The Non-Classical Boltzmann Equation, and Diffusion-Based Approximations to the Boltzmann Equation
Frank, Martin; Larsen, Edward W; Vasques, Richard
2014-01-01
We show that several diffusion-based approximations (classical diffusion or SP1, SP2, SP3) to the linear Boltzmann equation can (for an infinite, homogeneous medium) be represented exactly by a non-classical transport equation. As a consequence, we indicate a method to solve diffusion-based approximations to the Boltzmann equation via Monte Carlo, with only statistical errors - no truncation errors.
Approximate message passing with restricted Boltzmann machine priors
Tramel, Eric W.; Drémeau, Angélique; Krzakala, Florent
2016-07-01
Approximate message passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problems. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernoulli prior which utilizes a restricted Boltzmann machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple i.i.d. priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance.
Approximate Message Passing with Restricted Boltzmann Machine Priors
Tramel, Eric W; Krzakala, Florent
2015-01-01
Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernouilli prior which utilizes a Restricted Boltzmann Machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple iid priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance.
The Nonclassical Diffusion Approximation to the Nonclassical Linear Boltzmann Equation
Vasques, Richard
2015-01-01
We show that, by correctly selecting the probability distribution function $p(s)$ for a particle's distance-to-collision, the nonclassical diffusion equation can be represented exactly by the nonclassical linear Boltzmann equation for an infinite homogeneous medium. This choice of $p(s)$ preserves the $true$ mean-squared free path of the system, which sheds new light on the results obtained in previous work.
Energy Technology Data Exchange (ETDEWEB)
Liu, Jian; Miller, William H.
2006-09-06
The thermal Gaussian approximation (TGA) recently developed by Mandelshtam et al has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-{beta}H) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the 'forward-backward semiclassical dynamics' (FBSD) approximation developed by Makri et al. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
d'Eon, Eugene
2013-01-01
We derive new diffusion solutions to the monoenergetic generalized linear Boltzmann transport equation (GLBE) for the stationary collision density and scalar flux about an isotropic point source in an infinite $d$-dimensional absorbing medium with isotropic scattering. We consider both classical transport theory with exponentially-distributed free paths in arbitrary dimensions as well as a number of non-classical transport theories (non-exponential random flights) that describe a broader class of transport processes within partially-correlated random media. New rigorous asymptotic diffusion approximations are derived where possible. We also generalize Grosjean's moment-preserving approach of separating the first (or uncollided) distribution from the collided portion and approximating only the latter using diffusion. We find that for any spatial dimension and for many free-path distributions Grosjean's approach produces compact, analytic approximations that are, overall, more accurate for high absorption and f...
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Energy Technology Data Exchange (ETDEWEB)
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Energy Technology Data Exchange (ETDEWEB)
Buchan, Andrew G., E-mail: andrew.buchan@imperial.ac.uk [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Merton, Simon R. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom); Pain, Christopher C. [Applied Modelling and Computational Group, Department of Earth Science and Engineering, Imperial College of Science, Technology and Medicine (United Kingdom); Smedley-Stevenson, Richard P. [AWE, Aldermaston, Reading RG7 4PR (United Kingdom)
2011-05-15
In this paper a method for resolving the various boundary conditions (BCs) for the first order Boltzmann transport equation (BTE) is described. The approach has been formulated to resolve general BCs using an arbitrary angular approximation method within any weighted residual finite element formulation. The method is based on a Riemann decomposition which is used to decompose the particles' angular dependence into in-coming and out-going information through a surface. This operation recasts the flux into a Riemann space which is used directly to remove any incoming information, and thus satisfy void boundary conditions. The method is then extended by its coupling with a set of mapping operators that redirect the outgoing flux to form incoming images resembling other specified boundary conditions. These operators are based on Galerkin projections and are defined to enable reflective and diffusive (white) BCs to be resolved. A small number of numerical examples are then presented to demonstrate the method's ability in resolving void, reflective and white BCs. These examples have been chosen in order to show the method working for arbitrary angled surfaces. Furthermore, as the method has been designed for an arbitrary angular approximation, both S{sub N} and P{sub N} calculations are presented.
Matrix-valued Quantum Lattice Boltzmann Method
Mendl, Christian B
2013-01-01
We develop a numerical framework for the quantum analogue of the "classical" lattice Boltzmann method (LBM), with the Maxwell-Boltzmann distribution replaced by the Fermi-Dirac function. To accommodate the spin density matrix, the distribution functions become 2x2-matrix valued. We show that the efficient, commonly used BGK approximation of the collision operator is valid in the present setting. The framework could leverage the principles of LBM for simulating complex spin systems, with applications to spintronics.
Quantum corrections for Boltzmann equation
Institute of Scientific and Technical Information of China (English)
M.; Levy; PETER
2008-01-01
We present the lowest order quantum correction to the semiclassical Boltzmann distribution function,and the equation satisfied by this correction is given. Our equation for the quantum correction is obtained from the conventional quantum Boltzmann equation by explicitly expressing the Planck constant in the gradient approximation,and the quantum Wigner distribution function is expanded in pow-ers of Planck constant,too. The negative quantum correlation in the Wigner dis-tribution function which is just the quantum correction terms is naturally singled out,thus obviating the need for the Husimi’s coarse grain averaging that is usually done to remove the negative quantum part of the Wigner distribution function. We also discuss the classical limit of quantum thermodynamic entropy in the above framework.
Pruning Boltzmann networks and hidden Markov models
DEFF Research Database (Denmark)
Pedersen, Morten With; Stork, D.
1996-01-01
We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linea...... and thus the proper weight is pruned at each pruning step. In all our experiments in small problems, pruning reduces the generalization error; in most cases the pruned networks facilitate interpretation as well......We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...
Training Restricted Boltzmann Machines
DEFF Research Database (Denmark)
Fischer, Asja
Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can also be interpreted as stochastic neural networks. Training RBMs is known to be challenging. Computing the likelihood of the model parameters or its gradient is in general computationally intensive. Thus, training...
Comparison of Boltzmann Equations with Quantum Dynamics for Scalar Fields
Lindner, Manfred; Lindner, Manfred; Muller, Markus Michael
2006-01-01
Boltzmann equations are often used to study the thermal evolution of particle reaction networks. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after relativistic heavy ion collisions. However, Boltzmann equations are only a classical approximation of the quantum thermalization process which is described by the so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the full Kadanoff-Baym equations. Therefore, we present in this paper a detailed comparison between the Kadanoff-Baym and Boltzmann equations in the framework of a scalar Phi^4 quantum field theory in 3+1 space-time dimensions. The obtained numerical solutions reveal significant discrepancies in the results predicted by both types of equations. Most notably, apart from quantitative discrepancies, on a qualitative level the universality observed for the Kadanoff-Baym equations is severely restricted in the case o...
An Infinite Restricted Boltzmann Machine.
Côté, Marc-Alexandre; Larochelle, Hugo
2016-07-01
We present a mathematical construction for the restricted Boltzmann machine (RBM) that does not require specifying the number of hidden units. In fact, the hidden layer size is adaptive and can grow during training. This is obtained by first extending the RBM to be sensitive to the ordering of its hidden units. Then, with a carefully chosen definition of the energy function, we show that the limit of infinitely many hidden units is well defined. As with RBM, approximate maximum likelihood training can be performed, resulting in an algorithm that naturally and adaptively adds trained hidden units during learning. We empirically study the behavior of this infinite RBM, showing that its performance is competitive to that of the RBM, while not requiring the tuning of a hidden layer size.
Boltzmann equations for neutrinos with flavor mixings
Yamada, Shoichi
2000-01-01
With a view of applications to the simulations of supernova explosion and proto neutron star cooling, we derive the Boltzmann equations for the neutrino transport with the flavor mixing based on the real time formalism of the nonequilibrium field theory and the gradient expansion of the Green function. The relativistic kinematics is properly taken into account. The advection terms are derived in the mean field approximation for the neutrino self-energy whiles the collision terms are obtained ...
The Boltzmann equation in the difference formulation
Energy Technology Data Exchange (ETDEWEB)
Szoke, Abraham [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brooks III, Eugene D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-05-06
First we recall the assumptions that are needed for the validity of the Boltzmann equation and for the validity of the compressible Euler equations. We then present the difference formulation of these equations and make a connection with the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit and calculate the thermal conductivity of a monatomic gas, using a simplified approximation for the collision term. Our formulation is more consistent and simpler than the traditional derivation.
Learning thermodynamics with Boltzmann machines
Torlai, Giacomo; Melko, Roger G.
2016-10-01
A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of neurons required to obtain accurate results increases as the system is brought close to criticality.
Forms of Approximate Radiation Transport
Brunner, G
2002-01-01
Photon radiation transport is described by the Boltzmann equation. Because this equation is difficult to solve, many different approximate forms have been implemented in computer codes. Several of the most common approximations are reviewed, and test problems illustrate the characteristics of each of the approximations. This document is designed as a tutorial so that code users can make an educated choice about which form of approximate radiation transport to use for their particular simulation.
Lattice Boltzmann model for nanofluids
Energy Technology Data Exchange (ETDEWEB)
Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)
2005-01-01
A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)
Discretization of the velocity space in solution of the Boltzmann equation
Shan, X; Shan, Xiaowen; He, Xiaoyi
1998-01-01
We point out an equivalence between the discrete velocity method of solving the Boltzmann equation, of which the lattice Boltzmann equation method is a special example, and the approximations to the Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with a BGK collision term at the velocities that correspond to the nodes of a Hermite quadrature is shown to be equivalent to truncating the Hermite expansion of the distribution function to the corresponding order. The truncated part of the distribution has no contribution to the moments of low orders and is negligible at small Mach numbers. Higher order approximations to the Boltzmann equation can be achieved by using more velocities in the quadrature.
Analytical solutions of the lattice Boltzmann BGK model
Zou, Q; Doolen, G D; Zou, Qisu; Hou, Shuling; Doolen, Gary D.
1995-01-01
Abstract: Analytical solutions of the two dimensional triangular and square lattice Boltzmann BGK models have been obtained for the plain Poiseuille flow and the plain Couette flow. The analytical solutions are written in terms of the characteristic velocity of the flow, the single relaxation time representation of these two flows without any approximation.
Nauenberg, Michael
2005-03-01
In 1916 Einstein published a remarkable paper entitled ``On the Quantum Theory of Radiation''ootnotetextA. Einstein ``On the Quantum theory of Radiation,'' Phys. Zeitschrift 18 (1917) 121. First printed in Mitteilungender Physikalischen Gesellschaft Zurich. No 18, 1916. Translated into English in Van der Waerden ``Sources of Quantum Mechanics'' (North Holland 1967) pp. 63-77. in which he obtained Planck's formula for black-body radiation by introducing a new statistical hypothesis for the emmision and absorption of electromagneic radiation based on discrete bundles of energy and momentum which are now called photons. Einstein radiation theory replaced Maxwell's classical theory by a stochastic process which, when properly interpreted, also gives well known statistics of massless particles with even spin.^2 This quantum distribution, however, was not discovered by Einstein but was communicated to him by Bose in 1924. Like Boltzmann's classical counterpart, Einstein's statistical theory leads to an irreversible approach to thermal equilibrium, but because this violates time reversal, Einstein theory can not be regarded as a fundamental theory of physical process.ootnotetextM. Nauenberg ``The evolution of radiation towards thermal equilibrium: A soluble model which illustrates the foundations of statistical mechanics,'' American Journal of Physics 72 (2004) 313 Apparently Einstein and his contemporaries were unaware of this problem, and even today this problem is ignored in contemporary discussions of Einstein's treatment of the black-body spectrum.
Institute of Scientific and Technical Information of China (English)
蔡新景; 王新新; 邹晓兵; 鲁志伟
2016-01-01
The propagation properties of streamer could be obtained accurately by using the fluid model to simulate, provided that precise electron transport and reaction coefficients were input the model. Presently, there were two methods to calculate the transport coefficients: interpolation method based on the data of swarm experiment or two-term approximation of the Boltzmann equation. It was showed that interpolation method could be merely used in low reduced electric condition, and for the second method the reasonableness of the isotropic assumption and the accuracy of the results were a question. In view of the above problems, multi-term approximation of the Boltzmann equation to obtain electron transport coefficients was proposed by Nesset al. Here two improvements are provided: firstly, the expansion sequence is adjusted to derive the unified hierarchy in the hydrodynamic and non-hydrodynamic limit; secondly, the collision integral is evaluated based on the Gauss-Kronrod rule instead of Gauss-Laguerre rule as used in Ness''s works. In the end hard sphere model and Reid''s ramp inelastic model are considered. It is shown that it is more accurate to evaluate the collision integral based on Gauss-Kronrod integration method than Gauss-Laguerre method. Furthermore, it is demonstrated that the electron velocity distribution is anisotropic even only undergoing conservative collision, so there is a great error if the two -term approximation is used to obtain the electron transport coefficients.%获得准确的电子输运和反应系数是采用流体模型准确仿真流注传播特性的前提.目前,电子输运系数主要有两种计算方法:一是用电子群实验数据进行插值;二是用两项近似方法解玻尔兹曼方程.方法一只能用在约化场强很小的场合,方法二的理论基础即各相同性假设是否成立和数据准确度尚无定论.针对以上问题,Ness 等人采用了多项近似法解玻尔兹曼方程计算电子输运系数.该
Nomura, Yasunori
2015-01-01
Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except possibly the one imposed by the Poincare recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.
Lattice Boltzmann solver of Rossler equation
Institute of Scientific and Technical Information of China (English)
GuangwuYAN; LiRUAN
2000-01-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Lindner, Manfred
2007-01-01
Boltzmann equations are often used to describe the non-equilibrium time-evolution of many-body systems in particle physics. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after a relativistic heavy ion collision. However, Boltzmann equations are only a classical approximation of the quantum thermalization process, which is described by so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the complete Kadanoff-Baym equations. Therefore, we present in this article a detailed comparison of Boltzmann and Kadanoff-Baym equations in the framework of a chirally invariant Yukawa-type quantum field theory including fermions and scalars. The obtained numerical results reveal significant differences between both types of equations. Apart from quantitative differences, on a qualitative level the late-time universality respected by Kadanoff-Baym equations is severely restricted in th...
Nonequilibrium phenomena in QCD and BEC. Boltzmann and beyond
Energy Technology Data Exchange (ETDEWEB)
Stockamp, T.
2006-12-22
In chapter 2 we chose the real time formalism to discuss some basic principles in quantum field theory at finite temperature. This enables us to derive the quantum Boltzmann equation from the Schwinger-Dyson series. We then shortly introduce the basic concepts of QCD which are needed to understand the physics of QGP formation. After a detailed account on the bottom-up scenario we show the consistency of this approach by a diagramatical analysis of the relevant Boltzmann collision integrals. Chapter 3 deals with BEC dynamics out of equilibrium. After an introduction to the fundamental theoretical tool - namely the Gross-Pitaevskii equation - we focus on a generalization to finite temperature developed by Zaremba, Nikuni and Griffin (ZNG). These authors use a Boltzmann equation to describe the interactions between condensed and excited atoms and manage in this way to describe condensate growth. We then turn to a discussion on the 2PI effective action and derive equations of motion for a relativistic scalar field theory. In the nonrelativistic limit these equations are shown to coincide with the ZNG theory when a quasiparticle approximation is applied. Finally, we perform a numerical analysis of the full 2PI equations. These remain valid even at strong coupling and far from equilibrium, and thus go far beyond Boltzmann's approach. For simplicity, we limit ourselves to a homogeneous system and present the first 3+1 dimensional study of condensate melting. (orig.)
Student understanding of the Boltzmann factor
Smith, Trevor I; Thompson, John R
2015-01-01
We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable, nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations on student discussions about the Boltzmann f...
Are there Boltzmann brains in the vacuum
Davenport, Matthew
2010-01-01
"Boltzmann brains" are human brains that arise as thermal or quantum fluctuations and last at least long enough to think a few thoughts. In many scenarios involving universes of infinite size or duration, Boltzmann brains are infinitely more common than human beings who arise in the ordinary way. Thus we should expect to be Boltzmann brains, in contradiction to observation. We discuss here the question of whether Boltzmann brains can arise as quantum fluctuations in the vacuum. Such Boltzmann brains pose an even worse problem than those arising as fluctuations in the thermal state of an exponentially expanding universe. We give several arguments for and against inclusion of vacuum Boltzmann brains in the anthropic reference class, but find neither choice entirely satisfactory.
High-order hydrodynamics via lattice Boltzmann methods.
Colosqui, Carlos E
2010-02-01
In this work, closure of the Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK) moment hierarchy is accomplished via projection of the distribution function f onto a space H(N) spanned by N-order Hermite polynomials. While successive order approximations retain an increasing number of leading-order moments of f , the presented procedure produces a hierarchy of (single) N-order partial-differential equations providing exact analytical description of the hydrodynamics rendered by ( N-order) lattice Boltzmann-BGK (LBBGK) simulation. Numerical analysis is performed with LBBGK models and direct simulation Monte Carlo for the case of a sinusoidal shear wave (Kolmogorov flow) in a wide range of Weissenberg number Wi=taunuk(2) (i.e., Knudsen number Kn=lambdak=square root Wi); k is the wave number, [corrected] tau is the relaxation time of the system, and lambda approximately tauc(s) is the mean-free path, where c(s) is the speed of sound. The present results elucidate the applicability of LBBGK simulation under general nonequilibrium conditions.
Lattice Boltzmann method with the cell-population equilibrium
Institute of Scientific and Technical Information of China (English)
Zhou Xiao-Yang; Cheng Bing; Shi Bao-Chang
2008-01-01
The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium.In this paper,a multi-speed 1D cell-model of Boltzmann equation is proposed,in which the cell-population equilibrium,a direct nonnegative approximation to the continuous Maxwellian distribution,plays an important part.By applying the explicit one-order Chapman-Enskog distribution,the model reduces the transportation and collision,two basic evolution steps in LBM,to the transportation of the non-equilibrium distribution.Furthermore,1D dam-break problem is performed and the numerical results agree well with the analytic solutions.
SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS
Institute of Scientific and Technical Information of China (English)
Yan Guangwu; Hu Shouxin
2000-01-01
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
The Einstein-Boltzmann system and positivity
Lee, Ho
2012-01-01
The Einstein-Boltzmann system is studied, with particular attention to the non-negativity of the solution of the Boltzmann equation. A new parametrization of post-collisional momenta in general relativity is introduced and then used to simplify the conditions on the collision cross-section given by Bancel and Choquet-Bruhat. The non-negativity of solutions of the Boltzmann equation on a given curved spacetime has been studied by Bichteler and by Tadmon. By examining to what extent the results of these authors apply in the framework of Bancel and Choquet-Bruhat, the non-negativity problem for the Einstein-Boltzmann system is resolved for a certain class of scattering kernels. It is emphasized that it is a challenge to extend the existing theory of the Cauchy problem for the Einstein-Boltzmann system so as to include scattering kernels which are physically well-motivated.
Thermal cascaded lattice Boltzmann method
Fei, Linlin
2016-01-01
In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
DEFF Research Database (Denmark)
Svec, Oldrich; Skoček, Jan
2013-01-01
The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary conditi...... is proposed. The proposed relation is validated both for the case of Newtonian and non-Newtonian fluids. The importance of employing the Navier’s slip boundary condition is highlighted by a practical industrial problem.......The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...
Topological Interactions in a Boltzmann-Type Framework
Blanchet, Adrien; Degond, Pierre
2016-04-01
We consider a finite number of particles characterised by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of another particle, the leader. The follower chooses its leader according to the proximity rank of the latter with respect to the former. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit equation is akin to the Boltzmann equation. However, it exhibits a spatial non-locality instead of the classical non-locality in velocity space. This result relies on the approximation properties of Bernstein polynomials. We illustrate the dynamics with numerical simulations.
An introduction to the theory of the Boltzmann equation
Harris, Stewart
2011-01-01
Boltzmann's equation (or Boltzmann-like equations) appears extensively in such disparate fields as laser scattering, solid-state physics, nuclear transport, and beyond the conventional boundaries of physics and engineering, in the fields of cellular proliferation and automobile traffic flow. This introductory graduate-level course for students of physics and engineering offers detailed presentations of the basic modern theory of Boltzmann's equation, including representative applications using both Boltzmann's equation and the model Boltzmann equations developed within the text. It emphasizes
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
Boltzmann and the art of flying
Dahmen, Silvio R
2007-01-01
One of the less known facets of Ludwig Boltzmann was that of an advocate of Aviation, one of the most challenging technological problems of his times. Boltzmann followed closely the studies of pioneers like Otto Lilienthal in Berlin, and during a lecture on a prestigious conference he vehemently defended further investments in the area. In this article I discuss his involvement with Aviation, his role in its development and his correspondence with two flight pioneers, Otto Lilienthal e Wilhelm Kress.
Student understanding of the Boltzmann factor
Smith, Trevor I.; Mountcastle, Donald B.; Thompson, John R.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us to develop a guided-inquiry tutorial activity, centered around the derivation of the Boltzmann factor, for use in undergraduate statistical mechanics courses. We report on the development process of our tutorial, including data from teaching interviews and classroom observations of student discussions about the Boltzmann factor and its derivation during the tutorial development process. This additional information informed modifications that improved students' abilities to complete the tutorial during the allowed class time without sacrificing the effectiveness as we have measured it. These data also show an increase in students' appreciation of the origin and significance of the Boltzmann factor during the student discussions. Our findings provide evidence that working in groups to better understand the physical origins of the canonical probability distribution helps students gain a better understanding of when the Boltzmann factor is applicable and how to use it appropriately in answering relevant questions.
Bazow, D; Heinz, U; Martinez, M; Noronha, J
2016-01-01
The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lema\\^itre-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of non-hydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the non-hydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation...
Green, B. I.; Vedula, Prakash
2013-07-01
An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework.
A new exact solution of the relativistic Boltzmann equation and its hydrodynamic limit
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution of the relativistic Boltzmann equation for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse flow ("Gubser flow"). The resulting exact non-equilibrium dynamics is compared to 1st- and 2nd-order relativistic hydrodynamic approximations for various shear viscosity to entropy density ratios. This novel solution can be used to test the validity and accuracy of different hydrodynamic approximations in conditions similar to those generated in relativistic heavy-ion collisions.
Boltzmann-Electron Model in Aleph.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Thomas Patrick; Hooper, Russell
2014-11-01
We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model
Adaptive Lattice Boltzmann Model for Compressible Flows
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier-Stokes (N-S) equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock-tube simulation. The other is a strong shock of Mach number 5.09 diffracting around a corner.
Phantom cosmology and Boltzmann brains problem
Astashenok, Artyom V; Yurov, Valerian V
2013-01-01
We consider the well-known Boltzmann brains problem in frames of simple phantom energy models with little rip, big rip and big freeze singularity. It is showed that these models (i) satisfy to observational data and (ii) may be free from Boltzmann brains problem. The human observers in phantom models can exist only in during for a certain period $t
Grid refinement for entropic lattice Boltzmann models
Dorschner, B; Chikatamarla, S S; Karlin, I V
2016-01-01
We propose a novel multi-domain grid refinement technique with extensions to entropic incompressible, thermal and compressible lattice Boltzmann models. Its validity and accuracy are accessed by comparison to available direct numerical simulation and experiment for the simulation of isothermal, thermal and viscous supersonic flow. In particular, we investigate the advantages of grid refinement for the set-ups of turbulent channel flow, flow past a sphere, Rayleigh-Benard convection as well as the supersonic flow around an airfoil. Special attention is payed to analyzing the adaptive features of entropic lattice Boltzmann models for multi-grid simulations.
Celebrating Cercignani's conjecture for the Boltzmann equation
Villani, Cédric
2011-01-01
Cercignani\\'s conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann\\'s nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s. © American Institute of Mathematical Sciences.
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
A Fluctuating Lattice Boltzmann Method for the Diffusion Equation
Wagner, Alexander J
2016-01-01
We derive a fluctuating lattice Boltzmann method for the diffusion equation. The derivation removes several shortcomings of previous derivations for fluctuating lattice Boltzmann methods for hydrodynamic systems. The comparative simplicity of this diffusive system highlights the basic features of this first exact derivation of a fluctuating lattice Boltzmann method.
A Boltzmann Transport Simulation Using Open Source Physics
Hasbun, Javier
2004-03-01
The speed of a charged particle, under an applied electric field, in a conducting media, is, usually, simply modelled by writing Newton's 2nd law in the form mfrac ddtv=qE-mfrac vτ ; (1), where v is the speed, E is the applied electric field, q is the charge, m is the mass, and τ is the scattering time between collisions. Here, we simulate a numerical solution of the Boltzmann transport equation,frac partial partial tf+ vot nabla _rf+Fot nabla _pf=frac partial partial tf|_coll (2), where in general the Boltzmann distribution function f=f(r,p,t) depends on position, momentum, and time. Our numerical solution is made possible by neglecting the 2nd term on the LHS, and by modelling the RHS collision term as fracpartial partial tf|_coll=-frac 1τ . With these approximations, in addition to considering only one dimension, we find, our numerical solution of (2). The average velocity numerically obtained through the resulting distribution is compared to that obtained by the analytic solution of (1). An efficient method of carrying out the numerical solution of (2) due to P. Drallos and M. Wadehra [Journal of Applied Physics 63, 5601(1988)] is incorporated here. A final version of an applet that performs the full Java simulation will be located at http://www.westga.edu/ jhasbun/osp/osp.htm.
THREE WAY DECOMPOSITION FOR THE BOLTZMANN EQUATION
Institute of Scientific and Technical Information of China (English)
Ilgis Ibragimov; Sergej Rjasanow
2009-01-01
The initial value problem for the spatially homogeneous Boltzmann equation is considered. A deterministic numerical scheme for this problem is developed by the use of the three way decomposition of the unknown function as well as of the collision integral. On this way, almost linear complexity of the algorithm is achieved. Some numerical examples are presented.
Geometric variations of the Boltzmann entropy
Kalogeropoulos, Nikos
2008-01-01
We perform a calculation of the first and second order infinitesimal variations, with respect to energy, of the Boltzmann entropy of constant energy hypersurfaces of a system with a finite number of degrees of freedom. We comment on the stability interpretation of the second variation in this framework.
Boltzmann und das Ende des mechanistischen Weltbildes
Renn, Jürgen
2007-01-01
Der Wissenschaftshistoriker und Physiker Jürgen Renn untersucht die Rolle des österreichischen Physikers und Philosophen Ludwig Boltzmann (18441906) bei der Entwicklung der modernen Physik. Boltzmann war einer der letzen Vertreter des mechanistischen Weltbildes und stand somit am Ende eines Zeitalters. Renn porträtiert den Wissenschaftler aber als einen Pionier der modernen Physik, dessen Beschäftigung mit den inneren Spannungen der klassischen Physik ihn visionär zukünftige Fragestellungen aufgreifen ließ. So befasste sich Boltzmann etwa mit den Grenzproblemen zwischen Mechanik und Thermodynamik, die ihn zur Entwicklung immer raffinierterer Instrumente der statistischen Physik antrieb, die schließlich zu Schlüsselinstrumenten der modernen Physik wurden. Boltzmanns Werk steht somit am Übergang vom mechanistischen Weltbild zur Relativitäts- und Quantentheorie. Der Aussage des viel bekannteren Physikers Albert Einstein, dass Fantasie wichtiger sei als Wissen, hält Jürgen Renn im Hinblick auf Leben ...
Entropic lattice Boltzmann model for Burgers's equation.
Boghosian, Bruce M; Love, Peter; Yepez, Jeffrey
2004-08-15
Entropic lattice Boltzmann models are discrete-velocity models of hydrodynamics that possess a Lyapunov function. This feature makes them useful as nonlinearly stable numerical methods for integrating hydrodynamic equations. Over the last few years, such models have been successfully developed for the Navier-Stokes equations in two and three dimensions, and have been proposed as a new category of subgrid model of turbulence. In the present work we develop an entropic lattice Boltzmann model for Burgers's equation in one spatial dimension. In addition to its pedagogical value as a simple example of such a model, our result is actually a very effective way to simulate Burgers's equation in one dimension. At moderate to high values of viscosity, we confirm that it exhibits no trace of instability. At very small values of viscosity, however, we report the existence of oscillations of bounded amplitude in the vicinity of the shock, where gradient scale lengths become comparable with the grid size. As the viscosity decreases, the amplitude at which these oscillations saturate tends to increase. This indicates that, in spite of their nonlinear stability, entropic lattice Boltzmann models may become inaccurate when the ratio of gradient scale length to grid spacing becomes too small. Similar inaccuracies may limit the utility of the entropic lattice Boltzmann paradigm as a subgrid model of Navier-Stokes turbulence.
General relativistic Boltzmann equation, I: Covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
This series of two articles aims at dissipating the rather dense haze existing in the present literature around the General Relativistic Boltzmann equation. In this first article, the general relativistic one-particle distribution function in phase space is defined as an average of delta functions.
Full Boltzmann equations for leptogenesis including scattering
Hahn-Woernle, F; Wong, Y Y Y
2009-01-01
We study the evolution of a cosmological baryon asymmetry produced via leptogenesis by means of the full classical Boltzmann equations, without the assumption of kinetic equilibrium and including all quantum statistical factors. Beginning with the full mode equations we derive the usual equations of motion for the right-handed neutrino number density and integrated lepton asymmetry, and show explicitly the impact of each assumption on these quantities. For the first time, we investigate also the effects of scattering of the right-handed neutrino with the top quark to leading order in the Yukawa couplings by means of the full Boltzmann equations. We find that in our full Boltzmann treatment the final lepton asymmetry can be suppressed by as much as a factor of 1.5 in the weak wash-out regime (K1), the full Boltzmann treatment and the integrated approach give nearly identical final lepton asymmetries (within 10 % of each other at K>3). Finally, we show that the opposing effects of quantum statistics on decays/i...
Stefan-Boltzmann law for massive photons
Moreira, E S
2015-01-01
Thirty years ago a paper appeared in the literature generalizing the Stefan-Boltzmann law to include massive photons. The paper suffers from a flaw though: it assumes that a massive photon travels at the speed of (massless) light. The present work fixes the mistake and presents the correct formula for the radiance.
Stefan-Boltzmann Law for Massive Photons
Moreira, E. S.; Ribeiro, T. G.
2016-08-01
This paper generalizes the Stefan-Boltzmann law to include massive photons. A crucial ingredient to obtain the correct formula for the radiance is to realize that a massive photon does not travel at the speed of (massless) light. It follows that, contrary to what could be expected, the radiance is not proportional to the energy density times the speed of light.
Boltzmann Samplers for Colored Combinatorial Objects
Bodini, Olivier
2009-01-01
In this paper, we give a general framework for the Boltzmann generation of colored objects belonging to combinatorial constructible classes. We propose an intuitive notion called profiled objects which allows the sampling of size-colored objects (and also of k-colored objects) although the corresponding class cannot be described by an analytic ordinary generating function.
Approximate Representations and Approximate Homomorphisms
Moore, Cristopher
2010-01-01
Approximate algebraic structures play a defining role in arithmetic combinatorics and have found remarkable applications to basic questions in number theory and pseudorandomness. Here we study approximate representations of finite groups: functions f:G -> U_d such that Pr[f(xy) = f(x) f(y)] is large, or more generally Exp_{x,y} ||f(xy) - f(x)f(y)||^2$ is small, where x and y are uniformly random elements of the group G and U_d denotes the unitary group of degree d. We bound these quantities in terms of the ratio d / d_min where d_min is the dimension of the smallest nontrivial representation of G. As an application, we bound the extent to which a function f : G -> H can be an approximate homomorphism where H is another finite group. We show that if H's representations are significantly smaller than G's, no such f can be much more homomorphic than a random function. We interpret these results as showing that if G is quasirandom, that is, if d_min is large, then G cannot be embedded in a small number of dimensi...
CERN. Geneva
2015-01-01
Most physics results at the LHC end in a likelihood ratio test. This includes discovery and exclusion for searches as well as mass, cross-section, and coupling measurements. The use of Machine Learning (multivariate) algorithms in HEP is mainly restricted to searches, which can be reduced to classification between two fixed distributions: signal vs. background. I will show how we can extend the use of ML classifiers to distributions parameterized by physical quantities like masses and couplings as well as nuisance parameters associated to systematic uncertainties. This allows for one to approximate the likelihood ratio while still using a high dimensional feature vector for the data. Both the MEM and ABC approaches mentioned above aim to provide inference on model parameters (like cross-sections, masses, couplings, etc.). ABC is fundamentally tied Bayesian inference and focuses on the “likelihood free” setting where only a simulator is available and one cannot directly compute the likelihood for the dat...
Electric Conductivity from the solution of the Relativistic Boltzmann Equation
Puglisi, A; Greco, V
2014-01-01
We present numerical results of electric conductivity $\\sigma_{el}$ of a fluid obtained solving the Relativistic Transport Boltzmann equation in a box with periodic boundary conditions. We compute $\\sigma_{el}$ using two methods: the definition itself, i.e. applying an external electric field, and the evaluation of the Green-Kubo relation based on the time evolution of the current-current correlator. We find a very good agreement between the two methods. We also compare numerical results with analytic formulas in Relaxation Time Approximation (RTA) where the relaxation time for $\\sigma_{el}$ is determined by the transport cross section $\\sigma_{tr}$, i.e. the differential cross section weighted with the collisional momentum transfer. We investigate the electric conductivity dependence on the microscopic details of the 2-body scatterings: isotropic and anisotropic cross-section, and massless and massive particles. We find that the RTA underestimates considerably $\\sigma_{el}$; for example at screening masses $...
Flavoured quantum Boltzmann equations from cQPA
Fidler, Christian; Kainulainen, Kimmo; Rahkila, Pyry Matti
2011-01-01
We develop a Boltzmann-type quantum transport theory for interacting fermion and scalar fields including both flavour and particle-antiparticle mixing. Our formalism is based on the coherent quasiparticle approximation (cQPA) for the 2-point correlation functions, whose extended phase-space structure contains new spectral shells for flavour- and particle-antiparticle coherence. We derive explicit cQPA propagators and Feynman rules for the transport theory. In particular the nontrivial Wightman functions can be written as composite operators $\\sim {\\cal A} F {\\cal A}$, which generalize the usual Kadanoff-Baym ansatz. Our numerical results show that particle-antiparticle coherence can strongly influence CP-violating flavour mixing even for relatively slowly-varying backgrounds. Thus, unlike recently suggested, these correlations cannot be neglected when studying asymmetry generation due to time-varying mass transition, for example in electroweak-type baryogenesis models. Finally, we show that the cQPA coherence...
Simulating High Reynolds Number Flow by Lattice Boltzmann Method
Institute of Scientific and Technical Information of China (English)
KANG Xiu-Ying; LIU Da-He; ZHOU Jing; JIN Yong-Juan
2005-01-01
@@ A two-dimensional channel flow with different Reynolds numbers is tested by using the lattice Boltzmann method under different pressure and velocity boundary conditions. The results show that the simulation error increases,and the pressure and the flow rate become unstable under a high Reynolds number. To improve the simulation precision under a high Reynolds number, the number of fluid nodes should be enlarged. For a higher Reynoldsnumber flow, the velocity boundary with an approximately parabolic velocity profile is found to be more adaptive.Blood flow in an artery with cosine shape symmetrical narrowing is then simulated under a velocity boundary condition. Its velocity, pressure and wall shear stress distributions are consistent with previous studies.
Nonaligned shocks for discrete velocity models of the Boltzmann equation
Directory of Open Access Journals (Sweden)
J. M. Greenberg
1991-05-01
Full Text Available At the conclusion of I. Bonzani's presentation on the existence of structured shock solutions to the six-velocity, planar, discrete Boltzmann equation (with binary and triple collisions, Greenberg asked whether such solutions were possible in directions e(α=(cosα ,sinα when α was not one of the particle flow directions. This question generated a spirited discussion but the question was still open at the conclusion of the conference. In this note the author will provide a partial resolution to the question raised above. Using formal perturbation arguments he will produce approximate solutions to the equation considered by Bonzani which represent traveling waves propagating in any direction e(α=(cosα ,sinα.
Lattice-Boltzmann simulations of droplet evaporation
Ledesma-Aguilar, Rodrigo
2014-09-04
© the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is
On the full Boltzmann equations for Leptogenesis
Garayoa, J; Pinto, T; Rius, N; Vives, O
2009-01-01
We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T=0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ~< 1) the final lepton asymmetry can change up to a factor four with respect to previous...
On the full Boltzmann equations for leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Garayoa, J.; Pastor, S.; Pinto, T.; Rius, N.; Vives, O., E-mail: garayoa@ific.uv.es, E-mail: pastor@ific.uv.es, E-mail: teguayco@gmail.com, E-mail: nuria@ific.uv.es, E-mail: vives@ific.uv.es [Depto. de Física Teórica and IFIC, Universidad de Valencia-CSIC, Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)
2009-09-01
We consider the full Boltzmann equations for standard and soft leptogenesis, instead of the usual integrated Boltzmann equations which assume kinetic equilibrium for all species. Decays and inverse decays may be inefficient for thermalising the heavy-(s)neutrino distribution function, leading to significant deviations from kinetic equilibrium. We analyse the impact of using the full kinetic equations in the case of a previously generated lepton asymmetry, and find that the washout of this initial asymmetry due to the interactions of the right-handed neutrino is larger than when calculated via the integrated equations. We also solve the full Boltzmann equations for soft leptogenesis, where the lepton asymmetry induced by the soft SUSY-breaking terms in sneutrino decays is a purely thermal effect, since at T = 0 the asymmetry in leptons cancels the one in sleptons. In this case, we obtain that in the weak washout regime (K ∼< 1) the final lepton asymmetry can change up to a factor four with respect to previous estimates.
Bazow, D.; Denicol, G. S.; Heinz, U.; Martinez, M.; Noronha, J.
2016-12-01
The dissipative dynamics of an expanding massless gas with constant cross section in a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe is studied. The mathematical problem of solving the full nonlinear relativistic Boltzmann equation is recast into an infinite set of nonlinear ordinary differential equations for the moments of the one-particle distribution function. Momentum-space resolution is determined by the number of nonhydrodynamic modes included in the moment hierarchy, i.e., by the truncation order. We show that in the FLRW spacetime the nonhydrodynamic modes decouple completely from the hydrodynamic degrees of freedom. This results in the system flowing as an ideal fluid while at the same time producing entropy. The solutions to the nonlinear Boltzmann equation exhibit transient tails of the distribution function with nontrivial momentum dependence. The evolution of this tail is not correctly captured by the relaxation time approximation nor by the linearized Boltzmann equation. However, the latter probes additional high-momentum details unresolved by the relaxation time approximation. While the expansion of the FLRW spacetime is slow enough for the system to move towards (and not away from) local thermal equilibrium, it is not sufficiently slow for the system to actually ever reach complete local equilibrium. Equilibration is fastest in the relaxation time approximation, followed, in turn, by kinetic evolution with a linearized and a fully nonlinear Boltzmann collision term.
Energy Technology Data Exchange (ETDEWEB)
Stoenescu, M.L.
1977-06-01
The terms in Boltzmann kinetic equation corresponding to elastic short range collisions, inelastic excitational collisions, coulomb interactions and electric field acceleration are evaluated numerically for a standard distribution function minimizing the computational volume by expressing the terms as linear combinations with recalculable coefficients, of the distribution function and its derivatives. The present forms are suitable for spatial distribution calculations.
Lattice-Boltzmann-based Simulations of Diffusiophoresis
Castigliego, Joshua; Kreft Pearce, Jennifer
We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on diffusiophoresis and the separation of particles within the system. A gradient in viscosity that simulates a concentration gradient in a dissolved polymer allows us to separate various types of particles by their deformability. As seen in previous experiments, simulated particles that have a higher deformability react differently to the polymer matrix than those with a lower deformability. Therefore, the particles can be separated from each other. This simulation, in particular, was intended to model an oceanic system where the particles of interest were zooplankton, phytoplankton and microplastics. The separation of plankton from the microplastics was achieved.
Application of lattice Boltzmann scheme to nanofluids
Institute of Scientific and Technical Information of China (English)
XUAN Yimin; LI Qiang; YAO Zhengping
2004-01-01
A nanofluid is a particle suspension that consists of base liquids and nanoparticles. Nanofluid has greater potential for heat transfer enhancement than traditional solid-liquid mixture. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles,a lattice Boltzmann model for simulating flow and energy transport processes inside the nanofluids is proposed. The irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids are discussed. The distributions of suspended nanoparticles inside nanofluids are calculated.
Celebrating Cercignani's conjecture for the Boltzmann equation
Desvillettes, Laurent; Villani, Cédric
2010-01-01
Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.
Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study
Neuville, Amélie; Toussaint, Renaud
2013-01-01
The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic ...
Can the Higgs Boson Save Us From the Menace of the Boltzmann Brains?
Boddy, Kimberly K
2013-01-01
The standard $\\Lambda$CDM model provides an excellent fit to current cosmological observations but suffers from a potentially serious Boltzmann Brain problem. If the universe enters a de Sitter vacuum phase that is truly eternal, there will be a finite temperature in empty space and corresponding thermal fluctuations. Among these fluctuations will be intelligent observers, as well as configurations that reproduce any local region of the current universe to arbitrary precision. We discuss the possibility that the escape from this unacceptable situation may be found in known physics: vacuum instability induced by the Higgs field. Avoiding Boltzmann Brains in a measure-independent way requires a decay timescale of order the current age of the universe, which can be achieved if the top quark pole mass is approximately 178 GeV. Otherwise we must invoke new physics or a particular cosmological measure before we can consider $\\Lambda$CDM to be an empirical success.
Analytical solution of the Boltzmann-Poisson equation and its application to MIS tunneling junctions
Institute of Scientific and Technical Information of China (English)
Zhang Li-Zhi; Wang Zheng-Chuan
2009-01-01
In order to consider quantum transport under the influence of an electron-electron (e-e) interaction in a mesoscopic conductor, the Boltzmann equation and Poisson equation are investigated jointly. The analytical expressions of the distribution function for the Boltzmann equation and the self-consistent average potential concerned with e-e interaction are obtained, and the dielectric function appearing in the self-consistent average potential is naturally generalized beyond the Thomas-Fermi approximation. Then we apply these results to the tunneling junctions of a metal-insulatorsemiconductor (MIS) in which the electrons are accumulated near the interface of the semiconductor, and we find that the e-e interaction plays an important role in the transport procedure of this system. The electronic density, electric current as well as screening Coulombic potential in this case are studied, and we reveal the time and position dependence of these physical quantities explicitly affected by the e-e interaction.
Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory
Buyukdagli, S.; Blossey, R.
2016-09-01
Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent—a dipolar Coulomb fluid—including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.
Serov, S A
2013-01-01
In the article correct method for the kinetic Boltzmann equation asymptotic solution is formulated, the Hilbert's and Enskog's methods are discussed. The equations system of multicomponent non-equilibrium gas dynamics is derived, that corresponds to the first order in the approximate (asymptotic) method for solution of the system of kinetic Boltzmann equations. It is shown, that the velocity distribution functions of particles, obtained by the proposed method and by Enskog's method, within Enskog's approach, are equivalent up to the infinitesimal first order terms of the asymptotic expansion, but, generally speaking, differ in the next order. Interpretation of turbulent gas flow is proposed, as stratified on components gas flow, which is described by the derived equations system of multicomponent non-equilibrium gas dynamics.
U.S. stock market interaction network as learned by the Boltzmann machine
Borysov, Stanislav S.; Roudi, Yasser; Balatsky, Alexander V.
2015-12-01
We study historical dynamics of joint equilibrium distribution of stock returns in the U.S. stock market using the Boltzmann distribution model being parametrized by external fields and pairwise couplings. Within Boltzmann learning framework for statistical inference, we analyze historical behavior of the parameters inferred using exact and approximate learning algorithms. Since the model and inference methods require use of binary variables, effect of this mapping of continuous returns to the discrete domain is studied. The presented results show that binarization preserves the correlation structure of the market. Properties of distributions of external fields and couplings as well as the market interaction network and industry sector clustering structure are studied for different historical dates and moving window sizes. We demonstrate that the observed positive heavy tail in distribution of couplings is related to the sparse clustering structure of the market. We also show that discrepancies between the model's parameters might be used as a precursor of financial instabilities.
Formulating Weak Lensing from the Boltzmann Equation and Application to Lens-lens Couplings
Su, S -C
2014-01-01
The Planck mission has conclusively detected lensing of the Cosmic Microwave Background (CMB) radiation from foreground sources to an overall significance of greater than $25\\sigma$. The high precision of this measurement motivates the development of a more complete formulation of the calculation of this effect. While most effects on the CMB anisotropies are widely studied through direct solutions of the Boltzmann equation, the non-linear effect of CMB lensing is formulated through the solutions of the geodesic equation. In this paper, we present a new formalism to the calculation of the lensing effect by \\emph{directly solving the Boltzmann equation}, as we did in the calculation of the CMB anisotropies at recombination. In particular, we developed a diagrammatic approach to efficiently keep track of all the interaction terms and calculate all possible non-trivial correlations to arbitrary high orders. Using this formalism, we explicitly articulate the approximations required to recover the usual remapping a...
Adaptive Finite Element Modeling Techniques for the Poisson-Boltzmann Equation
Holst, Michael; Yu, Zeyun; Zhou, Yongcheng; Zhu, Yunrong
2010-01-01
We develop an efficient and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the regularization technique of Chen, Holst, and Xu; this technique made possible the first a priori pointwise estimates and the first complete solution and approximation theory for the Poisson-Boltzmann equation. It also made possible the first provably convergent discretization of the PBE, and allowed for the development of a provably convergent AFEM for the PBE. However, in practice the regularization turns out to be numerically ill-conditioned. In this article, we examine a second regularization, and establish a number of basic results to ensure that the new approach produces the same mathematical advantages of the original regularization, without the ill-conditioning property. We then design an AFEM scheme based on the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This res...
Thermal equation of state for lattice Boltzmann gases
Institute of Scientific and Technical Information of China (English)
Ran Zheng
2009-01-01
The Galilean invaxiance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar-Gross-Krook model axe proposed together with their rigorous theoretical background. From the viewpoint of group invariance,recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar-Gross-Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.
Hot electrons in superlattices: quantum transport versus Boltzmann equation
DEFF Research Database (Denmark)
Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.;
1999-01-01
A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...
Soluble Boltzmann equations for internal state and Maxwell models
Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.
1980-01-01
We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for Ma
General relativistic Boltzmann equation, II: Manifestly covariant treatment
Debbasch, F.; van Leeuwen, W.A.
2009-01-01
In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann equati
Reciprocal Symmetric Boltzmann Function and Unified Boson-Fermion Statistics
2007-01-01
The differential equation for Boltzmann's function is replaced by the corresponding discrete finite difference equation. The difference equation is, then, symmetrized so that the equation remains invariant when step d is replaced by -d. The solutions of this equation come in Boson-Fermion pairs. Reciprocal symmetric Boltzmann's function, thus, unifies both Bosonic and Fermionic distributions.
Distributional Monte Carlo Methods for the Boltzmann Equation
2013-03-01
become the first to possess non - Maxwellian distributions, and therefore become the only location where 112 collisions are required to be calculated... Maxwellian . . . . . . . . . . . . . . . . . 16 fMB Maxwell-Boltzmann Density . . . . . . . . . . . . . . . . . . . . . . . . 16 nMB Maxwell-Boltzmann...is equivalent to assuming that millions of actual particles all share the exact velocity vector. This assumption is non -physical in the sense that
Axisymmetric multiphase lattice Boltzmann method for generic equations of state
Reijers, S.A.; Gelderblom, H.; Toschi, F.
2016-01-01
We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid–gas density ratios up to 103. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation
Multireflection boundary conditions for lattice Boltzmann models.
Ginzburg, Irina; d'Humières, Dominique
2003-12-01
We present a general framework for several previously introduced boundary conditions for lattice Boltzmann models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold: first to give theoretical tools to study the existing link-type boundary conditions and their corresponding accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann models for a Reynolds number Re=0 (Stokes limit) for arbitrary inclination with the lattice directions. Numerical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re<200. These results show a significant improvement of the overall accuracy when using the linear interpolations instead of the bounce-back reflection (up to an order of magnitude on the hydrodynamics fields). Further improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much smoother with multireflection than with the other boundary conditions. Finally the good stability of these schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in a cylinder.
Entropic Lattice Boltzmann Methods for Fluid Mechanics
Chikatamarla, Shyam; Boesch, Fabian; Sichau, David; Karlin, Ilya
2013-11-01
With its roots in statistical mechanics and kinetic theory, the lattice Boltzmann method (LBM) is a paradigm-changing innovation, offering for the first time an intrinsically parallel CFD algorithm. Over the past two decades, LBM has achieved numerous results in the field of CFD and is now in a position to challenge state-of-the art CFD techniques. Our major restyling of LBM resulted in an unconditionally stable entropic LBM which restored Second Law (Boltzmann H theorem) in the LBM kinetics and thus enabled affordable direct simulations of fluid turbulence. We review here recent advances in ELBM as a practical, modeling-free tool for simulation of turbulent flows in complex geometries. We shall present recent simulations including turbulent channel flow, flow past a circular cylinder, knotted vortex tubes, and flow past a surface mounted cube. ELBM listed all admissible lattices supporting a discrete entropy function and has classified them in hierarchically increasing order of accuracy. Applications of these higher-order lattices to simulations of turbulence and thermal flows shall also be presented. This work was supported CSCS grant s437.
Poisson-Boltzmann versus Size-Modified Poisson-Boltzmann Electrostatics Applied to Lipid Bilayers.
Wang, Nuo; Zhou, Shenggao; Kekenes-Huskey, Peter M; Li, Bo; McCammon, J Andrew
2014-12-26
Mean-field methods, such as the Poisson-Boltzmann equation (PBE), are often used to calculate the electrostatic properties of molecular systems. In the past two decades, an enhancement of the PBE, the size-modified Poisson-Boltzmann equation (SMPBE), has been reported. Here, the PBE and the SMPBE are reevaluated for realistic molecular systems, namely, lipid bilayers, under eight different sets of input parameters. The SMPBE appears to reproduce the molecular dynamics simulation results better than the PBE only under specific parameter sets, but in general, it performs no better than the Stern layer correction of the PBE. These results emphasize the need for careful discussions of the accuracy of mean-field calculations on realistic systems with respect to the choice of parameters and call for reconsideration of the cost-efficiency and the significance of the current SMPBE formulation.
Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation
Institute of Scientific and Technical Information of China (English)
LI; Zhihui; ZHANG; Hanxin; FU; Song
2005-01-01
The gas-kinetic unified algorithm using Boltzmann model equation have been extended and developed to solve the micro-scale gas flows in Poiseuille-like micro-channels from Micro-Electro-Mechanical Systems (MEMS). The numerical modeling of the gas kinetic boundary conditions suitable for micro-scale gas flows is presented. To test the present method, the classical Couette flows with various Knudsen numbers, the gas flows from short microchannels like plane Poiseuille and the pressure-driven gas flows in two-dimensional short microchannels have been simulated and compared with the approximate solutions of the Boltzmann equation, the related DSMC results, the modified N-S solutions with slip-flow boundary theory, the gas-kinetic BGK-Burnett solutions and the experimental data. The comparisons show that the present gas-kinetic numerical algorithm using the mesoscopic Boltzmann simplified velocity distribution function equation can effectively simulate and reveal the gas flows in microchannels. The numerical experience indicates that this method may be a powerful tool in the numerical simulation of micro-scale gas flows from MEMS.
Classification of Sets using Restricted Boltzmann Machines
Louradour, Jérôme
2011-01-01
We consider the problem of classification when inputs correspond to sets of vectors. This setting occurs in many problems such as the classification of pieces of mail containing several pages, of web sites with several sections or of images that have been pre-segmented into smaller regions. We propose generalizations of the restricted Boltzmann machine (RBM) that are appropriate in this context and explore how to incorporate different assumptions about the relationship between the input sets and the target class within the RBM. In experiments on standard multiple-instance learning datasets, we demonstrate the competitiveness of approaches based on RBMs and apply the proposed variants to the problem of incoming mail classification.
Lattice Boltzmann modeling of water entry problems
Zarghami, A.; Falcucci, G.; Jannelli, E.; Succi, S.; Porfiri, M.; Ubertini, S.
2014-12-01
This paper deals with the simulation of water entry problems using the lattice Boltzmann method (LBM). The dynamics of the free surface is treated through the mass and momentum fluxes across the interface cells. A bounce-back boundary condition is utilized to model the contact between the fluid and the moving object. The method is implemented for the analysis of a two-dimensional flow physics produced by a symmetric wedge entering vertically a weakly-compressible fluid at a constant velocity. The method is used to predict the wetted length, the height of water pile-up, the pressure distribution and the overall force on the wedge. The accuracy of the numerical results is demonstrated through comparisons with data reported in the literature.
Training Restricted Boltzmann Machines on Word Observations
Dahl, George E; Larochelle, Hugo
2012-01-01
The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundred thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible with RBMs and using the learned features to improve p...
Boltzmann babies in the proper time measure
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Freivogel, Ben; Yang, I-Sheng
2007-12-20
After commenting briefly on the role of the typicality assumption in science, we advocate a phenomenological approach to the cosmological measure problem. Like any other theory, a measure should be simple, general, well defined, and consistent with observation. This allows us to proceed by elimination. As an example, we consider the proper time cutoff on a geodesic congruence. It predicts that typical observers are quantum fluctuations in the early universe, or Boltzmann babies. We sharpen this well-known youngness problem by taking into account the expansion and open spatial geometry of pocket universes. Moreover, we relate the youngness problem directly to the probability distribution for observables, such as the temperature of the cosmic background radiation. We consider a number of modifications of the proper time measure, but find none that would make it compatible with observation.
Lattice Boltzmann Model for Numerical Relativity
Ilseven, E
2015-01-01
In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
A lattice Boltzmann model for adsorption breakthrough
Energy Technology Data Exchange (ETDEWEB)
Agarwal, Saurabh; Verma, Nishith [Indian Institute of Technology Kanpur, Department of Chemical Engineering, Kanpur (India); Mewes, Dieter [Universitat Hannover, Institut fur Verfahrenstechnik, Hannover (Germany)
2005-07-01
A lattice Boltzmann model is developed to simulate the one-dimensional (1D) unsteady state concentration profiles, including breakthrough curves, in a fixed tubular bed of non-porous adsorbent particles. The lattice model solves the 1D time dependent convection-diffusion-reaction equation for an ideal binary gaseous mixture, with solute concentrations at parts per million levels. The model developed in this study is also able to explain the experimental adsorption/desorption data of organic vapours (toluene) on silica gel under varying conditions of temperature, concentrations and flowrates. Additionally, the programming code written for simulating the adsorption breakthrough is modified with minimum changes to successfully simulate a few flow problems, such as Poiseuille flow, Couette flow, and axial dispersion in a tube. The present study provides an alternative numerical approach to solving such types of mass transfer related problems. (orig.)
The Lattice Boltzmann method principles and practice
Krüger, Timm; Kuzmin, Alexandr; Shardt, Orest; Silva, Goncalo; Viggen, Erlend Magnus
2017-01-01
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a va...
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Ordinal Boltzmann Machines for Collaborative Filtering
Truyen, Tran The; Venkatesh, Svetha
2012-01-01
Collaborative filtering is an effective recommendation technique wherein the preference of an individual can potentially be predicted based on preferences of other members. Early algorithms often relied on the strong locality in the preference data, that is, it is enough to predict preference of a user on a particular item based on a small subset of other users with similar tastes or of other items with similar properties. More recently, dimensionality reduction techniques have proved to be equally competitive, and these are based on the co-occurrence patterns rather than locality. This paper explores and extends a probabilistic model known as Boltzmann Machine for collaborative filtering tasks. It seamlessly integrates both the similarity and co-occurrence in a principled manner. In particular, we study parameterisation options to deal with the ordinal nature of the preferences, and propose a joint modelling of both the user-based and item-based processes. Experiments on moderate and large-scale movie recomm...
Flux Limiter Lattice Boltzmann for Compressible Flows
Institute of Scientific and Technical Information of China (English)
陈峰; 许爱国; 张广财; 李英骏
2011-01-01
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann （LB） model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.
Lattice Boltzmann modelling of intrinsic permeability
Li, Jun; Wu, Lei; Zhang, Yonghao
2016-01-01
Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In this technical note, we elaborate this issue in LBM modelling of porous media flows, which is particularly important for gas flows in ultra-tight media.
Deterministic numerical solutions of the Boltzmann equation using the fast spectral method
Wu, Lei; White, Craig; Scanlon, Thomas J.; Reese, Jason M.; Zhang, Yonghao
2013-10-01
The Boltzmann equation describes the dynamics of rarefied gas flows, but the multidimensional nature of its collision operator poses a real challenge for its numerical solution. In this paper, the fast spectral method [36], originally developed by Mouhot and Pareschi for the numerical approximation of the collision operator, is extended to deal with other collision kernels, such as those corresponding to the soft, Lennard-Jones, and rigid attracting potentials. The accuracy of the fast spectral method is checked by comparing our numerical solutions of the space-homogeneous Boltzmann equation with the exact Bobylev-Krook-Wu solutions for a gas of Maxwell molecules. It is found that the accuracy is improved by replacing the trapezoidal rule with Gauss-Legendre quadrature in the calculation of the kernel mode, and the conservation of momentum and energy are ensured by the Lagrangian multiplier method without loss of spectral accuracy. The relax-to-equilibrium processes of different collision kernels with the same value of shear viscosity are then compared; the numerical results indicate that different forms of the collision kernels can be used as long as the shear viscosity (not only the value, but also its temperature dependence) is recovered. An iteration scheme is employed to obtain stationary solutions of the space-inhomogeneous Boltzmann equation, where the numerical errors decay exponentially. Four classical benchmarking problems are investigated: the normal shock wave, and the planar Fourier/Couette/force-driven Poiseuille flows. For normal shock waves, our numerical results are compared with a finite difference solution of the Boltzmann equation for hard sphere molecules, experimental data, and molecular dynamics simulation of argon using the realistic Lennard-Jones potential. For planar Fourier/Couette/force-driven Poiseuille flows, our results are compared with the direct simulation Monte Carlo method. Excellent agreements are observed in all test cases
Accurate deterministic solutions for the classic Boltzmann shock profile
Yue, Yubei
The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.
Heavy Flavor in Medium Momentum Evolution: Langevin vs Boltzmann
Das, Santosh K; Greco, Vincenzo
2013-01-01
The propagation of heavy quarks through the quark-gluon plasma (QGP) has been often treated within the framework of Langevin equation (LV), i.e. assuming the heavy flavor momentum transfer is small or the scatterings are sufficiently forward peaked, small screening mass $m_D$. We address a thorough study of the approximations involved in Langevin dynamics by mean of a direct comparison with the solution of the Boltzmann collisional integral (BM) when a bulk medium is in equilibrium at fixed temperature. We show that unless the cross section is quite forward peaked ($m_D\\cong T $) or the mass to temperature ratio is quite large ($M_q/T \\gtrsim 8-10$) there are significant differences in the evolution of the $p-$spectra with time and consequently on the so-called nuclear modification factor $R_{AA}(p_T)$. However for charm quark we find that very similar $R_{AA}(p_T)$ between the LV and BM can be obtained, but the estimate of the underlying diffusion coefficient can differ by about $\\sim 15-50\\%$ depending on t...
Acoustic equations of state for simple lattice Boltzmann velocity sets.
Viggen, Erlend Magnus
2014-07-01
The lattice Boltzmann (LB) method typically uses an isothermal equation of state. This is not sufficient to simulate a number of acoustic phenomena where the equation of state cannot be approximated as linear and constant. However, it is possible to implement variable equations of state by altering the LB equilibrium distribution. For simple velocity sets with velocity components ξ(iα)∈(-1,0,1) for all i, these equilibria necessarily cause error terms in the momentum equation. These error terms are shown to be either correctable or negligible at the cost of further weakening the compressibility. For the D1Q3 velocity set, such an equilibrium distribution is found and shown to be unique. Its sound propagation properties are found for both forced and free waves, with some generality beyond D1Q3. Finally, this equilibrium distribution is applied to a nonlinear acoustics simulation where both mechanisms of nonlinearity are simulated with good results. This represents an improvement on previous such simulations and proves that the compressibility of the method is still sufficiently strong even for nonlinear acoustics.
A deterministic-stochastic approach to compute the Boltzmann collision integral in O(MN) operations
Alekseenko, Alexander; Nguyen, Truong; Wood, Aihua
2016-11-01
We developed and implemented a numerical algorithm for evaluating the Boltzmann collision operator with O(MN) operations, where N is the number of the discrete velocity points and M SVD) compression of the collision kernel and approximations of the solution by a sum of Maxwellian streams using a stochastic likelihood maximization algorithm. The developed method is significantly faster than the full deterministic DG velocity discretization of the collision integral. Accuracy of the method is established on solutions to the problem of spatially homogeneous relaxation.
Sels, Dries; Brosens, Fons
2013-10-01
The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.
Denicol, Gabriel S; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-01-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three dimensional de Sitter space with a line. The resulting solution respects SO(3)_q x SO(1,1) x Z_2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations with the same symmetry that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations.
Heinz, U; Denicol, G S; Martinez, M; Nopoush, M; Noronha, J; Ryblewski, R; Strickland, M
2015-01-01
Several recent results are reported from work aiming to improve the quantitative precision of relativistic viscous fluid dynamics for relativistic heavy-ion collisions. The dense matter created in such collisions expands in a highly anisotropic manner. Due to viscous effects this also renders the local momentum distribution anisotropic. Optimized hydrodynamic approaches account for these anisotropies already at leading order in a gradient expansion. Recently discovered exact solutions of the relativistic Boltzmann equation in anisotropically expanding systems provide a powerful testbed for such improved hydrodynamic approximations. We present the latest status of our quest for a formulation of relativistic viscous fluid dynamics that is optimized for applications to relativistic heavy-ion collisions.
On measure solutions of the Boltzmann equation, part I: Moment production and stability estimates
Lu, Xuguang; Mouhot, Clément
The spatially homogeneous Boltzmann equation with hard potentials is considered for measure valued initial data having finite mass and energy. We prove the existence of weak measure solutions, with and without angular cutoff on the collision kernel; the proof in particular makes use of an approximation argument based on the Mehler transform. Moment production estimates in the usual form and in the exponential form are obtained for these solutions. Finally for the Grad angular cutoff, we also establish uniqueness and strong stability estimate on these solutions.
Permit Allocation in Emissions Trading using the Boltzmann Distribution
Park, Ji-Won; Isard, Walter
2011-01-01
In emissions trading, the initial permit allocation is an intractable issue because it needs to be essentially fair to the participating countries. There are many ways to distribute a given total amount of emissions permits among countries, but the existing distribution methods such as auctioning and grandfathering have been debated. Here we describe a new model for permit allocation in emissions trading using the Boltzmann distribution. The Boltzmann distribution is introduced to permit allocation by combining it with concepts in emissions trading. A price determination mechanism for emission permits is then developed in relation to the {\\beta} value in the Boltzmann distribution. Finally, it is demonstrated how emissions permits can be practically allocated among participating countries in empirical results. The new allocation model using the Boltzmann distribution describes a most probable, natural, and unbiased distribution of emissions permits among multiple countries. Based on its simplicity and versati...
Analysis of spectral methods for the homogeneous Boltzmann equation
Filbet, Francis
2011-04-01
The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.
Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.
Guo, Zhaoli; Zhao, T S
2003-06-01
In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.
Lattice Boltzmann modeling of directional wetting: Comparing simulations to experiments
Jansen, H.P.; Sotthewes, K.; Swigchem, van J.; Zandvliet, H.J.W.; Kooij, E.S.
2013-01-01
Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results,
Computational Aeroacoustics Using the Generalized Lattice Boltzmann Equation Project
National Aeronautics and Space Administration — The overall objective of the proposed project is to develop a generalized lattice Boltzmann (GLB) approach as a potential computational aeroacoustics (CAA) tool for...
A new lattice Boltzmann model for incompressible magnetohydrodynamics
Institute of Scientific and Technical Information of China (English)
Chen Xing-Wang; Shi Bao-Chang
2005-01-01
Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.
Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation
Gamba, I. M.; Panferov, V.; Villani, C.
2007-01-01
For the spatially homogeneous Boltzmann equation with cutoff hard potentials it is shown that solutions remain bounded from above, uniformly in time, by a Maxwellian distribution, provided the initial data have a Maxwellian upper bound. The main technique is based on a comparison principle that uses a certain dissipative property of the linear Boltzmann equation. Implications of the technique to propagation of upper Maxwellian bounds in the spatially-inhomogeneous case are discussed.
Boltzmann Samplers for v-balanced Colored Necklaces
Bodini, Olivier
2009-01-01
This paper is devoted to the random generation of particular colored necklaces for which the number of beads of a given color is constrained (these necklaces are called v-balanced). We propose an efficient sampler (its expected time complexity is linear) which satisfies the Boltzmann model principle introduced by Duchon, Flajolet, Louchard and Schaeffer. Our main motivation is to show that the absence of a decomposable specification can be circumvented by mixing the Boltzmann samplers with other types of samplers.
KOMPUTASI DISTRIBUSI NEUTRON DALAM STATISTIK MAXWELL BOLTZMANN
Directory of Open Access Journals (Sweden)
Tuti Purwoningsih
2013-03-01
Full Text Available The migration of neutron is arranged by some probability distributions such as probability of spread distribution, probability of distance distribution, probability of energy distribution and probability of flux distribution. One application of these pattern distributions is modelling the reaction between neutron and elements which compose the tissue related to the absorption of neutron in brain cancer tissues. This article explores computation analysis of pattern of distribution of neutron flux in a reactor system. Variables were the amount of neutron simulated and the depth of cylindrical reactor system. Simulations showed that 20-120 minutes was needed in executing 100,000 neutrons to build the distribution pattern of neutrons flux. This pattern was also depended on the depth of the system. In all depths, the peak of neutron flux distribution pattern was in the 3rd bin. Comparison between this simulations and experiment results in literatures showed that by analyzing the simulation of the distribution of neutron flux, a Poisson distribution which follows the Maxwell-Boltzmann was resulted. Perpindahan neutron diatur dengan beberapa peluang distribusi, seperti peluang distribusi sudut hamburan, peluang distribusi jarak perpindahan, peluang distribusi energi transfer, serta peluang distribusi fluks neutron. Salah satu aplikasi dari pola distribusi ini adalah pemodelan reaksi antara neutron dengan elemen-elemen penyusun jaringan yang terkait dengan serapan neutron dan dosis yang terserap oleh jaringan tumor otak pada terapi BNCT (Boron Neutron Capture Therapy. Dalam penelitian ini dibahas analisis komputasi tentang pola distribusi fluks neutron dalam suatu sistem reaktor. Variabel dalam penelitian ini adalah banyaknya neutron yang disimulasikan, serta kedalaman sistem reaktor yang dalam penelitian ini menggunakan sistem reaktor berbentuk silinder. Hasil simulasi menunjukkan bahwa dengan neutron sebanyak 100.000 diperlukan waktu eksekusi sekitar
A new lattice Boltzmann equation to simulate density-driven convection of carbon dioxide
Allen, Rebecca
2013-01-01
The storage of CO2 in fluid-filled geological formations has been carried out for more than a decade in locations around the world. After CO2 has been injected into the aquifer and has moved laterally under the aquifer\\'s cap-rock, density-driven convection becomes an important transport process to model. However, the challenge lies in simulating this transport process accurately with high spatial resolution and low CPU cost. This issue can be addressed by using the lattice Boltzmann equation (LBE) to formulate a model for a similar scenario when a solute diffuses into a fluid and density differences lead to convective mixing. The LBE is a promising alternative to the traditional methods of computational fluid dynamics. Rather than discretizing the system of partial differential equations of classical continuum mechanics directly, the LBE is derived from a velocity-space truncation of the Boltzmann equation of classical kinetic theory. We propose an extension to the LBE, which can accurately predict the transport of dissolved CO2 in water, as a step towards fluid-filled porous media simulations. This is achieved by coupling two LBEs, one for the fluid flow and one for the convection and diffusion of CO2. Unlike existing lattice Boltzmann equations for porous media flow, our model is derived from a system of moment equations and a Crank-Nicolson discretization of the velocity-truncated Boltzmann equation. The forcing terms are updated locally without the need for additional central difference approximation. Therefore our model preserves all the computational advantages of the single-phase lattice Boltzmann equation and is formally second-order accurate in both space and time. Our new model also features a novel implementation of boundary conditions, which is simple to implement and does not suffer from the grid-dependent error that is present in the standard "bounce-back" condition. The significance of using the LBE in this work lies in the ability to efficiently
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Analysis of Jeans instability from Boltzmann equation
Kremer, Gilberto M
2015-01-01
The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. The equilibrium distribution function takes into account the expansion of the Universe and a pressureless fluid in the matter dominated Universe. Without invoking Jeans "swindle" a dispersion relation is obtained by considering small perturbations of the equilibrium values of the distribution function and gravitational potential. The collapse criterion -- which happens in an unstable region where the solution grows exponentially with time -- is determined from the dispersion relation. The collapse criterion in a static Universe occurs when the wavenumber $k$ is smaller than the Jeans wavenumber $k_J$, which was the solution found by Jeans. For an expanding Universe it is shown that this criterion is $k\\leq\\sqrt{7/6}\\,k_J$. As a consequence the ratio of the mass contained in a sphere of diameter equal to the wavelength $\\lambda=2\\pi/k$ to t...
Accurate lineshape spectroscopy and the Boltzmann constant.
Truong, G-W; Anstie, J D; May, E F; Stace, T M; Luiten, A N
2015-10-14
Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m.
Hejranfar, Kazem; Saadat, Mohammad Hossein; Taheri, Sina
2017-02-01
In this work, a high-order weighted essentially nonoscillatory (WENO) finite-difference lattice Boltzmann method (WENOLBM) is developed and assessed for an accurate simulation of incompressible flows. To handle curved geometries with nonuniform grids, the incompressible form of the discrete Boltzmann equation with the Bhatnagar-Gross-Krook (BGK) approximation is transformed into the generalized curvilinear coordinates and the spatial derivatives of the resulting lattice Boltzmann equation in the computational plane are solved using the fifth-order WENO scheme. The first-order implicit-explicit Runge-Kutta scheme and also the fourth-order Runge-Kutta explicit time integrating scheme are adopted for the discretization of the temporal term. To examine the accuracy and performance of the present solution procedure based on the WENOLBM developed, different benchmark test cases are simulated as follows: unsteady Taylor-Green vortex, unsteady doubly periodic shear layer flow, steady flow in a two-dimensional (2D) cavity, steady cylindrical Couette flow, steady flow over a 2D circular cylinder, and steady and unsteady flows over a NACA0012 hydrofoil at different flow conditions. Results of the present solution are compared with the existing numerical and experimental results which show good agreement. To show the efficiency and accuracy of the solution methodology, the results are also compared with the developed second-order central-difference finite-volume lattice Boltzmann method and the compact finite-difference lattice Boltzmann method. It is shown that the present numerical scheme is robust, efficient, and accurate for solving steady and unsteady incompressible flows even at high Reynolds number flows.
Boltzmann-Machine Learning of Prior Distributions of Binarized Natural Images
Obuchi, Tomoyuki; Koma, Hirokazu; Yasuda, Muneki
2016-11-01
Prior distributions of binarized natural images are learned by using a Boltzmann machine. According the results of this study, there emerges a structure with two sublattices in the interactions, and the nearest-neighbor and next-nearest-neighbor interactions correspondingly take two discriminative values, which reflects the individual characteristics of the three sets of pictures that we process. Meanwhile, in a longer spatial scale, a longer-range, although still rapidly decaying, ferromagnetic interaction commonly appears in all cases. The characteristic length scale of the interactions is universally up to approximately four lattice spacings ξ ≈ 4. These results are derived by using the mean-field method, which effectively reduces the computational time required in a Boltzmann machine. An improved mean-field method called the Bethe approximation also gives the same results, as well as the Monte Carlo method does for small size images. These reinforce the validity of our analysis and findings. Relations to criticality, frustration, and simple-cell receptive fields are also discussed.
Lattice Boltzmann simulations of multiple-droplet interaction dynamics
Zhou, Wenchao; Loney, Drew; Fedorov, Andrei G.; Degertekin, F. Levent; Rosen, David W.
2014-03-01
A lattice Boltzmann (LB) formulation, which is consistent with the phase-field model for two-phase incompressible fluid, is proposed to model the interface dynamics of droplet impingement. The interparticle force is derived by comparing the macroscopic transport equations recovered from LB equations with the governing equations of the continuous phase-field model. The inconsistency between the existing LB implementations and the phase-field model in calculating the relaxation time at the phase interface is identified and an approximation is proposed to ensure the consistency with the phase-field model. It is also shown that the commonly used equilibrium velocity boundary for the binary fluid LB scheme does not conserve momentum at the wall boundary and a modified scheme is developed to ensure the momentum conservation at the boundary. In addition, a geometric formulation of the wetting boundary condition is proposed to replace the popular surface energy formulation and results show that the geometric approach enforces the prescribed contact angle better than the surface energy formulation in both static and dynamic wetting. The proposed LB formulation is applied to simulating droplet impingement dynamics in three dimensions and results are compared to those obtained with the continuous phase-field model, the LB simulations reported in the literature, and experimental data from the literature. The results show that the proposed LB simulation approach yields not only a significant speed improvement over the phase-field model in simulating droplet impingement dynamics on a submillimeter length scale, but also better accuracy than both the phase-field model and the previously reported LB techniques when compared to experimental data. Upon validation, the proposed LB modeling methodology is applied to the study of multiple-droplet impingement and interactions in three dimensions, which demonstrates its powerful capability of simulating extremely complex interface
Diophantine approximation and badly approximable sets
DEFF Research Database (Denmark)
Kristensen, S.; Thorn, R.; Velani, S.
2006-01-01
. The classical set Bad of `badly approximable' numbers in the theory of Diophantine approximation falls within our framework as do the sets Bad(i,j) of simultaneously badly approximable numbers. Under various natural conditions we prove that the badly approximable subsets of Omega have full Hausdorff dimension......Let (X,d) be a metric space and (Omega, d) a compact subspace of X which supports a non-atomic finite measure m. We consider `natural' classes of badly approximable subsets of Omega. Loosely speaking, these consist of points in Omega which `stay clear' of some given set of points in X....... Applications of our general framework include those from number theory (classical, complex, p-adic and formal power series) and dynamical systems (iterated function schemes, rational maps and Kleinian groups)....
Lattice Boltzmann method and its applications in engineering thermophysics
Institute of Scientific and Technical Information of China (English)
HE YaLing; LI Qing; WANG Yong; TANG GuiHua
2009-01-01
The lattice Boltzmann method (LBM),a mesoscopic method between the molecular dynamics method and the conventional numerical methods,has been developed into a very efficient numerical alternative in the past two decades.Unlike conventional numerical methods,the kinetic theory based LBM simulates fluid flows by tracking the evolution of the particle distribution function,and then accumulates the distribution to obtain macroscopic averaged properties.In this article we review some work on LBM applications in engineering thermophysics:(1) brief introduction to the development of the LBM; (2)fundamental theory of LBM including the Boltzmann equation,Maxwell distribution function,Boltzmann-BGK equation,and the lattice Boltzmann-BGK equation; (3) lattice Boltzmann models for compressible flows and non-equilibrium gas flows,bounce back-specular-reflection boundary scheme for microscale gaseous flows,the mass modified outlet boundary scheme for fully developed flows,and an implicit-explicit finite-difference-based LBM; and (4) applications of the LBM to oscillating flow,compressible flow,porous media flow,non-equilibrium flow,and gas resonant oscillating flow.
The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego; Lesgourgues, Julien [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Tram, Thomas, E-mail: diego.blas@epfl.ch, E-mail: julien.lesgourgues@cern.ch, E-mail: tram@phys.au.dk [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland)
2011-07-01
Boltzmann codes are used extensively by several groups for constraining cosmological parameters with Cosmic Microwave Background and Large Scale Structure data. This activity is computationally expensive, since a typical project requires from 10{sup 4} to 10{sup 5} Boltzmann code executions. The newly released code CLASS (Cosmic Linear Anisotropy Solving System) incorporates improved approximation schemes leading to a simultaneous gain in speed and precision. We describe here the three approximations used by CLASS for basic ΛCDM models, namely: a baryon-photon tight-coupling approximation which can be set to first order, second order or to a compromise between the two; an ultra-relativistic fluid approximation which had not been implemented in public distributions before; and finally a radiation streaming approximation taking reionisation into account.
Energy Technology Data Exchange (ETDEWEB)
Siewert, C.E. [North Carolina State Univ., Dept. Mathematics, Raleigh, NC (United States)
2002-10-01
A synthetic-kernel model (CES model) of the linearized Boltzmann equation is used along with an analytical discrete-ordinates method (ADO) to solve three fundamental problems concerning flow of a rarefied gas in a plane channel. More specifically, the problems of Couette flow, Poiseuille flow and thermal-creep flow are solved in terms of the CES model equation for an arbitrary mixture of specular and diffuse reflection at the walls confining the flow, and numerical results for the basic quantities of interest are reported. The comparisons made with results derived from solutions based on computationally intensive methods applied to the linearized Boltzmann equation are used to conclude that the CES model can be employed with confidence to improve the accuracy of results available from simpler approximations such as the BGK model or the S model. (author)
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
Institute of Scientific and Technical Information of China (English)
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Lattice Boltzmann Large Eddy Simulation Model of MHD
Flint, Christopher
2016-01-01
The work of Ansumali \\textit{et al.}\\cite{Ansumali} is extended to Two Dimensional Magnetohydrodynamic (MHD) turbulence in which energy is cascaded to small spatial scales and thus requires subgrid modeling. Applying large eddy simulation (LES) modeling of the macroscopic fluid equations results in the need to apply ad-hoc closure schemes. LES is applied to a suitable mesoscopic lattice Boltzmann representation from which one can recover the MHD equations in the long wavelength, long time scale Chapman-Enskog limit (i.e., the Knudsen limit). Thus on first performing filter width expansions on the lattice Boltzmann equations followed by the standard small Knudsen expansion on the filtered lattice Boltzmann system results in a closed set of MHD turbulence equations provided we enforce the physical constraint that the subgrid effects first enter the dynamics at the transport time scales. In particular, a multi-time relaxation collision operator is considered for the density distribution function and a single rel...
An integrable 3D lattice model with positive Boltzmann weights
Mangazeev, Vladimir V; Sergeev, Sergey M
2013-01-01
In this paper we construct a three-dimensional (3D) solvable lattice model with non-negative Boltzmann weights. The spin variables in the model are assigned to edges of the 3D cubic lattice and run over an infinite number of discrete states. The Boltzmann weights satisfy the tetrahedron equation, which is a 3D generalisation of the Yang-Baxter equation. The weights depend on a free parameter 0Boltzmann weights.
Spinor Boltzmann Equation with Two Momenta at the Fermi Level
Institute of Scientific and Technical Information of China (English)
王正川
2012-01-01
Based on the formalism of Keldysh's nonequilibrium Green function, we establish a two momenta spinor Boltzmann equation for longitudinal scalar distribution function and transverse vector distribution function. The lon- gitudinal charge currents, transverse spin currents and the continuity equations satisfied by them are then studied, it indicates that both the charge currents and spin currents decay oscillately along with position, which is due to the momenta integral over the Fermi surface. We also compare our charge currents and spin currents with the corresponding results of one momentum spinor Boltzmann equation, the differences are obvious.
Acoustic limit of the Boltzmann equation: classical solutions
Jang, Juhi; Jiang, Ning
2009-01-01
We study the acoustic limit from the Boltzmann equation in the framework of classical solutions. For a solution $F_\\varepsilon=\\mu +\\varepsilon \\sqrt{\\mu}f_\\varepsilon$ to the rescaled Boltzmann equation in the acoustic time scaling \\partial_t F_\\varepsilon +\\vgrad F_\\varepsilon =\\frac{1}{\\varepsilon} \\Q(F_\\varepsilon,F_\\varepsilon), inside a periodic box $\\mathbb{T}^3$, we establish the global-in-time uniform energy estimates of $f_\\varepsilon$ in $\\varepsilon$ and prove that $f_\\varepsilon$...
Axisymmetric multiphase Lattice Boltzmann method for generic equations of state
Reijers, Sten A; Toschi, Federico
2015-01-01
We present an axisymmetric lattice Boltzmann model based on the Kupershtokh et al. multiphase model that is capable of solving liquid-gas density ratios up to $10^3$. Appropriate source terms are added to the lattice Boltzmann evolution equation to fully recover the axisymmetric multiphase conservation equations. We validate the model by showing that a stationary droplet obeys the Young-Laplace law, comparing the second oscillation mode of a droplet with respect to an analytical solution and showing correct mass conservation of a propagating density wave.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
Contact line dynamics in binary lattice Boltzmann simulations
Pooley, C M; Yeomans, J M; 10.1103/PhysRevE.78.056709
2008-01-01
We show that, when a single relaxation time lattice Boltzmann algorithm is used to solve the hydrodynamic equations of a binary fluid for which the two components have different viscosities, strong spurious velocities in the steady state lead to incorrect results for the equilibrium contact angle. We identify the origins of these spurious currents, and demonstrate how the results can be greatly improved by using a lattice Boltzmann method based on a multiple-relaxation-time algorithm. By considering capillary filling we describe the dependence of the advancing contact angle on the interface velocity.
On a Boltzmann-type price formation model
Burger, Martin
2013-06-26
In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.
Boundary Conditions for Free Interfaces with the Lattice Boltzmann Method
Bogner, Simon; Rüde, Ulrich
2014-01-01
In this paper we analyze the boundary treatment of the Lattice Boltzmann method for simulating 3D flows with free surfaces. The widely used free surface boundary condition of K\\"orner et al. (2005) is shown to be first order accurate. The article presents new free surface boundary schemes that are suitable for the lattice Boltzmann method and that have second order spatial accuracy. The new method takes the free boundary position and orientation with respect to the computational lattice into account. Numerical experiments confirm the theoretical findings and illustrate the the difference between the old and the new method.
CORRECTIONS TO THE COLLISION TERM IN THE BGK BOLTZMANN EQUATION
Institute of Scientific and Technical Information of China (English)
FENG SHI-DE; REN RONG-CAI; CUI XIAO-PENG; JI ZHONG-ZHEN
2001-01-01
With the discrete method of the hexagonal cell and three different velocities of particle population in each cell,a two-dimensional lattice Boltzmann model is developed in this paper.[1,2] The collision operator in the Boltzmann equation is expanded to fourth order using the Taylor expansion.[3,4] With this model, good results have been obtained from the numerical simulation of the reflection phenomenon of the shock wave on the surface of an obstacle, and the numerical stability is also good. Thus the applicability of the D2Q19 model is verified.
Leike, Reimar H
2016-01-01
In Bayesian statistics probability distributions express beliefs. However, for many problems the beliefs cannot be computed analytically and approximations of beliefs are needed. We seek a ranking function that quantifies how "embarrassing" it is to communicate a given approximation. We show that there is only one ranking under the requirements that (1) the best ranked approximation is the non-approximated belief and (2) that the ranking judges approximations only by their predictions for actual outcomes. We find that this ranking is equivalent to the Kullback-Leibler divergence that is frequently used in the literature. However, there seems to be confusion about the correct order in which its functional arguments, the approximated and non-approximated beliefs, should be used. We hope that our elementary derivation settles the apparent confusion. We show for example that when approximating beliefs with Gaussian distributions the optimal approximation is given by moment matching. This is in contrast to many su...
Mezzacappa, A; Liebendörfer, M; Messer, O E; Hix, W R; Thielemann, F K; Bruenn, S W
2001-03-05
With exact three-flavor Boltzmann neutrino transport, we simulate the stellar core collapse, bounce, and postbounce evolution of a 13M star in spherical symmetry, the Newtonian limit, without invoking convection. In the absence of convection, prior spherically symmetric models, which implemented approximations to Boltzmann transport, failed to produce explosions. We consider exact transport to determine if these failures were due to the transport approximations made and to answer remaining fundamental questions in supernova theory. The model presented here is the first in a sequence of models beginning with different progenitors. In this model, a supernova explosion is not obtained.
Thermal transport at the nanoscale: A Fourier's law vs. phonon Boltzmann equation study
Kaiser, J.; Feng, T.; Maassen, J.; Wang, X.; Ruan, X.; Lundstrom, M.
2017-01-01
Steady-state thermal transport in nanostructures with dimensions comparable to the phonon mean-free-path is examined. Both the case of contacts at different temperatures with no internal heat generation and contacts at the same temperature with internal heat generation are considered. Fourier's law results are compared to finite volume method solutions of the phonon Boltzmann equation in the gray approximation. When the boundary conditions are properly specified, results obtained using Fourier's law without modifying the bulk thermal conductivity are in essentially exact quantitative agreement with the phonon Boltzmann equation in the ballistic and diffusive limits. The errors between these two limits are examined in this paper. For the four cases examined, the error in the apparent thermal conductivity as deduced from a correct application of Fourier's law is less than 6%. We also find that the Fourier's law results presented here are nearly identical to those obtained from a widely used ballistic-diffusive approach but analytically much simpler. Although limited to steady-state conditions with spatial variations in one dimension and to a gray model of phonon transport, the results show that Fourier's law can be used for linear transport from the diffusive to the ballistic limit. The results also contribute to an understanding of how heat transport at the nanoscale can be understood in terms of the conceptual framework that has been established for electron transport at the nanoscale.
On Element SDD Approximability
Avron, Haim; Toledo, Sivan
2009-01-01
This short communication shows that in some cases scalar elliptic finite element matrices cannot be approximated well by an SDD matrix. We also give a theoretical analysis of a simple heuristic method for approximating an element by an SDD matrix.
Approximate iterative algorithms
Almudevar, Anthony Louis
2014-01-01
Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a
Performance evaluation of a parallel sparse lattice Boltzmann solver
Axner, L.; Bernsdorf, J.; Zeiser, T.; Lammers, P.; Linxweiler, J.; Hoekstra, A.G.
2008-01-01
We develop a performance prediction model for a parallelized sparse lattice Boltzmann solver and present performance results for simulations of flow in a variety of complex geometries. A special focus is on partitioning and memory/load balancing strategy for geometries with a high solid fraction and
Measuring Boltzmann's Constant with Carbon Dioxide
Ivanov, Dragia; Nikolov, Stefan
2013-01-01
In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…
EXTERNAL BODY FORCE IN FINITE DIFFERENCE LATTICE BOLTZMANN METHOD
Institute of Scientific and Technical Information of China (English)
CHEN Sheng; LIU Zhao-hui; SHI Bao-chang; ZHENG Chu-guang
2005-01-01
A new finite difference lattice Boltzmann scheme is developed. Because of analyzing the influence of external body force roundly, the correct Navier-Stokes equations with the external body force are recovered, without any additional unphysical terms. And some numerical results are presented. The result which close agreement with analytical data shows the good performance of the model.
Lattice Boltzmann simulations of droplet formation during microchannel emulsification
Zwan, van der E.A.; Sman, van der R.G.M.; Schroën, C.G.P.H.; Boom, R.M.
2009-01-01
In this study, we compared microchannel droplet formation in a microfluidics device with a two phase lattice Boltzmann simulation. The droplet formation was found to be qualitatively described, with a slightly smaller droplet in the simulation. This was due to the finite thickness of the interface i
The lattice Boltzmann method and the problem of turbulence
Energy Technology Data Exchange (ETDEWEB)
Djenidi, L. [School of Engineering The University of Newcastle, Callaghan NSW 2308 (Australia)
2015-03-10
This paper reports a brief review of numerical simulations of homogeneous isotopic turbulence (HIT) using the lattice Boltzmann method (LBM). The LBM results shows that the details of HIT are well captured and in agreement with existing data. This clearly indicates that the LBM is as good as current Navier-Stokes solvers and is very much adequate for investigating the problem of turbulence.
Distribution Learning in Evolutionary Strategies and Restricted Boltzmann Machines
DEFF Research Database (Denmark)
Krause, Oswin
The thesis is concerned with learning distributions in the two settings of Evolutionary Strategies (ESs) and Restricted Boltzmann Machines (RBMs). In both cases, the distributions are learned from samples, albeit with different goals. Evolutionary Strategies are concerned with finding an optimum ...
Generalized Relativistic Chapman-Enskog Solution of the Boltzmann Equation
García-Perciante, A L; García-Colin, L S
2007-01-01
The Chapman-Enskog method of solution of the relativistic Boltzmann equation is generalized in order to admit a time-derivative term associated to the thermodynamic force in its first order solution. Both existence and uniqueness of such a solution are proved based on the standard theory of integral equations. The mathematical implications of the generalization here introduced are briefly explored.
Lattice Boltzmann method for linear oscillatory noncontinuum flows
Shi, Yong; Yap, Ying Wan; Sader, John E.
2014-03-01
Oscillatory gas flows are commonly generated by micro- and nanoelectromechanical systems. Due to their small size and high operating frequencies, these devices often produce noncontinuum gas flows. Theoretical analysis of such flows requires solution of the unsteady Boltzmann equation, which can present a formidable challenge. In this article, we explore the applicability of the lattice Boltzmann (LB) method to such linear oscillatory noncontinuum flows; this method is derived from the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation. We formulate four linearized LB models in the frequency domain, based on Gaussian-Hermite quadratures of different algebraic precision (AP). The performance of each model is assessed by comparison to high-accuracy numerical solutions to the linearized Boltzmann-BGK equation for oscillatory Couette flow. The numerical results demonstrate that high even-order LB models provide superior performance over the greatest noncontinuum range. Our results also highlight intrinsic deficiencies in the current LB framework, which is incapable of capturing noncontinuum behavior at high oscillation frequencies, regardless of quadrature AP and the Knudsen number.
Determining Planetary Temperatures with the Stefan-Boltzmann Law
LoPresto, Michael C.; Hagoort, Nichole
2011-01-01
What follows is a description of several activities involving the Stefan-Boltzmann radiation law that can provide laboratory experience beyond what is normally found in traditional introductory thermodynamics experiments on thermal expansion, specific heat, and heats of transformation. The activities also provide more extensive coverage of and…
A Parallel Lattice Boltzmann Model of a Carotid Artery
Boyd, J.; Ryan, S. J.; Buick, J. M.
2008-11-01
A parallel implementation of the lattice Boltzmann model is considered for a three dimensional model of the carotid artery. The computational method and its parallel implementation are described. The performance of the parallel implementation on a Beowulf cluster is presented, as are preliminary hemodynamic results.
Numerical solution of Boltzmann's equation
Energy Technology Data Exchange (ETDEWEB)
Sod, G.A.
1976-04-01
The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig.
Thermal creep problems by the discrete Boltzmann equation
Directory of Open Access Journals (Sweden)
L. Preziosi
1991-05-01
Full Text Available This paper deals with an initial-boundary value problem for the discrete Boltzmann equation confined between two moving walls at different temperature. A model suitable for the quantitative analysis of the initial boundary value problem and the relative existence theorem are given.
Dellar, Paul
2016-11-01
We present discrete kinetic and lattice Boltzmann formulations for reaction cross-diffusion systems, as commonly used to model microbiological chemotaxis and macroscopic predator-prey interactions, and their hyperbolic extensions with fluid-like persistence terms. For example, the canonical Patlak-Keller-Segal model for chemotaxis involves a flux of cells up the gradient of a chemical secreted by the cells, in addition to the usual down-gradient diffusive fluxes. Existing lattice Boltzmann approaches for such systems use finite difference approximations to compute the flux of cells due to the chemical gradient. The resulting coupling between, and necessary synchronisation of the evolution of, adjacent grid points greatly complicates boundary conditions, and efficient implementation on graphical processing units (GPUs). We present a kinetic formulation using cross-collisions between bases of moments for the two sets of distribution functions to couple the fluxes of the two species, from which we construct lattice Boltzmann algorithms using second-order Strang splitting. We demonstrate an efficient GPU implementation, and verify second-order spatial convergence towards spectral solutions for benchmark problems such as the finite-time blow-up in the Patlak-Keller-Segal model.
Fiorentini, Mattia; Bonini, Nicola
2016-08-01
We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n -doped silicon. In particular, we discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons, the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.
Approximation of distributed delays
Lu, Hao; Eberard, Damien; Simon, Jean-Pierre
2010-01-01
We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.
Lattice Boltzmann Methods for Fluid Structure Interaction
2012-09-01
all of the devices are physically located on the same machine, it is convenient to use the shared-memory paradigms of OpenMP rather than explicitly...The standard programming paradigm for programs of this type is to use a distributed parallel programming model based on MPI. When developing a program...presented in this work only accommodate flows for Reynolds number up to approximately 10,000. Current research in entropic and thermal LBM along with
Sparse approximation with bases
2015-01-01
This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications. The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...
Tervo, J; Frank, M; Herty, M
2016-01-01
The paper considers a coupled system of linear Boltzmann transport equation (BTE), and its Continuous Slowing Down Approximation (CSDA). This system can be used to model the relevant transport of particles used e.g. in dose calculation in radiation therapy. The evolution of charged particles (e.g. electrons and positrons) are in practice often modelled using the CSDA version of BTE because of the so-called forward peakedness of scattering events contributing to the particle fluencies (or particle densities), which causes severe problems for numerical methods. First, we prove the existence and uniqueness of solutions, under sufficient criteria and in appropriate $L^2$-based spaces, of a single (particle) CSDA-equation by using two complementary techniques, the Lions-Lax-Milgram Theorem (variational approach), and the theory evolution operators (semigroup approach). The necessary a priori estimates are shown. In addition, we prove the corresponding results and estimates for the system of coupled transport equat...
Lattice Boltzmann technique for heat transport phenomena coupled with melting process
Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy
2017-01-01
In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.
Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces
Li, Q; Francois, M M; Hu, A J
2015-01-01
In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet mo...
A bound for the convergence rate of parallel tempering for sampling restricted Boltzmann machines
DEFF Research Database (Denmark)
Fischer, Asja; Igel, Christian
2015-01-01
Abstract Sampling from restricted Boltzmann machines (RBMs) is done by Markov chain Monte Carlo (MCMC) methods. The faster the convergence of the Markov chain, the more efficiently can high quality samples be obtained. This is also important for robust training of RBMs, which usually relies...... on sampling. Parallel tempering (PT), an MCMC method that maintains several replicas of the original chain at higher temperatures, has been successfully applied for RBM training. We present the first analysis of the convergence rate of PT for sampling from binary RBMs. The resulting bound on the rate...... of convergence of the PT Markov chain shows an exponential dependency on the size of one layer and the absolute values of the RBM parameters. It is minimized by a uniform spacing of the inverse temperatures, which is often used in practice. Similarly as in the derivation of bounds on the approximation error...
Lattice Boltzmann technique for heat transport phenomena coupled with melting process
Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy
2016-04-01
In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.
Numerical simulation of Neumann boundary condition in the thermal lattice Boltzmann model
Chen, Q.; Zhang, X. B.; Zhang, J. F.
2014-03-01
In this paper, a bilinear interpolation finite-difference scheme is proposed to handle the Neumann boundary condition with nonequilibrium extrapolation method in the thermal lattice Boltzmann model. The temperature value at the boundary point is obtained by the finite-difference approximation, and then used to determine the wall temperature via an extrapolation. Our method can deal with the boundaries with complex geometries, motions and gradient boundary conditions. Several simulations are performed to examine the capacity of this proposed boundary method. The numerical results agree well with the analytical solutions. When compared with a representative boundary method, an improved performance is observed. The results also show that the proposed scheme together with nonequilibrium extrapolation method has second-order accuracy.
Wind-Driven Ocean Circulation in Shallow Water Lattice Boltzmann Model
Institute of Scientific and Technical Information of China (English)
ZHONG Linhao; FENG Shide; GAO Shouting
2005-01-01
A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.
Approximation techniques for engineers
Komzsik, Louis
2006-01-01
Presenting numerous examples, algorithms, and industrial applications, Approximation Techniques for Engineers is your complete guide to the major techniques used in modern engineering practice. Whether you need approximations for discrete data of continuous functions, or you''re looking for approximate solutions to engineering problems, everything you need is nestled between the covers of this book. Now you can benefit from Louis Komzsik''s years of industrial experience to gain a working knowledge of a vast array of approximation techniques through this complete and self-contained resource.
Achieser, N I
2004-01-01
A pioneer of many modern developments in approximation theory, N. I. Achieser designed this graduate-level text from the standpoint of functional analysis. The first two chapters address approximation problems in linear normalized spaces and the ideas of P. L. Tchebysheff. Chapter III examines the elements of harmonic analysis, and Chapter IV, integral transcendental functions of the exponential type. The final two chapters explore the best harmonic approximation of functions and Wiener's theorem on approximation. Professor Achieser concludes this exemplary text with an extensive section of pr
Expectation Consistent Approximate Inference
DEFF Research Database (Denmark)
Opper, Manfred; Winther, Ole
2005-01-01
We propose a novel framework for approximations to intractable probabilistic models which is based on a free energy formulation. The approximation can be understood from replacing an average over the original intractable distribution with a tractable one. It requires two tractable probability dis...
Approximate Modified Policy Iteration
Scherrer, Bruno; Ghavamzadeh, Mohammad; Geist, Matthieu
2012-01-01
Modified policy iteration (MPI) is a dynamic programming (DP) algorithm that contains the two celebrated policy and value iteration methods. Despite its generality, MPI has not been thoroughly studied, especially its approximation form which is used when the state and/or action spaces are large or infinite. In this paper, we propose three approximate MPI (AMPI) algorithms that are extensions of the well-known approximate DP algorithms: fitted-value iteration, fitted-Q iteration, and classification-based policy iteration. We provide an error propagation analysis for AMPI that unifies those for approximate policy and value iteration. We also provide a finite-sample analysis for the classification-based implementation of AMPI (CBMPI), which is more general (and somehow contains) than the analysis of the other presented AMPI algorithms. An interesting observation is that the MPI's parameter allows us to control the balance of errors (in value function approximation and in estimating the greedy policy) in the fina...
Ordered cones and approximation
Keimel, Klaus
1992-01-01
This book presents a unified approach to Korovkin-type approximation theorems. It includes classical material on the approximation of real-valuedfunctions as well as recent and new results on set-valued functions and stochastic processes, and on weighted approximation. The results are notonly of qualitative nature, but include quantitative bounds on the order of approximation. The book is addressed to researchers in functional analysis and approximation theory as well as to those that want to applythese methods in other fields. It is largely self- contained, but the readershould have a solid background in abstract functional analysis. The unified approach is based on a new notion of locally convex ordered cones that are not embeddable in vector spaces but allow Hahn-Banach type separation and extension theorems. This concept seems to be of independent interest.
Dynamics of annihilation. I. Linearized Boltzmann equation and hydrodynamics.
García de Soria, María Isabel; Maynar, Pablo; Schehr, Grégory; Barrat, Alain; Trizac, Emmanuel
2008-05-01
We study the nonequilibrium statistical mechanics of a system of freely moving particles, in which binary encounters lead either to an elastic collision or to the disappearance of the pair. Such a system of ballistic annihilation therefore constantly loses particles. The dynamics of perturbations around the free decay regime is investigated using the spectral properties of the linearized Boltzmann operator, which characterize linear excitations on all time scales. The linearized Boltzmann equation is solved in the hydrodynamic limit by a projection technique, which yields the evolution equations for the relevant coarse-grained fields and expressions for the transport coefficients. We finally present the results of molecular dynamics simulations that validate the theoretical predictions.
Boltzmann transport calculation of collinear spin transport on short timescales
Nenno, Dennis M.; Kaltenborn, Steffen; Schneider, Hans Christian
2016-09-01
A spin-dependent Boltzmann transport equation is used to describe charge and spin dynamics resulting from the excitation of hot electrons in a ferromagnet/normal metal heterostructure. As the microscopic Boltzmann equation works with k -dependent distribution functions, it can describe far-from-equilibrium excitations, which are outside the scope of drift-diffusion theories. We study different scenarios for spin-dependent carrier injection into a nonmagnetic metal using an effectively two-dimensional phase space. While the charge signal is robust for various excitation schemes, the shape of the resulting spin current/density depends critically on the interplay between transport and scattering, and on the energetic distribution of the injected carriers. Our results imply that the energy dependence of the injected hot electrons has a decisive effect on the spin dynamics.
Conjugate heat transfer with the entropic lattice Boltzmann method.
Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V
2016-07-01
A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.
Lattice Boltzmann Numerical Simulation of a Circular Cylinder
Institute of Scientific and Technical Information of China (English)
冯士德; 赵颖; 郜宪林; 季仲贞
2002-01-01
The lattice Boltzmann equation (LBE) model based on the Boltzmann equation is suitable for the numerical simulation of various flow fields. The fluid dynamics equation can be recovered from the LBE model. However,compared to the Navier-Stokes transport equation, the fluid dynamics equation derived from the LBE model is somewhat different in the viscosity transport term, which contains not only the Navier-Stokes transport equation but also nonsteady pressure and momentum flux terms. The two nonsteady terms can produce the same function as the random stirring force term introduced in the direct numerical or large-eddy vortex simulation of turbulence.Through computation of a circular cylinder, it is verified that the influence of the two nonsteady terms on flow field stability cannot be ignored, which is helpful for the study of turbulence.
LATTICE-BOLTZMANN MODEL FOR COMPRESSIBLE PERFECT GASES
Institute of Scientific and Technical Information of China (English)
Sun Chenghai
2000-01-01
We present an adaptive lattice Boltzmann model to simulate super sonic flows. The particle velocities are determined by the mean velocity and internal energy. The adaptive nature of particle velocities permits the mean flow to have high Mach number. A particle potential energy is introduced so that the model is suitable for the perfect gas with arbitrary specific heat ratio. The Navier-Stokes equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation.As preliminary tests, two kinds of simulations have been performed on hexagonal lattices. One is the one-dimensional simulation for sinusoidal velocity distributions.The velocity distributions are compared with the analytical solution and the mea sured viscosity is compared with the theoretical values. The agreements are basically good. However, the discretion error may cause some non-isotropic effects. The other simulation is the 29 degree shock reflection.
Analysis of Jeans instability from the Boltzmann equation
Kremer, Gilberto M.
2016-11-01
The dynamics of self-gravitating fluids is analyzed within the framework of a collisionless Boltzmann equation in the presence of gravitational fields and Poisson equation. Two cases are analyzed: a system with baryonic and dark matter in a static universe and a single system in an expanding universe. The amplitudes of the perturbed distribution functions are considered as a linear combination of the collision invariants of the Boltzmann equation. For the system of baryonic and dark matter, the Jeans mass of the combined system is smaller than the one of the single system indicating that a smaller mass is needed to initiate the collapse. For the single system in an expanding universe it is not necessary to make use of Jeans "swindle"and it shown that for small wavelengths the density contrast oscillates while for large wavelengths it grows with time and the Jeans instability emerges.
Lattice Boltzmann model for incompressible flows through porous media.
Guo, Zhaoli; Zhao, T S
2002-09-01
In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution equation to account for the linear and nonlinear drag forces of the medium (the Darcy's term and the Forcheimer's term). Through the Chapman-Enskog procedure, the generalized Navier-Stokes equations for incompressible flow in porous media are derived from the present lattice Boltzmann model. The generalized two-dimensional Poiseuille flow, Couette flow, and lid-driven cavity flow are simulated using the present model. It is found the numerical results agree well with the analytical and/or the finite-difference solutions.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Q; Kang, Q J; Chen, Q
2014-01-01
In this paper, we aim to investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model, the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions: the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper, are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles, however, is unable to reproduce static contact angles close to 180 degrees. Meanwhile, it is found that the proposed modif...
Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach
Song, Huichao; Heinz, Ulrich W
2010-01-01
A hybrid transport approach for the bulk evolution of viscous QCD matter produced in ultra-relativistic heavy-ion collisions is presented. The expansion of the dense deconfined phase of the reaction is modeled with viscous hydrodynamics while the dilute late hadron gas stage is described microscopically by the Boltzmann equation. The advantages of such a hybrid approach lie in the improved capability of handling large dissipative corrections in the late dilute phase of the reaction, including a realistic treatment of the non-equilibrium hadronic chemistry and kinetic freeze-out. By varying the switching temperature at which the hydrodynamic output is converted to particles for further propagation with the Boltzmann cascade we test the ability of the macroscopic hydrodynamic approach to emulate the microscopic evolution during the hadronic stage and extract the temperature dependence of the effective shear viscosity of the hadron resonance gas produced in the collision. We find that the extracted values depend...
CMB spectral distortions as solutions to the Boltzmann equations
Ota, Atsuhisa
2016-01-01
We newly re-interpret cosmic microwave background spectral distortions as solutions to the Boltzmann equation at second order. This approach makes it possible to solve the equation of the momentum dependent temperature perturbations explicitly. In addition, we define higher order spectral distortions systematically, assuming that the collision term is linear in the photon distribution functions. For example, we find the linear Sunyaev-Zel'dovich effect whose momentum shape is different from the usual $y$ distortion, and show that the higher order spectral distortions are also generated as a result of the diffusion process in a language of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
Big-Bang Nucleosynthesis verifies classical Maxwell-Boltzmann distribution
Hou, S Q; Parikh, A; Daid, K; Bertulani, C
2014-01-01
We provide the most stringent constraint to date on possible deviations from the usually-assumed Maxwell-Boltzmann (MB) velocity distribution for nuclei in the Big-Bang plasma. The impact of non-extensive Tsallis statistics on thermonuclear reaction rates involved in standard models of Big-Bang Nucleosynthesis (BBN) has been investigated. We find that the non-extensive parameter $q$ may deviate by, at most, $|\\delta q|$=6$\\times$10$^{-4}$ from unity for BBN predictions to be consistent with observed primordial abundances; $q$=1 represents the classical Boltzmann-Gibbs statistics. This constraint arises primarily from the {\\em super}sensitivity of endothermic rates on the value of $q$, which is found for the first time. As such, the implications of non-extensive statistics in other astrophysical environments should be explored. This may offer new insight into the nucleosynthesis of heavy elements.
Accelerated Monte Carlo simulations with restricted Boltzmann machines
Huang, Li; Wang, Lei
2017-01-01
Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feed-forward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine to propose efficient Monte Carlo updates to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate an improved acceptance ratio and autocorrelation time near the phase transition point.
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Huang, Li
2016-01-01
Despite their exceptional flexibility and popularity, the Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feedforward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine for efficient Monte Carlo updates and to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate improved acceptance ratio and autocorrelation time near the phase transition point.
Boltzmann-Langevin one-body dynamics for fermionic systems
Directory of Open Access Journals (Sweden)
Napolitani P.
2012-07-01
Full Text Available A full implementation of the Boltzmann-Langevin equation for fermionic systems is introduced in a transport model for dissipative collisions among heavy nuclei. Fluctuations are injected in phase space and not, like in more conventional approaches, as a projection on suitable subspaces. The advantage of this model is to be specifically adapted to describe processes characterised by instabilities, like the formation of fragments from a hot nuclear system, and by dissipation, like the transparency in nucleus-nucleus collisions.
Classical Boltzmann equation and high-temperature QED
Brandt, F. T.; Ferreira, R. B.; Thuorst, J. F.
2015-01-01
The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of quantum electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the ...
Filter-matrix lattice Boltzmann model for microchannel gas flows.
Zhuo, Congshan; Zhong, Chengwen
2013-11-01
The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.
Boltzmann learning of parameters in cellular neural networks
DEFF Research Database (Denmark)
Hansen, Lars Kai
1992-01-01
The use of Bayesian methods to design cellular neural networks for signal processing tasks and the Boltzmann machine learning rule for parameter estimation is discussed. The learning rule can be used for models with hidden units, or for completely unsupervised learning. The latter is exemplified...... by unsupervised adaptation of an image segmentation cellular network. The learning rule is applied to adaptive segmentation of satellite imagery...
Discrete Boltzmann model of shallow water equations with polynomial equilibria
Meng, Jianping; Emerson, David R; Peng, Yong; Zhang, Jianmin
2016-01-01
A hierarchy of discrete Boltzmann model is proposed for simulating shallow water flows. By using the Hermite expansion and Gauss-Hermite quadrature, the conservation laws are automatically satisfied without extra effort. Moreover, the expansion order and quadrature can be chosen flexibly according to the problem for striking the balance of accuracy and efficiency. The models are then tested using the classical one-dimensional dam-breaking problem, and successes are found for both supercritical and subcritical flows.
On the Spectral Problems for the Discrete Boltzmann Models
Institute of Scientific and Technical Information of China (English)
Aq Kwang-Hua Chu; J. FANG Jing
2000-01-01
The discrete Boltzmann models are used to study the spectral problems related to the one-dimensional plane wave propaogation in monatomic gases which are fundamental in the nonequilibrium tatistical thermodynamics. The results show that the 8-velocity model can only describe the propagation of the diffusion mode (entropy wave) in the intermediate Knudsen number regime. The 4- and 6-velocity models, instead, can describe the propagation of sound modes quite well, after comparison with the continuum-mechanical results.
A non-slip boundary condition for lattice Boltzmann simulations
Inamuro, T; Ogino, F; Inamuro, Takaji; Yoshino, Masato; Ogino, Fumimaru
1995-01-01
A non-slip boundary condition at a wall for the lattice Boltzmann method is presented. In the present method unknown distribution functions at the wall are assumed to be an equilibrium distribution function with a counter slip velocity which is determined so that fluid velocity at the wall is equal to the wall velocity. Poiseuille flow and Couette flow are calculated with the nine-velocity model to demonstrate the accuracy of the present boundary condition.
Efficient Asymptotic Preserving Deterministic methods for the Boltzmann Equation
2011-04-01
important role in modelling granular gases (Bobylev et al., 2000), charged particles in semiconductors (Markowich et al., 1989), neutron transport (Jin...1.6 The splitting approach 1 THE BOLTZMANN EQUATION • Granular gas models : particles undergo inelastic collisions . Energy is dissipated by the model ...A model for collision processes in gases i. small amplitute processes in charged and neutral one component systems. Phys. Rev., 94:511–525. 8
Metamaterial characterization using Boltzmann's kinetic equation for electrons
DEFF Research Database (Denmark)
Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.;
2013-01-01
Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows the r...... the resonant behavior of electronic response to an external electromagnetic field. We demonstrate the approach for planar and circular geometries of the metamolecules....
Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions
Briant, Marc; Guo, Yan
2016-12-01
In a general C1 domain, we study the perturbative Cauchy theory for the Boltzmann equation with Maxwell boundary conditions with an accommodation coefficient α in (√{ 2 / 3 } , 1 ], and discuss this threshold. We consider polynomial or stretched exponential weights m (v) and prove existence, uniqueness and exponential trend to equilibrium around a global Maxwellian in Lx,v∞ (m). Of important note is the fact that the methods do not involve contradiction arguments.
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximating Stationary Statistical Properties
Institute of Scientific and Technical Information of China (English)
Xiaoming WANG
2009-01-01
It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. Many times these statistical properties of the system must be approximated numerically. The main contribution of this manuscript is to provide simple and natural criterions on numerical methods (temporal and spatial discretization) that are able to capture the stationary statistical properties of the underlying dissipative chaotic dynamical systems asymptotically. The result on temporal approximation is a recent finding of the author, and the result on spatial approximation is a new one. Applications to the infinite Prandtl number model for convection and the barotropic quasi-geostrophic model are also discussed.
Directory of Open Access Journals (Sweden)
Malvina Baica
1985-01-01
Full Text Available The author uses a new modification of Jacobi-Perron Algorithm which holds for complex fields of any degree (abbr. ACF, and defines it as Generalized Euclidean Algorithm (abbr. GEA to approximate irrationals.
Approximations in Inspection Planning
DEFF Research Database (Denmark)
Engelund, S.; Sørensen, John Dalsgaard; Faber, M. H.
2000-01-01
Planning of inspections of civil engineering structures may be performed within the framework of Bayesian decision analysis. The effort involved in a full Bayesian decision analysis is relatively large. Therefore, the actual inspection planning is usually performed using a number of approximations....... One of the more important of these approximations is the assumption that all inspections will reveal no defects. Using this approximation the optimal inspection plan may be determined on the basis of conditional probabilities, i.e. the probability of failure given no defects have been found...... by the inspection. In this paper the quality of this approximation is investigated. The inspection planning is formulated both as a full Bayesian decision problem and on the basis of the assumption that the inspection will reveal no defects....
The Karlqvist approximation revisited
Tannous, C
2015-01-01
The Karlqvist approximation signaling the historical beginning of magnetic recording head theory is reviewed and compared to various approaches progressing from Green, Fourier, Conformal mapping that obeys the Sommerfeld edge condition at angular points and leads to exact results.
Gautschi, Walter; Rassias, Themistocles M
2011-01-01
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg
Directory of Open Access Journals (Sweden)
Maksim Duškin
2015-11-01
Full Text Available Approximation and supposition This article compares exponents of approximation (expressions like Russian около, примерно, приблизительно, более, свыше and the words expressing supposition (for example Russian скорее всего, наверное, возможно. These words are often confused in research, in particular researchers often mention exponents of supposition in case of exponents of approximation. Such approach arouses some objections. The author intends to demonstrate in this article a notional difference between approximation and supposition, therefore the difference between exponents of these two notions. This difference could be described by specifying different attitude of approximation and supposition to the notion of knowledge. Supposition implies speaker’s ignorance of the exact number, while approximation does not mean such ignorance. The article offers examples proving this point of view.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
Non-Boltzmann Ensembles and Monte Carlo Simulations
Murthy, K. P. N.
2016-10-01
Boltzmann sampling based on Metropolis algorithm has been extensively used for simulating a canonical ensemble and for calculating macroscopic properties of a closed system at desired temperatures. An estimate of a mechanical property, like energy, of an equilibrium system, is made by averaging over a large number microstates generated by Boltzmann Monte Carlo methods. This is possible because we can assign a numerical value for energy to each microstate. However, a thermal property like entropy, is not easily accessible to these methods. The reason is simple. We can not assign a numerical value for entropy, to a microstate. Entropy is not a property associated with any single microstate. It is a collective property of all the microstates. Toward calculating entropy and other thermal properties, a non-Boltzmann Monte Carlo technique called Umbrella sampling was proposed some forty years ago. Umbrella sampling has since undergone several metamorphoses and we have now, multi-canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau algorithm etc. This class of methods generates non-Boltzmann ensembles which are un-physical. However, physical quantities can be calculated as follows. First un-weight a microstates of the entropic ensemble; then re-weight it to the desired physical ensemble. Carry out weighted average over the entropic ensemble to estimate physical quantities. In this talk I shall tell you of the most recent non- Boltzmann Monte Carlo method and show how to calculate free energy for a few systems. We first consider estimation of free energy as a function of energy at different temperatures to characterize phase transition in an hairpin DNA in the presence of an unzipping force. Next we consider free energy as a function of order parameter and to this end we estimate density of states g(E, M), as a function of both energy E, and order parameter M. This is carried out in two stages. We estimate g(E) in the first stage. Employing g
On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2011-11-01
Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.
A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models
Luo, Li-Shi
1998-01-01
A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.
Global Solutions of the Boltzmann Equation Over {{R}^D} Near Global Maxwellians with Small Mass
Bardos, Claude; Gamba, Irene M.; Golse, François; Levermore, C. David
2016-09-01
We study the dynamics defined by the Boltzmann equation set in the Euclidean space {{R}^D} in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a special solution of the Boltzmann equation for which the collision integral vanishes identically. In this setting, the dispersion due to the advection operator quenches the dissipative effect of the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann equation in this regime is given by noninteracting, freely transported states and can be described with the tools of scattering theory.
Monotone Boolean approximation
Energy Technology Data Exchange (ETDEWEB)
Hulme, B.L.
1982-12-01
This report presents a theory of approximation of arbitrary Boolean functions by simpler, monotone functions. Monotone increasing functions can be expressed without the use of complements. Nonconstant monotone increasing functions are important in their own right since they model a special class of systems known as coherent systems. It is shown here that when Boolean expressions for noncoherent systems become too large to treat exactly, then monotone approximations are easily defined. The algorithms proposed here not only provide simpler formulas but also produce best possible upper and lower monotone bounds for any Boolean function. This theory has practical application for the analysis of noncoherent fault trees and event tree sequences.
Shock wave profiles in the burnett approximation
Uribe; Velasco; Garcia-Colin; Diaz-Herrera
2000-11-01
This paper is devoted to a discussion of the profiles of shock waves using the full nonlinear Burnett equations of hydrodynamics as they appear from the Chapman-Enskog solution to the Boltzmann equation. The system considered is a dilute gas composed of rigid spheres. The numerical analysis is carried out by transforming the hydrodynamic equations into a set of four first-order equations in four dimensions. We compare the numerical solutions of the Burnett equations, obtained using Adam's method, with the well known direct simulation Monte Carlo method for different Mach numbers. An exhaustive mathematical analysis of the results offered here has been done mainly in connection with the existence of heteroclinic trajectories between the two stationary points located upflow and downflow. The main result of this study is that such a trajectory exists for the Burnett equations for Mach numbers greater than 1. Our numerical calculations suggest that heteroclinic trajectories exist up to a critical Mach number ( approximately 2.69) where local mathematical analysis and numerical computations reveal a saddle-node-Hopf bifurcation. This upper limit for the existence of heteroclinic trajectories deserves further clarification.
On Convex Quadratic Approximation
den Hertog, D.; de Klerk, E.; Roos, J.
2000-01-01
In this paper we prove the counterintuitive result that the quadratic least squares approximation of a multivariate convex function in a finite set of points is not necessarily convex, even though it is convex for a univariate convex function. This result has many consequences both for the field of
Prestack wavefield approximations
Alkhalifah, Tariq
2013-09-01
The double-square-root (DSR) relation offers a platform to perform prestack imaging using an extended single wavefield that honors the geometrical configuration between sources, receivers, and the image point, or in other words, prestack wavefields. Extrapolating such wavefields, nevertheless, suffers from limitations. Chief among them is the singularity associated with horizontally propagating waves. I have devised highly accurate approximations free of such singularities which are highly accurate. Specifically, I use Padé expansions with denominators given by a power series that is an order lower than that of the numerator, and thus, introduce a free variable to balance the series order and normalize the singularity. For the higher-order Padé approximation, the errors are negligible. Additional simplifications, like recasting the DSR formula as a function of scattering angle, allow for a singularity free form that is useful for constant-angle-gather imaging. A dynamic form of this DSR formula can be supported by kinematic evaluations of the scattering angle to provide efficient prestack wavefield construction. Applying a similar approximation to the dip angle yields an efficient 1D wave equation with the scattering and dip angles extracted from, for example, DSR ray tracing. Application to the complex Marmousi data set demonstrates that these approximations, although they may provide less than optimal results, allow for efficient and flexible implementations. © 2013 Society of Exploration Geophysicists.
Norton, Andrew H.
1991-01-01
Local spline approximants offer a means for constructing finite difference formulae for numerical solution of PDEs. These formulae seem particularly well suited to situations in which the use of conventional formulae leads to non-linear computational instability of the time integration. This is explained in terms of frequency responses of the FDF.
Discrete Ordinates Approximations to the First- and Second-Order Radiation Transport Equations
Fan, W C; Powell, J L
2002-01-01
The conventional discrete ordinates approximation to the Boltzmann transport equation can be described in a matrix form. Specifically, the within-group scattering integral can be represented by three components: a moment-to-discrete matrix, a scattering cross-section matrix and a discrete-to-moment matrix. Using and extending these entities, we derive and summarize the matrix representations of the second-order transport equations.
Lattice Boltzmann method for the fractional advection-diffusion equation
Zhou, J. G.; Haygarth, P. M.; Withers, P. J. A.; Macleod, C. J. A.; Falloon, P. D.; Beven, K. J.; Ockenden, M. C.; Forber, K. J.; Hollaway, M. J.; Evans, R.; Collins, A. L.; Hiscock, K. M.; Wearing, C.; Kahana, R.; Villamizar Velez, M. L.
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β , the fractional order α , and the single relaxation time τ , the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Lattice Boltzmann method for the fractional advection-diffusion equation.
Zhou, J G; Haygarth, P M; Withers, P J A; Macleod, C J A; Falloon, P D; Beven, K J; Ockenden, M C; Forber, K J; Hollaway, M J; Evans, R; Collins, A L; Hiscock, K M; Wearing, C; Kahana, R; Villamizar Velez, M L
2016-04-01
Mass transport, such as movement of phosphorus in soils and solutes in rivers, is a natural phenomenon and its study plays an important role in science and engineering. It is found that there are numerous practical diffusion phenomena that do not obey the classical advection-diffusion equation (ADE). Such diffusion is called abnormal or superdiffusion, and it is well described using a fractional advection-diffusion equation (FADE). The FADE finds a wide range of applications in various areas with great potential for studying complex mass transport in real hydrological systems. However, solution to the FADE is difficult, and the existing numerical methods are complicated and inefficient. In this study, a fresh lattice Boltzmann method is developed for solving the fractional advection-diffusion equation (LabFADE). The FADE is transformed into an equation similar to an advection-diffusion equation and solved using the lattice Boltzmann method. The LabFADE has all the advantages of the conventional lattice Boltzmann method and avoids a complex solution procedure, unlike other existing numerical methods. The method has been validated through simulations of several benchmark tests: a point-source diffusion, a boundary-value problem of steady diffusion, and an initial-boundary-value problem of unsteady diffusion with the coexistence of source and sink terms. In addition, by including the effects of the skewness β, the fractional order α, and the single relaxation time τ, the accuracy and convergence of the method have been assessed. The numerical predictions are compared with the analytical solutions, and they indicate that the method is second-order accurate. The method presented will allow the FADE to be more widely applied to complex mass transport problems in science and engineering.
Relativistic rotating Boltzmann gas using the tetrad formalism
Ambrus, Victor E
2015-01-01
We consider an application of the tetrad formalism introduced by Cardall et al. [Phys. Rev. D 88 (2013) 023011] to the problem of a rigidly rotating relativistic gas in thermal equilibrium and discuss the possible applications of this formalism to relativistic lattice Boltzmann simulations. We present in detail the transformation to the comoving frame, the choice of tetrad, as well as the explicit calculation and analysis of the components of the equilibrium particle flow four-vector and of the equilibrium stress-energy tensor.
Classical Boltzmann equation and high-temperature QED
Brandt, F. T.; Ferreira, R. B.; Thuorst, J. F.
2015-02-01
The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of quantum electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the physics described by the leading high temperature limit of quantum electrodynamics can be obtained from the Boltzman transport equation. We also present some explicit examples of this interesting equivalence.
Classical Boltzmann equation and high-temperature QED
Brandt, F T; Thuorst, J F
2015-01-01
The equivalence between thermal field theory and the Boltzmann transport equation is investigated at higher orders in the context of Quantum Electrodynamics. We compare the contributions obtained from the collisionless transport equation with the high temperature limit of the one-loop thermal Green's function. Our approach employs the representation of the thermal Green's functions in terms of forward scattering amplitudes. The general structure of these amplitudes clearly indicates that the physics described by the leading high temperature limit of Quantum Electrodynamics can be obtained from the Boltzman transport equation. We also present some explicit examples of this interesting equivalence.
Lattice-Boltzmann Method for Geophysical Plastic Flows
Leonardi, Alessandro; Mendoza, Miller; Herrmann, Hans J
2015-01-01
We explore possible applications of the Lattice-Boltzmann Method for the simulation of geophysical flows. This fluid solver, while successful in other fields, is still rarely used for geotechnical applications. We show how the standard method can be modified to represent free-surface realization of mudflows, debris flows, and in general any plastic flow, through the implementation of a Bingham constitutive model. The chapter is completed by an example of a full-scale simulation of a plastic fluid flowing down an inclined channel and depositing on a flat surface. An application is given, where the fluid interacts with a vertical obstacle in the channel.
Coupling lattice Boltzmann and molecular dynamics models for dense fluids
Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.
2007-04-01
We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.
Least-squares finite-element lattice Boltzmann method.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2004-06-01
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.
Static contact angle in lattice Boltzmann models of immiscible fluids.
Latva-Kokko, M; Rothman, Daniel H
2005-10-01
We study numerically the capillary rise between two horizontal plates and in a rectangular tube, using a lattice Boltzmann (LB) method. We derive an equation for the static fluid-solid contact angle as a function of the wetting tendency of the walls and test its validity. We show that the generalized Laplace law with two independent radii of curvature is followed in capillary rise in rectangular tubes. Our method removes the history dependence of the fluid-solid contact angle that had been present in earlier LB schemes.
A lattice Boltzmann method for dilute polymer solutions.
Singh, Shiwani; Subramanian, Ganesh; Ansumali, Santosh
2011-06-13
We present a lattice Boltzmann approach for the simulation of non-Newtonian fluids. The method is illustrated for the specific case of dilute polymer solutions. With the appropriate local equilibrium distribution, phase-space dynamics on a lattice, driven by a Bhatnagar-Gross-Krook (BGK) relaxation term, leads to a solution of the Fokker-Planck equation governing the probability density of polymer configurations. Results for the bulk rheological characteristics for steady and start-up shear flow are presented, and compare favourably with those obtained using Brownian dynamics simulations. The new method is less expensive than stochastic simulation techniques, particularly in the range of small to moderate Weissenberg numbers (Wi).
Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm
Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D. A.; Yilmaz, H.; Courbebaisse, G.
2008-07-01
The lattice Boltzmann numerical method is applied to model blood flow (plasma and platelets) and clotting in intracranial aneurysms at a mesoscopic level. The dynamics of blood clotting (thrombosis) is governed by mechanical variations of shear stress near wall that influence platelets-wall interactions. Thrombosis starts and grows below a shear rate threshold, and stops above it. Within this assumption, it is possible to account qualitatively well for partial, full or no occlusion of the aneurysm, and to explain why spontaneous thrombosis is more likely to occur in giant aneurysms than in small or medium sized aneurysms.
Diffusive limit for a quantum linear Boltzmann dynamics
Clark, Jeremy
2010-01-01
We study the diffusive behavior for a quantum test particle interacting with a dilute background gas. The model we begin with is a reduced picture for the test particle dynamics given by a quantum linear Boltzmann equation in which the scattering with the gas particles is assumed to occur through a hard-sphere interaction. The state of the particle is represented by a density matrix evolving according to a translation-covariant Lindblad equation. Our main result is a proof that the particle diffuses for large times.
Jet propagation within a Linearized Boltzmann Transport model
Energy Technology Data Exchange (ETDEWEB)
Luo, Tan; He, Yayun [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Wang, Xin-Nian [Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division, Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94740 (United States); Zhu, Yan [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15706 Santiago de Compostela, Galicia (Spain)
2014-12-15
A Linearized Boltzmann Transport (LBT) model has been developed for the study of parton propagation inside quark–gluon plasma. Both leading and thermal recoiled partons are tracked in order to include the effect of jet-induced medium excitation. In this talk, we present a study within the LBT model in which we implement the complete set of elastic parton scattering processes. We investigate elastic parton energy loss and their energy and length dependence. We further investigate energy loss and transverse shape of reconstructed jets. Contributions from the recoiled thermal partons and jet-induced medium excitations are found to have significant influences on the jet energy loss and transverse profile.
On space enrichment estimator for nonlinear Poisson-Boltzmann
Randrianarivony, Maharavo
2013-10-01
We consider the mathematical aspect of the nonlinear Poisson-Boltzmann equation which physically governs the ionic interaction between solute and solvent media. The presented a-posteriori estimates can be computed locally in a very efficient manner. The a-posteriori error is based upon hierarchical space enrichment which ensures its efficiency and reliability. A brief survey of the solving of the nonlinear system resulting from the FEM discretization is reported. To corroborate the analysis, we report on a few numerical results for illustrations. We numerically examine some values of the constants encountered in the theoretical study.
Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.
Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2013-01-01
Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.
LATTICE BOLTZMANN EQUATION MODEL IN THE CORIOLIS FIELD
Institute of Scientific and Technical Information of China (English)
FENG SHI-DE; MAO JIANG-YU; ZHANG QIONG
2001-01-01
In a large-scale field of rotational fluid, various unintelligible and surprising dynamic phenomena are produced due to the effect of the Coriolis force. The lattice Boltzmann equation (LBE) model in the Coriolis field is developed based on previous works.[1-4] Geophysical fluid dynamics equations are derived from the model. Numerical simulations have been made on an ideal atmospheric circulation of the Northern Hemisphere by using the model and they reproduce the Rossby wave motion well. Hence the applicability of the model is verified in both theory and experiment.
Energy Technology Data Exchange (ETDEWEB)
Hagelaar, G J M; Pitchford, L C [Centre de Physique des Plasmas et de leurs Applications de Toulouse, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9 (France)
2005-11-15
Fluid models of gas discharges require the input of transport coefficients and rate coefficients that depend on the electron energy distribution function. Such coefficients are usually calculated from collision cross-section data by solving the electron Boltzmann equation (BE). In this paper we present a new user-friendly BE solver developed especially for this purpose, freely available under the name BOLSIG+, which is more general and easier to use than most other BE solvers available. The solver provides steady-state solutions of the BE for electrons in a uniform electric field, using the classical two-term expansion, and is able to account for different growth models, quasi-stationary and oscillating fields, electron-neutral collisions and electron-electron collisions. We show that for the approximations we use, the BE takes the form of a convection-diffusion continuity-equation with a non-local source term in energy space. To solve this equation we use an exponential scheme commonly used for convection-diffusion problems. The calculated electron transport coefficients and rate coefficients are defined so as to ensure maximum consistency with the fluid equations. We discuss how these coefficients are best used in fluid models and illustrate the influence of some essential parameters and approximations.
Kernels of the linear Boltzmann equation for spherical particles and rough hard sphere particles.
Khurana, Saheba; Thachuk, Mark
2013-10-28
Kernels for the collision integral of the linear Boltzmann equation are presented for several cases. First, a rigorous and complete derivation of the velocity kernel for spherical particles is given, along with reductions to the smooth, rigid sphere case. This combines and extends various derivations for this kernel which have appeared previously in the literature. In addition, the analogous kernel is derived for the rough hard sphere model, for which a dependence upon both velocity and angular velocity is required. This model can account for exchange between translational and rotational degrees of freedom. Finally, an approximation to the exact rough hard sphere kernel is presented which averages over the rotational degrees of freedom in the system. This results in a kernel depending only upon velocities which retains a memory of the exchange with rotational states. This kernel tends towards the smooth hard sphere kernel in the limit when translational-rotational energy exchange is attenuated. Comparisons are made between the smooth and approximate rough hard sphere kernels, including their dependence upon velocity and their eigenvalues.
Learning to represent spatial transformations with factored higher-order Boltzmann machines.
Memisevic, Roland; Hinton, Geoffrey E
2010-06-01
To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.
Boltzmann-conserving classical dynamics in quantum time-correlation functions: Matsubara dynamics
Hele, Timothy J H; Muolo, Andrea; Althorpe, Stuart C
2015-01-01
We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or classical Wigner approximation) results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e. a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads $N \\to \\infty$, such that the lowest normal-mode frequencies take their Matsubara values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of $\\hbar^2$ at $\\hbar^0$ (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting Matsubara dynamics is inherently classical (since all terms $\\mathcal{O}\\left(\\hbar^{2}\\right)$ disappear from the Matsubara Liouvillian in the limit $N \\to \\infty$), and conserves...
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2011-01-01
Most prestack traveltime relations we tend work with are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multi-focusing or double square-root (DSR) and the common reflection stack (CRS) equations. Using the DSR equation, I analyze the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I derive expansion based solutions of this eikonal based on polynomial expansions in terms of the reflection and dip angles in a generally inhomogenous background medium. These approximate solutions are free of singularities and can be used to estimate travetimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. A Marmousi example demonstrates the usefulness of the approach. © 2011 Society of Exploration Geophysicists.
Topics in Metric Approximation
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
Energy Technology Data Exchange (ETDEWEB)
Zabadal, Jorge; Borges, Volnei; Van der Laan, Flavio T., E-mail: jorge.zabadal@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: ftvdl@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica. Grupo de Pesquisas Radiologicas; Ribeiro, Vinicius G., E-mail: vinicius_ribeiro@uniritter.edu.br [Centro Universitario Ritter dos Reis (UNIRITTER), Porto Alegre, RS (Brazil); Santos, Marcio G., E-mail: phd.marcio@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Tramandai, RS (Brazil). Departamento Interdisciplinar do Campus Litoral Norte
2015-07-01
This work presents a new analytical method for solving the Boltzmann equation. In this formulation, a linear differential operator is applied over the Boltzmann model, in order to produce a partial differential equation in which the scattering term is absent. This auxiliary equation is solved via reduction of order. The exact solution obtained is employed to define a precursor for the buildup factor. (author)
An Exact Solution to the Two-Particle Boltzmann Equation System for Maxwell Gases
Institute of Scientific and Technical Information of China (English)
布仁满都拉; 赵迎春
2012-01-01
An exact solution to the two-particle Boltzmann equation system for Maxwell gases is obtained with use of Bobylev approach.The relationship between the exact solution and the self-similar solution of the boltzmann equation is also given.
Detection of Hypertension Retinopathy Using Deep Learning and Boltzmann Machines
Triwijoyo, B. K.; Pradipto, Y. D.
2017-01-01
hypertensive retinopathy (HR) in the retina of the eye is disturbance caused by high blood pressure disease, where there is a systemic change of arterial in the blood vessels of the retina. Most heart attacks occur in patients caused by high blood pressure symptoms of undiagnosed. Hypertensive retinopathy Symptoms such as arteriolar narrowing, retinal haemorrhage and cotton wool spots. Based on this reasons, the early diagnosis of the symptoms of hypertensive retinopathy is very urgent to aim the prevention and treatment more accurate. This research aims to develop a system for early detection of hypertension retinopathy stage. The proposed method is to determine the combined features artery and vein diameter ratio (AVR) as well as changes position with Optic Disk (OD) in retinal images to review the classification of hypertensive retinopathy using Deep Neural Networks (DNN) and Boltzmann Machines approach. We choose this approach of because based on previous research DNN models were more accurate in the image pattern recognition, whereas Boltzmann machines selected because It requires speedy iteration in the process of learning neural network. The expected results from this research are designed a prototype system early detection of hypertensive retinopathy stage and analysed the effectiveness and accuracy of the proposed methods.
Three-dimensional lattice Boltzmann model for electrodynamics.
Mendoza, M; Muñoz, J D
2010-11-01
In this paper we introduce a three-dimensional Lattice-Boltzmann model that recovers in the continuous limit the Maxwell equations in materials. In order to build conservation equations with antisymmetric tensors, like the Faraday law, the model assigns four auxiliary vectors to each velocity vector. These auxiliary vectors, when combined with the distribution functions, give the electromagnetic fields. The evolution is driven by the usual Bhatnager-Gross-Krook (BGK) collision rule, but with a different form for the equilibrium distribution functions. This lattice Bhatnager-Gross-Krook (LBGK) model allows us to consider for both dielectrics and conductors with realistic parameters, and therefore it is adequate to simulate the most diverse electromagnetic problems, like the propagation of electromagnetic waves (both in dielectric media and in waveguides), the skin effect, the radiation pattern of a small dipole antenna and the natural frequencies of a resonant cavity, all with 2% accuracy. Actually, it shows to be one order of magnitude faster than the original Finite-difference time-domain (FDTD) formulation by Yee to reach the same accuracy. It is, therefore, a valuable alternative to simulate electromagnetic fields and opens lattice Boltzmann for a broad spectrum of new applications in electrodynamics.
Avoiding Boltzmann Brain domination in holographic dark energy models
Horvat, R
2015-01-01
In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a parameter $c$, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural $c = 1$ line, the theory is rendered BB-safe. In the later case, the bound on $c$ is exponentially stronger, and seemingly at odds with those bounds on $c$ obtained from various observational tests.
Avoiding Boltzmann Brain domination in holographic dark energy models
Horvat, R.
2015-11-01
In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.
Wall Orientation and Shear Stress in the Lattice Boltzmann Model
Matyka, Maciej; Mirosław, Łukasz
2013-01-01
The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near ...
Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model
Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.
2014-03-01
Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.
Avoiding Boltzmann Brain domination in holographic dark energy models
Directory of Open Access Journals (Sweden)
R. Horvat
2015-11-01
Full Text Available In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB. It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c=1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.
Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation
Directory of Open Access Journals (Sweden)
Bertrand Lods
2015-06-01
Full Text Available Information Geometry generalizes to infinite dimension by modeling the tangent space of the relevant manifold of probability densities with exponential Orlicz spaces. We review here several properties of the exponential manifold on a suitable set Ɛ of mutually absolutely continuous densities. We study in particular the fine properties of the Kullback-Liebler divergence in this context. We also show that this setting is well-suited for the study of the spatially homogeneous Boltzmann equation if Ɛ is a set of positive densities with finite relative entropy with respect to the Maxwell density. More precisely, we analyze the Boltzmann operator in the geometric setting from the point of its Maxwell’s weak form as a composition of elementary operations in the exponential manifold, namely tensor product, conditioning, marginalization and we prove in a geometric way the basic facts, i.e., the H-theorem. We also illustrate the robustness of our method by discussing, besides the Kullback-Leibler divergence, also the property of Hyvärinen divergence. This requires us to generalize our approach to Orlicz–Sobolev spaces to include derivatives.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting
Li, Qing; Luo, K. H.; Kang, Q. J.; Chen, Q.
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρL/ρV=500 . The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994), 10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θ static contact angles close to 180∘. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ >90∘ as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
Lattice Boltzmann Simulation for Complex Flow in a Solar Wall
Institute of Scientific and Technical Information of China (English)
CHEN Rou; Shao Jiu-Gu; ZHENG You-Qu; YU Hui-Dan; XU You-Sheng
2013-01-01
In this letter,we present a lattice Boltzmann simulation for complex flow in a solar wall system which includes porous media flow and heat transfer,specifically for solar energy utilization through an unglazed transpired solar air collector (UTC).Besides the lattice Boltzmann equation (LBE) for time evolution of particle distribution function for fluid field,we introduce an analogy,LBE for time evolution of distribution function for temperature.Both temperature fields of fluid (air) and solid (porous media) are modeled.We study the effects of fan velocity,solar radiation intensity,porosity,etc.on the thermal performance of the UTC.In general,our simulation results are in good agreement with what in literature.With the current system setting,both fan velocity and solar radiation intensity have significant effect on the thermal performance of the UTC.However,it is shown that the porosity has negligible effect on the heat collector indicating the current system setting might not be realistic.Further examinations of thermal performance in different UTC systems are ongoing.The results are expected to present in near future.
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2016-11-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Haubold, H. J.; Mathai, A. M.; Saxena, R. K.
2004-01-01
Classical statistical mechanics of macroscopic systems in equilibrium is based on Boltzmann's principle. Tsallis has proposed a generalization of Boltzmann-Gibbs statistics. Its relation to dynamics and nonextensivity of statistical systems are matters of intense investigation and debate. This essay review has been prepared at the occasion of awarding the 'Mexico Prize for Science and Technology 2003'to Professor Constantino Tsallis from the Brazilian Center for Research in Physics.
Energy Technology Data Exchange (ETDEWEB)
Chalasani, P.; Saias, I. [Los Alamos National Lab., NM (United States); Jha, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States)
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Boltzmann and Einstein: Statistics and dynamics –An unsolved problem
Indian Academy of Sciences (India)
E G D Cohen
2005-05-01
The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method, arguing that a statistical description of a system should be based on the dynamics of the system. This opened the way, especially for complex systems, for other than Boltzmann statistics. The first non-Boltzmann statistics, not based on dynamics though, was proposed by Tsallis. A generalization of Tsallis' statistics as a special case of a new class of superstatistics, based on Einstein's criticism of Boltzmann, is discussed. It seems that perhaps a combination of dynamics and statistics is necessary to describe systems with complicated dynamics.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Approximate Bayesian computation.
Directory of Open Access Journals (Sweden)
Mikael Sunnåker
Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.
Energy Technology Data Exchange (ETDEWEB)
Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)
2007-07-15
A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.
S-Approximation: A New Approach to Algebraic Approximation
Directory of Open Access Journals (Sweden)
M. R. Hooshmandasl
2014-01-01
Full Text Available We intend to study a new class of algebraic approximations, called S-approximations, and their properties. We have shown that S-approximations can be used for applied problems which cannot be modeled by inclusion based approximations. Also, in this work, we studied a subclass of S-approximations, called Sℳ-approximations, and showed that this subclass preserves most of the properties of inclusion based approximations but is not necessarily inclusionbased. The paper concludes by studying some basic operations on S-approximations and counting the number of S-min functions.
Lattice Boltzmann method for shape optimization of fluid distributor
Wang, Limin; Luo, Lingai
2013-01-01
This paper presents the shape optimization of a flat-type arborescent fluid distributor for the purpose of process intensification. A shape optimization algorithm based on the lattice Boltzmann method (LBM) is proposed with the objective of decreasing the flow resistance of such distributor at the constraint of constant fluid volume. Prototypes of the initial distributor as well as the optimized one are designed. Fluid distribution and hydraulic characteristics of these distributors are investigated numerically. Results show that the pressure drop of the optimized distributor is between 15.9% and 25.1% lower than that of the initial reference while keeping a uniform flow distribution, demonstrating the process intensification in fluid distributor, and suggesting the interests of the proposed optimization algorithm in engineering optimal design.
Emergence of Compositional Representations in Restricted Boltzmann Machines
Tubiana, Jérôme
2016-01-01
Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits dataset MNIST.
Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation
Institute of Scientific and Technical Information of China (English)
CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing
2008-01-01
The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions.The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles.Other factors,such as fluid viscosity,bulk pressure may also change the slip length.We find that boundary slip only occurs under a certain density(bulk pressure).If the density is large enough,the slip length will tend to zero.In our simulations,a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics.It is the low density layer that induces the boundary slip.The results may be helpful to understand recent experimental observations on the slippage of micro flows.
Free Surface Lattice Boltzmann with Enhanced Bubble Model
Anderl, Daniela; Rauh, Cornelia; Rüde, Ulrich; Delgado, Antonio
2016-01-01
This paper presents an enhancement to the free surface lattice Boltzmann method (FSLBM) for the simulation of bubbly flows including rupture and breakup of bubbles. The FSLBM uses a volume of fluid approach to reduce the problem of a liquid-gas two-phase flow to a single-phase free surface simulation. In bubbly flows compression effects leading to an increase or decrease of pressure in the suspended bubbles cannot be neglected. Therefore, the free surface simulation is augmented by a bubble model that supplies the missing information by tracking the topological changes of the free surface in the flow. The new model presented here is capable of handling the effects of bubble breakup and coalesce without causing a significant computational overhead. Thus, the enhanced bubble model extends the applicability of the FSLBM to a new range of practically relevant problems, like bubble formation and development in chemical reactors or foaming processes.
Lattice Boltzmann modeling of water-like fluids
Directory of Open Access Journals (Sweden)
Sauro eSucci
2014-04-01
Full Text Available We review recent advances on the mesoscopic modeling of water-like fluids,based on the lattice Boltzmann (LB methodology.The main idea is to enrich the basic LB (hydro-dynamics with angular degrees of freedom responding to suitable directional potentials between water-like molecules.The model is shown to reproduce some microscopic features of liquid water, such as an average number of hydrogen bonds per molecules (HBs between $3$ and $4$, as well as a qualitatively correctstatistics of the hydrogen bond angle as a function of the temperature.Future developments, based on the coupling the present water-like LB model with the dynamics of suspended bodies,such as biopolymers, may open new angles of attack to the simulation of complex biofluidic problems, such as protein folding and aggregation, and the motion of large biomolecules in complex cellular environments.
Determination of the Boltzmann Constant Using the Differential - Cylindrical Procedure
Feng, X J; Lin, H; Gillis, K A; Moldover, M R
2015-01-01
We report in this paper the progresses on the determination of the Boltzmann constant using the acoustic gas thermometer (AGT) of fixed-length cylindrical cavities. First, we present the comparison of the molar masses of pure argon gases through comparing speeds of sound of gases. The procedure is independent from the methodology by Gas Chromatography-Mass Spectrometry (GC-MS). The experimental results show good agreement between both methods. The comparison offers an independent inspection of the analytical results by GC-MS. Second, we present the principle of the novel differential-cylindrical procedure based on the AGT of two fixed-length cavities. The deletion mechanism for some major perturbations is analyzed for the new procedure. The experimental results of the differential-cylindrical procedure demonstrate some major improvements on the first, second acoustic and third virial coefficients, and the excess half-widths. The three acoustic virial coefficients agree well with the stated-of-the-art experime...
Spreading Dynamics of Nanodrops: A Lattice Boltzmann Study
Gross, Markus
2014-01-01
Spreading of nano-droplets is an interesting and technologically relevant phenomenon where thermal fluctuations lead to unexpected deviations from well-known deterministic laws. Here, we apply the newly developed fluctuating non-ideal lattice Boltzmann method [Gross et al., J. Stat. Mech., P03030 (2011)] for the study of this issue. Confirming the predictions of Davidovich and coworkers [PRL 95, 244905 (2005)], we provide the first independent evidence for the existence of an asymptotic, self-similar noise-driven spreading regime in both two- and three-dimensional geometry. The cross over from the deterministic Tanner's law, where the drop's base radius $b$ grows (in 3D) with time as $b \\sim t^{1/10}$ and the noise dominated regime where $b \\sim t^{1/6}$ is also observed by tuning the strength of thermal noise.
Two Dimensional Lattice Boltzmann Method for Cavity Flow Simulation
Directory of Open Access Journals (Sweden)
Panjit MUSIK
2004-01-01
Full Text Available This paper presents a simulation of incompressible viscous flow within a two-dimensional square cavity. The objective is to develop a method originated from Lattice Gas (cellular Automata (LGA, which utilises discrete lattice as well as discrete time and can be parallelised easily. Lattice Boltzmann Method (LBM, known as discrete Lattice kinetics which provide an alternative for solving the Navier–Stokes equations and are generally used for fluid simulation, is chosen for the study. A specific two-dimensional nine-velocity square Lattice model (D2Q9 Model is used in the simulation with the velocity at the top of the cavity kept fixed. LBM is an efficient method for reproducing the dynamics of cavity flow and the results which are comparable to those of previous work.
Moving Charged Particles in Lattice Boltzmann-Based Electrokinetics
Kuron, Michael; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost
2016-01-01
The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann (LB) algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions, which are needed to simulate moving colloids, into the Capuani scheme has been lacking. In this paper, we detail how to introduce such moving boundaries, based on an analogue to the moving boundary method for the pure LB solver. The key ingredients in our method are mass and charge conservation for the solute spec...
Modeling Image Structure with Factorized Phase-Coupled Boltzmann Machines
Cadieu, Charles F
2010-01-01
We describe a model for capturing the statistical structure of local amplitude and local spatial phase in natural images. The model is based on a recently developed, factorized third-order Boltzmann machine that was shown to be effective at capturing higher-order structure in images by modeling dependencies among squared filter outputs (Ranzato and Hinton, 2010). Here, we extend this model to $L_p$-spherically symmetric subspaces. In order to model local amplitude and phase structure in images, we focus on the case of two dimensional subspaces, and the $L_2$-norm. When trained on natural images the model learns subspaces resembling quadrature-pair Gabor filters. We then introduce an additional set of hidden units that model the dependencies among subspace phases. These hidden units form a combinatorial mixture of phase coupling distributions, concentrated in the sum and difference of phase pairs. When adapted to natural images, these distributions capture local spatial phase structure in natural images.
Simulation of a Microfluidic Gradient Generator using Lattice Boltzmann Methods
Simon, Tanaka
2013-01-01
Microfluidics provides a powerful and versatile technology to accurately control spatial and temporal conditions for cell culturing and can therefore be used to study cellular responses to gradients. Here we use Lattice Boltzmann methods (LBM) to solve both the Navier-Stokes equation (NSE) for the fluid and the coupled convection-diffusion equation (CDE) for the compounds that form the diffusion-based gradient. The design of a microfluidic chamber for diffusion-based gradients must avoid flow through the cell chamber. This can be achieved by alternately opening the source and the sink channels. The fast toggling of microfluidic valves requires switching between different boundary conditions. We demonstrate that the LBM is a powerful method for handling complex geometries, high Peclet number conditions, discontinuities in the boundary conditions, and multiphysics coupling.
Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids
Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping
2016-01-01
Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.
A Lattice Boltzmann Model for Oscillating Reaction-Diffusion
Rodríguez-Romo, Suemi; Ibañez-Orozco, Oscar; Sosa-Herrera, Antonio
2016-07-01
A computational algorithm based on the lattice Boltzmann method (LBM) is proposed to model reaction-diffusion systems. In this paper, we focus on how nonlinear chemical oscillators like Belousov-Zhabotinsky (BZ) and the chlorite-iodide-malonic acid (CIMA) reactions can be modeled by LBM and provide with new insight into the nature and applications of oscillating reactions. We use Gaussian pulse initial concentrations of sulfuric acid in different places of a bidimensional reactor and nondiffusive boundary walls. We clearly show how these systems evolve to a chaotic attractor and produce specific pattern images that are portrayed in the reactions trajectory to the corresponding chaotic attractor and can be used in robotic control.
The peeling process of infinite Boltzmann planar maps
Budd, Timothy
2015-01-01
We start by studying a peeling process on finite random planar maps with faces of arbitrary degrees determined by a general weight sequence, which satisfies an admissibility criterion. The corresponding perimeter process is identified as a biased random walk, in terms of which the admissibility criterion has a very simple interpretation. The finite random planar maps under consideration were recently proved to possess a well-defined local limit known as the infinite Boltzmann planar map (IBPM). Inspired by recent work of Curien and Le Gall, we show that the peeling process on the IBPM can be obtained from the peeling process of finite random maps by conditioning the perimeter process to stay positive. The simplicity of the resulting description of the peeling process allows us to obtain the scaling limit of the associated perimeter and volume process for arbitrary regular critical weight sequences.
From bijels to Pickering emulsions: A lattice Boltzmann study
Jansen, Fabian; Harting, Jens
2011-04-01
Particle stabilized emulsions are ubiquitous in the food and cosmetics industry, but our understanding of the influence of microscopic fluid-particle and particle-particle interactions on the macroscopic rheology is still limited. In this paper we present a simulation algorithm based on a multicomponent lattice Boltzmann model to describe the solvents combined with a molecular dynamics solver for the description of the solved particles. It is shown that the model allows a wide variation of fluid properties and arbitrary contact angles on the particle surfaces. We demonstrate its applicability by studying the transition from a “bicontinuous interfacially jammed emulsion gel” (bijel) to a “Pickering emulsion” in dependence on the contact angle, the particle concentration, and the ratio of the solvents.
Boltzmann-Shannon entropy and the double-slit experiment
Norwich, Kenneth H.
2016-11-01
We study the Boltzmann-Shannon entropy lost (information gained) by the observer in a double-slit experiment when the slit taken by a photon is known, and when the corresponding entropy gained by the photon at the level of the screen can be calculated. Using a Gedanken experiment involving infinitesimal slits and a distant cylindrical screen, entropy values assume a very simple form. The entropy changes (at the slit and screen) are found to be equal in magnitude and opposite in sign, and correspond to the minimum change permitted by Heisenberg's Uncertainty Principle. Moreover, when welcher Weg information is knowable a priori, we see that the "cost" of this information (knowing which slit is taken) is reversion to a single slit pattern.
Lattice Boltzmann simulations of convection heat transfer in porous media
Liu, Qing; He, Ya-Ling
2017-01-01
A non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed to study convection heat transfer in porous media at the representative elementary volume scale based on the generalized non-Darcy model. In the method, two different LB models are constructed: one is constructed in the framework of the double-distribution-function approach, and the other is constructed in the framework of the hybrid approach. In particular, the transformation matrices used in the MRT-LB models are non-orthogonal matrices. The present method is applied to study mixed convection flow in a porous channel and natural convection flow in a porous cavity. It is found that the numerical results are in good agreement with the analytical solutions and/or other results reported in previous studies. Furthermore, the non-orthogonal MRT-LB method shows better numerical stability in comparison with the BGK-LB method.
Modeling of metal foaming with lattice Boltzmann automata
Energy Technology Data Exchange (ETDEWEB)
Koerner, C.; Thies, M.; Singer, R.F. [WTM Institute, Department of Materials Science, University of Erlangen, Martensstrasse 5, D-91058 Erlangen (Germany)
2002-10-01
The formation and decay of foams produced by gas bubble expansion in a molten metal is numerically simulated with the Lattice Boltzmann Method (LBM) which belongs to the cellular automaton techniques. The present state of the two dimensional model allows the investigation of the foam evolution process comprising bubble expansion, bubble coalescence, drainage, and eventually foam collapse. Examples demonstrate the influence of the surface tension, viscosity and gravity on the foaming process and the resulting cell structure. In addition, the potential of the LBM to solve problems with complex boundary conditions is illustrated by means of a foam developing within the constraints of a mould as well as a foaming droplet exposed to gravity. (Abstract Copyright [2002], Wiley Periodicals, Inc.)
Lattice Boltzmann implementation for Fluids Flow Simulation in Porous Media
Directory of Open Access Journals (Sweden)
Xinming Zhang
2011-06-01
Full Text Available In this paper, the lattice-Boltzmann method is developed to investigate the behavior of isothermal two-phase fluid flow in porous media. The method is based on the Shan–Chen multiphase model of nonideal fluids that allow coexistence of two phases of a single substance. We reproduce some different idealized situations (phase separation, surface tension, contact angle, pipe flow, and fluid droplet motion, et al in which the results are already known from theory or laboratory measurements and show the validity of the implementation for the physical two-phase flow in porous media. Application of the method to fluid intrusion in porous media is discussed and shows the effect of wettability on the fluid flow. The capability of reproducing critical flooding phenomena under strong wettability conditions is also proved.
Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity
Directory of Open Access Journals (Sweden)
Deming Nie
2015-01-01
Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.
Lattice Boltzmann based discrete simulation for gas-solid fluidization
Wang, Limin; Wang, Xiaowei; Ge, Wei
2013-01-01
Discrete particle simulation, a combined approach of computational fluid dynamics and discrete methods such as DEM (Discrete Element Method), SPH (Smoothed Particle Hydrodynamics), PIC (Particle-In-Cell), etc., is becoming a practical tool for exploring lab-scale gas-solid systems owing to the fast development of its parallel computation. However, the gas-solid coupling and the corresponding fluid flow solver remain immature. In this work, we presented a modified lattice Boltzmann approach to consider the effect of both the local solid volume fraction and the local relative velocity between the particles and the fluid, which was different from the traditional volume-averaged Navier-Stokes equations. This approach is combined with a time-driven hard sphere algorithm to simulate the motion of individual particles in which particles interact with each other via hard-sphere collisions but the collision detection and motion of the particle are performed at constant time intervals, and the EMMS (energy minimization...
Generalizing the Boltzmann equation in complex phase space
Zadehgol, Abed
2016-08-01
In this work, a generalized form of the BGK-Boltzmann equation is proposed, where the velocity, position, and time can be represented by real or complex variables. The real representation leads to the conventional BGK-Boltzmann equation, which can recover the continuity and Navier-Stokes equations. We show that the complex representation yields a different set of equations, and it can also recover the conservation and Navier-Stokes equations, at low Mach numbers, provided that the imaginary component of the macroscopic mass can be neglected. We briefly review the Constant Speed Kinetic Model (CSKM), which was introduced in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014), 10.1016/j.jcp.2014.06.053] and Zadehgol [Phys. Rev. E 91, 063311 (2015), 10.1103/PhysRevE.91.063311]. The CSKM is then used as a basis to show that the complex-valued equilibrium distribution function of the present model can be identified with a simple singularity in the complex phase space. The virtual particles, in the present work, are concentrated on virtual "branes" which surround the computational nodes. Employing the Cauchy integral formula, it is shown that certain variations of the "branes," in the complex phase space, do not affect the local kinetic states. This property of the new model, which is referred to as the "apparent jumps" in the present work, is used to construct new models. The theoretical findings have been tested by simulating three benchmark flows. The results of the present simulations are in excellent agreement with the previous results reported by others.
Contact angles in the pseudopotential lattice Boltzmann modeling of wetting.
Li, Qing; Luo, K H; Kang, Q J; Chen, Q
2014-11-01
In this paper we investigate the implementation of contact angles in the pseudopotential lattice Boltzmann modeling of wetting at a large density ratio ρ_{L}/ρ_{V}=500. The pseudopotential lattice Boltzmann model [X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994)10.1103/PhysRevE.49.2941] is a popular mesoscopic model for simulating multiphase flows and interfacial dynamics. In this model the contact angle is usually realized by a fluid-solid interaction. Two widely used fluid-solid interactions, the density-based interaction and the pseudopotential-based interaction, as well as a modified pseudopotential-based interaction formulated in the present paper are numerically investigated and compared in terms of the achievable contact angles, the maximum and the minimum densities, and the spurious currents. It is found that the pseudopotential-based interaction works well for simulating small static (liquid) contact angles θstatic contact angles close to 180^{∘}. Meanwhile, it is found that the proposed modified pseudopotential-based interaction performs better in light of the maximum and the minimum densities and is overall more suitable for simulating large contact angles θ>90^{∘} as compared with the two other types of fluid-solid interactions. Furthermore, the spurious currents are found to be enlarged when the fluid-solid interaction force is introduced. Increasing the kinematic viscosity ratio between the vapor and liquid phases is shown to be capable of reducing the spurious currents caused by the fluid-solid interactions.
A Boltzmann machine for the organization of intelligent machines
Moed, Michael C.; Saridis, George N.
1989-01-01
In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved
Prestack traveltime approximations
Alkhalifah, Tariq Ali
2012-05-01
Many of the explicit prestack traveltime relations used in practice are based on homogeneous (or semi-homogenous, possibly effective) media approximations. This includes the multifocusing, based on the double square-root (DSR) equation, and the common reflection stack (CRS) approaches. Using the DSR equation, I constructed the associated eikonal form in the general source-receiver domain. Like its wave-equation counterpart, it suffers from a critical singularity for horizontally traveling waves. As a result, I recasted the eikonal in terms of the reflection angle, and thus, derived expansion based solutions of this eikonal in terms of the difference between the source and receiver velocities in a generally inhomogenous background medium. The zero-order term solution, corresponding to ignoring the lateral velocity variation in estimating the prestack part, is free of singularities and can be used to estimate traveltimes for small to moderate offsets (or reflection angles) in a generally inhomogeneous medium. The higher-order terms include limitations for horizontally traveling waves, however, we can readily enforce stability constraints to avoid such singularities. In fact, another expansion over reflection angle can help us avoid these singularities by requiring the source and receiver velocities to be different. On the other hand, expansions in terms of reflection angles result in singularity free equations. For a homogenous background medium, as a test, the solutions are reasonably accurate to large reflection and dip angles. A Marmousi example demonstrated the usefulness and versatility of the formulation. © 2012 Society of Exploration Geophysicists.
Karakida, Ryo; Okada, Masato; Amari, Shun-Ichi
2016-07-01
The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also reveal that larger principal components of the input data are extracted at the stable points. Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract independent components at one of stable points. Our analysis demonstrates that the same feature components as those extracted by ML learning are extracted simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD learning in other types of RBMs or in deep networks.
Accuracy analysis of high-order lattice Boltzmann models for rarefied gas flows
Meng, Jianping
2009-01-01
In this work, we have theoretically analyzed and numerically evaluated the accuracy of high-order lattice Boltzmann (LB) models for capturing non-equilibrium effects in rarefied gas flows. In the incompressible limit, the LB equation is proved to be equivalent to the linearized Bhatnagar-Gross-Krook (BGK) equation. Therefore, when the same Gauss-Hermite quadrature is used, LB method closely assembles the discrete velocity method (DVM). In addition, the order of Hermite expansion for the equilibrium distribution function is found not to be correlated with the approximation order in terms of the Knudsen number to the BGK equation, which was previously suggested by \\cite{2006JFM...550..413S}. Furthermore, we have numerically evaluated the LB models for a standing-shear-wave problem, which is designed specifically for assessing model accuracy by excluding the influence of gas molecule/surface interactions at wall boundaries. The numerical simulation results confirm that the high-order terms in the discrete equili...
Universal structural estimator and dynamics approximator for complex networks
Chen, Yu-Zhong
2016-01-01
Revealing the structure and dynamics of complex networked systems from observed data is of fundamental importance to science, engineering, and society. Is it possible to develop a universal, completely data driven framework to decipher the network structure and different types of dynamical processes on complex networks, regardless of their details? We develop a Markov network based model, sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator. The SDBM attains its topology according to that of the original system and is capable of simulating the original dynamical process. We develop a fully automated method based on compressive sensing and machine learning to find the SDBM. We demonstrate, for a large variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and predicts its dynamical behavior with high precision.
The effect of surface roughness on rarefied gas flows by lattice Boltzmann method
Institute of Scientific and Technical Information of China (English)
Liu Chao-Feng; Ni Yu-Shan
2008-01-01
This paper studies the roughness effect combining with effects of rarefaction and compressibility by a lattice Boltzmann model for rarefied gas flows at high Knudsen numbers. By discussing the effect of the tangential momentum accommodation coefficient on the rough boundary condition, the lattice Boltzmann simulations of nitrogen and helium flows are performed in a two-dimensional microchannel with rough boundaries. The surface roughness effects in the microchannel on the velocity field, the mass flow rate and the friction coefficient are studied and analysed. Numerical results for the two gases in micro scale show different characteristics from macroscopic flows and demonstrate the feasibility of the lattice Boltzmann model in rarefied gas dynamics.
THE NON-CUTOFF BOLTZMANN EQUATION WITH POTENTIAL FORCE IN THE WHOLE SPACE
Institute of Scientific and Technical Information of China (English)
Yuanjie LEI
2014-01-01
This paper is concerned with the non-cutoff Boltzmann equation for full-range interactions with potential force in the whole space. We establish the global existence and optimal temporal convergence rates of classical solutions to the Cauchy problem when initial data is a small perturbation of the stationary solution. The analysis is based on the time-weighted energy method building also upon the recent studies of the non-cutoff Boltzmann equation in [1-3, 15] and the non-cutoff Vlasov-Poisson-Boltzmann system [6].
Qin, Feng; Zhao, Hua; Cai, Wei; Zhang, Zhiguo; Cao, Wenwu
2016-06-01
Noncontact monitoring temperature is very important in modern medicine, science, and technologies. The fluorescence intensity ratio (FIR) technique based on the Boltzmann distribution law exhibits excellent application potential, but the observed FIR deviates from the Boltzmann distribution law in the low temperature range. We propose a fluorescence intensity ratio relation FIR* = ηFIR by introducing a quantity η representing thermal population degree, which can be obtained from measured fluorescence decay curves of the upper emitting level. Using Eu3+ as an example, the method is confirmed that the deviated FIR is able to be corrected and return to follow the Boltzmann law.
An introduction to the Boltzmann equation and transport processes in gases
Energy Technology Data Exchange (ETDEWEB)
Kremer, Gilberto Medeiros [Universidade Federal do Parana, Curitiba (Brazil). Dept. de Fisica
2010-07-01
This book deals with the classical kinetic theory of gases. Its aim is to present the basic principles of this theory within an elementary framework and from a more rigorous approach based on the Boltzmann equation. The subjects are presented in a self-contained manner such that the readers can understand and learn some methods used in the kinetic theory of gases in order to investigate the Boltzmann equation. It is expected that this book could be useful as a textbook for students and researchers who are interested in the principles of the Boltzmann equation and in the methods used in the kinetic theory of gases. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)
2014-12-14
The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.
A multi-term solution of the space-time Boltzmann equation for electrons in gaseous and liquid Argon
Boyle, G J; Tattersall, W J; McEachran, R P; White, R D
2015-01-01
In a recent paper [1] the scattering and transport of excess electrons in liquid argon in the hydrodynamic regime was investigated, generalizing the seminal works of Lekner and Cohen [2,3] with modern scattering theory techniques and kinetic theory. In this paper, the discussion is extended to the non-hydrodynamic regime through the development of a full multi-term space-time solution of Boltzmann's equation for electron transport in gases and liquids using a novel operator-splitting method. A Green's function formalism is considered that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the hydrodynamic regime is studied for a benchmark model Percus-Yevick liquid as well as for liquid argon. The temporal evolution of Franck-Hertz oscillations are observed for liquids, with striking differences in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations in arg...
Operators of Approximations and Approximate Power Set Spaces
Institute of Scientific and Technical Information of China (English)
ZHANG Xian-yong; MO Zhi-wen; SHU Lan
2004-01-01
Boundary inner and outer operators are introduced; and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.
Lattice Boltzmann flow simulations with applications of reduced order modeling techniques
Brown, Donald
2014-01-01
With the recent interest in shale gas, an understanding of the flow mechanisms at the pore scale and beyond is necessary, which has attracted a lot of interest from both industry and academia. One of the suggested algorithms to help understand flow in such reservoirs is the Lattice Boltzmann Method (LBM). The primary advantage of LBM is its ability to approximate complicated geometries with simple algorithmic modificatoins. In this work, we use LBM to simulate the flow in a porous medium. More specifically, we use LBM to simulate a Brinkman type flow. The Brinkman law allows us to integrate fast free-flow and slow-flow porous regions. However, due to the many scales involved and complex heterogeneities of the rock microstructure, the simulation times can be long, even with the speed advantage of using an explicit time stepping method. The problem is two-fold, the computational grid must be able to resolve all scales and the calculation requires a steady state solution implying a large number of timesteps. To help reduce the computational complexity and total simulation times, we use model reduction techniques to reduce the dimension of the system. In this approach, we are able to describe the dynamics of the flow by using a lower dimensional subspace. In this work, we utilize the Proper Orthogonal Decomposition (POD) technique, to compute the dominant modes of the flow and project the solution onto them (a lower dimensional subspace) to arrive at an approximation of the full system at a lowered computational cost. We present a few proof-of-concept examples of the flow field and the corresponding reduced model flow field.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry
Institute of Scientific and Technical Information of China (English)
CHEN Sheng; LIU Zhao-Hui; HE Zhu; ZHANG Chao; TIAN Zhi-Wei; SHI Bao-Chang; ZHENG Chu-Guang
2006-01-01
@@ A novel lattice Boltzmann model, in which we take the ratio of temperature difference in the temperature field to the environment one to be more than one order of magnitude than before, is developed to simulate two dimensional reactive flows with fast chemistry. Different from the hybrid scheme for reactive flows [Comput.Phys. Commun. 129 (2000)267], this scheme is strictly in a pure lattice Boltzmann style (i.e., we solve the flow, temperature, and concentration fields using the lattice Boltzmann method only). Different from the recent non-coupled lattice Boltzmann scheme [Int. J. Mod. Phys. B 17(2003) 197], the fluid density in our model is coupled directly with the temperature. Excellent agreement between the present results and other numerical data shows that this scheme is an efficient numerical method for practical reactive flows with fast chemistry.
Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid
Institute of Scientific and Technical Information of China (English)
Li Hua-Bing; Fang Hai-Ping
2004-01-01
A nine-velocity lattice Boltzmann method for Maxwell viscoelastic fluid is proposed. Travelling of transverse wave in Maxwell viscoelastic fluid is simulated. The instantaneous oscillating velocity, transverse shear speed and decay rate agree with theoretical results very well.
Equivalence Between Forward and Backward Boltzmann Equations in Multi-Component Medium
Institute of Scientific and Technical Information of China (English)
张竹林
2002-01-01
The author generalized the propagator function theory introduced first by Sigmund, and gave a explicitly proof of a equivalence between forward and backward Boltzmann equations in a multi-component medium by using the generalized propagator function theory.
A Stability Notion for the viscous Shallow Water Lattice Boltzmann Equations
Banda, Mapundi K
2015-01-01
The stability of Lattice Boltzmann Equations modelling Shallow Water Equations in the special case of reduced gravity is investigated theoretically. A stability notion is defined as applied in incompressible Navier-Stokes equations in Banda, M. K., Yong, W.- A. and Klar, A: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. {\\bf 27(6)}, 2098-2111 (2006). It is found that to maintain stability a careful choice of the value of the reduced gravity must be made. The stability notion is employed to investigate different shallow water lattice Boltzmann Equations. The effect of the reduced gravity on the mechanism of instability is investigated. Results are tested using the Lattice Boltzmann Method for various values of the governing parameters of the flow. It is observed that even for the discrete model the reduced gravity has a significant effect on the stability.
Immiscible multicomponent lattice Boltzmann model for fluids with high relaxation time ratio
Indian Academy of Sciences (India)
Tao Jiang; Qiwei Gong; Ruofan Qiu; Anlin Wang
2014-10-01
An immiscible multicomponent lattice Boltzmann model is developed for fluids with high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In the SC model, an interaction potential between particles is incorporated into the discrete lattice Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and to reduce `spurious velocity’. In this work, the improved model is validated and studied using the central bubble case and the rising bubble case. It finds good applications in both static and dynamic cases for multicomponent simulations with different relaxation time ratios.
Gevrey Regularity for the Noncutoff Nonlinear Homogeneous Boltzmann Equation with Strong Singularity
Directory of Open Access Journals (Sweden)
Shi-you Lin
2014-01-01
Full Text Available The Cauchy problem of the nonlinear spatially homogeneous Boltzmann equation without angular cutoff is studied. By using analytic techniques, one proves the Gevrey regularity of the C∞ solutions in non-Maxwellian and strong singularity cases.
Institute of Scientific and Technical Information of China (English)
HAN Shan-ling; ZHU Ping; LIN Zhong-qin
2005-01-01
The fractional volumetric lattice Boltzmann method with much better stability was used to simulate two dimensional cavity flows. Because the effective viscosity was reduced by the fraction factor, it is very effective forsimulating high Reynolds number flows. Simulations were carried out on a uniform grids system. The stream lines and the velocity profiles obtained from the simulations agree well with the standard lattice Boltzmann method simulations. Comparisons of detailed flow patterns with other studies via location of vortex centers are also satisfactory.
DEFF Research Database (Denmark)
Pingen, Georg; Evgrafov, Anton; Maute, Kurt
2009-01-01
We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...... a generalized geometry optimization formulation and derive the corresponding sensitivity analysis for the single relaxation LBM for both topology and shape optimization applications. Using numerical examples, we verify the accuracy of the analytical sensitivity analysis through a comparison with finite...
On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity
Directory of Open Access Journals (Sweden)
Nikolai N. Bogoliubov (Jr.
2007-01-01
Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.
Note on Invariance of One-Dimensional Lattice-Boltzmann Equation
Institute of Scientific and Technical Information of China (English)
RAN Zheng
2007-01-01
Invariance of the one-dimensional lattice Boltzmann model is proposed together with its rigorous theoretical background.It is demonstrated that the symmetry inherent in Navier-Stokes equations is not really recovered in the one-dimensional lattice Boltzmann equation (LBE),especially for shock calculation.Symmetry breaking may be the inherent cause for the non-physical oscillations in the vicinity of the shock for LBE calculation.
Lattice Boltzmann model for the perfect gas flows with near-vacuum region
Institute of Scientific and Technical Information of China (English)
GuangwuYAN; LiYUAN
2000-01-01
It is known that the standard lattice Boltzmann method has near-vacuum limit,i. e., when the density is near zero, this method is invalid. In this letter, we propose a simple lattice Boltzmann model for one-dimensional flows. It possesses the ability of simulating nearvacuum area by setting a limitation of the relaxation factor. Thus, the model overcomes the disadvantage of non-physical pressure and the density. The numerical examples show these results are satisfactory.
A Lattice Boltzmann Model and Simulation of KdV-Burgers Equation
Institute of Scientific and Technical Information of China (English)
ZHANGChao-Ying; TANHui-Li; LIUMu-Ren; KONGLing-Jiang
2004-01-01
A lattice Boltzmann model of KdV-Burgers equation is derived by using the single-relaxation form of the lattice Boltzmann equation. With the present model, we simulate the traveling-wave solutions, the solitary-wave solutions, and the sock-wave solutions of KdV-Burgers equation, and calculate the decay factor and the wavelength of the sock-wave solution, which has exponential decay. The numerical results agree with the analytical solutions quite well.
A New Lattice Boltzmann Model for KdV-Burgers Equation
Institute of Scientific and Technical Information of China (English)
MA Chang-Feng
2005-01-01
@@ A new lattice Boltzmann model with amending-function for KdV-Burgers equation, ut +uux - αuxx +βuxxx = 0,is presented by using the single-relaxation form of the lattice Boltzmann equation. Applying the proposed model,we simulate the solutions ofa kind of KdV-Burgers equations, and the numerical results agree with the analytical solutions quite well.
Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)
Badino, M.
2011-11-01
An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.
Energy Technology Data Exchange (ETDEWEB)
Kawakami, H.; Urabe, J.; Yukimura, K. (Doshisha Univ., Kyoto (Japan))
1991-03-20
In a discharge excitation rare gas halide excima laser, uniform generation and stable maintenance of the excited discharge determines the laser characteristics. In this report, an approximate solution was obtained on the Boltzmann equation (frequently used for the theoretical analysis of this laser) to examine the nature of the solution. By optimizing the conversion of the variables, calculation of an electron swarm parameter in the hitherto uncertain range of the low conversion electric field was made possible, giving a generation mechanism of the uncertainty of the excited dischareg. The results are summarized as below. (1) The Boltzmann equation gives a linear solution for a logarithmic value of an electron energy in the range of low conversion electric field. (2) Time-wise responce ability between the measured voltage, current characteristics of the excitation discharge was clarified and the attachment and ionization coefficients calculated by Boltzmann equation. (3) Dependency of the attachment coefficient on the partial pressure of fluorine and kripton was examined, and the attachment coefficient was found to increase with the increase of the partial pressure for the both cases. 20 refs., 9 figs., 2 tabs.
Berninger, Heiko; Gander, Martin; Liebendorfer, Mathias; Michaud, Jerome
2012-01-01
We present Chapman--Enskog and Hilbert expansions applied to the $\\BigO(v/c)$ Boltzmann equation for the radiative transfer of neutrinos in core-collapse supernovae. Based on the Legendre expansion of the scattering kernel for the collision integral truncated after the second term, we derive the diffusion limit for the Boltzmann equation by truncation of Chapman-Enskog or Hilbert expansions with reaction and collision scaling. We also give asymptotically sharp results obtained by the use of an additional time scaling. The diffusion limit determines the diffusion source in the Isotropic Diffusion Source Approximation (IDSA) of Boltzmann's equation for which the free streaming limit and the reaction limit serve as limiters. Here, we derive the reaction limit as well as the free streaming limit by truncation of Chapman-Enskog or Hilbert expansions using reaction and collision scaling as well as time scaling, respectively. Finally, we motivate why limiters are a good choice for the definition of the source term i...
Nonlinear Approximation Using Gaussian Kernels
Hangelbroek, Thomas
2009-01-01
It is well-known that non-linear approximation has an advantage over linear schemes in the sense that it provides comparable approximation rates to those of the linear schemes, but to a larger class of approximands. This was established for spline approximations and for wavelet approximations, and more recently for homogeneous radial basis function (surface spline) approximations. However, no such results are known for the Gaussian function. The crux of the difficulty lies in the necessity to vary the tension parameter in the Gaussian function spatially according to local information about the approximand: error analysis of Gaussian approximation schemes with varying tension are, by and large, an elusive target for approximators. We introduce and analyze in this paper a new algorithm for approximating functions using translates of Gaussian functions with varying tension parameters. Our scheme is sophisticated to a degree that it employs even locally Gaussians with varying tensions, and that it resolves local ...
Lattice Boltzmann models for the grain growth in polycrystalline systems
Zheng, Yonggang; Chen, Cen; Ye, Hongfei; Zhang, Hongwu
2016-08-01
In the present work, lattice Boltzmann models are proposed for the computer simulation of normal grain growth in two-dimensional systems with/without immobile dispersed second-phase particles and involving the temperature gradient effect. These models are demonstrated theoretically to be equivalent to the phase field models based on the multiscale expansion. Simulation results of several representative examples show that the proposed models can effectively and accurately simulate the grain growth in various single- and two-phase systems. It is found that the grain growth in single-phase polycrystalline materials follows the power-law kinetics and the immobile second-phase particles can inhibit the grain growth in two-phase systems. It is further demonstrated that the grain growth can be tuned by the second-phase particles and the introduction of temperature gradient is also an effective way for the fabrication of polycrystalline materials with grained gradient microstructures. The proposed models are useful for the numerical design of the microstructure of materials and provide effective tools to guide the experiments. Moreover, these models can be easily extended to simulate two- and three-dimensional grain growth with considering the mobile second-phase particles, transient heat transfer, melt convection, etc.
A Lattice-Boltzmann Method for Partially Saturated Computational Cells
Noble, D. R.; Torczynski, J. R.
The lattice-Boltzmann (LB) method is applied to complex, moving geometries in which computational cells are partially filled with fluid. The LB algorithm is modified to include a term that depends on the percentage of the cell saturated with fluid. The method is useful for modeling suspended obstacles that do not conform to the grid. Another application is to simulations of flow through reconstructed media that are not easily segmented into solid and liquid regions. A detailed comparison is made with FIDAP simulation results for the flow about a periodic line of cylinders in a channel at a non-zero Reynolds number. Two cases are examined. In the first simulation, the cylinders are given a constant velocity along the axis of the channel, and the steady solution is acquired. The transient behavior of the system is then studied by giving the cylinders an oscillatory velocity. For both steady and oscillatory flows, the method provides excellent agreement with FIDAP simulation results, even at locations close to the surface of a cylinder. In contrast to step-like solutions produced using the "bounce-back" condition, the proposed condition gives close agreement with the smooth FIDAP predictions. Computed drag forces with the proposed condition exhibit apparent quadratic convergence with grid refinement rather than the linear convergence exhibited by other LB boundary conditions.
Treatment of moving boundaries in lattice-Boltzmann simulations.
Indireshkumar, K.; Pal, A.; Brasseur, J. G.
2000-11-01
We consider the treatment of moving boundaries with the lattice-Boltzmann (LB) technique, where the treatment of the boundary often does not precisely conserve mass and spurious fluctuations in density/pressure result from boundary motion through fixed grids. First, we applied the extrapolation method proposed by Chen et. al.(S. Y. Chen, D. Martinez, and R Mei, Phys. Fluids) 8, 2527 (1996) to incompressible flow induced by the movement of a piston in a 2D ``cylinder'' with mass flow out of or into the cylinder. In these simulations, the velocity of the boundary nodes is set equal to the (known) velocity of the boundary (piston) in the equilibrium distribution function (Method I). In a second set of simulations, the boundary node velocities are obtained by interpolating between interior nodes and the boundary, thus including the effect of boundary position more precisely (Method II). Comparison of LB predictions with simulations using FIDAP show pressure agreement to witnin 2 %. The total mass is conserved to within 0.1% with Method I and improves to within 0.02 % using method II. Spurious fluctuations in density/pressure due to boundary movement is about 0.9% with Method I, which improves significantly to about 0.3% with Method II. The application of these simple techniques to more complex geometries and wall (and fluid) motions in a stomach during gastric emptying will be presented.
Exploring the Limits of the Iterative Boltzmann Inversion
Faller, Roland; Bayramoglu, Beste
2014-03-01
We explore the limits of the purely structure based coarse-graining technique, the iterative Boltzmann inversion (IBI), for confined systems using the example of polystyrene solutions. First some technical considerations and challenges encountered in the course of the optimization process are presented. The choice of the initial potentials and the cross-dependency of the interactions as well as the order of optimization are discussed in detail. Furthermore, the transferability between different degrees of confinement is examined. We investigate if a CG force field developed for a confined polymer solution by IBI is sensitive to changes in the degree of localization or arrangement of polymers near the surfaces although the concentration is kept constant. The differences in the structure and dynamics of the chains are addressed. Results are compared with those of an unconfined (bulk) system at the same concentration. The chain dimensions and orientations as a function of the distance from the surfaces are also reported. We find that the arrangement of monomers and solvent molecules near the surfaces is an important factor that needs to be paid attention to when considering the application of a CG force field developed by IBI to different degrees of confinement.
Lattice-Boltzmann Simulations of Microswimmer-Tracer Interactions
de Graaf, Joost
2016-01-01
Hydrodynamic interactions in systems comprised of self-propelled particles, such as swimming microorganisms, and passive tracers have a significant impact on the tracer dynamics compared to the equivalent "dry" sample. However, such interactions are often difficult to take into account in simulations due to their computational cost. Here, we perform a systematic investigation of swimmer-tracer interaction using an efficient force/counter-force based lattice-Boltzmann (LB) algorithm [J. de Graaf~\\textit{et al.}, J. Chem. Phys.~\\textbf{144}, 134106 (2016)], in order to validate its applicability to study large-scale microswimmer suspensions. We show that the LB algorithm reproduces far-field theoretical results well, both in a system with periodic boundary conditions and in a spherical cavity with no-slip walls, for which we derive expressions here. The LB algorithm has an inherent near-field renormalization of the flow field, due to the force interpolation between the swimmers and the lattice. This strongly pe...
Boltzmann electron PIC simulation of the E-sail effect
Janhunen, Pekka
2015-01-01
The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hydrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number...
Lattice Boltzmann Simulations of Evaporating Droplets with Nanoparticles
Zhao, Mingfei; Yong, Xin
2016-11-01
Elucidating the nanoparticle dynamics in drying droplets provides fundamental hydrodynamic insight into the evaporation-induced self-assembly, which is of great importance to materials printing and thin film processing. We develop a free-energy-based multiphase lattice Boltzmann model coupled with Lagrangian particle tracking to simulate evaporating particle-laden droplets on a solid substrate with specified wetting behavior. This work focuses on the interplay between the evaporation-driven advection and the self-organization of nanoparticles inside the droplet and at the droplet surface. For static droplets, the different parameters, fluid-particle interaction strength and particle number, governing the nanoparticle-droplet dynamics are systematically investigated, such as particle radial and circumferential distribution. We clarify the effect of nanoparticle presence on the droplet surface tension and wetting behavior. For evaporating droplets, we observe how droplet evaporation modulates the self-assembly of nanoparticles when the droplet has different static contact angles and hysteresis windows. We also confirm that the number of nanoparticles at the liquid-vapor interface influences the evaporation flux at the liquid-vapor interface.
Flow visualisation of downhill skiers using the lattice Boltzmann method
Asai, Takeshi; Hong, Sungchan; Ijuin, Koichi
2017-03-01
In downhill alpine skiing, skiers often exceed speeds of 120 km h-1, with air resistance substantially affecting the overall race times. To date, studies on air resistance in alpine skiing have used wind tunnels and actual skiers to examine the relationship between the gliding posture and magnitude of drag and for the design of skiing equipment. However, these studies have not revealed the flow velocity distribution and vortex structure around the skier. In the present study, computational fluid dynamics are employed with the lattice Boltzmann method to derive the relationship between total drag and the flow velocity around a downhill skier in the full-tuck position. Furthermore, the flow around the downhill skier is visualised, and its vortex structure is examined. The results show that the total drag force in the downhill skier model is 27.0 N at a flow velocity of 15 m s-1, increasing to 185.8 N at 40 m s-1. From analysis of the drag distribution and the flow profile, the head, upper arms, lower legs, and thighs (including buttocks) are identified as the major sources of drag on a downhill skier. Based on these results, the design of suits and equipment for reducing the drag from each location should be the focus of research and development in ski equipment. This paper describes a pilot study that introduces undergraduate students of physics or engineering into this research field. The results of this study are easy to understand for undergraduate students.
Lattice Boltzmann models for the grain growth in polycrystalline systems
Directory of Open Access Journals (Sweden)
Yonggang Zheng
2016-08-01
Full Text Available In the present work, lattice Boltzmann models are proposed for the computer simulation of normal grain growth in two-dimensional systems with/without immobile dispersed second-phase particles and involving the temperature gradient effect. These models are demonstrated theoretically to be equivalent to the phase field models based on the multiscale expansion. Simulation results of several representative examples show that the proposed models can effectively and accurately simulate the grain growth in various single- and two-phase systems. It is found that the grain growth in single-phase polycrystalline materials follows the power-law kinetics and the immobile second-phase particles can inhibit the grain growth in two-phase systems. It is further demonstrated that the grain growth can be tuned by the second-phase particles and the introduction of temperature gradient is also an effective way for the fabrication of polycrystalline materials with grained gradient microstructures. The proposed models are useful for the numerical design of the microstructure of materials and provide effective tools to guide the experiments. Moreover, these models can be easily extended to simulate two- and three-dimensional grain growth with considering the mobile second-phase particles, transient heat transfer, melt convection, etc.
Evaluation of a lattice Boltzmann method in a complex nanoflow.
Suga, K; Takenaka, S; Ito, T; Kaneda, M; Kinjo, T; Hyodo, S
2010-07-01
In order to establish a cost-effective strategy to simulate complex flows in continuum to slip and transitional regimes, the present study assesses the performance of a lattice Boltzmann method (LBM) formerly discussed by the present authors' group [Niu, Phys. Rev. E 76, 036711 (2007)]. This LBM is based on a diffuse scattering wall boundary condition, a regularization procedure, and an effective relaxation time associated with the Knudsen number. The present assessment is on its regularization procedure and third-order truncated system based on the two-dimensional twenty-one discrete velocity (D2Q21) model for the Cartesian lattices. The test flow cases are force-driven Poiseuille flows, the Couette flows and a flow around a square cylinder situated in a nanochannel. For producing the reference data of the square cylinder flow, the molecular dynamics simulation using Lennard-Jones potential is also performed. Although the flow profiles and the slip velocities of the Poiseuille flows and the Couette flows are more accurately predicted by the third-order truncated system, the general velocity profiles around the square cylinder are also well predicted by the second-order truncated system based on the two-dimensional nine discrete velocity (D2Q9) model. It is also confirmed that without the regularization process, the entire flow field prediction suffers unphysical momentum oscillations around the square cylinder.
Application of Lattice Boltzmann Method to Flows in Microgeometries
Directory of Open Access Journals (Sweden)
Anoop K. Dass
2010-07-01
Full Text Available In the present investigation, Lattice Boltzmann Method (LBM is used to simulate rarefied gaseous microflows in three microgeometries. These are micro-couette, micro lid-driven cavity and micro-poiseuille flows. The Knudsen number is used to measure the degree of rarefaction in the microflows. First, micro-couette flow is computed with the effects of varying Knudsen number in the slip and threshold of the transition regime and the results compare well with existing results. After having thus established the credibility of the code and the method including boundary conditions, LBM is then used to investigate the micro lid-driven cavity flow with various aspect ratios. Simulation of microflow not only requires an appropriate method, it also requires suitable boundary conditions to provide a well-posed problem and unique solution. In this work, LBM and three slip boundary conditions, namely, diffuse scattering boundary condition, specular reflection and a combination of bounce-back and specular reflection is used to predict the micro lid-driven cavity flow fields. Then the LBM simulation is extended to micro-poiseuille flow. The results are substantiated through comparison with existing results and it is felt that the present methodology is reasonable to be employed in analyzing the flow in micro-systems.
Lattice Boltzmann modeling of directional wetting: Comparing simulations to experiments
Jansen, H. Patrick; Sotthewes, Kai; van Swigchem, Jeroen; Zandvliet, Harold J. W.; Kooij, E. Stefan
2013-07-01
Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results, which have shown that water droplets on such surfaces adopt an elongated shape due to anisotropic preferential spreading. Details of the contact line motion such as advancing of the contact line in the direction perpendicular to the stripes exhibit pronounced similarities in experiments and simulations. The opposite of spreading, i.e., evaporation of water droplets, leads to a characteristic receding motion first in the direction parallel to the stripes, while the contact line remains pinned perpendicular to the stripes. Only when the aspect ratio is close to unity, the contact line also starts to recede in the perpendicular direction. Very similar behavior was observed in the LBM simulations. Finally, droplet movement can be induced by a gradient in surface wettability. LBM simulations show good semiquantitative agreement with experimental results of decanol droplets on a well-defined striped gradient, which move from high- to low-contact angle surfaces. Similarities and differences for all systems are described and discussed in terms of the predictive capabilities of LBM simulations to model direction wetting.
Macroscopic model and truncation error of discrete Boltzmann method
Hwang, Yao-Hsin
2016-10-01
A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.
Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes
Ginzburg, Irina
2013-01-01
This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.
Lattice Boltzmann modeling of three-phase incompressible flows
Liang, H.; Shi, B. C.; Chai, Z. H.
2016-01-01
In this paper, based on multicomponent phase-field theory we intend to develop an efficient lattice Boltzmann (LB) model for simulating three-phase incompressible flows. In this model, two LB equations are used to capture the interfaces among three different fluids, and another LB equation is adopted to solve the flow field, where a new distribution function for the forcing term is delicately designed. Different from previous multiphase LB models, the interfacial force is not used in the computation of fluid velocity, which is more reasonable from the perspective of the multiscale analysis. As a result, the computation of fluid velocity can be much simpler. Through the Chapman-Enskog analysis, it is shown that the present model can recover exactly the physical formulations for the three-phase system. Numerical simulations of extensive examples including two circular interfaces, ternary spinodal decomposition, spreading of a liquid lens, and Kelvin-Helmholtz instability are conducted to test the model. It is found that the present model can capture accurate interfaces among three different fluids, which is attributed to its algebraical and dynamical consistency properties with the two-component model. Furthermore, the numerical results of three-phase flows agree well with the theoretical results or some available data, which demonstrates that the present LB model is a reliable and efficient method for simulating three-phase flow problems.
Lattice Boltzmann Simulation Optimization on Leading Multicore Platforms
Energy Technology Data Exchange (ETDEWEB)
Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John; Yelick, Katherine
2008-02-01
We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Clovertown, AMD Opteron X2, Sun Niagara2, STI Cell, as well as the single core Intel Itanium2. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 14x improvement compared with the original code. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.
International Conference Approximation Theory XIV
Schumaker, Larry
2014-01-01
This volume developed from papers presented at the international conference Approximation Theory XIV, held April 7–10, 2013 in San Antonio, Texas. The proceedings contains surveys by invited speakers, covering topics such as splines on non-tensor-product meshes, Wachspress and mean value coordinates, curvelets and shearlets, barycentric interpolation, and polynomial approximation on spheres and balls. Other contributed papers address a variety of current topics in approximation theory, including eigenvalue sequences of positive integral operators, image registration, and support vector machines. This book will be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Hu, Kainan; Geng, Shaojuan
2016-01-01
A new lattice Boltzmann scheme associated with flexible specific heat ratio is proposed. The new free degree is introduced via the internal energy associated with the internal structure. The evolution equation of the distribution function is reduced to two evolution equations. One is connected to the density and velocity, the other is of the energy. A two-dimensional lattice Boltzmann model and a three-dimensional lattice Boltzmann model are derived via the Hermite expansion. The two lattice Boltzmann models are applied to simulating the shock tube of one dimension. Good agreement between the numerical results and the analytical solutions are obtained.
Ion strength limit of computed excess functions based on the linearized Poisson-Boltzmann equation.
Fraenkel, Dan
2015-12-01
The linearized Poisson-Boltzmann (L-PB) equation is examined for its κ-range of validity (κ, Debye reciprocal length). This is done for the Debye-Hückel (DH) theory, i.e., using a single ion size, and for the SiS treatment (D. Fraenkel, Mol. Phys. 2010, 108, 1435), which extends the DH theory to the case of ion-size dissimilarity (therefore dubbed DH-SiS). The linearization of the PB equation has been claimed responsible for the DH theory's failure to fit with experiment at > 0.1 m; but DH-SiS fits with data of the mean ionic activity coefficient, γ± (molal), against m, even at m > 1 (κ > 0.33 Å(-1) ). The SiS expressions combine the overall extra-electrostatic potential energy of the smaller ion, as central ion-Ψa>b (κ), with that of the larger ion, as central ion-Ψb>a (κ); a and b are, respectively, the counterion and co-ion distances of closest approach. Ψa>b and Ψb>a are derived from the L-PB equation, which appears to conflict with their being effective up to moderate electrolyte concentrations (≈1 m). However, the L-PB equation can be valid up to κ ≥ 1.3 Å(-1) if one abandons the 1/κ criterion for its effectiveness and, instead, use, as criterion, the mean-field electrostatic interaction potential of the central ion with its ion cloud, at a radial distance dividing the cloud charge into two equal parts. The DH theory's failure is, thus, not because of using the L-PB equation; the lethal approximation is assigning a single size to the positive and negative ions.
Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability
Liang, H.; Li, Q. X.; Shi, B. C.; Chai, Z. H.
2016-03-01
In this paper, the three-dimensional (3D) Rayleigh-Taylor instability (RTI) with low Atwood number (At=0.15 ) in a long square duct (12 W ×W ×W ) is studied by using a multiple-relaxation-time lattice Boltzmann (LB) multiphase model. The effect of the Reynolds number on the interfacial dynamics and bubble and spike amplitudes at late time is investigated in detail. The numerical results show that at sufficiently large Reynolds numbers, a sequence of stages in the 3D immiscible RTI can be observed, which includes the linear growth, terminal velocity growth, reacceleration, and chaotic development stages. At late stage, the RTI induces a very complicated topology structure of the interface, and an abundance of dissociative drops are also observed in the system. The bubble and spike velocities at late stage are unstable and their values have exceeded the predictions of the potential flow theory [V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002), 10.1103/PhysRevLett.88.134502]. The acceleration of the bubble front is also measured and it is found that the normalized acceleration at late time fluctuates around a constant value of 0.16. When the Reynolds number is reduced to small values, some later stages cannot be reached sequentially. The interface becomes relatively smoothed and the bubble velocity at late time is approximate to a constant value, which coincides with the results of the extended Layzer model [S.-I. Sohn, Phys. Rev. E 80, 055302(R) (2009), 10.1103/PhysRevE.80.055302] and the modified potential theory [R. Banerjee, L. Mandal, S. Roy, M. Khan, and M. R. Guptae, Phys. Plasmas 18, 022109 (2011), 10.1063/1.3555523]. In our simulations, the Graphics Processing Unit (GPU) parallel computing is also used to relieve the massive computational cost.
Peristaltic particle transport using the Lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.
2009-01-01
Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.
Boltzmann analyses of swarm experiments over the years
Pitchford, Leanne
2013-09-01
Art Phelps was one of the ``grand old men'' in field of gaseous electronics. He was a graduate student when the GEC got started and he attended almost all of the meetings over the years. During his remarkably long career, he produced a number of the classic papers in our field as a glance at Web of Science will show. Art was my mentor and friend, and I had the privilege of working with him for many years on various topics related mainly to electron scattering and transport in weakly ionized gases. In this talk, I will discuss the originality of some of his early work on these subjects in the context of their times, focusing in particular on his publications from the mid-1960's with his colleagues from Westinghouse Research Laboratories. These report the first numerical solutions of the Boltzmann equation for electrons, to my knowledge, and they inspired much subsequent work related to the extraction of quantitative information about low-energy electron scatting with simple gases from measurements of macroscopic parameters (mobility, diffusion,..). I will outline some of the work he and I did together in this topical area using more sophisticated numerical techniques. This and other work in the field eventually led to the establishment of the ongoing GEC Plasma Data Exchange Project which now involves a number of people (the LXCat team), as discussed in Tuesday's workshop. The LXCat team had completed work on noble gases and had just started working on evaluations of cross sections for simple molecules when Art died. We are fortunate to have had his involvement on these projects. Art had ideas for future work in these areas, and some are included in a long e-mail message from Art a couple of years ago that I will share because it includes some suggestions [to the community] for future work.
Podolsky electromagnetism and a modification in Stefan-Boltzmann law
Energy Technology Data Exchange (ETDEWEB)
Bonin, Carlos Alberto; Bufalo, Rodrigo Santos; Escobar, Bruto Max Pimentel; Zambrano, German Enrique Ramos [Instituto de Fisica Teorica (IFT/UNESP), Sao Paulo, SP (Brazil)
2009-07-01
Full text. As it is well-known, gauge fields that emerge from the gauge principle are massless vector fields. Considering the photon as a Proca particle, experience sets an upper limit on its mass. This limit is m{sub Proca} < 6X10{sup -17}eV (PDG 2006). However, a mass term, regardless how small, breaks the gauge symmetry. Nevertheless, there exists a theory in which is possible to introduce a mass term preserving all symmetries of Maxwell electromagnetism, including the gauge one: such theory is known as Podolsky Electromagnetism. Podolsky theory is a second- order-derivative theory and has some remarkable properties, despite those already mentioned: the theory has two sectors, a massive one and massless one, it depends on a free parameter (which happens to be the mass of the massive sector) that, like all other elementary particles's masses of the Standard Model, must be fixed through experiences, and the fact that the electrostatic potential is finite everywhere, including over a punctual charge. Just like Maxwell electromagnetism, Podolsky's is a constrained theory and, since it is of second order in the derivatives, it consists in a much richer theoretical structure. Therefore, from both, theoretical and experimental points of view, Podolsky electromagnetism is a very attractive theory. In this work we study a gas of Podolsky photons at finite temperature through path integration. We show that the massless sector leads to the famous Planck's law for black-body radiation and, therefore, to the Stefan-Boltzmann law. We also show that the massive sector of the Podolsky theory induces a modification in both these laws. It is possible to set limits on the Podolsky parameter through comparison of our results with data from cosmic microwave background radiation. (author)
Tree wavelet approximations with applications
Institute of Scientific and Technical Information of China (English)
XU Yuesheng; ZOU Qingsong
2005-01-01
We construct a tree wavelet approximation by using a constructive greedy scheme(CGS). We define a function class which contains the functions whose piecewise polynomial approximations generated by the CGS have a prescribed global convergence rate and establish embedding properties of this class. We provide sufficient conditions on a tree index set and on bi-orthogonal wavelet bases which ensure optimal order of convergence for the wavelet approximations encoded on the tree index set using the bi-orthogonal wavelet bases. We then show that if we use the tree index set associated with the partition generated by the CGS to encode a wavelet approximation, it gives optimal order of convergence.
Bohinc, Klemen; Shrestha, Ahis; Brumen, Milan; May, Sylvio
2012-03-01
In the classical mean-field description of the electric double layer, known as the Poisson-Boltzmann model, ions interact exclusively through their Coulomb potential. Ion specificity can arise through solvent-mediated, nonelectrostatic interactions between ions. We employ the Yukawa pair potential to model the presence of nonelectrostatic interactions. The combination of Yukawa and Coulomb potential on the mean-field level leads to the Poisson-Helmholtz-Boltzmann model, which employs two auxiliary potentials: one electrostatic and the other nonelectrostatic. In the present work we apply the Poisson-Helmholtz-Boltzmann model to ionic mixtures, consisting of monovalent cations and anions that exhibit different Yukawa interaction strengths. As a specific example we consider a single charged surface in contact with a symmetric monovalent electrolyte. From the minimization of the mean-field free energy we derive the Poisson-Boltzmann and Helmholtz-Boltzmann equations. These nonlinear equations can be solved analytically in the weak perturbation limit. This together with numerical solutions in the nonlinear regime suggests an intricate interplay between electrostatic and nonelectrostatic interactions. The structure and free energy of the electric double layer depends sensitively on the Yukawa interaction strengths between the different ion types and on the nonelectrostatic interactions of the mobile ions with the surface.
Uniform approximation by (quantum) polynomials
Drucker, A.; de Wolf, R.
2011-01-01
We show that quantum algorithms can be used to re-prove a classical theorem in approximation theory, Jackson's Theorem, which gives a nearly-optimal quantitative version of Weierstrass's Theorem on uniform approximation of continuous functions by polynomials. We provide two proofs, based respectivel
Diophantine approximation and automorphic spectrum
Ghosh, Anish; Nevo, Amos
2010-01-01
The present paper establishes qunatitative estimates on the rate of diophantine approximation in homogeneous varieties of semisimple algebraic groups. The estimates established generalize and improve previous ones, and are sharp in a number of cases. We show that the rate of diophantine approximation is controlled by the spectrum of the automorphic representation, and is thus subject to the generalised Ramanujan conjectures.
Beyond the random phase approximation
DEFF Research Database (Denmark)
Olsen, Thomas; Thygesen, Kristian S.
2013-01-01
We assess the performance of a recently proposed renormalized adiabatic local density approximation (rALDA) for ab initio calculations of electronic correlation energies in solids and molecules. The method is an extension of the random phase approximation (RPA) derived from time-dependent density...
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven...
Nonlinear approximation with redundant dictionaries
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, M.; Gribonval, R.
2005-01-01
In this paper we study nonlinear approximation and data representation with redundant function dictionaries. In particular, approximation with redundant wavelet bi-frame systems is studied in detail. Several results for orthonormal wavelets are generalized to the redundant case. In general...
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Energy Technology Data Exchange (ETDEWEB)
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Global approximation of convex functions
Azagra, D
2011-01-01
We show that for every (not necessarily bounded) open convex subset $U$ of $\\R^n$, every (not necessarily Lipschitz or strongly) convex function $f:U\\to\\R$ can be approximated by real analytic convex functions, uniformly on all of $U$. In doing so we provide a technique which transfers results on uniform approximation on bounded sets to results on uniform approximation on unbounded sets, in such a way that not only convexity and $C^k$ smoothness, but also local Lipschitz constants, minimizers, order, and strict or strong convexity, are preserved. This transfer method is quite general and it can also be used to obtain new results on approximation of convex functions defined on Riemannian manifolds or Banach spaces. We also provide a characterization of the class of convex functions which can be uniformly approximated on $\\R^n$ by strongly convex functions.
Parvan, A S
2016-01-01
The Tsallis statistics was applied to describe the experimental data on the transverse momentum distributions of hadrons for the first time. This result was achieved only for the massless Maxwell-Boltzmann particles. We considered the energy dependence of the parameters for both the Tsallis statistics and its zeroth term approximation for the pions produced in $pp$ collisions at high energies and found that the results of the zeroth term approximation deviate from the results of the Tsallis statistics only at low NA61/SHINE energies when the value of the parameter $q$ is close to unity. At higher energies, when the value of the parameter $q$ deviates essentially from the unity, the zeroth term approximation satisfactorily recovers the results of the Tsallis statistics.
André, Raíla
2014-01-01
In this work we analyze the dynamics of collisionless self-gravitating systems described by the f(R)-gravity and Boltzmann equation in the weak field approximation, focusing on the Jeans instability for theses systems. The field equations in this approximation were obtained within the Palatini formalism. Through the solution of coupled equations we achieved the collapse criterion for infinite homogeneous fluid and stellar systems, which is given by a dispersion relation. This result is compared with the results of the standard case and the case for f(R)-gravity in metric formalism, in order to see the difference among them. The limit of instability varies according to which theory of gravity is adopted.
Mohammadipour, Omid Reza; Niazmand, Hamid; Succi, Sauro
2017-03-01
In this paper, an alternative approach to implement initial and boundary conditions in the lattice Boltzmann method is presented. The main idea is to approximate the nonequilibrium component of distribution functions as a third-order power series in the lattice velocities and formulate a procedure to determine boundary node distributions by using fluid variables, consistent with such an expansion. The velocity shift associated with the body force effects is included in this scheme, along with an approximation to determine the mass density in complex geometries. Different strategies based on the present scheme are developed to implement velocity and pressure conditions for arbitrarily shaped boundaries, using the D2Q9, D3Q15, D3Q19 and D3Q27 lattices, in two and three space dimensions, respectively. The proposed treatment is tested against several well-established problems, showing second-order spatial accuracy and often improved behavior as compared to various existing methods, with no appreciable computational overhead.
Simulation of Magnetorheological Fluids Based on Lattice Boltzmann Method with Double Meshes
Directory of Open Access Journals (Sweden)
Xinhua Liu
2012-01-01
Full Text Available In order to study the rheological characteristics of magnetorheological fluids, a novel approach based on the two-component Lattice Boltzmann method with double meshes was proposed, and the micro-scale structures of magnetorheological fluids in different strength magnetic fields were simulated. The framework composed of three steps for the simulation of magnetorheological fluids was addressed, and the double meshes method was elaborated. Moreover, the various internal and external forces acting on the magnetic particles were analyzed and calculated. The two-component Lattice Boltzmann model was set up, and the flowchart for the simulation of magnetorheological fluids based on the two-component Lattice Boltzmann method with double meshes was designed. Finally, a physics experiment was carried out, and the simulation examples were provided. The comparison results indicated that the proposed approach was feasible, efficient, and outperforming others.
Measuring the usefulness of hidden units in Boltzmann machines with mutual information.
Berglund, Mathias; Raiko, Tapani; Cho, Kyunghyun
2015-04-01
Restricted Boltzmann machines (RBMs) and deep Boltzmann machines (DBMs) are important models in deep learning, but it is often difficult to measure their performance in general, or measure the importance of individual hidden units in specific. We propose to use mutual information to measure the usefulness of individual hidden units in Boltzmann machines. The measure is fast to compute, and serves as an upper bound for the information the neuron can pass on, enabling detection of a particular kind of poor training results. We confirm experimentally that the proposed measure indicates how much the performance of the model drops when some of the units of an RBM are pruned away. We demonstrate the usefulness of the measure for early detection of poor training in DBMs.
Poozesh, Amin; Mirzaei, Masoud
2017-01-01
In this paper the developed interpolation lattice Boltzmann method is used for simulation of unsteady fluid flow. It combines the desirable features of the lattice Boltzmann and the Joukowski transformation methods. This approach has capability to simulate flow around curved boundary geometries such as airfoils in a body fitted grid system. Simulation of unsteady flow around a cambered airfoil in a non-uniform grid for the first time is considered to show the capability of this method for modeling of fluid flow around complex geometries and complicated long-term periodic flow phenomena. The developed solver is also coupled with a fast adaptive grid generator. In addition, the new approach retains all the advantages of the standard lattice Boltzmann method. The Strouhal number, the pressure, the drag and the lift coefficients obtained from the simulations agree well with classical computational fluid dynamics simulations. Numerical studies for various test cases illustrate the strength of this new approach.
Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions
Dorschner, B; Karlin, I V
2016-01-01
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 an...
Lattice Boltzmann method for three-dimensional moving particles in a Newtonian fluid
Institute of Scientific and Technical Information of China (English)
Fang Hai-Ping; Chen Shi-Yi
2004-01-01
@@ A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.
The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics.
Tirnakli, Ugur; Borges, Ernesto P
2016-03-23
As well known, Boltzmann-Gibbs statistics is the correct way of thermostatistically approaching ergodic systems. On the other hand, nontrivial ergodicity breakdown and strong correlations typically drag the system into out-of-equilibrium states where Boltzmann-Gibbs statistics fails. For a wide class of such systems, it has been shown in recent years that the correct approach is to use Tsallis statistics instead. Here we show how the dynamics of the paradigmatic conservative (area-preserving) stan-dard map exhibits, in an exceptionally clear manner, the crossing from one statistics to the other. Our results unambiguously illustrate the domains of validity of both Boltzmann-Gibbs and Tsallis statistical distributions. Since various important physical systems from particle confinement in magnetic traps to autoionization of molecular Rydberg states, through particle dynamics in accelerators and comet dynamics, can be reduced to the standard map, our results are expected to enlighten and enable an improved interpretation of diverse experimental and observational results.
Comment on ‘A low-uncertainty measurement of the Boltzmann constant’
Macnaughton, Donald B.
2016-02-01
The International Committee for Weights and Measures has projected a major revision of the International System of Units in which all the base units will be defined by fixing the values of certain fundamental constants of nature. To assist, de Podesta et al recently experimentally obtained a precise new estimate of the Boltzmann constant. This estimate is proposed as a basis for the redefinition of the unit of temperature, the kelvin. The present paper reports a reanalysis of de Podesta et al’s data that reveals systematic non-random patterns in the residuals of the key fitted model equation. These patterns violate the assumptions underlying the analysis and thus they raise questions about the validity of de Podesta et al’s estimate of the Boltzmann constant. An approach is discussed to address these issues, which should lead to an accurate estimate of the Boltzmann constant with a lower uncertainty.
Development of a coarse-grained water forcefield via multistate iterative Boltzmann inversion
Moore, Timothy C; McCabe, Clare
2015-01-01
A coarse-grained water model is developed using multistate iterative Boltzmann inversion. Following previous work, the k-means algorithm is used to dynamically map multiple water molecules to a single coarse-grained bead, allowing the use of structure-based coarse-graining methods. The model is derived to match the bulk and interfacial properties of liquid water and improves upon previous work that used single state iterative Boltzmann inversion. The model accurately reproduces the density and structural correlations of water at 305 K and 1.0 atm, stability of a liquid droplet at 305 K, and shows little tendency to crystallize at physiological conditions. This work also illustrates several advantages of using multistate iterative Boltzmann inversion for deriving generally applicable coarse-grained forcefields.
An integrated Boltzmann+hydrodynamics approach to heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Petersen, Hannah
2009-04-22
In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source
Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas.
Li, Huayu; Ki, Hyungson
2010-07-01
This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO2 laser interaction with helium is simulated successfully.
A Stability notion for the viscous Shallow Water Discrete-Velocity Boltzmann Equations
Banda, Mapundi K.; Uoane, Tumelo R. A.
2015-01-01
The stability of Lattice Boltzmann Equations modelling Shallow Water Equations in the special case of reduced gravity is investigated theoretically. A stability notion is defined as applied in incompressible Navier-Stokes equations in Banda, M. K., Yong, W.- A. and Klar, A: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. {\\bf 27(6)}, 2098-2111 (2006). It is found that to maintain stability a careful choice of the value of the reduced gravity must be made. The stabilit...
Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method
Kang, Xiu-Ying; Liu, Da-He; Zhou, Jing; Jin, Yong-Juan
2005-11-01
The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in a wide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation are presented in detail. The flow separation zones revealed with increase of Reynolds number are located in the areas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particular blood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmann method is adaptive to simulating the flow in larger vessels under a high Reynolds number.
Multivariate and matrix-variate analogues of Maxwell-Boltzmann and Raleigh densities
Mathai, A. M.; Princy, T.
2017-02-01
The Maxwell-Boltzmann and Raleigh densities are basic densities in many problems in Physics. A multivariate analogue and a rectangular matrix-variate analogue of these densities are explored in this article. The results may become useful in extending the usual theories, where these densities for the real scalar variable case occur, to multivariate and matrix variable situations. Various properties are studied and connection to the volumes of parallelotopes determined by p linearly independent random points in Euclidean n-space, n ≥ p, is also established. Structural decompositions of these random determinants and pathway extensions of Maxwell-Boltzmann and Raleigh densities are also considered.
A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media
Institute of Scientific and Technical Information of China (English)
CAI Jun; HUAI Xiu-Lan
2009-01-01
We report a lattice Boltzmann model that can be used to simulate fluid-solid coupling heat transfer in fractal porous media.A numerical simulation is conducted to investigate the temperature evolution under different ratios of thermal conductivity of solid matrix of porous media to that of fluid.The accordance of our simulation results with the solutions from the conventional CFD method indicates the feasibility and the reliability for the developed lattice Boltzmann model to reveal the phenomena and rules of fluid-solid coupling heat transfer in complex porous structures.
Lattice Boltzmann Model for The Volume-Averaged Navier-Stokes Equations
Zhang, Jingfeng; Ouyang, Jie
2014-01-01
A numerical method, based on discrete lattice Boltzmann equation, is presented for solving the volume-averaged Navier-Stokes equations. With a modified equilibrium distribution and an additional forcing term, the volume-averaged Navier-Stokes equations can be recovered from the lattice Boltzmann equation in the limit of small Mach number by the Chapman-Enskog analysis and Taylor expansion. Due to its advantages such as explicit solver and inherent parallelism, the method appears to be more competitive with traditional numerical techniques. Numerical simulations show that the proposed model can accurately reproduce both the linear and nonlinear drag effects of porosity in the fluid flow through porous media.
Wilson, Alan
2008-08-01
It is shown that Boltzmann's methods from statistical physics can be applied to a much wider range of systems, and in a variety of disciplines, than has been commonly recognized. A similar argument can be applied to the ecological models of Lotka and Volterra. Furthermore, it is shown that the two methodologies can be applied in combination to generate the Boltzmann, Lotka and Volterra (BLV) models. These techniques enable both spatial interaction and spatial structural evolution to be modelled, and it is argued that they potentially provide a much richer modelling methodology than that currently used in the analysis of 'scale-free' networks.
Lattice Boltzmann model for Coulomb-driven flows in dielectric liquids.
Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping
2016-02-01
In this paper, we developed a unified lattice Boltzmann model (LBM) to simulate electroconvection in a dielectric liquid induced by unipolar charge injection. Instead of solving the complex set of coupled Navier-Stokes equations, the charge conservation equation, and the Poisson equation of electric potential, three consistent lattice Boltzmann equations are formulated. Numerical results are presented for both strong and weak injection regimes, and different scenarios for the onset and evolution of instability, bifurcation, and chaos are tracked. All LBM results are found to be highly consistent with the analytical solutions and other numerical work.
Dupuis, A.; Koumoutsakos, P.
We present a convergence study for a hybrid Lattice Boltzmann-Molecular Dynamics model for the simulation of dense liquids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The velocity field from the atomistic domain is introduced as forcing terms to the Lattice Boltzmann model of the continuum while the mean field of the continuum imposes mean field conditions for the atomistic domain. In the present paper we investigate the effect of varying the size of the atomistic subdomain in simulations of two dimensional flows of liquid argon past carbon nanotubes and assess the efficiency of the method.
An H Theorem for Boltzmann's Equation for the Yard-Sale Model of Asset Exchange
Boghosian, Bruce M.; Johnson, Merek; Marcq, Jeremy A.
2015-12-01
In recent work (Boghosian, Phys Rev E 89:042804-042825, 2014; Boghosian, Int J Mod Phys 25:1441008-1441015, 2014), Boltzmann and Fokker-Planck equations were derived for the "Yard-Sale Model" of asset exchange. For the version of the model without redistribution, it was conjectured, based on numerical evidence, that the time-asymptotic state of the model was oligarchy—complete concentration of wealth by a single individual. In this work, we prove that conjecture by demonstrating that the Gini coefficient, a measure of inequality commonly used by economists, is an H function of both the Boltzmann and Fokker-Planck equations for the model.
Lemarchand, Cyril; Sow, Papa Lat Tabara; Triki, Meriam; Tokunaga, Sean K; Briaudeau, Stephan; Chardonnet, Christian; Darquié, Benoît; Daussy, Christophe
2013-01-01
We report on our on-going effort to measure the Boltzmann constant, kB, using the Doppler Broadening Technique. The main systematic effects affecting the measurement are discussed. A revised error budget is presented in which the global uncertainty on systematic effects is reduced to 2.3 ppm. This corresponds to a reduction of more than one order of magnitude compared to our previous Boltzmann constant measurement. Means to reach a determination of kB at the part per million accuracy level are outlined.
Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow
Hammond, L A; Care, C M; Stevens, A
2002-01-01
We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.
Energy Technology Data Exchange (ETDEWEB)
Uchaikin, V V; Sibatov, R T, E-mail: vuchaikin@gmail.com, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy str., Ulyanovsk (Russian Federation)
2011-04-08
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface
Binary nucleation beyond capillarity approximation
Kalikmanov, V.I.
2010-01-01
Large discrepancies between binary classical nucleation theory (BCNT) and experiments result from adsorption effects and inability of BCNT, based on the phenomenological capillarity approximation, to treat small clusters. We propose a model aimed at eliminating both of these deficiencies. Adsorption
Weighted approximation with varying weight
Totik, Vilmos
1994-01-01
A new construction is given for approximating a logarithmic potential by a discrete one. This yields a new approach to approximation with weighted polynomials of the form w"n"(" "= uppercase)P"n"(" "= uppercase). The new technique settles several open problems, and it leads to a simple proof for the strong asymptotics on some L p(uppercase) extremal problems on the real line with exponential weights, which, for the case p=2, are equivalent to power- type asymptotics for the leading coefficients of the corresponding orthogonal polynomials. The method is also modified toyield (in a sense) uniformly good approximation on the whole support. This allows one to deduce strong asymptotics in some L p(uppercase) extremal problems with varying weights. Applications are given, relating to fast decreasing polynomials, asymptotic behavior of orthogonal polynomials and multipoint Pade approximation. The approach is potential-theoretic, but the text is self-contained.
Approximate Implicitization Using Linear Algebra
Directory of Open Access Journals (Sweden)
Oliver J. D. Barrowclough
2012-01-01
Full Text Available We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design (CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms. We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.
Approximate common divisors via lattices
Cohn, Henry
2011-01-01
We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^sqrt(n) approximation algorithm for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of noisy multivariate polynomial interpolation, and we ...
Reliable Function Approximation and Estimation
2016-08-16
AFRL-AFOSR-VA-TR-2016-0293 Reliable Function Approximation and Estimation Rachel Ward UNIVERSITY OF TEXAS AT AUSTIN 101 EAST 27TH STREET STE 4308...orthogonal polynomial bases from a minimal number of pointwise function evaluations. Based on a model of weighted sparsity which we in- troduced, we...Institution name University of Texas at Austin Grant/Contract Title The full title of the funded effort. (YIP): Reliable function approximation and estimation
Mathematical algorithms for approximate reasoning
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
格子 Boltzmann 模型的边界条件分析%Analysis of boundary conditions for lattice Boltzmann model
Institute of Scientific and Technical Information of China (English)
胡心膂; 郭照立; 郑楚光
2003-01-01
本文研究格子 Boltzmann 方法中实现速度边界条件的六种格式,对它们的精度和稳定性进行了分析和比较.通过对二维 Poiseuille 流、Couette 流和 Womersley 流的模拟,验证了各种格式的精度和稳定性.
Twisted inhomogeneous Diophantine approximation and badly approximable sets
Harrap, Stephen
2010-01-01
For any real pair i, j geq 0 with i+j=1 let Bad(i, j) denote the set of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors x:=(x_1, x_2) in R^2 for which there exists a positive constant c(x) such that max {||qx_1||^(-i), ||qx_2||^(-j)} > c(x)/q for all q in N. Building on a result of Kurzweil, a new characterization of the set Bad(i, j) in terms of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine approximation is established. In addition, it is shown that Bad^x(i, j), the `twisted' inhomogeneous analogue of Bad(i, j), has full Hausdorff dimension 2 when x is chosen from the set Bad(i, j).
Noronha, Jorge
2015-01-01
In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime $\\mathrm{AdS}_{2}\\otimes \\mathrm{S}_{2}$. We further derive explicit analytic expressions for the momentum dependence of the single particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The non-equilibrium contribution to the entropy density is shown to be due to higher order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system the slowly moving hydrodynamic d...
Approximating Graphic TSP by Matchings
Mömke, Tobias
2011-01-01
We present a framework for approximating the metric TSP based on a novel use of matchings. Traditionally, matchings have been used to add edges in order to make a given graph Eulerian, whereas our approach also allows for the removal of certain edges leading to a decreased cost. For the TSP on graphic metrics (graph-TSP), the approach yields a 1.461-approximation algorithm with respect to the Held-Karp lower bound. For graph-TSP restricted to a class of graphs that contains degree three bounded and claw-free graphs, we show that the integrality gap of the Held-Karp relaxation matches the conjectured ratio 4/3. The framework allows for generalizations in a natural way and also leads to a 1.586-approximation algorithm for the traveling salesman path problem on graphic metrics where the start and end vertices are prespecified.
Approximation methods in probability theory
Čekanavičius, Vydas
2016-01-01
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.
Reinforcement Learning via AIXI Approximation
Veness, Joel; Hutter, Marcus; Silver, David
2010-01-01
This paper introduces a principled approach for the design of a scalable general reinforcement learning agent. This approach is based on a direct approximation of AIXI, a Bayesian optimality notion for general reinforcement learning agents. Previously, it has been unclear whether the theory of AIXI could motivate the design of practical algorithms. We answer this hitherto open question in the affirmative, by providing the first computationally feasible approximation to the AIXI agent. To develop our approximation, we introduce a Monte Carlo Tree Search algorithm along with an agent-specific extension of the Context Tree Weighting algorithm. Empirically, we present a set of encouraging results on a number of stochastic, unknown, and partially observable domains.
Concept Approximation between Fuzzy Ontologies
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Fuzzy ontologies are efficient tools to handle fuzzy and uncertain knowledge on the semantic web; but there are heterogeneity problems when gaining interoperability among different fuzzy ontologies. This paper uses concept approximation between fuzzy ontologies based on instances to solve the heterogeneity problems. It firstly proposes an instance selection technology based on instance clustering and weighting to unify the fuzzy interpretation of different ontologies and reduce the number of instances to increase the efficiency. Then the paper resolves the problem of computing the approximations of concepts into the problem of computing the least upper approximations of atom concepts. It optimizes the search strategies by extending atom concept sets and defining the least upper bounds of concepts to reduce the searching space of the problem. An efficient algorithm for searching the least upper bounds of concept is given.
Approximate Sparse Regularized Hyperspectral Unmixing
Directory of Open Access Journals (Sweden)
Chengzhi Deng
2014-01-01
Full Text Available Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU, is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than l1 regularizer and much easier to be solved than l0 regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to l1 regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art l1 regularizer.
Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe
2016-01-01
A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.
Reprint of : The Boltzmann--Langevin approach: A simple quantum-mechanical derivation
Nagaev, K. E.
2016-08-01
We present a simple quantum-mechanical derivation of correlation function of Langevin sources in the semiclassical Boltzmann-Langevin equation. The specific case of electron-phonon scattering is considered. It is shown that the assumption of weak scattering leads to the Poisson nature of the scattering fluxes.
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.
2013-01-01
A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the well
Models, Their Application, and Scientific Anticipation: Ludwig Boltzmann's Work as Tacit Knowing
Schmitt, Richard Henry
2011-01-01
Ludwig Boltzmann's work in theoretical physics exhibits an approach to the construction of theory that he transmitted to the succeeding generation by example. It involved the construction of clear models, allowed more than one, and was not based solely on the existing facts, with the intent of examining and criticizing the assumptions that made…
Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.
Shi, Yong; Yap, Ying Wan; Sader, John E
2015-07-01
Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.
Implementation of the Lattice Boltzmann Method on Heterogeneous Hardware and Platforms using OpenCL
Directory of Open Access Journals (Sweden)
TEKIC, P. M.
2012-02-01
Full Text Available The Lattice Boltzmann method (LBM has become an alternative method for computational fluid dynamics with a wide range of applications. Besides its numerical stability and accuracy, one of the major advantages of LBM is its relatively easy parallelization and, hence, it is especially well fitted to many-core hardware as graphics processing units (GPU. The majority of work concerning LBM implementation on GPU's has used the CUDA programming model, supported exclusively by NVIDIA. Recently, the open standard for parallel programming of heterogeneous systems (OpenCL has been introduced. OpenCL standard matures and is supported on processors from most vendors. In this paper, we make use of the OpenCL framework for the lattice Boltzmann method simulation, using hardware accelerators - AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce GPU's. Application has been developed using a combination of Java and OpenCL programming languages. Java bindings for OpenCL have been utilized. This approach offers the benefits of hardware and operating system independence, as well as speeding up of lattice Boltzmann algorithm. It has been showed that the developed lattice Boltzmann source code can be executed without modification on all of the used hardware accelerators. Performance results have been presented and compared for the hardware accelerators that have been utilized.
Directory of Open Access Journals (Sweden)
Juan Frausto-Solis
2016-01-01
Full Text Available A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP instances. This new approach has four phases: (i Multiquenching Phase (MQP, (ii Boltzmann Annealing Phase (BAP, (iii Bose-Einstein Annealing Phase (BEAP, and (iv Dynamical Equilibrium Phase (DEP. BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.
A Lattice Boltzmann Approach to Multi-Phase Surface Reactions with Heat Effects
Kamali, M.R.
2013-01-01
The aim of the present research was to explore the promises and shift the limits of the numerical framework of lattice Boltzmann (LB) for studying the physics behind multi-component two-phase heterogeneous non-isothermal reactive flows under industrial conditions. An example of such an industrially
G. van Tulder (Gijs); M. de Bruijne (Marleen)
2016-01-01
textabstractThe choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann ma
Lattice Boltzmann simulation for the spiral waves in the excitable medium
Institute of Scientific and Technical Information of China (English)
GuangwuYAN; LiYUAN
2000-01-01
We propose lattice Boltzmann method for the spiral waves. Using Chapman-Enskog expansion and multiscales technique, we obtain equilibrium distribution functions of the model. As an example, we simulate the Selkov reactions with scratching mark, i. e. using a scratching mark pacemaker, obtained one classical spiral waves.
Second order bounce back boundary condition for the lattice Boltzmann fluid simulation
Energy Technology Data Exchange (ETDEWEB)
Kim, In Chan [Kunsan National Univ., Kunsan (Korea, Republic of)
2000-01-01
A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.
A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off
Silvestre, Luis
2016-11-01
We apply recent results on regularity for general integro-differential equations to derive a priori estimates in Hölder spaces for the space homogeneous Boltzmann equation in the non cut-off case. We also show an a priori estimate in {L^∞} which applies in the space inhomogeneous case as well, provided that the macroscopic quantities remain bounded.
A Nonlinera Krylov Accelerator for the Boltzmann k-Eigenvalue Problem
Calef, Matthew T; Warsa, James S; Berndt, Markus; Carlson, Neil N
2011-01-01
We compare variants of Anderson Mixing with the Jacobian-Free Newton-Krylov and Broyden methods applied to the k-eigenvalue formulation of the linear Boltzmann transport equation. We present evidence that one variant of Anderson Mixing finds solutions in the fewest number of iterations. We examine and strengthen theoretical results of Anderson Mixing applied to linear problems.
Two Experiments to Approach the Boltzmann Factor: Chemical Reaction and Viscous Flow
Fazio, Claudio; Battaglia, Onofrio R.; Guastella, Ivan
2012-01-01
In this paper we discuss a pedagogical approach aimed at pointing out the role played by the Boltzmann factor in describing phenomena usually perceived as regulated by different mechanisms of functioning. Experimental results regarding some aspects of a chemical reaction and of the viscous flow of some liquids are analysed and described in terms…
Aerodynamic simulation of high-speed trains based on the Lattice Boltzmann Method (LBM)
Institute of Scientific and Technical Information of China (English)
2008-01-01
Aerodynamic simulation of high-speed trains has been carried out by using Lattice Boltzmann Method (LBM). Non-simplified train model was used and the number of space grids reached tens of millions. All results under different working conditions reflected the actual situation.
Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method
DEFF Research Database (Denmark)
Skocek, Jan; Svec, Oldrich; Spangenberg, Jon
2011-01-01
is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...
Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan
2016-10-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Kinetic Description for a Suspension of Inelastic Spheres - Boltzmann and BGK Equations
2007-11-02
Kinetic description for a suspension of inelastic spheres - Boltzmann and BGK equations Cedric Croizet and Renee Gatignol Laboratoire de Modelisation ...Organization Name(s) and Address(es) Laboratoire de Modelisation en Mecanique - Universite Pierre et Marie Curie (Paris 6) et CNRS UMR 7607 - 4) place
Transfinite Approximation of Hindman's Theorem
Beiglböck, Mathias
2010-01-01
Hindman's Theorem states that in any finite coloring of the integers, there is an infinite set all of whose finite sums belong to the same color. This is much stronger than the corresponding finite form, stating that in any finite coloring of the integers there are arbitrarily long finite sets with the same property. We extend the finite form of Hindman's Theorem to a "transfinite" version for each countable ordinal, and show that Hindman's Theorem is equivalent to the appropriate transfinite approximation holding for every countable ordinal. We then give a proof of Hindman's Theorem by directly proving these transfinite approximations.
Tree wavelet approximations with applications
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
[1]Baraniuk, R. G., DeVore, R. A., Kyriazis, G., Yu, X. M., Near best tree approximation, Adv. Comput. Math.,2002, 16: 357-373.[2]Cohen, A., Dahmen, W., Daubechies, I., DeVore, R., Tree approximation and optimal encoding, Appl. Comput.Harmonic Anal., 2001, 11: 192-226.[3]Dahmen, W., Schneider, R., Xu, Y., Nonlinear functionals of wavelet expansions-adaptive reconstruction and fast evaluation, Numer. Math., 2000, 86: 49-101.[4]DeVore, R. A., Nonlinear approximation, Acta Numer., 1998, 7: 51-150.[5]Davis, G., Mallat, S., Avellaneda, M., Adaptive greedy approximations, Const. Approx., 1997, 13: 57-98.[6]DeVore, R. A., Temlyakov, V. N., Some remarks on greedy algorithms, Adv. Comput. Math., 1996, 5: 173-187.[7]Kashin, B. S., Temlyakov, V. N., Best m-term approximations and the entropy of sets in the space L1, Mat.Zametki (in Russian), 1994, 56: 57-86.[8]Temlyakov, V. N., The best m-term approximation and greedy algorithms, Adv. Comput. Math., 1998, 8:249-265.[9]Temlyakov, V. N., Greedy algorithm and m-term trigonometric approximation, Constr. Approx., 1998, 14:569-587.[10]Hutchinson, J. E., Fractals and self similarity, Indiana. Univ. Math. J., 1981, 30: 713-747.[11]Binev, P., Dahmen, W., DeVore, R. A., Petruchev, P., Approximation classes for adaptive methods, Serdica Math.J., 2002, 28: 1001-1026.[12]Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Berlin: Springer-Verlag,1983.[13]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, New York: North Holland, 1978.[14]Birman, M. S., Solomiak, M. Z., Piecewise polynomial approximation of functions of the class Wαp, Math. Sb.,1967, 73: 295-317.[15]DeVore, R. A., Lorentz, G. G., Constructive Approximation, New York: Springer-Verlag, 1993.[16]DeVore, R. A., Popov, V., Interpolation of Besov spaces, Trans. Amer. Math. Soc., 1988, 305: 397-414.[17]Devore, R., Jawerth, B., Popov, V., Compression of wavelet decompositions, Amer. J. Math., 1992, 114: 737-785.[18]Storozhenko, E
Simulations of electron capture supernovae with approximate neutrino transport
Energy Technology Data Exchange (ETDEWEB)
Moeller, Heiko [TU Darmstadt (Germany); Fischer, Tobias [University of Wroclaw (Poland); Jones, Sam [Keele University (United Kingdom); Martinez-Pinedo, Gabriel [TU Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)
2014-07-01
We have performed simulations of electron capture supernovae in a spherically symmetric general relativistic radiation hydrodynamics model with approximate neutrino treatment. We base our study on an 8.8 M {sub CircleDot} O-Ne-Mg core progenitor (Nomoto, 1984, 1987). We successfully obtain an explosion and compare our results with a reference run performed with an state-of-the-art three-flavor Boltzmann neutrino transport scheme implemented into the same hydrodynamic code. In general, we find good agreement in the the electron-flavor neutrino spectra. However, we find shorter explosion timescales and also significantly lower explosion energies of only 1.4 . 10{sup 48} erg. This result is in agreement with the explosion energy of SN 2008S as derived by Tominaga et al. (2013) based on light curve studies. Currently we are extending our simulations to the recently published super-AGB star progenitor models by Jones et al. (2013) with regard to their evolution towards an electron capture supernova. Our study also explores the role of weak interaction rates in determining the evolution and shaping the spectra of the emitted neutrinos.
The Boltzmann Equation for a Multi-species Mixture Close to Global Equilibrium
Briant, Marc; Daus, Esther S.
2016-12-01
We study the Cauchy theory for a multi-species mixture, where the different species can have different masses, in a perturbative setting on the three dimensional torus. The ultimate aim of this work is to obtain the existence, uniqueness and exponential trend to equilibrium of solutions to the multi-species Boltzmann equation in {L^1_vL^∞_x(m)}, where {m˜ (1+ |v|^k)} is a polynomial weight. We prove the existence of a spectral gap for the linear multi-species Boltzmann operator allowing different masses, and then we establish a semigroup property thanks to a new explicit coercive estimate for the Boltzmann operator. Then we develop an {L^2-L^∞} theory à la Guo for the linear perturbed equation. Finally, we combine the latter results with a decomposition of the multi-species Boltzmann equation in order to deal with the full equation. We emphasize that dealing with different masses induces a loss of symmetry in the Boltzmann operator which prevents the direct adaptation of standard mono-species methods (for example Carleman representation, Povzner inequality). Of important note is the fact that all methods used and developed in this work are constructive. Moreover, they do not require any Sobolev regularity and the {L^1_vL^∞_x} framework is dealt with for any {k > k_0}, recovering the optimal physical threshold of finite energy {k_0=2} in the particular case of a multi-species hard spheres mixture with the same masses.
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
Approximate Reasoning with Fuzzy Booleans
Broek, van den P.M.; Noppen, J.A.R.
2004-01-01
This paper introduces, in analogy to the concept of fuzzy numbers, the concept of fuzzy booleans, and examines approximate reasoning with the compositional rule of inference using fuzzy booleans. It is shown that each set of fuzzy rules is equivalent to a set of fuzzy rules with singleton crisp ante
Some results in Diophantine approximation
DEFF Research Database (Denmark)
in the formal Laurent series over F3. The first paper is on intrinsic Diophantine approximation in the Cantor set in the formal Laurent series over F3. The summary contains a short motivation, the results of the paper and sketches of the proofs, mainly focusing on the ideas involved. The details of the proofs...
Truthful approximations to range voting
DEFF Research Database (Denmark)
Filos-Ratsika, Aris; Miltersen, Peter Bro
We consider the fundamental mechanism design problem of approximate social welfare maximization under general cardinal preferences on a finite number of alternatives and without money. The well-known range voting scheme can be thought of as a non-truthful mechanism for exact social welfare...
Approximation on the complex sphere
Alsaud, Huda; Kushpel, Alexander; Levesley, Jeremy
2012-01-01
We develop new elements of harmonic analysis on the complex sphere on the basis of which Bernstein's, Jackson's and Kolmogorov's inequalities are established. We apply these results to get order sharp estimates of $m$-term approximations. The results obtained is a synthesis of new results on classical orthogonal polynomials, harmonic analysis on manifolds and geometric properties of Euclidean spaces.
WKB Approximation in Noncommutative Gravity
Directory of Open Access Journals (Sweden)
Maja Buric
2007-12-01
Full Text Available We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
On badly approximable complex numbers
DEFF Research Database (Denmark)
Esdahl-Schou, Rune; Kristensen, S.
We show that the set of complex numbers which are badly approximable by ratios of elements of , where has maximal Hausdorff dimension. In addition, the intersection of these sets is shown to have maximal dimension. The results remain true when the sets in question are intersected with a suitably...
Approximation properties of haplotype tagging
Directory of Open Access Journals (Sweden)
Dreiseitl Stephan
2006-01-01
Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are locations at which the genomic sequences of population members differ. Since these differences are known to follow patterns, disease association studies are facilitated by identifying SNPs that allow the unique identification of such patterns. This process, known as haplotype tagging, is formulated as a combinatorial optimization problem and analyzed in terms of complexity and approximation properties. Results It is shown that the tagging problem is NP-hard but approximable within 1 + ln((n2 - n/2 for n haplotypes but not approximable within (1 - ε ln(n/2 for any ε > 0 unless NP ⊂ DTIME(nlog log n. A simple, very easily implementable algorithm that exhibits the above upper bound on solution quality is presented. This algorithm has running time O((2m - p + 1 ≤ O(m(n2 - n/2 where p ≤ min(n, m for n haplotypes of size m. As we show that the approximation bound is asymptotically tight, the algorithm presented is optimal with respect to this asymptotic bound. Conclusion The haplotype tagging problem is hard, but approachable with a fast, practical, and surprisingly simple algorithm that cannot be significantly improved upon on a single processor machine. Hence, significant improvement in computatational efforts expended can only be expected if the computational effort is distributed and done in parallel.
Pythagorean Approximations and Continued Fractions
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Approximate Reanalysis in Topology Optimization
DEFF Research Database (Denmark)
Amir, Oded; Bendsøe, Martin P.; Sigmund, Ole
2009-01-01
In the nested approach to structural optimization, most of the computational effort is invested in the solution of the finite element analysis equations. In this study, the integration of an approximate reanalysis procedure into the framework of topology optimization of continuum structures...
Low Rank Approximation in $G_0W_0$ Approximation
Shao, Meiyue; Yang, Chao; Liu, Fang; da Jornada, Felipe H; Deslippe, Jack; Louie, Steven G
2016-01-01
The single particle energies obtained in a Kohn--Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in transport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green's function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The $G_0W_0$ approximation is a widely used technique in which the self energy is expressed as the convolution of a non-interacting Green's function ($G_0$) and a screened Coulomb interaction ($W_0$) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating $W_0$ at multiple frequencies. In this paper, we discuss how the cos...
Wind-Driven, Double-Gyre, Ocean Circulation in a Reduced-Gravity, 2.5-Layer, Lattice Boltzmann Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A coupled lattice Boltzmann (LB) model with second-order accuracy is applied to the reduced-gravity,shallow water, 2.5-layer model for wind-driven double-gyre ocean circulation. By introducing the secondorder integral approximation for the collision operator, the model becomes fully explicit. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretization accuracy of the LB equation. The feature of the multiple equilibria solutions is found in the numerical experiments under different Reynolds numbers based on this LB scheme. With the Reynolds number increasing from 3000 to 4000, the solution of this model is destabilized from the anti-symmetric double-gyre solution to the subtropic gyre solution and then to the subpolar gyre solution. The transitions between these equilibria states are also found in some parameter ranges. The time-dependent variability of the circulation based on this LB simulation is also discussed for varying viscosity regimes. The flow of this model exhibits oscillations with different timescales varying from subannual to interannual. The corresponding statistical oscillation modes are obtained by spectral analysis. By analyzing the spatiotemporal structures of these modes, it is found that the subannual oscillation with a 9-month period originates from the barotropic Rossby basin mode, and the interannual oscillations with periods ranging from 1.5 years to 4.6 years originate from the recirculation gyre modes, which include the barotropic and the baroclinic recirculation gyre modes.
Coarse-grained transport of a turbulent flow via moments of the Reynolds-averaged Boltzmann equation
Abramov, Rafail V
2015-01-01
Here we introduce new coarse-grained variables for a turbulent flow in the form of moments of its Reynolds-averaged Boltzmann equation. With the exception of the collision moments, the transport equations for the new variables are identical to the usual moment equations, and thus naturally lend themselves to the variety of already existing closure methods. Under the anelastic turbulence approximation, we derive equations for the Reynolds-averaged turbulent fluctuations around the coarse-grained state. We show that the global relative entropy of the coarse-grained state is bounded from above by the Reynolds average of the fine-grained global relative entropy, and thus obeys the time decay bound of Desvillettes and Villani. This is similar to what is observed in the rarefied gas dynamics, which makes the Grad moment closure a good candidate for truncating the hierarchy of the coarse-grained moment equations. We also show that, under additional assumptions on the form of the coarse-grained collision terms, one a...
Energy Technology Data Exchange (ETDEWEB)
Sloan, D.P.
1983-05-01
Morel (1981) has developed multigroup Legendre cross sections suitable for input to standard discrete ordinates transport codes for performing charged-particle Fokker-Planck calculations in one-dimensional slab and spherical geometries. Since the Monte Carlo neutron transport code, MORSE, uses the same multigroup cross section data that discrete ordinates codes use, it was natural to consider whether Fokker-Planck calculations could be performed with MORSE. In order to extend the unique three-dimensional forward or adjoint capability of MORSE to Fokker-Planck calculations, the MORSE code was modified to correctly treat the delta-function scattering of the energy operator, and a new set of physically acceptable cross sections was derived to model the angular operator. Morel (1979) has also developed multigroup Legendre cross sections suitable for input to standard discrete ordinates codes for performing electron Boltzmann calculations. These electron cross sections may be treated in MORSE with the same methods developed to treat the Fokker-Planck cross sections. The large magnitude of the elastic scattering cross section, however, severely increases the computation or run time. It is well-known that approximate elastic cross sections are easily obtained by applying the extended transport (or delta function) correction to the Legendre coefficients of the exact cross section. An exact method for performing the extended transport cross section correction produces cross sections which are physically acceptable. Sample calculations using electron cross sections have demonstrated this new technique to be very effective in decreasing the large magnitude of the cross sections.
The role of the Stefan-Boltzmann law in the thermodynamic optimization of an n-Müser engine
Ramírez-Moreno, M. A.; González-Hernández, S.; Angulo-Brown, F.
2016-02-01
A Müser-type engine model can be taken as a particular case of a Curzon-Ahlborn thermal cycle, when the upper thermal conductance is finite and the lower one is infinite. In addition, the upper heat exchange is given by the Stefan-Boltzmann law. That model is suitable to thermodynamically describe some aspects of energy converters as solar cells and photosynthetic systems. In the present article, we call n-Müser engine to an engine of the Müser type in which the T4 heat transfer law is substituted by a Tn-law, being n > 0 a real number. Here, we show that if we use the so-called ecological criterion of merit to optimize finite-time heat engines to compare the thermodynamic performance of the n-Müser engines under approximate terrestrial conditions (see below), we obtain that n = 4 accomplishes the best performance. This same result was obtained by using data from the rest of planets of the solar system.
Khali, S; Nebbali, R; Ameziani, D E; Bouhadef, K
2013-05-01
In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Re(c) for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.
Approximate Inference for Wireless Communications
DEFF Research Database (Denmark)
Hansen, Morten
This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... complexity can potentially lead to limited power consumption, which translates into longer battery life-time in the handsets. The scope of the thesis is more specifically to investigate approximate (nearoptimal) detection methods that can reduce the computationally complexity significantly compared...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...
Approximate Privacy: Foundations and Quantification
Feigenbaum, Joan; Schapira, Michael
2009-01-01
Increasing use of computers and networks in business, government, recreation, and almost all aspects of daily life has led to a proliferation of online sensitive data about individuals and organizations. Consequently, concern about the privacy of these data has become a top priority, particularly those data that are created and used in electronic commerce. There have been many formulations of privacy and, unfortunately, many negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environments. We formulate communication-complexity-based definitions, both worst-case and average-case, of a problem's privacy-approximation ratio. We use our definitions to investigate the extent to which approximate privacy is achievable in two standard problems: the second-price Vickrey auction and the millionaires problem of Yao. For both the second-price Vickrey auction and the millionaires problem, we show that not only is perfect privacy impossible or infeasibly costly to achieve...
Hydrogen Beyond the Classic Approximation
Scivetti, I
2003-01-01
The classical nucleus approximation is the most frequently used approach for the resolution of problems in condensed matter physics.However, there are systems in nature where it is necessary to introduce the nuclear degrees of freedom to obtain a correct description of the properties.Examples of this, are the systems with containing hydrogen.In this work, we have studied the resolution of the quantum nuclear problem for the particular case of the water molecule.The Hartree approximation has been used, i.e. we have considered that the nuclei are distinguishable particles.In addition, we have proposed a model to solve the tunneling process, which involves the resolution of the nuclear problem for configurations of the system away from its equilibrium position
Validity of the Eikonal Approximation
Kabat, Daniel
1992-01-01
We summarize results on the reliability of the eikonal approximation in obtaining the high energy behavior of a two particle forward scattering amplitude. Reliability depends on the spin of the exchanged field. For scalar fields the eikonal fails at eighth order in perturbation theory, when it misses the leading behavior of the exchange-type diagrams. In a vector theory the eikonal gets the exchange diagrams correctly, but fails by ignoring certain non-exchange graphs which dominate the asymp...
Many Faces of Boussinesq Approximations
Vladimirov, Vladimir A
2016-01-01
The \\emph{equations of Boussinesq approximation} (EBA) for an incompressible and inhomogeneous in density fluid are analyzed from a viewpoint of the asymptotic theory. A systematic scaling shows that there is an infinite number of related asymptotic models. We have divided them into three classes: `poor', `reasonable' and `good' Boussinesq approximations. Each model can be characterized by two parameters $q$ and $k$, where $q =1, 2, 3, \\dots$ and $k=0, \\pm 1, \\pm 2,\\dots$. Parameter $q$ is related to the `quality' of approximation, while $k$ gives us an infinite set of possible scales of velocity, time, viscosity, \\emph{etc.} Increasing $q$ improves the quality of a model, but narrows the limits of its applicability. Parameter $k$ allows us to vary the scales of time, velocity and viscosity and gives us the possibility to consider any initial and boundary conditions. In general, we discover and classify a rich variety of possibilities and restrictions, which are hidden behind the routine use of the Boussinesq...
Approximate Counting of Graphical Realizations.
Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.
Approximate Counting of Graphical Realizations.
Directory of Open Access Journals (Sweden)
Péter L Erdős
Full Text Available In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007, for regular directed graphs (by Greenhill, 2011 and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013. Several heuristics on counting the number of possible realizations exist (via sampling processes, and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS for counting of all realizations.
Energy Technology Data Exchange (ETDEWEB)
Horsten, N., E-mail: niels.horsten@kuleuven.be; Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [ITER Organization, route de Vinon-sur-Verdon, 13067 St. Paul lez Durance Cedex (France); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium)
2016-01-15
We derive fluid neutral approximations for a simplified 1D edge plasma model, suitable to study the neutral behavior close to the target of a nuclear fusion divertor, and compare its solutions to the solution of the corresponding kinetic Boltzmann equation. The plasma is considered as a fixed background extracted from a detached 2D simulation. We show that the Maxwellian equilibrium distribution is already obtained very close to the target, justifying the use of a fluid approximation. We compare three fluid neutral models: (i) a diffusion model; (ii) a pressure-diffusion model (i.e., a combination of a continuity and momentum equation) assuming equal neutral and ion temperatures; and (iii) the pressure-diffusion model coupled to a neutral energy equation taking into account temperature differences between neutrals and ions. Partial reflection of neutrals reaching the boundaries is included in both the kinetic and fluid models. We propose two methods to obtain an incident neutral flux boundary condition for the fluid models: one based on a diffusion approximation and the other assuming a truncated Chapman-Enskog distribution. The pressure-diffusion model predicts the plasma sources very well. The diffusion boundary condition gives slightly better results overall. Although including an energy equation still improves the results, the assumption of equal ion and neutral temperature already gives a very good approximation.
Miura, Shinichi; Okazaki, Susumu
2001-09-01
In this paper, the path integral molecular dynamics (PIMD) method has been extended to employ an efficient approximation of the path action referred to as the pair density matrix approximation. Configurations of the isomorphic classical systems were dynamically sampled by introducing fictitious momenta as in the PIMD based on the standard primitive approximation. The indistinguishability of the particles was handled by a pseudopotential of particle permutation that is an extension of our previous one [J. Chem. Phys. 112, 10 116 (2000)]. As a test of our methodology for Boltzmann statistics, calculations have been performed for liquid helium-4 at 4 K. We found that the PIMD with the pair density matrix approximation dramatically reduced the computational cost to obtain the structural as well as dynamical (using the centroid molecular dynamics approximation) properties at the same level of accuracy as that with the primitive approximation. With respect to the identical particles, we performed the calculation of a bosonic triatomic cluster. Unlike the primitive approximation, the pseudopotential scheme based on the pair density matrix approximation described well the bosonic correlation among the interacting atoms. Convergence with a small number of discretization of the path achieved by this approximation enables us to construct a method of avoiding the problem of the vanishing pseudopotential encountered in the calculations by the primitive approximation.
Rollout Sampling Approximate Policy Iteration
Dimitrakakis, Christos
2008-01-01
Several researchers have recently investigated the connection between reinforcement learning and classification. We are motivated by proposals of approximate policy iteration schemes without value functions which focus on policy representation using classifiers and address policy learning as a supervised learning problem. This paper proposes variants of an improved policy iteration scheme which addresses the core sampling problem in evaluating a policy through simulation as a multi-armed bandit machine. The resulting algorithm offers comparable performance to the previous algorithm achieved, however, with significantly less computational effort. An order of magnitude improvement is demonstrated experimentally in two standard reinforcement learning domains: inverted pendulum and mountain-car.
Approximate Deconvolution Reduced Order Modeling
Xie, Xuping; Wang, Zhu; Iliescu, Traian
2015-01-01
This paper proposes a large eddy simulation reduced order model(LES-ROM) framework for the numerical simulation of realistic flows. In this LES-ROM framework, the proper orthogonal decomposition(POD) is used to define the ROM basis and a POD differential filter is used to define the large ROM structures. An approximate deconvolution(AD) approach is used to solve the ROM closure problem and develop a new AD-ROM. This AD-ROM is tested in the numerical simulation of the one-dimensional Burgers equation with a small diffusion coefficient(10^{-3})
Energy Technology Data Exchange (ETDEWEB)
EL Safadi, M
2007-03-15
We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)
Plasma Physics Approximations in Ares
Energy Technology Data Exchange (ETDEWEB)
Managan, R. A.
2015-01-08
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F_{n}( μ/θ ), the chemical potential, μ or ζ = ln(1+e^{ μ/θ} ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A^{α} (ζ ),A^{β} (ζ ), ζ, f(ζ ) = (1 + e^{-μ/θ})F_{1/2}(μ/θ), F_{1/2}'/F_{1/2}, F_{c}^{α}, and F_{c}^{β}. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.
Convergence Rate to Stationary Solutions for Boltzmann Equation with External Force
Institute of Scientific and Technical Information of China (English)
Seiji UKAI; Tong YANG; Huijiang ZHAO
2006-01-01
For the Boltzmann equation with an external force in the form of the gradient of a potential function in space variable, the stability of its stationary solutions as local Maxwellians was studied by S. Ukai et al. (2005) through the energy method. Based on this stability analysis and some techniques on analyzing the convergence rates to stationary solutions for the compressible Navier-Stokes equations, in this paper, we study the convergence rate to the above stationary solutions for the Boltzmann equation which is a fundamental equation in statistical physics for non-equilibrium rarefied gas. By combining the dissipation from the viscosity and heat conductivity on the fluid components and the dissipation on the non-fluid component through the celebrated H-theorem, a convergence rate of the same order as the one for the compressible Navier-Stokes is obtained by constructing some energy functionals.
Singh, Ashmeet
2012-01-01
A novel pedagogical technique is presented that can be used in the undergraduate (UG) class to formulate a relativistically extended Kinetic Theory of Gases and Maxwell-Boltzmann thermal speed distribution, while keeping the basic thermal symmetry arguments intact. The adopted framework can be used by students to understand the physics in a thermally governed system at high temperature and speeds, without having to indulge in high level tensor based mathematics. Our approach will first recapitulate what is taught and known in the UG class and then present a methodology that will help students to understand and derive the physics of relativistic thermal systems. The methodology uses simple tools well known in the UG class and involves a component of computational techniques that can be used to involve students in this exercise. We also present towards the end the interesting implications of the relativistically extended distribution and compare it with Maxwell-Boltzmann results at various temperatures.
Proposal of a risk model for vehicular traffic: A Boltzmann-type kinetic approach
Freguglia, Paolo
2015-01-01
This paper deals with a Boltzmann-type kinetic model describing the interplay between vehicle dynamics and safety aspects in vehicular traffic. Sticking to the idea that the macroscopic characteristics of traffic flow, including the distribution of the driving risk along a road, are ultimately generated by one-to-one interactions among drivers, the model links the personal (i.e., individual) risk to the changes of speeds of single vehicles and implements a probabilistic description of such microscopic interactions in a Boltzmann-type collisional operator. By means of suitable statistical moments of the kinetic distribution function, it is finally possible to recover macroscopic relationships between the average risk and the road congestion, which show an interesting and reasonable correlation with the well-known free and congested phases of the flow of vehicles.
Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory
Markovich, Tomer; Podgornik, Rudi
2016-01-01
We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.
On the Stability of the Finite Difference based Lattice Boltzmann Method
El-Amin, Mohamed
2013-06-01
This paper is devoted to determining the stability conditions for the finite difference based lattice Boltzmann method (FDLBM). In the current scheme, the 9-bit two-dimensional (D2Q9) model is used and the collision term of the Bhatnagar- Gross-Krook (BGK) is treated implicitly. The implicitness of the numerical scheme is removed by introducing a new distribution function different from that being used. Therefore, a new explicit finite-difference lattice Boltzmann method is obtained. Stability analysis of the resulted explicit scheme is done using Fourier expansion. Then, stability conditions in terms of time and spatial steps, relaxation time and explicitly-implicitly parameter are determined by calculating the eigenvalues of the given difference system. The determined conditions give the ranges of the parameters that have stable solutions.
Li, Zheng; Zhang, Yuwen
2016-01-01
The purposes of this paper are testing an efficiency algorithm based on LBM and using it to analyze two-dimensional natural convection with low Prandtl number. Steady state or oscillatory results are obtained using double multiple-relaxation-time thermal lattice Boltzmann method. The velocity and temperature fields are solved using D2Q9 and D2Q5 models, respectively. With different Rayleigh number, the tested natural convection can either achieve to steady state or oscillatory. With fixed Rayleigh number, lower Prandtl number leads to a weaker convection effect, longer oscillation period and higher oscillation amplitude for the cases reaching oscillatory solutions. At fixed Prandtl number, higher Rayleigh number leads to a more notable convection effect and longer oscillation period. Double multiple-relaxation-time thermal lattice Boltzmann method is applied to simulate the low Prandtl number fluid natural convection. Rayleigh number and Prandtl number effects are also investigated when the natural convection...
Universal Property of Quantum Gravity implied by Bekenstein-Hawking Entropy and Boltzmann formula
Saida, Hiromi
2013-01-01
We search for a universal property of quantum gravity. By "universal", we mean the independence from any existing model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical triangulation, and so on). To do so, we try to put the basis of our discussion on theories established by some experiments. Thus, we focus our attention on thermodynamical and statistical-mechanical basis of the black hole thermodynamics: Let us assume that the Bekenstein-Hawking entropy is given by the Boltzmann formula applied to the underlying theory of quantum gravity. Under this assumption, the conditions justifying Boltzmann formula together with uniqueness of Bekenstein-Hawking entropy imply a reasonable universal property of quantum gravity. The universal property indicates a repulsive gravity at Planck length scale, otherwise stationary black holes can not be regarded as thermal equilibrium states of gravity. Further, in semi-classical level, we discuss a possible correction of Einstein equat...
From Newton's Law to the Linear Boltzmann Equation Without Cut-Off
Ayi, Nathalie
2017-01-01
We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.
Liu, Qing
2016-01-01
As a numerically accurate and computationally efficient mesoscopic numerical method, the lattice Boltzmann (LB) method has achieved great success in simulating microscale rarefied gas flows. In this paper, an LB method based on the cascaded collision operator is presented to simulate microchannel gas flows in the transition flow regime. The Bosanquet-type effective viscosity is incorporated into the cascaded lattice Boltzmann (CLB) method to account for the rarefaction effects. In order to gain accurate simulations and match the Bosanquet-type effective viscosity, the combined bounce-back/specular-reflection scheme with a modified second-order slip boundary condition is employed in the CLB method. The present method is applied to study gas flow in a microchannel with periodic boundary condition and gas flow in a long microchannel with pressure boundary condition over a wide range of Knudsen numbers. The predicted results, including the velocity profile, the mass flow rate, and the non-linear pressure deviatio...
Simulation of Rarefied Gas Flow in Slip and Transitional Regimes by the Lattice Boltzmann Method
Directory of Open Access Journals (Sweden)
S Abdullah
2010-07-01
Full Text Available In this paper, a lattice Boltzmann method (LBM based simulation of microscale flow has been carried out, for various values of Knudsen number. The details in determining the parameters critical for LBM applications in microscale flow are provided. Pressure distributions in the slip flow regime are compared with the analytical solution based on the Navier-Stokes equationwith slip-velocity boundary condition. Satisfactory agreements have been achieved. Simulations are then extended to transition regime (Kn = 0.15 and compared with the same analytical solution. The results show some deviation from the analytical solution due to the breakdown of continuum assumption. From this study, we may conclude that the lattice Boltzmann method is an efficient approach for simulation of microscale flow.
Beyond Gibbs-Boltzmann-Shannon: General Entropies -- The Gibbs-Lorentzian Example
Directory of Open Access Journals (Sweden)
Rudolf A. Treumann
2014-08-01
Full Text Available We propose a generalisation of Gibbs' statistical mechanics into the domain of non-negligible phase space correlations. Derived are the probability distribution and entropy as a generalised ensemble average, replacing Gibbs-Boltzmann-Shannon's entropy definition enabling construction of new forms of statistical mechanics. The general entropy may also be of importance in information theory and data analysis. Application to generalised Lorentzian phase space elements yields the Gibbs-Lorentzian power law probability distribution and statistical mechanics. The corresponding Boltzmann, Fermi and Bose-Einstein distributions are found. They apply only to finite temperature states including correlations. As a by-product any negative absolute temperatures are categorically excluded, supporting a recent ``no-negative $T$ claim.
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
Farhat, Hassan; Kondaraju, Sasidhar
2014-01-01
Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...
Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
Institute of Scientific and Technical Information of China (English)
Mahdi Daemi; Mohammad Taeibi-Rahni; Hamidreza Massah
2015-01-01
Search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor. A long list of complex phenomena underlies physics of this problem. In the past decades, the lattice Boltzmann (LB) method has emerged as a promising tool to address such complexities. In this regard, we have applied a 121-velocity multiphase lattice Boltzmann model (LBM) to an asymmetric cluster of bubbles in an acoustic field. A problem as a benchmark is studied to check the consistency and applicability of the model. The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics, and the screening effect on an acoustic multi-bubble medium. It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.
Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
Energy Technology Data Exchange (ETDEWEB)
Guzik, Stephen M. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Mechanical Engineering; Weisgraber, Todd H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Alder, Berni J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-12-10
A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examples highlighting the mesh adaptivity of this method are also provided.
Why Boltzmann Brains Don't Fluctuate Into Existence From the De Sitter Vacuum
Boddy, Kimberly K; Pollack, Jason
2015-01-01
Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a "Boltzmann Brain problem" - the overwhelming majority of observers with fixed local conditions are random fluctuations in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, "observation" refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding...
Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics.
Paillusson, Fabien; Blossey, Ralf
2010-11-01
Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of "nonlocal" electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ε(q), where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, "local" formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.
Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions.
Chen, Yu; Cai, Qingdong; Xia, Zhenhua; Wang, Moran; Chen, Shiyi
2013-07-01
The momentum exchange method has been widely used in lattice Boltzmann simulations for particle-fluid interactions. Although proved accurate for still walls, it will result in inaccurate particle dynamics without corrections. In this work, we reveal the physical cause of this problem and find that the initial momentum of the net mass transfer through boundaries in the moving-boundary treatment is not counted in the conventional momentum exchange method. A corrected momentum exchange method is then proposed by taking into account the initial momentum of the net mass transfer at each time step. The method is easy to implement with negligible extra computation cost. Direct numerical simulations of a single elliptical particle sedimentation are carried out to evaluate the accuracy for our method as well as other lattice Boltzmann-based methods by comparisons with the results of the finite element method. A shear flow test shows that our method is Galilean invariant.
Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities
Allen, Rebecca
2016-06-29
We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.
Premnath, Kannan N; Banerjee, Sanjoy
2008-01-01
Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extende...
Ion-Conserving Modified Poisson-Boltzmann Theory Considering a Steric Effect in an Electrolyte
Sugioka, Hideyuki
2016-12-01
The modified Poisson-Nernst-Planck (MPNP) and modified Poisson-Boltzmann (MPB) equations are well known as fundamental equations that consider a steric effect, which prevents unphysical ion concentrations. However, it is unclear whether they are equivalent or not. To clarify this problem, we propose an improved free energy formulation that considers a steric limit with an ion-conserving condition and successfully derive the ion-conserving modified Poisson-Boltzmann (IC-MPB) equations that are equivalent to the MPNP equations. Furthermore, we numerically examine the equivalence by comparing between the IC-MPB solutions obtained by the Newton method and the steady MPNP solutions obtained by the finite-element finite-volume method. A surprising aspect of our finding is that the MPB solutions are much different from the MPNP (IC-MPB) solutions in a confined space. We consider that our findings will significantly contribute to understanding the surface science between solids and liquids.
Numerical simulation of ski-jump jet motion using lattice Boltzmann method
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Based on the lattice Boltzmann method,a lattice Boltzmann(LB) model of the ski-jump jet two-phase flow is developed first and the corresponding boundary conditions are studied.A simple case study of a droplet horizontal movement calculation is carried out to test and verify the model,where level set method is used to track and reconstruct the moving droplet free surface. Then,we numerically simulate a two dimensional flow field of the ski-jump jet with the LB model,derive the moving surface and velocity vector field of the jet flow.The simulation results are very consistent with the physical mechanisms.The effectiveness and reliability of the model are demonstrated by the numerical examples.
Institute of Scientific and Technical Information of China (English)
Jiang Ji-Jian; Meng Qing-Miao; Wang Shuai
2009-01-01
Using entropy density of Dirac field near the event horizon of a rectilinear non-uniformly accelerating Kinnersley black hole, the law for the thermal radiation of black hole is studied and the instantaneous radiation energy density is obtained. It is found that the instantaneous radiation energy density of a black hole is always proportional to the quartic of the temperature on event horizon in the same direction. That is to say, the thermal radiation of a black hole always satisfies the generalized Stefan Boltzmann law. In addition, the derived generalized Stefan-Boltzmann coefficient is no longer a constant, but a dynamic coefficient related to the space-time metric near the event horizon and the changing rate of the event horizon in black holes.
From Newton's Law to the Linear Boltzmann Equation Without Cut-Off
Ayi, Nathalie
2017-03-01
We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. More particularly, we will describe the motion of a tagged particle in a gas close to global equilibrium. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford's strategy. Our proof relies then on a combination of Lanford's strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated with the long-range interaction, leading to some explicit weak estimates.
Investigation of Resistivity of Saturated Porous Media with Lattice Boltzmann Method
Institute of Scientific and Technical Information of China (English)
YUE Wen-Zheng; TAO Guo; ZHU Ke-Qin
2004-01-01
The lattice Boltzmann method is employed to study the electrical transport properties of saturated porous media.Electrical current flow through the porous media is simulated and the relationship between resistivity index and water saturation is derived. It is found that this kind of relation is not a straight line as described by the Archie equation with the parameter n being a constant in a log-log scale. A new equation is thus developed to formulate this relation with n being a function of porosity and water saturation. The comparisons between the results by lattice Boltzmann and by the laboratory experiments on rock samples demonstrate that this numerical method can provide an alternative way for the expensive laboratory experiments to investigate the electrical transport properties of saturated porous media and can be used to explore micro mechanisms more conveniently.
Interplay of Boltzmann equation and continuity equation for accelerated electrons in solar flares
Codispoti, Anna
2015-01-01
During solar flares a large amount of electrons are accelerated within the plasma present in the solar atmosphere. Accurate measurements of the motion of these electrons start becoming available from the analysis of hard X-ray imaging-spectroscopy observations. In this paper, we discuss the linearized perturbations of the Boltzmann kinetic equation describing an ensemble of electrons accelerated by the energy release occurring during solar flares. Either in the limit of high energy or at vanishing background temperature such an equation reduces to a continuity equation equipped with an extra force of stochastic nature. This stochastic force is actually described by the well known energy loss rate due to Coulomb collision with ambient particles, but, in order to match the collision kernel in the linearized Boltzmann equation it needs to be treated in a very specific manner. In the second part of the paper the derived continuity equation is solved with some hyperbolic techniques, and the obtained solution is wr...
Numerical simulation of direct methanol fuel cells using lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Delavar, Mojtaba Aghajani; Farhadi, Mousa; Sedighi, Kurosh [Faculty of Mechanical Engineering, Babol University of Technology, Babol, P.O. Box 484 (Iran)
2010-09-15
In this study Lattice Boltzmann Method (LBM) as an alternative of conventional computational fluid dynamics method is used to simulate Direct Methanol Fuel Cell (DMFC). A two dimensional lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the problem. The computational domain includes all seven parts of DMFC: anode channel, catalyst and diffusion layers, membrane and cathode channel, catalyst and diffusion layers. The model has been used to predict the flow pattern and concentration fields of different species in both clear and porous channels to investigate cell performance. The results have been compared well with results in literature for flow in porous and clear channels and cell polarization curves of the DMFC at different flow speeds and feed methanol concentrations. (author)
Thermal Lattice Boltzmann Simulations for Vapor-Liquid Two-Phase Flows in Two Dimensions
Wei, Yikun; Qian, Yuehong
2011-11-01
A lattice Boltzmann model with double distribution functions is developed to simulate thermal vapor-liquid two-phase flows. In this model, the so-called mesoscopic inter-particle pseudo-potential for the single component multi-phase lattice Boltzmann model is used to simulate the fluid dynamics and the internal energy field is simulated by using a energy distribution function. Theoretical results for large-scale dynamics including the internal energy equation can be derived and numerical results for the coexistence curve of vapor-liquid systems are in good agreement with the theoretical predictions. It is shown from numerical simulations that the model has the ability to mimic phase transitions, bubbly flows and slugging flows. This research is support in part by the grant of Education Ministry of China IRT0844 and the grant of Shanghai CST 11XD1402300.
Phonon Boltzmann equation-based discrete unified gas kinetic scheme for multiscale heat transfer
Guo, Zhaoli
2016-01-01
Numerical prediction of multiscale heat transfer is a challenging problem due to the wide range of time and length scales involved. In this work a discrete unified gas kinetic scheme (DUGKS) is developed for heat transfer in materials with different acoustic thickness based on the phonon Boltzmann equation. With discrete phonon direction, the Boltzmann equation is discretized with a second-order finite-volume formulation, in which the time-step is fully determined by the Courant-Friedrichs-Lewy (CFL) condition. The scheme has the asymptotic preserving (AP) properties for both diffusive and ballistic regimes, and can present accurate solutions in the whole transition regime as well. The DUGKS is a self-adaptive multiscale method for the capturing of local transport process. Numerical tests for both heat transfers with different Knudsen numbers are presented to validate the current method.
Lattice Boltzmann Simulations in the Slip and Transition Flow Regime with the Peano Framework
Neumann, Philipp
2012-01-01
We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We validate our code by solving two- and three-dimensional channel flow problems and compare our results with respective experiments from other research groups. We further apply our Lattice Boltzmann solver to the geometrical setup of a microreactor consisting of differently sized channels and a reactor chamber. Here, we apply static adaptive grids to fur-ther reduce computational costs. We further investigate the influence of using a simple BGK collision kernel in coarse grid regions which are further away from the slip boundaries. Our results are in good agreement with theory and non-adaptive simulations, demonstrating the validity and the capabilities of our adaptive simulation software for flow problems at finite Knudsen numbers.
Reis, T.
2010-09-06
Existing lattice Boltzmann models that have been designed to recover a macroscopic description of immiscible liquids are only able to make predictions that are quantitatively correct when the interface that exists between the fluids is smeared over several nodal points. Attempts to minimise the thickness of this interface generally leads to a phenomenon known as lattice pinning, the precise cause of which is not well understood. This spurious behaviour is remarkably similar to that associated with the numerical simulation of hyperbolic partial differential equations coupled with a stiff source term. Inspired by the seminal work in this field, we derive a lattice Boltzmann implementation of a model equation used to investigate such peculiarities. This implementation is extended to different spacial discretisations in one and two dimensions. We shown that the inclusion of a quasi-random threshold dramatically delays the onset of pinning and facetting.
Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces.
Zhang, Junfeng; Kwok, Daniel Y
2004-09-14
The moving contact line problem of liquid-vapor interfaces was studied using a mean-field free-energy lattice Boltzmann method recently proposed [Phys. Rev. E 2004, 69, 032602]. We have examined the static and dynamic interfacial behaviors by means of the bubble and capillary wave tests and found that both the Laplace equation of capillarity and the dispersion relation were satisfied. Dynamic contact angles followed the general trend of contact line velocity observed experimentally and can be described by Blake's theory. The velocity fields near the interface were also obtained and are in good agreement with fluid mechanics and molecular dynamics studies. Our simulations demonstrated that incorporating interfacial effects into the lattice Boltzmann model can be a valuable and powerful alternative in interfacial studies.
Evaluation of the Finite Element Lattice Boltzmann Method for Binary Fluid Flows
Matin, Rastin; Hernandez-Garcia, Anier; Mathiesen, Joachim
2016-01-01
In contrast to the commonly used lattice Boltzmann method, off-lattice Boltzmann methods decouple the velocity discretization from the underlying spatial grid, thus allowing for more efficient geometric representations of complex boundaries. The current work combines characteristic-based integration of the streaming step with the free-energy based multiphase model by Lee et. al. [Journal of Computational Physics, 206 (1), 2005 ]. This allows for simulation time steps more than an order of magnitude larger than the relaxation time. Unlike previous work by Wardle et. al. [Computers and Mathematics with Applications, 65 (2), 2013 ] that integrated intermolecular forcing terms in the advection term, the current scheme applies collision and forcing terms locally for a simpler finite element formulation. A series of thorough benchmark studies reveal that this does not compromise stability and that the scheme is able to accurately simulate flows at large density and viscosity contrasts.
Held, M
2015-01-01
A lattice Boltzmann method (LBM) approach to the Charney-Hasegawa-Mima (CHM) model for adiabatic drift wave turbulence in magnetised plasmas, is implemented. The CHM-LBM model contains a barotropic equation of state for the potential, a force term including a cross-product analogous to the Coriolis force in quasigeostrophic models, and a density gradient source term. Expansion of the resulting lattice Boltzmann model equations leads to cold-ion fluid continuity and momentum equations, which resemble CHM dynamics under drift ordering. The resulting numerical solutions of standard test cases (monopole propagation, stable drift modes and decaying turbulence) are compared to results obtained by a conventional finite difference scheme that directly discretizes the CHM equation. The LB scheme resembles characteristic CHM dynamics apart from an additional shear in the density gradient direction. The occuring shear reduces with the drift ratio and is ascribed to the compressible limit of the underlying LBM.
Xie, Dexuan; Jiang, Yi
2016-10-01
The nonlocal dielectric approach has been studied for more than forty years but only limited to water solvent until the recent work of Xie et al. (2013) [20]. As the development of this recent work, in this paper, a nonlocal modified Poisson-Boltzmann equation (NMPBE) is proposed to incorporate nonlocal dielectric effects into the classic Poisson-Boltzmann equation (PBE) for protein in ionic solvent. The focus of this paper is to present an efficient finite element algorithm and a related software package for solving NMPBE. Numerical results are reported to validate this new software package and demonstrate its high performance for protein molecules. They also show the potential of NMPBE as a better predictor of electrostatic solvation and binding free energies than PBE.
Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets
Rubinstein, Robert; Luo, Li-Shi
2007-01-01
In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.
Non-Boltzmann sampling and Bennett's acceptance ratio method: how to profit from bending the rules.
König, Gerhard; Boresch, Stefan
2011-04-30
The exact computation of free energy differences requires adequate sampling of all relevant low energy conformations. Especially in systems with rugged energy surfaces, adequate sampling can only be achieved by biasing the exploration process, thus yielding non-Boltzmann probability distributions. To obtain correct free energy differences from such simulations, it is necessary to account for the effects of the bias in the postproduction analysis. We demonstrate that this can be accomplished quite simply with a slight modification of Bennett's Acceptance Ratio method, referring to this technique as Non-Boltzmann Bennett. We illustrate the method by several examples and show how a creative choice of the biased state(s) used during sampling can also improve the efficiency of free energy simulations.
Bergeron, H.; Curado, E. M. F.; Gazeau, J. P.; Rodrigues, Ligia M. C. S.
2016-02-01
Asymptotic behavior (with respect to the number of trials) of symmetric generalizations of binomial distributions and their related entropies is studied through three examples. The first one has the q-exponential as the generating function, the second one involves the modified Abel polynomials, and the third one has Hermite polynomials. We prove analytically that the Rényi entropy is extensive for these three cases, i.e., it is proportional (asymptotically) to the number n of events and that q-exponential and Hermite cases have also extensive Boltzmann-Gibbs. The Abel case is exceptional in the sense that its Boltzmann-Gibbs entropy is not extensive and behaves asymptotically as the square root of n. This result is obtained numerically and also confirmed analytically, under reasonable assumptions, by using a regularization of the beta function and its derivative. Probabilistic urn and genetic models are presented for illustrating this remarkable case.
Asinari, Pietro
2010-01-01
The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both ...
A unified lattice Boltzmann model for some nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Chai Zhenhua [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Shi Baochang [Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: sbchust@126.com; Zheng Lin [Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2008-05-15
In this paper, a unified and novel lattice Boltzmann model is proposed for solving nonlinear partial differential equation that has the form DU{sub t} + {alpha}UU{sub x} + {beta}U{sup n}U{sub x} - {gamma}U{sub xx} + {delta} U{sub xxx} = F(x,t). Numerical results agree well with the analytical solutions and results derived by existing literature, which indicates the present model is satisfactory and efficient on solving nonlinear partial differential equations.
Coakley, Kevin J.; Qu, Jifeng
2017-04-01
In the electronic measurement of the Boltzmann constant based on Johnson noise thermometry, the ratio of the power spectral densities of thermal noise across a resistor at the triple point of water, and pseudo-random noise synthetically generated by a quantum-accurate voltage-noise source is constant to within 1 part in a billion for frequencies up to 1 GHz. Given knowledge of this ratio, and the values of other parameters that are known or measured, one can determine the Boltzmann constant. Due, in part, to mismatch between transmission lines, the experimental ratio spectrum varies with frequency. We model this spectrum as an even polynomial function of frequency where the constant term in the polynomial determines the Boltzmann constant. When determining this constant (offset) from experimental data, the assumed complexity of the ratio spectrum model and the maximum frequency analyzed (fitting bandwidth) dramatically affects results. Here, we select the complexity of the model by cross-validation—a data-driven statistical learning method. For each of many fitting bandwidths, we determine the component of uncertainty of the offset term that accounts for random and systematic effects associated with imperfect knowledge of model complexity. We select the fitting bandwidth that minimizes this uncertainty. In the most recent measurement of the Boltzmann constant, results were determined, in part, by application of an earlier version of the method described here. Here, we extend the earlier analysis by considering a broader range of fitting bandwidths and quantify an additional component of uncertainty that accounts for imperfect performance of our fitting bandwidth selection method. For idealized simulated data with additive noise similar to experimental data, our method correctly selects the true complexity of the ratio spectrum model for all cases considered. A new analysis of data from the recent experiment yields evidence for a temporal trend in the offset
Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework
Neumann, Philipp
2015-09-01
© 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.
Directory of Open Access Journals (Sweden)
Peilin Zhang
2015-01-01
Full Text Available We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.
Energy Technology Data Exchange (ETDEWEB)
Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp
2011-11-15
A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.
LATTICE BOLTZMANN METHOD SIMULATION ON THE FLOW OF TWO IMMISCIBLE FLUIDS IN COMPLEX GEOMETRY
Institute of Scientific and Technical Information of China (English)
Fang Hai-ping; Wan Rong-zheng; Fan Le-wen
2000-01-01
The multicomponent nonideal gas lattice Boltzmann model byShan and Chen (S-C) can be used to simulate the immiscible fluidflow. In this paper, weshow that the relaxation constant 1 is a necessarycondition for the immiscible fluid flow in the S-C model. In asystem with very complex boundary geometry, for 0.8 1, the S-C model describes the immiscible flow quite well, and=1 is the best.
Boltzmann-Gibbs Distribution of Fortune and Broken Time-Reversible Symmetry in Econodynamics
Ao, P
2005-01-01
Within the description of stochastic differential equations it is argued that the existence of Boltzmann-Gibbs type distribution in economy is independent of the time reversal symmetry in econodynamics. Both power law and exponential distributions can be accommodated by it. The demonstration is based on a mathematical structure discovered during a study in gene regulatory network dynamics. Further possible analogy between equilibrium economy and thermodynamics is explored.
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum l...
On the asymptotic behavior of a boltzmann-type price formation model
Burger, Martin
2014-01-01
In this paper we study the asymptotic behavior of a Boltzmann-type price formation model, which describes the trading dynamics in a financial market. In many of these markets trading happens at high frequencies and low transaction costs. This observation motivates the study of the limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka=const. Furthermore we illustrate the price dynamics with numerical simulations © 2014 International Press.
Steady detonation waves via the Boltzmann equation for a reacting mixture
Conforto, F; Schürrer, F; Ziegler, I
2003-01-01
Based on the Boltzmann equation, the detonation problem is dealt with on a mesoscopic level. The model is based on the assumption that ahead of a shock an explosive gas mixture is in meta stable equilibrium. Starting from the Von Neumann point the chemical reaction, initiated by the pressure jump, proceeds until the chemical equilibrium is reached. Numerical solutions of the derived macroscopic equations as well as the corresponding Hugoniot diagrams which reveal the physical relevance of the mathematical model are provided.
EXISTENCE OF INFINITE ENERGY SOLUTION TO THE INELASTIC BOLTZMANN EQUATION WITH EXTERNAL FORCE
Institute of Scientific and Technical Information of China (English)
Wei Jinbo; Zhang Xianwen
2012-01-01
In this paper,the Cauchy problem for the inelastic Boltzmann equation with external force is considered in the case of initial data with infinite energy.More precisely,under the assumptions on the bicharacteristic generated by external force,we prove the global existence of solution for small initial data compared to the local Maxwellian exp{-p|x-v|2},which has infinite mass and energy.
Inhomogeneous relativistic Boltzmann equation near vacuum in the Robertson-Walker space-time
Takou, Etienne
2016-01-01
In this paper, we consider the Cauchy problem for the relativistic Boltzmann equation with near vacuum initial data where the distribution function depends on the time, the position and the impulsion. The collision kernel considered here is for the hard potentials case and the background space-time in which the study is done is the Robertson-Walker space-time. Unique global (in time) mild solution is obtained in a suitable weighted space.
Fermi-Boltzmann statistics of neutrinos and relativistic effective degrees of freedom
Iizuka, Jun
2014-01-01
We investigate the effect of the presence of non-pure fermonic neutrinos on the relativistic effective degrees of freedom in the early universe. The statistics of neutrinos is translated continuously from Fermi-Dirac to Maxwell-Boltzmann statistics. We find that the relativistic degrees of freedom decreases with the deviation from pure Fermi-Dirac statistics of neutrinos if there are constant and large lepton asymmetries.
Generalized Poisson—Boltzmann Equation Taking into Account Ionic Interaction and Steric Effects
Liu, Xin-Min; Li, Hang; Li, Rui; Tian, Rui; Xu, Chen-Yang
2012-09-01
Generalized Poisson—Boltzmann equation which takes into account both ionic interaction in bulk solution and steric effects of adsorbed ions has been suggested. We found that, for inorganic cations adsorption on negatively charged surface, the steric effect is not significant for surface charge density 0.15 mol/l in bulk solution. We conclude that for most actual cases the original PB equation can give reliable result in describing inorganic cation adsorption.
Numerical simulation of laminar jet-forced flow using lattice Boltzmann method
Institute of Scientific and Technical Information of China (English)
Yuan LI; Ya-li DUAN; Yan GUO; Ru-xun LIU
2009-01-01
In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.
Asinari, P.
2011-03-01
Boltzmann equation is one the most powerful paradigms for explaining transport phenomena in fluids. Since early fifties, it received a lot of attention due to aerodynamic requirements for high altitude vehicles, vacuum technology requirements and nowadays, micro-electro-mechanical systems (MEMs). Because of the intrinsic mathematical complexity of the problem, Boltzmann himself started his work by considering first the case when the distribution function does not depend on space (homogeneous case), but only on time and the magnitude of the molecular velocity (isotropic collisional integral). The interest with regards to the homogeneous isotropic Boltzmann equation goes beyond simple dilute gases. In the so-called econophysics, a Boltzmann type model is sometimes introduced for studying the distribution of wealth in a simple market. Another recent application of the homogeneous isotropic Boltzmann equation is given by opinion formation modeling in quantitative sociology, also called socio-dynamics or sociophysics. The present work [1] aims to improve the deterministic method for solving homogenous isotropic Boltzmann equation proposed by Aristov [2] by two ideas: (a) the homogeneous isotropic problem is reformulated first in terms of particle kinetic energy (this allows one to ensure exact particle number and energy conservation during microscopic collisions) and (b) a DVM-like correction (where DVM stands for Discrete Velocity Model) is adopted for improving the relaxation rates (this allows one to satisfy exactly the conservation laws at macroscopic level, which is particularly important for describing the late dynamics in the relaxation towards the equilibrium).