action of the three kinds of new third generation cephalosporin,class drugs,cefepime hydrochroride,cefpiramide and ceftizoxime with HSA and BSA was studied at different temperatures through the fluorescence method. First,the binding constants were calculated by using fluorescence quenching and enhancement theoretical equations. Their thermodynamic functions were also calculated. Because the KA corresponding to the different theoretical equations are not completely the same,the thermodynamic parameters calculated are also different. In this paper,the differences among these thermodynamic data obtained from the different theoretical equations were analyzed and the results show that the thermodynamic data deduced from fluorescence enhancement are more reasonable. Thus,we propose that even when the fluorescence quenching action of the acceptorsubstrate is studied,more realistic data can be obtained by using the fluorescence enhancement equation.

  11. Stochastic Volatility Analysis using the Generalised Kolmogorov-Feller Equation

    OpenAIRE

    Jonathan Blackledge; Marc Lamphiere; Kieran Murphy; Shaun Overton; Afshin Panahi

    2012-01-01

    We consider an approach to analysing the Stochastic Volatility of a financial time series using the Generalised Kolmogorov-Feller Equation (GKFE). After reviewing the computation of the Stochastic Volatility using a phase only condition, a Green’s function solution to the GKFE equation is derived which depends upon the ‘memory function’ used to construct the GKFE. Using the Mittag-Leffler memory function, we derive an expression for the Impulse Response Function associated with a short time w...

  12. MRT-lattice Boltzmann computations of natural convection and volumetric radiation in a tilted square enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Moufekkir, F.; Moussaoui, M.A.; Mezrhab, A. [Laboratoire de Mecanique and Energetique, Faculte des sciences, Departement de physique 60000 Oujda (Morocco); Lemonnier, D. [Institut Pprime, CNRS-ENSMA-Univ. Poitiers, ENSMA, BP 40109, 86961 Futuroscope Chasseneuil cedex (France); Naji, H. [Universite Lille Nord de France, F-59000 Lille (France); Laboratoire Genie Civil and geo-Environnement - LGCgE- EA 4515, UArtois/FSA Bethune, F-62400 Bethune (France)

    2012-04-15

    A numerical analysis is carried out for natural convection while in an asymmetrically heated square cavity containing an absorbing emitting medium. The numerical approach adopted uses a hybrid thermal lattice Boltzmann method (HTLBM) in which the mass and momentum conservation equations are solved by using multiple relaxation time (MRT) model and the energy equation is solved separately by using the finite difference method (FDM). In addition, the radiative transfer equation (RTE) is treated by the discrete ordinates method (DOM) using the S8 quadrature to evaluate the source term of the energy equation. The effects of parameters such as the Rayleigh number Ra, the optical thickness {tau} and the inclination angle {phi}, are studied numerically to assess their impact on the flow and temperature distribution. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in the absence of the radiation, the temperature and the flow fields are centro-symmetric and the cavity core is thermally stratified. However, radiation causes an overall increase in temperature and velocity gradients along both thermally active walls

  13. An Overview of Path Analysis: Mediation Analysis Concept in Structural Equation Modeling

    OpenAIRE

    Jenatabadi, Hashem Salarzadeh

    2015-01-01

    This paper provides a tutorial discussion on path analysis structure with concept of structural equation modelling (SEM). The paper delivers an introduction to path analysis technique and explain to how to deal with analyzing the data with this kind of statistical methodology especially with a mediator in the research model. The intended audience is statisticians, mathematicians, or methodologists who either know about SEM or simple basic statistics especially in regression and linear/nonline...

  14. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  15. Appendix: Chapman-Enskog Expansion in the Lattice Boltzmann Method

    CERN Document Server

    Li, Jun

    2015-01-01

    The Chapman-Enskog expansion was used in the lattice Boltzmann method (LBM) to derive a Navier-Stokes-like equation and a formula was obtained to correlate the LBM model parameters to the kinematic viscosity implicitly implemented in LBM simulations. The obtained correlation formula usually works as long as the model parameters are carefully selected to make the Mach number and Knudsen number small although the validity of Chapman-Enskog expansion that has a formal definition of time derivative without tangible mathematical sense is not recognized by many mathematicians.

  16. Multi-component lattice-Boltzmann model with interparticle interaction

    CERN Document Server

    Shan, X; Shan, Xiaowen; Doolen, Gary

    1995-01-01

    Abstract: A previously proposed [X. Shan and H. Chen, Phys. Rev. E {\\bf 47}, 1815, (1993)] lattice Boltzmann model for simulating fluids with multiple components and interparticle forces is described in detail. Macroscopic equations governing the motion of each component are derived by using Chapman-Enskog method. The mutual diffusivity in a binary mixture is calculated analytically and confirmed by numerical simulation. The diffusivity is generally a function of the concentrations of the two components but independent of the fluid velocity so that the diffusion is Galilean invariant. The analytically calculated shear kinematic viscosity of this model is also confirmed numerically.

  17. A lattice Boltzmann method for dilute polymer solutions.

    Science.gov (United States)

    Singh, Shiwani; Subramanian, Ganesh; Ansumali, Santosh

    2011-06-13

    We present a lattice Boltzmann approach for the simulation of non-Newtonian fluids. The method is illustrated for the specific case of dilute polymer solutions. With the appropriate local equilibrium distribution, phase-space dynamics on a lattice, driven by a Bhatnagar-Gross-Krook (BGK) relaxation term, leads to a solution of the Fokker-Planck equation governing the probability density of polymer configurations. Results for the bulk rheological characteristics for steady and start-up shear flow are presented, and compare favourably with those obtained using Brownian dynamics simulations. The new method is less expensive than stochastic simulation techniques, particularly in the range of small to moderate Weissenberg numbers (Wi).

  18. Thermal cascaded lattice Boltzmann method

    CERN Document Server

    Fei, Linlin

    2016-01-01

    In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...

  19. Analysis of a mixed space-time diffusion equation

    Science.gov (United States)

    Momoniat, Ebrahim

    2015-06-01

    An energy method is used to analyze the stability of solutions of a mixed space-time diffusion equation that has application in the unidirectional flow of a second-grade fluid and the distribution of a compound Poisson process. Solutions to the model equation satisfying Dirichlet boundary conditions are proven to dissipate total energy and are hence stable. The stability of asymptotic solutions satisfying Neumann boundary conditions coincides with the condition for the positivity of numerical solutions of the model equation from a Crank-Nicolson scheme. The Crank-Nicolson scheme is proven to yield stable numerical solutions for both Dirichlet and Neumann boundary conditions for positive values of the critical parameter. Numerical solutions are compared to analytical solutions that are valid on a finite domain.

  20. Painlevé analysis and some solutions of variable coefficient Benny equation

    Indian Academy of Sciences (India)

    Rajeev Kumar; R K Gupta; S S Bhatia

    2015-12-01

    In this paper, variable coefficient Benny equation (also called the KdV Burgers–Kuramoto equation) has been considered. By using the Painlevé analysis and Lie group analysis methods, the Painlevé properties and symmetries have been studied. Some solutions of the reduced ODEs are obtained.

  1. Moving Charged Particles in Lattice Boltzmann-Based Electrokinetics

    CERN Document Server

    Kuron, Michael; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-01-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann (LB) algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions, which are needed to simulate moving colloids, into the Capuani scheme has been lacking. In this paper, we detail how to introduce such moving boundaries, based on an analogue to the moving boundary method for the pure LB solver. The key ingredients in our method are mass and charge conservation for the solute spec...

  2. Numerical analysis of Weyl's method for integrating boundary layer equations

    Science.gov (United States)

    Najfeld, I.

    1982-01-01

    A fast method for accurate numerical integration of Blasius equation is proposed. It is based on the limit interchange in Weyl's fixed point method formulated as an iterated limit process. Each inner limit represents convergence to a discrete solution. It is shown that the error in a discrete solution admits asymptotic expansion in even powers of step size. An extrapolation process is set up to operate on a sequence of discrete solutions to reach the outer limit. Finally, this method is extended to related boundary layer equations.

  3. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  4. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.

    2013-01-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  5. Reprint of : The Boltzmann--Langevin approach: A simple quantum-mechanical derivation

    Science.gov (United States)

    Nagaev, K. E.

    2016-08-01

    We present a simple quantum-mechanical derivation of correlation function of Langevin sources in the semiclassical Boltzmann-Langevin equation. The specific case of electron-phonon scattering is considered. It is shown that the assumption of weak scattering leads to the Poisson nature of the scattering fluxes.

  6. Analysis of Students' Error in Learning of Quadratic Equations

    Science.gov (United States)

    Zakaria, Effandi; Ibrahim; Maat, Siti Mistima

    2010-01-01

    The purpose of the study was to determine the students' error in learning quadratic equation. The samples were 30 form three students from a secondary school in Jambi, Indonesia. Diagnostic test was used as the instrument of this study that included three components: factorization, completing the square and quadratic formula. Diagnostic interview…

  7. ANALYSIS OF A MECHANICAL SOLVER FOR LINEAR SYSTEMS OF EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Luis Vázquez; Salvador Jiménez

    2001-01-01

    In this contribution we analyse some fundamental features of an iterative method to solve systems of linear equations, following the approach introduced in a previous work[1].Such questions range from optimal parameters and initial conditions to comparison with other methods. An interesting result is that a priori we can give an estimation of the number of iterations to get a given accuracy.

  8. Green's function retrieval with Marchenko equations: A sensitivity analysis

    NARCIS (Netherlands)

    Thorbecke, J.W.; Van der Neut, J.R.; Wapenaar, C.P.A.

    2013-01-01

    Recent research showed that the Marchenko equation can be used to construct the Green’s function for a virtual source position in the subsurface. The method requires the reflection response at the surface and an estimate of the direct arrival of the wavefield, traveling from the virtual source locat

  9. The Kramers equation simulation algorithm I. Operator analysis

    CERN Document Server

    Beccaria, M; Beccaria, Matteo; Curci, Giuseppe

    1994-01-01

    Using an operatorial formalism, we study the Kramers equation and its applications to numerical simulations. We obtain classes of algorithms which may be made precise at every desired order in the time step $\\epsilon$ and with a set of free parameters which can be used to reduce autocorrelations. We show that it is possible to use a global Metropolis test to restore Detailed Balance.

  10. Multiphase lattice Boltzmann methods theory and application

    CERN Document Server

    Huang, Haibo; Lu, Xiyun

    2015-01-01

    Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference  on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the

  11. Average Contrastive Divergence for Training Restricted Boltzmann Machines

    OpenAIRE

    Xuesi Ma; Xiaojie Wang

    2016-01-01

    This paper studies contrastive divergence (CD) learning algorithm and proposes a new algorithm for training restricted Boltzmann machines (RBMs). We derive that CD is a biased estimator of the log-likelihood gradient method and make an analysis of the bias. Meanwhile, we propose a new learning algorithm called average contrastive divergence (ACD) for training RBMs. It is an improved CD algorithm, and it is different from the traditional CD algorithm. Finally, we obtain some experimental resul...

  12. A stability analysis for a semilinear parabolic partial differential equation

    Science.gov (United States)

    Chafee, N.

    1973-01-01

    The parabolic partial differential equation considered is u sub t = u sub xx + f(u), where minus infinity x plus infinity and o t plus infinity. Under suitable hypotheses pertaining to f, a class of initial data is exhibited: phi(x), minus infinity x plus infinity, for which the corresponding solutions u(x,t) appraoch zero as t approaches the limit of plus infinity. This convergence is uniform with respect to x on any compact subinterval of the real axis.

  13. Simultaneous-equations Analysis in Regional Science and Economic Geography

    DEFF Research Database (Denmark)

    Mitze, Timo; Stephan, Andreas

    This paper provides an overview over simultaneous equation models (SEM) in the context of analyses based on regional data. We describe various modelling approaches and highlight close link of SEMs to theory and also comment on the advantages and disadvantages of SEMs.We present selected empirical...... with some details on how the various models can be estimated with available software packages such as STATA, LIMDEP or Gauss....

  14. Lattice Boltzmann model for collisionless electrostatic drift wave turbulence obeying Charney-Hasegawa-Mima dynamics

    CERN Document Server

    Held, M

    2015-01-01

    A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas, is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occuring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.

  15. Ergodicity, ensembles, irreversibility in Boltzmann and beyond

    CERN Document Server

    Gallavotti, G

    1994-01-01

    The implications of the original misunderstanding of the etymology of the word "ergodic" are discussed, and the contents of a not too well known paper by Boltzmann are critically examined. The connection with the modern theory of Ruelle is attempted

  16. Ergodicity, ensembles, irreversibility in Boltzmann and beyond

    Science.gov (United States)

    Gallavotti, Giovanni

    1995-03-01

    The contents of a not too well-known paper by Boltzmann are critically examined. The etymology of the word ergodic and its implications are discussed. A connection with the modern theory of Ruelle is attempted.

  17. Picard iterations of boundary-layer equations. [in singular-perturbation analysis of flightpath optimization problems

    Science.gov (United States)

    Ardema, M. D.; Yang, L.

    1985-01-01

    A method of solving the boundary-layer equations that arise in singular-perturbation analysis of flightpath optimization problems is presented. The method is based on Picard iterations of the integrated form of the equations and does not require iteration to find unknown boundary conditions. As an example, the method is used to develop a solution algorithm for the zero-order boundary-layer equations of the aircraft minimum-time-to-climb problem.

  18. Application of variational and Galerkin equations to linear and nonlinear finite element analysis

    Science.gov (United States)

    Yu, Y.-Y.

    1974-01-01

    The paper discusses the application of the variational equation to nonlinear finite element analysis. The problem of beam vibration with large deflection is considered. The variational equation is shown to be flexible in both the solution of a general problem and in the finite element formulation. Difficulties are shown to arise when Galerkin's equations are used in the consideration of the finite element formulation of two-dimensional linear elasticity and of the linear classical beam.

  19. A Viscosity Adaptive Lattice Boltzmann Method

    OpenAIRE

    Conrad, Daniel

    2015-01-01

    The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice. By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics methods. The LBM has been shown to be an accurate and efficient tool for the numerical...

  20. Matrix-valued Quantum Lattice Boltzmann Method

    CERN Document Server

    Mendl, Christian B

    2013-01-01

    We develop a numerical framework for the quantum analogue of the "classical" lattice Boltzmann method (LBM), with the Maxwell-Boltzmann distribution replaced by the Fermi-Dirac function. To accommodate the spin density matrix, the distribution functions become 2x2-matrix valued. We show that the efficient, commonly used BGK approximation of the collision operator is valid in the present setting. The framework could leverage the principles of LBM for simulating complex spin systems, with applications to spintronics.

  1. Student understanding of the Boltzmann factor

    Science.gov (United States)

    Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations of student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions.

  2. Fluid Simulations with Localized Boltzmann Upscaling by Direct Simulation Monte-Carlo

    OpenAIRE

    Degond, Pierre; Dimarco, Giacomo

    2010-01-01

    In the present work, we present a novel numerical algorithm to couple the Direct Simulation Monte Carlo method (DSMC) for the solution of the Boltzmann equation with a finite volume like method for the solution of the Euler equations. Recently we presented in [14],[16],[17] different methodologies which permit to solve fluid dynamics problems with localized regions of departure from thermodynamical equilibrium. The methods rely on the introduction of buffer zones which realize a smooth transi...

  3. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    Science.gov (United States)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  4. Three-dimensional lattice Boltzmann model for electrodynamics.

    Science.gov (United States)

    Mendoza, M; Muñoz, J D

    2010-11-01

    In this paper we introduce a three-dimensional Lattice-Boltzmann model that recovers in the continuous limit the Maxwell equations in materials. In order to build conservation equations with antisymmetric tensors, like the Faraday law, the model assigns four auxiliary vectors to each velocity vector. These auxiliary vectors, when combined with the distribution functions, give the electromagnetic fields. The evolution is driven by the usual Bhatnager-Gross-Krook (BGK) collision rule, but with a different form for the equilibrium distribution functions. This lattice Bhatnager-Gross-Krook (LBGK) model allows us to consider for both dielectrics and conductors with realistic parameters, and therefore it is adequate to simulate the most diverse electromagnetic problems, like the propagation of electromagnetic waves (both in dielectric media and in waveguides), the skin effect, the radiation pattern of a small dipole antenna and the natural frequencies of a resonant cavity, all with 2% accuracy. Actually, it shows to be one order of magnitude faster than the original Finite-difference time-domain (FDTD) formulation by Yee to reach the same accuracy. It is, therefore, a valuable alternative to simulate electromagnetic fields and opens lattice Boltzmann for a broad spectrum of new applications in electrodynamics.

  5. Further analysis of the BFKL equation with momentum cutoffs

    CERN Document Server

    Dermott, M F M

    1996-01-01

    In this paper we investigate the effect of introducing transverse momentum cutoffs on the BFKL equation. We present solutions in moment space for various models of the BFKL kernel for different combinations of these cutoffs. We improve on previous calculations by using the full BFKL kernel (rather than simplified analytic approximations). The significance of the next-to-leading or ``higher twist'' terms in the kernel are assessed. We find that, while these terms are negligible in the absence of cutoffs, introducing an infra-red cutoff markedly enhances their significance.

  6. Introduction to stochastic analysis integrals and differential equations

    CERN Document Server

    Mackevicius, Vigirdas

    2013-01-01

    This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro

  7. Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.

    Science.gov (United States)

    Shi, Yong; Yap, Ying Wan; Sader, John E

    2015-07-01

    Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.

  8. A note on the convergence of the Zakharov-Kuznetsov equation by homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Amir Fallahzadeh

    2014-07-01

    Full Text Available In this paper, the convergence of Zakharov-Kuznetsov (ZK equation by homotopy analysis method (HAM is investigated. A theorem is proved to guarantee the convergence of HAMand to find the series solution of this equation via a reliable algorithm.

  9. Lattice-Boltzmann scheme for computer simulation of two-phase flows; Gitter-Boltzmann-Verfahren zur Simulation von Zweiphasenstroemungen

    Energy Technology Data Exchange (ETDEWEB)

    Toelke, J.

    2001-07-01

    The first part of this work is concerned with the development of methodological foundations for the computer simulation of two-phase flows like gas-liquid-mixtures in complex, three-dimensional structures. The basic numerical approach is the Lattice-Boltzmann scheme which is very suitable for this class of problems. After the approach is verified using standard test cases, the method is applied to complex engineering problems. The most important application is the simulation of the two-phase flow (air/water) in a laboratory-scale biofilm reactor for wastewater treatment. The second part of the work deals with the development of efficient numerical methods for the stationary discrete Boltzmann equations. They are discretized by finite differences on uniform and non-uniform grids and fast solvers are applied to the resulting algebraic system of equations. Also a multigrid approach is developed and examined. For typical problems like boundary-layer and driven cavity flow a considerable gain in computing time is achieved. (orig.)

  10. Simulation of a Microfluidic Gradient Generator using Lattice Boltzmann Methods

    CERN Document Server

    Simon, Tanaka

    2013-01-01

    Microfluidics provides a powerful and versatile technology to accurately control spatial and temporal conditions for cell culturing and can therefore be used to study cellular responses to gradients. Here we use Lattice Boltzmann methods (LBM) to solve both the Navier-Stokes equation (NSE) for the fluid and the coupled convection-diffusion equation (CDE) for the compounds that form the diffusion-based gradient. The design of a microfluidic chamber for diffusion-based gradients must avoid flow through the cell chamber. This can be achieved by alternately opening the source and the sink channels. The fast toggling of microfluidic valves requires switching between different boundary conditions. We demonstrate that the LBM is a powerful method for handling complex geometries, high Peclet number conditions, discontinuities in the boundary conditions, and multiphysics coupling.

  11. Beyond Poisson-Boltzmann: Numerical Sampling of Charge Density Fluctuations.

    Science.gov (United States)

    Poitevin, Frédéric; Delarue, Marc; Orland, Henri

    2016-07-01

    We present a method aimed at sampling charge density fluctuations in Coulomb systems. The derivation follows from a functional integral representation of the partition function in terms of charge density fluctuations. Starting from the mean-field solution given by the Poisson-Boltzmann equation, an original approach is proposed to numerically sample fluctuations around it, through the propagation of a Langevin-like stochastic partial differential equation (SPDE). The diffusion tensor of the SPDE can be chosen so as to avoid the numerical complexity linked to long-range Coulomb interactions, effectively rendering the theory completely local. A finite-volume implementation of the SPDE is described, and the approach is illustrated with preliminary results on the study of a system made of two like-charge ions immersed in a bath of counterions. PMID:27075231

  12. Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The research proposed targets airframe noise (AFN) prediction and reduction. AFN originates from complex interactions of turbulent flow with airframe components...

  13. Equation-free analysis of spike-timing-dependent plasticity.

    Science.gov (United States)

    Laing, Carlo R; Kevrekidis, Ioannis G

    2015-12-01

    Spike-timing-dependent plasticity is the process by which the strengths of connections between neurons are modified as a result of the precise timing of the action potentials fired by the neurons. We consider a model consisting of one integrate-and-fire neuron receiving excitatory inputs from a large number-here, 1000-of Poisson neurons whose synapses are plastic. When correlations are introduced between the firing times of these input neurons, the distribution of synaptic strengths shows interesting, and apparently low-dimensional, dynamical behaviour. This behaviour is analysed in two different parameter regimes using equation-free techniques, which bypass the explicit derivation of the relevant low-dimensional dynamical system. We demonstrate both coarse projective integration (which speeds up the time integration of a dynamical system) and the use of recently developed data mining techniques to identify the appropriate low-dimensional description of the complex dynamical systems in our model. PMID:26577337

  14. Idempotent/tropical analysis, the Hamilton-Jacobi and Bellman equations

    CERN Document Server

    Litvinov, Grigory L

    2012-01-01

    Tropical and idempotent analysis with their relations to the Hamilton-Jacobi and matrix Bellman equations are discussed. Some dequantization procedures are important in tropical and idempotent mathematics. In particular, the Hamilton-Jacobi-Bellman equation is treated as a result of the Maslov dequantization applied to the Schr\\"{o}dinger equation. This leads to a linearity of the Hamilton-Jacobi-Bellman equation over tropical algebras. The correspondence principle and the superposition principle of idempotent mathematics are formulated and examined. The matrix Bellman equation and its applications to optimization problems on graphs are discussed. Universal algorithms for numerical algorithms in idempotent mathematics are investigated. In particular, an idempotent version of interval analysis is briefly discussed.

  15. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR A NONLINEAR PARABOLIC EQUATION RELATED TO IMAGE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Wang Lihe; Zhou Shulin

    2006-01-01

    In this paper we establish the existence and uniqueness of weak solutions for the initial-boundary value problem of a nonlinear parabolic partial differential equation, which is related to the Malik-Perona model in image analysis.

  16. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  17. Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study

    CERN Document Server

    Neuville, Amélie; Toussaint, Renaud

    2013-01-01

    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic ...

  18. Accurate Iterative Analysis of the K-V Equations

    CERN Document Server

    Anderson, Oscar A

    2005-01-01

    Previous solutions of the K-V equations have either yielded poor accuracy or have been complex and difficult to follow. We describe a new approach, simple in concept, easy to use, with accuracy substantially improved over previous treatments. The results are given in the same form as the smooth approximation but include a few correction terms obtained from the field gradient integrated along the axis of a quadrupole cell. The input quantities–quadrupole field, beam current, and emittance–yield the average beam radius, the maximum envelope excursion, and the depressed and undepressed tunes. For all values of the input parameters, the results are much closer to the exact values from simulations than are results from the smooth approximation. For example, with the parameters adjusted for an exact phase advance of 83.4 degrees and 50% tune depression, both tunes are in error by less than 0.5%–over 22 times better than the smooth approximation. The error in maximum radius is 0.04%, impro...

  19. Roy-Steiner-equation analysis of pion-nucleon scattering

    CERN Document Server

    Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G

    2015-01-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process $\\pi\\pi\\to \\bar N N$, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process $\\pi N\\to \\pi N$ and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon $\\sigma$-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity...

  20. Multi-scale Analysis for Rosseland Equation with Small Periodic Oscillating Coefficients

    CERN Document Server

    Qiao-fu, Zhang

    2012-01-01

    Rosseland equation is one of the most popular models of the conduction-radiation coupled heat transfer in the thermal protection system. The well-posedness, the corresponding mathematical theory and the Multi-scale analysis method for the Rosseland-type equations with small periodic oscillating coefficients are concerned, which provides a theoretical basis for the Multi-scale computation of the conduction-radiation coupled heat transfer in an optically thick medium with a small periodic structure. The global well-posedness of the Rosseland-type (parabolic) equations is given in the first part. The corresponding solving algorithms and their convergence analysis are presented in the second part. In the third part we study the well-posedness and the second-order two-scale asymptotic expansion of the Rosseland-type (elliptic) equations with small periodic oscillating coefficients. The convergence analysis of the second-order two-scale asymptotic expansion is studied in the last part.

  1. Revised lattice Boltzmann model for traffic flow with equilibrium traffic pressure

    Science.gov (United States)

    Shi, Wei; Lu, Wei-Zhen; Xue, Yu; He, Hong-Di

    2016-02-01

    A revised lattice Boltzmann model concerning the equilibrium traffic pressure is proposed in this study to tackle the phase transition phenomena of traffic flow system. The traditional lattice Boltzmann model has limitation to investigate the complex traffic phase transitions due to its difficulty for modeling the equilibrium velocity distribution. Concerning this drawback, the equilibrium traffic pressure is taken into account to derive the equilibrium velocity distribution in the revised lattice Boltzmann model. In the proposed model, a three-dimensional velocity-space is assumed to determine the equilibrium velocity distribution functions and an alternative, new derivative approach is introduced to deduct the macroscopic equations with the first-order accuracy level from the lattice Boltzmann model. Based on the linear stability theory, the stability conditions of the corresponding macroscopic equations can be obtained. The outputs indicate that the stability curve is divided into three regions, i.e., the stable region, the neutral stability region, and the unstable region. In the stable region, small disturbance appears in the initial uniform flow and will vanish after long term evolution, while in the unstable region, the disturbance will be enlarged and finally leads to the traffic system entering the congested state. In the neutral stability region, small disturbance does not vanish with time and maintains its amplitude in the traffic system. Conclusively, the stability of traffic system is found to be enhanced as the equilibrium traffic pressure increases. Finally, the numerical outputs of the proposed model are found to be consistent with the recognized, theoretical results.

  2. Phantom cosmology and Boltzmann brains problem

    CERN Document Server

    Astashenok, Artyom V; Yurov, Valerian V

    2013-01-01

    We consider the well-known Boltzmann brains problem in frames of simple phantom energy models with little rip, big rip and big freeze singularity. It is showed that these models (i) satisfy to observational data and (ii) may be free from Boltzmann brains problem. The human observers in phantom models can exist only in during for a certain period $tBoltzmann brains problem doesn't appear. The bounds on model parameters derived from such requirement don't contradict to allowable range from observational data.

  3. Predictive equations using regression analysis of pulmonary function for healthy children in Northeast China.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Ma

    Full Text Available BACKGROUND: There have been few published studies on spirometric reference values for healthy children in China. We hypothesize that there would have been changes in lung function that would not have been precisely predicted by the existing spirometric reference equations. The objective of the study was to develop more accurate predictive equations for spirometric reference values for children aged 9 to 15 years in Northeast China. METHODOLOGY/PRINCIPAL FINDINGS: Spirometric measurements were obtained from 3,922 children, including 1,974 boys and 1,948 girls, who were randomly selected from five cities of Liaoning province, Northeast China, using the ATS (American Thoracic Society and ERS (European Respiratory Society standards. The data was then randomly split into a training subset containing 2078 cases and a validation subset containing 1844 cases. Predictive equations used multiple linear regression techniques with three predictor variables: height, age and weight. Model goodness of fit was examined using the coefficient of determination or the R(2 and adjusted R(2. The predicted values were compared with those obtained from the existing spirometric reference equations. The results showed the prediction equations using linear regression analysis performed well for most spirometric parameters. Paired t-tests were used to compare the predicted values obtained from the developed and existing spirometric reference equations based on the validation subset. The t-test for males was not statistically significant (p>0.01. The predictive accuracy of the developed equations was higher than the existing equations and the predictive ability of the model was also validated. CONCLUSION/SIGNIFICANCE: We developed prediction equations using linear regression analysis of spirometric parameters for children aged 9-15 years in Northeast China. These equations represent the first attempt at predicting lung function for Chinese children following the ATS

  4. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  5. Lattice Boltzmann Simulation for Complex Flow in a Solar Wall

    Institute of Scientific and Technical Information of China (English)

    CHEN Rou; Shao Jiu-Gu; ZHENG You-Qu; YU Hui-Dan; XU You-Sheng

    2013-01-01

    In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector (UTC).Besides the lattice Boltzmann equation (LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid (air) and solid (porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.

  6. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    Science.gov (United States)

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.

  7. Investigation of Particles Statistics in large Eddy Simulated Turbulent Channel Flow using Generalized lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Mandana Samari Kermani

    2016-01-01

    Full Text Available The interaction of spherical solid particles with turbulent eddies in a 3-D turbulent channel flow with friction Reynolds number was studied. A generalized lattice Boltzmann equation (GLBE was used for computation of instantaneous turbulent flow field for which large eddy simulation (LES was employed. The sub-grid-scale (SGS turbulence effects were simulated through a shear-improved Smagorinsky model (SISM, which can predict turbulent near wall region without any wall function. Statistical properties of particles behavior such as root mean square (RMS velocities were studied as a function of dimensionless particle relaxation time ( by using a Lagrangian approach. Combination of SISM in GLBE with particle tracking analysis in turbulent channel flow is novelty of the present work. Both GLBE and SISM solve the flow field equations locally. This is an advantage of this method and makes it easy implementing. Comparison of the present results with previous available data indicated that SISM in GLBE is a reliable method for simulation of turbulent flows which is a key point to predict particles behavior correctly.

  8. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  9. Grid refinement for entropic lattice Boltzmann models

    CERN Document Server

    Dorschner, B; Chikatamarla, S S; Karlin, I V

    2016-01-01

    We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.

  10. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  11. Solving Fuzzy Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Analysis and Adomian Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Shadan Sadigh Behzadi

    2011-12-01

    Full Text Available In this paper, Adomian decomposition method (ADM and homotopy analysis method (HAM are proposed to solving the fuzzy nonlinear Volterra-Fredholm integral equation of the second kind$(FVFIE-2$. we convert a fuzzy nonlinear Volterra-Fredholm integral equation to a nonlinear system of Volterra-Fredholm integral equation in crisp case. we use ADM , HAM and find the approximate solution of this system and hence obtain an approximation for fuzzy solution of the nonlinear fuzzy Volterra-Fredholm integral equation. Also, the existence and uniqueness of the solution and convergence of the proposed methods are proved. Examples is given and the results reveal that homotopy analysis method is very effective and simple compared with the Adomian decomposition method.

  12. An Independent Component Analysis Algorithm through Solving Gradient Equation Combined with Kernel Density Estimation

    Institute of Scientific and Technical Information of China (English)

    XUE Yun-feng; WANG Yu-jia; YANG Jie

    2009-01-01

    A new algorithm for linear instantaneous independent component analysis is proposed based on max-imizing the log-likelihood contrast function which can be changed into a gradient equation. An iterative method is introduced to solve this equation efficiently. The unknown probability density functions as well as their first and second derivatives in the gradient equation are estimated by kernel density method. Computer simulations on artificially generated signals and gray scale natural scene images confirm the efficiency and accuracy of the proposed algorithm.

  13. Partial differential equations with variable exponents variational methods and qualitative analysis

    CERN Document Server

    Radulescu, Vicentiu D

    2015-01-01

    Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive meth

  14. Painlevé Analysis and Some Solutions of(2+1)-Dimensional Generalized Burgers Equations

    Institute of Scientific and Technical Information of China (English)

    HONG Ke-Zhu; WU B-in; CHEN Xian-Feng

    2003-01-01

    Burgers equation ut = 2uux + uxx describes a lot of phenomena in physics fields, and it has attracted much attention.In this paper,the Burgers equation is generalized to (2+1) dimensions.By means of the Painlev(e') analysis,the most generalized Painlev(e') integrable(2+1)-dimensional integrable Burgers systems are obtained.Some exact solutions of the generalized Burgers system are obtained via variable separation approach.

  15. A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations

    Institute of Scientific and Technical Information of China (English)

    DANCHIN; Raphaёl

    2012-01-01

    Fourier analysis methods and in particular techniques based on Littlewood-Paley decomposition and paraproduct have known a growing interest recently for the study of nonlinear evolutionary equations.In this survey paper,we explain how these methods may be implemented so as to study the compresible Navier-Stokes equations in the whole space.We shall investigate both the initial value problem in critical Besov spaces and the low Mach number asymptotics.

  16. Solving nonlinear, High-order partial differential equations using a high-performance isogeometric analysis framework

    KAUST Repository

    Cortes, Adriano Mauricio

    2014-01-01

    In this paper we present PetIGA, a high-performance implementation of Isogeometric Analysis built on top of PETSc. We show its use in solving nonlinear and time-dependent problems, such as phase-field models, by taking advantage of the high-continuity of the basis functions granted by the isogeometric framework. In this work, we focus on the Cahn-Hilliard equation and the phase-field crystal equation.

  17. Effect of equations of state on transient burning analysis of pyrotechnic materials in a closed system

    Energy Technology Data Exchange (ETDEWEB)

    Razani, A.; Shahinpoor, M. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Mechanical Engineering); Hingorani, S.L. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The effect of equations of state on transient burning of pyrotechnic materials burning in a closed system is discussed. The effect of condensed species and appropriate equations of state parameters as generated from chemical equilibrium codes such as the BLAKE and the TIGER are presented. It is shown that defining a co-volume for use in transient burning analysis in the presence of condensed species requires careful considerations. A variable co-volume is defined for use in simplified transient burning analysis. Furthermore, its effect on pressure-time history of pyrotechnic materials burning in a closed system is presented. A pressure dependent co-volume for the analysis of a particular pyrotechnic material greatly simplifies its transient burning analysis under zero-volume firing conditions. The formulation of transient burning in a closed system is developed using the NBS equation of state. 9 refs., 3 figs.

  18. An exact energy conservation property of the quantum lattice Boltzmann algorithm

    International Nuclear Information System (INIS)

    The quantum lattice Boltzmann algorithm offers a unitary and readily parallelisable discretisation of the Dirac equation that is free of the fermion-doubling problem. The expectation of the discrete time-advance operator is an exact invariant of the algorithm. Its imaginary part determines the expectation of the Hamiltonian operator, the energy of the solution, with an accuracy that is consistent with the overall accuracy of the algorithm. In the one-dimensional case, this accuracy may be increased from first to second order using a variable transformation. The three-dimensional quantum lattice Boltzmann algorithm uses operator splitting to approximate evolution under the three-dimensional Dirac equation by a sequence of solutions of one-dimensional Dirac equations. The three-dimensional algorithm thus inherits the energy conservation property of the one-dimensional algorithm, although the implementation shown remains only first-order accurate due to the splitting error. -- Highlights: ► The quantum lattice Boltzmann algorithm approximates the Dirac equation. ► It has an exact invariant: the expectation of the discrete time-advance operator. ► The invariant consistently approximates the energy of the continuous system. ► We achieve second-order accuracy through a variable transformation.

  19. Numerical Stability Analysis of New Hyperbolic Equations for Two-Phase Flow

    International Nuclear Information System (INIS)

    The possession of complex characteristics in the standard one-dimensional single pressure two-phase flow equation leads to ill-posed initial value problem. This implies that the standard single pressure two-fluid equations exhibits unbounded instabilities for the short wavelength perturbation. Despite the difficulties in convergence, this model provides the basis for many nuclear reactor thermal-hydraulic codes such as RELAP5, TRAC. In order to mitigate this numerical instabilities, many researchers have proposed modification of the standard system of single pressure two-fluid equation to obtain reasonable result in spite of the ill-posedness of the differential equations. These efforts, however, have not made the equations ensure stable solutions in a;; physical conditions. A new model for two-phase flow is developed by incorporating a pressure discontinuity at the liquid/vapor interface in momentum equation by assuming surface tension thickness. The developed equation systems has three complete set of eigenvalues depending on the flow regimes and thus constitutes well-posed problem. The numerical stability is evaluated when finite difference solution of this equation systems have been attempted. Semi-implicit time differencing on a staggered spatial mesh has been selected and an additional term in discretized phasic momentum equation, which represents the pressure discontinuity, is treated implicitly to enhance numerical instability. The linearized Von Neumann stability analysis of discretized equation system has been performed for the individual flow regimes such as dispersed, slug, and separated flow. The linearized stability analysis for the semi-implicit difference is limited only by the material Courant limit which is the least restrictive limit in semi-implicit scheme. And the new model was applied to the basic differenced equation used in RELAP5/MOD3. The momentum equation is modified by adding the interfacial pressure discontinuity term. To show the

  20. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods. T

  1. ASYMPTOTIC ANALYSIS OF DYNAMIC??PROBLEMS FOR LINEARLY ELASTICSHELLS—JUSTIFICATION OF EQUATIONS???FOR DYNAMIC FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of the method of asymptotic analysis.

  2. The determination of low energy electron-molecule cross sections via swarm analysis

    Directory of Open Access Journals (Sweden)

    Dujko S.

    2008-01-01

    Full Text Available In this paper we discuss the swarm physics based techniques including the Boltzmann equation analysis and Monte Carlo simulation technique for determination of low energy electron-molecule cross sections. A multi term theory for solving the Boltzmann equation and Monte Carlo simulation code have been developed and used to investigate some critical aspects of electron transport in neutral gases under the varying configurations of electric and magnetic fields when non-conservative collisions are operative. These aspects include the validity of the two term approximation and the Legendre polynomial expansion procedure for solving the Boltzmann equation, treatment of non-conservative collisions, the effects of a magnetic field on the electron transport and nature and difference between transport data obtained under various experimental arrangements. It was found that these issues must be carefully considered before unfolding the cross sections from swarms transport data.

  3. Relativistic Rotating Boltzmann Gas Using the Tetrad Formalism

    Directory of Open Access Journals (Sweden)

    Ambrus Victor E.

    2015-12-01

    Full Text Available We consider an application of the tetrad formalism introduced by Cardall et al. [Phys. Rev. D 88 (2013 023011] to the problem of a rigidly rotating relativistic gas in thermal equilibrium and discuss the possible applications of this formalism to rel- ativistic lattice Boltzmann simulations. We present in detail the transformation to the comoving frame, the choice of tetrad, as well as the explicit calculation and analysis of the components of the equilibrium particle ow four-vector and of the equilibrium stress-energy tensor.

  4. Stefan-Boltzmann Law for Massive Photons

    Science.gov (United States)

    Moreira, E. S.; Ribeiro, T. G.

    2016-08-01

    This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.

  5. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linea...... and thus the proper weight is pruned at each pruning step. In all our experiments in small problems, pruning reduces the generalization error; in most cases the pruned networks facilitate interpretation as well......We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  6. Lattice Boltzmann Models for Complex Fluids

    OpenAIRE

    Flekkoy, E. G.; Herrmann, H. J.

    1993-01-01

    We present various Lattice Boltzmann Models which reproduce the effects of rough walls, shear thinning and granular flow. We examine the boundary layers generated by the roughness of the walls. Shear thinning produces plug flow with a sharp density contrast at the boundaries. Density waves are spontaneously generated when the viscosity has a nonlinear dependence on density which characterizes granular flow.

  7. Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation

    Directory of Open Access Journals (Sweden)

    Panjit MUSIK

    2004-01-01

    Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.

  8. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping

    2016-01-01

    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  9. Lattice Boltzmann method for mixtures at variable Schmidt number

    Science.gov (United States)

    Monteferrante, Michele; Melchionna, Simone; Marconi, Umberto Marini Bettolo

    2014-07-01

    When simulating multicomponent mixtures via the Lattice Boltzmann Method, it is desirable to control the mutual diffusivity between species while maintaining the viscosity of the solution fixed. This goal is herein achieved by a modification of the multicomponent Bhatnagar-Gross-Krook evolution equations by introducing two different timescales for mass and momentum diffusion. Diffusivity is thus controlled by an effective drag force acting between species. Numerical simulations confirm the accuracy of the method for neutral binary and charged ternary mixtures in bulk conditions. The simulation of a charged mixture in a charged slit channel show that the conductivity and electro-osmotic mobility exhibit a departure from the Helmholtz-Smoluchowski prediction at high diffusivity.

  10. Full Eulerian lattice Boltzmann model for conjugate heat transfer.

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-12-01

    In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results. PMID:26764851

  11. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 oC. FeCl3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  12. Evaluation of the Performance of the Hybrid Lattice Boltzmann Based Numerical Flux

    Science.gov (United States)

    Zheng, H. W.; Shu, C.

    2016-06-01

    It is well known that the numerical scheme is a key factor to the stability and accuracy of a Navier-Stokes solver. Recently, a new hybrid lattice Boltzmann numerical flux (HLBFS) is developed by Shu's group. It combines two different LBFS schemes by a switch function. It solves the Boltzmann equation instead of the Euler equation. In this article, the main object is to evaluate the ability of this HLBFS scheme by our in-house cell centered hybrid mesh based Navier-Stokes code. Its performance is examined by several widely-used bench-mark test cases. The comparisons on results between calculation and experiment are conducted. They show that the scheme can capture the shock wave as well as the resolving of boundary layer.

  13. A Stochastic Sharpening Method for the Propagation of Phase Boundaries in Multiphase Lattice Boltzmann Simulations

    KAUST Repository

    Reis, T.

    2010-09-06

    Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting.

  14. Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory.

    Science.gov (United States)

    Buyukdagli, S; Blossey, R

    2016-09-01

    Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent-a dipolar Coulomb fluid-including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations. PMID:27357125

  15. Investigation of Resistivity of Saturated Porous Media with Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    YUE Wen-Zheng; TAO Guo; ZHU Ke-Qin

    2004-01-01

    The lattice Boltzmann method is employed to study the electrical transport properties of saturated porous media.Electrical current flow through the porous media is simulated and the relationship between resistivity index and water saturation is derived. It is found that this kind of relation is not a straight line as described by the Archie equation with the parameter n being a constant in a log-log scale. A new equation is thus developed to formulate this relation with n being a function of porosity and water saturation. The comparisons between the results by lattice Boltzmann and by the laboratory experiments on rock samples demonstrate that this numerical method can provide an alternative way for the expensive laboratory experiments to investigate the electrical transport properties of saturated porous media and can be used to explore micro mechanisms more conveniently.

  16. Isotropy conditions for lattice Boltzmann schemes. Application to D2Q9*

    Directory of Open Access Journals (Sweden)

    Graille Benjamin

    2012-04-01

    Full Text Available In this paper, we recall the linear version of the lattice Boltzmann schemes in the framework proposed by d’Humières. According to the equivalent equations we introduce a definition for a scheme to be isotropic at some order. This definition is chosen such that the equivalent equations are preserved by orthogonal transformations of the frame. The property of isotropy can be read through a group operation and then implies a sequence of relations on relaxation times and equilibrium states that characterizes a lattice Boltzmann scheme. We propose a method to select the parameters of the scheme according to the desired order of isotropy. Applying it to the D2Q9 scheme yields the classical constraints for the first and second orders and some non classical for the third and fourth orders.

  17. Beyond Poisson–Boltzmann: fluctuations and fluid structure in a self-consistent theory

    Science.gov (United States)

    Buyukdagli, S.; Blossey, R.

    2016-09-01

    Poisson–Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson–Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent—a dipolar Coulomb fluid—including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.

  18. A review of theoretical and numerical analysis for nonlinear stiff Volterrafunctional differential equations

    Institute of Scientific and Technical Information of China (English)

    Shoufu LI

    2009-01-01

    In this review,we present the recent work of the author in comparison with various related results obtained by other authors in literature.We first recall the stability,contractivity and asymptotic stability results of the true solution to nonlinear stiff Volterra functional differential equations (VFDEs),then a series of stability,contractivity,asymptotic stability and B-convergence results of Runge-Kutta methods for VFDEs is presented in detail.This work provides a unified theoretical foundation for the theoretical and numerical analysis of nonlinear stiff problems in delay differential equations (DDEs),integro-differential equations (IDEs),delayintegro-differential equations (DIDEs) and VFDEs of other type which appear in practice.

  19. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  20. An Enhanced Level Set Segmentation for Multichannel Images Using Fuzzy Clustering and Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Savita Agrawal

    2015-11-01

    Full Text Available In the last decades, image segmentation has proved its applicability in various areas like satellite image processing, medical image processing and many more. In the present scenario the researchers tries to develop hybrid image segmentation techniques to generates efficient segmentation. Due to the development of the parallel programming, the lattice Boltzmann method (LBM has attracted much attention as a fast alternative approach for solving partial differential equations. In this project work, first designed an energy functional based on the fuzzy c-means objective function which incorporates the bias field that accounts for the intensity in homogeneity of the real-world image. Using the gradient descent method, corresponding level set equations are obtained from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is speedy, robust for denoise, and does not dependent on the position of the initial contour, effective in the presence of intensity in homogeneity, highly parallelizable and can detect objects with or without edges. For the implementation of segmentation techniques defined for gray images, most of the time researchers determines single channel segments of the images and superimposes the single channel segment information on color images. This idea leads to provide color image segmentation using single channel segments of multi channel images. Though this method is widely adopted but doesn’t provide complete true segmentation of multichannel ie color images because a color image contains three different channels for Red, green and blue components. Hence segmenting a color image, by having only single channel segments information, will definitely loose important segment regions of color images. To overcome this problem this paper work starts with the development of Enhanced Level Set Segmentation for single channel Images Using Fuzzy Clustering and Lattice Boltzmann Method. For the

  1. An Enhanced Level Set Segmentation for Multichannel Images Using Fuzzy Clustering and Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Savita Agrawal

    2014-05-01

    Full Text Available In the last decades, image segmentation has proved its applicability in various areas like satellite image processing, medical image processing and many more. In the present scenario the researchers tries to develop hybrid image segmentation techniques to generates efficient segmentation. Due to the development of the parallel programming, the lattice Boltzmann met hod (LBM has attracted much attention as a fast alternative approach for solving partial differential equations. In this project work, first designed an energy functional based on the fuzzy c-means objective function which incorporates the bias field that accounts for the intensity in homogeneity of the real-world image. Using the gradient descent method, corresponding level set equations are obtained from which we deduce a fuzzy external force for the LBM solver based on the model by Zhao. The method is speedy, robust for denoise, and does not dependent on the position of the initial contour, effective in the presence of intensity in homogeneity, highly parallelizable and can detect objects with or without edges. For the implementation of segmentation techniques defined for gr ay images, most of the time researchers determines single channel segments of the images and superimposes the single channel segment information on color images. This idea leads to provide color image segmentation using single channel segments of multi chann el images. Though this method is widely adopted but doesn’t provide complete true segmentation of multichannel ie color images because a color image contains three different channels for Red, green and blue components. Hence segmenting a color image, b y having only single channel segments information, will definitely loose important segment regions of color images. To overcome this problem this paper work starts with the development of Enhanced Level Set Segmentation for single channel Images Using Fuzzy Clustering and Lattice Boltzmann Method. For the

  2. Lattice Boltzmann simulations of segregating binary fluid mixtures in shear flow

    OpenAIRE

    Lamura, A.; Gonnella, G.

    2000-01-01

    We apply lattice Boltzmann method to study the phase separation of a two-dimensional binary fluid mixture in shear flow. The algorithm can simulate systems described by the Navier-Stokes and convection-diffusion equations. We propose a new scheme for imposing the shear flow which has the advantage of preserving mass and momentum conservation on the boundary walls without introducing slip velocities. Our main results concern the presence of two typical lenght scales in the phase separation pro...

  3. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  4. A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Genovese, L. [University of Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Andreussi, O. [Institute of Computational Science, Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6904 Lugano (Switzerland); Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland); Marzari, N. [Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne (Switzerland)

    2016-01-07

    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.

  5. Asymptotic Analysis of a System of Algebraic Equations Arising in Dislocation Theory

    KAUST Repository

    Hall, Cameron L.

    2010-01-01

    The system of algebraic equations given by σn j=0, j≠=i sgn(xi-xj )|xi-xj|a = 1, i = 1, 2, ⋯ , n, x0 = 0, appears in dislocation theory in models of dislocation pile-ups. Specifically, the case a = 1 corresponds to the simple situation where n dislocations are piled up against a locked dislocation, while the case a = 3 corresponds to n dislocation dipoles piled up against a locked dipole. We present a general analysis of systems of this type for a > 0 and n large. In the asymptotic limit n→∞, it becomes possible to replace the system of discrete equations with a continuum equation for the particle density. For 0 < a < 2, this takes the form of a singular integral equation, while for a > 2 it is a first-order differential equation. The critical case a = 2 requires special treatment, but, up to corrections of logarithmic order, it also leads to a differential equation. The continuum approximation is valid only for i neither too small nor too close to n. The boundary layers at either end of the pile-up are also analyzed, which requires matching between discrete and continuum approximations to the main problem. © 2010 Society for Industrial and Applied Mathematics.

  6. Boltzmann, Lotka and Volterra and spatial structural evolution: an integrated methodology for some dynamical systems.

    Science.gov (United States)

    Wilson, Alan

    2008-08-01

    It is shown that Boltzmann's methods from statistical physics can be applied to a much wider range of systems, and in a variety of disciplines, than has been commonly recognized. A similar argument can be applied to the ecological models of Lotka and Volterra. Furthermore, it is shown that the two methodologies can be applied in combination to generate the Boltzmann, Lotka and Volterra (BLV) models. These techniques enable both spatial interaction and spatial structural evolution to be modelled, and it is argued that they potentially provide a much richer modelling methodology than that currently used in the analysis of 'scale-free' networks.

  7. Macroscopic model and truncation error of discrete Boltzmann method

    Science.gov (United States)

    Hwang, Yao-Hsin

    2016-10-01

    A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.

  8. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    Science.gov (United States)

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  9. Finite-Volume Analysis for the Cahn-Hilliard equation with Dynamic boundary conditions

    OpenAIRE

    Nabet, Flore

    2014-01-01

    This work is devoted to the convergence analysis of a finite-volume approximation of the 2D Cahn-Hilliard equation with dynamic boundary conditions. The method that we propose couples a 2d-finite-volume method in a bounded, smooth domain and a 1d-finite-volume method on its boundary. We prove convergence of the sequence of approximate solutions.

  10. Transistor-Level Statistical Timing Analysis: Solving Random Differential Equations Directly

    NARCIS (Netherlands)

    Tang, Q.

    2013-01-01

    In this Ph.D. thesis, a novel non-MC Random differential Equation based Statistical Timing Analysis (RESTA) method is proposed, which considers both process variations and electrical circuit effects, such as multiple input simultaneous switching and crosstalk effects. To make the approach practical

  11. Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Guichen Lu

    2016-01-01

    Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.

  12. The transfer function analysis of various schemes for the two-dimensional shallow-water equations

    OpenAIRE

    Neta, B.; DeVito, C.L.

    1988-01-01

    In this paper various finite difference and finite element approximations to the linearized two-dimensional shallow-water equations are analyzed. This analysis complements previous results for the one-dimensional case. The first author would like to thank the NPS Foundation Research program for its support of this research.

  13. Neutron transport equation - indications on homogenization and neutron diffusion

    International Nuclear Information System (INIS)

    In PWR nuclear reactor, the practical study of the neutrons in the core uses diffusion equation to describe the problem. On the other hand, the most correct method to describe these neutrons is to use the Boltzmann equation, or neutron transport equation. In this paper, we give some theoretical indications to obtain a diffusion equation from the general transport equation, with some simplifying hypothesis. The work is organised as follows: (a) the most general formulations of the transport equation are presented: integro-differential equation and integral equation; (b) the theoretical approximation of this Boltzmann equation by a diffusion equation is introduced, by the way of asymptotic developments; (c) practical homogenization methods of transport equation is then presented. In particular, the relationships with some general and useful methods in neutronic are shown, and some homogenization methods in energy and space are indicated. A lot of other points of view or complements are detailed in the text or the remarks

  14. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  15. Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow

    DEFF Research Database (Denmark)

    Marschler, Christian; Sieber, Jan; Hjorth, Poul G.;

    2014-01-01

    Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level. This will...... facilitate a study of how the model behavior depends on parameter values including an understanding of transitions between different types of qualitative behavior. These methods are introduced and explained for traffic jam formation and emergence of oscillatory pedestrian counter flow in a corridor with a...

  16. Stability and bifurcation analysis of a generalized scalar delay differential equation.

    Science.gov (United States)

    Bhalekar, Sachin

    2016-08-01

    This paper deals with the stability and bifurcation analysis of a general form of equation D(α)x(t)=g(x(t),x(t-τ)) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory. PMID:27586623

  17. Stability and bifurcation analysis of a generalized scalar delay differential equation

    Science.gov (United States)

    Bhalekar, Sachin

    2016-08-01

    This paper deals with the stability and bifurcation analysis of a general form of equation D α x ( t ) = g ( x ( t ) , x ( t - τ ) ) involving the derivative of order α ∈ (0, 1] and a constant delay τ ≥ 0. The stability of equilibrium points is presented in terms of the stability regions and critical surfaces. We provide a necessary condition to exist chaos in the system also. A wide range of delay differential equations involving a constant delay can be analyzed using the results proposed in this paper. The illustrative examples are provided to explain the theory.

  18. Delay-dependent stability analysis of Runge-Kutta methods for neutral delay differential equations

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aim of this paper is to study the asymptotic stability properties of Runge-Kutta(R-K)methods for neutral differential equations(NDDEs)when they are applied to the linear test equation of the form:lems to investigate the delay-dependent stability analysis for NDDEs.The results that the 2,3 stages non natural R-K methods are unstable as Radau IA and Lobatto IIIC are proved.And the s stages Radau IIA methods are unstable,however all Gauss methods are compatible.

  19. Analysis and accurate numerical solutions of the integral equation derived from the linearized BGKW equation for the steady Couette flow

    Science.gov (United States)

    Jiang, Shidong; Luo, Li-Shi

    2016-07-01

    The integral equation for the flow velocity u (x ; k) in the steady Couette flow derived from the linearized Bhatnagar-Gross-Krook-Welander kinetic equation is studied in detail both theoretically and numerically in a wide range of the Knudsen number k between 0.003 and 100.0. First, it is shown that the integral equation is a Fredholm equation of the second kind in which the norm of the compact integral operator is less than 1 on Lp for any 1 ≤ p ≤ ∞ and thus there exists a unique solution to the integral equation via the Neumann series. Second, it is shown that the solution is logarithmically singular at the endpoints. More precisely, if x = 0 is an endpoint, then the solution can be expanded as a double power series of the form ∑n=0∞∑m=0∞cn,mxn(xln ⁡ x)m about x = 0 on a small interval x ∈ (0 , a) for some a > 0. And third, a high-order adaptive numerical algorithm is designed to compute the solution numerically to high precision. The solutions for the flow velocity u (x ; k), the stress Pxy (k), and the half-channel mass flow rate Q (k) are obtained in a wide range of the Knudsen number 0.003 ≤ k ≤ 100.0; and these solutions are accurate for at least twelve significant digits or better, thus they can be used as benchmark solutions.

  20. Privacy-Preserving Restricted Boltzmann Machine

    OpenAIRE

    Yu Li; Yuan Zhang; Yue Ji

    2014-01-01

    With the arrival of the big data era, it is predicted that distributed data mining will lead to an information technology revolution. To motivate different institutes to collaborate with each other, the crucial issue is to eliminate their concerns regarding data privacy. In this paper, we propose a privacy-preserving method for training a restricted boltzmann machine (RBM). The RBM can be got without revealing their private data to each other when using our privacy-preserving method. We provi...

  1. Nuclear Flow in Consistent Boltzmann Algorithm Models

    OpenAIRE

    Kortemeyer, G.; Daffin, F.; Bauer, W.

    1995-01-01

    We investigate the stochastic Direct Simulation Monte Carlo method (DSMC) for numerically solving the collision-term in heavy-ion transport theories of the Boltzmann-Uehling-Uhlenbeck (BUU) type. The first major modification we consider is changes in the collision rates due to excluded volume and shadowing/screening effects (Enskog theory). The second effect studied by us is the inclusion of an additional advection term. These modifications ensure a non-vanishing second virial and change the ...

  2. PDB_Hydro: incorporating dipolar solvents with variable density in the Poisson-Boltzmann treatment of macromolecule electrostatics.

    OpenAIRE

    Azuara, Cyril; Lindahl, Erik; Koehl, Patrice; Orland, Henri; Delarue, Marc

    2006-01-01

    We describe a new way to calculate the electrostatic properties of macromolecules which eliminates the assumption of a constant dielectric value in the solvent region, resulting in a Generalized Poisson-Boltzmann-Langevin equation (GPBLE). We have implemented a web server (http://lorentz.immstr.pasteur.fr/pdb_hydro.php) that both numerically solves this equation and uses the resulting water density profiles to place water molecules at preferred sites of hydration. Surface atoms with high or l...

  3. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    Science.gov (United States)

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  4. Semi-classical analysis for nonlinear Schrödinger equations

    CERN Document Server

    Carles, Remi

    2008-01-01

    These lecture notes review recent results on the high-frequency analysis of nonlinear Schrödinger equations in the presence of an external potential. The book consists of two relatively independent parts: WKB analysis, and caustic crossing. In the first part, the basic linear WKB theory is constructed and then extended to the nonlinear framework. The most difficult supercritical case is discussed in detail, together with some of its consequences concerning instability phenomena. Applications of WKB analysis to functional analysis, in particular to the Cauchy problem for nonlinear Schrödinger e

  5. Calibration of modified parallel-plate rheometer through calibrated oil and lattice Boltzmann simulation

    DEFF Research Database (Denmark)

    Ferraris, Chiara F; Geiker, Mette Rica; Martys, Nicos S;

    2007-01-01

    inapplicable here. This paper presents the analysis of a modified parallel plate rheometer for measuring cement mortar and propose a methodology for calibration using standard oils and numerical simulation of the flow. A lattice Boltzmann method was used to simulate the flow in the modified rheometer, thus...

  6. Spectral analysis of the Navier-Stokes equations using the combination matrix

    CERN Document Server

    Cheung, Lawrence C

    2016-01-01

    This work is a continuation of the analysis first presented in Cheung & Zaki (2014). In that study, the combination matrix was introduced as a means to tractably handle the nonlinear terms in the spectral domain. In this work, a different approach is discussed. Rather than analyze solutions to the energy equation, we examine the forced Navier-Stokes equations in spectral space and determine if direct solutions to the momentum equations can be found. This is done by using the combination matrix to rewrite the Navier-Stokes as a system of intersecting quadratic polynomials. Intrepreted geometrically, any solution to the Navier-Stokes can be represented as a the intersection of a multiple conic sections.

  7. Automated Bifurcation Analysis for Nonlinear Elliptic Partial Difference Equations on Graphs

    CERN Document Server

    Neuberger, John M; Swift, James W

    2010-01-01

    We seek solutions $u\\in\\R^n$ to the semilinear elliptic partial difference equation $-Lu + f_s(u) = 0$, where $L$ is the matrix corresponding to the Laplacian operator on a graph $G$ and $f_s$ is a one-parameter family of nonlinear functions. This article combines the ideas introduced by the authors in two papers: a) {\\it Nonlinear Elliptic Partial Difference Equations on Graphs} (J. Experimental Mathematics, 2006), which introduces analytical and numerical techniques for solving such equations, and b) {\\it Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region} wherein we present some of our recent advances concerning symmetry, bifurcation, and automation fo We apply the symmetry analysis found in the SIAM paper to arbitrary graphs in order to obtain better initial guesses for Newton's method, create informative graphics, and be in the underlying variational structure. We use two modified implementations of the gradient Newton-Galerkin algorithm (GNGA, Neuberger and Swift) ...

  8. Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation

    Science.gov (United States)

    Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu

    2016-07-01

    In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527

  9. Shape analysis and damped oscillatory solutions for a class of nonlinear wave equation with quintic term

    Institute of Scientific and Technical Information of China (English)

    Xiang LI; Wei-guo ZHANG; Zheng-ming LI

    2014-01-01

    This paper aims at analyzing the shapes of the bounded traveling wave solu-tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi-tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi-mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so-lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.

  10. Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species.

    Science.gov (United States)

    Riaud, Antoine; Zhao, Shufang; Wang, Kai; Cheng, Yi; Luo, Guangsheng

    2014-05-01

    Despite the popularity of the lattice-Boltzmann method (LBM) in simulating multiphase flows, a general approach for modeling dilute species in multiphase systems is still missing. In this report we propose to modify the collision operator of the solute by introducing a modified redistribution scheme. This operator is based on local fluid variables and keeps the parallelism inherent to LBM. After deriving macroscopic transport equations, an analytical equation of state of the solute is exhibited and the method is proven constituting a unified framework to simulate arbitrary solute distribution between phases, including single-phase soluble compounds, amphiphilic species with a partition coefficient, and surface-adsorbed compounds. PMID:25353915

  11. Prandtl number effects in MRT lattice Boltzmann models for shocked and unshocked compressible fluids

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model ...

  12. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods

    Directory of Open Access Journals (Sweden)

    Hose Rod

    2009-10-01

    Full Text Available Abstract Background Systolic blood flow has been simulated in the abdominal aorta and the superior mesenteric artery. The simulations were carried out using two different computational hemodynamic methods: the finite element method to solve the Navier Stokes equations and the lattice Boltzmann method. Results We have validated the lattice Boltzmann method for systolic flows by comparing the velocity and pressure profiles of simulated blood flow between methods. We have also analyzed flow-specific characteristics such as the formation of a vortex at curvatures and traces of flow. Conclusion The lattice Boltzmann Method is as accurate as a Navier Stokes solver for computing complex blood flows. As such it is a good alternative for computational hemodynamics, certainly in situation where coupling to other models is required.

  13. Boltzmann electron PIC simulation of the E-sail effect

    Science.gov (United States)

    Janhunen, P.

    2015-12-01

    The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.

  14. Investigation of an entropic stabilizer for the lattice-Boltzmann method.

    Science.gov (United States)

    Mattila, Keijo K; Hegele, Luiz A; Philippi, Paulo C

    2015-06-01

    The lattice-Boltzmann (LB) method is commonly used for the simulation of fluid flows at the hydrodynamic level of description. Due to its kinetic theory origins, the standard LB schemes carry more degrees of freedom than strictly needed, e.g., for the approximation of solutions to the Navier-stokes equation. In particular, there is freedom in the details of the so-called collision operator. This aspect was recently utilized when an entropic stabilizer, based on the principle of maximizing local entropy, was proposed for the LB method [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)]. The proposed stabilizer can be considered as an add-on or extension to basic LB schemes. Here the entropic stabilizer is investigated numerically using the perturbed double periodic shear layer flow as a benchmark case. The investigation is carried out by comparing numerical results obtained with six distinct LB schemes. The main observation is that the unbounded, and not explicitly controllable, relaxation time for the higher-order moments will directly influence the leading-order error terms. As a consequence, the order of accuracy and, in general, the numerical behavior of LB schemes are substantially altered. Hence, in addition to systematic numerical validation, more detailed theoretical analysis of the entropic stabilizer is still required in order to properly understand its properties. PMID:26172795

  15. Mathematical Methods for Engineers and Scientists 3 Fourier Analysis, Partial Differential Equations and Variational Methods

    CERN Document Server

    Tang, Kwong-Tin

    2007-01-01

    Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

  16. Mathematical Methods for Engineers and Scientists 2 Vector Analysis, Ordinary Differential Equations and Laplace Transforms

    CERN Document Server

    Tang, Kwong-Tin

    2007-01-01

    Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

  17. Stability and error analysis on modified nodal expansion method for transient convection-diffusion equation

    International Nuclear Information System (INIS)

    To further investigate the features of modified nodal expansion method (MNEM) for solving the convection-diffusion equation, the stability and error analysis were carried out. Based on sign preservation principle, the stability analysis reveals that the MNEM has inherent stability. The error analysis was implemented through a series of numerical experiments, and the results show that the MNEM is 3rd order scheme for one dimensional problem, while as 2nd order scheme for multidimensional problem because of using simple transverse leakage approximation. (authors)

  18. A Synthetic Error Analysis of Positioning Equation for Airborne Three-Dimensional Laser Imaging Sensor

    CERN Document Server

    Jiang, Yuesong; Chen, Ruiqiang; Wang, Yanling

    2011-01-01

    This paper presents the exact error analysis of point positioning equation used for airborne three-dimensional(3D) imaging sensor. With differential calculus and principles of precision analysis a mathematics formula on the point position error and relative factors is derived to show how each error source affects both vertical and horizontal coordinates. A comprehensive analysis of the related error sources and their achievable accuracy are provided. At last, two example figures are shown to compare the position accuracy of elliptical trace scan and the line-trace scan are drawn under the same error source and some corresponding conclusions.

  19. Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions

    Science.gov (United States)

    Wei, Yikun; Qian, Yuehong

    2011-11-01

    A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.

  20. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Stephen M. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering; Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alder, Berni J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examples highlighting the mesh adaptivity of this method are also provided.

  1. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  2. Universal Property of Quantum Gravity implied by Bekenstein-Hawking Entropy and Boltzmann formula

    CERN Document Server

    Saida, Hiromi

    2013-01-01

    We search for a universal property of quantum gravity. By "universal", we mean the independence from any existing model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical triangulation, and so on). To do so, we try to put the basis of our discussion on theories established by some experiments. Thus, we focus our attention on thermodynamical and statistical-mechanical basis of the black hole thermodynamics: Let us assume that the Bekenstein-Hawking entropy is given by the Boltzmann formula applied to the underlying theory of quantum gravity. Under this assumption, the conditions justifying Boltzmann formula together with uniqueness of Bekenstein-Hawking entropy imply a reasonable universal property of quantum gravity. The universal property indicates a repulsive gravity at Planck length scale, otherwise stationary black holes can not be regarded as thermal equilibrium states of gravity. Further, in semi-classical level, we discuss a possible correction of Einstein equat...

  3. Analytical solution of the Bloch NMR flow equations: A quantum mechanical model for general fluid flow analysis

    International Nuclear Information System (INIS)

    The equations of fluid mechanics, coupled with those that describe matter transportation at the molecular level must be handled effectively. Putting the fluid into equations, we model the Bloch NMR flow equations into the harmonic wave equation for the analysis of general fluid flow. We derived the solution of the modelled harmonic equation in non relativistic quantum mechanics and discuss its semi classical application to illustrate its potential wide-ranging usefulness in the search for the best possible data obtainable for general fluid flow analysis. Representing the solution of the derived harmonic wave equation by a normalized state function is quite useful in generating the properly normalized wave functions and in the efficient evaluation of expectation values of many operators that can be fundamental to the analysis of fluid flow especially at the microscopic level. (author)

  4. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    Science.gov (United States)

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. PMID:24418010

  5. Comparison: RELAP5-3D systems analysis code and fluent CFD code momentum equation formulations

    International Nuclear Information System (INIS)

    Recently the Idaho National Engineering and Environmental Laboratory (INEEL), in conjunction with Fluent Corporation, have developed a new analysis tool by coupling the Fluent computational fluid dynamics (CFD) code to the RELAP5-3D advanced thermal-hydraulic analysis code. This tool enables researchers to perform detailed, two- or three-dimensional analyses using Fluent's CFD capability while the boundary conditions required by the Fluent calculation are provided by the balance-of-system model created using RELAP5-3D. Fluent and RELAP5-3D have strengths that complement one another. CFD codes, such as Fluent, are commonly used to analyze the flow behavior in regions of a system where complex flow patterns are expected or present. On the other hand, RELAP5-3D was developed to analyze the behavior of two-phase systems that could be modeled in one-dimension. Empirical relationships were used where first-principle physics were not well developed. Both Fluent and RELAP5-3D are exemplary in their areas of specialization. The differences between Fluent and RELAP5 fundamentally stem from their field equations. This study focuses on the differences between the momentum equation representations in the two codes (the continuity equation formulations are equivalent for single phase flow). First the differences between the momentum equations are summarized. Next the effect of the differences in the momentum equations are examined by comparing the results obtained using both codes to study the same problem, i.e., fully-developed turbulent pipe flow. Finally, conclusions regarding the significance of the differences are given. (author)

  6. Stability analysis of preconditioned approximations of the Euler equations on unstructuctured meshes

    OpenAIRE

    Moinier, P.; Giles, M.

    2001-01-01

    This paper analyses the stability of a discretisation of the Euler equations on 3D unstructured grids using an edge-based data structure, first-order characteristic smoothing, a block-Jacobi preconditioner and Runge-Kutta time-marching. This is motivated by multigrid Navier-Stokes calculations in which this inviscid discretisation is the dominant component on coarse grids. The analysis uses algebraic stability theory, which allows, at worst, a bounded linear growth in a suitably defined "...

  7. Stability analysis of multigrid acceleration methods for the solution of partial differential equations

    Science.gov (United States)

    Fay, John F.

    1990-01-01

    A calculation is made of the stability of various relaxation schemes for the numerical solution of partial differential equations. A multigrid acceleration method is introduced, and its effects on stability are explored. A detailed stability analysis of a simple case is carried out and verified by numerical experiment. It is shown that the use of multigrids can speed convergence by several orders of magnitude without adversely affecting stability.

  8. An Overview of Geometric Asymptotic Analysis of Continuous and Discrete Painlev\\'e Equations

    OpenAIRE

    Joshi, Nalini

    2013-01-01

    The classical Painlev\\'e equations are so well known that it may come as a surprise to learn that the asymptotic description of its solutions remains incomplete. The problem lies mainly with the description of families of solutions in the complex domain. Where asymptotic descriptions are known, they are stated in the literature as valid for large connected domains, which include movable poles of families of solutions. However, asymptotic analysis necessarily assumes that the solutions are bou...

  9. Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Sami Bataineh, A.; Noorani, M.S.M. [School of Mathematical Sciences, National University of Malaysia, 43600 UKM, Bangi Selangor (Malaysia); Hashim, I. [School of Mathematical Sciences, National University of Malaysia, 43600 UKM, Bangi Selangor (Malaysia)], E-mail: ishak_h@ukm.my

    2007-11-05

    In this Letter, the homotopy analysis method (HAM) is applied to obtain approximate analytical solutions of the time-dependent Emden-Fowler type equations. The HAM solutions contain an auxiliary parameter which provides a convenient way of controlling the convergence region of series solutions. It is shown that the solutions obtained by the Adomian decomposition method (ADM) and the homotopy-perturbation method (HPM) are only special cases of the HAM solutions.

  10. Double covering of the Painlev\\'e I equation and its singular analysis

    OpenAIRE

    Sasano, Yusuke

    2007-01-01

    In this note, we will do analysis of accessible singular points for a polynomial Hamiltonian system obtained by taking a double covering of the Painlev\\'e I equation. We will show that this system passes the Painlev\\'e $\\alpha$-test for all accessible singular points $P_i \\ (i=1,2,3)$. We note its holomorphy condition of the first Painlev\\'e system.

  11. Modular Analysis of Sequential Solution Methods for Almost Block Diagonal Systems of Equations

    OpenAIRE

    El-Mistikawy, Tarek M. A.

    2013-01-01

    Almost block diagonal linear systems of equations can be exemplified by two modules. This makes it possible to construct all sequential forms of band and/or block elimination methods. It also allows easy assessment of the methods on the basis of their operation counts, storage needs, and admissibility of partial pivoting. The outcome of the analysis and implementation is to discover new methods that outperform a well-known method, a modification of which is, therefore, advocated.

  12. Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models

    DEFF Research Database (Denmark)

    Marschler, Christian; Sieber, Jan; Berkemer, Rainer;

    2014-01-01

    We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold...... within an error that is exponentially small with respect to the small parameter measuring time scale separation. Second, we apply this result to the idealized traffic modeling problem of phantom jams generated by cars with uniform behavior on a circular road. The traffic jams are waves that travel slowly...

  13. Application of lattice Boltzmann scheme to nanofluids

    Institute of Scientific and Technical Information of China (English)

    XUAN Yimin; LI Qiang; YAO Zhengping

    2004-01-01

    A nanofluid is a particle suspension that consists of base liquids and nanoparticles. Nanofluid has greater potential for heat transfer enhancement than traditional solid-liquid mixture. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles,a lattice Boltzmann model for simulating flow and energy transport processes inside the nanofluids is proposed. The irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids are discussed. The distributions of suspended nanoparticles inside nanofluids are calculated.

  14. Lattice-Boltzmann-based Simulations of Diffusiophoresis

    Science.gov (United States)

    Castigliego, Joshua; Kreft Pearce, Jennifer

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.

  15. Analysis of the Toolkit method for the time-dependant Schr\\"odinger equation

    CERN Document Server

    Baudouin, Lucie; Turinici, Gabriel

    2009-01-01

    The goal of this paper is to provide an analysis of the ``toolkit'' method used in the numerical approximation of the time-dependent Schr\\"odinger equation. The ``toolkit'' method is based on precomputation of elementary propagators and was seen to be very efficient in the optimal control framework. Our analysis shows that this method provides better results than the second order Strang operator splitting. In addition, we present two improvements of the method in the limit of low and large intensity control fields.

  16. Analysis of the Toolkit method for the time-dependant Schr\\"odinger equation

    CERN Document Server

    Baudouin, Lucie; Turinici, Gabriel

    2010-01-01

    The goal of this paper is to provide an analysis of the "toolkit" method used in the numerical approximation of the time-dependent Schr\\"odinger equation. The "toolkit" method is based on precomputation of elementary propagators and was seen to be very efficient in the optimal control framework. Our analysis shows that this method provides better results than the second order Strang operator splitting. In addition, we present two improvements of the method in the limit of low and large intensity control fields.

  17. Approximate analytical solution of diffusion equation with fractional time derivative using optimal homotopy analysis method

    Directory of Open Access Journals (Sweden)

    S. Das

    2013-12-01

    Full Text Available In this article, optimal homotopy-analysis method is used to obtain approximate analytic solution of the time-fractional diffusion equation with a given initial condition. The fractional derivatives are considered in the Caputo sense. Unlike usual Homotopy analysis method, this method contains at the most three convergence control parameters which describe the faster convergence of the solution. Effects of parameters on the convergence of the approximate series solution by minimizing the averaged residual error with the proper choices of parameters are calculated numerically and presented through graphs and tables for different particular cases.

  18. Integral Equation Analysis of EM Scattering from Multilayered Metallic Photonic Crystal Accelerated with Adaptive Cross Approximation

    Directory of Open Access Journals (Sweden)

    Jianxun Su

    2015-01-01

    Full Text Available A space-domain integral equation method accelerated with adaptive cross approximation (ACA is presented for the fast and accurate analysis of electromagnetic (EM scattering from multilayered metallic photonic crystal (MPC. The method directly solves for the electric field in order to easily enable the periodic boundary condition (PBC in the spatial domain. The ACA is a purely algebraic method allowing the compression of fully populated matrices; hence, its formulation and implementation are independent of integral equation kernel (Green’s function. Therefore, the ACA is very well suited for accelerating integral equation analysis of periodic structure with the integral kernel of the periodic Green’s function (PGF. The computation of the spatial-domain periodic Green’s function (PGF is accelerated by the modified Ewald transformation, such that the multilayered periodic structure can be analyzed efficiently and accurately. An effective interpolation method is also proposed to fast compute the periodic Green’s function, which can greatly reduce the time of matrix filling. Numerical examples show that the proposed method can greatly save the frequency sweep time for multilayered periodic structure.

  19. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  20. Preconditioning techniques for constrained vector potential integral equations, with application to 3-D magnetoquasistatic analysis of electronic packages

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, M.; Phillips, J.R. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1994-12-31

    In this paper techniques are presented for preconditioning equations generated by discretizing constrained vector integral equations associated with magnetoquasistatic analysis. Standard preconditioning approaches often fail on these problems. The authors present a specialized preconditioning technique and prove convergence bounds independent of the constraint equations and electromagnetic excitation frequency. Computational results from analyzing several electronic packaging examples are given to demonstrate that the new preconditioning approach can sometimes reduce the number of GMRES iterations by more than an order of magnitude.