WorldWideScience

Sample records for bolted friction grip

  1. Finger pad friction and its role in grip and touch

    Science.gov (United States)

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  2. Finger pad friction and its role in grip and touch.

    Science.gov (United States)

    Adams, Michael J; Johnson, Simon A; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-03-06

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick-slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function.

  3. Improved Friction Joint With Self-Locking Grips

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2016-01-01

    Flexible risers are used in the oil industry to transport liquids and gas from the seafloorto extraction and production equipment at the sea surface. Ongoing research aims at using composite materials instead of steel, in order to reduce weight and increase stiffness. Ensuring an optimal load......-depth understanding of the influence between friction, geometrical parameters,and performance, making it possible to optimize the design. Results show that this grip system offers immediate technical applications, in a variety of conditions....

  4. Experimental study of friction in aluminium bolted joints

    Science.gov (United States)

    Croccolo, D.; de Agostinis, M.; Vincenzi, N.

    2010-06-01

    This study aims at developing an experimental tool useful to define accurately the friction coefficients in bolted joints and, therefore, at relating precisely the tightening torque to the bolt preloading force in some special components used in front motorbike suspensions. The components under investigation are some clamped joints made of aluminium alloy. The preloading force is achieved by applying a torque wrench to the bolt head. Some specific specimens have been appropriately designed and realized in order to study the tribological aspects of the tightening phase. Experimental tests have been performed by applying the Design of Experiment (DOE) method in order to obtain a mathematical model for the friction coefficients. Three replicas of a full factorial DOE at two levels for each variable have been carried out. The levels include cast versus forged aluminium alloy, anodized versus spray-painted surface, lubricated versus unlubricated screw, and first tightening (fresh unspoiled surfaces) versus sixth tightening (spoiled surfaces). The study considers M8x1.25 8.8 galvanized screws.

  5. Contact with friction modeling for the study of a bolted junction

    International Nuclear Information System (INIS)

    Lebon, F.; Raous, M.; Boulegues, D.

    1987-01-01

    Many structural analysis problems are concerned by contact phenomena. A good knowledge of the contact displacements and the contact forces between the different parts of the structure is generally essential in structure assembling. The special boundary behaviour has a strong influence on the distribution of the stresses in the whole structure and on his total fiability. The contact behaviour is strongly non linear because of the non penetration conditions on the one hand, and because of the friction on the other. On such problems the real contact zone and the contact forces are unknown 'a priori' and have to be determined during the resolution. The non-penetration is characterized by unilateral conditions and the friction is described by a constitutive law (Coulomb friction law). The application presented here concerns the assembling of the three parts of a bolted junction using a pressing ring. There are three contact zones in this program. A good description of the contact phenomena is essential to ensure tightness. Our methods are based on projection techniques coupled with overrelaxed Gauss-Seidel methods including condensation procedures (reduction of the number of variables). Non linear programming methods and iterative procedures on special boundary conditions are also used. (orig./HP)

  6. Coefficient of friction of dry slash pine and southern red oak on three tension-grip facings

    Science.gov (United States)

    Truett J. Lemoine; Peter Koch

    1974-01-01

    A urethane material proved to have nine times higher static friction coefficient (0.9) than smooth steel (0.1) on radial and tangential wood surfaces pulled parallel to the grain. It is probably superior to 220-grit garnet paper or sand coatings for tension-grip facings in lumber testing machines.

  7. Simple and Reliable Method to Estimate the Fingertip Static Coefficient of Friction in Precision Grip.

    Science.gov (United States)

    Barrea, Allan; Bulens, David Cordova; Lefevre, Philippe; Thonnard, Jean-Louis

    2016-01-01

    The static coefficient of friction (µ static ) plays an important role in dexterous object manipulation. Minimal normal force (i.e., grip force) needed to avoid dropping an object is determined by the tangential force at the fingertip-object contact and the frictional properties of the skin-object contact. Although frequently assumed to be constant for all levels of normal force (NF, the force normal to the contact), µ static actually varies nonlinearly with NF and increases at low NF levels. No method is currently available to measure the relationship between µ static and NF easily. Therefore, we propose a new method allowing the simple and reliable measurement of the fingertip µ static at different NF levels, as well as an algorithm for determining µ static from measured forces and torques. Our method is based on active, back-and-forth movements of a subject's finger on the surface of a fixed six-axis force and torque sensor. µ static is computed as the ratio of the tangential to the normal force at slip onset. A negative power law captures the relationship between µ static and NF. Our method allows the continuous estimation of µ static as a function of NF during dexterous manipulation, based on the relationship between µ static and NF measured before manipulation.

  8. Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface.

    Science.gov (United States)

    Enders, Leah R; Seo, Na Jin

    2011-05-17

    This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (pfriction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Continuous miner and friction bolts play key roles in Highland's move underground

    International Nuclear Information System (INIS)

    Scott, J.J.; Jackson, D.

    1977-01-01

    Exxon has added underground mining operations to the open pits at its Highland uranium mine and mill complex 60 mi northeast of Casper in the Powder River Basin and has, in the process, adopted some innovative mining techniques. A continuous shield miner is being used in conjunction with continuous ground support--thought to be the first truly successful combination of these techniques in a US uranium mine. Highland miners are also making extensive use of ''Split Sets,'' a patented friction rock bolt system invented in 1973, which has proven to be a successful cost-saving substitute for timber supports in Highland's soft, water-saturated, extremely unstable sediments. Initial mine production at Highland began in July 1972, and the mill started up the following October. Design capacity at startup was 2,000 tpd, a figure that has since been expanded to 3,000 tpd through mill modifications but without a major construction program. Current production is about 2 million lb per year of U 3 O 8

  10. Testing of Compact Bolted Fasteners with Insulation and Friction-Enhanced Shims for NCSX

    International Nuclear Information System (INIS)

    Dudek, L.E.; Chrzanowski, J.H.; Gettelfinger, G.; Heitzenroeder, P.; Jurczynski, S.; Viola, M.; Freudenberg, K.

    2009-01-01

    The fastening of the National Compact Stellarator Experiment's (NCSX) modular coils presented a number of engineering and manufacturing challenges due to the high magnetic forces, need to control induced currents, tight tolerances and restrictive space envelope. A fastening method using high strength studs, jack nuts, insulating spacers, bushings and alumina coated shims was developed which met the requirements. A test program was conducted to verify the design. The tests included measurements of flatness of the spacers, determination of contact area, torque vs. tension of the studs and jack nuts, friction coefficient tests on the alumina and G-10 insulators, electrical tests, and tension relaxation tests due to temperature excursions from room temperature to liquid nitrogen temperatures. This paper will describe the design and the results of the test program.

  11. Bolt Stress Monitor

    Science.gov (United States)

    1978-01-01

    In photo, an engineer is using a new Ultrasonic Bolt Stress Monitor developed by NASA's Langley Research Center to determine whether a bolt is properly tightened. A highly accurate device, the monitor is an important tool in construction of such structures as pressure vessels, bridges and power plants, wherein precise measurement of the stress on a tightened bolt is critical. Overtightened or undertightened bolts can fail and cause serious industrial accidents or costly equipment break-downs. There are a number of methods for measuring bolt stress. Most widely used and least costly is the torque wrench, which is inherently inaccurate; it does not take into account the friction between nut and bolt, which has an influence on stress. At the other end of the spectrum, there are accurate stress-measuring systems, but they are expensive and not portable. The battery-powered Langley monitor fills a need; it is inexpensive, lightweight, portable and extremely accurate because it is not subject to friction error. Sound waves are transmitted to the bolt and a return signal is received. As the bolt is tightened, it undergoes changes in resonance due to stress, in the manner that a violin string changes tone when it is tightened. The monitor measures the changes in resonance and provides a reading of real stress on the bolt. The device, patented by NASA, has aroused wide interest and a number of firms have applied for licenses to produce it for the commercial market.

  12. Pneumatic wrench retains or discharges nuts or bolts as desired

    Science.gov (United States)

    Bouille, J. R.

    1966-01-01

    Pneumatic wrench grips, screws or unscrews, and discharges a nut or bolt as desired. The device consists of a standard pneumatic wrench modified with a special hex bolt head socket assembly and a diaphragm air cylinder.

  13. Stud bolt handling equipment for reactor vessel

    International Nuclear Information System (INIS)

    Bunyan, T.W.

    1989-01-01

    Reactor vessel stud bolt handling equipment includes means for transferring a stud bolt to a carrier from a parking station, or vice versa. Preferably a number of stud bolts are handled simultaneously. The transfer means may include cross arms rotatable about extendable columns, and the equipment is mounted on a mobile base for movement into and out of position. Each carrier comprises a tubular socket and an expandable sleeve to grip a stud bolt. (author)

  14. Bolting applications

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1984-05-01

    An investigation of bolting practices specific to the nuclear industry was performed. The report covered a large spectrum of topics e.g., bolts embedded in concrete, specifications, inspection of bolting, both at receipt and inservice. Plots of preload versus yield strength for different bolting materials in different environments are presented as well as information relative to the stress corrosion cracking resistance of the more recent reactor internals bolting materials A286 and Inconel X-750. Part of the report contains input by Standard Pressed Steel Inc. (a bolting consultant) relative to bolting standards, cottering methods and potential areas for bolting improvement

  15. Study of the effects of the hand grip and finger strengths on the friction and petrissage - the massage manipulations - of the students who take massage courses: Kütahya City example

    Directory of Open Access Journals (Sweden)

    Erzeybek Mustafa Said

    2016-01-01

    Full Text Available In this research, the effect of the hand grip and finger strengths on the power development between the friction and petrissage techniques - the massage manipulations - have been studied. To the study that has been structured as a single group pretest/post test, 36 healthy males who are the students of the University of Dumlupınar, Academy of Physical Education and Sports and who take massage courses (age = 19.72 ± 1.56 years (average ± Sd have been included. The practical massage course has continued for 12 weeks, two days a week for a total of one hour and the hand grip strength of both hands (right hand grip strength = RHG, left hand grip strength = LHG and the grip strength of both fingers (right finger strength = RF, left finger strength = LF have been recorded at the beginning. For the measurements carried out before and later of the study with regard to the hand grip strength, a Takkei branded hand dynamometer and with regard to the finger grip strength a (baseline branded pinch meter have been used. All measurements have been repeated twice and for the analysis, the average values obtained from two deads have been used. For statistical analysis, with regard to the changes in the pre test-post test finger strength and hand grip strength, paired-samples t test has been used. The significance limit has been defined as p0.05. It is possible to report that massaging regularly with both hands is efficient for the development of the finger and hand grip strengths; especially, with regard to the friction (circular movements that are generally carried out with fingers and petrissage (kneading that is generally carried out with the palm techniques.

  16. A Strain-Based Method to Detect Tires’ Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development

    Directory of Open Access Journals (Sweden)

    Jorge Yunta

    2018-02-01

    Full Text Available Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire’s loss of grip and estimations of the lateral friction coefficient.

  17. A Strain-Based Method to Detect Tires' Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development.

    Science.gov (United States)

    Yunta, Jorge; Garcia-Pozuelo, Daniel; Diaz, Vicente; Olatunbosun, Oluremi

    2018-02-06

    Tires are a key sub-system of vehicles that have a big responsibility for comfort, fuel consumption and traffic safety. However, current tires are just passive rubber elements which do not contribute actively to improve the driving experience or vehicle safety. The lack of information from the tire during driving gives cause for developing an intelligent tire. Therefore, the aim of the intelligent tire is to monitor tire working conditions in real-time, providing useful information to other systems and becoming an active system. In this paper, tire tread deformation is measured to provide a strong experimental base with different experiments and test results by means of a tire fitted with sensors. Tests under different working conditions such as vertical load or slip angle have been carried out with an indoor tire test rig. The experimental data analysis shows the strong relation that exists between lateral force and the maximum tensile and compressive strain peaks when the tire is not working at the limit of grip. In the last section, an estimation system from experimental data has been developed and implemented in Simulink to show the potential of strain sensors for developing intelligent tire systems, obtaining as major results a signal to detect tire's loss of grip and estimations of the lateral friction coefficient.

  18. Road grip test in Arjeplog

    OpenAIRE

    Engström, Niclas; Andrén, Henrik; Nybacka, Mikael; Fransson, Lennart; Larsson, Roland

    2008-01-01

    The Swedish road administration sees a need to improve the road grip estimation capacity for the Swedish road system. The challenge is to find methods to measure road grip fast and reliable. There where six different system types at the tests in Arjeplog, three continuous, two system measuring road grip through deceleration and one system based on GPS and accelerometers. Two system types used air craft runway tires. The other systems used either studded winter tires or friction winter tires. ...

  19. Bolt Shear Force Sensor

    Science.gov (United States)

    2015-03-12

    0030] FIG. 7 is an isometric view of a deformable ring of the bolt shear force sensor of the present invention with an optical Attorney Docket No...102587 9 of 19 fiber having Bragg gratings wound around the ring; [0031] FIG. 8 is an isometric view of the deformable ring with wire strain... strength . [0047] Once the joint is subjected to an external load (see force arrows “F” and “F/2”); any frictional resistance to slip is overcome and

  20. Friction

    Science.gov (United States)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to

  1. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    Science.gov (United States)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  2. Fatigue-Arrestor Bolts

    Science.gov (United States)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  3. A Mathematical Model for Temperature Induced Loosening due to Radial Expansion of Rectangle Thread Bolted Joints

    Directory of Open Access Journals (Sweden)

    Shiyuan Hou

    2015-01-01

    Full Text Available This paper proposed a mathematical model to investigate the radial expansion induced loosening of rectangle thread bolted joints that were subjected to cyclic temperature variation, which could cause slippage between contact pairs of engaged threads and bolt bearing. Firstly, integral equations were derived for the shear stress components caused by expansion difference, as well as the bearing and thread friction torque components, which depended on the temperature variation. Secondly, the relationship of displacement components was developed based on quasi-static hypotheses. Then, treating the rotation of bolt as plastic elongation, the bolt tension's evolution was obtained by using a one-dimensional bolted joint model. Numerical results showed that the temperature variation decreased the bearing and thread friction torque components, which could lead bolted joint to loosen. Finally, the effects of some associated factors on the progress were discussed.

  4. Optimization of Bolt Stress

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with ISO metric thread design is examined and optimized. The assumed failure mode is fatigue so the applied preload and the load amplitude together with the stress concentrations define the connection strength. Maximum stress in the bolt is found at, the fillet...... under the head, at the thread start or at the thread root. To minimize the stress concentration shape optimization is applied....

  5. Overall bolt stress optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2013-01-01

    The state of stress in bolts and nuts with International Organization for Standardization metric thread design is examined and optimized. The assumed failure mode is fatigue, so the applied preload and the load amplitude together with the stress concentrations define the connection strength....... Maximum stress in the bolt is found at the fillet under the head, at the thread start, or at the thread root. To minimize the stress concentration, shape optimization is applied. Nut shape optimization also has a positive effect on the maximum stress. The optimization results show that designing a nut......, which results in a more evenly distribution of load along the engaged thread, has a limited influence on the maximum stress due to the stress concentration at the first thread root. To further reduce the maximum stress, the transition from bolt shank to the thread must be optimized. Stress reduction...

  6. Bolting multicenter solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette Cedex (France); Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex (France); Katmadas, Stefanos; Turton, David [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette Cedex (France)

    2017-01-30

    We introduce a solvable system of equations that describes non-extremal multicenter solutions to six-dimensional ungauged supergravity coupled to tensor multiplets. The system involves a set of functions on a three-dimensional base metric. We obtain a family of non-extremal axisymmetric solutions that generalize the known multicenter extremal solutions, using a particular base metric that introduces a bolt. We analyze the conditions for regularity, and in doing so we show that this family does not include solutions that contain an extremal black hole and a smooth bolt. We determine the constraints that are necessary to obtain smooth horizonless solutions involving a bolt and an arbitrary number of Gibbons-Hawking centers.

  7. Bolt and nut evaluator

    Science.gov (United States)

    Kerley, James J.; Burkhardt, Raymond; White, Steven

    1994-02-01

    A device for testing fasteners such as nuts and bolts is described which consists of a fixed base plate having a number of threaded and unthreaded holes of varying size for receiving the fasteners to be tested, a torque marking paper taped on top the fixed base plate for marking torque-angle indicia, a torque wrench for applying torque to the fasteners being tested, and an indicator for showing the torque applied to the fastener. These elements provide a low cost, nondestructive device for verifying the strength of bolts and nuts.

  8. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J.H. [ESB, Power Generation, Dublin (Ireland)

    1998-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  9. Turbine casing bolts; a life assessment and bolt replacement strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J H [ESB, Power Generation, Dublin (Ireland)

    1999-12-31

    The present presentation describes a detailed study concerning the life assessment and replacement strategy of large turbine casing bolts in a 120 MW steam raising unit. After 122000 hours service, circa 1991/92, the Cr-Mo-V steel casing bolts, involving a total of 184 bolts, from two identical 120 MW units, termed Units 1 and 2, were examined to establish the extent of Reverse Temper Embrittlement, RTE, and creep damage suffered during service. The bolt replacement plans for the two units were as follows; Unit 1 bolts were completely replaced with new bolts while Unit 2 embrittled bolts were withdrawn from service and replaced with Non- Embrittled bolts from Unit 1; basically Unit 2 bolts were made up from a mixture of Unit 1 and 2 Non- Embrittled bolts which had been in service for 122000 hours. Remnant life assessments, concerning both embrittlement and creep damage aspects, were earned out on this series of easing bolts at service times 122000, 150000 and 200000 hours. These assessments involved the use of general embrittlement and creep damage laws which were empirically derived and concerned such parameters as microstructural grain size, bulk phosphorus content and accumulated service strain. (orig.) 7 refs.

  10. Bolt beam propagation analysis

    Science.gov (United States)

    Shokair, I. R.

    BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.

  11. Hand grip strength

    DEFF Research Database (Denmark)

    Frederiksen, Henrik; Gaist, David; Petersen, Hans Christian

    2002-01-01

    in life is a major problem in terms of prevalence, morbidity, functional limitations, and quality of life. It is therefore of interest to find a phenotype reflecting physical functioning which has a relatively high heritability and which can be measured in large samples. Hand grip strength is known......-55%). A powerful design to detect genes associated with a phenotype is obtained using the extreme discordant and concordant sib pairs, of whom 28 and 77 dizygotic twin pairs, respectively, were found in this study. Hence grip strength is a suitable phenotype for identifying genetic variants of importance to mid...

  12. Bolt Thread Stress Optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2012-01-01

    of threads and therefore indirectly the bolt fatigue life. The root shape is circular, and from shape optimization for minimum stress concentration it is well known that the circular shape is seldom optimal. An axisymmetric Finite Element (FE) formulation is used to analyze the bolted connection, and a study...... is performed to establish the need for contact modeling with regard to finding the correct stress concentration factor. Optimization is performed with a simple parameterization with two design variables. Stress reduction of up to 9% is found in the optimization process, and some similarities are found...... in the optimized designs leading to the proposal of a new standard. The reductions in the stress are achieved by rather simple changes made to the cutting tool....

  13. GRIP CAMPAIGN REPORTS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Campaign Reports dataset consists of various reports filed by scientists during the GRIP campaign which took place 8/15/2010 - 9/30/2010; however, several...

  14. 46 CFR 56.25-20 - Bolting.

    Science.gov (United States)

    2010-10-01

    ..., Blanks, Flange Facings, Gaskets, and Bolting § 56.25-20 Bolting. (a) General. (1) Bolts, studs, nuts, and....01-2). (2) Bolts and studs must extend completely through the nuts. (3) See § 58.30-15(c) of this... steel stud bolts must be threaded full length or, if desired, may have reduced shanks of a diameter not...

  15. 30 CFR 75.204 - Roof bolting.

    Science.gov (United States)

    2010-07-01

    ... accessories addressed in ASTM F432-95, “Standard Specification for Roof and Rock Bolts and Accessories,” the.... (4) In each roof bolting cycle, the actual torque or tension of the first tensioned roof bolt... during each roof bolting cycle shall be tested during or immediately after the first row of bolts has...

  16. Grip Analysis of Road Surface and Tire Footprint Using FEM

    Science.gov (United States)

    Sabri, M.; Abda, S.

    2018-02-01

    Road grip involve a touch between road pavement and the tire tread pattern. The load bearing surface, which depends on pavement roughness and local pressures in the contact patch. This research conducted to develop a Finite element model for simulating the experimentally testing of asphalt in Jl. AH Nasution Medan, North Sumatera Indonesia base on the value of grip coefficient from various tire loads and the various speed of the vehicle during contact to the road. A tire model and road pavement are developed for the analyses the geometry of tire footprint. The results showed that the greater the mass of car will increase grip coefficient. The coefficient of grip on the road surface contact trough the tire footprint strongly influence the kinetic coefficient of friction at certain speeds. Experimentally show that Concrete road grip coefficient of more than 34% compared to the asphalt road at the same IRI parameters (6-8). Kinetic friction coefficient more than 0.33 was obtained in a asphalt path at a speed of 30-40 Km/hour.

  17. Inexpensive Bolt-Load Gage

    Science.gov (United States)

    Long, M. J.

    1983-01-01

    "Built-in" gage determines whether large bolt or stud has been torqued to desired load and provides for continuous inspection to ensure proper load is being maintained. Gage detects longitudinal stress/strain bolt; requires no electronic or sonic test equipment.

  18. Influence of the gripping fixture on the modified compact tension test results: Evaluation of the experiments on cylindrical concrete specimens

    Czech Academy of Sciences Publication Activity Database

    Holušová, T.; Lozano, M.; Canteli, A.; Komárková, T.; Kocáb, D.; Seitl, Stanislav

    2015-01-01

    Roč. 15, č. 2 (2015) ISSN 1804-4824 Institutional support: RVO:68081723 Keywords : Modified compact tension test * fracture parametr * Cementitious composites * Aramis measurement * grips Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Enter the Gripping Beast

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2012-01-01

    on innovations. Mostly, however, the time-resolution of archaeological data is too coarse-grained to allow us to grasp this potential to the full. In the period c. AD 790-850 a distinctly new artistic motif, the Gripping Beast, emerged in Scandinavia. A series of narrowly dated contexts provide anchor points......, which allows us to chart this innovation process and to point out some of the locations where this development took place; the reception of the mew motif is traced in grave finds across Scandinavia. This allows us to follow an early medieval innovation through the human-material interactions of an actor-network....

  20. Ultrasonic extensometer measures bolt preload

    Science.gov (United States)

    Daniels, C. M., Jr.

    1978-01-01

    Extensometer using ultrasonic pulse reflections to measure elongations in tightened belts and studs is much more accurate than conventional torque wrenches in application of specified preload to bolts and other threaded fasteners.

  1. External Coulomb-Friction Damping For Hydrostatic Bearings

    Science.gov (United States)

    Buckmann, Paul S.

    1992-01-01

    External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.

  2. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  3. Grip for sawing round timber

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    This paper describes a device development at Gedling Colliery, Nottinghamshire Area, United Kingdom. It is a gripping attachment, designed to overcome the safety hazards involved in cross cutting timbers with a circular saw.

  4. Quick-Connect, Slow-Disconnect Bolt

    Science.gov (United States)

    Weddendorf, Bruce

    1995-01-01

    Proposed bolt functions similarly to device described in article "Quick-Connect, Slow-Disconnect Nut" (MFS-28833). Bolt installed in standard threaded hole simply by pushing it into hole. Once inserted, bolt withdrawn only by turning it in conventional way.

  5. Neutron generation in lightning bolts

    International Nuclear Information System (INIS)

    Shah, G.N.; Razdan, H.; Bhat, C.L.; Ali, Q.M.

    1985-01-01

    To ascertain neutron generation in lightning bolts, the authors have searched for neutrons from individual lightning strokes, for a time-interval comparable with the duration of the lightning stroke. 10 7 -10 10 neutrons per stroke were found, thus providing the first experimental evidence that neutrons are generated in lightning discharges. (U.K.)

  6. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1986-01-01

    Laboratory experiments performed at Brookhaven National Laboratory have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of approximately 3.5mm per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant-lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. (author)

  7. Investigation of corrosion and stress corrosion cracking in bolting materials on light water reactors

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    Laboratory experiments performed at BNL have shown that the concentration of boric acid to a moist paste at approximately the boiling point of water can produce corrosion rates of the order of several tenths of an inch per year on bolting and piping materials, which values are consistent with service experience. Other failure evaluation experience has shown that primary coolant/lubricant interaction may lead to stress corrosion cracking (SCC) of steam generator manway studs. An investigation was also performed on eleven lubricants and their effects on A193 B7 and A540 B24 bolting materials. H 2 S generation by the lubricants, coefficient of friction results and transgranular SCC of the bolting materials in steam are discussed. 13 refs

  8. Conveyor system bolt failure analysis

    International Nuclear Information System (INIS)

    McCutcheon, S.H.; Waaser, R.E.

    1981-07-01

    The Savannah River Plant (SRP) is operated for the U.S. Department of Energy (DOE) by E.I. du Pont de Nemours and Co. Reactors at SRP are used to produce nuclear isotopes for national defense. As part of the routine operation of each of the reactors, irradiated fuel assemblies are remotely discharged from the reactor, transferred in air, and placed underwater in a Deposit and Exit (D and E) canal. The D and E conveyor transports the assemblies under the reactor room wall into the disassembly basin, where they are stored for several months before shipment to the separations areas. On August 13, 1980, a broken bolt was discovered on the D and E conveyor during a routine pre-operational inspection. The failed bolt was one of four which anchor a bearing on one of the conveyor drive shafts. All four of the bolts on the affected bearing were replaced as an immediate corrective measure and the discharge of irradiated fuel assemblies was subsequently completed without difficulty

  9. Anticorrosion protection of strength bolts

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2012-01-01

    Full Text Available Corrosion damage may, from the technical point of view, cause changes in mechanical and physical characteristics in particular, at the same time it may also cause changes in surface geometry. These aspects are likely to manifest themselves in all steel parts. The presented study looks at corrosion protection in bolts and bolt connections protected by metal coating based on zinc.Four different types of passivation, easily accessible on the Czech market, have been selected for this experiment. They are as follows: first, galvanic plating using white zinc; second, galvanic plating using yellow zinc; third, hot dip galvanizing; fourth, specific type of plating using the technology Dacromet 500 LC. In order to compare the given parameters there have been selected a unified M bolt size of 8 × 30 mm. The experimental part of this study can be further divided into two phases. The initial phase puts stress on the exact specification of the protection layer, namely, the analysis and establishment of the elemental compositon contained in the given coating, its microhardness, weight and thickness. The second phase of the experiment analyses the results of tests according to the norm ČSN ISO 9227 (Salt Fog Test and ČSN ISO 6988 (Sulphur Dioxide Test. With the tests we have concentrated on the initial stages of corrosion degradation and its overall process.

  10. Professional users handbook for rock bolting

    Energy Technology Data Exchange (ETDEWEB)

    Stillborg, B.

    1986-01-01

    The paper is a practical handbook which reviews the basic principles of rock bolting and sets out the design considerations used for most types of rockbolts in current use. It discusses the characteristics of these bolts and gives information on installation procedures and the observations and measurement of rockbolt performance. Rockbolting is considered under the following chapter headings: review of typical rockbolt systems; rockbolt installation; testing of rockbolts; design considerations; design of rock reinforcement; monitoring; cost of rock bolting; and Atlas Lopco auxillary equipment for rock bolting. 45 refs.

  11. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    Science.gov (United States)

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P values than the Baseline hydraulic dynamometer (P values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used, assessment posture, and elbow position. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  12. Anchor Bolt Position in Base Plate In Terms Of T and J Anchor Bolt

    Directory of Open Access Journals (Sweden)

    b Osman Mohamad Hairi

    2017-01-01

    Full Text Available Generally, L anchor bolt system has been used for a long period of time in construction industry as one of the distributing load structures. However, there are some weaknesses in L anchor bolt which may straighten and pullup when charged with tensile load. Current practices prefer to use other types of anchor bolt systems, such as headed studs anchor bolt system to replace the L anchor bolt design. There has been lack of studies to prove that it is more effective in terms of performance. A new T anchor bolt which was basically modified from headed studs anchor bolt was proposed in this study to compare its performance of tensile loading in concrete failure to typical L design. This study aims to determine whether the T anchor bolt system gives better performance as compared to an L anchor bolt system. The performance was rated based on tensile loading on concrete failure pattern. A pullout test was conducted on two different anchor bolt systems, namely L and T. The anchor bolt embedded depth, h in concrete were varied according to their hook or bend radius. Each sample was repeated twice. There were totally eight samples. The hook or bend radius used were 50 mm and 57.5 mm for sample L1 and L2, respectively. 90-degree bend were used on sample T1 and T2. Based on test results, it can be seen that the performance of concrete failure pattern under tensile load on both L and T anchor bolt design samples with 200 mm embedment depth was better than deeper embedment depth of 230 mm. But the L anchor bolt design gives the best results as compared to T design. Although T anchor bolt design shows higher resistance before first bond failure to the concrete sample. T anchor bolt was analysed and needed deeper embedment depth to allow formation of cone pull-out shape to acquire better performance.

  13. Bolt-loosening identification of bolt connections by vision image-based technique

    Science.gov (United States)

    Nguyen, Tuan-Cuong; Huynh, Thanh-Canh; Ryu, Joo-Young; Park, Jae-Hyung; Kim, Jeong-Tae

    2016-04-01

    In this study, an algorithm using image processing techniques is proposed to identify bolt-loosening in bolted connections of steel structures. Its basic concept is to identify rotation angles of nuts from a pictured image, and is mainly consisted of the following 3 steps: (1) taking a picture for a bolt joint, (2) segmenting the images for each nut by image processing techniques, and (3) identifying rotation angle of each nut and detecting bolt-loosening. By using the concept, an algorithm is designed for continuous monitoring and inspection of the bolt connections. As a key imageprocessing technique, Hough transform is used to identify rotation angles of nuts, and then bolt-loosening is detected by comparing the angles before and after bolt-loosening. Then the applicability of the proposed algorithm is evaluated by experimental tests for two lab-scaled models. A bolted joint model which consists of a splice plate and 8 sets of bolts and nuts with 2×4 array is used to simulate inspection of bridge connections, and a model which is consisted of a ring flange and 32 sets of bolt and nut is used to simulate continuous monitoring of bolted connections in wind turbine towers.

  14. 5/8'' baffle bolt replacement

    International Nuclear Information System (INIS)

    Pinaud, T.; Grypczynski, D.

    1999-01-01

    Both Framatome Nuclear Services in France and its U.S. arm, FT1, are now equipped with baffle bolt inspection and replacement packages. These packages allow them to tackle baffle bold degradation on both two- and three-loop nuclear power plants. Framatome and FT1 together are world leaders in addressing reactor vessel internal bolting concerns

  15. Automation of strata bolting in iron mines

    Energy Technology Data Exchange (ETDEWEB)

    Belin, M; Lethuaire, M

    1978-01-01

    The Moyeure iron mine (Lorraine), with an output of 16,000 t/day, works 2 seams separated by a dirt band 6.50 m thick. The tyre-mounted Diesel Secoma jumbo for bolting operations can insert resin-embedded bolts 1.70 m in length. The jumbo is fitted with a standard universal boom with two settings - one for drilling and one for bolting. As the operator has to work in the unbolted zone in order to offer up the bolt on the boom and insert the resin cartridge, the mine in conjunction with the manufacturers, Secoma, have improved the safety and performance of the machine by adding three special attachments to the standard boom: a reamer, a resin-injection system and a bolt supply-magazine. Gives details of the results achieved. (In French)

  16. Experimental Study on Bond-Slip Behavior of Bamboo Bolt-Modified Slurry Interface under Pull-Out Load

    Directory of Open Access Journals (Sweden)

    Wei Lu

    2018-01-01

    Full Text Available This paper presents an analysis of bamboo bolt-modified slurry interfaces based on 26 in situ axial pull-out tests intended to highlight the mechanical behavior of interface under a fracture mode. Three impact factors are analyzed: anchorage length, bolt diameter, and bolt hole diameter, using the same materials of bamboo and modified slurry. The result shows that the interface between the bamboo bolt and anchoring agent is the control interface of an anchorage system, and the local behavior of the interface involves four stages: elastic, soften, friction, and decoupling. Distribution law and change trend of slippage, stress, and strain of anchoring interface along with the axial direction of an anchor bolt were analyzed. The result shows that there is effective anchoring length limit in this kind of interface, and that the complete decoupling phenomenon should not be neglected. Through a comparative analysis of the existing bond-slip model and interface bond-slip curve, and considering the correspondence of the strain-slip curve and trilinear bond-slip model simultaneously, a modified trilinear bond-slip model has been proposed. The friction section of this model is limited, and shearing stress in the complete decoupling section is zero.

  17. Optimal tightening process of bolted joints

    Directory of Open Access Journals (Sweden)

    Monville Jean-Michel

    2016-01-01

    Full Text Available Threaded fasteners were developed long time (let’s remember that Archimedes – 287-212 BC – invented the water screw. Nowadays, bolted joints are used in almost all sectors of the industry. But in spite of having been an important machine part for centuries, problems may be encountered with them. They are so common that they are taken for granted and too often, not analyzed as deeply as it should be. The wrong tightening is one of the most frequent causes of ductile rupture and by far the most frequent cause of fatigue failure. The tightening operation is never easy. It is necessary to pay particular attention to the choice of the tightening tool, the process and the control method. The tightening operation may itself cause damage on parts. The tightening load must not be too low, or excessive or not equally distributed among the bolts. These three defects can even be made on the same bolted joint! This impacts badly the performance of the assembly and leads to a shorter lifespan. If insufficient precautions are taken, the real tightening preload on all the bolts will not fit well with the requirements and would be badly distributed. Consequently, the practical conditions are quite different from the hypothesizes which are taken for the initial calculations (analytics or FEM at the design stage. Thus, the results of the calculations of bolted joints cannot be considered as accurate and reliable. Practically, there are several means to tighten a bolt. The two ways most frequently used are torque wrench and hydraulic bolt tensioner. Torque wrench involves exerting a torque to the bolt head or the nut. Hydraulic bolt tensioner applies a traction load directly on the bolt. It is well known that bolt tensioners give better accuracy and homogeneity in the final tightening load than the torque method, but the tension load applied with the tensioner must be higher than the final remaining tightening load. So, the paper focusses on the hydraulic

  18. Self-healing bolted joint employing a shape memory actuator

    Science.gov (United States)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  19. 21 CFR 137.280 - Bolted yellow corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that cleaned...

  20. Taub–Bolt heat engines

    Science.gov (United States)

    Johnson, Clifford V.

    2018-02-01

    It is shown that aspects of the extended thermodynamic properties of the Taub–Bolt–AdS spacetime in four dimensions are similar to those of the Schwarzschild–AdS black hole. In a high temperature expansion, the equations of state begin to deviate only at next-to-subleading orders. By analogy with what has been done for black holes, Taub–Bolt’s thermodynamic equations are used to define holographic heat engines, the first examples of gravitational heat engines defined using a spacetime that is not a black hole. As a further comparison, the Taub–Bolt engine efficiency is computed for two special kinds of engine cycle and compared to the results for analogous Schwarzschild black hole engine cycles.

  1. Why pens have rubbery grips

    Science.gov (United States)

    Dzidek, Brygida; Bochereau, Séréna; Johnson, Simon A.; Hayward, Vincent; Adams, Michael J.

    2017-10-01

    The process by which human fingers gives rise to stable contacts with smooth, hard objects is surprisingly slow. Using high-resolution imaging, we found that, when pressed against glass, the actual contact made by finger pad ridges evolved over time following a first-order kinetics relationship. This evolution was the result of a two-stage coalescence process of microscopic junctions made between the keratin of the stratum corneum of the skin and the glass surface. This process was driven by the secretion of moisture from the sweat glands, since increased hydration in stratum corneum causes it to become softer. Saturation was typically reached within 20 s of loading the contact, regardless of the initial moisture state of the finger and of the normal force applied. Hence, the gross contact area, frequently used as a benchmark quantity in grip and perceptual studies, is a poor reflection of the actual contact mechanics that take place between human fingers and smooth, impermeable surfaces. In contrast, the formation of a steady-state contact area is almost instantaneous if the counter surface is soft relative to keratin in a dry state. It is for this reason that elastomers are commonly used to coat grip surfaces.

  2. Computerized UT system for stud bolt

    International Nuclear Information System (INIS)

    Kisanuki, T.; Uchida, K.; Fushimi, T.; Onda, K.

    1988-01-01

    Cracking of stud bolts used in steam turbine casing, valve and pressure vessel has caused concern regarding the safety and reliability of power plants. In order to detect harmful cracks in early state, the improvement of UT technique is required. As regarding the ultrasonic inspection technique, a longitudinal beam technique and/or an angle beam technique are generally used. The authors report their development of a computerized UT system for bolt inspection and improvement of the angle beam technique

  3. Evaluation of Many Load Tests of Passive Rock Bolts in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Holý Ondřej

    2017-03-01

    Full Text Available Within the research project “FR-TI4/329 Research and development - creating an application system for the design and analysis of soil and rock anchors including the development of monitoring elements”, an extensive stage of field load tests of rock bolts was carried out. The tests were conducted at 14 locations with varied rock composition. Before the initial tests, a loading stand was designed and constructed. A total of 201 pieces of tensile tests of bolts having lengths from 0.5 up to 2.5 m, a diameter of 22-32 mm, were performed. These were fully threaded rods, self-drilling rods, and fiberglass rods. The bolts were clamped into the cement and resin. The loading tests were always performed until material failure of bolts or shear stress failure at the interface cement-rock. At each location, basic geotechnical survey was carried out in the form of core drilling in a length of 3.0 metres with the assessment of the rock mass in situ, and laboratory testing of rock mechanics. Upon the completion of testing protocols, rock mass properties analysis was performed focusing on the evaluation of shear friction at the grouting-rock interface.

  4. Stress analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.; Hsu, S.T.

    1993-01-01

    This report specifies the requirements and criteria for stress analysis of closure bolts for shipping casks containing nuclear spent fuels or high level radioactive materials. The specification is based on existing information conceming the structural behavior, analysis, and design of bolted joints. The approach taken was to extend the ASME Boiler and Pressure Vessel Code requirements and criteria for bolting analysis of nuclear piping and pressure vessels to include the appropriate design and load characteristics of the shipping cask. The characteristics considered are large, flat, closure lids with metal-to-metal contact within the bolted joint; significant temperature and impact loads; and possible prying and bending effects. Specific formulas and procedures developed apply to the bolt stress analysis of a circular, flat, bolted closure. The report also includes critical load cases and desirable design practices for the bolted closure, an in-depth review of the structural behavior of bolted joints, and a comprehensive bibliography of current information on bolted joints

  5. Perspectives of roof bolt use in the Kuzbass

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, A P

    1983-10-01

    Use of roof bolting for strata control in mine roadways and underground chambers in Kuzbass mines is discussed. Use of roof bolting in the Kuzbass is increasing. In 1982 roof bolting was used in 50% of workings driven in the basin; in 15 coal mines roof bolting was the predominant method for strata control. Use of roof bolting rather than timber props permitted advance rate of mine drivage in the Kuzbass to be increased by 1.5-2.0 times. Interaction between roof bolts and rock strata is analyzed. The following bolt types are considered: timber roof bolts, steel expansion shell bolts and thread bar bolts. Bolt design is shown, along with methods for roof bolt installation in roadways and chambers. Roof bolting during level, inclined or steep seam mining, for strata control at junctions of working faces with gate roads, at junctions of 2 roadways, in coal chutes, in hydraulic mines, during thick seam slicing with hardening stowing and longwall mining with hydraulic stowing is analyzed. Effects of roof bolting on strata control efficiency in steep coal mines employing AShchM systems are evaluated.

  6. Thermomechanical behaviour of bolted assemblies

    International Nuclear Information System (INIS)

    Scliffet, L.

    1995-01-01

    This paper presents first results obtained in an R and D study on the thermomechanical behaviour of bolted assemblies. Thermal shocks during operating transients both severely distort such assemblies and cause variations in stud pre-loads. So during a hot shock, the thermal gradient in the flange induced over-tightening due to the differential thermal expansion involved. Over-tightening can reach 70% of the nominal value, usually after 10 to 15 mn, after which the stress relaxes as soon as the heating affects the stud. A series of hot shocks causes assembly fatigue, notably resulting in thread plasticization, making it impossible to tighten the studs. In the case of cold transients, the reverse phenomenon is observed. The hot flange contracts sharply upon contact with the cold fluid, causing stress relief in the expanded studs. The resulting loss of tensile stress, which reaches up to 50%, can then cause severe leakage, especially if the nominal tightening capacity is already impaired. The study presented is based on tests and modelling. (author). 16 figs

  7. Testing of nuclear grade lubricants and their effects on A540 B24 and A193 B7 bolting materials

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1985-01-01

    An investigation was performed on eleven commonly used lubricants by the nuclear power industry. The investigation included EDS analysis of the lubricants, notched-tensile constant extension rate testing of bolting materials with the lubricants, frictional testing of the lubricants and weight loss testing of a bonded solid film lubricant. The report generally concludes that there is a significant amount of variance in the mechanical properties of common bolting materials; that MoS 2 can hydrolyze to form H 2 S at 100 0 C and cause stress corrosion cracking (SCC) of bolting materials, and that the use of copper-containing lubricants can be potentially detrimental to high strength steels in an aqueous environment. Additionally, the testing of various lubricants disclosed that some lubricants contain potentially detrimental elements (e.g. S, Sb) which can promote SCC of the common bolting materials. One of the most significant findings of this report is the observation that both A193 B7 and A540 B24 bolting materials are susceptible to transgranular stress corrosion cracking in demineralized H 2 O at 280 0 C in notched tensile tests

  8. TEM investigation of plant-irradiated NPP bolt material

    International Nuclear Information System (INIS)

    Pakarinen, J.; Ehrnsten, U.; Keinaenen, H.; Karlsen, W.; Karlsen, T.

    2015-01-01

    Analytical transmission electron microscopy (ATEM) was used to examine irradiation-induced damage in material removed from two different bolts from two different nuclear power plants. One section came from a French PWR, was made of CW AISI 316, and included a section of the bolt that had accumulated a dose of approximately 15 dpa during 19 operation cycles at 350 - 390 C. degrees. Another section came from a VVER bolt that was removed from the plant due to indications found in non-destructive examinations (NDE). The VVER bolt was made of solution annealed titanium stabilized 0X18H10T (corresponding to Type AISI 321) and had accumulated a fluence of 2.9 dpa. During the removal of that bolt, it was found that the bolt washer had been inappropriately spot welded to the shielding plate during assembly. Destructive investigations showed that the bolt had two large intergranular cracks, and the TEM samples were prepared from the material adjacent to those cracks. The PWR bolt had not failed, although cracks in the bolts with a similar history had been found previously. The fluence for the cold-worked AISI 316 PWR bolt was estimated to be about 15 dpa. Both the examined bolts showed a clear radiation induced segregation of alloying elements at the grain boundaries (GB-RIS), the presence of dislocation loops, the formation of precipitates, and linear deformation microstructures. Additionally, voids were found from the PWR bolt and the VVER bolt had a high density of dislocations. (authors)

  9. Decision Fusion System for Bolted Joint Monitoring

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-01-01

    Full Text Available Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

  10. GRIP HURRICANE IMAGING RADIOMETER (HIRAD) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Hurricane Imaging Radiometer (HIRAD) V1 dataset contains measurements of brightness temperature taken at 4, 5, 6 and 6.6 GHz, as well as MERRA 2 m wind...

  11. GRIP LIGHTNING INSTRUMENT PACKAGE (LIP) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lightning Instrument Package (LIP) dataset was collected by the Lightning Instrument Package (LIP), which consists of 6 rotating vane type electric field...

  12. GRIP FLIGHT TRACKS AND ANIMATIONS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Flight Tracks and Animations dataset includes both KML files and animation files. The KML files use Google Earth to show the flight tracks on a map. The...

  13. Adjustment of gripping force by optical systems

    Science.gov (United States)

    Jalba, C. K.; Barz, C.

    2018-01-01

    With increasing automation, robotics also requires ever more intelligent solutions in the handling of various tasks. In this context, many grippers must also be re-designed. For this, they must always be adapted for different requirements. The equipment of the gripper systems with sensors should help to make the gripping process more intelligent. In order to achieve such objectives, optical systems can also be used. This work analyzes how the gripping force can be adjusted by means of an optical recognition. The result of this work is the creation of a connection between optical recognition, tolerances, gripping force and real-time control. In this way, algorithms can be created, with the aid of which robot grippers as well as other gripping systems become more intelligent.

  14. More Nuts and Bolts of Michaelis-Menten Enzyme Kinetics

    Science.gov (United States)

    Lechner, Joseph H.

    2011-01-01

    Several additions to a classroom activity are proposed in which an "enzyme" (the student) converts "substrates" (nut-bolt assemblies) into "products" (separated nuts and bolts) by unscrewing them. (Contains 1 table.)

  15. Development of a smart rock bolt for underground monitoring operations

    CSIR Research Space (South Africa)

    Moema, JS

    2003-07-01

    Full Text Available of magnetic methods in measuring the stress or microstructural transformation in an individual bolt in both laboratory and underground environment. The corrosion performance of the smart bolt alloy was evaluated in synthetic mine water and compared...

  16. Ultimate load capacities of expansion anchor bolts

    International Nuclear Information System (INIS)

    Czarnecki, R.M.; Manrique, M.A.; Samaddar, S.K.

    1993-01-01

    A summary of available experimental expansion anchor bolt test data is presented. These data were collected as part of programs by the nuclear industry to address generic issues related to verification of seismic adequacy of equipment in nuclear power plants. Some of the data presented are suitable for use in seismic probabilistic risk assessments. For example, mean values of ultimate strength, along with their standard deviation and coefficients of variation, for a range of most typical expansion anchor bolt sizes are presented. Effects of interaction between shear and tension, edge distance, spacing, and cracking of the concrete are presented in a manner that is more suitable for use in deterministic evaluations. Related industry programs to derive anchor bolt capacities are briefly discussed. Recommendations for areas of further investigation are also presented

  17. Comparative study of bolt spacing formulas used in bolted joint designs

    International Nuclear Information System (INIS)

    Bouzid, Abdel-Hakim

    2014-01-01

    Bolted flange joints are the most popular type of connection between pressure vessels and piping equipment. They are very attractive type of connection because they are simple to mount and offer the possibility of disassembly. However, they are very complex structures to design and analyze and often result in leakage failure. One of the raisons is the loss of tightness that results from the uneven distribution of the gasket contact stresses in the radial and circumferential direction. Many factors contribute to such a failure; bolt load non-uniformity, inadequate flange to gasket stiffness, inappropriate bolt spacing requirements or a combinations of some of these. The variation of the contact stress in the circumferential direction between any two bolts is dictated by bolt spacing. This paper is an extension of the work in which the more accurate analytical solution based on the theory of circular beams resting on a linear elastic foundation is used to validate some existing flange bolt spacing formulas and in particular the TEMA formula, Robert's formula and the one recently developed by Koves. The relationship between bolt spacing and the gasket compression modulus, flange thickness and size is deduced from an analysis that considers a maximum tolerated gasket contact stress difference obtained at the bolt and between two bolts. Comparison between these different methods is also provided. - Highlights: • Gasket stress is estimated using theory of circular beams on linear elastic foundation. • TEMA, Robert's and Koves' formulas are compared against the developed model. • A recommendation is made to use Koves' formula for design. • Use a correction factor of 1/(1-ν 2 ) to accommodate small diameter flanges

  18. Small-Bolt Torque-Tension Tester

    Science.gov (United States)

    Posey, Alan J.

    2009-01-01

    The device described here measures the torque-tension relationship for fasteners as small as #0. The small-bolt tester consists of a plate of high-strength steel into which three miniature load cells are recessed. The depth of the recess is sized so that the three load cells can be shimmed, the optimum height depending upon the test hardware. The three miniature load cells are arranged in an equilateral triangular configuration with the test bolt aligned with the centroid of the three. This is a kinematic arrangement.

  19. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    Science.gov (United States)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  20. Investigation of Reliabilities of Bolt Distances for Bolted Structural Steel Connections by Monte Carlo Simulation Method

    Directory of Open Access Journals (Sweden)

    Ertekin Öztekin Öztekin

    2015-12-01

    Full Text Available Design of the distance of bolts to each other and design of the distance of bolts to the edge of connection plates are made based on minimum and maximum boundary values proposed by structural codes. In this study, reliabilities of those distances were investigated. For this purpose, loading types, bolt types and plate thicknesses were taken as variable parameters. Monte Carlo Simulation (MCS method was used in the reliability computations performed for all combination of those parameters. At the end of study, all reliability index values for all those distances were presented in graphics and tables. Results obtained from this study compared with the values proposed by some structural codes and finally some evaluations were made about those comparisons. Finally, It was emphasized in the end of study that, it would be incorrect of the usage of the same bolt distances in the both traditional designs and the higher reliability level designs.

  1. Inedible Nuts and Non-Lightning Bolts

    Science.gov (United States)

    Rynone, William

    2010-01-01

    In this article, the author provides detailed information on a wide variety of commonly used screws, bolts, and other fasteners. The information has been gathered in his engineering career and outside interests (maintenance on his car and airplane, and woodworking). The topic should be of interest to students and educators in many technical…

  2. Device for ultrasonic and eddy current testing of bolts

    International Nuclear Information System (INIS)

    Hromek, J.; Kaspar, P.

    1989-01-01

    The device provides pivoting fitting of the bolt of a WWER reactor steam generator while ultrasonic and eddy current probes are brought near. The bolt under study is clamped between a drive funnel and a securing cone. The eddy current probes are adjusted using guide arms to the point requested and are fitted over the bolt such as for their thread segments to engage the bolt thread. The ultrasonic transducers are then adjusted to the required point. The device can be used for testing bolts of a thread size from M54x5 and a maximum length of 600 mm. (J.B.). 1 fig

  3. Hand-grip isometric strength in judo

    Directory of Open Access Journals (Sweden)

    Juan G Bonitch-Góngora

    2014-02-01

    Full Text Available The grip is an important technical and tactical aspect through which the judokas dominate the adversary, hindering the application of appropriate techniques and favoring their own attack. The judokas must have high levels of isometric force and endurance to this type of force on the gripping muscles of the forearms, as one of the key aspects for success. This article reviews the grip muscular strength and endurance profiles of judokas of different groups (gender, age and competitive level. In general, the peak isometric strength of elite judokas has not changed in the last 40 years and is similar to that reached by non-elite judokas or even registered in large populations. This indicate that the evaluation of the isometric hand grip endurance may be a more relevant parameter than the peak isometric force in judokas, as during the bouts the grip must be maintained for relatively long periods of time and the maximum force cannot be maintained for long. However there are few studies on the ability to resist successive isometric handgrip stress in judokas.

  4. A Review of Rock Bolt Monitoring Using Smart Sensors

    Directory of Open Access Journals (Sweden)

    Gangbing Song

    2017-04-01

    Full Text Available Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  5. A Review of Rock Bolt Monitoring Using Smart Sensors.

    Science.gov (United States)

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  6. Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis

    International Nuclear Information System (INIS)

    Chien, Chi-Hui; Hu, Yao-Lun; Su, Ting-Hsuan; Liu, Hsuan-Ting; Wang, Chung-Ting; Yang, Ping-Feng; Lu, Ying-Xu

    2016-01-01

    This study numerically investigated the effects of different bolt pre-loadings on the performance of the gas diffusion layer (GDL) in a bolted proton exchange membrane fuel cell (PEMFC). Firstly, a complete three-dimensional finite element model of a PEMFC bolted by 12 bolts with a reactive area of 5 cm by 5 cm was established using the commercial software SolidWorks. Then, a pre-loading of 1 MPa to 7 MPa on each bolt was applied, increasing in increments 1 MPa, and the corresponding deformation and stress fields of each component of the fuel cell were obtained using the commercial software ANSYS 15.0/Workbench. Finally, the effects of the bolt pre-loading variations on the performance of the GDL were discussed. The results showed that the compression ratio of the GDL increased linearly with the magnitude of bolt pre-loading, and improving the performance of the GDL. However, when the pre-loading on each bolt reached 7 MPa, the compression ratio exceeded 15%, degrading the efficiency of the PEMFC. Also, by comparing the relationships between bolt pre-loading and conductivity and porosity of GDL, in order to obtain the maximum performance of GDL, an optimum value of 4 MPa for bolt preloading was recommended. - Highlights: • Effect of bolt pre-loading on deformations is more serious than that of thermal loading. • Bolt pre-loading improves compression ratio of GDL. • For obtaining a maximum performance of GDL, 4 MPa of bolt pre-loading was recommended. • Flow channel volume reduced by bolt pre-loading degrades the efficiency of PEMFC.

  7. Behaviour of Frictional Joints in Steel Arch Yielding Supports

    Czech Academy of Sciences Publication Activity Database

    Horyl, P.; Šňupárek, Richard; Maršálek, P.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 723-734 ISSN 0860-7001 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : steel arch yielding support * friction al joints * bolt connection * slip support * fem Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.608, year: 2013

  8. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP DC-8 Navigation and Housekeeping Data contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The major goal was...

  9. ANALYSIS OF POWER GRIP AND PINCH GRIP AMONG HEALTH CARE PROFESSIONALS

    Directory of Open Access Journals (Sweden)

    Zakariya M P

    2016-02-01

    Full Text Available Background: Grip and pinch strength are commonly employed indices of strength used in hand evaluations. Pinch grip and power grip strengths are used as indices of strength in hand therapy assessments. For all professions grip strength is an important criterion to be successful in their profession. Such phenomena may be explained by differences in nature of work, working environment, and objects workers handle. Method: 200 healthy subjects, satisfying the selection criteria were included and assessed with standardized procedure for power grip and pinch grip (lateral pinch, pad-pad, and tip-tip strength. They were divided in four groups, 50 group each according to profession i.e. medical surgeons, dentist, physiotherapists and nurses. Results: The mean power grip strength shows highly significant difference between medical vs. dental (p>0.01 and medical vs. physiotherapy group (p> 0.05 .The mean lateral pinch strength shows there is highly significant difference (p< 0.001 between dental vs. nursing profession and dental vs. physiotherapy group. No significant difference among other groups. The mean pad-pad pinch strength shows there is significant difference between dental vs. nursing (p< 0.05 and dental vs physiotherapy group (p< 0.05. The mean Tip-Tip pinch strength shows there is significant difference between dental vs nursing profession(p< 0.05 and dental vs. physiotherapy(p< 0.05. No significant different among other groups. Conclusion: Surgeons have highest power grip strength followed by Nursing, Physiotherapy and Dental professionals. Dentists have the maximum pinch strength in all three positions, followed by Surgeons, Nurses and Physiotherapists. Surgeons have maximum pinch strength next to Dentists.

  10. G×E Interaction Influences Trajectories of Hand Grip Strength

    DEFF Research Database (Denmark)

    Petersen, Inge; Pedersen, Nancy L; Rantanen, Taina

    2016-01-01

    Age-related decline in grip strength predicts later life disability, frailty, lower well-being and cognitive change. While grip strength is heritable, genetic influence on change in grip strength has been relatively ignored, with non-shared environmental influence identified as the primary contri...

  11. Investigation of Fastening Performance of Subminiature Serrated Bolt

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong [Seoul Nat’l Univ. of Science & Tech, Seoul (Korea, Republic of)

    2017-04-15

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  12. Investigation of Fastening Performance of Subminiature Serrated Bolt

    International Nuclear Information System (INIS)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong

    2017-01-01

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  13. Limit load analysis of bolted flange connections

    International Nuclear Information System (INIS)

    Kauer, R.; Deininger, J.

    2005-01-01

    In Europe as well as in other countries a lot of efforts are invested into developing new codes and standards for bolted joints under various loading conditions. The standardization of gasket factors and the improvement of calculation methods with respect to these factors characterize the last couple of years in this area. In Germany, the nuclear code (KTA-Regeln) is also influenced by this development. So, the leak rate dependency of gasket factors and the results of a research program on metal-to-metal contact type flanges were introduced into the new approach of the code for Class 2 and 3 components. Herein; flange calculations can be performed for various flange types, floating type and metal-to-metal contact type. Generally, the calculations to be performed can be separated into a design step and the proof of sufficient tightness and strength of flange, bolts and gasket for the various operating conditions according to the chosen bolting method. In Europe, the most recent development in the field of flange calculations is the new standard EN 1591-1 for flange connections. The structure of the EN 1591-1 is also a two-step approach, but due to the more sophisticated and iterative calculation method, the design step is neglected and instead the focus in the first step is the determination of a suitable bolting force. In cases, where the allowable stress values are not satisfied by performing code calculations or in cases, where the applicability of the code is not given, e. g. due to geometric facts, Finite-Element analyses often replace code calculations but have to demonstrate code compliance. Therefore, numerical Finite-Element analyses, performed according to a special code, e. g. KTA, must also fulfill the requirements of the code with respect to considered load cases, bolting condition, allowable stresses etc., to get an adequate testimony for a certain flange joint. Usually this can be done by checking relevant cross sections according to the stress

  14. 21 CFR 137.255 - Bolted white corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted white corn meal. 137.255 Section 137.255... Flours and Related Products § 137.255 Bolted white corn meal. (a) Bolted white corn meal is the food prepared by so grinding and sifting cleaned white corn that: (1) Its crude fiber content is less than 1.2...

  15. ["Bolt projectiles" discharged from modified humane killers (author's transl)].

    Science.gov (United States)

    Pollak, S; Reiter, C

    1981-01-01

    Some common types of "humane killers" are supplied with rubber bushings and recoil springs holding back the bolt, which afterwards is rebound into the barrel. Removal of the rubber bush and withdrawal spring before firing can cause the bolt to break and become a free projectile. A suicide case is reported, in which a livestock stunner discharged a steel bolt penetrating the forehead and getting stuck in the skull.

  16. Alloy-steel bolting materials for special applications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification covers regular and special-quality alloy steel bolting materials which may be used for nuclear and other special applications. Bolting materials as used in the specification cover rolled or forged bars, rotary pierced or extruded seamless tubes, bored bars, or forged hollows from forged or rolled bar segments to be machined into bolts, studs, washers, and nuts. Several grades of steel are covered and supplementary requirements of an optional nature are provided for use when special quality is desired

  17. Variability of grip kinetics during adult signature writing.

    Directory of Open Access Journals (Sweden)

    Bassma Ghali

    Full Text Available Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20 adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of 1.2±0.4% in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively.

  18. Investigation of the Chooz-A nuclear power plant bolts

    International Nuclear Information System (INIS)

    Monnet, I.; Decroix, G.M.; Dubuisson, P.; Reuchet, J.; Morlent, O.

    2002-01-01

    In Pressurised Water Reactor, some baffle-former bolts in austenitic stainless steel, are submitted to an important Intergranular cracking. This cracking may be attributed to the irradiation hardening during in pile service. As part of its concern of safety related to the ageing of the plant and, in particular, to the behaviour of the internals, IRSN wished to take part in the expertise Program on CHOOZ A power nuclear plant, within the framework of a convention with EDF, which provided the baffle-bolts. Examinations of these bolts, after 140 000 of in pile service, were carried out by the laboratories of the CEA. Hardness profiles were carried out on four bolts, which were irradiated at different doses, ranging from 0 to 22 dpa. The bolt of the core barrel, considered as unirradiated, shows a constant value of hardness, equal to the value of unirradiated material, all along the bolt and a slight increase in the head of the screw. The axial profile of hardness carried out on an irradiated bolt shows that there is a gradient of hardness between the most irradiated part (400 Hv) and the least irradiated part (270 Hv). The hardness of this bolt starts to evolve at 2.5 dpa and the maximum of hardening is reached for the most irradiated part (3.6 dpa). The hardness profile on the most irradiated bolt (between 10 and 22 dpa) indicate that hardness is homogeneous all along the bolt, 400 Hv. It confirms the existence of a threshold dose beyond which hardness does not vary any more, this threshold is estimated to be between 3.6 dpa and 10 dl Microstructural examinations of these bolts led us to conclude that hardening is correlated to dislocation microstructure. Indeed, the examination of the bolt of the core barrel confirms that this bolt is hardly unirradiated since the initial network of dislocations was not modified and that only some rare dislocation loops were observed. This is in agreement with hardness results showing no hardening of this bolt. On the two more

  19. On analysis and redesign of bolted L-flanged connections

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2017-01-01

    and the tensile force in the bolt. In the literature and also in standards,different models are presented for this important non-linear response. In the present paper, a simplified expression for the non-linear force response is presented based on finite element calculations using contact analysis. The L......-flange connection is in essence a bad design because it leads to a non-optimal ratio between external force and bolt force. Furthermore,bolt bending results in an even higher bolt stress resulting in a reduction of strength. The present paper presents simple modifications of the L-flange design that considerably...

  20. Image Registration-Based Bolt Loosening Detection of Steel Joints

    Science.gov (United States)

    2018-01-01

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264

  1. Image Registration-Based Bolt Loosening Detection of Steel Joints.

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian

    2018-03-28

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.

  2. Experimental Study on Shear Performance of Bolt in Roadway Supporting

    Directory of Open Access Journals (Sweden)

    D.J. Li

    2014-09-01

    Full Text Available The corner bolt is proved to be effective in the control of floor deformation of roadway, and the relevant studies on bolting mechanisms are of great significance in improving roadway stability. In this paper, two types of shear tests on six forms of bolts are performed by using self-designed shear test device, the electro-hydraulic servo triaxial testing system. The shear characteristics of different types of bolts are obtained. The results show that different bolt rods or different internal filling conditions result in large differences in shear resistance and different deformation adaptability. We find that the filling materials added can improve the shear performance of bolt significantly, and the bolt with steel not only can improve the strength of bolt body, but also has the bimodal characteristic that makes the bolt have the secondary bearing capacity and withstand larger deformation range during the process of shear, and shows a better support performance. Hoping to provide the experiment basis for support design and field application in the future.

  3. Friction dampers, the positive side of friction

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.; Busturia, J.M.; Sas, P.; Munck, de M.

    2004-01-01

    Friction is frequently seen as an unwanted phenomenon whose influence has to be either minimised or controlled. In this work one of the positive sides of friction is investigated: friction damping. Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of

  4. Fingerprints are unlikely to increase the friction of primate fingerpads.

    Science.gov (United States)

    Warman, Peter H; Ennos, A Roland

    2009-07-01

    It is generally assumed that fingerprints improve the grip of primates, but the efficiency of their ridging will depend on the type of frictional behaviour the skin exhibits. Ridges would be effective at increasing friction for hard materials, but in a rubbery material they would reduce friction because they would reduce contact area. In this study we investigated the frictional performance of human fingertips on dry acrylic glass using a modified universal mechanical testing machine, measuring friction at a range of normal loads while also measuring the contact area. Tests were carried out on different fingers, fingers at different angles and against different widths of acrylic sheet to separate the effects of normal force and contact area. The results showed that fingertips behaved more like rubbers than hard solids; their coefficients of friction fell at higher normal forces and friction was higher when fingers were held flatter against wider sheets and hence when contact area was greater. The shear stress was greater at higher pressures, suggesting the presence of a biofilm between the skin and the surface. Fingerprints reduced contact area by a factor of one-third compared with flat skin, however, which would have reduced the friction; this casts severe doubt on their supposed frictional function.

  5. Thimble grip fuel assembly handling tool

    International Nuclear Information System (INIS)

    Salton, R.B.; Hornak, L.P.; Marshall, J.R.; Meuschke, R.E.

    1989-01-01

    This patent describes an apparatus for lifting a fuel assembly of a nuclear reactor. The fuel assembly consists of a top nozzle and control rod guide tubes. The apparatus having a gripping means comprised of: a life plate, an actuating plate having a plurality of apertures, the actuating plate disposed in spaced relationship below the lift plate and vertically movable relative thereto; gripping members operably associated with the lift and actuating plates, the gripping members comprising: (a) a vertical rod fixedly secured near its top end to the lift plate and projecting downward therefrom through an associated aperture in the actuating plate, the rod having a first frustoconical surface formed near its lower end, (b) a generally cylindrical, elastically deformable vertical sleeve having a bore therethrough with a first inner diameter, the sleeve having a first bevelled inside surface near the top end and a second bevelled inside surface at the bottom end of the sleeve, and (c) a vertical gripper actuator disposed about the rod

  6. New results on the relation between tyre-road longitudinal stiffness and maximum available grip for motor car

    Science.gov (United States)

    Andrieux, A.; Vandanjon, P. O.; Lengelle, R.; Chabanon, C.

    2010-12-01

    Tyre-road estimation methods have been the objective of many research programmes throughout the world. Most of these methods aim at estimating the friction components such as tyre longitudinal slip rate κ and friction coefficient μ in the contact patch area. In order to estimate the maximum available friction coefficient μmax, these methods generally use a probabilistic relationship between the grip obtained for low tyre excitations (such as constant speed driving) and the grip obtained for high tyre excitations (such as emergency braking manoeuvre). Confirmation or invalidation of this relationship from experimental results is the purpose of this paper. Experiments have been carried out on a reference track including several test boards corresponding to a wide textural spectrum. The main advantage of these experiments lies in the use of a vehicle allowing us to accurately build point-by-point relationship between κ and μ. This relationship has been determined for different tyres and pavement textures. Finally, the curves obtained are analysed to check the validity of the relationship between the current friction coefficient used by the car during normal driving conditions and μmax.

  7. Hydraulic nuts (hydranuts) for critical bolted joints

    International Nuclear Information System (INIS)

    Greenwell, S.

    2008-01-01

    HydraNuts replace the original nut and torquing equipment, combining the two functions into one system. Designed for simple installation and operation, HydraNuts are fitted to the stud bolts. Once all HydraNuts are fitted to the application, flexible hydraulic hoses are connected, forming a closed loop hydraulic harness, allowing simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a pumping unit and the resultant load generated is transferred to the studs and flange closure is obtained. Locking rings are rotated into place, supporting the tensioned load mechanically after hydraulic pressure is released. The hose harness is removed. (author)

  8. Effect of skin hydration on the dynamics of fingertip gripping contact.

    Science.gov (United States)

    André, T; Lévesque, V; Hayward, V; Lefèvre, P; Thonnard, J-L

    2011-11-07

    The dynamics of fingertip contact manifest themselves in the complex skin movements observed during the transition from a stuck state to a fully developed slip. While investigating this transition, we found that it depended on skin hydration. To quantify this dependency, we asked subjects to slide their index fingertip on a glass surface while keeping the normal component of the interaction force constant with the help of visual feedback. Skin deformation inside the contact region was imaged with an optical apparatus that allowed us to quantify the relative sizes of the slipping and sticking regions. The ratio of the stuck skin area to the total contact area decreased linearly from 1 to 0 when the tangential force component increased from 0 to a maximum. The slope of this relationship was inversely correlated to the normal force component. The skin hydration level dramatically affected the dynamics of the contact encapsulated in the course of evolution from sticking to slipping. The specific effect was to reduce the tendency of a contact to slip, regardless of the variations of the coefficient of friction. Since grips were more unstable under dry skin conditions, our results suggest that the nervous system responds to dry skin by exaggerated grip forces that cannot be simply explained by a change in the coefficient of friction.

  9. Structural analysis of closure bolts for shipping casks

    International Nuclear Information System (INIS)

    Mok, G.C.; Fischer, L.E.

    1993-04-01

    This paper identifies the active forces and moments in a closure bolt of a shipping cask. It examines the interactions of these forces/moments and suggest simplified methods for their analysis. The paper also evaluates the role that the forces and moments play in the structure integrity of the closure bolt and recommends stress limits and desirable practices to ensure its integrity

  10. Calculation of parameters of combined frame and roof bolting

    Science.gov (United States)

    Ivanov, S. I.; Titov, N. V.; Privalov, A. A.; Trunov, I. T.; Sarychev, V. I.

    2017-10-01

    The paper presents the method of calculation of the combined frame and roof bolting. Recommendations on providing joint operation of roof bolting with steel support frames are given. Graphs for determining standard rock movement, as well as for defining proof load on the yielding support, were developed.

  11. Bolted Flanged Connection for Critical Plant/Piping Systems

    International Nuclear Information System (INIS)

    Efremov, Anatoly

    2006-01-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  12. Progress on the interface between UPP and CPRHS (Cask and Plug Remote Handling System) tractor/gripping tool for ITER

    International Nuclear Information System (INIS)

    Rosa, Elena V.; Rios, Luis; Queral, Vicente

    2013-01-01

    Highlights: ► UPP interface requirements in the plug RH extraction/insertion for ITER. ► Analyze of maximum misalignment between port duct and port cell. ► Friction study between plug skids and VV port/ramp rails during the plug transfer. ► Definition of the tolerance in the plug skids to avoid the plug jamming. ► Concepts of gripping tools based on one gripping point and avoiding force feedback. -- Abstract: EFDA finances a training programme called Goal Oriented Training Programme for Remote Handling (GOT RH), whose goal is to train engineers in Remote Handling for ITER. As part of this training programme, the conceptual design of the mechanical interface between Upper Port Plug (UPP) and Cask and Plug Remote Handling System (CPRHS) as well as the conceptual design of the needed tools for UPP Remote Handling is carried out. The paper presents the conceptual design of the UPP/Gripping Tool Interface. This includes the conceptual design of the gripping tool for introducing/removing the UPP in/from the ITER port and the mechanical features on both sides of the UPP/Gripping Tool Interface (e.g. alignment features, mechanical connectors, fasteners). In order to develop the design of the interface between UPP and CPRHS it is necessary to first identify the functional requirements of the Transfer Cask System (TCS) and the CPRHS, such as required degrees of freedom (DoF), required performances of system, geometrical constraints, loading conditions, alignment requirements, RAMI requirements. These requirements are the input data for the design of the interface between UPP and gripping tool and some of them are also described in the paper

  13. Vacuum friction

    Science.gov (United States)

    Barnett, Stephen M.; Sonnleitner, Matthias

    2018-03-01

    We know that in empty space there is no preferred state of rest. This is true both in special relativity but also in Newtonian mechanics with its associated Galilean relativity. It comes as something of a surprise, therefore, to discover the existence a friction force associated with spontaneous emission. The resolution of this paradox relies on a central idea from special relativity even though our derivation of it is non-relativistic. We examine the possibility that the physics underlying this effect might be explored in an ion trap, via the observation of a superposition of different mass states.

  14. An eight-legged tactile sensor to estimate coefficient of static friction.

    Science.gov (United States)

    Wei Chen; Rodpongpun, Sura; Luo, William; Isaacson, Nathan; Kark, Lauren; Khamis, Heba; Redmond, Stephen J

    2015-08-01

    It is well known that a tangential force larger than the maximum static friction force is required to initiate the sliding motion between two objects, which is governed by a material constant called the coefficient of static friction. Therefore, knowing the coefficient of static friction is of great importance for robot grippers which wish to maintain a stable and precise grip on an object during various manipulation tasks. Importantly, it is most useful if grippers can estimate the coefficient of static friction without having to explicitly explore the object first, such as lifting the object and reducing the grip force until it slips. A novel eight-legged sensor, based on simplified theoretical principles of friction is presented here to estimate the coefficient of static friction between a planar surface and the prototype sensor. Each of the sensor's eight legs are straight and rigid, and oriented at a specified angle with respect to the vertical, allowing it to estimate one of five ranges (5 = 8/2 + 1) that the coefficient of static friction can occupy. The coefficient of friction can be estimated by determining whether the legs have slipped or not when pressed against a surface. The coefficients of static friction between the sensor and five different materials were estimated and compared to a measurement from traditional methods. A least-squares linear fit of the sensor estimated coefficient showed good correlation with the reference coefficient with a gradient close to one and an r(2) value greater than 0.9.

  15. ASSESSMENT OF GRIP FORCE CONTROL IN PATIENTS WITH MUSCULAR DYSTROPHY

    Directory of Open Access Journals (Sweden)

    Gregorij Kurillo

    2004-12-01

    Full Text Available Background. The majority of hand functionality tests are based on qualitative assessment which largely depends on the experience of the therapist. Computer-assisted methods can provide more objective and accurate measurements of the grip force and other parameters related to grasping.Methods. We analysed the grip force control in 12 patients with muscular dystrophy using the tracking system developed. The system consists of a grip-measuring device with endobjects assessing the force applied in different grips. The device was used as input to a tracking task where the patient applied the grip force according to the visual feedback from the computer screen. Each patient performed two tasks which consisted of tracking a ramp and sinus target.Results. We analysed the maximal grip force as assessed in the ramp task and the tracking accuracy of the sinus task. The results are compared among five different grips (cylindrical, lateral, palmar, pinch and spherical grip, applied with dominant and non-dominant hand. The results show no significant difference in tracking accuracy between the dominant and non-dominant hand.Conclusions. The results obtained in tracking the ramp target showed that the method could be used for the assessment of the muscle fatigue, providing quantitative information on muscle capacity. The results of the sinus-tracking task showed that the method can evaluate the grip force control in different types of grips, providing information on hand dexterity, muscle activation patterns or tremor.

  16. A study of high-strength bolts after dephosphoring

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2016-03-01

    Full Text Available A wide variety of fasteners are produced, including those for the automobile industry, household electrical appliances industry, architectural engineering, and even the aviation industry. The effects of the high-tensile bolt dephosphoring process on the entire fastener manufacturing process and its organizational characteristics and mechanical properties are analyzed and discussed in this study. Our experimental results reveal that the bolt dephosphoring process must be completed before heat treatment, which can be confirmed with a dephosphoring reagent or metallographic observation. Once bolt heat treatment is completed, bolts without dephosphoring appear to be coated with δ ferrite (delta ferrite composed of a phosphate coating and a phosphatizing coating, which are not easily removed. Heat treatment with phosphorus results in grain boundary segregation, causing embrittlement and a reduction in lattice bonding forces and resulting in a high risk of fracturing when bolts are used in high-temperature environments or undergo multiaxial stresses.

  17. Experimental study on birefringence effect in high-tension bolts

    International Nuclear Information System (INIS)

    Kim, No You; Lee, Sang Soon; Jang, Kyung Young

    2005-01-01

    Bolts widely used in machine parts and assemblies are pre-loaded to prevent the parts from separating and to maintain the strength of the assemblies. Conventional technique for measurement of this axial stress applied to bolts is torque meter, but it has two disadvantages. The first one is its inherent inaccuracy. The second is that the stress cannot be determined after assembly without twisting bolts. The most promising technique for measurement of the axial stress is the acousto-elasticity. In this study, a new acousto-elasticity technique based on birefringence principle is proposed and tested to measure the axial stress in bolts which uses two longitudinal and shear waves instead of two horizontally polarized shear waves. From experimental results, the difference between the longitudinal and shear wave velocity is shown to be linearly related to the applied stress and be able to be used effectively to monitor the axial stress in bolts.

  18. Improvement in or relating to bolts or studs

    International Nuclear Information System (INIS)

    Seward, W.H.

    1977-01-01

    Reference is made to anti-seize bolts or studs for use in extreme conditions, such as in nuclear power plants. A number of methods have been proposed for avoiding seizure, but have met with limited success. One approach to this problem is to coat the surfaces of the steel bolt in such a way that the contacting surfaces of the bolt and its associated nut are sufficiently dissimilar for molecular seizure to be avoided. It has been discovered that greatly improved resistance to seizing can be obtained by hard plating the entire thread of an alloy steel bolt with Cr. After Cr plating the bolt is de-embrittled by suitable heat treatment. (U.K.)

  19. Tyre-road grip coefficient assessment - Part II: online estimation using instrumented vehicle, extended Kalman filter, and neural network

    Science.gov (United States)

    Luque, Pablo; Mántaras, Daniel A.; Fidalgo, Eloy; Álvarez, Javier; Riva, Paolo; Girón, Pablo; Compadre, Diego; Ferran, Jordi

    2013-12-01

    The main objective of this work is to determine the limit of safe driving conditions by identifying the maximal friction coefficient in a real vehicle. The study will focus on finding a method to determine this limit before reaching the skid, which is valuable information in the context of traffic safety. Since it is not possible to measure the friction coefficient directly, it will be estimated using the appropriate tools in order to get the most accurate information. A real vehicle is instrumented to collect information of general kinematics and steering tie-rod forces. A real-time algorithm is developed to estimate forces and aligning torque in the tyres using an extended Kalman filter and neural networks techniques. The methodology is based on determining the aligning torque; this variable allows evaluation of the behaviour of the tyre. It transmits interesting information from the tyre-road contact and can be used to predict the maximal tyre grip and safety margin. The maximal grip coefficient is estimated according to a knowledge base, extracted from computer simulation of a high detailed three-dimensional model, using Adams® software. The proposed methodology is validated and applied to real driving conditions, in which maximal grip and safety margin are properly estimated.

  20. Investigation and modelling of rubber stationary friction on rough surfaces

    International Nuclear Information System (INIS)

    Le Gal, A; Klueppel, M

    2008-01-01

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks

  1. Investigation and modelling of rubber stationary friction on rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Gal, A; Klueppel, M [Deutsches Institut fuer Kautschuktechnologie, Eupener Strasse 33, D-30519 Hannover (Germany)

    2008-01-09

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks.

  2. Gripping means for fuel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Batjukov, V.I.; Fadeev, A.I.; Shkhian, T.G.; Vjugov, O.N.

    1980-01-01

    The proposed gripping means for fuel assemblies of a nuclear reactor comprises a housing, whereupon there is movably mounted a slider provided with longitudinally extending slots to receive gripping jaws whose tails are pivotably secured to the housing of the gripping means. On one side, the end faces of the longitudinally extending slots are slanted with respect to the longitudinal axis of the gripping means and come in contact with the teeth of the gripping jaws provided on the end which is opposite to the tail, whereby the jaws open as the slider and housing of the gripping means moves relative to each other so that the teeth are received in an internal groove provided in the head of the fuel assembly

  3. Evaluation of bolted connections in wood-plastic composites

    Science.gov (United States)

    Arnandha, Yudhi; Satyarno, Iman; Awaludin, Ali; Irawati, Inggar Septia; Ihsan, Muhamad; Wijanarko, Felyx Biondy; William, Mahdinur, Fardhani, Arfiati

    2017-03-01

    Wood-plastic composite (WPC) is a relatively new material that consists of sawdust and plastic polymer using the extrusion process. Due to its attributes such as low water content, low maintenance, UV durability and being fungi and termite resistant. Nowadays, WPC has already been produced in Indonesia using sawdust from local wood such as Albizia (Paraserianthes falcataria) and Teak (Tectona grandis). Moreover preliminary studies about the physical and mechanical WPC board from Albizia sawdust and HDPE plastic have been carried out. Based on these studies, WPC has a high shear strength around 25-30 MPa higher than its original wood shear strength. This paper was a part of the research in evaluating WPC as potential sheathing in a shear wall system. Since still little is known about connection behavior in WPC using Indonesian local wood, this study evaluated the connection for both of these two types of wood-plastic composite. WPC board from Albizia sawdust will be projected as shear wall sheathing and WPC stud from Teak sawdust projected to be shear wall frame. For this study, the embedding strength for both WPC was determined according to ASTM D 5764 standard, using two types of bolts (stainless bolt and standard bolt) with several diameters as variation (6 mm, 8 mm, 10 and 12 mm). Hence, dowel-bearing test under fastened condition conducted accordance to ASTM D5652, hereby the yield strength then compared with the prediction yield strength from European Yield Model (EYM). According to both single and double shear connection, it can be concluded that yield strength from the EYM method tended to under-predict the 5% diameter offset yield than the actual yield strength from the test. The yield strength itself increase with the increase of bolt diameter. For single shear connection, the highest yield strength was 12 mm standard bolt around 9732 N, slightly higher than stainless bolt around 9393 N. Whereby for double shear connection, the highest yield strength was

  4. Systems and Methods for Gravity-Independent Gripping and Drilling

    Science.gov (United States)

    Parness, Aaron (Inventor); Frost, Matthew A. (Inventor); Thatte, Nitish (Inventor); King, Jonathan P. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  5. The GRIP method for collaborative roadmapping workshops

    DEFF Research Database (Denmark)

    Piirainen, Kalle

    2015-01-01

    Technology roadmapping is a well-known tool for technology management, but practical advice for facilitating collaborative roadmapping workshops is relatively scarce. To cater for this need, we have designed a method for collaborative roadmapping, dubbed the GRIP method, for facilitating group work...... in TRM workshops. The design is based on establish best practices in facilitation and our experiences with the method suggest it is a feasible tool for technology managers. The benefits of the method are that it enables engaging a diverse group of individuals to the roadmapping process effectively even...... during a short workshop session and facilitates shared understanding on the technology management issues....

  6. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  7. Tapping and listening: a new approach to bolt looseness monitoring

    Science.gov (United States)

    Kong, Qingzhao; Zhu, Junxiao; Ho, Siu Chun Michael; Song, Gangbing

    2018-07-01

    Bolted joints are among the most common building blocks used across different types of structures, and are often the key components that sew all other structural parts together. Monitoring and assessment of looseness in bolted structures is one of the most attractive topics in mechanical, aerospace, and civil engineering. This paper presents a new percussion-based non-destructive approach to determine the health condition of bolted joints with the help of machine learning. The proposed method is very similar to the percussive diagnostic techniques used in clinical examinations to diagnose the health of patients. Due to the different interfacial properties among the bolts, nuts and the host structure, bolted joints can generate unique sounds when it is excited by impacts, such as from tapping. Power spectrum density, as a signal feature, was used to recognize and classify recorded tapping data. A machine learning model using the decision tree method was employed to identify the bolt looseness level. Experiments demonstrated that the newly proposed method for bolt looseness detection is very easy to implement by ‘listening to tapping’ and the monitoring accuracy is very high. With the rapid in robotics, the proposed approach has great potential to be implemented with intimately weaving robotics and machine learning to produce a cyber-physical system that can automatically inspect and determine the health of a structure.

  8. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  9. Effect of fiberglass reinforcement on the behavior of bolted wood connections

    Science.gov (United States)

    Lawrence A. Soltis; Robert J. Ross; Daniel E. Windorski

    1997-01-01

    Bolted connections often fail by a shear plug or by splitting beneath the bolt caused by tension perpendicular-to-grain stress as the bolt wedges its way through the wood. Preventing this type of failure enhances both the capacity and reliability of bolted connections. This research investigated the use of fiberglass reinforcement to enhance the load-carrying capacity...

  10. Construction method of pre assembled unit of bolt sphere grid

    Science.gov (United States)

    Hu, L. W.; Guo, F. L.; Wang, J. L.; Bu, F. M.

    2018-03-01

    The traditional construction of bolt sphere grid has many disadvantages, such as high cost, large amount of work at high altitude and long construction period, in order to make up for these shortcomings, in this paper, a new and applicable construction method is explored: setting up local scaffolding, installing the bolt sphere grid starting frame on the local scaffolding, then the pre assembled unit of bolt sphere grid is assembled on the ground, using small hoisting equipment to lift pre assembled unit to high altitude and install. Compared with the traditional installation method, the construction method has strong practicability and high economic efficiency, and has achieved good social and economic benefits.

  11. Testing program for burning plasma experiment vacuum vessel bolted joint

    International Nuclear Information System (INIS)

    Hsueh, P.K.; Khan, M.Z.; Swanson, J.; Feng, T.; Dinkevich, S.; Warren, J.

    1992-01-01

    As presently designed, the Burning Plasma Experiment vacuum vessel will be segmentally fabricated and assembled by bolted joints in the field. Due to geometry constraints, most of the bolted joints have significant eccentricity which causes the joint behavior to be sensitive to joint clamping forces. Experience indicates that as a result of this eccentricity, the joint will tend to open at the side closest to the applied load with the extent of the opening being dependent on the initial preload. In this paper analytical models coupled with a confirmatory testing program are developed to investigate and predict the non-linear behavior of the vacuum vessel bolted joint

  12. Friction control using ultrasonic oscillation for rolling-element linear-motion guide

    International Nuclear Information System (INIS)

    Oiwa, Takaaki

    2006-01-01

    This article reports a friction-control method for rolling-element linear-motion guides used for precision positioning. In general, static friction greater than dynamic friction generates stick-slip motion and diminishes the positioning accuracy. Two ultrasonic actuators excite both the rail and the carriage of the guide to give relative displacements to bearing surfaces. In order to effectively propagate the vibration over the entire rail without damping, the actuator drives at that frequency with a half wavelength corresponding to the distances between the rail mounting bolts. This also minimizes undesirable vibration of the machine structure. Moreover, the bearing surfaces of the carriage are resonated by a second ultrasonic actuator. The experiments using a force sensor showed that the static and dynamic friction forces were reduced by approximately 25% at any place on the 600-mm-long rail. Moreover, excitation only at very low velocity decreased the static friction peak

  13. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  14. A new energy-absorbing bolt for rock support in high stress rock masses

    Energy Technology Data Exchange (ETDEWEB)

    Charlie Chunlin Li [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-04-15

    An energy-absorbing rock support device, called a D bolt, has been recently developed to counteract both burst-prone and squeezing rock conditions that occur during underground excavation. The bolt is a smooth steel bar with a number of anchors along its length. The anchors are firmly fixed within a borehole using either cement grout or resin, while the smooth sections of the bolt between the anchors may freely deform in response to rock dilation. Failure of one section does not affect the reinforcement performance of the other sections. The bolt is designed to fully use both the strength and the deformation capacity of the bolt material along the entire length. The bolt has large load-bearing and deformation capacities. Static pull tests and dynamic drop tests show that the bolt length elongates by 14-20% at a load level equal to the strength of the bolt material, thereby absorbing a large amount of energy. The impact average load of a 20 mm D bolt is 200-230 kN, with only a small portion of the load transferred to the bolt plate. The cumulative dynamic energy absorption of the bolt is measured to be 47 kJ/m. D bolts were tested in three deep mines. Filed measurements show that D bolts are loaded less than rebar bolts. This paper presents the layout and principle of the D bolt, and corresponding results from static, dynamic, and field tests.

  15. Grip-pattern recognition: Applied to a smart gun

    NARCIS (Netherlands)

    Shang, X.

    2008-01-01

    In our work the verification performance of a biometric recognition system based on grip patterns, as part of a smart gun for use by the police ocers, has been investigated. The biometric features are extracted from a two-dimensional pattern of the pressure, exerted on the grip of a gun by the hand

  16. Biometric verification based on grip-pattern recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.; Delp, Edward J.; Wong, Ping W.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 x 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  17. Algorithm Design for Grip-Pattern Verification in Smart Gun

    NARCIS (Netherlands)

    Shang, X.; Veldhuis, Raymond N.J.; Bazen, A.M.; Ganzevoort, W.P.T.

    2005-01-01

    The Secure Grip project1 focuses on the development of a hand-grip pattern recognition system, as part of the smart gun. Its target customer is the police. To explore the authentication performance of this system, we collected data from a group of police officers, and made authentication simulations

  18. Tensile testing grips are easily assembled under liquid nitrogen

    Science.gov (United States)

    Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Split-screw grips for tensile testing provide uniform loading on the specimen shoulders. Holes in the heads enable the screws and specimen to be threaded as an assembly into a grip body, closely controlled guides and seats afford positive seating, and precision machining of mating surfaces minimizes misalignment effects.

  19. Biometric verification based on grip-pattern recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 £ 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  20. Piezoelectric Washer for Accurate Application of Bolt Preload

    Data.gov (United States)

    National Aeronautics and Space Administration — A concept is proposed for monitoring bolt preload that offers accuracy and low-cost features not available in existing preload monitoring systems. Existing washer...

  1. Preloading of bolted connections in nuclear reactor component supports

    Energy Technology Data Exchange (ETDEWEB)

    Yahr, G T

    1984-10-01

    A number of failures of threaded fasteners in nuclear reactor component supports have been reported. Many of those failures were attributed to stress corrosion cracking. This report discusses how stress corrosion cracking can be avoided in bolting by controlling the maximum bolt preloads so that the sustained stresses in the bolts are below the level required to cause stress corrosion cracking. This is a basic departure from ordinary bolted joint design where the only limits on preload are on the minimum preload. Emphasis is placed on the importance of detailed analysis to determine the acceptable range of preload and the selection of a method for measuring the preload that is sufficiently accurate to ensure that the preload is actually within the acceptable range. Procedures for determining acceptable preload range are given, and the accuracy of various methods of measuring preload is discussed.

  2. Preloading of bolted connections in nuclear reactor component supports

    International Nuclear Information System (INIS)

    Yahr, G.T.

    1984-10-01

    A number of failures of threaded fasteners in nuclear reactor component supports have been reported. Many of those failures were attributed to stress corrosion cracking. This report discusses how stress corrosion cracking can be avoided in bolting by controlling the maximum bolt preloads so that the sustained stresses in the bolts are below the level required to cause stress corrosion cracking. This is a basic departure from ordinary bolted joint design where the only limits on preload are on the minimum preload. Emphasis is placed on the importance of detailed analysis to determine the acceptable range of preload and the selection of a method for measuring the preload that is sufficiently accurate to ensure that the preload is actually within the acceptable range. Procedures for determining acceptable preload range are given, and the accuracy of various methods of measuring preload is discussed

  3. Design Procedure on Stud Bolt for Reactor Vessel Assembly

    International Nuclear Information System (INIS)

    Kim, Jong-Wook; Lee, Gyu-Mahn; Jeoung, Kyeong-Hoon; Kim, Tae-Wan; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-01

    The reactor pressure vessel flange is welded to the upper part of reactor pressure vessel, and there are stud holes to mount the closure head with stud bolts. The surface mating the closure head is compressed with O-ring, which acts as a sealing gasket to prevent coolant leakage. Bolted flange connections perform a very important structural role in the design of a reactor pressure vessel. Their importance stems from two important functions: (a) maintenance of the structural integrity of the connection itself, and (b) prevention of leakage through the O-ring preloaded by stud bolts. In the present study, an evaluation procedure for the design of stud bolt is developed to meet ASME code requirements. The developed design procedure could provide typical references in the development of advanced reactor design in the future

  4. Parametric study on the behaviour of bolted composite connections

    Directory of Open Access Journals (Sweden)

    M. N. Kataoka

    Full Text Available The studied connections are composed of concrete filled steel tubes (CFT connected to composite beams by passing through bolts, endplates and steel deck, which also contributes to support the applied loads. The parametric analysis presented in this work is based on numerical simulations performed with software TNO Diana, using experimental results to calibrate the reference numerical model. The influence of three main parameters, being them the bolts diameter, the slab height and the beams cross section, was evaluated. According to the obtained bending moment versus rotation curves, it was concluded that, among the three parameters analyzed, the most important one was the bolts diameter. About the beams cross section, inconclusive results were achieved, probably due to the incompatibility between the 16 mm bolts and the robust beam cross sections considered in the parametric analysis.

  5. Mechanics of Re-Torquing in Bolted Flange Connections

    Science.gov (United States)

    Gordon, Ali P.; Drilling Brian; Weichman, Kyle; Kammerer, Catherine; Baldwin, Frank

    2010-01-01

    It has been widely accepted that the phenomenon of time-dependent loosening of flange connections is a strong consequence of the viscous nature of the compression seal material. Characterizing the coupled interaction between gasket creep and elastic bolt stiffness has been useful in predicting conditions that facilitate leakage. Prior advances on this sub-class of bolted joints has lead to the development of (1) constitutive models for elastomerics, (2) initial tightening strategies, (3) etc. The effect of re-torque, which is a major consideration for typical bolted flange seals used on the Space Shuttle fleet, has not been fully characterized, however. The current study presents a systematic approach to characterizing bolted joint behavior as the consequence of sequentially applied torques. Based on exprimenta1 and numerical results, the optimal re-torquing parameters have been identified that allow for the negligible load loss after pre-load application

  6. Usage of Cable Bolts for Gateroad Maintenance in Soft Rocks

    Directory of Open Access Journals (Sweden)

    Iurii Khalymendyk

    2014-01-01

    Originality/value: 1. There are no regulations and state standards in regard to cable bolt installation parameters in the mines of Ukraine, consequently the usage of cable bolts for gateroad maintenance required preliminary testing under geological conditions at the Western Donbass mines with soft enclosing rocks. 2. Combining levelling with observations using extensometers allowed for the detection of the rock layers' uniform sagging zone in the roof of the gateroad.

  7. Response surface reconciliation method of bolted joints structure

    Directory of Open Access Journals (Sweden)

    Yunus Mohd Azmi

    2017-01-01

    Full Text Available Structural joining methods such as bolted joints are commonly used for the assembly of structural components due to their simplicity and easy maintenance. Understandably, the dynamic characteristic of bolted joined structure is mainly influenced by the properties of their joints such as preload on the bolts and joints stiffness which alter the measured dynamics response of the structure. Therefore, the need to include the local effect of the bolted joints into the numerical model of the bolted joined structure is vitally important in order to represent the model accurately. In this paper, a few types of connector elements that can be used to represent the bolted joints such as CBAR, CBEAM and CELAS have been investigated numerically and experimentally. The initial numerical results of these element connectors are compared with the experimental results in term of natural frequencies and mode shapes. The comparative evaluation of numerical and the experimental data are performed in order to provide some insights of inaccuracies in the numerical model due to invalid assumption in the numerical modelling such as geometry, material properties, and boundary conditions. The discrepancies between both results (numerical and experimental data are then corrected using the response surface reconciliation method (RSRM through which the finite element model is altered in order to provide closer agreement with the measured data so that it can be used for subsequence analysis.

  8. Deep Friction Massage Versus Steroid Injection in the Treatment of Lateral Epicondylitis.

    Science.gov (United States)

    Yi, Rosemary; Bratchenko, Walter W; Tan, Virak

    2018-01-01

    The aim of the study was to determine the efficacy of deep friction massage in the treatment of lateral epicondylitis by comparing outcomes with a control group treated with splinting and therapy and with an experimental group receiving a local steroid injection. A randomized clinical trial was conducted to compare outcomes after recruitment of consecutive patients presenting with lateral epicondylitis. Patients were randomized to receive one of 3 treatments: group 1: splinting and stretching, group 2: a cortisone injection, or group 3: a lidocaine injection with deep friction massage. Pretreatment and posttreatment parameters of visual analog scale (VAS) pain ratings, Disabilities of the Arm, Shoulder and Hand (DASH) scores, and grip strength were measured. Outcomes were measured at early follow-up (6-12 weeks) and at 6-month follow-up. There was a significant improvement in VAS pain score in all treatment groups at early follow-up. DASH score and grip strength improved in the cortisone injection group and the deep friction massage group at early follow-up; these parameters did not improve in the splinting and stretching group. At 6-month follow-up, only patients in the deep friction massage group demonstrated a significant improvement in all outcome measures, including VAS pain score, DASH score, and grip strength. Deep friction massage is an effective treatment for lateral epicondylitis and can be used in patients who have failed other nonoperative treatments, including cortisone injection.

  9. Bolt study - behaviour of bolts in drop accident scenarios of the Nirex 3m3 Box ILW package

    International Nuclear Information System (INIS)

    Turner, G.; Tso, C.F.

    2004-01-01

    The mission of Nirex is to provide the UK with safe, environmentally sound and publicly acceptable options for the long-term management of radioactive materials. One of the key tasks is to ensure that waste is packaged by waste producers in a form which is suitable for safe storage, transport, handling and potential disposal. In pursuit of this key requirement, Nirex has developed specifications to set the standard for the design and performance of waste packages, and has developed standard containers for the packaging of intermediate level (ILW) and some low level waste (LLW) - one of these is the 3m 3 Box for immobilised operational and decommissioning ILW. The dimension envelope of this package is 1716 mm x 1716 mm in plan with 430 mm corner radii, 1226 mm tall. The maximum loaded weight is 12 tonnes. A generic design of this container has been developed, which is a welded structure manufactured from austenitic stainless steel (EN 10088-2 steel number 1.4404). The lid is connected to the body by 28 stainless steel bolts. An extensive study was carried out to develop a robust FE model of the bolts. The specific focus of this work was to use improved bolt modelling to optimize the design of the 3m 3 Box, although this work could be applied to other bolted containers. This paper presents a summary of the findings from the study as follows: 1. Development of a FE bolt model for application in a 3m 3 Box model. 2. Development and execution of a bolt testing programme which included tensile and shear tests on a total of 88 bolts, representing four grades of stainless steel materials, three thread sizes, and two geometries at three strain rates. 3. Benchmarking of the FE bolt model that can be used with confidence in simulating waste package behaviour in drop scenarios

  10. A novel method for detecting second harmonic ultrasonic components generated from fastened bolts

    Science.gov (United States)

    Fukuda, Makoto; Imano, Kazuhiko

    2012-09-01

    This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.

  11. Grip Strength Survey Based on Hand Tool Usage

    Directory of Open Access Journals (Sweden)

    Erman ÇAKIT

    2016-12-01

    Full Text Available Hand grip strength is broadly used for performing tasks involving equipment in production and processing activities. Most professionals in this field rely on grip strength to perform their tasks. There were three main aims of this study: i determining various hand grip strength measurements for the group of hand tool users, ii investigating the effects of height, weight, age, hand dominance, body mass index, previous Cumulative Trauma Disorder (CTD diagnosis, and hand tool usage experience on hand grip strength, and iii comparing the obtained results with existing data for other populations. The study groups comprised 71 healthy male facility workers. The values of subjects’ ages was observed between 26 and 74 years. The data were statistically analyzed to assess the normality of data and the percentile values of grip strength. The results of this study demonstrate that there were no significance differences noted between dominant and non-dominant hands. However, there were highly significant differences between the CTD group and the other group. Hand grip strength for the dominant hand was positively correlated to height, weight, and body mass index, and negatively correlated to age and tool usage experience. Hand dominance, height, weight, body mass index, age and tool usage experience should be considered when establishing normal values for grip strength.

  12. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    Science.gov (United States)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  13. A Probabilistic Approach to Baffle Bolt IASCC Predictions

    International Nuclear Information System (INIS)

    Griesbach, Timothy J.; Licina, George J.; Riccardella, Peter C.; Rashid, Joe R.; Nickell, Robert E.

    2012-01-01

    A methodology for evaluating the probability of baffle-former bolt cracking was developed for applicability to PWRs. The methodology is based upon IASCC test results for the stainless steels most commonly used for baffle-former bolts (e.g., Type 304 SA, Type 347 SA, and Type 316 CW) and predictions of the representative stress patterns in those bolts that were developed as inputs to the model. The predictive methodology for IASCC is based on a single parameter that was developed to incorporate the combined effects of dose and stress ratio (applied stress divided by yield strength, where the yield strength includes irradiation hardening) plus a Weibull statistical distribution that is defined in terms of that parameter. Baffle-former bolt cracking has been observed in a number of PWRs, and these incidents have raised concerns about the likelihood of future cracking or failures. In this damage model, IASCC 'failure' is defined when the component becomes fully susceptible to stress corrosion cracking; that is, after a certain level of irradiation and sustained stress. The length of time required for the material to become fully susceptible was determined from IASCC test data. IASCC crack initiation, which is defined to be equivalent to failure as noted above, is defined by an IASCC susceptibility curve from the test data that relates applied stress and cumulative neutron dose. The dose duration under constant stress is interpreted as the incubation time needed to make the material susceptible to stress corrosion cracking, after which crack initiation and propagation to full rupture under constant stress will occur within a relatively short time (hundreds of hours). The IASCC failure model uses the calculated stress in a material such as the baffle-former bolt and calculates a damage index as the ratio of the current applied stress to the allowable stress as a function of irradiation dose. IASCC initiation data for various irradiated bolting materials was obtained from

  14. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  15. An interactive roof bolting selection and performance system

    Energy Technology Data Exchange (ETDEWEB)

    Agioutantis, Z.; Stiakakis, C.; Stiakakis, N. [Technical Univ. of Crete, Chania (Greece); Karmis, M. [Virginia Polytechnic Inst. and State Univ. (United States)

    2001-07-01

    In the last decades, bolting has become one of the most dominant support methods in underground construction, including both mining as well as civil engineering applications. A variety of bolt types has been developed in order to meet the support needs of different geological and geotechnical settings. The selection of the appropriate bolt type, as well as the troubleshooting procedures in case of failure or suspected failure, are often complex and require extensive experience. To facilitate bolt type selection as well as troubleshooting, various tools have been presented in the form of nomograms, computer programs or trouble shooting guides. The approach described in this paper incorporates information and data developed by laboratory and field investigations and has led to the development of a dynamic knowledge base system that can aid in the selection of appropriate bolting systems and, also, help troubleshoot existing installations. Additionally, the user can enhance the functionality of the existing database with site-specific information and geological behavior as experienced by field personnel. The package is developed as a Windows trademark based application, where data is stored in Microsoft Access trademark database. (orig.)

  16. A firm political grip on the market

    International Nuclear Information System (INIS)

    Bakken, Stein Arne

    2003-01-01

    In Norway, there is a strong political grip on the energy supply industry. The market is going to play a marginal role. The article deals with three scenarios for what the Norwegian energy supply might look like in 2005 as envisaged by a group of researchers in a comprehensive project carried out by ECON. The first scenario, ''The Market Place'', shows the development of the energy supply from regulation to a free market in the wake of the new Energy Act. According to this scenario, by 2005 the market should be well established as a form of control. The second scenario, ''The Norwegian Way'', shows the way of the energy supply from a free market to regulation. The third scenario is ''The Field of Force'' and shows how the energy supply develops into a strong energy industrial complex; this is the scenario that definitely has not come true. The most likely scenario to come true in ten years is probably a mixture of ''The Market Place'' and ''The Norwegian Way'' with an emphasis on the latter. The trend is clearly for increased political control

  17. GRIP BARBADOS/CAPE VERDE RADIOSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Barbados/Cape Verde radiosonde data set consists of generally two soundings per day (06Z and 12Z) launched from Barbados, and one sounding per day (12Z)...

  18. GRIP DOPPLER AEROSOL WIND LIDAR (DAWN) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Doppler Aerosol WiNd Lidar (DAWN) Dataset was collected by the Doppler Aerosol WiNd (DAWN), a pulsed lidar, which operated aboard a NASA DC-8 aircraft...

  19. Getting a grip on affordances, attention and visual fields

    OpenAIRE

    Linden, Lotje van der; Theeuwes, Jan; Ellis, Rob

    2013-01-01

    van der Linden, L., Theeuwes, J., & Ellis, R. (2012). Getting a grip on affordances, attention, and visual fields. Poster presented at the 2012 William James Graduate School Symposium, Amsterdam, The Netherlands.

  20. GRIP DC-8 NAVIGATION AND HOUSEKEEPING DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains aircraft navigational data obtained during the GRIP campaign (15 Aug 2010 - 30 Sep 2010). The NASA DC-8 is outfitted with a navigational...

  1. Handling device with grips operated by a servo-motor

    International Nuclear Information System (INIS)

    Sgarbi, F.; Detriche, J.M.

    1990-01-01

    On grip jaws are set up a detection circuit which allows the rocking of the control system from a control system in position to a control system in clamping strain when an object is held, and then which allows to use them by turns in order to keep only their advantages. A larger light touch handling is obtained. The application of this grip is recommended to catch brittle objects (for handicapped persons by example) [fr

  2. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Ho; Park, Min Su; Cho, Youn Ho; Park, Moon Ho

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  3. Development of plastic media blasting device for stud bolt

    International Nuclear Information System (INIS)

    Yoshihisa, Y.; Miyashita, T.

    1999-01-01

    Plastic media blasting is a mechanical cleaning method for removing paint, rust and/or anti-galling material etc on the surface of metal without damaging the metal surface. The method is suitable for cleaning the surface of reusable elements and parts such as bolts and nuts. Anti-galling material such as molybdenum disulfide is applied to fastening stud bolts used for the steam turbine rotor casing. It is necessary to remove this material when new anti-galling material is to be applied. Genden Engineering Services and Construction Co., and Morikawa Industries Corp., have developed a plastic media blasting device to clean the surface of stud bolt screw threads installed in the facility such as lower casing of the turbine. This paper reports the outline of the results. (author)

  4. Nuclear reactor incorporating locking device for threaded bolt connections

    International Nuclear Information System (INIS)

    Blaushild, R.M.

    1987-01-01

    A nuclear reactor having a pressure vessel and a first element is described comprising a core barrel situated within the pressure vessel. The core barrel has a baffle former secured in and to the core barrel by bolted connections, and a second element comprising baffle plates secured to the inner surface of the baffle former by bolted connections, with a locking device to prevent loosening of bolted connections between the baffle former and at least one of the elements. The baffle former and at least one element are held together by a headed, threaded bolt engaged in a bore coaxially extending in the baffle former and at least one element and threadedly engaged in a threaded section in at least the baffle former. The threaded section has first threaded of a first direction, with the head of the bolt engaged with a shoulder about the bore in at least one element to hold the baffle formed and at least one element together, the head of the bolt having a first diameter and a cavity, having an unsymmetrical wall thereabout, in the end surface thereof. It comprises a recess in at least one element coaxial with the bore forming a wall thereabout and extending inwardly from the outer surface of at least one element, the recess having a second diameter greater than the first diameter, with at least one element having second threads in the wall of a direction opposite the direction of the first threads of the threaded bore; a locking nut having a base with a downwardly depending cylindrical wall thereabout

  5. Grip op werkstress. Mindfulness ontstresst maatschappelijk werkers

    Directory of Open Access Journals (Sweden)

    Jen van Horen

    2014-03-01

    Full Text Available Taking control over work related stress. Mindfulness destresses social workersStress is a major social problem. Due to the increasing workload and the content of the work, social workers are at risk to develop stress (symptoms. The physical and psychological consequences of prolonged stress are serious. By living healthy, optimize working conditions and applying mindfulness, stress can be reduced. Mindfulness is an effective and useful way to reduce stress. It increases the resistance of workers against stress, improves brainfunctions and therefore has a positive effect on the performance. These effects are great, but they are still weakly methodologically substantiated. A pilot project within the youthcare though, was enthusiastically received and proves to be effective against stress symptoms. The exercises that are part of this pilot fit well with the needs of employees. For organizations mindfulnesstrainings are a time-and cost-effective way of structural stress prevention.Grip op werkstress. Mindfulness ontstresst maatschappelijk werkersStress is een omvangrijk maatschappelijk probleem. Door de toenemende werkdruk en de inhoud van het werk zijn maatschappelijk werkers een risicogroep om stress en stressklachten te ontwikkelen. De fysieke en psychische gevolgen die langdurige stress met zich meebrengt zijn ernstig. Door gezond te leven, de arbeidsomstandigheden te optimaliseren en mindfulness toe te passen kan stress terug worden gedrongen. Mindfulness is een effectieve en bruikbare manier om stress te verminderen. Het vergroot de weerbaarheid van werknemers tegen stress, het verbetert de hersenwerking en heeft daardoor een positief effect op het functioneren. Grote effecten dus, maar wel nog methodologisch zwak onderbouwd. Een pilot binnen de jeugdzorg op het gebied van mindfulness is enthousiast ontvangen en blijkt effectief tegen stressklachten. De oefeningen die onderdeel uitmaken van deze pilot sluiten goed aan bij de behoeften van

  6. Design of Multiple Bolted Connections for Laminated Veneer Lumber

    Science.gov (United States)

    Borjen Yeh; Douglas Rammer; Jeff Linville

    2014-01-01

    The design of multiple bolted connections in accordance with Appendix E of the National Design Specification for Wood Construction (NDS) has incorporated provisions for evaluating localized member failure modes of row and group tear-out when the connections are closely spaced. Originally based on structural glued laminated timber (glulam) members made with all L1...

  7. Core Baffle Former Bolts Inspection and Repair at Farley NPP

    International Nuclear Information System (INIS)

    Marsat, E.

    1998-01-01

    As operating light water reactors are getting older and some of them are approaching their designed lifetime, the question of plant ageing, and the determination of their potential lifetime becomes mores and more important. This calls for a better understanding of ageing phenomena by an optimization of operating strategies and a development of innovative inspection and repair or replacement strategies. Definitely, this task is complex because it covers technical issues, cost, a given licensing situation and possibly, public acceptance. From a technical point it seems to be a common understanding that nuclear power plants can be operated for 40, 50 or even more years today. The inspection and repair technologies are of a very practical importance in achieving this goal. Bolts are subjected to flaws due to material, stress, and fluence issues. These issues are present in varying degrees depending on location in the core barrel. The issue depending on the number of failed bolts is a safety concern. It is not presently a concern if plants are operated with sufficient margin (sufficient acceptable bolts to allow continued operation). Historically there have been no greater than 10% of the bolts with detected flaws but as plants age, the flaw density may increase. (Author)

  8. Strength of Glued-in Bolts after Full Scale Loading

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1999-01-01

    with a length of 500 mm had a special hollow tapering giving them a higher load bearing capacity than solid bolts of equal dimensions. A FEM-analysis confirms the higher load bearing capacity. The mean residual strength was found to be 362 kN with a standard deviation of 37 kN, which is 95% of the predicted...

  9. Apparatus For Eddy-Current Inspection Of Bolts

    Science.gov (United States)

    Amos, Jay M.

    1994-01-01

    Eddy-current apparatus for inspection of bolts, studs, and other threaded fasteners detects flaws in threads, shanks, and head fillets. With help of apparatus, technician quickly inspects fasteners of various dimensions. Accommodates fasteners with diameters from 0.190 in. to 1 in. and with lengths up to 5 in. Basic design modified to accommodate fasteners of other sizes.

  10. STUDY, EVALUATION AND TEST OF SUBMODULE TO GIRDER BOLTED JOINT

    CERN Document Server

    Blocki, J; Miralles, Ll; Topilin, N D

    2000-01-01

    The object of the present work is to study the bolted joint submodule to girder. This joint is critical from the point of view of the mechanical integrity of the Tilecal Barrel and Extended Barrel modules and LAr Endcaps. Theoretical analysis, FEM calculations and tests have been carried out in order to find a solution that fulfils the safety factors design criteria.

  11. Bolting state-building fault lines with social capital

    African Journals Online (AJOL)

    2013-12-15

    Dec 15, 2013 ... Keywords: State-building, social capital, ethnic supremacy, Dinka, Nuer,. South Sudan. * Robert Gerenge is the Head of Special Programmes at the Electoral Institute for Sustainable. Democracy in Africa (EISA). South Sudan's December 2013 conflict: Bolting state-building fault lines with social capital.

  12. The Fatigue Characteristics of Bolted Lap Joints of 24S-T Alclad Sheet Materials

    Science.gov (United States)

    1946-10-01

    extremely close bolt fits are needed to o%tain maximum life of bolt ~oint~ under repeated etreseeci. -. Szvzral ty~+?+s of bolt patterns hava been tegted...Memorial Institute on spec~meris of 0.102-i.nch sheet. In particular, figure 4 shows, on a load- life diagram, . results of tests Qn single-bolt...results of tests at the Univer- sity of’ il~~nols on single—bolt specimens, Tables 10 and 11 give reeults of tests, made at the U“ uiversity of Illino~8 , on

  13. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  14. Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-10-01

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting

  15. Proximity friction reexamined

    International Nuclear Information System (INIS)

    Krappe, H.J.

    1989-01-01

    The contribution of inelastic excitations to radial and tangential friction form-factors in heavy-ion collisions is investigated in the frame-work of perturbation theory. The dependence of the form factors on the essential geometrical and level-density parameters of the scattering system is exhibited in a rather closed form. The conditions for the existence of time-local friction coefficients are discussed. Results are compared to form factors from other models, in particular the transfer-related proximity friction. For the radial friction coefficient the inelastic excitation mechanism seems to be the dominant contribution in peripheral collisions. (orig.)

  16. Genetic analyses of bolting in bulb onion (Allium cepa L.).

    Science.gov (United States)

    Baldwin, Samantha; Revanna, Roopashree; Pither-Joyce, Meeghan; Shaw, Martin; Wright, Kathryn; Thomson, Susan; Moya, Leire; Lee, Robyn; Macknight, Richard; McCallum, John

    2014-03-01

    We present the first evidence for a QTL conditioning an adaptive trait in bulb onion, and the first linkage and population genetics analyses of candidate genes involved in photoperiod and vernalization physiology. Economic production of bulb onion (Allium cepa L.) requires adaptation to photoperiod and temperature such that a bulb is formed in the first year and a flowering umbel in the second. 'Bolting', or premature flowering before bulb maturation, is an undesirable trait strongly selected against by breeders during adaptation of germplasm. To identify genome regions associated with adaptive traits we conducted linkage mapping and population genetic analyses of candidate genes, and QTL analysis of bolting using a low-density linkage map. We performed tagged amplicon sequencing of ten candidate genes, including the FT-like gene family, in eight diverse populations to identify polymorphisms and seek evidence of differentiation. Low nucleotide diversity and negative estimates of Tajima's D were observed for most genes, consistent with purifying selection. Significant population differentiation was observed only in AcFT2 and AcSOC1. Selective genotyping in a large 'Nasik Red × CUDH2150' F2 family revealed genome regions on chromosomes 1, 3 and 6 associated (LOD > 3) with bolting. Validation genotyping of two F2 families grown in two environments confirmed that a QTL on chromosome 1, which we designate AcBlt1, consistently conditions bolting susceptibility in this cross. The chromosome 3 region, which coincides with a functionally characterised acid invertase, was not associated with bolting in other environments, but showed significant association with bulb sucrose content in this and other mapping pedigrees. These putative QTL and candidate genes were placed on the onion map, enabling future comparative studies of adaptive traits.

  17. Thermo-mechanical analysis of PWR bolts susceptible to IASCC

    International Nuclear Information System (INIS)

    Matteoli, C.; Hannink, M.H.C.; Blom, F.J.; Marck, S.C. van der; Charpin-Jacobs, F.

    2015-01-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is considered a primary ageing issue for the Reactor Pressure Vessel (RPV) internals of Pressurized Water Reactors (PWR). In particular, this complex phenomenon which develops in an environment featuring thermal and mechanical stresses, interaction with corrosive compounds and irradiation, is affecting the bolts connecting the baffles and the formers in the Nuclear Power Plants' RPVs. The baffle-former assembly is the structure that borders the fuel assemblies region, contributing to keep them in position and separating in the radial direction, the core region from the downcomer region. An evaluation of the stresses and temperatures reached in the baffle-former bolts during normal operation was performed by means of a coupled thermo-mechanical study which uses reactor physics calculations to obtain the fluence in the reactor core and as a consequence the heat deposition in the RPV internals. The heat deposition data are coupled with a finite element model of the bolts and the RPV internals in order to perform a complete analysis taking in account thermal, mechanical and radiation loadings. The study is first carried out focusing on a section of the RPV internals, showing a single row of baffle-former bolts. Then the work is extended to the full core height. The model set up in this work, includes an in-depth study of the behavior of the core internals, in particular baffle-former bolts. The model has the capability of understanding the mechanical and thermal behavior of essential internal components in a PWR. (authors)

  18. A new design concept of fully grouted rock bolts in underground construction

    Science.gov (United States)

    Phich Nguyen, Quang; Nguyen, Van Manh; Tuong Nguyen, Ke

    2018-04-01

    The main problem after excavating an underground excavation is to maintain the stability of the excavation for a certain period of time. Failure in meeting this demand is a threat to safety of men and equipment. Support and reinforcement are different instruments with different mechanisms. Among the common support systems in tunnelling and mining, rock bolts have been widely used to reinforce rock mass and also to reduce geological hazards. Furthermore rock bolts can be applied under varying different geological conditions with cost-effectiveness. Although different methods are developed for grouted rock bolts design until now, the interaction mechanism of the rock bolts and rock mass is still very complicated issue. The paper addresses an analytical model for the analysis and design of fully grouted rock bolts based on the reinforcement principle. According to this concept the jointed rock mass reinforced by grouted rock bolts is considered as composite material which includes rock mass, the grout material and the bolt shank. The mechanical properties of this composite material depend on the ratio of the components. The closed-form solution was developed based on the assumption that the rock mass arround a circular tunnel remained elastic after installing fully grouted rock bolts. The main parameters of the rock-bolt system (the diameter and length of bolt shank, the space between the bolts) are then easily estimated from the obtained solution.

  19. Ageing management of baffle former bolts in Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Somville, F.; Gerard, R.; Bosch, R.W.; Bertolis, D.; Vissers, S.

    2015-01-01

    The Pressurized Water Reactors internals support the reactor core, distribute the coolant flow through the core, and guide and protect the rod control cluster assemblies and in-core instrumentation. The baffle-to-former bolts are used in Pressurized Water Reactors to attach the baffle plates to the former plates in the reactor vessel lower internals. The resulting structure forms a boundary for the flow of coolant and provides lateral support to the fuel assemblies. Some edge bolts are also present, assembling together the baffle plates. After an operating time of the order of 120.000 hours, some bolts exhibit cracking at the junction of the head and the shank of the bolt. Examinations of failed bolts have made it possible to identify the cause of cracking as irradiation assisted stress corrosion cracking (IASCC). Up to now, baffle bolt cracking has been detected in units older than 15 years, where the baffle bolts are not cooled (no holes in the former to allow a water flow on the bolt shank). In Belgium, the concerned units are Tihange 1 and Doel 1-2. The paper summarizes the experience with baffle bolts cracking in Belgian units and the strategy implemented to mitigate this problem, consisting of structural integrity analyses, baffle bolts inspections and replacement, and research programs in the field of IASCC, including examinations of highly irradiated replaced bolts. (authors)

  20. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    Science.gov (United States)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  1. Behaviour of steel-concrete composite beams using bolts as shear connectors

    Science.gov (United States)

    Tran, Minh-Tung; Nguyen Van Do, Vuong; Nguyen, Tuan-Anh

    2018-04-01

    The paper presents an experimental program on the application of bolts as shear connectors for steel-composite beams. Four steel- concrete composite beams and a reference steel beam were made and tested. The aim of the testing program is to examine which forms of the steel bolts can be used effectively for steel-composite beams. The four types of the bolts include: Type 1 the bolt with the nut at the end; Type 2 the bolt bending at 900 hook; Type 3 the bolt without the nut at the end and Type 4 the bolt with the nut at the end but connected with the steel beam by hand welding in other to be connected with the steel beam by bolt connection as in the first three types. The test results showed that beside the traditional shear connectors like shear studs, angle type, channel type, bolts can be used effectively as the shear connectors in steel-composite beams and the application of bolts in Types 1 and 2 in the composite beams gave the better performance for the tested beam.

  2. Development of a Unified Rock Bolt Model in Discontinuous Deformation Analysis

    Science.gov (United States)

    He, L.; An, X. M.; Zhao, X. B.; Zhao, Z. Y.; Zhao, J.

    2018-03-01

    In this paper, a unified rock bolt model is proposed and incorporated into the two-dimensional discontinuous deformation analysis. In the model, the bolt shank is discretized into a finite number of (modified) Euler-Bernoulli beam elements with the degrees of freedom represented at the end nodes, while the face plate is treated as solid blocks. The rock mass and the bolt shank deform independently, but interact with each other through a few anchored points. The interactions between the rock mass and the face plate are handled via general contact algorithm. Different types of rock bolts (e.g., Expansion Shell, fully grouted rebar, Split Set, cone bolt, Roofex, Garford and D-bolt) can be realized by specifying the corresponding constitutive model for the tangential behavior of the anchored points. Four failure modes, namely tensile failure and shear failure of the bolt shank, debonding along the bolt/rock interface and loss of the face plate, are available in the analysis procedure. The performance of a typical conventional rock bolt (fully grouted rebar) and a typical energy-absorbing rock bolt (D-bolt) under the scenarios of suspending loosened blocks and rock dilation is investigated using the proposed model. The reliability of the proposed model is verified by comparing the simulation results with theoretical predictions and experimental observations. The proposed model could be used to reveal the mechanism of each type of rock bolt in realistic scenarios and to provide a numerical way for presenting the detailed profile about the behavior of bolts, in particular at intermediate loading stages.

  3. Lower limit of strength wedge-type anchor bolts

    International Nuclear Information System (INIS)

    Arnedo Pena, A.; Frances Urmeneta, M.

    1998-01-01

    Simple expansion bolts, with a split expansion ring and a threaded bolt with an integral cone expander, called wedge type, are very used in securing and anchoring structures. The anchorage is obtained by a mechanism of torque-controlled expansion. Although less resistant than other types, its easy installation and low cost make them very competitive in light structures. In this paper, the minimum capacity values are analysed, when they are used to anchor safety-related equipment in NPP. The EPRI criteria developed in response to USI A-46 are applied and complemented by the new CEB Anchorage Design Guide. The results are compared with the information from european manufactures, adopting different safety factors for cracked and non-cracked concrete. With adequate control and inspection measures, including areas of noticeable cracking of concrete. minimum values for equipment can be obtained satisfying the strictest seismic validation requirements. (Author) 5 refs

  4. Gripped by movies: From story-world to artifact absorption

    NARCIS (Netherlands)

    Doicaru, M.M.

    2016-01-01

    That movies are a great source of entertainment seems to be common sense. But how exactly movies manage to get large audiences absorbed, or what is their gripping tool is still a mystery. Research makes use of different concepts pointing to narrative absorption, but it is not clear how they differ

  5. Hand Grip Strength Vs. Sprint Effectiveness in Amputee Soccer Players.

    Science.gov (United States)

    Wieczorek, Marta; Wiliński, Wojciech; Struzik, Artur; Rokita, Andrzej

    2015-11-22

    Amputee soccer is one of the types of soccer designed for the disabled, especially those who have undergone amputations, as well as those with extremity dysfunction. The objective of the study was to find the relationship between hand grip strength and sprint time in amputee soccer players. Thirteen field amputee soccer players participated in the study. A SAEHAN hydraulic hand dynamometer manufactured by Jamar was used for hand grip strength measurements. The sprint running test was conducted over a distance of 30 m. The Fusion Smart Speed System was employed for running time measurements. No statistically significant relationships were found between hand grip strength of the left or right hand, and sprint times over 1, 5, 10, 15, 20, 25 and 30 m. Analysis of the running velocity curve of the subjects showed an interesting profile characterized by a 15 meter-long acceleration phase and a significant velocity increase over a distance of 20 - 25 m. The study suggests that there is no relationship between hand grip strength and sprint effectiveness in amputee soccer players. The specificity of locomotion with the use of elbow crutches among elite Polish amputee soccer players probably accounts for the profile of the sprint velocity curve. Extension of the acceleration phase in the sprint run and a velocity increase in the subsequent part of the run were observed.

  6. Hand Grip Strength Vs. Sprint Effectiveness in Amputee Soccer Players

    Directory of Open Access Journals (Sweden)

    Wieczorek Marta

    2015-12-01

    Full Text Available Amputee soccer is one of the types of soccer designed for the disabled, especially those who have undergone amputations, as well as those with extremity dysfunction. The objective of the study was to find the relationship between hand grip strength and sprint time in amputee soccer players. Thirteen field amputee soccer players participated in the study. A SAEHAN hydraulic hand dynamometer manufactured by Jamar was used for hand grip strength measurements. The sprint running test was conducted over a distance of 30 m. The Fusion Smart Speed System was employed for running time measurements. No statistically significant relationships were found between hand grip strength of the left or right hand, and sprint times over 1, 5, 10, 15, 20, 25 and 30 m. Analysis of the running velocity curve of the subjects showed an interesting profile characterized by a 15 meter-long acceleration phase and a significant velocity increase over a distance of 20 – 25 m. The study suggests that there is no relationship between hand grip strength and sprint effectiveness in amputee soccer players. The specificity of locomotion with the use of elbow crutches among elite Polish amputee soccer players probably accounts for the profile of the sprint velocity curve. Extension of the acceleration phase in the sprint run and a velocity increase in the subsequent part of the run were observed.

  7. Grip and Pinch Strength Norms for Michigan Workers

    Directory of Open Access Journals (Sweden)

    Joel M. Phillips M.S., OTRL

    2013-06-01

    Full Text Available The purpose of this study was to create a norm reference of current grip and pinch strength norms for working-age Michigan adults. This normative study included a convenience sample of 179 volunteers who were employees at car plants in South East Michigan or hospital sites in West Michigan. Participants’ ages ranged from between 20 and 62 years of age with a mean age of 49.15 years. There were 78 females (44% and 101 males (56%. Subjects were classified by gender and in the age categories of ages 20 to 49 years and ages 50-62 years. Grip and pinch strength norms were collected following the American Society of Hand Therapy protocol. The norms from these working adults were calculated with descriptive statistics for males and females in two age classifications: ages 20 to 49 and ages 50 to 62 years. Standard Errors (SE are better than the 1985 norms for both males and females ages 20 to 49 years. SEs are higher than the ages 20 to 49 years’ norms for the ages 50 to 62 years age categories in both males and females. These norms offer a point of comparison for clinicians to use for clients in Michigan who are ages 20 to 62 years and who have a goal to improve their grip strength. Clients’ grip and pinch strength could be compared to their age level or gender norms using the comparison for one standard deviation above, below, or at the means.

  8. Wearable flex sensor system for multiple badminton player grip identification

    Science.gov (United States)

    Jacob, Alvin; Zakaria, Wan Nurshazwani Wan; Tomari, Mohd Razali Bin Md; Sek, Tee Kian; Suberi, Anis Azwani Muhd

    2017-09-01

    This paper focuses on the development of a wearable sensor system to identify the different types of badminton grip that is used by a player during training. Badminton movements and strokes are fast and dynamic, where most of the involved movement are difficult to identify with the naked eye. Also, the usage of high processing optometric motion capture system is expensive and causes computational burden. Therefore, this paper suggests the development of a sensorized glove using flex sensor to measure a badminton player's finger flexion angle. The proposed Hand Monitoring Module (HMM) is connected to a personal computer through Bluetooth to enable wireless data transmission. The usability and feasibility of the HMM to identify different grip types were examined through a series of experiments, where the system exhibited 70% detection ability for the five different grip type. The outcome plays a major role in training players to use the proper grips for a badminton stroke to achieve a more powerful and accurate stroke execution.

  9. Grip strength as a frailty diagnostic component in geriatric inpatients

    Directory of Open Access Journals (Sweden)

    Dudzińska-Griszek J

    2017-07-01

    Full Text Available Joanna Dudzińska-Griszek, Karolina Szuster, Jan Szewieczek Department of Geriatrics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland Background: Frailty has emerged as a key medical syndrome predictive of comorbidity, disability, institutionalization and death. As a component of the five frailty phenotype diagnostic criteria, patient grip strength deserves attention as a simple and objective measure of the frailty syndrome. The aim of this study was to assess conditions that influence grip strength in geriatric inpatients.Patients and methods: The study group consisted of 80 patients aged 78.6±7.0 years ( X ± SD, with 68.8% women, admitted to the Department of Geriatrics. A comprehensive geriatric assessment was complemented with assessment for the frailty phenotype as described by Fried et al for all patients in the study group. Functional assessment included Barthel Index of Activities of Daily Living (Barthel Index, Instrumental Activities of Daily Living Scale and Mini-Mental State Examination.Results: Three or more frailty criteria were positive in 32 patients (40%, while 56 subjects (70% fulfilled the frailty criterion of weakness (grip strength test. Multivariate linear regression analysis revealed that two independent measures showed positive association with grip strength – Mini-Mental State Examination score (β=0.239; P=0.001 and statin use (β=0.213; P=0.002 – and four independent measures were negatively associated with grip strength – female sex (β=–0.671; P<0.001, C-reactive protein (β=–0.253; P<0.001, prior myocardial infarction (β=–0.190; P=0.006 and use of an antidepressant (β=–0.163; P=0.018. Low physical activity was identified as the only independent qualitative frailty component associated with 2-year mortality in multivariate logistic regression analysis after adjustment for age and sex (odds ratio =6.000; 95% CI =1.357–26.536; P=0.018.Conclusion: Cognitive

  10. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  11. Best practices for the design and installation of bolted joints

    Energy Technology Data Exchange (ETDEWEB)

    Tetteh-Wayoe, D. [Enbridge Pipelines Inc., Edmonton, AB (Canada)

    2004-07-01

    Bolted joints are often used in liquid pipeline facilities instead of welded joints because they must be frequently disassembled and reassembled as part of regular maintenance. Some bolted joints must retain their seal for the lifetime of the pipeline. As such, the design and installation practices used for bolted connections must have the same integrity as welded pipe. However, repeated flange leaks during hydrotesting has prompted an investigation into flange assembly practices. This paper addressed several aspects of proper flange assembly, including gaskets, lubricants, misalignment, hardened washers, studs and nuts, tools, torque values, tightening procedures, and quality control. A flange assembly procedure was then developed based on best practice recommendations. The objective was to eliminate flange leaks to reduce the effort needed during hydrotesting, and to create a seal that has the highest probability to last for the service life of the flange connection, regardless of service demands. It was concluded that obtaining the specified results depends highly on whether or not the personnel responsible for carrying out the work are well trained. Thirteen measures that can be implemented to improve the integrity of flange connections were listed. It was recommended that a regular review of flange assembly procedures should be performed with vendors, construction and operations personnel. Procedures should be updated when required. 12 refs., 5 tabs., 3 figs.

  12. X-ray measurement of residual stress on bolt threads

    International Nuclear Information System (INIS)

    Hagiwara, Masaya; Nakahara, Kanefumi; Yoshimoto, Isamu.

    1989-01-01

    This study deals with X-ray measurement of residual stress at the local area around the thread root of a bolt. Residual stress in the 0.5 mm x 5 mm area was measured using a method of stepped scanning and parabolic approximation. The conditions of measurement had been determined and evaluated through the preliminary measurement of compressive stress acting on the cylindrical surface. Furthermore, the fatigue strength estimated by applying the residual stress data to the previously presented hypothesis was compared with the experimental results. The main conclusions obtained were as follows: (1) The residual stress in a relatively small area on the cylindrical surface with large curvature can be measured by X-ray using a method of stepped scanning and parabolic approximation; (2) The compressive residual stress measured at the thread root was larger for the bolt manufactured by thread rolling after heat treatment than for one manufactured by thread rolling before heat treatment; (3) The distribution of residual stress along the axial direction from the thread root to the portion under crest did not represent remarkable change in its value; (4) The residual stress of a bolt was somewhat decreased by fatigue loading on the condition of low mean stress; (5) The fatigue strength estimated using residual stress data showed the tendency of experimental results well. (author)

  13. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  14. Study on the collision-mechanical properties of tomatoes gripped by ...

    African Journals Online (AJOL)

    The data of collision-mechanical property of tomatoes gripped by robot fingers are important for the gripping control of tomato harvesting robot. In the study, tests of controlling the fingers to grip tomatoes were conducted to ascertain the effects of input current, motor speed and impact positions on the impact force of fingers ...

  15. Failure Analysis on Tail Rotor Teeter Pivot Bolt on a Helicopter

    Science.gov (United States)

    Qiang, WANG; Zi-long, DONG

    2018-03-01

    Tail rotor teeter pivot bolt of a helicopter fractured when in one flight. Failure analysis on the bolt was finished in laboratory. Macroscopic observation of the tailor rotor teeter pivot bolt, macro and microscopic inspection on the fracture surface of the bolt was carried out. Chemical components and metallurgical structure was also carried out. Experiment results showed that fracture mode of the tail rotor teeter pivot bolt is fatigue fracture. Fatigue area is over 80% of the total fracture surface, obvious fatigue band characteristics can be found at the fracture face. According to the results were analyzed from the macroscopic and microcosmic aspects, fracture reasons of the tail rotor teeter pivot bolt were analyzed in detail

  16. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Choi, Sang Woo

    2006-01-01

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  17. Visual recognition of the load of roof-bolts by an indicator

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J. [Leon Industries (Germany)

    2001-07-01

    Hundreds of bolt-indicators were already used successfully in the German deep hard coal-mines to increase the safety and economy. The bolt-indicator offers the simple possibility to guard roof-bolt loads, to state weak points as well as to optimize the anchor density and the dimension. The bolt-indicator are mushroom shaped and are of coated metal. It is brought in between the anchor plate and the anchor mother. The loads appearing at the anchor will transfer to the bolt-indicators and can be recognized visually at the cylindrical part by the amount of the surface coating. A select example clarifies itself application aims, operation and a usage of the bolt-indicator and the yielding advantages in practice. (orig.)

  18. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  19. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  20. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  1. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  2. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  3. Friction and wear study of NR/SBR blends with Si3N4Filler

    Science.gov (United States)

    GaneshKumar, A.; Balaganesan, G.; Sivakumar, M. S.

    2018-04-01

    The aim of this paper is to investigate mechanical and frictional properties of natural rubber/styrene butadiene rubber (NR/SBR) blends with and without silicon nitride (Si3N4) filler. The rubber is surface modified by silane coupling agent (Si-69) for enhancing hydrophobic property. The Si3N4of percentage 0 1, 3, 5 and 7, is incorporated into NR/SBR rubber compounds with 20% precipitated silica. The specimens with and without fillers are prepared as per standard for tensile and friction testing. Fourier transform infrared (FTIR) spectroscopy test is conducted and it is inferred that the coupling agent is covalently bonded on the surface of Si3N4 particles and an organic coating layer is formed. The co-efficient of friction and specific wear rate of NR/SBR blends are examined using an in-house built friction tester in a disc-on-plate (DOP) configuration. The specimens are tested to find coefficient of friction (COF) against steel grip antiskid plate under dry, mud, wet and oil environmental conditions. It is found that the increase in tensile strength and modulus at low percentage of Si3N4 dispersion. It is also observed that increase in sliding friction co-efficient and decrease in wear rate for 1% of Si3N4 dispersion in NR/SBR blends. The friction tested surfaces are inspected using Scanning Electron Microscope (SEM) and 3D non contact surface profiler.

  4. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    Directory of Open Access Journals (Sweden)

    Rasim Guldiken

    2012-09-01

    Full Text Available In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in thickness, a 6.4 mm (¼ in grade 8 bolt and a stainless steel washer with 19 mm (¾ in of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  5. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Directory of Open Access Journals (Sweden)

    Skrzypkowski Krzysztof

    2018-01-01

    Full Text Available The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  6. Laboratory testing of a long expansion rock bolt support for energy-absorbing applications

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-01-01

    The main purpose of rock support and reinforcement in underground mining is to maintain excavations safe and open for their intended lifespan. The basic type of rock mass reinforcement method both in ore and hard coal mining is rock bolt support. Very often, existing bolt support systems are not always capable of providing a reliable controlled performance. Therefore, in recent years energy-absorbing bolts which are exposed to dynamic loading, for example from rock burst caused by high rock stresses, earthquakes, or blasting have appeared. In this article particular attention was paid to short and long expansion bolts. Quasi-static tests of expansion bolts were carried out at the laboratory test facility in simulated mining conditions, especially for the KGHM Polska Miedź S.A. mines. In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is rock bolt support with a length from 1.2 m to 2.6 m. Rock bolt support longer than 2.6 m is considered as additional support of excavations and is increasingly being used to reinforce the roofs. The comparisons of energy-absorbing short and long expansion bolts with a length of 1.8m, 3.6m and 5.2m were presented. In addition, for elastic and plastic range of each bolts were determined.

  7. Effects of Head Size on the Performance of Twist-Off Bolts

    OpenAIRE

    Schnupp, Keith Otto

    2003-01-01

    This study examines a specific application of button-head type twist-off bolts. Currently, the Research Council on Structural Connections Specification (2000) removes the requirement for ASTM F436 washers (ASTM 2000a) under the bolt head of twist-off bolts where the head diameter equals or exceeds that of an ASTM F436 washer when oversized and slotted holes are used. The need for washers is also removed for A490 strength bolts used on steels with specified yield strengths less than 40 ksi p...

  8. Evaluation of long-term relaxation for high-strength bolted connections

    International Nuclear Information System (INIS)

    Nah, H. S.; Lee, H. J.; Kim, K. S.

    2010-01-01

    It is general that the clamping forces of high-strength bolts diminish within a certain time period after the initial clamping force. In case that special treatments are applied on a faying surface, the clamping force is relaxed severely. Tests were conducted for slip critical joints subjected to various faying surface parameters. The candidates for bolt were two kinds: Korean Standard and American Standard. Relaxation occurred for slip resistant joints with an uncoated surface that had been shot-blasted, cleaned, milled or rusted. In case of ASTM hexagon bolts, the initial clamping force dropped from 7.9% to 13.6% after 1, 000 hours while relaxation ratio was the range from 8.7% to 15.4% for KS bolts. For ASTM hexagon bolt joints with a 5 mil thick zinc coating, the clamping force of the bolts decreased 15.0%, while relaxation ratio was 12.85% for KS bolts. For 4.9 mil thick red lead painted treatment, the relaxation ratio was 18.7% for ASTM hexagon bolt, 34.9% for KS bolts. Regardless of faying surface treatments, the first week charged at least 86% of total relaxation from this test. (authors)

  9. Post-Service Examination of PWR Baffle Bolts, Part I. Examination and Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gussev, Maxim N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-30

    In support of extended service and current operations of the US nuclear reactor plants, the Oak Ridge National Laboratory (ORNL), through the Department of Energy (DOE), Light Water Reactor Sustainability (LWRS) Program, is coordinating with Ginna Nuclear Power Plant, The Westinghouse Electric Company, LLC, and ATI Consulting, the selective procurement of baffle bolts that were withdrawn from service in 2011 and currently stored on site at Ginna. The goal of this program is to perform detailed microstructural and mechanical property characterization of baffle former bolts following in-service exposures. This report outlines the selection criteria of the bolts and the techniques to be used in this study. The bolts available are the original alloy 347 steel fasteners used in holding the baffle plates to the baffle former structures within the lower portion of the pressurized water reactor vessel. Of the eleven possible bolts made available for this work, none were identified to have specific damage. The bolts, however, did show varying levels of breakaway torque required in their removal. The bolts available for this study varied in peak fluence (highest dose within the head of the bolt) between 9.9 and 27.8x1021 n/cm2 (E>1MeV). As no evidence for crack initiation was determined for the available bolts from preliminary visual examination, two bolts with the higher fluence values were selected for further post-irradiation examination. The two bolts showed different breakaway torque levels necessary in their removal. The information from these bolts will be integral to the LWRS program initiatives in evaluating end of life microstructure and properties. Furthermore, valuable data will be obtained that can be incorporated into model predictions of long-term irradiation behavior and compared to results obtained in high flux experimental reactor conditions. The two bolts selected for the ORNL study will be shipped to Westinghouse with bolts of

  10. Review of Bolt Preload and Torque for Assembling Threaded Fasteners in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Yong-Sung; Lee, Jae-Gon; Kang, Yong-Chul; Shin, Ki-Jong

    2007-01-01

    There are numerous threaded fasteners such as bolts, studs, nuts, cap screws and anchor bolts used in nuclear power plants(NPPs). The major applications of threaded fasteners are reactor coolant pressure boundary components, their internals and supports. With the increase of commercial operation period of NPPs, the incidents caused by degradation of threaded fasteners have been occurred. A large number of reported incidents are involved in the pressure boundary and major component supports. The degradation and failure of threaded fasteners is affected by material, preload and torque value at assembly, bolting practice, etc. It is very important to select appropriate bolt preload and decide assembly torque value because torque control using a torque wrench is the most common method in a power plant to assemble a bolted flange connection. Many researches have been studied to define the proper bolt preload and desired torque value with regard to the integrity of bolted connections including pressure boundary joints by EPRI and other plant industry. But in domestic NPPs, considerably few works are done on the bolted joint assembly in spite of increasing events related with threaded faster. Therefore we investigated degradation or failure of the threaded fasteners used in NPPs, also examined the codes, standards and technical trends concerning bolt preload and assembly torque in NPPs. It is the purpose of this study to provide proper technical information for assuring integrity of the threaded fasteners

  11. Metallurgical examinations update of baffle bolts removed from operating French PWR. Microstructural investigations of a baffle to former bolt located on a high level of the internal structures

    International Nuclear Information System (INIS)

    Panait, C.; Fargeas, E.; Miloudi, S.; Moulart, P.; Tommy-Martin, M.; Monteil, N.; Pokor, C.

    2015-01-01

    This paper presents the microstructural investigations conducted on a cracked baffle to former bolt extracted from an upper former level of the internal structures of a French Pressurized Water Reactor (PWR). Extensive microstructural investigations using Light Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy (TEM) have been conducted to understand the degradation mechanisms of this bolt. TEM investigations have revealed neutron irradiation damage in the microstructure of the bolt such as Frank loops and cavities and/or bubbles. The number of features per unit volume as a function of diameter was determined in the head and in the shank of the bolt. The obtained results are relatively similar to those obtained for other damaged bolts extracted from PWR-type reactors and irradiated in similar conditions (dose and temperature). The irradiation damage has induced an evolution of the mechanical properties (hardening of the material), as revealed by the hardness measurements along the bolt, with a higher average value in the head (400 HV), compared to the shank (15 mm under the head), about 340 HV. The metallurgical investigations have confirmed that this bolt was damaged by Irradiation Assisted Stress Corrosion Cracking (IASCC)

  12. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  13. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  14. Experimental tests on slip factor in friction joints: comparison between European and American Standards

    Directory of Open Access Journals (Sweden)

    Emanuele Maiorana

    2018-01-01

    Full Text Available Friction joints are used in steel structures submitted to cyclic loading such as, for example, in steel and composite bridges, in overhead cranes, and in equipment subjected to fatigue. Slip-critical steel joints with preloaded bolts are characterized by high rigidity and good performance against fatigue and vibrational phenomena. The most important parameter for the calculation of the bolt number in a friction connection is the slip factor, depending on the treatment of the plane surfaces inside the joint package. The paper focuses on the slip factor values reported in European and North American Specifications, and in literature references. The differences in experimental methods of slip test and evaluation of them for the mentioned standards are discussed. The results from laboratory tests regarding the assessment of the slip factor related to only sandblasted and sandblasted and coated surfaces are reported. Experimental data are compared with other results from the literature review to find the most influent parameters that control the slip factor in friction joint and differences between the slip tests procedures

  15. Chemical origins of frictional aging.

    Science.gov (United States)

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  16. Effects of hyperthyroidism on hand grip strength and function

    OpenAIRE

    Esra Erkol İnal, MD; Alparslan Bayram Çarlı, MD; Sultan Çanak, MD; Oğuzhan Aksu, MD; Banu Kale Köroğlu, MD; Serpil Savaş

    2015-01-01

    Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism w...

  17. In situ ultrasonic examination of high-strength steam generator support bolts

    International Nuclear Information System (INIS)

    Jusino, A.

    1985-01-01

    Currently employed high-strength steam generator support bolting material (designed prior to ASME Section III Part NF or Component Supports), 38.1 mm in diameter, in combination with high preloads are susceptible to stress corrosion cracking because of the relatively low stress corrosion resistance (K/sub ISCC/) properties. These bolts are part of the pressurized water reactor steam generator supports at the integral support pads (three per steam generator, with each pad housing six, eight, or ten bolts depending on the design). The US Nuclear Regulatory Commission concerns for high-strength bolting were identified in NUREG-0577, ''Potential for Low Fracture Toughness and Laminar Tearing in PWR Steam Generator and Reactor Coolant Pump Supports,'' which was issued for comment on unresolved safety issue A-12. Subsequently, the bolting issues were addressed in generic issue B29. One of the issues deals specifically with high-strength bolting materials, which are vulnerable to stress corrosion cracking. A Westinghouse Owners Group funded program was established to develop in situ ultrasonic examination techniques to determine steam generator support bolting integrity at the head-to-shank and first-thread locations. This program was established in order to determine bolting integrity in place. Ultrasonic techniques were developed for both socket-head and flat-head bolt configurations. As a result of this program, in situ ultrasonic examination techniques were developed for examination of PWR steam generator support bolts. By employing these techniques utilities will be able to ensure the integrity of this in-place bolting without incurring the costs previously experienced during removal for surface examinations

  18. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.

    Science.gov (United States)

    Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing

    2017-10-27

    Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.

  19. Reliability of the Bulb Dynamometer for Assessing Grip Strength

    Directory of Open Access Journals (Sweden)

    Colleen Maher

    2018-04-01

    Full Text Available Background: Hand function is an overall indicator of health and is often measured using grip strength. Handheld dynamometry is the most common method of measuring grip strength. The purpose of this study was to determine the inter-rater and test-retest reliability, the reliability of one trial versus three trials, and the preliminary norms for a young adult population using the Baseline® Pneumatic Squeeze Bulb Dynamometer (30 psi. Methods: This study used a one-group methodological design. One hundred and three healthy adults (30 males and 73 females were recruited. Six measurements were collected for each hand per participant. The data was analyzed using Intraclass Correlation Coefficients (ICC two-way effects model (2,2 and paired-samples t-tests. Results: The ICC for inter-rater reliability ranged from 0.955 to 0.977. Conclusion: The results of this study suggest that the bulb dynamometer is a reliable tool to measure grip strength and should be further explored for reliable and valid use in diverse populations and as an alternative to the Jamar dynamometer.

  20. Effects of hyperthyroidism on hand grip strength and function.

    Science.gov (United States)

    Erkol İnal, Esra; Çarlı, Alparslan Bayram; Çanak, Sultan; Aksu, Oğuzhan; Köroğlu, Banu Kale; Savaş, Serpil

    2015-01-01

    Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism was confirmed by clinical examination and laboratory tests. Hand grip strength was tested at the dominant hand with a Jamar hand dynamometer. The grooved pegboard test (PGT) was used to evaluate hand dexterity. The Duruöz Hand Index (DHI) was used to assess hand function. No significant differences were found in terms of clinical and demographic findings between the patients with hyperthyroidism and healthy controls (p > 0.05). Significant differences were found between the patients with hyperthyroidism and healthy controls regarding PGT and DHI scores (p Hyperthyroidism seemed to affect hand dexterity and function more than hand grip strength and seemed to be associated with reduced physical function more than muscle strength. This may also indicate that patients with hyperthyroidism should be evaluated by multidisplinary modalities.

  1. The end-state comfort effect in bimanual grip selection.

    Science.gov (United States)

    Fischman, Mark G; Stodden, David F; Lehman, Davana M

    2003-03-01

    During a unimanual grip selection task in which people pick up a lightweight dowel and place one end against targets at variable heights, the choice of hand grip (overhand vs. underhand) typically depends on the perception of how comfortable the arm will be at the end of the movement: an end-state comfort effect. The two experiments reported here extend this work to bimanual tasks. In each experiment, 26 right-handed participants used their left and right hands to simultaneously pick up two wooden dowels and place either the right or left end against a series of 14 targets ranging from 14 to 210 cm above the floor. These tasks were performed in systematic ascending and descending orders in Experiment 1 and in random order in Expiment 2. Results were generally consistent with predictions of end-state comfort in that, for the extreme highest and lowest targets, participants tended to select opposite grips with each hand. Taken together, our findings are consistent with the concept of constraint hierarchies within a posture-based motion-planning model.

  2. Stress evaluation of baffle former bolt for IASCC failure prediction

    International Nuclear Information System (INIS)

    Matsubara, T.; Tsutsui, T.; Kamei, Y.; Kitsu, M.

    2011-01-01

    Baffle structure in PWRs Reactor is quite important assembly for the core safety, and Baffle Former Bolts (BFBs) are fastener members for maintaining Baffle structure. It has been reported worldwide that some of BFBs were cracked due to IASCC (Irradiation Assisted Stress Corrosion Cracking) because BFBs are located at core region under severe environments, high neutron flux, high temperature and high stress. According to the material studies of IASCC on austenitic stainless steel, a crack initiation of IASCC is strongly related with the stress and the neutron fluence. For this reason, it is very important for IASCC failure prediction to simulate the stress of BFBs. However, the stress of BFBs are considered to be influenced by several factors and to be changed complexly as operational time increases, by irradiation creep of Bolt itself, swelling of Baffle structure, and so on. Therefore, it is difficult to estimate the stress histories of BFBs (Bolt stress as a function of operational time) precisely. Then, the author has developed the calculation method of the stress histories of BFBs considering irradiation effects (swelling and irradiation creep). In this method, the stress histories of BFBs are calculated by combining two kinds of FE models, Global model (modeled whole Baffle structure which consists of Baffle plates, Former plates and Core Barrel) and Local model (modeled around BFB finely). The whole Baffle structure deformation changes as a function of heat, swelling and irradiated creep are calculated by Global model, and the stress histories of BFBs are calculated by Local model using the outputs (deformations on driving nodes) of Global model. In the FE analysis of Local model, the stress of BFBs are calculated considering irradiation effects and elastic-plastic characteristics depending on neutron fluence, so this method enables to calculate precisely the stress of extreme small area of BFBs surface. This paper shows the outline of the calculation method

  3. Un mejor posicionamiento para un mejor Bolt : concurso Effie Colombia

    OpenAIRE

    Carvajal, Martin; Jaramillo, Isabella; Pedraza, Carlos; Rodriguez, Natalia; Amezquita, Juan José

    2017-01-01

    En este trabajo, se realiza una estrategia de marketing y comunicación para el proyecto Chevrolet en el mercado colombiano, teniendo en cuenta la información suministrada por la empresa y la investigación externa. El trabajo muestra 5 etapas diferentes: Desafío Estratégico, Perspectivas y Objetivos; Idea creativa; Medición de resultados; Viabilidad; y material gráfico. El objetivo de este trabajo es proponer una estrategia de marketing integral para la llegada del nuevo Chevrolet Bolt al merc...

  4. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  5. Laboratory evaluation of alloy X-750 clevis bolts removed from D.C. cook unit 1

    International Nuclear Information System (INIS)

    Hyres, J.; Xu, H.; Kalchik, K.; Thompson, G.

    2015-01-01

    This paper summarizes the results of the laboratory evaluation performed by Babcock and Wilcox on Alloy X-750 clevis bolts removed from the Lower Radial Support System (LRSS) at D.C. Cook Unit 1. A total of 29 clevis bolts - 16 broken and 13 intact - were provided for laboratory analysis and testing to document the extent of degradation, evaluate the integrity of the intact bolts, and identify the bolt degradation/failure mechanism(s). The laboratory work scope included visual and stereo-visual examinations of all bolts. Based on the results of these examinations, four bolts - two broken and two intact - were selected for more detailed analysis/testing, including Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), optical metallography, microhardness, chemical analysis by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), Rockwell hardness testing, and tensile testing. The laboratory data indicated the bolts failed by intergranular stress corrosion cracking (IGSCC). There was no evidence that the bolts failed due to fatigue cracking or mechanical overload. (authors)

  6. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic technique

    International Nuclear Information System (INIS)

    Lee, Joon-Hyun; Choi, Sang-Woo; Oh, Won-Deok

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Crack initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It takes too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread. In this study, the signal processing technique for enhancing conventional ultrasonic technique and the advanced ultrasonic phased array technique were introduced for inspect stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. The phased array technique provides fast inspection and can be applied for structure of complex shape. There are sector scanning and linear scanning methods in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated. (author)

  7. A Design Method for the Tension Side of Statically Loaded, Bolted Beam-to-Column Connections

    NARCIS (Netherlands)

    Zoetemeijer, P.

    1974-01-01

    In this paper a design method for the tension side of statically loaded, bolted beam-to-column connections is developed based on the plastic behaviour of the flanges and the bolts under the assumption that the plastification is large enough to allow the adoption of the most favourable static

  8. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2003-07-15

    Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal, potash, salt etc. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on such information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The selected site and the field testing plan enabled us to test all three aspects of roof geological features. The development of the data interpretation methodologies and the geology mapping computer program have also been preceding well.

  9. Research on compliance coefficient calculation for heterogeneity material bolted joints of reactor internal

    International Nuclear Information System (INIS)

    Li Qing; Ren Xin; Zhang Kangda

    2009-01-01

    Using the finite element method, calculation and test are conducted on the bolted joints of four different diameters, and the existing calculation method for bolt compliance coefficient is analyzed. The results indicate that the calculated and test results by finite element method are agreed well, and value D/t f and β have a linear relation. (authors)

  10. Simulation and experiment for depth sizing of cracks in anchor bolts by ultrasonic phased array technology

    Science.gov (United States)

    Lin, Shan

    2018-04-01

    There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.

  11. Internal friction in uranium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1975-01-01

    Results are presented of studies conducted to relate internal friction measurements in U to allotropic transformations. It was found that several internal friction peaks occur in α-uranium whose magnitude changed drastically after annealing in the β phase. All of the allotropic transformations in uranium are diffusional in nature under slow heating and cooling conditions. Creep at regions of high stress concentration appears to be responsible for high temperature internal friction in α-uranium. The activation energy for grain boundary relaxation in α-uranium was found to be 65.1 +- 4 kcal/mole. Impurity atoms interfere with the basic mechanism for grain boundary relaxation resulting in a distribution in activation energies. A considerable distribution in ln tau 0 was also found which is a measure of the distribution in local order and in the Debye frequency around a grain boundary

  12. Non-destructive testing of full-length bonded rock bolts based on HHT signal analysis

    Science.gov (United States)

    Shi, Z. M.; Liu, L.; Peng, M.; Liu, C. C.; Tao, F. J.; Liu, C. S.

    2018-04-01

    Full-length bonded rock bolts are commonly used in mining, tunneling and slope engineering because of their simple design and resistance to corrosion. However, the length of a rock bolt and grouting quality do not often meet the required design standards in practice because of the concealment and complexity of bolt construction. Non-destructive testing is preferred when testing a rock bolt's quality because of the convenience, low cost and wide detection range. In this paper, a signal analysis method for the non-destructive sound wave testing of full-length bonded rock bolts is presented, which is based on the Hilbert-Huang transform (HHT). First, we introduce the HHT analysis method to calculate the bolt length and identify defect locations based on sound wave reflection test signals, which includes decomposing the test signal via empirical mode decomposition (EMD), selecting the intrinsic mode functions (IMF) using the Pearson Correlation Index (PCI) and calculating the instantaneous phase and frequency via the Hilbert transform (HT). Second, six model tests are conducted using different grouting defects and bolt protruding lengths to verify the effectiveness of the HHT analysis method. Lastly, the influence of the bolt protruding length on the test signal, identification of multiple reflections from defects, bolt end and protruding end, and mode mixing from EMD are discussed. The HHT analysis method can identify the bolt length and grouting defect locations from signals that contain noise at multiple reflected interfaces. The reflection from the long protruding end creates an irregular test signal with many frequency peaks on the spectrum. The reflections from defects barely change the original signal because they are low energy, which cannot be adequately resolved using existing methods. The HHT analysis method can identify reflections from the long protruding end of the bolt and multiple reflections from grouting defects based on mutations in the instantaneous

  13. Development of a Sealing-Bolt for the safeguarding of large containers such as multielement bottles

    International Nuclear Information System (INIS)

    D'Agraives, B.C.; Toornvliet

    1985-01-01

    A preliminary study on the development of a ''Sealing-Bolt'' is currently being carried out at JRC-Ispra. It is required for the safeguarding of large containers. A ''Sealing-Bolt'' would replace one - or more - of the conventional bolts, normally used for tightening a container's cover. It could not be removed - or unscrewed - without the knowledge of Inspectors. Thus, it has to meet the requirements of an Underwater Verifiable Seal and of a Threaded Stud-Bolt. It is proposed to derive the sealing feature from the VAK III seal, a LWR Fuel Assembly Ultrasonic Seal which has been developed by JRC-Ispra and is field tested at the Kahl Reactor Facility (FRG) since October 1983, while under evaluation for use by IAEA. The mechanical part asks for a specific study of a reliable system able to evidence that the bolt has been unscrewed during an opening of the lid

  14. Enhancement of crack detection in stud bolts of nuclear reactor by ultrasonic signal processing technique

    International Nuclear Information System (INIS)

    Lee, J.H.; Oh, W.D.; Choi, S.W.; Park, M.H.

    2004-01-01

    'Full-text:' The stud bolts is one of the most critical parts for safety of reactor vessels in the nuclear power plants. However, in the application of ultrasonic technique for crack detection in stud bolt, some difficulties encountered are classification of crack signal from the signals reflected from threads part in stud bolt. In this study, shadow effect technique combined with new signal processing method is Investigated to enhance the detectability of small crack initiated from root of thread in stud bolt. The key idea of signal processing is based on the fact that the shape of waveforms from the threads is uniform since the shape of the threads in a bolt is same. If some cracks exist in the thread, the flaw signals are different to the reference signals. It is demonstrated that the small flaws are efficiently detected by novel ultrasonic technique combined with this new signal processing concept. (author)

  15. Design and analysis of lid closure bolts for packages used to transport radioactive materials

    International Nuclear Information System (INIS)

    Raske, D.T.; Stojimirovic, A.

    1995-01-01

    The design criterion recommended by the U.S. Department of Energy for Category I radioactive packaging is found in Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. This criterion provides material specifications and allowable stress limits for bolts used to secure lids of containment vessels. This paper describes the design requirements for Category I containment vessel lid closure bolts, and provides an example of a bolting stress analysis. The lid-closure bolting stress analysis compares calculations based on handbook formulas with an analysis performed with a finite-element computer code. The results show that the simple handbook calculations can be sufficiently accurate to evaluate the bolt stresses that occur in rotationally rigid lid flanges designed for metal-to-metal contact

  16. The evaluation on clamping force of high strength bolts by length parameter

    International Nuclear Information System (INIS)

    Kim, Kang-Seok; Nah, Hwan-Seon; Lee, Hyeon-Ju; Lee, Kang-Min

    2009-01-01

    It has been reported that the length parameter of high strength bolts results in the variance in tension loads. The required turn for each length is specified in AISC RCSC specification. This study was focused on evaluating any influence on the clamping torque subjected to length parameter of high strength bolts. The two kinds of high strength bolts of specimen are as follows; High Strength Hexagon bolt defined on ASTM A490 and Torque Shear Bolt on KS B 2819. The length parameter ranged from 60mm(3d) to 140mm(7d). The torque, turn of nut and the clamping force were analyzed to review whether length parameter can be affected on the required tension load. To test whether the length parameter has an impact on the torque and turn of nut for the required strength and clamping force, statistical analysis is carried out. (author)

  17. Wireless Impedance-Based SHM for Bolted Connections via Multiple PZT-Interfaces

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    This study presents a structural health monitoring(SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model. Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint

  18. Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Jensen, Erik Østergaard

    2008-01-01

    -symbiotic hemoglobin gene, GLB2, in Arabidopsis thaliana. Lines with GLB1 silencing had a significant delay of bolting and after bolting, shoots reverted to the rosette vegetative phase by formation of aerial rosettes at lateral meristems. Lines with overexpression of GLB1 or GLB2 bolted earlier than wild type plants....... By germinating the lines in a medium containing the nitric oxide (NO) donor, sodium nitroprusside (SNP), it was demonstrated that both GLB1 and GLB2 promote bolting by antagonizing the effect of NO, suggesting that non-symbiotic plant hemoglobin controls bolting by scavenging the floral transition signal...... molecule, NO. So far, NO scavenging has only been demonstrated for class 1 non-symbiotic hemoglobins. A direct assay in Arabidopsis leaf cells shows that GLB1 as well as the class 2 non-symbiotic hemoglobin, GLB2, scavenge NO in vivo. NO has also been demonstrated to be a growth stimulating signal...

  19. The role of friction in the mechanism of retaining the partial removable dentures with double crown system.

    Science.gov (United States)

    Dąbrowa, Tomasz; Dobrowolska, Anna; Wieleba, Wojciech

    2013-01-01

    Cylindrical telescopic crowns belong to bolt dentures, because their adhesion strength is based on the friction force. The magnitude of static and slide friction forces depends on the strain within the contact area and properties of materials employed. Friction force value between telescope elements declines in the first phase of wearing period and, subsequently, maintains particular constant value of 8 to 10 N. In the telescopic technique, homo and heterogenic joints are used. The following prosthodontic materials have been examined: goldbase alloys (Degudent Kiss, Degulor M), cobalt-base alloy (Brealloy 270), ceramics (Zircon Oxide, Zirconia) during tribological investigations on FGP composite resin. The cooperating surfaces were moistened with synthetic saliva. The research confirmed the dependence of the static friction coefficient on the contact pressure for the analyzed pairs of materials used in prosthodontics. The biggest effect of the contact pressure on the coefficient of friction value occurs when the ceramic rubs on FGP composite resin. The most stable friction coefficient in the context of contact pressure changes as well as life has been found in the case of the cobalt alloy Brealloy 270. An interesting material is a gold alloy Degulor M, for which the coefficient of friction varies only slightly with pressure in the range of 0.6 to 0.9 MPa.

  20. Energy Neutral Wireless Bolt for Safety Critical Fastening.

    Science.gov (United States)

    Seyoum, Biruk B; Rossi, Maurizio; Brunelli, Davide

    2017-09-26

    Thermoelectric generators (TEGs) are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius) temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  1. Energy Neutral Wireless Bolt for Safety Critical Fastening

    Directory of Open Access Journals (Sweden)

    Biruk B. Seyoum

    2017-09-01

    Full Text Available Thermoelectric generators (TEGs are now capable of powering the abundant low power electronics from very small (just a few degrees Celsius temperature gradients. This factor along with the continuously lowering cost and size of TEGs, has contributed to the growing number of miniaturized battery-free sensor modules powered by TEGs. In this article, we present the design of an ambient-powered wireless bolt for high-end electro-mechanical systems. The bolt is equipped with a temperature sensor and a low power RF chip powered from a TEG. A DC-DC converter interfacing the TEG with the RF chip is used to step-up the low TEG voltage. The work includes the characterizations of different TEGs and DC-DC converters to determine the optimal design based on the amount of power that can be generated from a TEG under different loads and at temperature gradients typical of industrial environments. A prototype system was implemented and the power consumption of this system under different conditions was also measured. Results demonstrate that the power generated by the TEG at very low temperature gradients is sufficient to guarantee continuous wireless monitoring of the critical fasteners in critical systems such as avionics, motorsport and aerospace.

  2. Device for measuring hole elongation in a bolted joint

    Science.gov (United States)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  3. Remote controlled stud bolt handling device for reactor pressure vessel

    International Nuclear Information System (INIS)

    Shindo, Takenori; Shigehiro, Katsuya; Ito, Morio; Okada, Kenji

    1988-01-01

    In nuclear power stations, at the time of regular inspection, the works of opening and fixing the upper covers of reactor pressure vessels are carried out for inspecting the inside of reactor pressure vessels and exchanging fuel rods. These upper covers are fastened with many stud bolts, therefore, the works of opening and fixing require a large amount of labor, and are done under the restricted condition of wearing protective clothings and masks. Babcock Hitachi K.K. has completed the development of a remotely controlled automatic bolt tightenig device for this purpose, therefore, its outline is reported. The conventional method of these works and the problems in it are described. The design of the new device aimed at the parallel execution of cleaning screw threads, loosening and tightening nuts, and taking off and putting on nuts and washers, thus contributing to the shortening of regular inspection period, the reduction of the radiation exposure of workers, and the decrease of the number of workers. The function, reliability and endurance of the new device were confirmed by the verifying test using a device made for trial. The device is composed of a stand, a rail and four stations each with a cleaning unit, a stud tensioner and a nut handling unit. (K.I.)

  4. Bolted flanged connections subjected to longitudinal bending moments

    International Nuclear Information System (INIS)

    Blach, A.E.

    1992-01-01

    Flanges in piping systems and also pressure vessel flanges on tall columns are often subjected to longitudinal bending moments of considerable magnitude, be it from thermal expansion stresses in piping systems or from wind or seismic loadings on tall vertical pressure vessels. Except for the ASME Code, Section III, Subsections NB, NC, and ND, other pressure vessel and piping codes do not contain design ASME Nuclear Power Plant Code (Section III), an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. In this paper, an attempt is made to analyse the stresses on flanges and bolting due to external bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure specified in Subsections NB, NC, and ND. A design method is proposed, based on analysis and experimental work, which may be suitable for flange bending moment analysis when the rules of the Nuclear Power Plant Code are not mandatory. (orig.)

  5. Labour market frictions and migration

    NARCIS (Netherlands)

    Cremers, Jan

    2016-01-01

    The 4th contribution to the series INT-AR papers is dedicated to the methods of assessing labour market frictions. The paper provides a (brief) international comparison of the role of labour migration in solving these frictions.

  6. Thermo-mechanical finite element analyses of bolted cask lid structures

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.

    2004-01-01

    The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on

  7. Friction in sheet metal forming

    DEFF Research Database (Denmark)

    Wiklund, D.; Liljebgren, M.; Berglund, J.

    2010-01-01

    and calls for functional tool surfaces that are durable in these severe tribological conditions. In this study the influence of tool surface topography on friction has been investigated. The frictional response was studied in a Bending Under Tension test. The results did show that a low frictional response...

  8. Intelligent Flow Friction Estimation.

    Science.gov (United States)

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  9. Student figures in friction

    DEFF Research Database (Denmark)

    Nielsen, Gritt B.

    , students' room for participation in their own learning, influenced by demands for efficiency, flexibility and student-centred education. The thesis recasts the anthropological endeavour as one of ‘figuration work'. That is, ‘frictional events' are explored as moments when conflicting figures...

  10. Skin tribology: Science friction?

    NARCIS (Netherlands)

    van der Heide, Emile; Zeng, Xiangqiong; Masen, Marc Arthur

    2013-01-01

    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is

  11. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  12. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2016-01-01

    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  13. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  14. Discrimination of handlebar grip samples by fourier transform infrared microspectroscopy analysis and statistics

    Directory of Open Access Journals (Sweden)

    Zeyu Lin

    2017-01-01

    Full Text Available In this paper, the authors presented a study on the discrimination of handlebar grip samples, to provide effective forensic science service for hit and run traffic cases. 50 bicycle handlebar grip samples, 49 electric bike handlebar grip samples, and 96 motorcycle handlebar grip samples have been randomly collected by the local police in Beijing (China. Fourier transform infrared microspectroscopy (FTIR was utilized as analytical technology. Then, target absorption selection, data pretreatment, and discrimination of linked samples and unlinked samples were chosen as three steps to improve the discrimination of FTIR spectrums collected from different handlebar grip samples. Principal component analysis and receiver operating characteristic curve were utilized to evaluate different data selection methods and different data pretreatment methods, respectively. It is possible to explore the evidential value of handlebar grip residue evidence through instrumental analysis and statistical treatments. It will provide a universal discrimination method for other forensic science samples as well.

  15. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  16. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  17. Improvements in or relating to gripping means for handling nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Batjukov, V.I.; Vjugov, O.N.; Fadeev, A.I.; Shkhian, T.G.

    1980-01-01

    A gripping means for handling fuel assemblies, the heads of which are internally recessed to receive gripping jaws, forms part of a reactor refuelling machine and is telescopically accommodated within a manipulator tube of the machine. A through hole is provided to allow cooling medium to be passed through the fuel assemblies to remove afterheat when the gripping means is used to transfer assemblies from a reactor core to spent fuel storage sockets. (author)

  18. GRIP Database original data - GRIPDB | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us GRI...PDB GRIP Database original data Data detail Data name GRIP Database original data DOI 10....18908/lsdba.nbdc01665-006 Description of data contents GRIP Database original data It consists of data table...s and sequences. Data file File name: gripdb_original_data.zip File URL: ftp://ftp.biosciencedbc.jp/archive/gripdb/LATEST/gri...e Database Description Download License Update History of This Database Site Policy | Contact Us GRIP Database original data - GRIPDB | LSDB Archive ...

  19. Contribution of the Cerebellum in Cue-Dependent Force Changes During an Isometric Precision Grip Task.

    Science.gov (United States)

    Kutz, Dieter F; Schmid, Barbara C; Meindl, Tobias; Timmann, Dagmar; Kolb, Florian P

    2016-08-01

    The "raspberry task" represents a precision grip task that requires continuous adjustment of grip forces and pull forces. During this task, subjects use a specialised grip rod and have to increase the pull force linearly while the rod is locked. The positions of the fingers are unrestrained and freely selectable. From the finger positions and the geometry of the grip rod, a physical lever was derived which is a comprehensive measurement of the subject's grip behaviour. In this study, the involvement of the cerebellum in establishing cued force changes (CFC) was examined. The auditory stimulus was associated with a motor behaviour that has to be readjusted during an ongoing movement that already started. Moreover, cerebellar involvement on grip behaviour was examined. The results show that patients presenting with degenerating cerebellar disease (CBL) were able to elicit CFC and were additionally able to optimise grip behaviour by minimising the lever. Comparison of the results of CBL with a control group of healthy subjects showed, however, that the CFC incidence was significantly lower and the reduction of the lever was less in CBL. Hence, the cerebellum is involved not only in the classical conditioning of reflexes but also in the association of sensory stimuli with complex changes in motor behaviour. Furthermore, the cerebellum is involved in the optimisation of grip behaviour during ongoing movements. Recent studies lead to the assumption that the cerebello-reticulo-spinal pathway might be important for the reduced optimisation of grip behaviour in CBL.

  20. Effects of hand grip exercise on shoulder joint internal rotation and external rotation peak torque.

    Science.gov (United States)

    Lee, Dong-Rour; Jong-Soon Kim, Laurentius

    2016-08-10

    The goal of this study is to analyze the effects of hand grip training on shoulder joint internal rotation (IR)/external rotation (ER) peak torque for healthy people. The research was conducted on 23 healthy adults in their 20 s-30 s who volunteered to participate in the experiment. Hand grip power test was performed on both hands of the research subjects before/after the test to study changes in hand grip power. Isokinetic machine was used to measure the concentric IRPT (internal rotation peak torque) and concentric ERPT (external rotation peak torque) at the velocity of 60°/sec, 90°/sec, and 180°/sec before/after the test. Hand grip training was performed daily on the subject's right hand only for four weeks according to exercise program. Finally, hand grip power of both hands and the maximum torque values of shoulder joint IR/ER were measured before/after the test and analyzed. There was a statistically significant difference in the hand grip power of the right hand, which was subject to hand grip training, after the experiment. Also, statistically significant difference for shoulder ERPT was found at 60°/sec. Hand grip training has a positive effect on shoulder joint IRPT/ERPT and therefore can help strengthen muscles around the shoulder without using weight on the shoulder. Consequently, hand grip training would help maintain strengthen the muscles around the shoulder in the early phase of rehabilitation process after shoulder surgery.

  1. The Influence on Modal Parameters of Thin Cylindrical Shell under Bolt Looseness Boundary

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available The influence on modal parameters of thin cylindrical shell (TCS under bolt looseness boundary is investigated. Firstly, bolt looseness boundary of the shell is divided into two types, that is, different bolt looseness numbers and different bolt looseness levels, and natural frequencies and mode shapes are calculated by finite element method to roughly master vibration characteristics of TCS under these conditions. Then, the following measurements and identification techniques are used to get precise frequency, damping, and shape results; for example, noncontact laser Doppler vibrometer and vibration shaker with excitation level being precisely controlled are used in the test system; “preexperiment” is adopted to determine the required tightening torque and verify fixed constraint boundary; the small-segment FFT processing technique is employed to accurately measure nature frequency and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based on the measured results obtained by the above techniques, the influence on modal parameters of TCS under two types of bolt looseness boundaries is analyzed and discussed. It can be found that bolt looseness boundary can significantly affect frequency and damping results which might be caused by changes of nonlinear stiffness and damping and in bolt looseness positions.

  2. A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines

    Directory of Open Access Journals (Sweden)

    Wen Jinglin

    2015-01-01

    Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.

  3. Development of Automatic Ultrasonic Testing Equipment for Pressure-Retaining Studs and Bolts in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Suh, D. M.; Park, M. H.; Hong, S. S.

    1989-01-01

    Bolting degradation problems in primary coolant pressure boundary applications have become a major concern in the nuclear industry. In the bolts concerned, the failure mechanism was either corrosion wastage(loss of bolt diameter) or stress-corrosion cracking. Here the manual ultrasonic testing of RPV(Reactor Pressure Vessel) and RCP(Reactor Coolant Pump) stud has been performed. But it is difficult to detect indications because examiner can not exactly control the rotation angle and can not distinguish the indication from signals of bolt. In many cases, the critical sizes of damage depth are very small(1-2 mm order). At critical size, the crack tends to propagatecompletly through the bolt under stress, Resulting in total fracture. Automatic stud scanner for studs(bolts) was developed because the precise measurement of bolt diameter is required in this circumstance. By use of this scanner, the rotation angle of probe was exactly controlled and the exposure time of radiations was reduced

  4. Integrity of Bolted Angle Connections Subjected to Simulated Column Removal

    Science.gov (United States)

    Weigand, Jonathan M.; Berman, Jeffrey W.

    2016-01-01

    Large-scale tests of steel gravity framing systems (SGFSs) have shown that the connections are critical to the system integrity, when a column suffers damage that compromises its ability to carry gravity loads. When supporting columns were removed, the SGFSs redistributed gravity loads through the development of an alternate load path in a sustained tensile configuration resulting from large vertical deflections. The ability of the system to sustain such an alternate load path depends on the capacity of the gravity connections to remain intact after undergoing large rotation and axial extension demands, for which they were not designed. This study experimentally evaluates the performance of steel bolted angle connections subjected to loading consistent with an interior column removal. The characteristic connection behaviors are described and the performance of multiple connection configurations are compared in terms of their peak resistances and deformation capacities. PMID:27110059

  5. Application of shape memory alloys in bolted flanged connections

    International Nuclear Information System (INIS)

    Zhu Shichun; Lu Xiaofeng

    2009-01-01

    The Shape Memory Effect (SME) and super elasticity of the Shape Memory Alloys (SMA) can make up the clamping force decreasing caused by the creep and relaxation behavior in Bolted Flanged Connections (BFC), and improve the reliability of the BFC. Advances in the research of SMA in BFC home and abroad is summarized in this paper. The application prospects of Ti-Ni-Pd, Ti-Ni-Hf, Fe-Mn-Si, Cu-Al-Ni and Ni-Al-Mn in the BFC are also discussed. It is considered that the compressive characteristics of the parent phase of SMA should be studied further for the application of SMA to BFC besides the design of sealing structure. When more basic research data is accumulated, BFC with high sealing performance for the critical engineering applications can be developed based on the comprehensive consideration of the stability and reliability of the clamping force. (authors)

  6. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-06-01

    Full Text Available The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  7. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  8. Prevention of bolting degradation or failure in pressure boundary and support applications

    International Nuclear Information System (INIS)

    Merrick, E.A.; Rivers, A.; Bickford, J.; Marston, T.U.

    1986-01-01

    A discussion is presented of bolting degradation or failure experience in pressure boundary and component support applications in US commercial nuclear plants and the industry program to prevent failures in the future. The focus turns to steps which plant owners can take today to guard against pressure boundary bolt failure or degradation for existing plants or units being constructed. 'Tools' or products which the plant owner can expect from current industry programs which will be available in the near future to aid in understanding and improving bolting practices are described. (author)

  9. Optimized bolt tightening strategies for gasketed flanged pipe joints of different sizes

    International Nuclear Information System (INIS)

    Abid, Muhammad; Khan, Ayesha; Nash, David Hugh; Hussain, Masroor; Wajid, Hafiz Abdul

    2016-01-01

    Achieving a proper preload in the bolts of a gasketed bolted flanged pipe joint during joint assembly is considered important for its optimized performance. This paper presents results of detailed non-linear finite element analysis of an optimized bolt tightening strategy of different joint sizes for achieving proper preload close to the target stress values. Industrial guidelines are considered for applying recommended target stress values with TCM (torque control method) and SCM (stretch control method) using a customized optimization algorithm. Different joint components performance is observed and discussed in detail.

  10. Bolt-Grout Interactions in Elastoplastic Rock Mass Using Coupled FEM-FDM Techniques

    Directory of Open Access Journals (Sweden)

    Debasis Deb

    2010-01-01

    Full Text Available Numerical procedure based on finite element method (FEM and finite difference method (FDM for the analysis of bolt-grout interactions are introduced in this paper. The finite element procedure incorporates elasto-plastic concepts with Hoek and Brown yield criterion and has been applied for rock mass. Bolt-grout interactions are evaluated based on finite difference method and are embedded in the elasto-plastic procedures of FEM. The experimental validation of the proposed FEM-FDM procedures and numerical examples of a bolted tunnel are provided to demonstrate the efficacy of the proposed method for practical applications.

  11. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  12. Comparative study of millennials' (age 20-34 years) grip and lateral pinch with the norms.

    Science.gov (United States)

    Fain, Elizabeth; Weatherford, Cara

    Cross-sectional research design. Clinical practice continues to use normative data for grip and pinch measurements that were established in 1985. There is no updated norms despite different hand usage patterns in today's society. Measuring and comparing grip and pinch strengths with normative data is a valid method to determine hand function. This research was implemented to compare the grip and pinch measurements obtained from healthy millennials to the established norms and to describe hand usage patterns for millennials. Grip and lateral pinch measurements were obtained from a sample of 237 healthy millennials (ages 20-34 years). Strength scores were statistically lower that older normative data in all millennial grip strengths, with the exception of the women in the age group of 30-34 years. Specifically, this statistically significant trend was observed in all male grip strengths, as well as in women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). However, the lateral pinch data reflected was similar to the older norms with variances of 0.5-1 kg. Current data reflect statistically significant differences from the norms for all male grip measurements, as well as for women in the age group of 20-24 years (bilateral grip) and 25-29 years (right grip). No statistical significance was observed in the independent-sample t tests for the lateral pinch in men of all age groups. Statistical significance was noted for lateral pinch for female age groups for the left hand (20-24 years) and for bilateral lateral pinches (30-34 years). IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Computational model of precision grip in Parkinson’s disease: A Utility based approach

    Directory of Open Access Journals (Sweden)

    Ankur eGupta

    2013-12-01

    Full Text Available We propose a computational model of Precision Grip (PG performance in normal subjects and Parkinson’s Disease (PD patients. Prior studies on grip force generation in PD patients show an increase in grip force during ON medication and an increase in the variability of the grip force during OFF medication (Fellows et al 1998; Ingvarsson et al 1997. Changes in grip force generation in dopamine-deficient PD conditions strongly suggest contribution of the Basal Ganglia, a deep brain system having a crucial role in translating dopamine signals to decision making. The present approach is to treat the problem of modeling grip force generation as a problem of action selection, which is one of the key functions of the Basal Ganglia. The model consists of two components: 1 the sensory-motor loop component, and 2 the Basal Ganglia component. The sensory-motor loop component converts a reference position and a reference grip force, into lift force and grip force profiles, respectively. These two forces cooperate in grip-lifting a load. The sensory-motor loop component also includes a plant model that represents the interaction between two fingers involved in PG, and the object to be lifted. The Basal Ganglia component is modeled using Reinforcement Learning with the significant difference that the action selection is performed using utility distribution instead of using purely Value-based distribution, thereby incorporating risk-based decision making. The proposed model is able to account for the precision grip results from normal and PD patients accurately (Fellows et. al. 1998; Ingvarsson et. al. 1997. To our knowledge the model is the first model of precision grip in PD conditions.

  14. Bioinspired orientation-dependent friction.

    Science.gov (United States)

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  15. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  16. 16 CFR Figure 5 to Part 1512 - Typical Handbrake Actuator Showing Grip Dimension

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Typical Handbrake Actuator Showing Grip Dimension 5 Figure 5 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Actuator Showing Grip Dimension EC03OC91.072 ...

  17. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults?

    NARCIS (Netherlands)

    Wind, Anne E.; Takken, Tim; Helders, Paul J. M.; Engelbert, Raoul H. H.

    2010-01-01

    The primary purpose of this study was to examine whether grip strength is related to total muscle strength in children, adolescents, and young adults. The second purpose was to provide reference charts for grip strength, which could be used in the clinical and research setting. This cross-sectional

  18. Hand grip strength in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Jeong M

    2017-08-01

    Full Text Available Moa Jeong,1 Hyung Koo Kang,1 Pamela Song,2 Hye Kyeong Park,1 Hoon Jung,1 Sung-Soon Lee,1 Hyeon-Kyoung Koo1 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 2Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea Purpose: Hand grip strength (HGS is a simple way of predicting the risk of cardiovascular disease and all-cause mortality in the general population. However, the practical significance of grip strength in patients with COPD is uncertain. The aim of this study was to compare HGS between subjects with and without COPD and to evaluate its clinical relevance in patients with COPD by using a national survey.Methods: Data were collected from the Korean National Health and Nutrition Examination Survey. The study included 421 adults with COPD and 2,542 controls who completed questionnaires, spirometry, and a HGS test. HGS was compared between subjects with and without COPD, and the association between grip strength, lung function, and quality of life (QoL was evaluated.Results: The mean HGS was 33.3±9.1 kg in the COPD group and 29.9±9.5 kg in the non-COPD group; adjusted HGS was 30.9±0.33 kg and 30.9±0.11 kg, respectively (P=0.99. HGS was not related to forced vital capacity (β=0.04, P=0.70 or forced expiratory volume in 1 second (β=0.11, P=0.24 in multivariable analysis. HGS was independently associated with the EQ-5D index, but the relationship was stronger in the COPD group (β=0.30, P<0.001 than in the non-COPD group (β=0.21, P<0.001. The results were similar for each component of the EQ-5D, including mobility (β=-0.25, P<0.001, daily activity (β=-0.19, P=0.01, pain/discomfort (β=-0.32, P<0.001, and anxiety/depression (β=-0.16, P=0.01.Conclusion: HGS was not different between subjects with and without COPD, but was associated with QoL – including mobility, daily activity, pain/discomfort, and anxiety/depression – in patients with COPD. The

  19. Preliminary aseismic analysis on bolts of driving mechanism in absorption sphere shutdown system

    International Nuclear Information System (INIS)

    Chen Feng; Li Tianjin; Zhang Zhengming; Huang Zhiyong; Bo Hanliang

    2012-01-01

    The absorption sphere shutdown system performs an important role in reactivity regulating and control. Driving mechanism is a set of key mechanical moving parts which is used to control falling of absorption spheres in absorption sphere shutdown system. It is about 5 m for driving mechanism with the slim structure, which is connected with the upper supported plate of metal reactor internals through storage vessel with bolts. Both the storage vessel and driving mechanism are equipment of seismic classification I. It is significant to calculate and check the bolts strength of driving mechanism. In this paper, complicate structure of driving mechanism was simplified to three variable cross sections and statically indeterminate problem was solved. The bolts at the bottom and on the top of the storage vessel were calculated and checked. The preliminary results indicate that the bolts strength is reliable and safe, and the supporting force at the most weak point of driving mechanism is as well obtained. (authors)

  20. Fewer complications with bolt-connected than tunneled external ventricular drainage

    DEFF Research Database (Denmark)

    Jensen, Torben Slott; Carlsen, Jakob Gram; Poulsen, Frantz Rom

    2016-01-01

    BACKGROUND: Ventriculostomy/external ventricular drain (EVD) is a common neurosurgical procedure. Various techniques are used to fixate the drain and the objective of this study was, in a retrospective setting, to compare the incidence of complications when using bolt-connected EVD (BC-EVD) versus...... tunneled EVD (T-EVD). METHODS: All patients subjected to an EVD performed through a new burr hole from 2009 through 2010 at two Depts. of Neurosurgery in Denmark (Odense and Aarhus) were retrospectively identified. Patient files were evaluated for EVD fixation technique (tunneled or bolt-connected EVD...... %), compared to the bolt-connected EVD group (6.5 %). There was no significant difference in infection rates. CONCLUSIONS: Tunneled EVD has a relatively high frequency of complications leading to reinsertion. The use of Bolt-connected EVD technique can lower this frequency significantly. The number needed...

  1. Corrosion failure of a bolt made of the 25Kh1MF material

    International Nuclear Information System (INIS)

    Liska, V.; Cechova, D.; Velkoborsky, J.

    1989-01-01

    M36x4 bolts, of which there are 222 at each nuclear power plant unit, are made of the 25Kh1MF or 38KhN3MFA steel. They are located in an environment with elevated temperature, with damp air and with boric acid. Corrosion of these bolts is due to the rather poor metallurgical quality of the steel. No inadmissible inhomogeneities of the type of lines of inclusions occur in the bolt material produced by cold rolling but defects of the type of laps were found on the threads. It is suggested that if the cold rolling technology were obviated, corrosion failure of the bolts might not occur. (M.D.). 7 figs., 3 refs

  2. A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Keegan J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brake, Matthew Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.

  3. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  4. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2018-05-01

    Full Text Available Bolted spherical joints are widely used to form space steel structures. The stiffness and load capacity of the structures are affected by the looseness of bolted spherical joint connections in the structures. The looseness of the connections, which can be caused by fabrication error, low modeling accuracy, and “false twist” in the installation process, may negatively impact the load capacity of the structure and even lead to severe accidents. Furthermore, it is difficult to detect bolted spherical joint connection looseness from the outside since the bolts connect spheres with rods together from the inside. Active sensing methods are proposed in this paper to monitor the tightness status of the bolted spherical connection using piezoceramic transducers. A triangle-on-triangle offset grid composed of bolted spherical joints and steel tube bars was fabricated as the specimen and was used to validate the active sensing methods. Lead Zirconate Titanate (PZT patches were used as sensors and actuators to monitor the bolted spherical joint tightness status. One PZT patch mounted on the central bolted sphere at the upper chord was used as an actuator to generate a stress wave. Another PZT patch mounted on the bar was used as a sensor to detect the propagated waves through the bolted spherical connection. The looseness of the connection can impact the energy of the stress wave propagated through the connection. The wavelet packet analysis and time reversal (TR method were used to quantify the energy of the transmitted signal between the PZT patches by which the tightness status of the connection can be detected. In order to verify the effectiveness, repeatability, and consistency of the proposed methods, the experiments were repeated six times in different bolted spherical connection positions. The experimental results showed that the wavelet packet analysis and TR method are effective in detecting the tightness status of the connections. The

  5. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  6. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis.

    Science.gov (United States)

    Schaefer, Sydney Y; DeJong, Stacey L; Cherry, Kendra M; Lang, Catherine E

    2012-04-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in poststroke hemiparesis. Sixteen adults with poststroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared with the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment.

  7. Ultrasonic extensometry for determining bolt preload in heavy industry - from petrochemical to reactors

    International Nuclear Information System (INIS)

    Erdman, D.C.

    1981-01-01

    Use of ultrasonic extensometers has found wide application for bolt preload determination in airborne and aerospace applications where elongation measurement accuracy is often required to .0001 in. Experience has now been gained in heavy industry with fasteners up to 12 feet long, often on studs and bolts with relatively rough head surfaces. Here, accuracy may be reduced to .001 inch, a figure far better than available from torque wrenches. This paper describes some of these heavy industry applications

  8. The Guidelines for Modelling the Preloading Bolts in the Structural Connection Using Finite Element Methods

    OpenAIRE

    Paulina Krolo; Davor Grandić; Mladen Bulić

    2016-01-01

    The aim of this paper is the development of the two different numerical techniques for the preloading of bolts by the finite element method using the software Abaqus Standard. Furthermore, this paper gave detailed guidelines for modelling contact, method for solving the numerical error problems such as numerical singularity error and negative eigenvalues due to rigid body motion or the problem of the extensive elongation of bolts after pretension which is occurring during the analysis. The be...

  9. Analysis of anchor bolt belongs to fan in nuclear power plant

    International Nuclear Information System (INIS)

    Miao Xueliang; Luan Xingfeng; Zhang Wei; Bian Chunhua; Yu Xiaoyan; Xu Ke; Liu Hongqun

    2014-01-01

    Through on the fan anchor bolt material components, metallurgical structure and fracture analysis indicates that: material composition and microscopic are abnormal, it led to material brittle increased, the fracture is rock-candy structure, the last part is toughness structure. The reason is the the fan vibrate oversize. At last, we put forward some measures. Just like, control the vibration of the fan, set a nominal tightening torque when installing bolt. (authors)

  10. Fuel assembly gripping device using self-locking mechanism

    International Nuclear Information System (INIS)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H.

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs

  11. NBL Pistol Grip Tool for Underwater Training of Astronauts

    Science.gov (United States)

    Liszka, Michael; Ashmore, Matthew; Behnke, Mark; Smith, Walter; Waterman, Tod

    2011-01-01

    A document discusses a lightweight, functional mockup of the Pistol Grip Tool for use during underwater astronaut training. Previous training tools have caused shoulder injuries. This new version is more than 50 percent lighter [in water, weight is 2.4 lb (=1.1 kg)], and can operate for a six-hour training session after 30 minutes of prep for submersion. Innovations in the design include the use of lightweight materials (aluminum and Delrin(Registered TradeMark)), creating a thinner housing, and the optimization of internal space with the removal of as much excess material as possible. This reduces tool weight and maximizes buoyancy. Another innovation for this tool is the application of a vacuum that seats the Orings in place and has shown to be reliable in allowing underwater usage for up to six hours.

  12. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  13. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  14. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems.

    Science.gov (United States)

    Hermsdörfer, Joachim; Hagl, Elke; Nowak, Dennis A

    2004-11-01

    Healthy subjects adjust their grip force economically to the weight of a hand-held object. In addition, inertial loads, which arise from arm movements with the grasped object, are anticipated by parallel grip force modulations. Internal forward models have been proposed to predict the consequences of voluntary movements. Anesthesia of the fingers impairs grip force economy but the feedforward character of the grip force/load coupling is preserved. To further analyze the role of sensory input for internal forward models and to characterize the consequences of central nervous system damage for anticipatory grip force control, we measured grip force behavior in neurological patients. We tested a group of stroke patients with varying degrees of impaired fine motor control and sensory loss, a single patient with complete and permanent differentation from all tactile and proprioceptive input, and a group of patients with amyotrophic lateral sclerosis (ALS) that exclusively impairs the motor system without affecting sensory modalities. Increased grip forces were a common finding in all patients. Sensory deficits were a strong but not the only predictor of impaired grip force economy. The feedforward mode of grip force control was typically preserved in the stroke patients despite their central sensory deficits, but was severely disturbed in the patient with peripheral sensory deafferentation and in a minority of stroke patients. Moderate deficits of feedforward control were also obvious in ALS patients. Thus, the function of the internal forward model and the precision of grip force production may depend on a complex anatomical and functional network of sensory and motor structures and their interaction in time and space.

  15. The Experimental Study of the Temperature Effect on the Interfacial Properties of Fully Grouted Rock Bolt

    Directory of Open Access Journals (Sweden)

    Fuhai Li

    2017-03-01

    Full Text Available This study analyzes the phenomenon of performance deterioration in fully grouted rock bolts in tunnels with a dry, hot environment and high geothermal activity with a focus on temperature effects on interfacial bond performance. Three groups of fully grouted rock bolt specimens were designed based on similar mechanical principles. They were produced and maintained at 20 °C, 35 °C, and 50 °C. Through the indoor gradual loading tensile test of specimens, variations of axial force and shear stress between the rock bolt and mortar adhesive interface were obtained under different environmental temperatures. Distribution of the axial force and shear stress on the anchorage section were found under different tensile forces. Results showed that, with an increase in specimen environmental temperature, maximum shear stress of the rock bolt section became smaller, while shear stress distribution along the rock bolt segment became more uniform. In addition, the axial force value at the same position along the pull end was greater, while axial stress along the anchorage’s length decayed faster. With an increase in tensile force under different temperatures, the axial force and maximum shear stress of rock bolt specimens along the anchorage section has a corresponding increase.

  16. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  17. An investigation into the anti-releasing performance of a serrated bolt

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Hwan; Lee, Hyun Kyu; Park, Ke Un; Kim, Jong Bong [Seoul Natinal University, Seoul (Korea, Republic of)

    2015-11-15

    As the sizes of electric products, such as mobile phones and watch phones, decrease, the joining bolt for the electric product should also be miniaturized. However, the miniature-sized bolt has to support sufficient joining torque and joining force. The bolt also has to support sufficient anti-releasing torque to keep the product fastened. We investigated a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-release torque. In the serrated bolt, serration shapes are formed on the bottom surface of a bolt head to create an obstacle to releasing. In this study, finite element analyses were carried out on joining and releasing, and the anti-release torque was predicted. Through the joining and releasing analyses for various values of the elastic modulus and yield strength of the joined part, the effect of the mechanical properties of the joined part on the anti-releasing performance were investigated. The analysis results showed that a high strength insert nut is needed to increase the anti-releasing torque when the yield strength of the joined part is low, such as a plastic board in a mobile phone.

  18. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    Science.gov (United States)

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.

  19. An approach for the design of closure bolts of spent fuel elements transportation packages

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Miranda, Carlos A.J.; Fainer, Gerson

    2009-01-01

    The spent fuel elements transportation packages must be designed for severe conditions including significant fire and impact loads corresponding to hypothetical accident conditions. In general, these packages have large flat lids connected to cylindrical bodies by closure bolts that can be the weak link in the containment system. The bolted closure design depends on the geometrical characteristics of the flat lid and the cylindrical body, including their flanges, on the type of the gaskets and their dimensions, and on the number, strength, and tightness of the bolts. There are well established procedures for the closure bolts design used in pressure vessels and piping. They can not be used directly in the bolts design applied to transportation packages. Prior to the use of these procedures, it is necessary consider the differences in the main loads (pressure for the pressure vessels and piping and impact loads for the transportation packages) and in the geometry (large flat lids are not used in pressure vessels and piping). So, this paper presents an approach for the design of the closure bolts of spent fuel elements transportation packages considering the impact loads and the typical geometrical configuration of the transportation packages. (author)

  20. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  1. Comparative study of maximum isometric grip strength in different sports

    Directory of Open Access Journals (Sweden)

    Noé Gomes Borges Junior

    2009-01-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2009v11n3p292   The objective of this study was to compare maximum isometric grip strength (Fmaxbetween different sports and between the dominant (FmaxD and non-dominant (FmaxND hand. Twenty-nine male aikido (AI, jiujitsu (JJ, judo (JU and rowing (RO athletes and 21non-athletes (NA participated in the study. The hand strength test consisted of maintainingmaximum isometric grip strength for 10 seconds using a hand dynamometer. The position of the subjects was that suggested by the American Society of Hand Therapy. Factorial 2X5 ANOVA with Bonferroni correction, followed by a paired t test and Tukey test, was used for statistical analysis. The highest Fmax values were observed for the JJ group when using the dominant hand,followed by the JU, RO, AI and NA groups. Variation in Fmax could be attributed to handdominance (30.9%, sports modality (39.9% and the interaction between hand dominance andsport (21.3%. The present results demonstrated significant differences in Fmax between the JJ and AI groups and between the JJ and NA groups for both the dominant and non-dominant hand. Significant differences in Fmax between the dominant and non-dominant hand were only observed in the AI and NA groups. The results indicate that Fmax can be used for comparisonbetween different sports modalities, and to identify differences between the dominant and nondominanthand. Studies involving a larger number of subjects will permit the identification of differences between other modalities.

  2. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  3. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  4. Stress measurement and bolt tensioning by ultrasonic methods

    International Nuclear Information System (INIS)

    Smith, J.F.; Greiner, J.D.

    1980-01-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to approx. 1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability

  5. Stress Measurement and Bolt Tensioning by Ultrasonic Methods

    Science.gov (United States)

    Smith, J. F.; Greiner, John D.

    1980-07-01

    In the past decade, a new technique has been developed for measuring tensile stresses in solids. This ultrasonic technique has been used thus far primarily for measuring fastener tension. The precision of measurement is routinely to 2-3% and, with special care, to ˜1%. The method is insensitive to the frictional losses which plague tensioning by torque wrench. Though the approach is relatively new, it promises a wide range of applicability.

  6. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  7. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  8. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  9. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  10. European development Rock bolting; Desarrollo Europeo del Bulonaje

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The project European Development Rockbolting which was developed during the period 1994-1997 and carried out within the OCICARBON Action Program (OCICARBON-ITGE agreement dated September 1, 1994, Code C-13-438) as well as within the framework of the Coal Technical research Program of the D. G. XVII of the EEC, n 7220/AB/143. The project has had the following external partners: DMT (Germany), BCC (UK) and CDF (France), and the collaboration of INERIS (France), RMT (UK) and GEOCONTROL S. A. (Spain). The objective of the investigation was to improve the techniques and design currently used in the application of rockbolts for supporting of both infrastructure and beds in the European coal mining. The most important result, besides that derived from the sharing of experiences and knowledge, was the technological design of a supporting system, which was carried out by each partner for the various proposed exploitations. The Spanish part carried out the works of designing and estimation of the bolting system corresponding to the exploitations of: -Carbones de Pedraforca SA. Saldes mine. -U. E. Provence. Pit Y. Morandat.

  11. Nuts and Bolts of the Ion Band State Theory

    Science.gov (United States)

    Chubb, Scott R.

    2005-12-01

    The nuts and bolts of our ion band state theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdHx, this bonding is strongly correlated with loading. In ambient loading conditions (x ≲ 0.6), bonding inhibits ion band state occupation. As x → 1, slight increases and decreases in loading can induce "vibrations" (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi energy have negligible overlap with the nucleus of either D or H. In the past, implicitly, we have used these facts to justify our ion band state theory. Here, we present a more formal justification, based on the relationship between H(D) ion band states (IBS's) and H(D) phonons that includes a microscopic picture that explains why occupation of IBS's can occur in PdD and PdH and how this can lead to nuclear reactions.

  12. Blades Couple Dry Friction Connection

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2015-01-01

    Roč. 9, č. 1 (2015), s. 31-40 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : stick-slip dry friction * 3D friction characteristic * tangential contact stiffness * hysterezis loop * response curves Subject RIV: BI - Acoustics

  13. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  14. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  15. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    OpenAIRE

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Cui, Mantang; Zhang, Kai; Zhang, Minglei

    2015-01-01

    Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structur...

  16. The effect of cultivar, sowing date and transplant location in field on bolting of Welsh onion (Allium fistulosum L.).

    Science.gov (United States)

    Dong, Yinxin; Cheng, Zhihui; Meng, Huanwen; Liu, Hanqiang; Wu, Cuinan; Khan, Abdul Rehman

    2013-10-07

    Bolting reduces the quality and commercial yield of Welsh onion (Allium fistulosum L.) in production. However, seed production is directly dependent on flower induction and bolting. The Welsh onion belongs to the green plant vernalisation type, specific seedling characteristics and sufficient accumulated time at low temperature are indispensible for the completion of its vernalisation process. Only if these conditions for vernalisation are fulfilled, the plants will bolt in the following year. The present investigation evaluated the effects of cultivar, sowing date and transplant location in field on the bolting of Welsh onion at the Horticultural Farm of the College of Horticulture, Northwest A&F University, Yangling, Shannxi Province, China in two succeeding production years: 2010-2011 and 2011-2012. A strip split plot layout within a randomised complete block design with three replications was used. The results revealed that all three factors (cultivar, sowing date and transplant location) and their interaction had significant effects on the initiation and final rate of bolting observed by 30 April. The earliest bolting date (14 February, 2011 and 15 February, 2012) and the highest bolting rate (100% in 2011 and 62% in 2012) occurred when the JinGuan cultivar was sown on 20 August and transplanted in a plastic tunnel, whereas the latest date and lowest rate (no bolting observed until 30 April) of bolting occurred when the XiaHei cultivar was sown on 29 September and transplanted in an open field. These results suggest that we can control bolting in Welsh onion production by choosing an appropriate cultivar, sowing date and transplant location. Choosing a late bolting cultivar, such as cultivar XiaHei, sowing around October, and transplanting in the open field can significantly delay bolting, while a sowing date in late August should be selected for seed production, and the seedlings should be transplanted in a plastic tunnel to accelerate development of the

  17. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections.

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    Full Text Available Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.

  18. A Component-Based Study of the Effect of Diameter on Bond and Anchorage Characteristics of Blind-Bolted Connections.

    Science.gov (United States)

    Amin, Muhammad Nasir; Zaheer, Salman; Alazba, Abdulrahman Ali; Saleem, Muhammad Umair; Niazi, Muhammad Umar Khan; Khurram, Nauman; Amin, Muhammad Tahir

    2016-01-01

    Structural hollow sections are gaining worldwide importance due to their structural and architectural advantages over open steel sections. The only obstacle to their use is their connection with other structural members. To overcome the obstacle of tightening the bolt from one side has given birth to the concept of blind bolts. Blind bolts, being the practical solution to the connection hindrance for the use of hollow and concrete filled hollow sections play a vital role. Flowdrill, the Huck High Strength Blind Bolt and the Lindapter Hollobolt are the well-known commercially available blind bolts. Although the development of blind bolts has largely resolved this issue, the use of structural hollow sections remains limited to shear resistance. Therefore, a new modified version of the blind bolt, known as the "Extended Hollo-Bolt" (EHB) due to its enhanced capacity for bonding with concrete, can overcome the issue of low moment resistance capacity associated with blind-bolted connections. The load transfer mechanism of this recently developed blind bolt remains unclear, however. This study uses a parametric approach to characterising the EHB, using diameter as the variable parameter. Stiffness and load-carrying capacity were evaluated at two different bolt sizes. To investigate the load transfer mechanism, a component-based study of the bond and anchorage characteristics was performed by breaking down the EHB into its components. The results of the study provide insight into the load transfer mechanism of the blind bolt in question. The proposed component-based model was validated by a spring model, through which the stiffness of the EHB was compared to that of its components combined. The combined stiffness of the components was found to be roughly equivalent to that of the EHB as a whole, validating the use of this component-based approach.

  19. Hand Grip Strength: age and gender stratified normative data in a population-based study

    Directory of Open Access Journals (Sweden)

    Taylor Anne W

    2011-04-01

    Full Text Available Abstract Background The North West Adelaide Health Study is a representative longitudinal cohort study of people originally aged 18 years and over. The aim of this study was to describe normative data for hand grip strength in a community-based Australian population. Secondary aims were to investigate the relationship between body mass index (BMI and hand grip strength, and to compare Australian data with international hand grip strength norms. Methods The sample was randomly selected and recruited by telephone interview. Overall, 3 206 (81% of those recruited participants returned to the clinic during the second stage (2004-2006 which specifically focused on the collection of information relating to musculoskeletal conditions. Results Following the exclusion of 435 participants who had hand pain and/or arthritis, 1366 men and 1312 women participants provided hand grip strength measurement. The study population was relatively young, with 41.5% under 40 years; and their mean BMI was 28.1 kg/m2 (SD 5.5. Higher hand grip strength was weakly related to higher BMI in adults under the age of 30 and over the age of 70, but inversely related to higher BMI between these ages. Australian norms from this sample had amongst the lowest of the hand grip strength of the internationally published norms, except those from underweight populations. Conclusions This population demonstrated higher BMI and lower grip strength in younger participants than much of the international published, population data. A complete exploration of the relationship between BMI and hand grip strength was not fully explored as there were very few participants with BMI in the underweight range. The age and gender grip strength values are lower in younger adults than those reported in international literature.

  20. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Anticipatory grip force between 1 and 3g

    Science.gov (United States)

    White, Olivier; Van Loon, ing.. Jack J. W. A.; Thonnard, Jean-Louis; Hermsdorfer, Joachim; Lefevre, Philippe

    One remarkable capacity of utilizing common tools appropriately as soon as we grasp them relies on the ability to determine in advance the grip force (GF) required to handle them in relation to their mechanical properties and the surrounding environment. This anticipatory strategy avoids the uncompressible delays in the feedback system. The predictive control of GF is made possible because the nervous system can learn, store and then select the internal representations of the dynamics of innumerable objects, known as internal models. Beside this flexibility, the nervous system's ability to learn different task dynamics is often limited in classical robotic experiments The environment itself can be profoundly modified in altered gravity or centrifugation. The few studies that investigated motor adaptation in such contexts did not consider the interaction between gravitational phases and even less the transitions across environments. Here, we tested subject's abilities to adapt to levels of gravitational fields generated by a human centrifuge. In Experiment 1, seven subjects performed 4 lifting trials in each gravitational phase (1 to 2.5g and then 2.5 to 1g by steps of 0.5g) with a 0.12 kg instrumented object. In Experiment 2, six subjects performed vertical oscillations of the object during transitions between 1 and 3g (0.5g steps, ascending and descending phases, profile repeated twice). We continuously measured GF, load force (LF) and ambient gravity. We hypothesized that participants were able to predictively adjust GF to the new environment. In Experiment 1, participants adjusted their GF proportionally to gravity and decreased GF across trials within a given gravitational environment. Preload phases decreased over time from 300ms to 50ms irrespective of gravity. We quantified the abilities of participants to switch across environments by subtracting GF recorded in the last trial in the current gravity level from GF during the first trial in the new environment

  2. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  3. Wave friction factor rediscovered

    Science.gov (United States)

    Le Roux, J. P.

    2012-02-01

    The wave friction factor is commonly expressed as a function of the horizontal water particle semi-excursion ( A wb) at the top of the boundary layer. A wb, in turn, is normally derived from linear wave theory by {{U_{{wb}}/T_{{w}}}}{{2π }} , where U wb is the maximum water particle velocity measured at the top of the boundary layer and T w is the wave period. However, it is shown here that A wb determined in this way deviates drastically from its real value under both linear and non-linear waves. Three equations for smooth, transitional and rough boundary conditions, respectively, are proposed to solve this problem, all three being a function of U wb, T w, and δ, the thickness of the boundary layer. Because these variables can be determined theoretically for any bottom slope and water depth using the deepwater wave conditions, there is no need to physically measure them. Although differing substantially from many modern attempts to define the wave friction factor, the results coincide with equations proposed in the 1960s for either smooth or rough boundary conditions. The findings also confirm that the long-held notion of circular water particle motion down to the bottom in deepwater conditions is erroneous, the motion in fact being circular at the surface and elliptical at depth in both deep and shallow water conditions, with only horizontal motion at the top of the boundary layer. The new equations are incorporated in an updated version (WAVECALC II) of the Excel program published earlier in this journal by Le Roux et al. Geo-Mar Lett 30(5): 549-560, (2010).

  4. Grip Strength and Its Relationship to Police Recruit Task Performance and Injury Risk: A Retrospective Cohort Study.

    Science.gov (United States)

    Orr, Robin; Pope, Rodney; Stierli, Michael; Hinton, Benjamin

    2017-08-21

    Suitable grip strength is a police occupational requirement. The aim of this study was to investigate the association between grip strength, task performance and injury risk in a police population. Retrospective data of police recruits (n = 169) who had undergone basic recruit training were provided, including handgrip strength results, occupational task performance measures (consisting of police task simulations [SIM], tactical options [TACOPS] and marksmanship assessments) and injury records. Left hand grip strength (41.91 ± 8.29 kg) measures showed a stronger correlation than right hand grip strength (42.15 ± 8.53 kg) with all outcome measures. Recruits whose grip strength scores were lower were significantly more susceptible to failing the TACOPS occupational task assessment than those with greater grip strength scores, with significant ( p ≤ 0.003) weak to moderate, positive correlations found between grip strength and TACOPS performance. A significant ( p performance, with those performing better in marksmanship having higher grip strength. Left hand grip strength was significantly associated with injury risk ( r = -0.181, p = 0.018) but right hand grip strength was not. A positive association exists between handgrip strength and police recruit task performance (notably TACOPS and marksmanship) with recruits who scored poorly on grip strength being at greatest risk of occupational assessment task failure.

  5. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  6. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  7. The structural behavior of a bolted flanged connection subjected to a cyclic load

    International Nuclear Information System (INIS)

    Cesari, F.

    1981-01-01

    In the vessel of BWR nuclear plants, the bolted flanged connection is subjected to a cyclic load, consisting of four steps: the bolt load, the pressure load with decreasing of bolt load, depressurization with increasing bold load, and at the end, unbolting. In the case of rigid, bolted flange, the elastic behavior is essentially correct, but if the height of the flange is decreased, then the stress gradients are so high that the strains move into the plastic range. In addition, the design of pressure vessels is not complete without an appraisal of failure by progressive distortion or stress ratchteing. There is therefore a need for numerical results for the structures subjected to well-known loading. The aim of this paper is to follow the stress and strain of a bolted flange subjected to the cyclic load, progressively varying the height of the flange, so that the maximum stress intensity becomes 3 Ssub(m). The number of cycles was sufficient to verify the conditions of shakedown or ratcheting. The numerical analysis, using finite element technique and the Adina code, is well established and frequently used. (orig.)

  8. Evaluation of the clamping force in high tension bolt by using the ultrasonic nonlinearity

    International Nuclear Information System (INIS)

    Jang, Kyung Young; Cheon, Hae Wha; Ha, Hob; Park, Man Sick; Kim, No You

    2005-01-01

    High tension bolts have been used widely for the clamping of many kinds of large structure. Therefore, its estimation has been regarded as main issue in the maintenance of high tension bolts. This paper proposes a novel method using the ultrasonic nonlinearity, which is based on the dependency of sound speed on the stress. For this we introduce nonlinear elastic constants in the stress-strain relationship, and derive the sound speed as a linear function of stress. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out: The first one is to measure the sound speed when the bolt is stressed by the tension tester. The result showed good agreement with the expected linear relationship between the sound speed and the axial stress. The second one is to measure the sound speed when the bolt is stressed by the torque wrench. The results showed that the sound speed was decreased when the torque was increased. From these results we can say that the proposed method is enough useful to evaluate the clamping force in the high tension bolt.

  9. Numerical Study on Ultimate Behaviour of Bolted End-Plate Steel Connections

    Directory of Open Access Journals (Sweden)

    R.E.S. Ismail

    Full Text Available Abstract Bolted end-plate steel connections have become more popular due to ease of fabrication. This paper presents a three dimension Finite Element Model (FEM, using the multi-purpose software ABAQUS, to study the effect of different geometrical parameters on the ultimate behavior of the connection. The proposed model takes into account material and geometrical non-linearities, initial imperfection, contact between adjacent surfaces and the pretension force in the bolts. The Finite Element results are calibrated with published experimental results ''briefly reviewed in this paper'' and verified that the numerical model can simulate and analyze the overall and detailed behavior of different types of bolted end-plate steel connections. Using verified FEM, parametric study is then carried out to study the ultimate behavior with variations in: bolt diameter, end-plate thickness, length of column stiffener, angle of rib stiffener. The results are examined with respect to the failure modes, the evolution of the resistance, the initial stiffness, and the rotation capacity. Finally, the ultimate behavior of the bolted end-plate steel connection is discussed in detail, and recommendations for the design purpose are made.

  10. Nonlinear Modeling and Identification of an Aluminum Honeycomb Panel with Multiple Bolts

    Directory of Open Access Journals (Sweden)

    Yongpeng Chu

    2016-01-01

    Full Text Available This paper focuses on the nonlinear dynamics modeling and parameter identification of an Aluminum Honeycomb Panel (AHP with multiple bolted joints. Finite element method using eight-node solid elements is exploited to model the panel and the bolted connection interface as a homogeneous, isotropic plate and as a thin layer of nonlinear elastic-plastic material, respectively. The material properties of a thin layer are defined by a bilinear elastic plastic model, which can describe the energy dissipation and softening phenomena in the bolted joints under nonlinear states. Experimental tests at low and high excitation levels are performed to reveal the dynamic characteristics of the bolted structure. In particular, the linear material parameters of the panel are identified via experimental tests at low excitation levels, whereas the nonlinear material parameters of the thin layer are updated by using the genetic algorithm to minimize the residual error between the measured and the simulation data at a high excitation level. It is demonstrated by comparing the frequency responses of the updated FEM and the experimental system that the thin layer of bilinear elastic-plastic material is very effective for modeling the nonlinear joint interface of the assembled structure with multiple bolts.

  11. PIXE Analysis of Metal Hull Bolts From HMB DeBraak

    International Nuclear Information System (INIS)

    Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.

    2009-01-01

    HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.

  12. PIXE Analysis of Metal Hull Bolts From HMB DeBraak

    Science.gov (United States)

    Correll, Francis D.; Cole, Lord K.; Slater, Charles J.; Vanhoy, Jeffrey R.; Fithian, Charles H.

    2009-03-01

    HMB DeBraak was a 16-gun British brig-sloop that sank in a squall on May 25, 1798 off Cape Henlopen, Delaware. Silt covered the wooden hull shortly after it sank, preserving it until DeBraak was raised in 1986. The items recovered from the ship include metal bolts that held the hull together. We used PIXE to measure the compositions of 45 of the bolts and found that they are nearly pure copper (98.3% on average), with most also containing small amounts of iron (0.87%), nickel (0.039%), arsenic (0.43%), silver (0.089%), lead (0.18%), and bismuth (0.12%). A few contain a little indium, tin, or antimony, but none contain zinc above the quantization level. The compositions are similar to those reported for 18th-century English copper, but different from several copper alloys also used to make hull bolts. We conclude that, when DeBraak was last fitted out in 1795-1797, the Royal Navy was still using bolts similar to William Forbes's mechanically hardened pure copper bolts. Forbes's process represents the successful innovation and application of new technology in Royal Navy ships during the wars of the late 18th century.

  13. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  14. Fuel assembly gripping device using self-locking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. M.; Choi, S.; Kim, K. S.; Kim, T. W.; Jeong, K. H.; Park, K. B.; Chang, M. H

    1999-07-01

    This report presents an actuating principles and structure for two kind of the fuel assembly gripping devices (Gripper-A, B) developed for SMART. The main components of these grippers are push bundle, rotation bundle, upper guide tube and chuck assembly. The rope attached to winch system on moving cask hangs gripper's push bundle. Due to a down-and-up operation of winch system, the push bundle pushes crown teeth shaped rotation bundle and then it is pushed down and rotated counter clockwise. The push-and-pull sequential operation of push bundle makes the rotation bundle is pushed, rotated and returned, moreover it makes the chuck assembly is expanded or shrunk. The expansion and shrinkage motion of chuck assembly makes the gripper latch and release the fuel assembly. Gripper-A suits for the handling of the fuel assembly with square shaped latching hole. Otherwise Gripper-B suits for a circular shaped latching hole. (author). 5 refs., 20 figs.

  15. Friction massage versus kinesiotaping for short-term management of latent trigger points in the upper trapezius: a randomized controlled trial.

    Science.gov (United States)

    Mohamadi, Marzieh; Piroozi, Soraya; Rashidi, Iman; Hosseinifard, Saeed

    2017-01-01

    Latent trigger points in the upper trapezius muscle may disrupt muscle movement patterns and cause problems such as cramping and decreased muscle strength. Because latent trigger points may spontaneously become active trigger points, they should be addressed and treated to prevent further problems. In this study we compared the short-term effect of kinesiotaping versus friction massage on latent trigger points in the upper trapezius muscle. Fifty-eight male students enrolled with a stratified sampling method participated in this single-blind randomized clinical trial (Registration ID: IRCT2016080126674N3) in 2016. Pressure pain threshold was recorded with a pressure algometer and grip strength was recorded with a Collin dynamometer. The participants were randomly assigned to two different treatment groups: kinesiotape or friction massage. Friction massage was performed daily for 3 sessions and kinesiotape was used for 72 h. One hour after the last session of friction massage or removal of the kinesiotape, pressure pain threshold and grip strength were evaluated again. Pressure pain threshold decreased significantly after both friction massage (2.66 ± 0.89 to 2.25 ± 0.76; P  = 0.02) and kinesiotaping (2.00 ± 0.74 to 1.71 ± 0.65; P  = 0.01). Grip strength increased significantly after friction massage (40.78 ± 9.55 to 42.17 ± 10.68; P  = 0.03); however there was no significant change in the kinesiotape group (39.72 ± 6.42 to 40.65 ± 7.3; P  = 0.197). There were no significant differences in pressure pain threshold (2.10 ± 0.11 & 1.87 ± 0.11; P  = 0.66) or grip strength (42.17 ± 10.68 & 40.65 ± 7.3; P  = 0.53) between the two study groups. Friction massage and kinesiotaping had identical short-term effects on latent trigger points in the upper trapezius. Three sessions of either of these two interventions did not improve latent trigger points. Registration ID in IRCT: IRCT2016080126674N3.

  16. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  17. [Friction: self-ligating brackets].

    Science.gov (United States)

    Thermac, Guilhem; Morgon, Laurent; Godeneche, Julien

    2008-12-01

    The manufacturers of self-ligating brackets advertise a reduction of the friction engendered between the wire and the bracket, which is an essential parameter for treatment's speed and comfort. We have compared the friction obtained with four types of self-ligating brackets - In-Ovation R, Damon 3, Smart Clip and Quick - with that of a standard bracket Omniarch associated with an elastomeric ligature. All bracket were tested on a bench of traction with three types of wires: steel .019"x.025", TMA .019"x.025" and NEO sentalloy F300 .020"x.020". The results confirm a clear friction reduction for all tested wire.

  18. Effect of Putting Grip on Eye and Head Movements During the Golf Putting Stroke

    Directory of Open Access Journals (Sweden)

    George K. Hung

    2003-01-01

    Full Text Available The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact. The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1 for conventional than cross-hand (9 ft and one-handed (3 and 9 ft grips. Also, the STD of head movements were greater (p < 0.1; 3 ft for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was

  19. Improvement of handle grip using reverse engineering, CAE and Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Stoklasek Pavel

    2016-01-01

    Full Text Available The overwhelming majority of manual operations is even nowadays performed by using manual hand tools. These tools can be divided into 2 groups – hand tools designed for general use or a single-purpose hand tools for special operations. Tool described in this paper is used in assembling operation in the completion of electric motor. During the design of the existing tools the requirements for a functional part of the tool (lifespan, inability to damage the engine installation were fully considered, demands for ergonomic grip area, however, were not taken into account. Long-term use of incorrectly designed tool causes carpal tunnel syndrome, hand-arm vibration syndrome, diminished sensitivity or tingling in the fingers of workers. These difficulties can be reduced or entirely eliminated due to proper design of the grip of hand tool. Most authors focus on adjusting the grip for optimum ergonomics at individual types of grips (cylindrical, palmar, lateral, etc.. However, as already mentioned, there are tools for specific operations when the working area is limited by space or a specific type of load on the grip is needed. In some cases, it is often necessary to change the type of grip or combine different types of grips. This paper describes the design of an optimal grip of hand tool used for specific operation when assembling motors. Design of prototype mold and production of functional prototypes for ergonomics assessment directly in the workplace were realized. New design of handle should reduce the risk primarily of developing carpal tunnel in long-term use.

  20. Grip strength in mice with joint inflammation: A rheumatology function test sensitive to pain and analgesia.

    Science.gov (United States)

    Montilla-García, Ángeles; Tejada, Miguel Á; Perazzoli, Gloria; Entrena, José M; Portillo-Salido, Enrique; Fernández-Segura, Eduardo; Cañizares, Francisco J; Cobos, Enrique J

    2017-10-01

    Grip strength deficit is a measure of pain-induced functional disability in rheumatic disease. We tested whether this parameter and tactile allodynia, the standard pain measure in preclinical studies, show parallels in their response to analgesics and basic mechanisms. Mice with periarticular injections of complete Freund's adjuvant (CFA) in the ankles showed periarticular immune infiltration and synovial membrane alterations, together with pronounced grip strength deficits and tactile allodynia measured with von Frey hairs. However, inflammation-induced tactile allodynia lasted longer than grip strength alterations, and therefore did not drive the functional deficits. Oral administration of the opioid drugs oxycodone (1-8 mg/kg) and tramadol (10-80 mg/kg) induced a better recovery of grip strength than acetaminophen (40-320 mg/kg) or the nonsteroidal antiinflammatory drugs ibuprofen (10-80 mg/kg) or celecoxib (40-160 mg/kg); these results are consistent with their analgesic efficacy in humans. Functional impairment was generally a more sensitive indicator of drug-induced analgesia than tactile allodynia, as drug doses that attenuated grip strength deficits showed little or no effect on von Frey thresholds. Finally, ruthenium red (a nonselective TRP antagonist) or the in vivo ablation of TRPV1-expressing neurons with resiniferatoxin abolished tactile allodynia without altering grip strength deficits, indicating that the neurobiology of tactile allodynia and grip strength deficits differ. In conclusion, grip strength deficits are due to a distinct type of pain that reflects an important aspect of the human pain experience, and therefore merits further exploration in preclinical studies to improve the translation of new analgesics from bench to bedside. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Adaptive grip force is modulated by subthalamic beta activity in Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Lukas L. Imbach

    2015-01-01

    Conclusion: The time-locked suppression of beta oscillatory activity in the STN is in line with previous reports of beta ERD prior to voluntary movements. Our results show that the STN is involved in anticipatory grip force control in PD patients. The difference in the phasic beta ERD between the two tasks and the reduction of cortico-subthalamic synchronization suggests that qualitatively different neuronal network states are involved in different grip force control tasks.

  2. Grip Force Adjustments Reflect Prediction of Dynamic Consequences in Varying Gravitoinertial Fields

    Directory of Open Access Journals (Sweden)

    Olivier White

    2018-02-01

    Full Text Available Humans have a remarkable ability to adjust the way they manipulate tools through a genuine regulation of grip force according to the task. However, rapid changes in the dynamical context may challenge this skill, as shown in many experimental approaches. Most experiments adopt perturbation paradigms that affect only one sensory modality. We hypothesize that very fast adaptation can occur if coherent information from multiple sensory modalities is provided to the central nervous system. Here, we test whether participants can switch between different and never experienced dynamical environments induced by centrifugation of the body. Seven participants lifted an object four times in a row successively in 1, 1.5, 2, 2.5, 2, 1.5, and 1 g. We continuously measured grip force, load force and the gravitoinertial acceleration that was aligned with body axis (perceived gravity. Participants adopted stereotyped grasping movements immediately upon entry in a new environment and needed only one trial to adapt grip forces to a stable performance in each new gravity environment. This result was underlined by good correlations between grip and load forces in the first trial. Participants predictively applied larger grip forces when they expected increasing gravity steps. They also decreased grip force when they expected decreasing gravity steps, but not as much as they could, indicating imperfect anticipation in that condition. The participants' performance could rather be explained by a combination of successful scaling of grip force according to gravity changes and a separate safety factor. The data suggest that in highly unfamiliar dynamic environments, grip force regulation is characterized by a combination of a successful anticipation of the experienced environmental condition, a safety factor reflecting strategic response to uncertainties about the environment and rapid feedback mechanisms to optimize performance under constant conditions.

  3. Showing Area Matters: A Work of Friction

    Science.gov (United States)

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  4. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  5. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  6. Friction induced hunting limit cycles : a comparison between the LuGre and switch friction model

    NARCIS (Netherlands)

    Hensen, R.H.A.; Molengraft, van de M.J.G.; Steinbuch, M.

    2003-01-01

    In this paper, friction induced limit cycles are predicted for a simple motion system consisting of a motor-driven inertia subjected to friction and a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static switch friction model,

  7. Predicting hand function in older adults: evaluations of grip strength, arm curl strength, and manual dexterity.

    Science.gov (United States)

    Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing

    2017-08-01

    Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p function test. In comparison, older adults with better grip strength (β = .40, p function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.

  8. The effects of grip width on sticking region in bench press.

    Science.gov (United States)

    Gomo, Olav; Van Den Tillaar, Roland

    2016-01-01

    The aim of this study was to examine the occurrence of the sticking region by examining how three different grip widths affect the sticking region in powerlifters' bench press performance. It was hypothesised that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width, indicating a poor mechanical region for vertical force production at these joint angles. Twelve male experienced powerlifters (age 27.7 ± 8.8 years, mass 91.9 ± 15.4 kg) were tested in one repetition maximum (1-RM) bench press with a narrow, medium and wide grip. Joint kinematics, timing, bar position and velocity were measured with a 3D motion capture system. All participants showed a clear sticking region with all three grip widths, but this sticking region was not found to occur at the same joint angles in all three grip widths, thereby rejecting the hypothesis that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width. It is suggested that, due to the differences in moment arm of the barbell about the elbow joint in the sticking region, there still might be a poor mechanical region for total force production that is joint angle-specific.

  9. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking.

    Science.gov (United States)

    Lu, Wei; Ziff, Edward B

    2005-08-04

    PICK1 and ABP/GRIP bind to the AMPA receptor (AMPAR) GluR2 subunit C terminus. Transfer of the receptor from ABP/GRIP to PICK1, facilitated by GluR2 S880 phosphorylation, may initiate receptor trafficking. Here we report protein interactions that regulate these steps. The PICK1 BAR domain interacts intermolecularly with the ABP/GRIP linker II region and intramolecularly with the PICK1 PDZ domain. Binding of PKCalpha or GluR2 to the PICK1 PDZ domain disrupts the intramolecular interaction and facilitates the PICK1 BAR domain association with ABP/GRIP. Interference with the PICK1-ABP/GRIP interaction impairs S880 phosphorylation of GluR2 by PKC and decreases the constitutive surface expression of GluR2, the NMDA-induced endocytosis of GluR2, and recycling of internalized GluR2. We suggest that the PICK1 interaction with ABP/GRIP is a critical step in controlling GluR2 trafficking.

  10. Differences in grip force control between young and late middle-aged adults.

    Science.gov (United States)

    Zheng, Lianrong; Li, Kunyang; Wang, Qian; Chen, Wenhui; Song, Rong; Liu, Guanzheng

    2017-09-01

    Grip force control is a crucial function for human to guarantee the quality of life. To examine the effects of age on grip force control, 10 young adults and 11 late middle-aged adults participated in visually guided tracking tasks using different target force levels (25, 50, and 75% of the subject's maximal grip force). Multiple measures were used to evaluate the tracking performance during force rising phase and force maintenance phase. The measurements include the rise time, fuzzy entropy, mean force percentage, coefficient of variation, and target deviation ratio. The results show that the maximal grip force was significantly lower in the late middle-aged adults than in the young adults. The time of rising phase was systematically longer among late middle-aged adults. The fuzzy entropy is a useful indicator for quantitating the force variability of the grip force signal at higher force levels. These results suggest that the late middle-aged adults applied a compensatory strategy that allow allows for sufficient time to reach the required grip force and reduce the impact of the early and subtle degenerative changes in hand motor function.

  11. Hold, grasp, clutch or grab: consumer grip choices during food container opening.

    Science.gov (United States)

    Rowson, J; Yoxall, A

    2011-07-01

    Society is ageing and sadly that ageing leads to a host of issues, not least a society in which the majority are likely to have some loss of strength and dexterity. This can lead to complications in undertaking everyday tasks such as using transport, bathing or even handling and opening food. Packaging has to provide a multitude of services; to protect and preserve the product, to provide information to the consumer and not least to allow access to the contents. This access to packaging--or 'openability'--has become a significant issue for designers and manufacturers with the change in demographics as described above. Understanding the choices consumers make in how they manipulate packaging can help designers produce packaging that is more able to meet the requirements of modern society. Studies previously undertaken by the authors showed that consumers did use different grips when opening packaging and that certain grips were theoretically more comfortable and stronger than others. This paper outlines a further study whereby consumers were asked to apply the most common grips to a specially designed torque measuring device. Details were taken about the consumers: age, gender, occupation, hand size, plus their preferred grip choice for packaging of this type. The study showed that typically women chose a grip that maximised their opportunity of opening the closure and that this grip choice was more limited than that available for men. This has implications for inclusive design of many everyday products. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    International Nuclear Information System (INIS)

    Ra, S W; Im, K H; Woo, Y D; Lee, S G; Kim, H J; Song, S J; Kim, S K; Cho, Y T; Jung, J A

    2015-01-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results. (paper)

  13. Site ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming

    1994-08-01

    It expounds that the key of solving thermal transient sealing problem is to obtain the thermal increment of stud-bolt loading. This loading, as a primary stress loading, is directly related to the bolt fatigue life and transient loading spectrum for vessel analysis. The fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on Qinshan site are also presented. The measuring capability has exceeded 1 m in length and temperature of 280 degree C, therefore, it is possible to be used in the field of NPP. The paper is the continuation of research work for sealing analysis and tests on the RPV (see SMiRT-9, 10)

  14. Fatigue behavior of a bolted assembly - a comparison between numerical analysis and experimental analysis

    International Nuclear Information System (INIS)

    Bosser, M.; Vagner, J.

    1987-01-01

    The fatigue behavior of a bolted assembly can be analysed, either by fatigue tests, or by computing the stress variations and using a fatigue curve. This paper presents the fatigue analysis of a stud-bolt and stud-flange of a steam generator manway carried out with the two methods. The experimental analysis is performed for various levels of load, according to the recommandations of the ASME code section III appendix II. The numerical analysis of the stresses is based on the results of a finite element analysis performed with the program SYSTUS. The maximum stresses are obtained in the first bolt threads. In using these stresses, the allowable number of cycles for each level of loading analysed, is obtained from fatigue curves, as defined in appendix I section III of the ASME code. The analysis underlines that, for each level of load the purely numerical approach is highly conservative, compared to the experimental approach. (orig.)

  15. Experimental verification of lifetime of bolting joints for WWER reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1992-01-01

    This paper presents results from experimental verification of cyclic lifetime of bolting joints of M 140x6 mm type used for WWER-440 MW reactor pressure vessels. Bolting joints or real dimensions were tested in a special testing equipment ZS 1000 in Skoda Concern. Stud bolts are made from 25Kh1MF or 38KhN3MFA type of steels. Tests were carried out at operating as well as at room temperatures with coefficient of asymmetry equal to 0.1; one tests was realized with given bending moment. Experimental results have been compared with calculated lifetimes according to ASME, Soviet and CMEA Codes. In all cases calculations give conservative assessments. (orig.)

  16. Special remote tooling developed and utilized to tighten TFTR TF coil casing bolts

    International Nuclear Information System (INIS)

    Burgess, T.W.; Walton, G.R.; Meighan, T.G.; Paul, B.L.

    1993-01-01

    Special tooling has been developed and used to tighten toroidal field (TF) coil casing bolts that have loosened from years of Tokamak Fusion Test Reactor (TFTR) operation. Due to their location, many of the TF casing bolts cannot be directly accessed or viewed; their condition was first discovered during unrelated inspections in 1988. Engineering solutions were, sought until 1992, when a remotely operated wrench concept was successfully demonstrated on a TF coil mockup. The concept was developed into several working tools that have successfully been applied to tighten several thousand TF casing bolts during recent scheduled outages. This effort has improved the integrity and reliability of the TF coil system in preparing for the final experimental phase of the TFTR. This paper discusses the design and application of this tooling

  17. Single-impact calibrated electromagnetic tightening of long-life bolted joints in aviation structures

    Science.gov (United States)

    Firsov, V. A.; Bekhmet'ev, V. I.

    The general design and operation of a newly developed electromagnetic impact driver for the assembly of aviation structures is described. The electromagnetic impact driver makes it possible to considerably improve the precision of bolt torquing during the assembly. To test the performance of the new tool, M6 bolts of 16KhSN steel (tensile strength 120 +/- 10 kg/sq mm) were tightened by a manual torque wrench and by the electromagnetic impact driver. It is shown that the scatter of bolt elongation during the tightening by the impact driver is a factor of 3-5 less than in the case of manual torquing, which corresponds to a torque precision of 1.5-2 percent.

  18. An analysis of bolted opening structure and development of analysis expert system using ANSYS

    International Nuclear Information System (INIS)

    Jun, S. M.; Suh, E. K.; Shim, H. B.; Kim, T. W.; Lee, B. Y.

    1998-01-01

    Bolted opening structures is widely applied for class 1 machinery of nuclear plant with strict design requirement. As the shape of the bolted opening structure is non-axisymmetric due to the existence of stud bolts although it is almost axi-symmetric, 3D analysis is required to satisfy such kind of design requirements. Because as much as possible trial computations are need to get an optimal design condition in the limited period of basic design, an easy and fast analysis tool is useful in the design stage. In the paper, a transformation technique of non-axisymmetric problem into quasi-axisymmetric has been proposed based on the general purpose commercial code ANSYS. Both the pre-processor which incorporates the technique and prepares data and post-processor which prepares arranged results from the huge output of commercial code have been developed to help the design engineers. (author)

  19. Investigating the effect of clamping force on the fatigue life of bolted plates using volumetric approach

    International Nuclear Information System (INIS)

    Esmaeili, F.; Chakherlou, T. N.; Zehsaz, M.; Hasanifard, S.

    2013-01-01

    In this paper, the effects of bolt clamping force on the fatigue life for bolted plates made from Al7075-T6 have been studied on the values of notch strength reduction factor obtained by volumetric approach. To attain stress distribution around the notch (hole) which is required for volumetric approach, nonlinear finite element simulations were carried out. To estimate the fatigue life, the available smooth S-N curve of Al7075-T6 and the notch strength reduction factor obtained from volumetric method were used. The estimated fatigue life was compared with the available experimental test results. The investigation shows that there is a good agreement between the life predicted by the volumetric approach and the experimental results for various specimens with different amount of clamping forces. Volumetric approach and experimental results showed that the fatigue life of bolted plates improves because of the compressive stresses created around the plate hole due to clamping force.

  20. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    Science.gov (United States)

    Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.

    2015-12-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.

  1. Rubber friction and tire dynamics

    International Nuclear Information System (INIS)

    Persson, B N J

    2011-01-01

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  2. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  3. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  4. Rubber friction and tire dynamics.

    Science.gov (United States)

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  5. Causes of Failure of High-Tensile Stud Bolts Used for Joining Metal Parts of Tower Crane

    Science.gov (United States)

    Tingaev, A. K.; Gubaydulin, R. G.; Shaburova, N. A.

    2017-11-01

    The causes of the failure of a high-tensile stud 2M48-6gx500 10.9 made from steel grade 30HGSA which led to a temporary inoperability of a tower crane were investigated. The bolts were used to assemble the tower sections and collapsed after 45 days from the moment the crane was commissioned. The cracks in the fracture are identified as fatigue with the characteristic sites of nucleation, sustainable development and static dolomite. To determine the possible causes of stud bolts destruction, metallographic, durometric and mechanical tests were carried out from which it follows that the stud bolt material in its original state corresponded to the delivery conditions. The destruction of the stud bolt appears to have resulted from a combination of several unfavorable factors: uncertainty about the actual tension of the stud bolt due to the lack of information about the magnitude of the twist factor; partial displacement of the centers of the brackets holes and rotation of the stud bolt axis during the sections’ assembly; no tight contact on the support surfaces of the section brackets. All this led to a discrepancy between the actual design of the stud bolt, the appearance of additional forces and the destruction of the stud bolt.

  6. Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica–Głogów Copper District

    Directory of Open Access Journals (Sweden)

    Skrzypkowski Krzysztof

    2017-09-01

    Full Text Available In the underground mines of the Legnica–Głogów Copper District (LGOM the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department “Polkowice–Sieroszowice” in the years 2010–2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation.

  7. Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Hyun; Oh, Won Deok

    2005-01-01

    The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants

  8. Nuclear friction and chaotic motion

    International Nuclear Information System (INIS)

    Srokowski, T.; Szczurek, A.; Drozdz, S.

    1990-01-01

    The concept of nuclear friction is considered from the point of view of regular versus chaotic motion in an atomic nucleus. Using a realistic nuclear Hamiltonian it is explicitly shown that the frictional description of the gross features of nuclear collisions is adequate if the system behaves chaotically. Because of the core in the Hamiltonian, the three-body nuclear system already reveals a structure of the phase space rich enough for this concept to be applicable

  9. Slipforming - Materials effect on friction

    OpenAIRE

    Busterud, Jørgen Thomasgaard

    2016-01-01

    Master's thesis in Structural engineering Slipforming is a construction method for concrete and it is especially suited for tall constructions with simple geometry. This method have occasionally caused lifting cracks and other surface damages, due to the friction between the slipform panel and the concrete has become to high. The thesis will look at how the choice of material composition in concrete mixes in the combination of a given slipform rate would affect the friction between the ...

  10. Slow rupture of frictional interfaces

    OpenAIRE

    Sinai, Yohai Bar; Brener, Efim A.; Bouchbinder, Eran

    2011-01-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not comple...

  11. Labor Supply and Optimization Frictions

    DEFF Research Database (Denmark)

    Søgaard, Jakob Egholt

    In this paper I investigate the nature of optimization frictions by studying the labor market of Danish students. This particular labor market is an interesting case study as it features a range of special institutional settings that affect students’ incentive to earn income and comparing outcomes...... theory. More concretely I find the dominate optimization friction to be individuals’ inattention about their earnings during the year, while real adjustment cost and gradual learning appears to be of less importance....

  12. Response of garlic (Allium sativum L. bolting and bulbing to temperature and photoperiod treatments

    Directory of Open Access Journals (Sweden)

    Cuinan Wu

    2016-04-01

    Full Text Available This research was conducted to evaluate the effect of temperature and photoperiod treatments on the bolting and bulb formation of three local garlic cultivars (cvs in two consecutive years. Naturally vernalized plants of cvs G107, G025 and G064 were transplanted into growth chambers and subjected to various combinations of temperature [T15/10, 15°C/10°C; T20/15, 20°C/15°C and T25/18, 25°C/18°C (day/night] and photoperiod (L8, 8 h and L14,14 h treatments. Plant growth, endogenous phytohormone and methyl jasmonate (MeJA levels, along with the bolting and yield of garlic were evaluated. The experimental results from two consecutive years indicated that higher temperature (20°C or 25°C and longer photoperiod (14 h treatments significantly enhanced the garlic bolting, bulbing and cloving with a shorter growth period and a higher bulb weight. Moreover, the endogenous phytohormone and MeJA levels in the test plants were significantly increased by the higher temperature (25°C for the phytohormone level; 20°C for the MeJA level and longer photoperiod [14 h, except for abscisic acid (ABA, which had the highest level at 8 h] conditions and were decreased by the lowest test temperature (15°C and shorter photoperiod (8 h, except for ABA conditions. This response coincided with that of the bulbing index, bolting rate, growth period and bulb weight. In addition, plants treated under the conditions of 20°C/15°C–14 h and 25°C/18°C–14 h produced the highest phytohormone levels (except for ABA for cvs G025 and G064, respectively, and showed the best bolting and bulbing behavior. It is reasonable to assume that endogenous phytohormone (especially gibberellic acid and MeJA levels are highly related to garlic bolting and bulbing, which might lead to the different responses of the three studied cultivars to the combination of temperature and photoperiod treatments. Furthermore, cvs G107 and G025 bolt well and have better bulb

  13. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  14. Comportamiento mecánico de las juntas tipo T-bolt en materiales compuestos gruesos

    OpenAIRE

    Martínez Moll, Víctor

    2003-01-01

    En aquest treball s'ha realitzat una anàlisi de la junta T-bolt aplicada a la unió de laminats gruixuts amb elements metàl·lics. Més concretament, l'estudi es centra en el tipus de juntes T-bolt emprades en la unió entre les pales i la boixa de grans aerogeneradors, que constitueix una de les principals aplicacions d'aquest tipus de junta.En primer lloc, s'ha realitzat una anàlisi simplificada dels factors que influeixen al comportament de la junta, a partir del qual es justifica la necessit...

  15. Ultrasonic measurement on RPV stud-bolt loading under hot transient of Qinshan NPP

    International Nuclear Information System (INIS)

    Qu Jiadi; Dou Yikang; Zhu Shiming; Lu Jie; Wang Yingguan

    1994-01-01

    It is a continuation of research work for sealing analysis and tests on the PRV of PWR. It expounds that the key of solving thermal transient sealing problem lies in giving the thermal increment of stud-bolt fatigue life and transient loading spectrum for vessel analysis. The authors recounted the fundamental works and main results of ultrasonic measurement on RPV stud-bolt loading on the reactor of Qinshan Nuclear Power Plant. The measuring capability exceeds 1 m length and 300 degree C temperature. Therefore, it is possible to be used in the field of NPP

  16. Usage of prestressed vertical bolts for retrofitting flat slabs damaged due to punching shear

    Directory of Open Access Journals (Sweden)

    Hamed S. Askar

    2015-09-01

    An experimental investigation with the objective of retrofitting flat slabs damaged due to punching shear using prestressed vertical bolts is presented in this paper. The parameters examined in this study are vertical prestressed bolts with different ratios within the slab thickness, slab thickness and central column size. Through the experimental tests the load carrying capacity, deformation characteristics and the cracking behavior have been investigated. A comparison between the behavior of retrofitted slabs and their references showed that the proposed system of repair is effective and could be used in practice. A comparison between the experimental results and calculated punching failure load based on the formulas adopted by different codes, showed a reasonable agreement.

  17. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    Science.gov (United States)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  18. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed. These s......This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed...

  19. Theoretical Calculation and Analysis on the Composite Rock-Bolt Bearing Structure in Burst-Prone Ground

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2015-01-01

    Full Text Available Given the increase in mining depth and intensity, tunnel failure as a result of rock burst has become an important issue in the field of mining engineering in China. Based on the Composite Rock-Bolt Bearing Structure, which is formed due to the interaction of the bolts driven into the surrounding rock, this paper analyzes a rock burst prevention mechanism, establishes a mechanical model in burst-prone ground, deduces the strength calculation formula of the Composite Rock-Bolt Bearing Structure in burst-prone ground, and confirms the rock burst prevention criterion of the Composite Rock-Bolt Bearing Structure. According to the rock burst prevention criterion, the amount of the influence on rock burst prevention ability from the surrounding rock parameters and bolt support parameters is discussed.

  20. Modeling Friction in Modelica with the Lund-Grenoble Friction Model

    OpenAIRE

    Aberger, Martin; Otter, Martin

    2002-01-01

    The properties of the Lund-Grenoble friction model are summarized and different types of friction elements - bearing friction, clutch, one-way clutch, are implemented in Modelica using this friction formulation. The dynamic properties of these components are determined in simulations and compared with the friction models available in the Modelica standard library. This includes also an automatic gearbox model where 6 friction elements are coupled dynamically.

  1. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  2. Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Tatiana M. Pizzato

    2014-07-01

    Full Text Available BACKGROUND: Grip strength is used to infer functional status in several pathological conditions, and the hand dynamometer has been used to estimate performance in other areas. However, this relationship is controversial in neuromuscular diseases and studies with the bulb dynamometer comparing healthy children and children with Duchenne Muscular Dystrophy (DMD are limited. OBJECTIVE: The evolution of grip strength and the magnitude of weakness were examined in boys with DMD compared to healthy boys. The functional data of the DMD boys were correlated with grip strength. METHOD: Grip strength was recorded in 18 ambulant boys with DMD (Duchenne Group, DG aged 4 to 13 years (mean 7.4±2.1 and 150 healthy volunteers (Control Group, CG age-matched using a bulb dynamometer (North Coast- NC70154. The follow-up of the DG was 6 to 33 months (3-12 sessions, and functional performance was verified using the Vignos scale. RESULTS: There was no difference between grip strength obtained by the dominant and non-dominant side for both groups. Grip strength increased in the CG with chronological age while the DG remained stable or decreased. The comparison between groups showed significant difference in grip strength, with CG values higher than DG values (confidence interval of 95%. In summary, there was an increment in the differences between the groups with increasing age. Participants with 24 months or more of follow-up showed a progression of weakness as well as maintained Vignos scores. CONCLUSIONS: The amplitude of weakness increased with age in the DG. The bulb dynamometer detected the progression of muscular weakness. Functional performance remained virtually unchanged in spite of the increase in weakness.

  3. Inertial torque during reaching directly impacts grip-force adaptation to weightless objects.

    Science.gov (United States)

    Giard, T; Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2015-11-01

    A hallmark of movement control expressed by healthy humans is the ability to gradually improve motor performance through learning. In the context of object manipulation, previous work has shown that the presence of a torque load has a direct impact on grip-force control, characterized by a significantly slower grip-force adjustment across lifting movements. The origin of this slower adaptation rate remains unclear. On the one hand, information about tangential constraints during stationary holding may be difficult to extract in the presence of a torque. On the other hand, inertial torque experienced during movement may also potentially disrupt the grip-force adjustments, as the dynamical constraints clearly differ from the situation when no torque load is present. To address the influence of inertial torque loads, we instructed healthy adults to perform visually guided reaching movements in weightlessness while holding an unbalanced object relative to the grip axis. Weightlessness offered the possibility to remove gravitational constraints and isolate the effect of movement-related feedback on grip force adjustments. Grip-force adaptation rates were compared with a control group who manipulated a balanced object without any torque load and also in weightlessness. Our results clearly show that grip-force adaptation in the presence of a torque load is significantly slower, which suggests that the presence of torque loads experienced during movement may alter our internal estimates of how much force is required to hold an unbalanced object stable. This observation may explain why grasping objects around the expected location of the center of mass is such an important component of planning and control of manipulation tasks.

  4. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  5. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  6. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  7. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2008-01-01

    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  8. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  9. Residual Strength of Glued-in Bolts After 9 Years In Situ Loading

    DEFF Research Database (Denmark)

    Pedersen, Martin Bo Uhre; Clorius, Christian Odin; Damkilde, Lars

    1996-01-01

    In 1993 one of the wooden blades of the Nibe-B windmill was struck by lightning and subsequently demounted after 9 years of use. The mishap offered a unique opportunity to investigate the residual strength of the 28 glued-in bolts used to form the blade to rotor hub connection.The test method...

  10. A Study of the Bolt Connection System for a Concrete Barrier of a Modular Bridge

    Directory of Open Access Journals (Sweden)

    Doo-Yong Cho

    2018-04-01

    Full Text Available Modular technology has been recently studied to reduce the construction periods in the field of bridge construction. However, this method is restricted to the pier, girder, and deck, which are the main members of a bridge, and incidental facilities such as concrete barriers have been rarely studied. Thus, in this study, the connection system of a concrete barrier for modular bridges was developed, and a static loading experiment was performed to verify the structural capacity of the proposed system. The variables of the experiment were the vertical and horizontal bolt connections and the construction method. The barrier and plate were fabricated using match casting methods in which nuts were first inserted into the plates rather than anchor bolts using the conservative method. Moreover, a comparison with the conventional in situ barrier was also performed. The experiments were conducted according to the AASHTO LRFD standard. Consequently, the specimen using the vertical bolt connection had a structural capacity that was equal to 85% of that of the conventional specimen and exhibited similar crack patterns compared with the conventional specimen. In the case of the horizontal bolt connection, the separation in the connection area occurred with the application of the initial load and this specimen exhibited a poor performance because of the increase in the separation distance with the application of the maximum load.

  11. Pull-out test of stud bolts embedded in concrete under an in-plane force

    International Nuclear Information System (INIS)

    Inada, Y.; Saito, H.; Torita, H.; Takiguchi, K.; Ibe, Y.; Taira, T.

    1995-01-01

    There are many steel plates with stud bolts embedded in the R C walls of a nuclear reactor building to support equipment and piping. Under a earthquake, the steel plates are submitted to an out-of-plane force due to the inertia force acting upon equipment and piping. Furthermore, the walls are submitted to an in-plane force, and cracks may occur. A large number of experimental studies have been carried out on the pull-out strength of stud bolts embedded in concrete. Few studies have been performed to understand the strength of stud bolts embedded in concrete under an in-plane force and, further, not any one on the strength for concrete under in-plane force simultaneously to stud bolts under out-of-plane force. This paper describes a test performed to understand the pull-out strength determined by this interaction of in-plane and out-of-plane forces. (author). 5 refs., 9 figs., 5 tabs

  12. Review and synthesis of stress intensity factor solutions applicable to cracks in bolts

    International Nuclear Information System (INIS)

    James, L.A.; Mills, W.J.

    1988-01-01

    The available literature for stress intensity factor solutions for cracks in round bars, both threaded and unthreaded, subjected to either tension or bending, is reviewed. The results are synthesized into a form that is appropriate for the analysis of bolts and studs. (author)

  13. Seismic Properties of Moment-resisting Timber Joints with a Combination of Bolts and Nails

    Directory of Open Access Journals (Sweden)

    Awaludin A.

    2011-01-01

    Full Text Available Improvement of cyclic or dynamic performance of timber connections has been intensively conducted since the overall response of wooden structures is merely a function of joint performance. For a bolted joint, filling the lead-hole clearance with epoxy resin or gluing high embedding-strength materials at the interface of the individual timber member are probably the most common methods. This study presents cyclic test results of moment-resisting joints with a combination of bolts and nails. The nails were placed closer to the joint centroid than the bolts, acting as additional fasteners and were expected to improve the seismic performance of the joints. Static-cyclic test results confirmed the increase of joint stiffness and moment resistance due to the additional nails. The nails contribute to the increase of hysteretic damping significantly though pinching behavior or narrowing the hysteresis loops close to zero rotation points was still observed. The results indicated that contribution of nails or bolts on moment resistance and hysteretic damping can be superimposed.

  14. 77 FR 32698 - Proposed Extension of Existing Information Collection; Safety Standards for Roof Bolts in Metal...

    Science.gov (United States)

    2012-06-01

    ... are used to prevent the fall of roof, face, and rib. Advancements in technology of roof and rock bolts... information technology (e.g., permitting electronic submissions of responses), to minimize the burden of the...-0121. Affected Public: Business or other for-profit. Cite/Reference/Form/ etc. 30 CFR 56.3203, 57.3203...

  15. The baffle-barrel-bolting analysis program: evolution and technical accomplishments

    International Nuclear Information System (INIS)

    Schwirian, R.E.; Forsyth, D.R.; Snyder, M.D.; Bhandari, D.R.; Barsic, J.A.; Rabenstein, W.D.

    2001-01-01

    In Westinghouse pressurized water reactors (PWR) the reactor core is surrounded by baffle plates, which provide lateral restraint for the fuel assemblies at the core boundary. Baffle plates are attached to horizontal supports called former plates by baffle-former bolts. The formers are attached to the core barrel which also provides vertical support for the core. The B3 analysis program addresses the possibility of reduced baffle-former bolting in Westinghouse U.S. domestic plant designs with respect to the relevant design criteria. Since safety is the overriding motivation for the program, faulted events have received the most in-depth attention. This focus has been reinforced by the fact that the loads produced by the loss-of-coolant-accident (LOCA) have usually been the most limiting of all those considered. Consequently, much of the presentation below deals with the development of analysis techniques and acceptance criteria to demonstrate that LOCA-induced loads on the bolts and the fuel assemblies will be acceptable with significantly reduced baffle-former bolting. A discussion of the other faulted, normal, and upset analyses performed as part of the program will also be presented. (author)

  16. 3D finite element analysis of tightening process of bolt and nut connections with pitch difference

    Science.gov (United States)

    Liu, X.; Noda, N.-A.; Sano, Y.; Huang, Y. T.; Takase, Y.

    2018-06-01

    In a wide industrial field, the bolt-nut joint is unitized as an important machine element and anti-loosening performance is always required. In this paper, the effect of a slight pitch difference between a bolt and nut is studied. Firstly, by varying the pitch difference, the prevailing torque required for the nut rotation, before the nut touches the clamped body, is measured experimentally. Secondly, the tightening torque is determined as a function of the axial force of the bolt after the nut touches the clamped body. The results show that a large value of pitch difference may provide large prevailing torque that causes an anti-loosening effect although a very large pitch difference may deteriorate the bolt axial force under a certain tightening torque. Thirdly, a suitable pitch difference is determined taking into account the anti-loosening and clamping abilities. Furthermore, the chamfered corners at nut ends are considered, and it is found that the 3D finite element analysis with considering the chamfered nut threads has a good agreement with the experimental observation. Finally, the most desirable pitch difference required for improving anti-loosening is proposed.

  17. Mechanical tests of the bolt of the gripper latch on the control rod cluster

    International Nuclear Information System (INIS)

    Lemaire, E.; Couet, D.; Molinie, D.; Grandjean, Y.; Radat, M.P.; Guttmann, D.

    1998-01-01

    Failure analysis and mechanical testing indicate that control rod drive mechanisms malfunctioning by 1995-96 is due to rupture by fatigue of a bolt inside the stationary gripper assembly. Fatigue is enhanced by free working following surface adaptation and unscrewing of the assembly. These results are taken into account for the choice of a new anti-rotation device. (authors)

  18. Special requirements for bolting material for nuclear and other special applications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A specification that provides special requirements for bolting material for use in nuclear and other special applications is presented. The requirements of the specification are supplemental to the requirements of the basic material specifications and they include tempering, welding, elimination of surface defects, certification and identification, quality assurance and various examination methods

  19. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  20. Studying hand grip strength development among students who have taken tennis and massage courses

    Directory of Open Access Journals (Sweden)

    Erzeybek Mustafa Said

    2017-01-01

    Full Text Available In this study, the finger and hand force developments of the students who have taken selective/applied Tennis and Massage courses at the University have been examined. From the students of the Department of Physical Education and Sport, 19 healthy females and 73 healthy males (age = 21.25 ± 1.55 years (average ± SD who have taken selective Tennis courses;51 healthy males (age = 22.00 ± 1.04 years (average ± SD who have taken Massage courses; and as the control group,16 healthy womenand50 healthy males(age = 21.72 ± 1.47 years (average ± SD have been participated to the study. The age, length, body weight, grip strength of both hands as well as the finger grip strength of the subjects have been recorded. The course schedule has been set as once a week four hours practice for both tennis and massage. Two weeks of the education and training program that takes twelve weeks in total were assigned for theoretical classes. The remaining period of ten weeks was for practice classes and the measurements were performed before and after this ten weeks period. The hand grip strength measurement has been carried out with a Takkei branded hand dynamometer whereas for the measurement of the finger grip strength, a Baseline branded pinch meter has been used. For both the pre-test and final test of the finger grip and hand grip strength measurements, the paired sample t test has been used in terms of in-group comparisons, whereas for the inter-group comparisons, one-way ANOVA has been used. For the significant F values, post hoc Tukey test has been used. The right hand and the left hand grip values of both test groups as well as the values of the control group have been significantly increased between the pre-test and final test. Particularly, preferring the exercises that improve the hand and finger grip strengths would enable a better racket handle grip as well as an improved shot efficiency for tennis. This would also enable masseurs/masseuses to apply

  1. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  2. Association between grip strength and hand and knee radiographic osteoarthritis in Korean adults: Data from the Dong-gu study.

    Directory of Open Access Journals (Sweden)

    Lihui Wen

    Full Text Available We assessed whether grip strength was related to various types of radiographic damage in Korean adults with osteoarthritis (OA.Data from 2,251 subjects enrolled in the Dong-gu study, who had no hand joint pain, were analyzed to investigate the relationship between grip strength and OA. Hand grip strength was measured using a hand-held dynamometer, and radiographs of the hand and knee were scored according to a semi-quantitative grading system. Multiple linear regressions were used to explore associations between grip strength and radiographic features of OA.Grip strength in men and women was negatively related to hand (both p < 0.001 and knee (men, p < 0.001; women, p = 0.010 OA after adjusting for confounders. Hand (men, p < 0.001; women, p = 0.001 and knee (both p < 0.001 joint space narrowing (JSN showed the strongest associations with low grip strength, regardless of gender. Moreover, the severity of hand osteophytes in women (p = 0.001, and subchondral cysts (men, p < 0.001 was correlated with low grip strength in both genders.Among subjects without hand joint pain, low grip strength was associated significantly with hand and knee radiographic OA, regardless of gender. Among all types of OA radiographic damage, low grip strength showed the strongest association with JSN.

  3. The brain adjusts grip forces differently according to gravity and inertia: a parabolic flight experiment

    Directory of Open Access Journals (Sweden)

    Olivier eWhite

    2015-02-01

    Full Text Available In everyday life, one of the most frequent activities involves accelerating and decelerating an object held in precision grip. In many contexts, humans scale and synchronize their grip force, normal to the finger/object contact, in anticipation of the expected tangential load force, resulting from the combination of the gravitational and the inertial forces. In many contexts, grip force and load force are linearly coupled. A few studies have examined how we adjust the parameters - gain and offset - of this linear relationship. However, the question remains open as to how the brain adjusts grip force regardless of whether load force is generated by different combinations of weight and inertia. Here, we designed conditions to generate equivalent magnitudes of load force by independently varying mass and movement frequency. In a control experiment, we directly manipulated gravity in parabolic flights, while other factors remained constant. We show with a simple computational approach that, to adjust grip force, the brain is sensitive to how load forces are produced at the fingertips. This provides clear evidence that the analysis of the origin of load force is performed centrally, and not only at the periphery.

  4. Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis

    Science.gov (United States)

    Schaefer, Sydney Y.; DeJong, Stacey L.; Cherry, Kendra M.; Lang, Catherine E.

    2011-01-01

    This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment. PMID:22357103

  5. Probabilistic information on object weight shapes force dynamics in a grip-lift task.

    Science.gov (United States)

    Trampenau, Leif; Kuhtz-Buschbeck, Johann P; van Eimeren, Thilo

    2015-06-01

    Advance information, such as object weight, size and texture, modifies predictive scaling of grip forces in a grip-lift task. Here, we examined the influence of probabilistic advance information about object weight. Fifteen healthy volunteers repeatedly grasped and lifted an object equipped with a force transducer between their thumb and index finger. Three clearly distinguishable object weights were used. Prior to each lift, the probabilities for the three object weights were given by a visual cue. We examined the effect of probabilistic pre-cues on grip and lift force dynamics. We expected predictive scaling of grip force parameters to follow predicted values calculated according to probabilistic contingencies of the cues. We observed that probabilistic cues systematically influenced peak grip and load force rates, as an index of predictive motor scaling. However, the effects of probabilistic cues on force rates were nonlinear, and anticipatory adaptations of the motor output generally seemed to overestimate high probabilities and underestimate low probabilities. These findings support the suggestion that anticipatory adaptations and force scaling of the motor system can integrate probabilistic information. However, probabilistic information seems to influence motor programs in a nonlinear fashion.

  6. Attentional Focus and Grip Width Influences on Bench Press Resistance Training.

    Science.gov (United States)

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, JuanCarlos; Andersen, Lars L

    2018-04-01

    This study evaluated the influence of different attentional foci for varied grip widths in the bench press. Eighteen resistance-trained men were familiarized with the procedure and performed a one-repetition maximum (1RM) test during Session 1. In Session 2, they used three different standardized grip widths (100%, 150%, and 200% of biacromial width distance) in random order at 50% of 1RM while also engaged in three different attention focus conditions (external focus on the bench press, internal focus on pectoralis major muscles, and internal focus on triceps brachii muscles). Surface electromyography (EMG) signals were recorded from the triceps brachii and pectoralis major, and peak EMG of the filtered signals were normalized to maximum EMG of each muscle. Both grip width and focus influenced the muscle activity level, but there were no significant interactions between these variables. Exploratory analyses suggested that an internal focus may slightly (4%-6%) increase pectoralis major activity at wider grip widths and triceps brachii activity at narrower grip widths, but this should be confirmed or rejected in a study with a larger sample size or through a meta-analysis of research to date.

  7. Identification of dynapenia in older adults through the use of grip strength t-scores.

    Science.gov (United States)

    Bohannon, Richard W; Magasi, Susan

    2015-01-01

    The aim of this study was to generate reference values and t-scores (1.0-2.5 standard deviations below average) for grip strength for healthy young adults and to examine the utility of t-scores from this group for the identification of dynapenia in older adults. Our investigation was a population-based, general community secondary analysis of cross-sectional grip strength data utilizing the NIH Toolbox Assessment norming sample. Participants consisted of community-dwelling adults, with age ranges of 20-40 years (n = 558) and 60-85 years (n = 390). The main outcome measure was grip strength using a Jamar plus dynamometer. Maximum grip strengths were consistent over the 20-40-year age group [men 108.0 (SD 22.6) pounds, women 65.8 (SD 14.6) pounds]. Comparison of older group grip strengths to those of the younger reference group revealed (depending on age strata) that 46.2-87.1% of older men and 50.0-82.4% of older women could be designated as dynapenic on the basis of t-scores. The use of reference value t-scores from younger adults is a promising method for determining dynapenia in older adults. © 2014 Wiley Periodicals, Inc.

  8. Improved bolt models for use in global analyses of storage and transportation casks subject to extra-regulatory loading

    International Nuclear Information System (INIS)

    Kalan, R.J.; Ammerman, D.J.; Gwinn, K.W.

    2004-01-01

    Transportation and storage casks subjected to extra-regulatory loadings may experience large stresses and strains in key structural components. One of the areas susceptible to these large stresses and strains is the bolted joint retaining any closure lid on an overpack or a canister. Modeling this joint accurately is necessary in evaluating the performance of the cask under extreme loading conditions. However, developing detailed models of a bolt in a large cask finite element model can dramatically increase the computational time, making the analysis prohibitive. Sandia National Laboratories used a series of calibrated, detailed, bolt finite element sub-models to develop a modified-beam bolt-model in order to examine the response of a storage cask and closure to severe accident loadings. The initial sub-models were calibrated for tension and shear loading using test data for large diameter bolts. Next, using the calibrated test model, sub-models of the actual joints were developed to obtain force-displacement curves and failure points for the bolted joint. These functions were used to develop a modified beam element representation of the bolted joint, which could be incorporated into the larger cask finite element model. This paper will address the modeling and assumptions used for the development of the initial calibration models, the joint sub-models and the modified beam model

  9. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method

    Directory of Open Access Journals (Sweden)

    Heyue Yin

    2016-10-01

    Full Text Available Piezoceramic based active sensing methods have been researched to monitor preload on bolt connections. However, there is a saturation problem involved with this type of method. The transmitted energy is sometimes saturated before the maximum preload which is due to it coming into contact with flat surfaces. When it comes to flat contact surfaces, the true contact area will easily saturate with the preload. The design of a new type of bolt looseness monitoring sensor, a smart washer, is to mitigate the saturation problem. The smart washer is composed of two annular disks with contact surfaces that are machined into convex and concave respectively, to eliminate the complete flat contact surfaces and to reduce the saturation effect. One piezoelectric patch is bonded on the non-contact surface of each annular disk. These two mating annular disks form a smart washer. One of the two piezoelectric patches serves as an actuator to generate an ultrasonic wave that propagates through the contact surface; the other one serves as a sensor to detect the propagated waves. The wave energy propagated through the contact surface is proportional to the true contact area which is determined by the bolt preload. The time reversal method is used to extract the peak of the focused signal as the index of the transmission wave energy; then, the relationship between the signal peak and bolt preload is obtained. Experimental results show that the focused signal peak value changes with the bolt preload and presents an approximate linear relationship when the saturation problem is experienced. The proposed smart washer can monitor the full range of the rated preload.

  10. Analytical Investigation of the Cyclic Behavior of Smart Recentering T-Stub Components with Superelastic SMA Bolts

    Directory of Open Access Journals (Sweden)

    Junwon Seo

    2017-09-01

    Full Text Available Partially restrained (PR bolted T-stub connections have been widely used in replacement of established fully restrained (FR welded connections, which are susceptible to sudden brittle failure. These bolted T-stub connections can permit deformation, easily exceeding the allowable limit without any fracture because they are constructed with a design philosophy whereby the plastic deformation concentrates on bolt fasteners made of ductile steel materials. Thus, the PR bolted connections take advantage of excellent energy dissipation capacity in their moment and rotation behavior. However, a considerable amount of residual deformation may occur at the bolted connection subjected to excessive plastic deformation, thereby requiring additional costs to recover the original configuration. In this study, superelastic shape memory alloy (SMA bolts, which have a recentering capability upon unloading, are fabricated so as to solve these drawbacks, and utilized by replacing conventional steel bolts in the PR bolted T-stub connection. Instead of the full-scale T-stub connection, simplified T-stub components subjected to axial force are designed on the basis of a basic equilibrium theory that transfers the bending moment from the beam to the column and can be converted into equivalent couple forces acting on the beam flange. The feasible failure modes followed by corresponding response mechanisms are taken into consideration for component design with superelastic SMA bolts. The inelastic behaviors of such T-stub components under cyclic loading are simulated by advanced three-dimensional (3D finite element (FE analysis. Finally, this study suggests an optimal design for smart recentering T-stub components with respect to recentering and energy dissipation after observing the FE analysis results.

  11. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  12. Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates

    Science.gov (United States)

    Feix, Thomas; Kivell, Tracy L.; Pouydebat, Emmanuelle; Dollar, Aaron M.

    2015-01-01

    Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb–index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. PMID:25878134

  13. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  14. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. An asbestos free friction material composite for brake linings is synthesized containing fibrous re- inforcing ... every manufacturer of automotive friction materials uses phenolics as ... The resin binder is a critical compo- nent. The limits ...

  15. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    Directionality of grinding marks influences the coefficient of friction ... Menezes et al (2006a,b) studied the effect of roughness parameters and grinding angle on ... as coefficient of friction, sliding velocity, normal load, hardness and thermal.

  16. Getting a grip: different actions and visual guidance of the thumb and finger in precision grasping.

    Science.gov (United States)

    Melmoth, Dean R; Grant, Simon

    2012-10-01

    We manipulated the visual information available for grasping to examine what is visually guided when subjects get a precision grip on a common class of object (upright cylinders). In Experiment 1, objects (2 sizes) were placed at different eccentricities to vary the relative proximity to the participant's (n = 6) body of their thumb and finger contact positions in the final grip orientations, with vision available throughout or only for movement programming. Thumb trajectories were straighter and less variable than finger paths, and the thumb normally made initial contact with the objects at a relatively invariant landing site, but consistent thumb first-contacts were disrupted without visual guidance. Finger deviations were more affected by the object's properties and increased when vision was unavailable after movement onset. In Experiment 2, participants (n = 12) grasped 'glow-in-the-dark' objects wearing different luminous gloves in which the whole hand was visible or the thumb or the index finger was selectively occluded. Grip closure times were prolonged and thumb first-contacts disrupted when subjects could not see their thumb, whereas occluding the finger resulted in wider grips at contact because this digit remained distant from the object. Results were together consistent with visual feedback guiding the thumb in the period just prior to contacting the object, with the finger more involved in opening the grip and avoiding collision with the opposite contact surface. As people can overtly fixate only one object contact point at a time, we suggest that selecting one digit for online guidance represents an optimal strategy for initial grip placement. Other grasping tasks, in which the finger appears to be used for this purpose, are discussed.

  17. The handyman's brain: a neuroimaging meta-analysis describing the similarities and differences between grip type and pattern in humans.

    Science.gov (United States)

    King, M; Rauch, H G; Stein, D J; Brooks, S J

    2014-11-15

    Handgrip is a ubiquitous human movement that was critical in our evolution. However, the differences in brain activity between grip type (i.e. power or precision) and pattern (i.e. dynamic or static) are not fully understood. In order to address this, we performed Activation Likelihood Estimation (ALE) analysis between grip type and grip pattern using functional magnetic resonance imaging (fMRI) data. ALE provides a probabilistic summary of the BOLD response in hundreds of subjects, which is often beyond the scope of a single fMRI experiment. We collected data from 28 functional magnetic resonance data sets, which included a total of 398 male and female subjects. Using ALE, we analyzed the BOLD response during power, precision, static and dynamic grip in a range of forces and age in right handed healthy individuals without physical impairment, cardiovascular or neurological dysfunction using a variety of grip tools, feedback and experimental training. Power grip generates unique activation in the postcentral gyrus (areas 1 and 3b) and precision grip generates unique activation in the supplementary motor area (SMA, area 6) and precentral gyrus (area 4a). Dynamic handgrip generates unique activation in the precentral gyrus (area 4p) and SMA (area 6) and of particular interest, both dynamic and static grip share activation in the area 2 of the postcentral gyrus, an area implicated in the evolution of handgrip. According to effect size analysis, precision and dynamic grip generates stronger activity than power and static, respectively. Our study demonstrates specific differences between grip type and pattern. However, there was a large degree of overlap in the pre and postcentral gyrus, SMA and areas of the frontal-parietal-cerebellar network, which indicates that other mechanisms are potentially involved in regulating handgrip. Further, our study provides empirically based regions of interest, which can be downloaded here within, that can be used to more effectively

  18. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  19. Advances on LuGre friction model

    OpenAIRE

    Fuad, Mohammad; Ikhouane, Fayçal

    2013-01-01

    LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

  20. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  1. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  2. Relationship between lung function and grip strength in older hospitalized patients: a pilot study

    Directory of Open Access Journals (Sweden)

    Holmes SJ

    2017-04-01

    Full Text Available Sarah J Holmes,1 Stephen C Allen,2,3 Helen C Roberts4,5 1Medicine and Elderly Care, Hampshire Hospitals NHS Foundation Trust, Winchester, 2Medicine and Geriatrics, The Royal Bournemouth Hospital and Christchurch Hospitals NHS Foundation Trust, Bournemouth, 3Centre of Postgraduate Medical Research and Education, Bournemouth University, Poole, 4Academic Geriatric Medicine, University of Southampton, 5University Hospital Southampton NHS Foundation Trust, Southampton, UK Objective: Older people with reduced respiratory muscle strength may be misclassified as having COPD on the basis of spirometric results. We aimed to evaluate the relationship between lung function and grip strength in older hospitalized patients without known airways disease.Methods: Patients in acute medical wards were recruited who were aged ≥70 years; no history, symptoms, or signs of respiratory disease; Mini Mental State Examination ≥24; willing and able to consent to participate; and able to perform hand grip and forced spirometry. Data including lung function (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], FEV1/FVC, peak expiratory flow rate [PEFR], and slow vital capacity [SVC], grip strength, age, weight, and height were recorded. Data were analyzed using descriptive statistics and linear regression unadjusted and adjusted (for age, height, and weight.Results: A total of 50 patients (20 men were recruited. Stronger grip strength in men was significantly associated with greater FEV1, but this was attenuated by adjustment for age, height, and weight. Significant positive associations were found in women between grip strength and both PEFR and SVC, both of which remained robust to adjustment.Conclusion: The association between grip strength and PEFR and SVC may reflect stronger patients generating higher intrathoracic pressure at the start of spirometry and pushing harder against thoracic cage recoil at end-expiration. Conversely, patients with

  3. Development of Hand Grip Assistive Device Control System for Old People through Electromyography (EMG) Signal Acquisitions

    OpenAIRE

    Khamis Herman; Mohamaddan Shahrol; Komeda Takashi; Alias Aidil Azli; Tanjong Shirley Jonathan; Julai Norhuzaimin; Hashim Nurul ‘Izzati

    2017-01-01

    The hand grip assistive device is a glove to assist old people who suffer from hand weakness in their daily life activities. The device earlier control system only use simple on and off switch. This required old people to use both hand to activate the device. The new control system of the hand grip assistive device was developed to allow single hand operation for old people. New control system take advantages of electromyography (EMG) and flex sensor which was implemented to the device. It wa...

  4. Direct observation of salts as micro-inclusions in the Greenland GRIP ice core

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Sakurai, Toshimitsu; Iizuka, Yoshinori

    2009-01-01

    We provide the first direct evidence that a number of water-soluble compounds, in particular calcium sulfate (CaSO4·2H2O) and calcium carbonate (CaCO3), are present as solid, micron-sized inclusions within the Greenland GRIP ice core. The compounds are detected by two independent methods: micro...... distributions of the micro-inclusions. These results suggest that water-soluble aerosols in the GRIP ice core are dependable proxies for past atmospheric conditions. Udgivelsesdato: December...

  5. Friction and dissipative phenomena in quantum mechanics

    International Nuclear Information System (INIS)

    Kostin, M.D.

    1975-01-01

    Frictional and dissipative terms of the Schroedinger equation are studied. A proof is given showing that the frictional term of the Schroedinger--Langevin equation causes the quantum system to lose energy. General expressions are derived for the frictional term of the Schroedinger equation. (U.S.)

  6. Adaptive friction compensation: a globally stable approach

    NARCIS (Netherlands)

    Verbert, K.A.; Tóth, R.; Babuska, R.

    2016-01-01

    In this paper, an adaptive friction compensation scheme is proposed. The friction force is computed as a timevarying friction coefficient multiplied by the sign of the velocity and an on-line update law is designed to estimate this coefficient based on the actual position and velocity errors.

  7. Multiscale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  8. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  9. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to ...

  10. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively i...

  11. Improved Coulomb-Friction Damper

    Science.gov (United States)

    Campbell, G. E.

    1985-01-01

    Equal damping provided on forward and reverse strokes. Improved damper has springs and wedge rings symmetrically placed on both ends of piston wedge, so friction force same in both directions of travel. Unlike conventional automotive shock absorbers, they resemble on outside, both versions require no viscous liquid and operate over wide temperature range.

  12. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  13. Information frictions and monetary policy

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    2012-01-01

    Roč. 6, č. 1 (2012), s. 7-24 ISSN 1802-792X Institutional support: RVO:67985998 Keywords : nominal rigidity * information frictions * monetary economics Subject RIV: AH - Economics http://www.vsfs.cz/periodika/acta-2012-01.pdf

  14. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    NARCIS (Netherlands)

    Willems, Sara M.; Wright, D.J.; Day, Felix R.; Trajanoska, Katerina; Joshi, P.K.; Morris, John A.; Matteini, Amy M.; Garton, Fleur C.; Grarup, Niels; Oskolkov, Nikolay; Thalamuthu, Anbupalam; Mangino, Massimo; Liu, Jun; Demirkan, Ayse; Lek, Monkol; Xu, Liwen; Wang, Guan; Oldmeadow, Christopher; Gaulton, Kyle J.; Lotta, Luca A.; Miyamoto-Mikami, Eri; Rivas, Manuel A.; White, Tom; Loh, Po Ru; Aadahl, Mette; Amin, Najaf; Attia, John R.; Austin, Krista; Benyamin, Beben; Brage, Søren; Cheng, Yu Ching; Ciȩszczyk, Paweł; Derave, Wim; Eriksson, Karl Fredrik; Eynon, Nir; Linneberg, Allan; Lucia, Alejandro; Massidda, Myosotis; Mitchell, Braxton D.; Miyachi, Motohiko; Murakami, Haruka; Padmanabhan, Sandosh; Pandey, Ashutosh; Papadimitriou, Ioannis; Rajpal, Deepak K.; Sale, Craig; Schnurr, Theresia M.; Sessa, Francesco; Shrine, Nick; Tobin, Martin D.; Varley, Ian; Wain, Louise V.; Wray, Naomi R.; Lindgren, Cecilia M.; MacArthur, Daniel G.; Waterworth, Dawn M.; McCarthy, Mark I.; Pedersen, Oluf; Khaw, Kay Tee; Kiel, Douglas P.; Pitsiladis, Yannis; Fuku, Noriyuki; Franks, Paul W.; North, Kathryn N.; Duijn, Van C.M.; Mather, Karen A.; Hansen, Torben; Hansson, Ola; Spector, Tim D.; Murabito, Joanne M.; Richards, J.B.; Rivadeneira, Fernando; Langenberg, Claudia; Perry, John R.B.; Wareham, Nick J.; Scott, Robert A.; Oei, Ling; Zheng, Hou Feng; Forgetta, Vincenzo; Leong, Aaron; Ahmad, Omar S.; Laurin, Charles; Mokry, Lauren E.; Ross, Stephanie; Elks, Cathy E.; Bowden, Jack; Warrington, Nicole M.; Murray, Anna; Ruth, Katherine S.; Tsilidis, Konstantinos K.; Medina-Gómez, Carolina; Estrada, Karol; Bis, Joshua C.; Chasman, Daniel I.; Demissie, Serkalem; Enneman, Anke W.; Hsu, Yi Hsiang; Ingvarsson, Thorvaldur; Kähönen, Mika; Kammerer, Candace; Lacroix, Andrea Z.; Li, Guo; Liu, Ching Ti; Liu, Yongmei; Lorentzon, Mattias; Mägi, Reedik; Mihailov, Evelin; Milani, Lili; Moayyeri, Alireza; Nielson, Carrie M.; Sham, Pack Chung; Siggeirsdotir, Kristin; Sigurdsson, Gunnar; Stefansson, Kari; Trompet, Stella; Thorleifsson, Gudmar; Vandenput, Liesbeth; Velde, Van Der Nathalie; Viikari, Jorma; Xiao, Su Mei; Zhao, Jing Hua; Evans, Daniel S.; Cummings, Steven R.; Cauley, Jane; Duncan, Emma L.; Groot, De Lisette C.P.G.M.; Esko, Tonu; Gudnason, Vilmundar; Harris, Tamara B.; Jackson, Rebecca D.; Jukema, J.W.; Ikram, Arfan M.A.; Karasik, David; Kaptoge, Stephen; Kung, Annie Wai Chee; Lehtimäki, Terho; Lyytikäinen, Leo Pekka; Lips, Paul; Luben, Robert; Metspalu, Andres; Meurs, van Joyce B.; Minster, Ryan L.; Orwoll, Erick; Oei, Edwin; Psaty, Bruce M.; Raitakari, Olli T.; Ralston, Stuart W.; Ridker, Paul M.; Robbins, John A.; Smith, Albert V.; Styrkarsdottir, Unnur; Tranah, Gregory J.; Thorstensdottir, Unnur; Uitterlinden, Andre G.; Zmuda, Joseph; Zillikens, M.C.; Ntzani, Evangelia E.; Evangelou, Evangelos; Ioannidis, John P.A.; Evans, David M.; Ohlsson, Claes

    2017-01-01

    Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of

  15. Grip strength and lower limb extension power in 19-72-year-old Danish men and women

    DEFF Research Database (Denmark)

    Aadahl, Mette; Beyer, Nina; Linneberg, Allan

    2011-01-01

    To assess muscular fitness by hand grip strength (HGS) and lower limb extension power (LEP) and to explore associations with age, leisure time physical activity (LTPA) and body composition.......To assess muscular fitness by hand grip strength (HGS) and lower limb extension power (LEP) and to explore associations with age, leisure time physical activity (LTPA) and body composition....

  16. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    DEFF Research Database (Denmark)

    Willems, Sara M; Wright, Daniel J.; Day, Felix R

    2017-01-01

    with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip...... strength and the causal role of muscular strength in age-related morbidities and mortality....

  17. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    DEFF Research Database (Denmark)

    Willems, Sara M.; Wright, Daniel J.; Day, Felix R.

    2017-01-01

    Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 1...

  18. Discussion about effecting of stiffener in four bolts in a row end plate connection for long span and heavy load steel structures in Vietnam

    Science.gov (United States)

    Huong, Khang T.; Nguyen, Cung H.

    2018-04-01

    Nowadays, steel structure industry in Vietnam is in strong development. The construction of steel structure becomes larger span and heavier load. The issue spawned a number of issues arise from optimizing connections. Typical of steel connections in prefabricated steel structure that is an end plate (face plate) bolted connection. When the connection carried a heavy load, then the number of bolts is required much more. Increasing the number of rows bolts will less effective because can still not enough strength requirements, the bolts in row near rotational center will level arm reduction, then it cannot carry heavy loads. The current solution is doing multiple bolts in a row. Current standards such as EN [1], AISC [2] are no specific guidelines for calculating the connection four bolts in a row that primarily assumes the way works like a T-stub of the two bolts a row. Some articles studied T-stub four bolts in a row [3], [4], [5], [6] by component method but it has some components which weren’t considered. In this paper, in order to provide a contribution to improve the T-stub four bolts in a row, the stiffener component in T-stub will be added and compared with T-stub without stiffener by the finite element model to demonstrate effectiveness in reducing stress and displacement of T-stub. It gives ideas for the economic design of four bolts in a row end plate connection in Vietnam for future.

  19. Pressure and Friction Injuries in Primary Care.

    Science.gov (United States)

    Phillips, Shawn; Seiverling, Elizabeth; Silvis, Matthew

    2015-12-01

    Pressure and friction injuries are common throughout the lifespan. A detailed history of the onset and progression of friction and pressure injuries is key to aiding clinicians in determining the underlying mechanism behind the development of the injury. Modifying or removing the forces that are creating pressure or friction is the key to both prevention and healing of these injuries. Proper care of pressure and friction injuries to the skin is important to prevent the development of infection. Patient education on positioning and ergonomics can help to prevent recurrence of pressure and friction injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  1. The development of a methodology to determine the relationship in grip size and pressure to racket head speed in a tennis forehand stroke

    DEFF Research Database (Denmark)

    Christensen, Jonas; Rasmussen, John; Halkon, Ben

    2016-01-01

    and kinematic contribution of the body segments in the upper trunk translational and angular velocities. Two Babolat Pure Storm GT rackets, with grip sizes 2 and 4 respectively, were used with Tekscan 9811E pressure sensors applied to the handles to examine pressure distribution during the stroke. Upper body...... kinematic data taken from the racket arm and trunk were obtained by means of a Vicon motion capture system. One elite male tennis player was recruited. Fifty topspin forehand strokes per grip at two nominal grip pressures were performed in a laboratory environment with balls being tossed towards the player...... joint and wrist joint in KCAV across grip conditions. Grip pressure for grip size 2 showed the same pattern across gripping conditions. From 50-75% of completion in forward swing, the pressure difference due to grip firmness decreased. This feasibility study managed to quantify the KCAV while performing...

  2. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations

    DEFF Research Database (Denmark)

    Madsen, C.A.; Kragh-Poulsen, Jens-Christian; Tage, K.J.

    The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile......--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order...... to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based...

  3. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations

    DEFF Research Database (Denmark)

    Madsen, C.A.; Kragh-Poulsen, Jens-Christian; Tage, K.J.

    2017-01-01

    The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile......--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order...... to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based...

  4. Suicide with two makes of captive-bolt guns (livestock stunners) fired simultaneously to the forehead.

    Science.gov (United States)

    Pircher, Rebecca; Geisenberger, Dorothee; Große Perdekamp, Markus; Neukamm, Merja; Pollak, Stefan; Schmidt, Ulrike; Thierauf-Emberger, Annette

    2017-11-01

    In humans, most fatalities from slaughterer's guns are suicides committed by persons familiar with stunning devices. The great majority of cases accounts for shots to the head, especially the frontal region. Only a small number of two subsequent cranial shots from captive-bolt humane killers have been reported up to now. In the case presented by the authors, a suicide by simultaneous shots to the head fired from two different makes of captive-bolt guns (one of them having two separate outlets for the combustion gases in the muzzle plane, the other type having no additional openings) is described for the first time. One of the shooting devices remained in firm contact with the left hand and produced patterned staining from rust corresponding to the surface relief of the gun. The medicolegal and criminalistic aspects of this unique case are discussed with reference to the pertinent literature.

  5. STAMINA OF A GASKETED BOLTED FLANGED PIPE JOINT UNDER DYNAMIC LOADING

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-11-01

    Full Text Available Gasketed bolted flange joints are the most critical components in pipelines for their sealing and strength under operating conditions. Most of the work available in literature is under static loading, whereas in industry, cyclic loads are applied due to the vibrating machinery such as motors, pumps, sloshing in offshore applications and in the ships etc. In this study a three dimensional finite element analysis of a gasketed joint is carried out using a spiral wound gasket under bolt up and dynamic operating conditions (internal pressure, axial and bending singly and in combination. The cyclic axial loads are concluded relatively more challenging for both the sealing and strength of the joint. Higher magnitudes of loads and frequencies are also observed more challenging to the joints performance.

  6. Failure analysis of the stud bolt of a canned motor pump of heavy water plant, Talcher

    International Nuclear Information System (INIS)

    Kumar, Sunil; Sethumadhavan, V.; Sah, D.N.; Sivaramakrishnan, K.S.; Kain, Vivekanand; Gadiyar, H.S.

    1990-01-01

    Detailed investigations have been carried out on the failed stud bolts (made of DIN 1.4021 X 20Cr 13) of a canned motor pump of Heavy Water Plant, Talcher, using metallographic, microhardness testing, scanning electron microscopy and electron probe micro-analysis(EPMA) techniques. The studs had failed in a brittle manner in the mid-length portion. The origin of the fracture has been identified to be a corroded region on the stud surface. Branching cracks propagating through silicon rich inclusions have been noted. Two types of inclusions, one containing Mn and S and other containing S, Mn and O 2 have been found in the material. Clusters of large and small inclusions of the above types have been found near the origin of the fracture. It has been concluded that the fracture was caused by corrosion fatigue, initiating at the cluster of inclusions present on the surface of the stud bolts. (author). 7 refs., 5 figs

  7. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    Science.gov (United States)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  8. On the performance of Usain Bolt in the 100 m sprint

    Science.gov (United States)

    Hernández Gómez, J. J.; Marquina, V.; Gómez, R. W.

    2013-09-01

    Many university texts on mechanics consider the effect of air drag force, using the slowing down of a parachute as an example. Very few discuss what happens when the drag force is proportional to both u and u2. In this paper we deal with a real problem to illustrate the effect of both terms on the speed of a runner: a theoretical model of the world-record 100 m sprint of Usain Bolt during the 2009 World Championships in Berlin is developed, assuming a drag force proportional to u and to u2. The resulting equation of motion is solved and fitted to the experimental data obtained from the International Association of Athletics Federations, which recorded Bolt's position with a laser velocity guard device. It is worth noting that our model works only for short sprints.

  9. PERL - European research project on characterization of gaskets for bolted flange connections

    International Nuclear Information System (INIS)

    Kockelmann, H.; Hahn, R.

    2004-01-01

    Great progress was observed in the European standardization in the last years in the field of the design of floating type bolted flange connections. New design rules were developed (EN 1591) which include new definitions of gasket characteristics for the calculation of floating type flanged joints. In addition a new gasket testing standard was drafted (prEN 13555) which assures a comprehensive characterization of gaskets for bolted flanged joints. This draft standard contains some new features which were examined and validated within the European research project PERL (Pressure Equipment - Reduction of Leak Rate). The gasket testing strategy laid down in prEN 13555 is presented in this paper. Some testing results highlighten the measuring procedures and the evaluation of the gasket characteristics. (orig.)

  10. Effect of hot dip galvanization on the fatigue strength of steel bolted connections

    Directory of Open Access Journals (Sweden)

    S.M.J. Razavi

    2017-07-01

    Full Text Available Hot dip galvanized steel bolted joints has been tested under fatigue loading to evaluate the effect of galvanizing coating on the fatigue strength of S355 structural steel. The experimental results showed that the decrease of the fatigue life of coated specimens in comparison with that of uncoated joints is very limited and the results are in good agreement with Eurocode detail category, without substantial reductions. The procedure for coating and preparation of the bolted joints is described in detail in this paper providing a useful tool for engineers involved in similar practical applications. The experimental results are compared with the previously published data on central hole notched galvanized and not treated specimens characterized by the same geometry.

  11. Flanged joints with contact outside the bolt circle: ASME Part B design rules

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.

    1976-05-01

    The ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, gives rules which are subdivided into ''Part A'' and ''Part B''. Part A covers flanged joints where contact between flanges occurs through a gasket located inside the bolt holes. Part B covers flanged joints with contact outside the bolt holes. This report (a) summarizes the theory for Part B flanged joints, (b) presents examples which show the significant differences between Part A flanged joints and Part B flanged joints, (c) presents the available test data relevant to the characteristics of Part B flanged joints, (d) gives listings of two computer programs which can be used to evaluate the characteristics of Part B flanged joints, and (e) gives recommendations for Code revisions and other aspects of Part B flanged-joint design

  12. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Hee; Yun, Chung Bang [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Inman, Daniel J. [Virginia Polytechnic Institute and State University, Virginia (United States)

    2007-06-15

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  13. Remote Impedance-based Loose Bolt Inspection Using a Radio-Frequency Active Sensing Node

    International Nuclear Information System (INIS)

    Park, Seung Hee; Yun, Chung Bang; Inman, Daniel J.

    2007-01-01

    This paper introduces an active sensing node using radio-frequency (RF) telemetry. This device has brought the traditional impedance-based structural health monitoring (SHM) technique to a new paradigm. The RF active sensing node consists of a miniaturized impedance measuring device (AD5933), a microcontroller (ATmega128L), and a radio frequency (RF) transmitter (XBee). A macro-fiber composite (MFC) patch interrogates a host structure by using a self-sensing technique of the miniaturized impedance measuring device. All the process including structural interrogation, data acquisition, signal processing, and damage diagnostic is being performed at the sensor location by the microcontroller. The RF transmitter is used to communicate the current status of the host structure. The feasibility of the proposed SHM strategy is verified through an experimental study inspecting loose bolts in a bolt-jointed aluminum structure

  14. Analytical and numerical investigation of bolted steel ring flange connection for offshore wind monopile foundations

    Science.gov (United States)

    Madsen, C. A.; Kragh-Poulsen, J.-C.; Thage, K. J.; Andreassen, M. J.

    2017-12-01

    The monopile foundation is the dominant solution for support of wind turbines in offshore wind farms. It is normally grouted to the transition piece which connects the foundation to the turbine. Currently, the bolted steel ring flange connection is investigated as an alternative. The monopile--transition piece connection has specific problems, such as out-of-verticality and installation damage from driving the MP into the seabed and it is not fully known how to design for these. This paper presents the status of the ongoing development work and an estimate of what still needs to be covered in order to use the connection in practice. This involves presentation of an analytical and non-linear FE analysis procedure for the monopile-transition piece connection composed of two L flanges connected with preloaded bolts. The connection is verified for ultimate and fatigue limit states based on an integrated load simulation carried out by the turbine manufacturer.

  15. Interaction between an Eco-Spiral Bolt and Crushed Rock in a Borehole Evaluated by Pull-Out Testing

    Directory of Open Access Journals (Sweden)

    Seong-Seung Kang

    2017-01-01

    Full Text Available The interactions between an eco-spiral bolt and crushed rocks in a borehole were evaluated by pull-out testing in a laboratory and numerical analysis. The porosity of the crushed rock surrounding the bolt depended on the size of the eco-spiral bolt and affected the eco-spiral bolt’s axial resistance force. The axial resistance force and the porosity of the crushed rocks in the borehole showed an inverse relationship. The porosity was also related to the size of the eco-spiral bolt. The maximum principal stress between the bolt and the rock was related to the porosity of the crushed rock and the size difference between the eco-spiral bolt and the borehole. At low porosity the experimental and numerical analyses show similar relationships between the axial resistance force and the displacement. However, at high porosity, the numerical results deviated greatly from the experimental observation. The initial agreement is attributed to the state of residual resistance after the maximum axial resistance force, and the latter divergence was due to the decreasing axial resistance force owing to slippage.

  16. Eyes, Grip and Gesture as Objective Indicators of Intentions and Attention

    DEFF Research Database (Denmark)

    Mortensen, Ditte Hvas

    This poster abstract presents the first part of a study concerning the use of information about gaze, grip and gesture to create non-command interaction. The experiment reported here seeks to establish the occurrence of patterns in nonverbal communication,  which may be used in an activity aware...

  17. Applying support vector regression analysis on grip force level-related corticomuscular coherence

    DEFF Research Database (Denmark)

    Rong, Yao; Han, Xixuan; Hao, Dongmei

    2014-01-01

    Voluntary motor performance is the result of cortical commands driving muscle actions. Corticomuscular coherence can be used to examine the functional coupling or communication between human brain and muscles. To investigate the effects of grip force level on corticomuscular coherence in an acces...

  18. Precision grip in congenital and acquired hemiparesis: similarities in impairments and implications for neurorehabilitation - review

    Directory of Open Access Journals (Sweden)

    Yannick eBleyenheuft

    2014-06-01

    Full Text Available Background: Patients with congenital and acquired hemiparesis incur long-term functional deficits, among which the loss of prehension that may impact their functional independence. Identifying, understanding and comparing the underlying mechanisms of prehension impairments represent an opportunity to better adapt neurorehabilitationObjective: The present review aims to provide a better understanding of precision grip deficits in congenital and acquired hemiparesis and to determine whether the severity and type of fine motor control impairments depend on whether or not the lesions are congenital or acquired in adulthood. Methods: Using combinations of the following key words: fingertip force, grip force, precision grip, cerebral palsy, stroke, pubmed and Scopus databases were used to search studies from 1984 to 2013. Results: Individuals with both congenital and acquired hemiparesis were able to some extent to use anticipatory motor control in precision grip tasks, even if this control was impaired in the paretic hand. In both congenital or acquired hemiparesis, the ability to plan efficient anticipatory motor control when the less-affected hand is used provides a possibility to remediate impairments in anticipatory motor control of the paretic hand. Conclusion: Surprisingly we observed very few differences between the results of studies in children with congenital hemiplegia and stroke patients. We suggest that the underlying specific strategies of neurorehabilitation developed for each one could benefit the other.

  19. The predictive value of the extensor grip test for the effectiveness of bracing for tennis elbow

    NARCIS (Netherlands)

    Struijs, Peter A. A.; Assendelft, Willem J. J.; Kerkhoffs, Gino M. M. J.; Souer, Sebastiaan; van Dijk, C. Niek

    2005-01-01

    Background: Tennis elbow is a common complaint. Several treatment strategies, such as corticosteroid injections and physical therapy and braces, have been described. Hypothesis: The extensor grip test has predictive value in assessing the effectiveness of bracing in tennis elbow. Study Design:

  20. Smoking impact on grip strength and fatigue resistance: implications for exercise and hand therapy practice.

    Science.gov (United States)

    Al-Obaidi, Saud; Al-Sayegh, Nowall; Nadar, Mohammed

    2014-07-01

    Grip strength assessment reflects on overall health of the musculoskeletal system and is a predictor of functional prognosis and mortality. The purpose of this study was: examine whether grip-strength and fatigue resistance are impaired in smokers, determine if smoking-related impairments (fatigue-index) can be predicted by demographic data, duration of smoking, packets smoked-per-day, and physical activity. Maximum isometric grip strength (MIGS) of male smokers (n = 111) and nonsmokers (n = 66) was measured before/after induced fatigue using Jamar dynamometer at 5-handle positions. Fatigue index was calculated based on percentage change in MIGS initially and after induced fatigue. Number of repetitions to squeeze the soft rubber ball to induce fatigue was significantly lower in smokers compared with nonsmokers (t = 10.6, P smoking status on MIGS scores was significantly different between smokers and nonsmokers after induced fatigue (β = -3.98, standard error = 0.59, P Smoking status was the strongest significant independent predictor of the fatigue-index. Smokers demonstrated reduced grip strength and fast fatigability in comparison with nonsmokers.

  1. Feeling is Believing: a location limited channel based on grip pattern biometrics and cryptanalysis

    NARCIS (Netherlands)

    Buhan, I.R.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    We use grip pattern based biometrics as a location limited channel to achieve pre-authentication in a protocol that sets up a secure cannel between two handheld devices. The protocol efficiently calculates a shared secret key from biometric data using quantization and cryptanalysis. The protocol is

  2. Grip strength and quality of life in the second half of life: hope as a moderator.

    Science.gov (United States)

    Gum, Amber M; Segal-Karpas, Dikla; Avidor, Sharon; Ayalon, Liat; Bodner, Ehud; Palgi, Yuval

    2017-09-28

    The purpose of the current study was to investigate grip strength, hope, and their interaction as predictors of quality of life four years later in a nationally representative sample of older adults. Data were derived from the first (2005-2006) and second wave (2009) of the Israeli component of the Survey of Health Ageing and Retirement in Europe (SHARE; N = 344). Hope was measured by three items from the Hope   Scale, and quality of life was measured by the CASP-12 (Control, Autonomy, Self-Realization, and Pleasure). Multiple regression analyses were conducted. Grip strength at T1 predicted QoL in T2, but hope was not a significant predictor. Furthermore, hope moderated the effect of handgrip on QoL, such that the effect was weaker for higher levels of hope. As hypothesized, hope acted as a moderator, such that poor grip strength was associated with worse QoL for less hopeful older adults, but grip strength was not associated with QoL for more hopeful older adults. Findings are consistent with a theoretical conceptualization of hope as a buffer between physical challenges and negative outcomes like QoL. Encouraging a hopeful perspective could enhance QoL for older adults with decreased muscle strength.

  3. EFFECT OF ECCENTRIC EXERCISE PROGRAMME ON PAIN AND GRIP STRENGTH FOR SUBJECTS WITH MEDIAL EPICONDYLITIS

    Directory of Open Access Journals (Sweden)

    Mishra Prashant Akhilesh

    2014-04-01

    Full Text Available Background and Objective: Therapeutic eccentric exercise may provide both a structural and functional benefit during tendinopathy rehabilitation. The objective is to find the effect of eccentric exercises on improvement of pain and grip strength for subjects with Medial Epicondylitis. Method: Pre to post test experimental study design randomized thirty subjects with medial epicondylitis, 15 each into Group A and Group B. Group B subjects were treated with conventional therapy and Eccentric exercises. Group A subjects were treated with conventional therapy. Results: When means of post intervention were compared using Independent ‘t’ between groups there was no statistically significant difference in improvements obtained in VAS scores and grip strength. There was a statistically significant change in means of VAS score and Grip strength when means were analyzed by using Paired‘t’ test and Wilcoxon signed rank test within the groups with positive percentage of change. Conclusion: It is concluded that four weeks of Eccentric Exercise Programme combined with conventional therapy shown significant effect on improving pain and Grip strength, however the improvement obtained has no difference when compared with control conventional treatment for Subjects with Medial Epicondylitis.

  4. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores

    DEFF Research Database (Denmark)

    Dahl-Jensen, Dorthe; Clausen, Henrik Brink; Taylor, K. C.

    1993-01-01

    . Here we present electrical conductivity records for the Greenland Ice Sheet Project 2 (GISP2) and Greenland Ice-core Project (GRIP) ice cores, drilled 28 km apart to enable direct comparison of the results. The upper parts of both records are consistent with previous evidence from other Greenland cores...

  5. Dynamical Coordination of Hand Intrinsic Muscles for Precision Grip in Diabetes Mellitus.

    Science.gov (United States)

    Li, Ke; Wei, Na; Cheng, Mei; Hou, Xingguo; Song, Jun

    2018-03-12

    This study investigated the effects of diabetes mellitus (DM) on dynamical coordination of hand intrinsic muscles during precision grip. Precision grip was tested using a custom designed apparatus with stable and unstable loads, during which the surface electromyographic (sEMG) signals of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) were recorded simultaneously. Recurrence quantification analysis (RQA) was applied to quantify the dynamical structure of sEMG signals of the APB and FDI; and cross recurrence quantification analysis (CRQA) was used to assess the intermuscular coupling between the two intrinsic muscles. This study revealed that the DM altered the dynamical structure of muscle activation for the FDI and the dynamical intermuscular coordination between the APB and FDI during precision grip. A reinforced feedforward mechanism that compensates the loss of sensory feedbacks in DM may be responsible for the stronger intermuscular coupling between the APB and FDI muscles. Sensory deficits in DM remarkably decreased the capacity of online motor adjustment based on sensory feedback, rendering a lower adaptability to the uncertainty of environment. This study shed light on inherent dynamical properties underlying the intrinsic muscle activation and intermuscular coordination for precision grip and the effects of DM on hand sensorimotor function.

  6. Calpain-GRIP Signaling in Nucleus Accumbens Core Mediates the Reconsolidation of Drug Reward Memory.

    Science.gov (United States)

    Liang, Jie; Li, Jia-Li; Han, Ying; Luo, Yi-Xiao; Xue, Yan-Xue; Zhang, Yàn; Zhang, Yán; Zhang, Li-Bo; Chen, Man-Li; Lu, Lin; Shi, Jie

    2017-09-13

    Exposure to drug-paired cues causes drug memories to be in a destabilized state and interfering with memory reconsolidation can inhibit relapse. Calpain, a calcium-dependent neutral cysteine protease, is involved in synaptic plasticity and the formation of long-term fear memory. However, the role of calpain in the reconsolidation of drug reward memory is still unknown. In the present study, using a conditioned place preference (CPP) model, we found that exposure to drug-paired contextual stimuli induced the activation of calpain and decreased the expression of glutamate receptor interacting protein 1 (GRIP1) in the nucleus accumbens (NAc) core, but not shell, of male rats. Infusions of calpain inhibitors in the NAc core immediately after retrieval disrupted the reconsolidation of cocaine/morphine cue memory and blocked retrieval-induced calpain activation and GRIP1 degradation. The suppressive effect of calpain inhibitors on the expression of drug-induced CPP lasted for at least 14 d. The inhibition of calpain without retrieval 6 h after retrieval or after exposure to an unpaired context had no effects on the expression of reward memory. Calpain inhibition after retrieval also decreased cocaine seeking in a self-administration model and this effect did not recover spontaneously after 28 d. Moreover, the knock-down of GRIP1 expression in the NAc core by lentivirus-mediated short-hairpin RNA blocked disruption of the reconsolidation of drug cue memories that was induced by calpain inhibitor treatment. These results suggest that calpain activity in the NAc core is crucial for the reconsolidation of drug reward memory via the regulation of GRIP1 expression. SIGNIFICANCE STATEMENT Calpain plays an important role in synaptic plasticity and long-term memory consolidation, however, its role in the reconsolidation of drug cue memory remains unknown. Using conditioned place preference and self-administration procedures, we found that exposure to drug-paired cues induced the

  7. Further development of remote testing of submerged bolts and screws in reactors

    International Nuclear Information System (INIS)

    Mohr, F.; Schirner, G.; Meier, R.; Wiesinger, W.

    2007-01-01

    Since the eighties, intelligeNDT has been carrying out ultrasonic tests of bolts in reactor containments and pressure vessels both in Germany and abroad. The ultrasonic equipment used belonged to the SAPHIR/SAPHIRplus line. The recording and online evaluation software was adapted to the test requirements and optimized for high test rates and quality-assured documentation. As test manipulator, the ''SUSI'' submarine by AREVA NP was used with good results. (orig.)

  8. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  9. Estimation for bolt fastening conditions of thin aluminum structure using PZT sensors

    International Nuclear Information System (INIS)

    Hong, Yong; Han, Byeong Hee; Kim, Byung Jin; Hong, Dong Pyo; Kim, Young Moon

    2007-01-01

    This work presents a study on PZT impedance-based method, it is one of the NDT(Non-Destructive Technique). We study about assessment of the square-structure health condition by impedance-based technique using PZT patches, associated with longitudinal wave propagation. Health conditions of the square-structure controlled by bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, we suggest the evaluation method of impedance peak frequency shift

  10. Experimental study on tunnel lining joints temporarily strengthened by SMA bolts

    International Nuclear Information System (INIS)

    Wu, Bo; Ou, Yunlong

    2014-01-01

    Shield tunnels have been widely used in city metros all over the world. During the long-term period of the metro operation, the joints of shield tunnel’s neighboring segments may degrade due to some environmental factors, leading to the increasing of the joint opening and some resulting adverse consequences. In this paper, a temporary strengthening method by using shape memory alloy (SMA) bolts is proposed and experimentally studied for the joints of neighboring segments, and a revised electric heating method which suits with the strengthening method is presented and experimentally validated for the SMA bolts. The purpose of the proposed temporary strengthening method is to create favorable conditions for the following permanent strengthening. Test results show that: (a) for the joints of shield tunnel’s neighboring segments, the strengthening method can effectively reduce the joint opening, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts; (b) the revised electric heating method can be used to heat the SMA rod to a temperature higher than the SMA’s austenite finish temperature quickly, and the average heating rate related to Type 2 inner resistance element is larger than that related to Type 1 inner resistance element; and (c) the reduction percentages of the joint opening increment, joint deflection, concrete strain in joint’s compression zone, and strain of joint’s steel bolts for Specimen I are all larger than those for Specimen II, implying that the less the joint opening is, the more significant the strengthening effect is. (paper)

  11. Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica-Głogów Copper District

    Science.gov (United States)

    Skrzypkowski, Krzysztof; Korzeniowski, Waldemar; Zagórski, Krzysztof; Dudek, Piotr

    2017-09-01

    In the underground mines of the Legnica-Głogów Copper District (LGOM) the main way to protect the room excavation is the use of a rock bolt support. For many years, it has proven to be an efficient security measure in excavations which met all safety standards and requirements. The article presents the consumption of the rock bolt support in the Mining Department "Polkowice-Sieroszowice" in the years 2010-2015 as well as the number of bolt supports that were used to secure the excavations. In addition, it shows the percentage of bolt supports that were used to conduct rebuilding work and cover the surface of exposed roofs. One of the factors contributing to the loss of the functionality of bolt supports is corrosion whose occurrence may lead directly to a reduction in the diameter of rock bolt support parts, in particular rods, bearing plates and nuts. The phenomenon of the corrosion of the bolt support and its elements in underground mining is an extremely common phenomenon due to the favorable conditions for its development in mines, namely high temperature and humidity, as well as the presence of highly aggressive water. This involves primarily a decrease in the capacity of bolt support construction, which entails the need for its strengthening, and often the need to perform the reconstruction of the excavation. The article presents an alternative for steel bearing plates, namely plates made using the spatial 3D printing technology. Prototype bearing plates were printed on a 3D printer Formiga P100 using the "Precymit" material. The used printing technology was SLS (Selective Laser Sintering), which is one of the most widely used technologies among all the methods of 3D printing for the short series production of the technical parts of the final product. The article presents the stress-strain characteristic of the long expansion connected rock bolt support OB25 with a length of 3.65 m. A rock bolt support longer than 2.6 m is an additional bolt support in

  12. Holographic description of Kerr-Bolt-AdS-dS spacetimes

    International Nuclear Information System (INIS)

    Chen, B.; Ghezelbash, A.M.; Kamali, V.; Setare, M.R.

    2011-01-01

    We show that there exists a holographic 2D CFT description of a Kerr-Bolt-AdS-dS spacetime. We first consider the wave equation of a massless scalar field propagating in extremal Kerr-Bolt-AdS-dS spacetimes and find in the 'near region', the wave equation in extremal limit could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual CFT descriptions of these black holes. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction. Furthermore we study the holographic description of the generic four-dimensional non-extremal Kerr-Bolt-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, the radial equation could still be rewritten as the SL(2,R) quadratic Casimir, suggesting the existence of dual 2D description. We read the temperatures of the dual CFT from the conformal coordinates and obtain the central charges by studying the near-horizon geometry of near-extremal black holes. We recover the macroscopic entropy from the microscopic counting. We also show that for the super-radiant scattering, the retarded Green's functions and the corresponding absorption cross sections are in perfect match with CFT prediction.

  13. Holographic description of Kerr-Bolt-AdS-dS spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B., E-mail: bchen01@pku.edu.c [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, and Center for High Energy Physics, Peking University, Beijing 100871 (China); Ghezelbash, A.M., E-mail: masoud.ghezelbash@usask.c [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2 (Canada); Kamali, V., E-mail: vkamali1362@gmail.co [Department of Campus of Bijar, Kurdistan University, Bijar (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.i [Department of Campus of Bijar, Kurdistan University, Bijar (Iran, Islamic Republic of)

    2011-07-01

    We show that there exists a holographic 2D CFT description of a Kerr-Bolt-AdS-dS spacetime. We first consider the wave equation of a massless scalar field propagating in extremal Kerr-Bolt-AdS-dS spacetimes and find in the 'near region', the wave equation in extremal limit could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual CFT descriptions of these black holes. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction. Furthermore we study the holographic description of the generic four-dimensional non-extremal Kerr-Bolt-AdS-dS black holes. We find that if focusing on the near-horizon region, for the massless scalar scattering in the low-frequency limit, the radial equation could still be rewritten as the SL(2,R) quadratic Casimir, suggesting the existence of dual 2D description. We read the temperatures of the dual CFT from the conformal coordinates and obtain the central charges by studying the near-horizon geometry of near-extremal black holes. We recover the macroscopic entropy from the microscopic counting. We also show that for the super-radiant scattering, the retarded Green's functions and the corresponding absorption cross sections are in perfect match with CFT prediction.

  14. Complication assessment and prevention strategies using midfoot fusion bolt for medial column stabilization in Charcot's osteoarthropathy

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Walther, Markus; Iblher, Niklas

    2016-01-01

    and stabilization using midfoot fusion bolt and lateral lag screws. Age, gender, presence of preoperative osteomyelitis or ulcer, number of complications and operative revisions, Hba1c value, consolidation of arthrodesis, presence of a load-bearing foot and period to bolt dislocation was assessed. The mean follow......-up was 21.4±14.6 (mean±SDM) months, 64% of patients suffered from diabetes with a preoperative Hba1c of 8.5±2.4. The mean number of revisions per foot was 3.6±4.1. Bolt dislocation was seen in 57% of the patients following 11.3±8.5 months; in 75% of these patients bony healing occurred before dislocation....... There was a significant association between preoperative increased Hba1c value, presence of preoperative ulcer and wound infection. Healing of arthrodesis was demonstrated in 57% and a permanent weight-bearing foot without recurrent ulcer was achieved in 79%. The early and late postoperative complications could...

  15. Ultrasonic inspection of studs (bolts) using dynamic predictive deconvolution and wave shaping.

    Science.gov (United States)

    Suh, D M; Kim, W W; Chung, J G

    1999-01-01

    Bolt degradation has become a major issue in the nuclear industry since the 1980's. If small cracks in stud bolts are not detected early enough, they grow rapidly and cause catastrophic disasters. Their detection, despite its importance, is known to be a very difficult problem due to the complicated structures of the stud bolts. This paper presents a method of detecting and sizing a small crack in the root between two adjacent crests in threads. The key idea is from the fact that the mode-converted Rayleigh wave travels slowly down the face of the crack and turns from the intersection of the crack and the root of thread to the transducer. Thus, when a crack exists, a small delayed pulse due to the Rayleigh wave is detected between large regularly spaced pulses from the thread. The delay time is the same as the propagation delay time of the slow Rayleigh wave and is proportional to the site of the crack. To efficiently detect the slow Rayleigh wave, three methods based on digital signal processing are proposed: wave shaping, dynamic predictive deconvolution, and dynamic predictive deconvolution combined with wave shaping.

  16. Reinforcement of Bolted Timber Joints Using GFRP Sheets in Poplar and Pine Woods

    Directory of Open Access Journals (Sweden)

    Mehrab Madhoushi

    2013-01-01

    Full Text Available Failure in timber structures occurs mainly in crucial points such as joints areas. Therefore, the idea of using composite sheets in timber joints has been intro-duced as a method in order to increase the strength and ductility behaviour of timber joints. This research aims to study the behaviour of bolted joints in poplar and pine woods, which are reinforced by two types of GFRP sheets. A single shear bolted joint consisted of 3 timber members whose length and width were 30 cm in length and 5 cm in width. The thickness of each member was 4 cm for internal part and 2 cm for external part. The employed steel bolt was 10 cm in length and 1 cm in diameter. In this respect, one layer of GFRP sheet was used to be bonded to timber members by using epoxy resin and left between the clamps for 24 hours. They were then kept at room temperature for three weeks. Also the effect of adding a wood veneer on the reinforced joints was investigated. The tensile strength of the reinforced and control samples (un-reinforced joints was measured according to ASTM D5652-92 standard. The results show that the reinforced samples have higher tensile strength compared to that of reinforced joints, although it is not statistically signifcant. Also, two types of sheets infuence the joint behaviour as the reinforced joints display more ductility behaviour.

  17. Failure Analysis Of The Bolt From Turn Table Tightening On The Heavy Lifting Equipment System

    International Nuclear Information System (INIS)

    Hatta, IIham

    2000-01-01

    This paper provides the results of failure analysis of the bolt from the turn table tightening which usually using on the heavy lifting equipment or as a equipment tor the material handling with the maximum load about 25 ton. The process of the failure analysis from the series of laboratory testing such as chemical composition, tensile testing, hardness, fracture surtace and microstructure. The results of the analysis we see this bolt have suffered fatigue failure and the initiation, cracking from the manufacture defect. This defect in the form like the folding on the screw surface which maybe happen at the screw forming process. This folding as a part of metal which not bonding together, so could act as a initial crack, and got the creasing of the strength too which cause from oxidation and decarburization at the moment of heat treatment process. So this material got the changein the strength too which oxidation and decarburization at the moment of heat treatment process. So this material got the change in the microstructure, from the martensite temper to the coarse ferrite and finally reduces the strength of the bolt

  18. Detection and depth determination of corrosion defects in embedded bolts using ultrasonic testing technique

    International Nuclear Information System (INIS)

    Lin, Shan; Fukutomi, Hiroyuki; Yuya, Hideki; Ito, Keisuke

    2011-01-01

    A great number of anchor bolts are used to fix various components to concrete foundation in thermal and nuclear power plants. As aging power plants degrade, it is feared that defects resulted from corrosion may occur underground. In this paper, a measurement method utilizing the phased array technique is developed to detect such defects. Measurement results show that this method can detect local and circumferential corrosion defects introduced artificially, but defect echo position appears to be farther away from the bolt head than is actually the case. A finite element simulation of wave propagation shows that longitudinal waves excited by a phased array probe are mode converted and reflected at the defect and at bolt wall, which results in the position of the defect echo appearing to be farther away than the defect actually is. Moreover, an approach for determining the depth of defects using measurement results is also proposed based on numerical results. The depths determined by the proposed approach agree with the actual depths with a maximum error of 1.8 mm and a RMSE of 1.06 mm. (author)

  19. The properties and interrelationships of various force-time parameters during maximal repeated rhythmic grip.

    Science.gov (United States)

    Nakada, Masakatsu; Demura, Shinichi; Yamaji, Shunsuke

    2007-01-01

    The purpose of this study was to examine the properties and interrelationships of various force-time parameters including the inflection point for the rate of decline in force during a maximal repeated rhythmic grip. Fifteen healthy males (age M=21.5, SD=2.1 yr, height M=172.4, SD=5.7 cm, body mass M=68.2, SD=9.2 kg) participated in this study. Subjects performed a maximal repeated rhythmic grip with maximal effort with a target frequency of 30 grip.min(-1) for 6 min. The force value decreased linearly and markedly until about 70% of maximal strength for about 55 s after the onset of a maximal repeated rhythmic grip, and then decreased moderately. Because all parameters showed fair or good correlations between 3 min and 6 min, they are considered to be able to sufficiently evaluate muscle endurance for 3 min instead of 6 min. However, there were significant differences between 3 min and 6 min in the integrated area, the final force, the rate of the decrement constant (k) fitting the force decreasing data to y=ae(-kx)+b and the force of maximal difference between the force and a straight line from peak force to the final force. Their parameters may vary generally by the length of a steady state, namely, a measurement time. The final force value before finishing and the rate of the decrement constant (k) reflect the latter phase during a maximal repeated rhythmic grip. Although many parameters show relatively high mutual relationships, the rate constant (k) shows relatively low correlations with other parameters. We inferred that decreasing the time until 80% of maximal strength and the amount of the decrement force for the first 1 min reflect a linear decrease in the initial phase.

  20. Influences of load characteristics on impaired control of grip forces in patients with cerebellar damage.

    Science.gov (United States)

    Brandauer, B; Timmann, D; Häusler, A; Hermsdörfer, J

    2010-02-01

    Various studies showed a clear impairment of cerebellar patients to modulate grip force in anticipation of the loads resulting from movements with a grasped object. This failure corroborated the theory of internal feedforward models in the cerebellum. Cerebellar damage also impairs the coordination of multiple-joint movements and this has been related to deficient prediction and compensation of movement-induced torques. To study the effects of disturbed torque control on feedforward grip-force control, two self-generated load conditions with different demands on torque control-one with movement-induced and the other with isometrically generated load changes-were directly compared in patients with cerebellar degeneration. Furthermore the cerebellum is thought to be more involved in grip-force adjustment to self-generated loads than to externally generated loads. Consequently, an additional condition with externally generated loads was introduced to further test this hypothesis. Analysis of 23 patients with degenerative cerebellar damage revealed clear impairments in predictive feedforward mechanisms in the control of both self-generated load types. Besides feedforward control, the cerebellar damage also affected more reactive responses when the externally generated load destabilized the grip, although this impairment may vary with the type of load as suggested by control experiments. The present findings provide further support that the cerebellum plays a major role in predictive control mechanisms. However, this impact of the cerebellum does not strongly depend on the nature of the load and the specific internal forward model. Contributions to reactive (grip force) control are not negligible, but seem to be dependent on the physical characteristics of an externally generated load.

  1. Hand grip strength and maximum peak expiratory flow: determinants of bone mineral density of adolescent students.

    Science.gov (United States)

    Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana

    2018-03-02

    Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.

  2. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.

    Science.gov (United States)

    De Gregorio, Michael; Santos, Veronica J

    2013-04-05

    It has been established that rapid, pulse-like increases in precision grip forces ("catch-up responses") are elicited by unexpected translational perturbations and that response latency and strength scale according to the direction of linear slip relative to the hand as well as gravity. To determine if catch-up responses are elicited by unexpected rotational perturbations and are strength-, axis-, and/or direction-dependent, we imposed step torque loads about each of two axes which were defined relative to the subject's hand: the distal-proximal axis away from and towards the subject's palm, and the grip axis which connects the two fingertips. Precision grip responses were dominated initially by passive mechanics and then by active, unimodal catch-up responses. First dorsal interosseous activity, marking the start of the catch-up response, began 71-89 ms after the onset of perturbation. The onset latency, shape, and duration (217-231 ms) of the catch-up response were not affected by the axis, direction, or magnitude of the rotational perturbation, while strength was scaled by axis of rotation and slip conditions. Rotations about the grip axis that tilted the object away from the palm and induced rotational slip elicited stronger catch-up responses than rotations about the distal-proximal axis that twisted the object between the digits. To our knowledge, this study is the first to investigate grip responses to unexpected torque loads and to show characteristic, yet axis-dependent, catch-up responses for conditions other than pure linear slip. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  4. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  5. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  6. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  7. The effect of friction in coulombian damper

    Science.gov (United States)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  8. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer

    2016-03-01

    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  9. Nano-friction behavior of phosphorene.

    Science.gov (United States)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  10. Transcriptomic analysis reveals the roles of gibberellin-regulated genes and transcription factors in regulating bolting in lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Liu, Xueying; Lv, Shanshan; Liu, Ran; Fan, Shuangxi; Liu, Chaojie; Liu, Renyi; Han, Yingyan

    2018-01-01

    A cool temperature is preferred for lettuce cultivation, as high temperatures cause premature bolting. Accordingly, exploring the mechanism of bolting and preventing premature bolting is important for agriculture. To explore this relationship in depth, morphological, physiological, and transcriptomic analyses of the bolting-sensitive line S39 at the five-leaf stage grown at 37°C were performed in the present study. Based on paraffin section results, we observed that S39 began bolting on the seventh day at 37°C. During bolting in the heat-treated plants, GA3 and GA4 levels in leaves and the indoleacetic acid (IAA) level in the stem reached a maximum on the sixth day, and these high contents were maintained. Additionally, bolting begins in the fifth day after GA3 treatment in S39 plants, GA3 and GA4 increased and then decreased, reaching a maximum on the fourth day in leaves. Similarly, IAA contents reached a maximum in the stem on the fifth day. No bolting was observed in the control group grown at 25°C, and significant changes were not observed in GA3 and GA4 levels in the controls during the observation period. RNA-sequencing data implicated transcription factors (TFs) in regulating bolting in lettuce, suggesting that the high GA contents in the leaves and IAA in the stem promote bolting. TFs possibly modulate the expression of related genes, such as those encoding hormones, potentially regulating bolting in lettuce. Compared to the control group, 258 TFs were identified in the stem of the treatment group, among which 98 and 156 were differentially up- and down-regulated, respectively; in leaves, 202 and 115 TFs were differentially up- and down-regulated, respectively. Significant changes in the treated group were observed for C2H2 zinc finger, AP2-EREBP, and WRKY families, indicating that these TFs may play important roles in regulating bolting.

  11. An electromyographic study of the effect of hand grip sizes on forearm muscle activity and golf performance.

    Science.gov (United States)

    Sorbie, Graeme G; Hunter, Henry H; Grace, Fergal M; Gu, Yaodong; Baker, Julien S; Ugbolue, Ukadike Chris

    2016-01-01

    The study describes the differences in surface electromyography (EMG) activity of two forearm muscles in the lead and trail arm at specific phases of the golf swing using a 7-iron with three different grip sizes among amateur and professional golfers. Fifteen right-handed male golfers performed five golf swings using golf clubs with three different grip sizes. Surface EMG was used to measure muscle activity of the extensor carpi radialis brevis (ECRB) and flexor digitorum superficialis (FDS) on both forearms. There were no significant differences in forearm muscle activity when using the three golf grips within the group of 15 golfers (p > 0.05). When using the undersize grip, club head speed significantly increased (p = 0.044). During the backswing and downswing phases, amateurs produced significantly greater forearm muscle activity with all three grip sizes (p < 0.05). In conclusion, forearm muscle activity is not affected by grip sizes. However, club head speed increases when using undersize grips.

  12. Ulnar digits contribution to grip strength in patients with thumb carpometacarpal osteoarthritis is less than in normal controls.

    Science.gov (United States)

    Villafañe, Jorge H; Valdes, Kristin; Angulo-Diaz-Parreño, Santiago; Pillastrini, Paolo; Negrini, Stefano

    2015-06-01

    Grip testing is commonly used as an objective measure of strength in the hand and upper extremity and is frequently used clinically as a proxy measure of function. Increasing knowledge of hand biomechanics, muscle strength, and prehension patterns can provide us with a better understanding of the functional capabilities of the hand. The objectives of this study were to determine the contribution of ulnar digits to overall grip strength in individuals with thumb carpometacarpal (CMC) osteoarthritis (OA). Thirty-seven subjects participated in the study. This group consisted of 19 patients with CMC OA (aged 60-88 years) and 18 healthy subjects (60-88 years). Three hand configurations were used by the subjects during grip testing: use of the entire hand (index, middle, ring, and little fingers) (IMRL); use of the index, middle, and ring fingers (IMR); and use of only the index and middle fingers (IM). Grip strength findings for the two groups found that compared to their healthy counterparts, CMC OA patients had, on average, a strength deficiency of 45.6, 35.5, and 28.8 % in IMRL, IMR, and IM, respectively. The small finger contribution to grip is 14.3 % and the ring and small finger contribute 34 % in subjects with CMC OA. Grip strength decreases as the number of digits contributing decreased in both groups. The ulnar digits contribution to grip strength is greater than one third of total grip strength in subjects with CMC OA. Individuals with CMC OA demonstrate significantly decreased grip strength when compared to their healthy counterparts.

  13. Evaluation of Interlaminar Stresses in Composite Laminates with a Bolt-Filled Hole Using a Linear Elastic Traction-Separation Description

    Directory of Open Access Journals (Sweden)

    Yong Cao

    2017-01-01

    Full Text Available Determination of the local interlaminar stress distribution in a laminate with a bolt-filled hole is helpful for optimal bolted joint design, due to the three-dimensional (3D nature of the stress field near the bolt hole. A new interlaminar stress distribution phenomenon induced by the bolt-head and clamp-up load, which occurs in a filled-hole composite laminate, is investigated. In order to efficiently evaluate interlaminar stresses under the complex boundary condition, a calculation strategy that using zero-thickness cohesive interface element is presented and validated. The interface element is based on a linear elastic traction-separation description. It is found that the interlaminar stress concentrations occur at the hole edge, as well as the interior of the laminate near the periphery of the bolt head. In addition, the interlaminar stresses near the periphery of the bolt head increased with an increase in the clamp-up load, and the interlaminar normal and shear stresses are not at the same circular position. Therefore, the clamp-up load cannot improve the interlaminar stress distribution in the laminate near the periphery of the bolt head, although it can reduce the magnitude of the interlaminar shear stress at the hole edge. Thus, the interlaminar stress distribution phenomena may lead to delamination initiation in the laminate near the periphery of the bolt head, and should be considered in composite bolted joint design.

  14. Impedance-Based Pre-Stress Monitoring of Rock Bolts Using a Piezoceramic-Based Smart Washer—A Feasibility Study

    Science.gov (United States)

    Wang, Bo; Huo, Linsheng; Chen, Dongdong; Li, Weijie; Song, Gangbing

    2017-01-01

    Pre-stress degradation or looseness of rock bolts in mining or tunnel engineering threatens the stability and reliability of the structures. In this paper, an innovative piezoelectric device named a “smart washer” with the impedance method is proposed with the aim of developing a real-time device to monitor the pre-stress level of rock bolts. The proposed method was verified through tests on a rock bolt specimen. By applying high-frequency sweep excitations (typically >30 kHz) to the smart washer that was installed on the rock bolt specimen, we observed that the variation in impedance signatures indicated the rock bolt pre-stress status. With the degradation of rock bolt pre-stress, the frequency in the dominating peak of the real part of the electrical impedance signature increased. To quantify the effectiveness of the proposed technique, a normalized root mean square deviation (RMSD) index was developed to evaluate the degradation level of the rock bolt pre-stress. The experimental results demonstrated that the normalized RMSD-based looseness index, which was computed from the impedance value detected by the “smart washer”, increased with loss of the pre-stress of the rock bolt. Therefore, the proposed method can effectively detect the degradation of rock bolt pre-stress, as demonstrated by experiments. PMID:28134811

  15. Identification of flowering-related genes responsible for differences in bolting time between two radish inbred lines

    Directory of Open Access Journals (Sweden)

    Hye Sun Cho

    2016-12-01

    Full Text Available Late bolting after cold exposure is an economically important characteristic of radish (Raphanus sativus L., an important Brassicaceae root vegetable crop. However, little information is available regarding the genes and pathways that govern flowering time in this species. We performed high-throughput RNA sequencing analysis to elucidate the molecular mechanisms that determine the differences in flowering times between two radish lines, NH-JS1 (late bolting and NH-JS2 (early bolting. In total, 71,188 unigenes were identified by reference-guided assembly, of which 309, 788, and 980 genes were differentially expressed between the two inbred lines after 0, 15, and 35 days of vernalization, respectively. Among these genes, 218 homologs of Arabidopsis flowering-time (Ft genes were identified in the radish, and 49 of these genes were differentially expressed between the two radish lines in the presence or absence of vernalization treatment. Most of the Ft genes up-regulated in NH-JS1 vs NH-JS2 were repressors of flowering, such as RsFLC, consistent with the late-bolting phenotype of NH-JS1. Although the functions of genes down-regulated in NH-JS1 were less consistent with late-bolting characteristics than the up-regulated Ft genes, several Ft enhancer genes, including RsSOC1, a key floral integrator, showed an appropriate expression to the late-bolting phenotype. In addition, the patterns of gene expression related to the vernalization pathway closely corresponded with the different bolting times of the two inbred lines. These results suggest that the vernalization pathway is conserved between radish and Arabidopsis.

  16. Functional relationship between dominant and non-dominant hand in motor task - hand grip strength endurance

    Directory of Open Access Journals (Sweden)

    Kljajić Dragana

    2012-01-01

    Full Text Available The aim of this study was to determine the functional relationship between dominant and non-dominant hand in the strength endurance motor task - hand grip, in the referent population of healthy and young persons. For the purpose of the research we have implemented the method of isometric dynamometry and standardized hand grip test. The study included 48 participants, 23 of them being of female and 25 of male gender. The analysis of variance (ANOVA was used to determine the difference between the sets of variables in the function of gender and functional dimorphism, while the Bonferroni criterion was applied to determine the differences between pairs of individual variables. The difference between the maximum hand grip of dominant and non-dominant hand in female participants amounted to 9.28%, and in male ones 7.39% in favor of the dominant hand. There is no statistically significant difference between nondominant and dominant hand regarding the force endurance time aspect at 30%, 50% and 80% out of the maximum hand grip level, as well as at the absolute and relative force impulse indicators as an endurance measure. The value of gender dimorphism in relation to the absolute indicators of force momentum at 30%, 50% and 80% out of the maximum hand grip level in female participants is 0.9714, 0.9145, 0.9301, and in male participants 0.9515, 0.8264 and 0.8606. The force momentum indicators value at 30%, 50% and 80% out of the maximum hand grip level in female participants is ImpF30%=21167.58±6923.67 Ns, ImpF50%=10846.94±3800.56 Ns and ImpF80%=5438.46±1993.12 Ns, and in male participants ImpF30%=17734.03±6881.92 Ns, ImpF50%=13903.61±3437.76 Ns and ImpF80%=5117.53±1894.78 Ns. The obtained results can be used as the criteria for further research in special education and rehabilitation, medical and professional rehabilitation.

  17. Nutritional status is the major factor affecting grip strength of African HIV patients before and during antiretroviral treatment

    DEFF Research Database (Denmark)

    Filteau, Suzanne; PrayGod, G; Woodd, Susannah L

    2017-01-01

    OBJECTIVES: Low grip strength is a marker of frailty and a risk factor for mortality among HIV patients and other populations. We investigated factors associated with grip strength in malnourished HIV patients at referral to ART, and at 12 weeks and 2-3 years after starting ART. METHODS: The study...... involved HIV-infected Zambian and Tanzanian participants recruited to the NUSTART trial when malnourished (body mass index .... CONCLUSIONS: In this population of originally malnourished HIV patients, poor grip strength was more strongly and independently associated with nutritional than with infection and inflammation variables. Programmes to improve health and survival of HIV patients should incorporate nutritional assessment...

  18. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  19. Friction Anisotropy with Respect to Topographic Orientation

    Science.gov (United States)

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  20. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)