WorldWideScience

Sample records for bollworm helicoverpa armigera

  1. Entomopoxvirus of cotton bollworm, Helicoverpa armigera (Hbn.).

    Science.gov (United States)

    Narayanan, K

    2002-07-01

    Occurrence of an Entomopoxvirus (EPV) from a lepidopteran insect viz;. cotton bollworm, H. armigera (HaEPV) along with gross pathological symptoms is reported for the first time in India. Histopathological study revealed that the fat body being the most favoured site of infection followed by haemocytes and gut epithelium. HaEPV was found to be not cross infective to six of the agricultural lepidopteran insect pests except for the potato black cutworm, Agrotis segetum registering 100% mortality showing typical symptom. Further, safety of HaEPV was shown against beneficial insect like mulberry silkworm, Bombyx mori and an useful insect general predator, Chrysoperla carnea.

  2. Efficacy of Venom from Tentacle of Jellyfish Stomolophus meleagris (Nemopilema nomurai against the Cotton Bollworm Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Huahua Yu

    2014-01-01

    Full Text Available Efficacy of venom from tentacle of jellyfish Stomolophus meleagris against the cotton bollworm Helicoverpa armigera was determined. Venom from tentacle of jellyfish Stomolophus meleagris could inhibit the growth of Helicoverpa armigera and the weight inhibiting rate of sample NFr-2 was 60.53%. Of the six samples, only NFr-2 had high insecticidal activity against Helicoverpa armigera and the corrected mortality recorded at 7 d was 74.23%.

  3. Efficacy of venom from tentacle of jellyfish Stomolophus meleagris (Nemopilema nomurai) against the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Yu, Huahua; Li, Rongfeng; Dong, Xiangli; Xing, Ronge; Liu, Song; Li, Pengcheng

    2014-01-01

    Efficacy of venom from tentacle of jellyfish Stomolophus meleagris against the cotton bollworm Helicoverpa armigera was determined. Venom from tentacle of jellyfish Stomolophus meleagris could inhibit the growth of Helicoverpa armigera and the weight inhibiting rate of sample NFr-2 was 60.53%. Of the six samples, only NFr-2 had high insecticidal activity against Helicoverpa armigera and the corrected mortality recorded at 7 d was 74.23%.

  4. Demographics and genetic variability of the new world bollworm (Helicoverpa zea and the old world bollworm (Helicoverpa armigera in Brazil.

    Directory of Open Access Journals (Sweden)

    Natália A Leite

    Full Text Available Helicoverpa armigera is one of the primary agricultural pests in the Old World, whereas H. zea is predominant in the New World. However, H. armigera was first documented in Brazil in 2013. Therefore, the geographical distribution, range of hosts, invasion source, and dispersal routes for H. armigera are poorly understood or unknown in Brazil. In this study, we used a phylogeographic analysis of natural H. armigera and H. zea populations to (1 assess the occurrence of both species on different hosts; (2 infer the demographic parameters and genetic structure; (3 determine the potential invasion and dispersal routes for H. armigera within the Brazilian territory; and (4 infer the geographical origin of H. armigera. We analyzed partial sequence data from the cytochrome c oxidase subunit I (COI gene. We determined that H. armigera individuals were most prevalent on dicotyledonous hosts and that H. zea were most prevalent on maize crops, based on the samples collected between May 2012 and April 2013. The populations of both species showed signs of demographic expansion, and no genetic structure. The high genetic diversity and wide distribution of H. armigera in mid-2012 are consistent with an invasion period prior to the first reports of this species in the literature and/or multiple invasion events within the Brazilian territory. It was not possible to infer the invasion and dispersal routes of H. armigera with this dataset. However, joint analyses using sequences from the Old World indicated the presence of Chinese, Indian, and European lineages within the Brazilian populations of H. armigera. These results suggest that sustainable management plans for the control of H. armigera will be challenging considering the high genetic diversity, polyphagous feeding habits, and great potential mobility of this pest on numerous hosts, which favor the adaptation of this insect to diverse environments and control strategies.

  5. A eukaryotic initiation factor 5C is upregulated during metamorphosis in the cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Dong, Du-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2009-03-08

    The orthologs of eukaryotic initiation factor 5C (eIF5C) are essential to the initiation of protein translation, and their regulation during development is not well known. A cDNA encoding a polypeptide of 419 amino acids containing an N-terminal leucine zipper motif and a C-terminal eIF5C domain was cloned from metamorphic larvae of Helicoverpa armigera. It was subsequently named Ha-eIF5C. Quantitative real-time PCR (QRT-PCR) revealed a high expression of the mRNA of Ha-eIF5C in the head-thorax, integument, midgut, and fat body during metamorphosis. Immunohistochemistry suggested that Ha-eIF5C was distributed into both the cytoplasm and the nucleus in the midgut, fat body and integument. Ha-eIF5C expression was upregulated by 20-hydroxyecdysone (20E). Furthermore, the transcription of Ha-eIF5C was down regulated after silencing of ecdysteroid receptor (EcR) or Ultraspiracle protein (USP) by RNAi. These results suggested that during metamorphosis of the cotton bollworm, Ha-eIF5C was upregulated by 20E through the EcR and USP transcription factors.

  6. A eukaryotic initiation factor 5C is upregulated during metamorphosis in the cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2009-03-01

    Full Text Available Abstract Background The orthologs of eukaryotic initiation factor 5C (eIF5C are essential to the initiation of protein translation, and their regulation during development is not well known. Results A cDNA encoding a polypeptide of 419 amino acids containing an N-terminal leucine zipper motif and a C-terminal eIF5C domain was cloned from metamorphic larvae of Helicoverpa armigera. It was subsequently named Ha-eIF5C. Quantitative real-time PCR (QRT-PCR revealed a high expression of the mRNA of Ha-eIF5C in the head-thorax, integument, midgut, and fat body during metamorphosis. Immunohistochemistry suggested that Ha-eIF5C was distributed into both the cytoplasm and the nucleus in the midgut, fat body and integument. Ha-eIF5C expression was upregulated by 20-hydroxyecdysone (20E. Furthermore, the transcription of Ha-eIF5C was down regulated after silencing of ecdysteroid receptor (EcR or Ultraspiracle protein (USP by RNAi. Conclusion These results suggested that during metamorphosis of the cotton bollworm, Ha-eIF5C was upregulated by 20E through the EcR and USP transcription factors.

  7. Radiation Induced F-1 Sterility For The Control Of Cotton Bollworm , Helicoverpa armigera (Huebner) In Pilot Test

    International Nuclear Information System (INIS)

    Segsarnviriya, Suchada; Pransopon, Prapon; Kongratarpon, Titima; Vongcheeree, Satit

    2005-10-01

    Pilot trials of radiation induced F-1 sterility for the control of cotton bollworm Helicoverpa armigera (Hubner) were studied for 3 cotton crop seasons in 3 locations at Amphor Takfa, Nakornsawan province in 2002, 2003 and 2004. Irradiated male pupae at a sub sterilizing dose of 150 Gy were released : approximately 11,170 42,900 and 36,400 pupae from July to December of 2002, 2003 and 2004, respectively. The insecticide plots were maintained as a comparison to determine the efficiency of this method. Checking of larvae on cotton plants by the systematic random sampling method and the cotton yield were used to evaluate the impact of the pupal release. It was found that the releasing plots and the insecticide plots gave similar results in terms of the number of larvae and the cotton yield. Therefore, the F-1 sterility method was a possible method for the control of cotton bollworm

  8. Genome-Wide Characterization of DNA Methylation in an Invasive Lepidopteran Pest, the Cotton Bollworm Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Christopher M. Jones

    2018-03-01

    Full Text Available The genes and genomes of insect pests are shaped by the wide array of selective forces encountered in their environments. While the molecular adaptations that evolve are beginning to be understood at the genomic and transcriptomic level, they have been less well characterized at an epigenetic level. Here, we present a genome-wide map of DNA methylation at single-nucleotide resolution for the cotton bollworm moth, Helicoverpa armigera, a globally invasive pest of agriculture. We show that methylation is almost identical in the larvae and adults of H. armigera and that, through whole-genome bisulfite sequencing (WGBS, at the most ∼0.9% of CpG sites in this species are methylated. We find that DNA methylation occurs primarily in exons, is positively correlated with gene expression, and that methylated genes are enriched for cellular “housekeeping” roles. H. armigera has an exceptional capacity for long-range migration. To explore the role of methylation in influencing the migratory phenotype of H. armigera, we performed targeted bisulfite sequencing on selected loci from 16 genes that were differentially expressed between adult moths exhibiting distinct flight performance in behavioral assays. While most CpG sites in these genes were not methylated between flight phenotypes, we identified hypermethylation in a demethylase (KDM4 that targets lysine-specific histone modifications, which are strongly associated with transcription and methylation. The H. armigera methylome provides new insights into the role of DNA methylation in a noctuid moth and is a valuable resource for further research into the epigenetic control of adaptive traits in this important pest.

  9. Identification and characterization of a POU transcription factor in the cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhang Tian-Yi

    2009-03-01

    Full Text Available Abstract Background The POU family genes containing the POU domain are common in vertebrates and invertebrates and play critical roles in cell-type-specific gene expression and cell fate determination. Results Har-POU, a new member of the POU gene family, was cloned from the suboesophageal ganglion of Helicoverpa armigera (Har, and its potential functions in the development of the central nervous system (CNS were analyzed. Southern blot analysis suggests that a single copy of this gene is present in the H. armigera haploid genome. Har-POU mRNA is distributed widely in various tissues and expressed highly in the CNS, salivary gland, and trachea. In vitro-translated Har-POU specifically bound canonical octamer motifs on the promoter of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN gene in H. armigera. Expression of the Har-POU gene is markedly higher in the CNS of nondiapause-destined pupae than in diapause-destined pupae. Expression of the Har-POU gene in diapausing pupae was upregulated quickly by injection of ecdysone. Conclusion Har-POU may respond to ecdysone and bind to the promoter of DH-PBAN gene to regulate pupal development in H. armigera.

  10. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera

    Science.gov (United States)

    2014-01-01

    Background The cotton bollworm, Helicoverpa armigera is one of the most important crop pests worldwide. It has developed high levels of resistance to synthetic insecticides, and hence, Bacillus thuringiensis (Bt) formulations are used as a safer pesticide and the Bt genes have been deployed in transgenic crops for controlling this pest. There is an apprehension that H. armigera might develop resistance to transgenic crops in future. Therefore, we studied the role of gut microbes by eliminating them with antibiotics in H. armigera larvae on the toxicity of Bt toxins against this pest. Results Commercial formulation of Bt (Biolep®) and the pure Cry1Ab and Cry1Ac toxin proteins were evaluated at ED50, LC50, and LC90 dosages against the H. armigera larvae with and without antibiotics (which removed the gut microbes). Lowest H. armigera larval mortality due to Bt formulation and the Bt toxins Cry1Ab and Cry1Ac was recorded in insects reared on diets with 250 and 500 μg ml−1 diet of each of the four antibiotics (gentamicin, penicillin, rifampicin, and streptomycin), while the highest larval mortality was recorded in insects reared on diets without the antibiotics. Mortality of H. armigera larvae fed on diets with Bt formulation and the δ-endotoxins Cry1Ab and Cry1Ac was inversely proportional to the concentration of antibiotics in the artificial diet. Nearly 30% reduction in larval mortality was observed in H. armigera larvae from F1 to F3 generation when the larvae were reared on diets without antibiotics (with gut microbes) and fed on 0.15% Bt or 12 μg Cry1Ab or Cry1Ac ml−1 diet, indicating development of resistance to Bt in the presence of gut microflora. However, there were no differences in larval mortality due to Bt, Cry1Ab or Cry1Ac across generations in insects when they were reared on diets with 250 μg of each antibiotic ml−1 diet (without gut microflora). Conclusions The results suggested that antibiotics which eliminated gut microflora

  11. A sugar gustatory receptor identified from the foregut of cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Xu, Wei; Zhang, Hui-Jie; Anderson, Alisha

    2012-12-01

    Helicoverpa armigera (Hübner) is one of the most polyphagous and cosmopolitan pest species, the larvae of which feed on numerous important crops. The gustatory system is critical in guiding insect feeding behavior. Here, we identified a gustatory receptor from H. armigera, HaGR9, which shows high levels of identity to DmGR43a from Drosophila melanogaster and BmGR9 from Bombyx mori. Reverse transcriptase PCR (RT-PCR) revealed HaGR9 is highly expressed in larval foregut, with little or no expression in other chemosensory tissues. Membrane topology studies indicated that, like two previously studied B. mori GRs, BmGR8 and BmGR53, HaGR9 has an inverted topology relative to G protein-coupled receptors (GPCRs), an intracellular N-terminus and an extracellular C-terminus. Calcium imaging studies confirmed HaGR9 is a sugar receptor showing dose-dependent responses to D-galactose, D-maltose, and D-fructose. This highly-expressed foregut-specific gustatory receptor may contribute to the regulation of larval feeding behavior.

  12. Organophosphate and pyrethroid hydrolase activities of mutant Esterases from the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Li, Yongqiang; Farnsworth, Claire A; Coppin, Chris W; Teese, Mark G; Liu, Jian-Wei; Scott, Colin; Zhang, Xing; Russell, Robyn J; Oakeshott, John G

    2013-01-01

    Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran) which each confer organophosphate (OP) hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes' active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4-6 fold increase in activity (more in one case) of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively.

  13. Organophosphate and pyrethroid hydrolase activities of mutant Esterases from the cotton bollworm Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Yongqiang Li

    Full Text Available Two mutations have been found in five closely related insect esterases (from four higher Diptera and a hymenopteran which each confer organophosphate (OP hydrolase activity on the enzyme and OP resistance on the insect. One mutation converts a Glycine to an Aspartate, and the other converts a Tryptophan to a Leucine in the enzymes' active site. One of the dipteran enzymes with the Leucine mutation also shows enhanced activity against pyrethroids. Introduction of the two mutations in vitro into eight esterases from six other widely separated insect groups has also been reported to increase substantially the OP hydrolase activity of most of them. These data suggest that the two mutations could contribute to OP, and possibly pyrethroid, resistance in a variety of insects. We therefore introduced them in vitro into eight Helicoverpa armigera esterases from a clade that has already been implicated in OP and pyrethroid resistance. We found that they do not generally enhance either OP or pyrethroid hydrolysis in these esterases but the Aspartate mutation did increase OP hydrolysis in one enzyme by about 14 fold and the Leucine mutation caused a 4-6 fold increase in activity (more in one case of another three against some of the most insecticidal isomers of fenvalerate and cypermethrin. The Aspartate enzyme and one of the Leucine enzymes occur in regions of the H. armigera esterase isozyme profile that have been previously implicated in OP and pyrethroid resistance, respectively.

  14. The seesaw effect of winter temperature change on the recruitment of cotton bollworms Helicoverpa armigera through mismatched phenology.

    Science.gov (United States)

    Reddy, Gadi V P; Shi, Peijian; Hui, Cang; Cheng, Xiaofei; Ouyang, Fang; Ge, Feng

    2015-12-01

    Knowing how climate change affects the population dynamics of insect pests is critical for the future of integrated pest management. Rising winter temperatures from global warming can drive increases in outbreaks of some agricultural pests. In contrast, here we propose an alternative hypothesis that both extremely cold and warm winters can mismatch the timing between the eclosion of overwintering pests and the flowering of key host plants. As host plants normally need higher effective cumulative temperatures for flowering than insects need for eclosion, changes in flowering time will be less dramatic than changes in eclosion time, leading to a mismatch of phenology on either side of the optimal winter temperature. We term this the "seesaw effect." Using a long-term dataset of the Old World cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in northern China, we tested this seesaw hypothesis by running a generalized additive model for the effects of the third generation moth in the preceding year, the winter air temperature, the number of winter days below a critical temperature and cumulative precipitation during winter on the demography of the overwintering moth. Results confirmed the existence of the seesaw effect of winter temperature change on overwintering populations. Pest management should therefore consider the indirect effect of changing crop phenology (whether due to greenhouse cultivation or to climate change) on pest outbreaks. As arthropods from mid- and high latitudes are actually living in a cooler thermal environment than their physiological optimum in contrast to species from lower latitudes, the effects of rising winter temperatures on the population dynamics of arthropods in the different latitudinal zones should be considered separately. The seesaw effect makes it more difficult to predict the average long-term population dynamics of insect pests at high latitudes due to the potential sharp changes in annual growth rates

  15. Molecular Characterization and Function Analysis of the Vitellogenin Receptor from the Cotton Bollworm, Helicoverpa armigera (Hübner) (Lepidoptera, Noctuidae).

    Science.gov (United States)

    Zhang, Wanna; Ma, Long; Xiao, Haijun; Xie, Bingtang; Smagghe, Guy; Guo, Yuyuan; Liang, Gemei

    2016-01-01

    Developing oocytes accumulate plentiful yolk protein during oogenesis through receptor-mediated endocytosis. The vitellogenin receptor (VgR), belonging to the low-density lipoprotein receptor (LDLR) family, regulates the absorption of yolk protein. In this work, the full-length vitellogenin receptor (HaVgR) in the cotton bollworm Helicoverpa armigera was identified, encoding a 1817 residue protein. Sequence alignment revealed that the sequence of HaVgR contained all of the conservative structural motifs of LDLR family members, and phylogenetic analysis indicated that HaVgR had a high identity among Lepidoptera and was distinct from that of other insects. Consistent with other insects, HaVgR was specifically expressed in ovarian tissue. The developmental expression pattern showed that HaVgR was first transcribed in the newly metamorphosed female adults, reached a peak in 2-day-old adults and then declined. Western blot analysis also revealed an ovarian-specific and developing expression pattern, which was consistent with the HaVgR mRNA transcription. Moreover, RNAi-mediated HaVgR knockdown strongly reduced the VgR expression in both the mRNA and protein levels, which inhibited the yolk protein deposition in the ovaries, led to the dramatic accumulation of vitellogenin and the up-regulation of HaVg expression in hemolymph, and eventually resulted in a declined fecundity. Together, all of these findings demonstrate that HaVgR is a specific receptor in uptake and transportation of yolk protein for the maturation of oocytes and that it plays a critical role in female reproduction.

  16. Cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae): Large scale rearing and the effect of gamma radiation on selected life history parameters of this pest in China

    International Nuclear Information System (INIS)

    Lu Daguang; Liu Xiaohui; Hu Jiangguo; Wang Endong; He Qiulan; Li Yongjun

    2002-01-01

    Effective large scale rearing of the cotton bollworm, Helicoverpa armigera (Huebner), has been developed in China. A 'celled unit' system was developed to replace the traditional test tube for cotton bollworm laboratory rearing. Larvae are reared at 26.5 deg. C, ∼ 70% RH, and a long day photoperiod of 14L:10D. Pupae are harvested at about day 20. Percent adult emergence is between 89-93%, and adult females lay an average of 768 eggs. Under this rearing system one generation is completed in 40-42 days and percent pupation is about 66-71%. Mature Helicoverpa armigera female and male pupae were treated with different doses of gamma radiation and out-crossed with untreated mates. Mating ability of both sexes was not affected by radiation. Treated females were highly sterile and laid significantly fewer eggs than untreated controls. Females treated with 300 Gy were completely sterile, while females treated with 250 Gy and 200 Gy still had minimal residual fertility. (author)

  17. Broad-scale suppression of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), associated with Bt cotton crops in Northern New South Wales, Australia.

    Science.gov (United States)

    Baker, G H; Tann, C R

    2017-04-01

    The cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996-2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.

  18. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Zheng, J; Tian, K; Yuan, Y; Li, M; Qiu, X

    2017-02-01

    20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.

  19. Laboratory testing and molecular analysis of the resistance of wild and cultivated soybeans to cotton bollworm, Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Xiaoyi Wang

    2015-02-01

    Full Text Available Identifying a superior soybean variety with high defoliator resistance is important to avoid yield loss. Cotton bollworm (Helicoverpa armigera Hübner is one of the major defoliators of soybean (Glycine max [L.] Merr. worldwide. In this study, we evaluated the effect of H. armigera larvae on ED059, a wild soybean (Glycine soja Sieb. et Zucc., and three cultivated soybean varieties: Tianlong 2, PI 535807, and PI 533604, in choice and no-choice assays. The percentage of ED059 leaflets consumed by H. armigera was lower than that of the three cultivated soybeans. Larvae that fed on ED059 exhibited low weight gain and high mortality rate. Waldbauer nutritional indices suggested that ED059 reduced the growth, consumption, and frass production of H. armigera larvae. Larvae that fed on ED059 showed lower efficiency of conversion of ingested and of digested food than those that fed on Tianlong 2 and PI 533604. However, they showed statistically similar consumption index and approximate digestibility compared with those fed on the three cultivated soybeans. Quantitative real-time PCR analysis revealed that 24 h after insect attack, ED059 had higher transcript levels of Kunitz trypsin inhibitor 3, Cysteine proteinase inhibitor 2, and Nerolidol synthase 1 but a lower transcript level of Pathogenesis-related protein 1 than Tianlong 2. The gene expression results were consistent with the presence of higher levels of jasmonic acid (JA and transcript levels of the JA biosynthesis enzyme allene oxide cyclase 3 in ED059 than in Tianlong 2. Our findings indicate that ED059 is a superior soybean line with strong insect resistance that may be mediated via the JA pathway.

  20. Effect of larvae treated with mixed biopesticide Bacillus thuringiensis-abamectin on sex pheromone communication system in cotton bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Shen, Li-Ze; Chen, Peng-Zhou; Xu, Zhi-Hong; Deng, Jian-Yu; Harris, Marvin-K; Wanna, Ruchuon; Wang, Fu-Min; Zhou, Guo-Xin; Yao, Zhang-Liang

    2013-01-01

    Third instar larvae of the cotton bollworm (Helicoverpa armigera) were reared with artificial diet containing a Bacillus thuringiensis-abamectin (BtA) biopesticide mixture that resulted in 20% mortality (LD20). The adult male survivors from larvae treated with BtA exhibited a higher percentage of "orientation" than control males but lower percentages of "approaching" and "landing" in wind tunnel bioassays. Adult female survivors from larvae treated with BtA produced higher sex pheromone titers and displayed a lower calling percentage than control females. The ratio of Z-11-hexadecenal (Z11-16:Ald) and Z-9-hexadecenal (Z9-16:Ald) in BtA-treated females changed and coefficients of variation (CV) of Z11-16:Ald and Z9-16:Ald were expanded compared to control females. The peak circadian calling time of BtA-treated females occurred later than that of control females. In mating choice experiment, both control males and BtA-treated males preferred to mate with control females and a portion of the Bt-A treated males did not mate whereas all control males did. Our Data support that treatment of larvae with BtA had an effect on the sex pheromone communication system in surviving H. armigera moths that may contribute to assortative mating.

  1. Isolation and characterization of gut bacterial proteases involved in inducing pathogenicity of Bacillus thuringiensis toxin in cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Visweshwar Regode

    2016-10-01

    Full Text Available Bacillus thuringiensis (Bt toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation towards pro-Cry1Ac. Among twelve gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2 and IVS3 were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2 and IVS3 isolates were purified to 11.90-, 15.50- and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40 oC. Maximum inhibition of total proteolytic activity was exerted by PMSF followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65 and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity towards H. armigera. The gut bacterial isolates IVS1, IVS2 and IVS3 showed homology with Bacillus thuringiensis (CP003763.1, Vibrio fischeri (CP000020.2 and Escherichia coli (CP011342.1, respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of Bt protoxin and play a major role in inducing pathogenicity of Bt toxins in H. armigera.

  2. Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Huang, Jian; Li, Jing

    2015-07-01

    Climate change significantly affects insects' behaviors. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in the world. Much is known about the survival of the overwintering population and spring emergence of H. armigera. However, little is known about the effects of climate change on overwintering and spring emergence of H. armigera. This study investigated the effects of changes of air and soil temperatures and precipitation on overwintering pupae of H. armigera by analyzing historical data from Magaiti County in northwest China using statistical methods. The results showed that during the period of 1989-2006, the climate warming advanced the first-appearance date of overwintering pupae eclosion (FD) and end date of overwintering pupae eclosion (ED) by 1.276 and 0.193 days per year, respectively; the duration between the FD and ED (DFEPE) was prolonged by 1.09 days per year, which resulted in more eclosion of overwintering pupae. For a 1 °C increase in the maximum air temperature ( T max) in winter, the FD became earlier by 3.234 days. Precipitation in winter delayed the FD and ED and produced little relative influence on DFEPE. A 1-mm increase of precipitation in winter delayed the FD and ED by 0.850 and 0.494 days, respectively. Mean air temperature ( T mean) in March, with a 41.3 % relative influence, precipitation in winter, with a 49.0 % relative influence, and T mean in March, with a 37.5 % relative influence, were the major affecting factors on FD, ED, and DFEPE, respectively. T max in February with a 53.0 % relative influence was the major affecting factor on the mortality of overwintering pupae (MOP). Increased soil temperatures in October and November and autumn and air temperatures in winter could decrease the MOP, though the relative influences were lower than T max in February. Increased precipitation in winter increased the MOP, but the relative influence was only 4.2 % because of little precipitation

  3. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Gianni Q.; Arthur, Valter, E-mail: ghaddad2001@yahoo.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Laboratório de Radiobiologia e Ambiente; Machi, André R., E-mail: rica_machi@hotmail.com [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  4. Gamma radiation for all phases of life cycle of cotton bollworm Helicoverpa armigera aiming at its control

    International Nuclear Information System (INIS)

    Haddad, Gianni Q.; Arthur, Valter

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (SIT), this insect control method traditionally uses ionizing radiations to sterilize insects, being a technique that does not generate residue, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within IPM programs, to overcome the resistance of chemical products, such as: reducing residues of pesticides. For some important crops of our country, we have a wide spectrum of pests occurring from beginning to end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars among them Helicoverpa armigera. Due to this the objective this study was establishes doses of gamma radiation to sterilizing of the phases of : eggs, larvae, pupae and adults of H. armigera aiming their control. The experiment was carried out with application of gamma radiation from a Cobalt-60 source. The treatments consisted of doses of gamma radiation varying of according with the insect phase, being this variation of: 0 (control) to 400 Gy. The experiments with pupae and adult phases showed satisfactory results in the sterilization of H. armigera for use in autocide control programs. The sterilize dose to adult and pupae phase were 400 Gy and 100 Gy respectively, being the best doses for the application of the sterile insect technique to this pest in cotton. (author)

  5. Genomics and genetic engineering of Helicoverpa armigera nucleopolyhedrovirus

    NARCIS (Netherlands)

    Chen, X.

    2001-01-01

    The single nucleocapsid nucleopolyhedrovirus (SNPV) of the bollworm Helicoverpa armigera has been extensively used to control this insect around the world, especially in China. However, in order to compete with chemical insecticides - mainly for speed of action -novel

  6. Geographic variation in diapause induction and termination of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Chen, Yuan-Sheng; Chen, Chao; He, Hai-Min; Xia, Qin-Wen; Xue, Fang-Sen

    2013-09-01

    Overwintering diapause in Helicoverpa armigera, a multivoltine species, is controlled by response to photoperiod and temperature. Photoperiodic responses from 5 different geographical populations showed that the variation in critical photoperiod for diapause induction was positively related to the latitudinal origin of the populations at 20, 22 and 25°C. Diapause response to photoperiod and temperature was quite different between northern and southern populations, being highly sensitive to photoperiod in northern populations and temperature dependence in southern populations. Diapause pupae from southern population showed a significantly shorter diapause duration than from northern-most populations when they were cultured at 20, 22, 25, 28 and 31°C; by contrast, overwintering pupae from southern populations emerged significantly later than from northern populations when they were maintained in natural conditions, showing a clinal latitudinal variation in diapause termination. Diapause-inducing temperature had a significant effect on diapause duration, but with a significant difference between southern and northern populations. The higher rearing temperature of 22°C evoked a more intense diapause than did 20°C in northern populations; but a less intense diapause in southern population. Cold exposure (chilling) is not necessary to break the pupal diapause. The higher the temperature, the quicker the diapause terminated. Response of diapause termination to chilling showed that northern populations were more sensitive to chilling than southern population. All results demonstrate that H. armigera is not genetically homogeneous throughout its range, but rather is composed of distinct populations genetically adapted to local environmental conditions despite the potential for gene flow via seasonal migration of adults. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Zhuoya Zhao

    2016-07-01

    Full Text Available Crystal (Cry proteins derived from Bacillus thuringiensis (Bt have been widely used in transgenic crops due to their toxicity against insect pests. However, the distribution and metabolism of these toxins in insect tissues and organs have remained obscure because the target insects do not ingest much toxin. In this study, several Cry1Ac-resistant strains of Helicoverpa armigera, fed artificial diets containing high doses of Cry1Ac toxin, were used to investigate the distribution and metabolism of Cry1Ac in their bodies. Cry1Ac was only detected in larvae, not in pupae or adults. Also, Cry1Ac passed through the midgut into other tissues, such as the hemolymph and fat body, but did not reach the larval integument. Metabolic tests revealed that Cry1Ac degraded most rapidly in the fat body, followed by the hemolymph, peritrophic membrane and its contents. The toxin was metabolized slowly in the midgut, but was degraded in all locations within 48 h. These findings will improve understanding of the functional mechanism of Bt toxins in target insects and the biotransfer and the bioaccumulation of Bt toxins in arthropod food webs in the Bt crop ecosystem.

  8. Experience-based mediation of feeding and oviposition behaviors in the cotton bollworm: Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Hu, Pu; Li, Hui-Ling; Zhang, Hong-Fei; Luo, Qian-Wen; Guo, Xian-Ru; Wang, Gao-Ping; Li, Wei-Zheng; Yuan, Guohui

    2018-01-01

    Experience is well known to affect sensory-guided behaviors in many herbivorous insects. Here, we investigated the effects of natural feeding experiences of Helicoverpa armigera larvae on subsequent preferences of larval approaching and feeding, as well as the effect of host-contacting experiences of mated females on subsequent ovipositional preference. The results show that the extent of experience-induced preference, expressed by statistical analysis, depended on the plant species paired with the experienced host plant. Larval feeding preference was much easier to be induced by natural feeding experience than larval approaching preference. Naïve larvae, reared on artificial diet, exhibited clear host-ranking order as follows: tobacco ≥ cotton > tomato > hot pepper. Feeding experiences on hot pepper and tobacco could always induce positive feeding preference, while those on cotton often induced negative effect, suggesting that the direction of host plant experience-induced preference is not related to innate feeding preference. Inexperienced female adults ranked tobacco as the most preferred ovipositional host plant, and this innate preference could be masked or weakened but could not be reversed by host-contacting experience after emergence.

  9. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera

    Science.gov (United States)

    2011-01-01

    Background Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har) undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH), we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. Results We constructed two SSH libraries (forward, F and reverse, R) to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. Conclusion Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation. PMID:21569297

  10. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Xu Wei-Hua

    2011-05-01

    Full Text Available Abstract Background Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH, we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. Results We constructed two SSH libraries (forward, F and reverse, R to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. Conclusion Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.

  11. Battle in the New World: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae)

    Science.gov (United States)

    2016-01-01

    The corn earworm Helicoverpa zea (Boddie) and the old world bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are allopatric species and occur in important agricultural crops. In maize, both species tend to infest the ear. The introduction of H. armigera in Brazil has created a new scenario, where these Helicoverpa species might cohabit and interact with one another, affecting the prevalence of each species in the agroecosystem, integrated pest management, and insect resistance management. In this study, larval occurrence and proportion of these species in maize was assessed in three regions of Brazil during three crop seasons. Interaction between the species was evaluated in interspecific and intraspecific scenarios under laboratory and field conditions. Helicoverpa zea was predominant in Rio Grande do Sul and the Planaltina, DF (central Brazil). In western Bahia, H. zea was predominant in the first collection, but approximately equal in number to H armigera in the second crop season. Both species exhibit high cannibalism/predation rates, and larval size was the primary factor for larval survival in the interaction studies. Larva of H. zea had higher survival when interacting with H. armigera, indicating that H. zea has an advantage in intraguild interactions with H. armigera in maize. Overall, the results from this study indicate that maize might play a role as a source of infestation or a sink of insecticide or Bt protein unselected H. armigera populations, depending on the H. zea:H. armigera intraguild competition and adult movement in the landscape. PMID:27907051

  12. Battle in the New World: Helicoverpa armigera versus Helicoverpa zea (Lepidoptera: Noctuidae.

    Directory of Open Access Journals (Sweden)

    José P F Bentivenha

    Full Text Available The corn earworm Helicoverpa zea (Boddie and the old world bollworm Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae are allopatric species and occur in important agricultural crops. In maize, both species tend to infest the ear. The introduction of H. armigera in Brazil has created a new scenario, where these Helicoverpa species might cohabit and interact with one another, affecting the prevalence of each species in the agroecosystem, integrated pest management, and insect resistance management. In this study, larval occurrence and proportion of these species in maize was assessed in three regions of Brazil during three crop seasons. Interaction between the species was evaluated in interspecific and intraspecific scenarios under laboratory and field conditions. Helicoverpa zea was predominant in Rio Grande do Sul and the Planaltina, DF (central Brazil. In western Bahia, H. zea was predominant in the first collection, but approximately equal in number to H armigera in the second crop season. Both species exhibit high cannibalism/predation rates, and larval size was the primary factor for larval survival in the interaction studies. Larva of H. zea had higher survival when interacting with H. armigera, indicating that H. zea has an advantage in intraguild interactions with H. armigera in maize. Overall, the results from this study indicate that maize might play a role as a source of infestation or a sink of insecticide or Bt protein unselected H. armigera populations, depending on the H. zea:H. armigera intraguild competition and adult movement in the landscape.

  13. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  14. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers.

    Science.gov (United States)

    Behere, Gajanan Tryambak; Tay, Wee Tek; Russell, Derek Alan; Kranthi, Keshav Raj; Batterham, Philip

    2013-01-01

    Helicoverpa armigera is an important pest of cotton and other agricultural crops in the Old World. Its wide host range, high mobility and fecundity, and the ability to adapt and develop resistance against all common groups of insecticides used for its management have exacerbated its pest status. An understanding of the population genetic structure in H. armigera under Indian agricultural conditions will help ascertain gene flow patterns across different agricultural zones. This study inferred the population genetic structure of Indian H. armigera using five Exon-Primed Intron-Crossing (EPIC)-PCR markers. Nested alternative EPIC markers detected moderate null allele frequencies (4.3% to 9.4%) in loci used to infer population genetic structure but the apparently genome-wide heterozygote deficit suggests in-breeding or a Wahlund effect rather than a null allele effect. Population genetic analysis of the 26 populations suggested significant genetic differentiation within India but especially in cotton-feeding populations in the 2006-07 cropping season. In contrast, overall pair-wise F(ST) estimates from populations feeding on food crops indicated no significant population substructure irrespective of cropping seasons. A Baysian cluster analysis was used to assign the genetic make-up of individuals to likely membership of population clusters. Some evidence was found for four major clusters with individuals in two populations from cotton in one year (from two populations in northern India) showing especially high homogeneity. Taken as a whole, this study found evidence of population substructure at host crop, temporal and spatial levels in Indian H. armigera, without, however, a clear biological rationale for these structures being evident.

  15. Effects of soil temperature and snow cover on the mortality of overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Huang, Jian

    2016-07-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is one of the most damaging insect pests in the world. However, little is known about the effects of snow cover and soil temperature on the overwintering pupae of H. armigera. A field experiment was conducted from November 2, 2012 to April 24, 2013 at the agrometeorological experimental station in Wulanwusu, China. Overwintering pupae were embedded into the soil at depths of 5, 10, and 15 cm in the following four treatments: without snow cover, snow cover, and increased temperatures from 600 and 1200 W infrared lights. The results showed that snow cover and rising temperatures could all markedly increase soil temperatures, which was helpful in improving the survival of the overwintering pupae of H. armigera. The mortality of overwintering pupae (MOP) at a depth of 15 cm was the highest, and the MOP at a depth of 5 cm followed. The lower accumulated temperature (≤0 °C) (AT ≤ °C) led to the higher MOP, and the lower diurnal soil temperature range (DSTR) likely led to the lower MOP. After snowmelt, the MOPs at the depths of 5 and 10 cm increased as the soil temperature increased, especially in April. The AT of the soil (≤0 °C) was the factor with the strongest effect on MOP. The soil moisture content was not a major factor affecting the MOP in this semiarid region because precipitation was 45 mm over the entire experimental period. With climate warming, the MOP will likely decrease, and the overwintering boundary air temperatures of H. armigera should be expanded due to higher soil temperatures and increased snow cover.

  16. Natural control of Helicoverpa armigera in smallholder crops in East Africa

    NARCIS (Netherlands)

    Berg, van den H.

    1993-01-01

    The African bollworm, Helicoverpa (=Heliothis) armigera , is one of the worst agricultural pests in Africa, attacking a variety of food and cash crops. For development of sustainable pest management, it is essential to study the ecology and natural

  17. Crystal structure of a novel Mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera

    NARCIS (Netherlands)

    Estebanez-Perpica, E.; Bayes, A.; Vendrell, J.; Jongsma, M.A.; Bown, D.P.; Gatehouse, J.A.; Bode, W.; Huber, R.; Aviles, F.X.; Reverter, D.

    2001-01-01

    The cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in Australia, India and China. The larva causes substantial economical losses to legume, fibre, cereal oilseed and vegetable crops. This pest has proven to be difficult to control by

  18. Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity

    Science.gov (United States)

    Diverse midgut cadherin mutations confer resistance to Cry1A toxins in at least three lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Most of these cadherin mutations are inherited as recessive alleles and result in changes within the cadherin repeat (CR) regions of the extr...

  19. Isomer-specific comparisons of the hydrolysis of synthetic pyrethroids and their fluorogenic analogues by esterases from the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Yuan, G; Li, Y; Farnsworth, C A; Coppin, C W; Devonshire, A L; Scott, C; Russell, R J; Wu, Y; Oakeshott, J G

    2015-06-01

    The low aqueous solubility and chiral complexity of synthetic pyrethroids, together with large differences between isomers in their insecticidal potency, have hindered the development of meaningful assays of their metabolism and metabolic resistance to them. To overcome these problems, Shan and Hammock (2001) [7] therefore developed fluorogenic and more water-soluble analogues of all the individual isomers of the commonly used Type 2 pyrethroids, cypermethrin and fenvalerate. The analogues have now been used in several studies of esterase-based metabolism and metabolic resistance. Here we test the validity of these analogues by quantitatively comparing their hydrolysis by a battery of 22 heterologously expressed insect esterases with the hydrolysis of the corresponding pyrethroid isomers by these esterases in an HPLC assay recently developed by Teese et al. (2013) [14]. We find a strong, albeit not complete, correlation (r = 0.7) between rates for the two sets of substrates. The three most potent isomers tested were all relatively slowly degraded in both sets of data but three esterases previously associated with pyrethroid resistance in Helicoverpa armigera did not show higher activities for these isomers than did allelic enzymes derived from susceptible H. armigera. Given their amenability to continuous assays at low substrate concentrations in microplate format, and ready detection of product, we endorse the ongoing utility of the analogues in many metabolic studies of pyrethroids. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera.

    Science.gov (United States)

    Benelli, Giovanni; Govindarajan, Marimuthu; Rajeswary, Mohan; Vaseeharan, Baskaralingam; Alyahya, Sami A; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Maggi, Filippo

    2018-02-01

    The fast-growing resistance development to several synthetic and microbial insecticides currently marketed highlighted the pressing need to develop novel and eco-friendly pesticides. Among the latter, botanical ones are attracting high research interest due to their multiple mechanisms of action and reduced toxicity on non-target vertebrates. Helicoverpa armigera (Lepidoptera: Noctuidae) is a key polyphagous insect pest showing insecticide resistance to several synthetic molecules used for its control. Therefore, here we focused on the rhizome essential oil extracted from an overlooked Asian plant species, Cheilocostus speciosus (J. Konig) C. Specht (Costaceae), as a source of compounds showing ingestion toxicity against H. armigera third instar larvae, as well as ovicidal toxicity. In acute larvicidal assays conducted after 24h, the C. speciosus essential oil achieved a LC 50 value of 207.45µg/ml. GC and GC-MS analyses highlighted the presence of zerumbone (38.6%), α-humulene (14.5%) and camphene (9.3%) as the major compounds of the oil. Ingestion toxicity tests carried out testing these pure molecules showed LC 50 values of 10.64, 17.16 and 20.86µg/ml, for camphene, zerumbone and α-humulene, respectively. Moreover, EC 50 values calculated on H. armigera eggs were 35.39, 59.51 and 77.10µg/ml for camphene, zerumbone and α-humulene, respectively. Overall, this study represents the first report on the toxicity of C. speciosus essential oil against insect pests of agricultural and medical veterinary importance, highlighting that camphene, zerumbone and α-humulene have a promising potential as eco-friendly botanical insecticides. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Biological activity and field efficacy of a genetically modified Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus expressing an insect-selective toxin from a chimeric promoter

    NARCIS (Netherlands)

    Sun, X.; Wang, H.; Sun, X.C.; Chen Xinwen,; Peng, C.; Pan, D.; Jehle, J.A.; Werf, van der W.; Vlak, J.M.; Hu, Z.

    2004-01-01

    A recombinant baculovirus (HaSNPV-AaIT) with improved insecticidal properties was constructed for the control of the cotton bollworm (Helicoverpa armigera). A chimeric promoter of the p6.9 and polyhedrin gene of H. armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV) was used to drive the

  2. Perspective of using the sterile insect technique for Tobacco Budworms Heliothis virescens (Lepidoptera: Noctuidae) and Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton crop as an alternative method of control

    International Nuclear Information System (INIS)

    Haddad, Gianni Queiroz

    2017-01-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1. (author)

  3. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  4. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae in Brazil.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    Full Text Available The highly polyphagous Old World cotton bollworm Helicoverpa armigera is a quarantine agricultural pest for the American continents. Historically H. armigera is thought to have colonised the American continents around 1.5 to 2 million years ago, leading to the current H. zea populations on the American continents. The relatively recent species divergence history is evident in mating compatibility between H. zea and H. armigera under laboratory conditions. Despite periodic interceptions of H. armigera into North America, this pest species is not believed to have successfully established significant populations on either continent. In this study, we provide molecular evidence via mitochondrial DNA (mtDNA cytochrome oxidase I (COI and cytochrome b (Cyt b partial gene sequences for the successful recent incursion of H. armigera into the New World, with individuals being detected at two sites (Primavera do Leste, Pedra Preta within the State of Mato Grosso in Brazil. The mtDNA COI and Cyt b haplotypes detected in the Brazilian H. armigera individuals are common throughout the Old World, thus precluding identification of the founder populations. Combining the two partial mtDNA gene sequences showed that at least two matrilines are present in Brazil, while the inclusion of three nuclear DNA Exon-Primed Intron-Crossing (EPIC markers identified a further two possible matrilines in our samples. The economic, biosecurity, resistance management, ecological and evolutionary implications of this incursion are discussed in relation to the current agricultural practices in the Americas.

  5. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil.

    Science.gov (United States)

    Tay, Wee Tek; Soria, Miguel F; Walsh, Thomas; Thomazoni, Danielle; Silvie, Pierre; Behere, Gajanan T; Anderson, Craig; Downes, Sharon

    2013-01-01

    The highly polyphagous Old World cotton bollworm Helicoverpa armigera is a quarantine agricultural pest for the American continents. Historically H. armigera is thought to have colonised the American continents around 1.5 to 2 million years ago, leading to the current H. zea populations on the American continents. The relatively recent species divergence history is evident in mating compatibility between H. zea and H. armigera under laboratory conditions. Despite periodic interceptions of H. armigera into North America, this pest species is not believed to have successfully established significant populations on either continent. In this study, we provide molecular evidence via mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) partial gene sequences for the successful recent incursion of H. armigera into the New World, with individuals being detected at two sites (Primavera do Leste, Pedra Preta) within the State of Mato Grosso in Brazil. The mtDNA COI and Cyt b haplotypes detected in the Brazilian H. armigera individuals are common throughout the Old World, thus precluding identification of the founder populations. Combining the two partial mtDNA gene sequences showed that at least two matrilines are present in Brazil, while the inclusion of three nuclear DNA Exon-Primed Intron-Crossing (EPIC) markers identified a further two possible matrilines in our samples. The economic, biosecurity, resistance management, ecological and evolutionary implications of this incursion are discussed in relation to the current agricultural practices in the Americas.

  6. Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.

    Science.gov (United States)

    Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming

    2010-08-01

    Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.

  7. Perspective of using the sterile insect technique for Tobacco Budworms Heliothis virescens (Lepidoptera: Noctuidae) and Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton crop as an alternative method of control; Perspectiva de utilizacao da Tecnica do Inseto Esteril para lagarta da maca Heliothis virescens (Lepidoptera: Noctuidae) e lagarta do velho mundo Helicoverpa armigera (Lepidoptera: Noctuidae) na cultura do algodoeiro como um metodo alternativo de controle

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Gianni Queiroz

    2017-07-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1. (author)

  8. Hybridization between Helicoverpa armigera and Helicoverpa assulta (Lepidoptera: Noctuidae): development and morphological characterization of F1 hybrids

    NARCIS (Netherlands)

    Zhao, X.C.; Dong, J.F.; Tang, Q.B.; Yan, Q.B.; Celbic, I.; Loon, van J.J.A.; Wang, C.Z.

    2005-01-01

    Reciprocal hybridizations between Helicoverpa armigera (Hubner) and Helicoverpa assulta (Guenee) were studied. The cross between females of H. armigera and males of H. assulta yielded only fertile males and sterile individuals lacking an aedeagus, valva or ostium bursae. A total of 492 larvae of the

  9. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    OpenAIRE

    Cui, J.J.; Luo, J.Y.; Werf, van der, W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was c...

  10. Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages

    DEFF Research Database (Denmark)

    Hassanpour, Mehdi; Mohaghegh, Jafar; Iranipour, Shahzad

    2011-01-01

    Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa...... armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs....... For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate...

  11. The Spread of Helicoverpa armigera (Lepidoptera: Noctuidae and Coexistence with Helicoverpa zea in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Fábio A. Pinto

    2017-09-01

    Full Text Available Helicoverpa armigera, one of the world’s most destructive crop pests, was first documented in Brazil in 2013. Within a few months, this polyphagous insect had spread over the Northeast and Central-West of Brazil, causing great agricultural losses. With several reports of populations resistant to pesticides and Bt crops around the world, there is great concern about the spread of this pest in Brazil. There is confusion about the actual distribution of this species due to the high morphological similarity with the native corn earworm Helicoverpa zea, which may also coexist with H. armigera in the field. Our aims here were (i to confirm its presence in the State of Minas Gerais, one of the most important agricultural regions in the country; and (ii to assess the co-occurrence of this pest with the congeneric corn earworm H. zea. Using molecular screening, we confirmed the presence of H. armigera in Bt-crops of soybean and cotton, and non-Bt-crops of soybean, cotton and maize. Mixed infestations of H. armigera with H. zea were found in non-Bt maize (Viçosa, Southeastern Minas Gerais. These results highlight the need for adequate control strategies for H. armigera in Brazil, to deal with its polyphagous feeding habits, high dispersal capacity and possible risks of hybridization with congeneric species.

  12. Morphological Characterization of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae).

    Science.gov (United States)

    Queiroz-Santos, L; Casagrande, M M; Specht, A

    2018-02-15

    The cotton bollworm Helicoverpa armigera (Hübner) is a widespread lepidopteran pest found in various crops worldwide. This highly polyphagous species, commonly found both in the Old and New World, has caused significant economic damage as an invasive agricultural pest in Brazil since 2013. The goal of the present study is to provide a detailed morphological assessment of adults and immature stages of H. armigera, as this species is often confused with H. zea (Boddie), a congeneric species that is native to the New World. The biology data were acquired during four full life cycles, and observations on general behavior, nocturnal habits of larvae and adults, and sensitivity of larvae to humidity were recorded. Larval chaetotaxy differs between the first and the remaining instars, which bear L2 on the meso- and metathorax and L3 on A3 through A6, along with conspicuous chalazae and longitudinal bands. Important morphological characters of this species include the following: eggs with four micropylar openings, lined with 12 cells arranged in the shape of a rosette; pupa adecticous and obtect, with prominent spiracles; adults with the distal antennomere striate. Adults exhibit sexual dimorphism in the number of setae on the frenulum and spines on the prothoracic leg. Illustrations of the critical morphological features of this species are provided.

  13. Host Plant Induced Variation in Gut Bacteria of Helicoverpa armigera

    Science.gov (United States)

    Gayatri Priya, Natarajan; Ojha, Abhishek; Kajla, Mayur K.; Raj, Anand; Rajagopal, Raman

    2012-01-01

    Helicoverpa are important polyphagous agricultural insect pests and they have a worldwide distribution. In this study, we report the bacterial community structure in the midgut of fifth instar larvae of Helicoverpa armigera, a species prevalent in the India, China, South Asia, South East Asia, Southern & Eastern Africa and Australia. Using culturable techniques, we isolated and identified members of Bacillus firmus, Bacillus niabense, Paenibacillus jamilae, Cellulomonas variformis, Acinetobacter schindleri, Micrococcus yunnanesis, Enterobacter sp., and Enterococcus cassiliflavus in insect samples collected from host plants grown in different parts of India. Besides these the presence of Sphingomonas, Ralstonia, Delftia, Paracoccus and Bacteriodetes was determined by culture independent molecular analysis. We found that Enterobacter and Enterococcus were universally present in all our Helicoverpa samples collected from different crops and in different parts of India. The bacterial diversity varied greatly among insects that were from different host plants than those from the same host plant of different locations. This result suggested that the type of host plant greatly influences the midgut bacterial diversity of H. armigera, more than the location of the host plant. On further analyzing the leaf from which the larva was collected, it was found that the H. armigera midgut bacterial community was similar to that of the leaf phyllosphere. This finding indicates that the bacterial flora of the larval midgut is influenced by the leaf surface bacterial community of the crop on which it feeds. Additionally, we found that laboratory made media or the artificial diet is a poor bacterial source for these insects compared to a natural diet of crop plant. PMID:22292034

  14. Host plant induced variation in gut bacteria of Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Natarajan Gayatri Priya

    Full Text Available Helicoverpa are important polyphagous agricultural insect pests and they have a worldwide distribution. In this study, we report the bacterial community structure in the midgut of fifth instar larvae of Helicoverpa armigera, a species prevalent in the India, China, South Asia, South East Asia, Southern & Eastern Africa and Australia. Using culturable techniques, we isolated and identified members of Bacillus firmus, Bacillus niabense, Paenibacillus jamilae, Cellulomonas variformis, Acinetobacter schindleri, Micrococcus yunnanesis, Enterobacter sp., and Enterococcus cassiliflavus in insect samples collected from host plants grown in different parts of India. Besides these the presence of Sphingomonas, Ralstonia, Delftia, Paracoccus and Bacteriodetes was determined by culture independent molecular analysis. We found that Enterobacter and Enterococcus were universally present in all our Helicoverpa samples collected from different crops and in different parts of India. The bacterial diversity varied greatly among insects that were from different host plants than those from the same host plant of different locations. This result suggested that the type of host plant greatly influences the midgut bacterial diversity of H. armigera, more than the location of the host plant. On further analyzing the leaf from which the larva was collected, it was found that the H. armigera midgut bacterial community was similar to that of the leaf phyllosphere. This finding indicates that the bacterial flora of the larval midgut is influenced by the leaf surface bacterial community of the crop on which it feeds. Additionally, we found that laboratory made media or the artificial diet is a poor bacterial source for these insects compared to a natural diet of crop plant.

  15. Genomic sequencing and analyses of HearMNPV—a new Multinucleocapsid nucleopolyhedrovirus isolated from Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Tang Ping

    2012-08-01

    Full Text Available Abstract Background HearMNPV, a nucleopolyhedrovirus (NPV, which infects the cotton bollworm, Helicoverpa armigera, comprises multiple rod-shaped nucleocapsids in virion(as detected by electron microscopy. HearMNPV shows a different host range compared with H. armigera single-nucleocapsid NPV (HearSNPV. To better understand HearMNPV, the HearMNPV genome was sequenced and analyzed. Methods The morphology of HearMNPV was observed by electron microscope. The qPCR was used to determine the replication kinetics of HearMNPV infectious for H. armigera in vivo. A random genomic library of HearMNPV was constructed according to the “partial filling-in” method, the sequence and organization of the HearMNPV genome was analyzed and compared with sequence data from other baculoviruses. Results Real time qPCR showed that HearMNPV DNA replication included a decreasing phase, latent phase, exponential phase, and a stationary phase during infection of H. armigera. The HearMNPV genome consists of 154,196 base pairs, with a G + C content of 40.07%. 162 putative ORFs were detected in the HearMNPV genome, which represented 90.16% of the genome. The remaining 9.84% constitute four homologous regions and other non-coding regions. The gene content and gene arrangement in HearMNPV were most similar to those of Mamestra configurata NPV-B (MacoNPV-B, but was different to HearSNPV. Comparison of the genome of HearMNPV and MacoNPV-B suggested that HearMNPV has a deletion of a 5.4-kb fragment containing five ORFs. In addition, HearMNPV orf66, bro genes, and hrs are different to the corresponding parts of the MacoNPV-B genome. Conclusions HearMNPV can replicate in vivo in H. armigera and in vitro, and is a new NPV isolate distinguished from HearSNPV. HearMNPV is most closely related to MacoNPV-B, but has a distinct genomic structure, content, and organization.

  16. Gossypol toxicity and detoxification in Helicoverpa armigera and Heliothis virescens.

    Science.gov (United States)

    Krempl, Corinna; Heidel-Fischer, Hanna M; Jiménez-Alemán, Guillermo Hugo; Reichelt, Michael; Menezes, Riya Christina; Boland, Wilhelm; Vogel, Heiko; Heckel, David G; Joußen, Nicole

    2016-11-01

    Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil

    Science.gov (United States)

    Tay, Wee Tek; Walsh, Thomas K.; Downes, Sharon; Anderson, Craig; Jermiin, Lars S.; Wong, Thomas K. F.; Piper, Melissa C.; Chang, Ester Silva; Macedo, Isabella Barony; Czepak, Cecilia; Behere, Gajanan T.; Silvie, Pierre; Soria, Miguel F.; Frayssinet, Marie; Gordon, Karl H. J.

    2017-03-01

    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports.

  18. Influence of CO2 and Temperature on Metabolism and Development of Helicoverpa armigera (Noctuidae: Lepidoptera).

    Science.gov (United States)

    Akbar, S Md; Pavani, T; Nagaraja, T; Sharma, H C

    2016-02-01

    Climate change will have a major bearing on survival and development of insects as a result of increase in CO2 and temperature. Therefore, we studied the direct effects of CO2 and temperature on larval development and metabolism in cotton bollworm, Helicoverpa armigera (Hübner). The larvae were reared under a range of CO2 (350, 550, and 750 ppm) and temperature (15, 25, 35, and 45°C) regimes on artificial diet. Elevated CO2 negatively affected the larval survival, larval weight, larval period, pupation, and adult emergence, but showed a positive effect on pupal weight, pupal period, and fecundity. Increase in temperature exhibited a negative effect on larval survival, larval period, pupal weights, and pupal period, but a positive effect on larval growth. Pupation and adult emergence were optimum at 25°C. Elevated CO2 and temperature increased food consumption and metabolism of larvae by enhancing the activity of midgut proteases, carbohydrases (amylase and cellulase), and mitochondrial enzymes and therefore may cause more damage to crop production. Elevated CO2 and global warming will affect insect growth and development, which will change the interactions between the insect pests and their crop hosts. Therefore, there is need to gain an understanding of these interactions to develop strategies for mitigating the effects of climate change. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Receptor neuron discrimination of the germacrene D enantiomers in the moth Helicoverpa armigera.

    Science.gov (United States)

    Stranden, M; Borg-Karlson, A-K; Mustaparta, H

    2002-02-01

    Plants release complex mixtures of volatiles, including chiral constituents. In the search for the biologically relevant plant odorants, gas chromatography linked to electrophysiological recordings from single receptor neurons has been employed. In heliothine moths, including the females of the Eurasian cotton bollworm moth Helicoverpa armigera, a major type of receptor neurons is identified, showing high sensitivity and selectivity for the sesquiterpene germacrene D. In the present study, gas chromatography with a chiral column linked to single cell recordings were performed. It was found that all germacrene D neurons belonged to one type; all responded to both enantiomers, but (-)-germacrene D had approximately 10 times stronger effect than (+)-germacrene D. Parallel dose-response curves for the two enantiomers were obtained by direct stimulations. The enantiomeric composition of germacrene D, which differed in six plant species and in different individuals of one species, was determined on the basis of the neuron responses. The results, showing the presence of one neuron type for receiving the information about germacrene D in the various plants, suggests that the two enantiomers mediate the same kind of information to the moth, but with different intensity.

  20. Lethal and sublethal effects of cantharidin on the life history traits and population parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Khan, Rashid A; Rashid, Maryam; Wang, Dun; Zhang, Ya-Lin

    2014-01-01

    The cotton bollworm, Helicoverpa armigera (Hübner), is a serious and cosmopolitan pest of many economic crops. Its control has not been adequate owing to its resistance to many groups of insecticides. Toxicity of cantharidin on armyworm and diamondback moth has already been reported. However, its toxicity on H. armigera has not been investigated previously. In this study, lethal and sublethal effects of cantharidin on H. armigera under laboratory conditions are reported. Results showed gross abnormalities in the population parameters of H. armigera, ranging from larvae to adults. Reduction in larval weight and wing malformation were observed in the cantharidin-treated population cohort, and higher mortality at the larval, pupal and adult stages was observed in cantharidin-treated H. armigera compared with the control. Moreover, almost 5 times less fecundity was recorded in the treated population cohort. Fertility was also severely affected, and reduction in all population parameters was observed. Cantharidin caused larval mortality and other serious abnormalities in H. armigera population parameters, and therefore may have positive implications for pest management decision-making process. More interestingly, the experiment revealed that cantharidin in sublethal dose mimicked insect growth regulator insecticides. Furthermore, cantharidin could be used as a precursor compound for the synthesis of new analogues and compounds to replace ineffective older compounds. © 2013 Society of Chemical Industry.

  1. Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway.

    Directory of Open Access Journals (Sweden)

    Huijuan Guo

    Full Text Available Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2 levels. We tested the hypothesis that elevated CO(2 would reduce resistance (i.e., the ability to prevent damage but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2 reduced resistance by decreasing the jasmonic acid (JA level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2. Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height was also reduced by elevated CO(2. Under ambient CO(2, the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype plants, but elevated CO(2 reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2 will simultaneously reduce the resistance and tolerance of tomato plants.

  2. Hybridization between Helicoverpa armigera and Helicoverpa assulta (Lepidoptera: Noctuidae): development and morphological characterization of F1 hybrids

    Czech Academy of Sciences Publication Activity Database

    Zhao, X. C.; Dong, J. F.; Tang, Q. B.; Yan, Y. H.; Gelbič, Ivan; Van Loon, J. J. A.; Wang, C. Z.

    2005-01-01

    Roč. 95, č. 5 (2005), s. 409-416 ISSN 0007-4853 Grant - others:Chinese Academy of Sciences(CN) KSCX2-SW-105; Major State Basic Research Project of China(CN) 2000016208; National Natural Science Foundation of China(CN) 30330100 Institutional research plan: CEZ:AV0Z50070508 Keywords : Helicoverpa armigera * Helicoverpa assulta * Noctuidae Subject RIV: ED - Physiology Impact factor: 1.333, year: 2005

  3. Baseline Susceptibility of Field Populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa Toxin and Lack of Cross-Resistance between Vip3Aa and Cry Toxins

    Directory of Open Access Journals (Sweden)

    Yiyun Wei

    2017-04-01

    Full Text Available The cotton bollworm Helicoverpa armigera (Hübner is one of the most damaging cotton pests worldwide. In China, control of this pest has been dependent on transgenic cotton producing a single Bacillus thuringiensis (Bt protein Cry1Ac since 1997. A small, but significant, increase in H. armigera resistance to Cry1Ac was detected in field populations from Northern China. Since Vip3Aa has a different structure and mode of action than Cry proteins, Bt cotton pyramids containing Vip3Aa are considered as ideal successors of Cry1Ac cotton in China. In this study, baseline susceptibility of H. armigera to Vip3Aa was evaluated in geographic field populations collected in 2014 from major cotton-producing areas of China. The LC50 values of 12 field populations ranged from 0.053 to 1.311 μg/cm2, representing a 25-fold range of natural variation among populations. It is also demonstrated that four laboratory strains of H. armigera with high levels of resistance to Cry1Ac or Cry2Ab have no cross-resistance to Vip3Aa protein. The baseline susceptibility data established here will serve as a comparative reference for detection of field-evolved resistance to Vip3Aa in H. armigera after future deployment of Bt cotton pyramids in China.

  4. Molecular Identification of Helicoverpa armigera (Lepidoptera: Noctuidae: Heliothinae) in Argentina and Development of a Novel PCR-RFLP Method for its Rapid Differentiation From H. zea and H. gelotopoeon.

    Science.gov (United States)

    Arneodo, Joel D; Balbi, Emilia I; Flores, Fernando M; Sciocco-Cap, Alicia

    2015-12-01

    Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae) is among the most voracious global pests of agriculture. Adults of this species were identified recently in northern Argentina by dissection of male genitalia. In this work, a rapid and simple molecular tool was designed to distinguish H. armigera from the morphologically similar indigenous bollworms Helicoverpa zea (Boddie) and Helicoverpa gelotopoeon (Dyar), regardless of the life stage. Amplification of partial COI gene with a new primer pair, and subsequent digestion with endonuclease HinfI, yielded different RFLP profiles for the three main Helicoverpa pests currently present in South America. The method was validated in Helicoverpa specimens collected across Argentina, whose identity was further corroborated by COI sequencing and phylogenetic analysis. The data reported here constitute the first molecular confirmation of this pest in the country. The survey revealed the occurrence of H. armigera in northern and central Argentina, including the main soybean- and maize-producing area. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  6. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  7. Functional validation of cadherin as a receptor of Bt toxin Cry1Ac in Helicoverpa armigera utilizing the CRISPR/Cas9 system.

    Science.gov (United States)

    Wang, Jing; Zhang, Haonan; Wang, Huidong; Zhao, Shan; Zuo, Yayun; Yang, Yihua; Wu, Yidong

    2016-09-01

    Cadherins have been identified as receptors of Bacillus thuringiensis (Bt) Cry1A toxins in several lepidopteran insects including the cotton bollworm, Helicoverpa armigera. Disruption of the cadherin gene HaCad has been genetically linked to resistance to Bt toxin Cry1Ac in H. armigera. By using the CRISPR/Cas9 genome editing system (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), HaCad from the Cry1Ac-susceptible SCD strain of H. armigera was successfully knocked out. A single positive CRISPR event with a frame shift deletion of 4 nucleotides was identified and made homozygous to create a knockout line named SCD-Cad. Western blotting confirmed that HaCad was no longer expressed in the SCD-Cad line while an intact HaCad of 210 kDa was present in the parental SCD strain. Insecticide bioassays were used to show that SCD-Cad exhibited 549-fold resistance to Cry1Ac compared with SCD, but no significant change in susceptibility to Cry2Ab. Our results not only provide strong reverse genetics evidence for HaCad as a functional receptor of Cry1Ac, but also demonstrate that the CRISPR/Cas9 technique can act as a powerful and efficient genome editing tool to study gene function in a global agricultural pest, H. armigera. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Functional analysis of two inhibitor of apoptosis (iap) orthologs from Helicoverpa armigera nucleopolyhedrovirus

    NARCIS (Netherlands)

    Liang, Ch.Y.; Lange, de J.; Chen, X.W.; Oers, van M.M.; Vlak, J.M.; Westenberg, M.

    2012-01-01

    Baculoviruses induce apoptotic responses in cultured insect cells, which can severely limit viral replication. To overcome this host response baculoviruses carry anti-apoptotic genes, including members of the p35 and inhibitor of apoptosis (iap) gene families. The baculovirus Helicoverpa armigera

  9. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae in the New World.

    Directory of Open Access Journals (Sweden)

    Todd M Gilligan

    Full Text Available The Old World bollworm, Helicoverpa armigera (Hübner, and the corn earworm, H. zea (Boddie, are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2 amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  10. A droplet digital PCR (ddPCR) assay to detect Helicoverpa armigera (Lepidoptera: Noctuidae) in bulk trap samples

    Science.gov (United States)

    Moths in the genus Helicoverpa are some of the most important agricultural pests in the world. Two species, H. armigera (Hübner) and H. zea (Boddie), cause the majority of damage to crops and millions of dollars are spent annually on control of these pests. The recent introduction of H. armigera int...

  11. Trichogramma chilotraeae PARASITOID TELUR Helicoverpa armigera (Hubner PADA POPULASI INANG RENDAH

    Directory of Open Access Journals (Sweden)

    - Sujak

    2011-03-01

    Full Text Available Helicoverpa armigera Hubner is an insect pest of corn and cotton crops. Eggs are laid by  H. armigera imago on corn silk and cotton crops often have high mortality, mainly caused by egg parasitoid. H. armigera egg on various agroecosystem reported can  be parasited by at least 12 species of  Trichogrammatidae. The purpose of this study was to determine the diversity of  Trichogrammatidae family as  parasitoid eggs of  H. armigera on  low population. H. armigera egg sample taken from Asembagus, Lamongan and Blora at 1 m2 field  both monoculture and intercropping. Observation of parasitoids and predators  done at the Laboratory of Biological Control Balittas Malang. Parasitoid that appears preserved in the Hoyer medium for identification purposes. low population of  H. armigera Egg in Asembagus is  4 eggs/m2 in both monoculture maize and intercropping with 86-100 days after transplanting (DAT cotton and  4.5 egg/m2 on cotton monoculture and intercropping with 75  DAT soybean, while 2 eggs/m2 in the Lamongan and Blora corn agroecosystem. The dominant egg parasitoid in Asembagus is T. chilotraea, as well as in Lamongan and Blora.

  12. The effects of radiation on the biology and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Ramos Ocampo, V.; Leon, J.B. de

    2002-01-01

    The effect of irradiating male Helicoverpa armigera with a substerilizing dose (100 Gy) of gamma radiation on the growth, development and reproduction of subsequent generations was studied in the laboratory. This dose of gamma radiation had no significant detrimental effects on larval and pupal weights or on the duration of the pupal period in the F 1 progeny. However, it lengthened the duration of the larval period by two days. In the F 2 generation, the progeny of the Tf 1 FxTf 1 M cross had significantly lighter pupae. The effects of this substerilizing dose of radiation and of the resulting inherited sterility on the reproduction of Helicoverpa armigera were similar to those described for other species of Lepidoptera. No detrimental effects on P 1 and F 1 female fecundity were recorded. Crosses involving Tf 1 females laid only about one half the number of eggs laid by the controls, however the range in the number of eggs laid by these females fell within the normal range for Helicoverpa armigera. Fertility of crosses involving P 1 males was greatly affected; fertility in these females was only 61% of that exhibited by the controls. This deleterious effect was inherited in the F 1 and F 2 generations and was maximally expressed when F 1 progeny of the NFxTM cross were inbred. Egg hatch was almost completely inhibited in sibling crosses while outcrosses of the F 1 progeny showed a 64-70% reduction in egg hatch when compared to controls. (author)

  13. Performance of Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae larvae in different food sources

    Directory of Open Access Journals (Sweden)

    Crislaine Sartori Suzana

    2015-12-01

    Full Text Available Recently observed in Brazil, Helicoverpa armigera became a relevant pest due to its rapid spread and the economic importance of crops in which it has established, such as soybean and maize. Understanding its establishment process in different regions and production systems, as well as the population dynamics of a polyphagous pest, as the basis for its management, depends on the knowledge of the effect of plant species as food sources on the pest biology. A laboratory experiment was conducted, supplying the caterpillars with reproductive organs of soybean, maize, canola, black oat, oat, turnip and ryegrass. It was concluded that the different food sources affect the larval development of H. armigera. Maize and wheat ears and canola siliques are the best food sources for the development of H. armigera. Ryegrass ears, on the other hand, are the worst ones. Black oat and oat panicles and turnip siliques are less suitable than soybean pods as food sources for the caterpillars.

  14. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV, Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus. RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm.

  15. A Novel Neurotoxin Gene ar1b Recombination Enhances the Efficiency of Helicoverpa armigera Nucleopolyhedrovirus as a Pesticide by Inhibiting the Host Larvae Ability to Feed and Grow.

    Science.gov (United States)

    Yu, Huan; Meng, Jiao; Xu, Jian; Liu, Tong-Xian; Wang, Dun

    2015-01-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV), Ar1b-HearNPV, was constructed and identified as an improved bio-control agent of Helicoverpa armigera larvae. The HearNPV polyhedrin promoter was used to express the insect-specific neurotoxin gene, ar1b, which was originally isolated from the Australian funnel-web spider (Atrax robustus). RT-PCR and Western blotting analysis showed that both the ar1b transcript and protein were produced successfully in Ar1b-HearNPV-infected HzAM1 cells. In order to investigate the influence of foreign gene insertion in HearNPV, including the ar1b gene, chloramphenicol resistance gene, lacZ, kanamycin resistance gene, and the gentamicin resistance gene, two virus strains (HZ8-HearNPV and wt-HearNPV) were used as controls in the cell transfection analysis. As expected, foreign gene insertion had no impact on budded virus production and viral DNA replication. Both optical microscopy and electron microscopy observations indicated that the formation of the occlusion bodies of recombinant virus was similar to wild type virus. The Ar1b-HearNPV-infected H. armigera larvae exhibited paralysis and weight loss before dying. This recombinant virus also showed a 32.87% decrease in LT50 assays compared with the wild type virus. Besides, Ar1b-HearNPV also inhibited host larval growth and diet consumption. This inhibition was still significant in the older instar larvae treated with the recombinant virus. All of these positive properties of this novel recombinant HearNPV provide a further opportunity to develop this virus strain into a commercial product to control the cotton bollworm.

  16. Microbial agents against Helicoverpa armigera: Where are we and ...

    African Journals Online (AJOL)

    SAM

    2014-04-30

    Apr 30, 2014 ... crop production, and these have a role in controlling H. armigera. ... crop production. The situation still exists and is crucial to manage them due to the rising populations. Malnourish- ment due to scarcity of food and feed is a major problem ..... especially antibiotics, insecticides and pigments, due to.

  17. Combining Tpi and CO1 Genetic Markers to Discriminate Invasive Helicoverpa armigera From Local Helicoverpa zea (Lepidoptera: Noctuidae) Populations in the Southeastern United States.

    Science.gov (United States)

    Nagoshi, Rodney N; Gilligan, Todd M; Brambila, Julieta

    2016-10-01

    The recent establishment of the Old World pest Helicoverpa armigera (Hübner) into South America has had significant economic consequences and places the rest of the hemisphere at risk, emphasizing the need for improved methods of monitoring. A major complication is that a sibling species endemic to the New World, Helicoverpa zea (Boddie), is morphologically very similar, with the two species capable of producing fertile hybrids in the laboratory. The consequences of such hybridization in the field are uncertain, but could result in significant and unpredictable changes in the timing, range, and pesticide susceptibilities of Helicoverpa infestations. The objective here is to provide new genetic resources applicable to Helicoverpa populations in northern Florida and neighboring states (a region at risk for H. armigera) that can distinguish the two species and possible hybrids. The genetic variability in segments of the mitochondrial cytochrome oxidase 1 (CO1) and the Z-linked triosephosphate isomerase (Tpi) genes were determined for H. zea from the southeastern United States. These were compared to DNA sequences from H. armigera specimens from Morocco, Australia, and Europe. Phylogenetic network analysis showed a clear demarcation between the two species for all gene segments. These results extend earlier studies establishing CO1 as marker for discriminating the Helicoverpa species complex and introduce a new sex-linked genomic marker. The CO1 and Tpi markers in combination provide a more accurate and sensitive method than existing techniques for identifying hybridization between H. zea and H. armigera and could potentially be used to extrapolate the likely source of invasive H. armigera populations. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.

  18. Assimilatory potential of Helicoverpa armigera reared on host (Chickpea) and nonhost (Cassia tora) diets.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; Gupta, Vidya S; Slade, Susan E; Giri, Ashok P

    2011-11-04

    Adaptation to plant allelochemicals is a crucial aspect of herbivore chemical ecology. To understand an insect ecology, we studied an effect of nonhost Cassia tora seed-based diet (Ct) on growth, development, and molecular responses in Helicoverpa armigera. We employed a comparative approach to investigate the proteomic differences in gut, hemolymph, and frass of H. armigera reared on a normal (chickpea seed-based, Cp) and Ct diet. In this study, a total of 46 proteins were identified by nano-LC-MS(E). Among them, 17 proteins were up-regulated and 29 proteins were down-regulated when larvae were exposed to the Ct diet. Database searches combined with GO analysis revealed that gut proteases engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification were down-regulated in the Ct fed larvae. Proteins identified in H. armigera hemolymph were found to be involved in defense mechanisms. Moreover, proteins found in frass of the Ct fed larvae were observed to participate in energy metabolism. Biochemical and quantitative real-time PCR analysis of selected candidate proteins showed differential gene expression patterns and corroborated with the proteomic data. Our results suggest that the Ct diet could alter expression of proteins related to digestion, absorption of nutrients, adaptation, defense mechanisms, and energy metabolism in H. armigera.

  19. Characterisation and inhibition studies of Helicoverpa armigera (Hübner) gut α-amylase.

    Science.gov (United States)

    Kaur, Rimaljeet; Gupta, Anil K; Taggar, Gaurav K

    2015-09-01

    The survival of a devastating pest, Helicoverpa armigera, is mainly dependent on the availability of α-amylase. Therefore, characterising H. armigera α-amylase and targeting it with effective inhibitors could aid in reducing its damaging effects. H. armigera gut possessed four isozymes of α-amylase. The molecular weight of the major purified isozyme ranged from 79 to 81 kDa. The purified enzyme was identified to be α-amylase on the basis of products formed from starch. The optimum pH and temperature were 10.0 and 50 °C respectively. The activation energy was 5.7 kcal mol(-1) . The enzyme showed high activity with starch and amylopectin, whereas dextrins were poor substrates. The Michaelis constant Km with starch, amylose and amylopectin was 0.45, 1.23 and 0.11 mg mL(-1) respectively. ZnSO4 , FeSO4 , CuSO4 , citric acid, oxalic acid and salicylic acid were potent inhibitors. ZnSO4 , salicylic acid and pigeonpea α-amylase inhibitor (∼21.0 kDa) acted primarily as competitive inhibitors, FeSO4 and citric acid displayed mainly anticompetitive behaviour, while CuSO4 and oxalic acid behaved mainly as non-competitive inhibitors. The identification of effective ecofriendly inhibitors could help in managing H. armigera infestation. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.

  20. SUSCETIBILIDADE DE Helicoverpa armigera Hübner A FORMULADOS À BASE DE Bacillus thuringiensis BERLINER

    Directory of Open Access Journals (Sweden)

    Victor Luiz de Souza Lima

    2017-01-01

    Full Text Available O inseto Helicoverpa armigera recentemente registrado no Brasil é uma das maiores pragas da agricultura mundial. Pode atacar mais de 200 espécies de plantas e possui populações resistentes a diversos inseticidas. A utilização de microrganismos com potencial patogênico contra insetos é uma alternativa aos inseticidas. Essa pesquisa foi realizada com o objetivo de determinar a suscetibilidade de lagartas de H. armigera à produtos formulados à base de Bacillus thuringiensis (Bt Para os experimentos, foram utilizados os produtos comerciais Dipel® e Agree®, os quais tiveram sua concentração ajustada para 108 conídios viáveis ml-1. Essa concentração foi aplicada sobre dieta artificial, a qual foi colocada em uma placa de Petri que continha 10 lagartas de primeiro instar. Foram realizadas cinco repetições para cada produto. As avaliações foram feitas a cada 24h durante sete dias. Os produtos comerciais Dipel® e Agree® causaram, respectivamente, 100% e 94% de mortalidade das lagartas de H. armigera. Esse resultado mostra o potencial de produtos à base de Bt sobre H. armigera.

  1. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions.

    Science.gov (United States)

    Cui, Jinjie; Luo, Junyu; Van Der Werf, Wopke; Ma, Yan; Xia, Jingyuan

    2011-04-01

    Transgenic cotton (Cossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects, the CrylAc gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in conferring resistance to cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), was studied in laboratory and field experiments. In each experiment, performance of Bt+CpTI cotton was compared with Bt cotton and to a conventional nontransgenic variety. Larval survival was lower on both types of transgenic variety, compared with the conventional cotton. Survival of first-, second-, and third-stage larvae was lower on Bt+CpTI cotton than on Bt cotton. Plant structures differed in level of resistance, and these differences were similar on Bt and Bt + CpTI cotton. Likewise, seasonal trends in level of resistance in different plant structures were similar in Bt and Bt+CpTI cotton. Both types of transgenic cotton interfered with development of sixth-stage larvae to adults, and no offspring was produced by H. armigera that fed on Bt or Bt+CpTI cotton from the sixth stage onward. First-, second-, and third-stage larvae spent significantly less time feeding on transgenic cotton than on conventional cotton, and the reduction in feeding time was significantly greater on Bt+CpTI cotton than on Bt cotton. Food conversion efficiency was lower on transgenic varieties than on conventional cotton, but there was no significant difference between Bt and Bt+CpTI cotton. In 3-yr field experimentation, bollworm densities were greatly suppressed on transgenic as compared with conventional cotton, but no significant differences between Bt and Bt+CpTI cotton were found. Overall, the results from laboratory work indicate that introduction of the CpTI gene in Bt cotton raises some components of resistance in cotton against H. armigera, but enhanced control of H. armigera under field

  2. Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera.

    Science.gov (United States)

    Ghosh, Gourab; Ganguly, Shreeparna; Purohit, Arnab; Chaudhuri, Rituparna Kundu; Das, Sampa; Chakraborti, Dipankar

    2017-07-01

    Independent transgenic pigeonpea events were developed using two cry genes. Transgenic Cry2Aa-pigeonpea was established for the first time. Selected transgenic events demonstrated 100% mortality of Helicoverpa armigera in successive generations. Lepidopteran insect Helicoverpa armigera is the major yield constraint of food legume pigeonpea. The present study was aimed to develop H. armigera-resistant transgenic pigeonpea, selected on the basis of transgene expression and phenotyping. Agrobacterium tumefaciens-mediated transformation of embryonic axis explants of pigeonpea cv UPAS 120 was performed using two separate binary vectors carrying synthetic Bacillus thuringiensis insecticidal crystal protein genes, cry1Ac and cry2Aa. T 0 transformants were selected on the basis of PCR and protein expression profile. T 1 events were exclusively selected on the basis of expression and monogenic character for cry, validated through Western and Southern blot analyses, respectively. Independently transformed 12 Cry1Ac and 11 Cry2Aa single-copy events were developed. The level of Cry-protein expression in T 1 transgenic events was 0.140-0.175% of total soluble protein. Expressed Cry1Ac and Cry2Aa proteins in transgenic pigeonpea exhibited significant weight loss of second-fourth instar larvae of H. armigera and ultimately 80-100% mortality in detached leaf bioassay. Selected Cry-transgenic pigeonpea events, established at T 2 generation, inherited insect-resistant phenotype. Immunohistofluorescence localization in T 3 plants demonstrated constitutive accumulation of Cry1Ac and Cry2Aa in leaf tissues of respective transgenic events. This study is the first report of transgenic pigeonpea development, where stable integration, effective expression and biological activity of two Cry proteins were demonstrated in subsequent three generations (T 0 , T 1, and T 2 ). These studies will contribute to biotechnological breeding programmes of pigeonpea for its genetic improvement.

  3. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac) and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton

    Science.gov (United States)

    Luo, Jun-Yu; Zhang, Shuai; Peng, Jun; Zhu, Xiang-Zhen; Lv, Li-Min; Wang, Chun-Yi; Li, Chun-Hua; Zhou, Zhi-Guo; Cui, Jin-Jie

    2017-01-01

    An increasing area of transgenic Bacillus thuringiensis (Bt) cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW) Helicoverpa armigera (Hübner) in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac) and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]). We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels. PMID:28099508

  4. Effects of Soil Salinity on the Expression of Bt Toxin (Cry1Ac and the Control Efficiency of Helicoverpa armigera in Field-Grown Transgenic Bt Cotton.

    Directory of Open Access Journals (Sweden)

    Jun-Yu Luo

    Full Text Available An increasing area of transgenic Bacillus thuringiensis (Bt cotton is being planted in saline-alkaline soil in China. The Bt protein level in transgenic cotton plants and its control efficiency can be affected by abiotic stress, including high temperature, water deficiency and other factors. However, how soil salinity affects the expression of Bt protein, thus influencing the control efficiency of Bt cotton against the cotton bollworm (CBW Helicoverpa armigera (Hübner in the field, is poorly understood. Our objective in the present study was to investigate the effects of soil salinity on the expression of Bt toxin (Cry1Ac and the control efficiency of Helicoverpa armigera in field-grown transgenic Bt cotton using three natural saline levels (1.15 dS m-1 [low soil-salinity], 6.00 dS m-1 [medium soil-salinity] and 11.46 dS m-1 [high soil-salinity]. We found that the Bt protein content in the transgenic Bt cotton leaves and the insecticidal activity of Bt cotton against CBW decreased with the increasing soil salinity in laboratory experiments during the growing season. The Bt protein content of Bt cotton leaves in the laboratory were negatively correlated with the salinity level. The CBW populations were highest on the Bt cotton grown in medium-salinity soil instead of the high-salinity soil in field conditions. A possible mechanism may be that the relatively high-salinity soil changed the plant nutritional quality or other plant defensive traits. The results from this study may help to identify more appropriate practices to control CBW in Bt cotton fields with different soil salinity levels.

  5. Open reading frame 122 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus encodes a novel structurual protein of occlusion-derived virions

    NARCIS (Netherlands)

    Long, G.; Chen Xinwen,; Peters, D.; Vlak, J.M.; Hu, Z.

    2003-01-01

    Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) and its closely related variant H. zea SNPV (HzSNPV) contain 20 open reading frames (ORFs) unique among baculoviruses. In this report, the function of HaSNPV ORF 122 (Ha122) is investigated. Ha122 was transcribed as a

  6. Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals

    NARCIS (Netherlands)

    Zhou, D.; Loon, van J.J.A.; Wang, C.Z.

    2010-01-01

    Behavioral and electrophysiological responses of larvae of the polyphagous moth species Helicoverpa armigera to two plant-derived allelochemicals were studied, both in larvae that had been reared on a diet devoid of these compounds and in larvae previously exposed to these compounds. In dual-choice

  7. The potential distribution of invading Helicoverpa armigera in North America: is it just a matter of time?

    Directory of Open Access Journals (Sweden)

    Darren J Kriticos

    Full Text Available Helicoverpa armigera has recently invaded South and Central America, and appears to be spreading rapidly. We update a previously developed potential distribution model to highlight the global invasion threat, with emphasis on the risks to the United States. The continued range expansion of H. armigera in Central America is likely to change the invasion threat it poses to North America qualitatively, making natural dispersal from either the Caribbean islands or Mexico feasible. To characterise the threat posed by H. armigera, we collated the value of the major host crops in the United States growing within its modelled potential range, including that area where it could expand its range during favourable seasons. We found that the annual value of crops that would be exposed to H. armigera totalled approximately US$78 billion p.a., with US$843 million p.a. worth growing in climates that are optimal for the pest. Elsewhere, H. armigera has developed broad-spectrum pesticide resistance; meaning that if it invades the United States, protecting these crops from significant production impacts could be challenging. It may be cost-effective to undertake pre-emptive biosecurity activities such as slowing the spread of H. armigera throughout the Americas, improving the system for detecting H. armigera, and methods for rapid identification, especially distinguishing between H. armigera, H. zea and potential H. armigera x H. zea hybrids. Developing biological control programs, especially using inundative techniques with entomopathogens and parasitoids could slow the spread of H. armigera, and reduce selective pressure for pesticide resistance. The rapid spread of H. armigera through South America into Central America suggests that its spread into North America is a matter of time. The likely natural dispersal routes preclude aggressive incursion responses, emphasizing the value of preparatory communication with agricultural producers in areas suitable for

  8. Characterization of the metabolic transformation of thiamethoxam to clothianidin in Helicoverpa armigera larvae by SPE combined UPLC-MS/MS and its relationship with the toxicity of thiamethoxam to Helicoverpa armigera larvae.

    Science.gov (United States)

    Fan, Yinjun; Shi, Xueyan

    2017-09-01

    In order to characterize the metabolic transformation of thiamethoxam (TMX) to clothianidin (CLO) in Helicoverpa armigera larvae and clarify its relationship with the insecticidal toxicity of TMX, method for determination of TMX and its metabolite clothianidin (CLO) residues in H. armigera larvae by solid phase extraction (SPE) combined UPLC-MS/MS was established. Following acetonitrile extraction and purification by SPE on florisil cartridge and C 18 cartridge sequently, and cleanup by PSA adsorption, TMX and CLO residues in H. armigera larvae were successfully determined by UPLC-MS/MS. By using the established method, the concentration-time curves of TMX and its metabolite CLO in H. armigera larvae in vivo and metabolism of TMX by microsome of H. armigera larvae midguts in vitro were studied. TMX was quickly eliminated from H. armigera larvae with the elimination half-life as 4.2h. Meanwhile, only a small amount of CLO was formed from TMX metabolism, with the maximum CLO level in H. armigera larvae only accounts for the metabolic transformation of 7.99% of TMX, at 10h after intravenous TMX administration. Our results suggested that the low insecticidal efficacy of TMX against H. armigera larvae was related with the rapidly elimination of TMX from H. armigera larvae, meanwhile, CLO as TMX metabolite at a very low level in vivo didn't contribute to TMX toxicity to H. armigera larvae. In H. armigera larvae, TMX didn't act as proinsecticide for CLO in insecticidal efficacy of TMX. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Age and density of eggs of Helicoverpa armigera influence on Trichogramma pretiosum parasitism

    Directory of Open Access Journals (Sweden)

    Vitor Zuim

    2017-11-01

    Full Text Available This study evaluated the parasitism of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae on eggs of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae at different ages and densities. The rates of parasitism and emergence, the number of parasitoids emerged per egg and sex ratio of offspring were evaluated in both experiments. Eggs of H. armigera up to 36 hours provided greater parasitism and emergence of adults compared to eggs up to 60 hours old. The number of parasitoids, which emerged per host egg, was greater than one and the sex ratio remained around 80% of females, regardless of the egg development stage. Females of T. pretiosum responded with superior rates of parasitism, emergence and number of parasitoids per egg at the densities of 20 and 25 eggs of H. armigera. These results indicate that T. pretiosum parasite with superior performance in eggs of up to 36h of age and densities of 20 eggs per female day-1 in laboratory conditions. These results will help to establish the intervals between releases of parasitoids, aiming to control this pest, when adjusted with knowledge of the survival of the parasitoids in the field and in pest infestation.

  10. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  11. Effects of spinosad on Helicoverpa armigera (Lepidoptera: Noctuidae) from China: tolerance status, synergism and enzymatic responses.

    Science.gov (United States)

    Wang, Dong; Qiu, Xinghui; Ren, Xuexiang; Zhang, Wencheng; Wang, Kaiyun

    2009-09-01

    Spinosad is increasingly used in pest management programmes, and resistance to it has been detected in recent years. However, there is no report on the susceptibilities of field populations of Helicoverpa armigera (Hübner) from China. Furthermore, the impact of spinosad on metabolic enzymes in this pest remains unknown. Four populations of H. armigera from different locations in China displayed less than 6.5-fold difference in LC(50) to spinosad, the highest being in the Xinjiang population, followed by Xiajin, Taian and Hubei populations, while there was no significant difference at LC(99) level among the four populations. The toxicity of spinosad could be synergised by piperonyl butoxide (PBO) and triphenylphosphate (TPP), but not by diethyl maleate (DEM). Spinosad exposure for 48 h significantly increased the activities of p-nitroanisole O-demethylase (ODM), while no significant changes in glutathione-S-transferase (GST) and carboxyl esterase (CarE) were observed. Field populations of H. armigera from China displayed marginally different susceptibilities to spinosad and had a relatively low LC(50). Cytochrome P450 monooxygenase might be involved in the metabolism of, and hence resistance to, spinosad in this pest in China. Copyright 2009 Society of Chemical Industry.

  12. Helicoverpa armigera (Lepidoptera: Noctuidae) larvae that survive sublethal doses of nucleopolyhedrovirus exhibit high metabolic rates.

    Science.gov (United States)

    Bouwer, Gustav; Nardini, Luisa; Duncan, Frances D

    2009-04-01

    To determine the effect of sublethal doses of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV) on the metabolic rate of H. armigera, the respiration rates of third instar H. armigera larvae inoculated with sublethal doses of HearSNPV were evaluated. Respiration rates, measured as the rate of CO(2) production (VCO(2)), were recorded daily using closed-system respirometry. By 4 days post-inoculation (dpi), the metabolic rates of LD(25) or LD(75) survivors were significantly higher than that of uninoculated controls. When dose data were pooled, the VCO(2) values of larvae that survived inoculation (0.0288mlh(-1)), the uninoculated controls (0.0250mlh(-1)), and the larvae that did not survive inoculation (0.0199mlh(-1)) differed significantly from one another. At 4dpi, the VCO(2) of the uninoculated controls were significantly lower than the VCO(2) of inoculation survivors, but significantly higher than the VCO(2) of inoculation non-survivors. Inoculation survivors may have had high metabolic rates due to a combination of viral replication, organ damage, and an energy-intensive induced cellular immune response. The high 4dpi metabolic rate of inoculation survivors may reflect an effective immune response and may be seen as the metabolic signature of larvae that are in the process of surviving inoculation with HearSNPV.

  13. Return migration of Helicoverpa armigera (Lepidoptera: Noctuidae) during autumn in northern China.

    Science.gov (United States)

    Feng, H-Q; Wu, K-M; Ni, Y-X; Cheng, D-F; Guo, Y-Y

    2005-08-01

    The autumn migration of Helicoverpa armigera (Hübner) was observed with radar and two types of light-trap at Langfang, Hebei province, China in 2001 and 2002. The sudden increase in the proportion of H. armigera moths in the searchlight trap indicated migration into the area and catches increased 10-fold during the second half of the night due to the landing of migrants before dawn. The moths' migratory flights took place at up to 2000 m above the ground, and moths flew differentially at times, and heights, when favourable (i.e. northerly) winds occurred. This facilitated the maximum displacement of moths towards the south during these 'return' migrations. The moths flew over the radar site at consistently high densities through the night, and the resulting flight durations of c. 10 h, at displacement speeds of 30-33 km h-1, would allow moths emerging in the far northeast of China (i.e. Liaoning and Jilin provinces and the Inner Mongolia autonomous region) to migrate into northern China (Hebei, Shandong and Henan provinces). The association of the seasonal migratory movements of H. armigera with crops in northern China is briefly discussed.

  14. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Yongqiang Li

    2016-04-01

    Full Text Available Carboxylesterasesare an important class of detoxification enzymes involved in insecticide resistance in insects. A subgroup of Helicoverpa armigera esterases, known as Clade 001, was implicated in organophosphate and pyrethroid insecticide resistance due to their overabundance in resistant strains. In this work, a novel carboxylesterasegene 001D of H. armigera from China was cloned, which has an open reading frame of 1665 nucleotides encoding 554 amino acid residues. We used a series of fusion proteins to successfully express carboxylesterase 001D in Escherichia coli. Three different fusion proteins were generated and tested. The enzyme kinetic assay towards 1-naphthyl acetate showed all three purified fusion proteins are active with a Kcat between 0.35 and 2.29 s−1, and a Km between 7.61 and 19.72 μM. The HPLC assay showed all three purified fusion proteins had low but measurable hydrolase activity towards β-cypermethrin and fenvalerate insecticides (specific activities ranging from 0.13 to 0.67 μM·min−1·(μM−1·protein. The enzyme was stable up to 40 °C and at pH 6.0–11.0. The results imply that carboxylesterase 001D is involved in detoxification, and this moderate insecticide hydrolysis may suggest that overexpression of the gene to enhance insecticide sequestration is necessary to allow carboxylesterases to confer resistance to these insecticides in H. armigera.

  15. Occurrence of Helicoverpa armigera (Hübner, 1808 on citrus in the state of Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Regiane Cristina Oliveira de Freitas Bueno

    2014-06-01

    Full Text Available The occurrence of Helicoverpa armigera (Hübner, 1808 was first reported in citrus orchard in the state of São Paulo (SP. High infestation levels of H. armigera were observed in October 2012, in the city of Botucatu, SP. The larvae was fed of all parts of the plants. The injuries on the leaves caused drastic reduction in the leaf area and the fruits attack occurred from an early stage of development to the ripe fruit. Thus, the first occurrence of H. armigera in this citrus culture adds to the list of hosts of this pest, and is of great importance, because it confirms H. armigera potential dispersion and polyphagia.

  16. Life table and consumption capacity of corn earworm, Helicoverpa armigera, fed asparagus, Asparagus officinalis.

    Science.gov (United States)

    Jha, Ratna Kumar; Tuan, Shu-Jen; Chi, Hsin; Tang, Li-Cheng

    2014-03-01

    The life table and consumption rate of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) reared on asparagus, Asparagus officinalis L. (Asparagales: Asparagaceae) were studied under laboratory conditions to assess their interaction. Development, survival, fecundity, and consumption data were analyzed by the age-stage, twosex life table. This study indicated that asparagus is a natural host of H. armigera. However, the poor nutritional content in asparagus foliage and the poor fitness of H. armigera that fed on asparagus indicated that asparagus is a suboptimal host in comparison to hybrid sweet corn. The uncertainty associated with life table parameters was estimated by using jackknife and bootstrap techniques, and the results were compared for statistical inference. The intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and mean generation time (T) were estimated by the jackknife technique to be 0.0780 day(-1), 1.0811 day(-1), 67.4 offspring, and 54.8 days, respectively, while those estimated by the bootstrap technique were 0.0752 day(-1), 1.0781 day(-1), 68.0 offspring, and 55.3 days, respectively. The net consumption rate of H. armigera, as estimated by the jackknife and bootstrap technique, was 1183.02 and 1132.9 mg per individual, respectively. The frequency distribution of sample means obtained by the jackknife technique failed the normality test, while the bootstrap results fit the normal distribution well. By contrast, the relationship between the mean fecundity and the net reproductive rate, as estimated by the bootstrap technique, was slightly inconsistent with the relationship found by mathematical proof. The application of the jackknife and bootstrap techniques in estimating population parameters requires further examination. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.

  17. UJI KETAHANAN BEBERAPA GALUR KAPAS (Gossypium hirsutum HASIL RADIASI TERHADAP SERANGGA HAMA PENGGEREK BUAH Helicoverpa armigera(Hǖbner

    Directory of Open Access Journals (Sweden)

    Dwi Sunarto

    2015-09-01

    Full Text Available Uji  ketahanan beberapa galur kapas (Gossypium hirsutum terhadap  penggerek buah Helicoverpa armigera (Hǖbner dilaksanakan di laboratorium Entomologi Balai Penelitian Tanaman Pemanis dan Serat Malang pada bulan Januari sampai dengan Mei 2011. Penelitian bertujuan untuk mengevaluasi ketahanan beberapa galur kapas hasil radiasi terhadap penggerek buah H. armigera.  Perlakuan disusun menggunakan Rancangan Acak Kelompok (RAK yang terdiri atas empat galur hasil radiasi yaitu galur IA, 2A, 4A, dan 2C, dua varietas hasil radiasi yaitu Karisma, NIAB, dan dua varietas hasil pemuliaan konvensional yaitu Kanesia 10 dan Kanesia 15.  Setiap perlakuan diulang 3 kali.  Pengujian dilakukan dengan cara uji pakan (feeding assay daun, kuncup daun, dan buah muda sesuai dengan perkembangan larva H. armigera.  Larva instar I, instar II-III, dan instar IV-V berturut-turut diberikan daun muda, kuncup bunga, dan buah muda. Hasil penelitian menunjukkan bahwa galur kapas nomor 1A, 2A, 4A, dan 4C merupakan galur yang toleran terhadap H. armigera.  Kata kunci : Gossypium hirsutum, Helicoverpa armigera,   ketahanan  varietas.

  18. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    Directory of Open Access Journals (Sweden)

    Purushottam R Lomate

    Full Text Available Jasmonate inducible plant leucine aminopeptidase (LAP is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  19. Cannibalism Affects Core Metabolic Processes in Helicoverpa armigera Larvae—A 2D NMR Metabolomics Study

    Directory of Open Access Journals (Sweden)

    Fredd Vergara

    2016-09-01

    Full Text Available Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea. Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H. armigera (cannibal, the other group fed with an artificial plant diet. Water-soluble small organic compounds present in the larvae were analyzed using two-dimensional nuclear magnetic resonance (NMR and principal component analysis (PCA. Cannibalism negatively affected larval growth. PCA of NMR spectra showed that the metabolic profiles of cannibal and herbivore larvae were statistically different with monomeric sugars, fatty acid- and amino acid-related metabolites as the most variable compounds. Quantitation of 1H-13C HSQC (Heteronuclear Single Quantum Coherence signals revealed that the concentrations of glucose, glucono-1,5-lactone, glycerol phosphate, glutamine, glycine, leucine, isoleucine, lysine, ornithine, proline, threonine and valine were higher in the herbivore larvae.

  20. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  1. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  2. Comparative analysis of the protein compositions between wild type and body color mutant of helicoverpa armigera adult

    International Nuclear Information System (INIS)

    He Lihua; Chen Jin'e; Liu Yan; Wang Yongqiang; Liu Peigang; Meng Zhiqi

    2012-01-01

    To gain an in-depth understanding of the fineness and regulation mechanism of body color mutant of Helicoverpa armigera Hbner, the protein composition differences between adult of dominant mutant, recessive mutant and wild type were studied using the SDS-PAGE combined with MALDI-TOF-TOF/MS and bioinformatics analysis. The results indicated that the protein composition of the dominant mutant and wild type had little difference. However, there were obvious differences between the recessive mutant and wild-type. Three specific stripe were chosen for mass spectrometry and bioinformatics analysis, and two types of proteins related to energy metabolism and cytoskeleton were identified. These findings suggested that the two types of proteins may be associated with occurrence and regulation of body color mutant traits of H. armigera. (authors)

  3. Comparison of Leg Regeneration Potency Between Holometabolous Helicoverpa armigera (Lepidoptera: Noctuidae) and Hemimetabolous Locusta migratoria manilensis (Orthoptera: Acrididae).

    Science.gov (United States)

    Yang, Qingpo; Li, Zhen; Li, Hui; Li, Yanrong; Yang, Yuhui; Zhang, Qingwen; Liu, Xiaoxia

    2016-12-01

    After injury many insects could regenerate lost limb. In this study, Helicoverpa armigera Hubner and Locusta migratoria manilensis (Meyen, 1835) were chosen to compare the regeneration potency of holometabolous and hemimetabolous insects. We employed the classical approach of surgical excision to verify the regeneration ability and to investigate the factors that affect the extent of regeneration. The results found that H. armigera could regenerate intact legs when the larval legs were excised at the first and second instar and that legs of adult H. armigera had a close relationship with their larval counterparts. However, the adult legs became malformed or disappeared when excised at other older instars. For the L. migratoria, we found the legs have weak partial regeneration ability when amputation was conducted at the joint of two segments. The regeneration potency might be stronger the more proximal the operation. Regeneration process had a negative impact on the larval development. This is the first report of complete leg regeneration capacity having a strong correlation with the instar but not with the position where amputation occurred for H. armigera, while for the L. migratoria, partial regenerative ability had a close relationship with the position where amputation occurred but not with instars. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Toxic effects of Solanum xanthocarpum Sch &Wendle against Helicoverpa armigera (Hub.), Culex quinquefasciatus (Say.) and Eisenia fetida (Savigny, 1826).

    Science.gov (United States)

    Baskar, Kathirvelu; Ananthi, Jeevanantham; Ignacimuthu, Savarimuthu

    2018-01-01

    Many commercially available agro and household chemicals are used as pesticides, repellents, and growth inhibitors against insect pests. The repeated uses of these chemicals against insect pests have caused the development of resistance in them; they also cause ill effects on nontarget organisms. The present study was aimed to evaluate the antifeedant, larvicidal, pupicidal, and biochemical effects of the solvent extracts of Solanum xanthocarpum against third instar larvae of Helicoverpa armigera. Hexane, chloroform and ethyl acetate extracts were subjected to phytochemical analysis. The results revealed the presence of terpenoids, flavonoid, and quinone. Maximum antifeedant activity of 72.30% was recorded in chloroform extract followed by hexane (69.02%) and ethyl acetate (57.40%) extracts against H. armigera. Chloroform extracts of S. xanthocarpum showed more than 60% larvicidal and pupicidal activity against H. armigera. The effective chloroform extract was fractionated with increasing polarity of solvent system (hexane, chloroform, and ethyl acetate extracts). Based on the TLC profile, nine major fractions were isolated. The fourth fraction showed higher antifeedant, larvicidal, and pupicidal activity against H. armigera. The effective fraction reduced the hemolymph and gut protein concentration in a concentration-dependent manner (r 2 0.99). The effective fraction 4 showed 100% larvicidal activity at 500 ppm concentration with LC 50 value of 227.95 ppm. The fourth fraction did not show any toxic symptom or mortality of earthworm. Based on these results, this effective fraction could be used in the development of a pesticide formulation to control insect.

  5. [Functional predation response of three main species to cotton bollworm in Xinjiang cotton-planting area].

    Science.gov (United States)

    Feng, Honbing; Xu, Jing; Zhang, Qingwen; Wang, Fei; Song, Rong

    2003-06-01

    Field insect population survey indicated that the principal natural predation enemies of cotton bollworm (Helicoverpa armigera Hubner) were Eringonidium graminicola Sundevall, Adonia variegata Goeze, Nabis sinoferus Hsiao. The results from experiments showed that the amount of prey consumed of these principal natural enemies increased when the density of prey rised, and decreased when the density of natural enemies increased. The predation function response fitted Holling's predation response equation II, and could be fit with the Disk Equation.

  6. Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae)

    NARCIS (Netherlands)

    Ma, Ying; Li, Jingjing; Tang, Qingbo; Zhang, Xuening; Zhao, Xincheng; Yan, Fengming; Loon, van Joop J.A.

    2016-01-01

    Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets

  7. Incorporation of GP64 into Helicoverpa armigera nucleopolyhedrovirus enhances virus infectivity in vivo and in vitro.

    Science.gov (United States)

    Shen, Shu; Gan, Yinyin; Wang, Manli; Hu, Zhihong; Wang, Hualin; Deng, Fei

    2012-12-01

    The envelope fusion proteins of baculoviruses, glycoprotein GP64 from group I nucleopolyhedrovirus (NPV) or the F protein from group II NPV and granulovirus, are essential for baculovirus morphogenesis and infectivity. The F protein is considered the ancestral baculovirus envelope fusion protein, while GP64 is a more recent evolutionary introduction into baculoviruses and exhibits higher fusogenic activity than the F protein. Each of the fusion proteins is required by the respective virus to spread infection within larval tissues. A recombinant Helicoverpa armigera NPV (HearNPV) expressing GP64 from Autographa californica multiple nucleopolyhedrovirus, vHaBac-gp64-egfp, was constructed, which still retained the native F protein, and its infectivity was assayed in vivo and in vitro. Analyses by one-step growth curve to determine viral titre and by quantitative PCR to determine viral DNA copy number showed that vHaBac-gp64-egfp was more infectious in vitro than the control, vHaBac-egfp. The polyhedrin gene (polh) was reintroduced into the recombinant viruses and bioassays showed that vHaBac-gp64-polh accelerated the mortality of infected larvae compared with the vHaBac-egfp-polh control, and the LC(50) (median lethal concentration) of vHaBac-gp64-polh was reduced to approximately 20 % of that of vHaBac-egfp-polh. Therefore, incorporation of GP64 into HearNPV budded virions improved virus infectivity both in vivo and in vitro. The construction of this bivalent virus with a more efficient fusion protein could improve the use of baculoviruses in different areas such as gene therapy and biocontrol.

  8. Elimination of Gut Microbes with Antibiotics Confers Resistance to Bacillus thuringiensis Toxin Proteins in Helicoverpa armigera (Hubner).

    Science.gov (United States)

    Visweshwar, R; Sharma, H C; Akbar, S M D; Sreeramulu, K

    2015-12-01

    Helicoverpa armigera is one of the most important pests worldwide. Transgenic crops with toxin genes from Bacillus thuringiensis (Bt) have been deployed on a large scale to control this pest. The insecticidal activity of Bt is probably influenced by the insect midgut microbes, which vary across crop hosts and locations. Therefore, we examined the role of gut microbes in pathogenicity of Bt toxins in the H. armigera. Antibiotic cocktail was used for the complete elimination of the H. armigera gut microbes. Activated Cry1Ac, Bt formulation, and transgenic cotton resulted in larval weight loss and increase in mortality, but pretreatment of larvae with antibiotic cocktail significantly decreased larval mortality and increased the larval weight gain. Activated Cry1Ac and Bt formulation inhibited the activity of proteases in midgut of H. armigera larvae but showed no such effect in the larvae pretreated with antibiotic cocktail. Five protease bands in activated Cry1Ac and two in Bt formulation-treated larvae were inhibited but no such effect in the larvae pretreated with antibiotic cocktail. Cry1Ac protein was detected in Bt/Cry1Ac protoxin-fed larval gut extract in the absence of antibiotic cocktail, but fewer in larvae pretreated with antibiotic cocktail. The activity of antioxidant enzymes and aminopeptidases increased in larvae fed on Bt toxin, but there was no significant increase in antioxidant enzymes in larvae reared on toxin protein in combination with antibiotic cocktail. The results suggest that gut microbes exercise a significant influence on the toxicity of Cry1Ac and Bt formulation in H. armigera larvae. The implications of these results have been discussed in relation to development of insect resistance to Bt transgenic crops deployed for pest management.

  9. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region.

    Science.gov (United States)

    An, Jingjie; Gao, Yulin; Wu, Kongming; Gould, Fred; Gao, Jianhua; Shen, Zhicheng; Lei, Chaoliang

    2010-12-01

    Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.

  10. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  11. Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera.

    Science.gov (United States)

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests.

  12. Genetic engineering of cotton with a novel cry2AX1 gene to impart insect resistance against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Karunamurthy Dhivya

    2016-09-01

    Full Text Available Embryogenic calli of cotton (Coker310 were cocultivated with the Agrobacterium tumefaciens strain LBA4404 harbouring the codon-optimised, chimeric cry2AX1 gene consisting of sequences from cry2Aa and cry2Ac genes isolated from Indian strains of Bacillus thuringiensis. Forty-eight putative transgenic plants were regenerated, and PCR analysis of these plants revealed the presence of the cry2AX1 gene in 40 plants. Southern blot hybridisation analysis of selected transgenic plants confirmed stable T-DNA integration in the genome of transformed plants. The level of Cry2AX1 protein expression in PCR positive plants ranged from 4.9 to 187.5 ng g-1 of fresh tissue. A transgenic cotton event, TP31, expressing the cry2AX1 gene showed insecticidal activity of 56.66 per cent mortality against Helicoverpa armigera in detached leaf disc bioassay. These results indicate that the chimeric cry2AX1 gene expressed in transgenic cotton has insecticidal activity against H. armigera.

  13. ATIVIDADE INSETICIDA DE Nicotiana tabacum E Azadirachta indica SOBRE Helicoverpa armigera Hübner,1908 (Lepidoptera:Noctuidae

    Directory of Open Access Journals (Sweden)

    Cristhian Eliseo Durán Aguirre

    2017-02-01

    Full Text Available A mariposa Helicoverpa armigera Hübner,1908 (Lepidoptera:Noctuidae, mais conhecida como lagarta-do-algodoeiro, quando atingi o nível de controle passa a ser uma praga agressiva e de rápido crescimento populacional. O principal método de controle tem sido por meio de inseticidas químicos sintéticos, cujo efeito pode ser comprometido pelo desenvolvimento de populações resistentes da praga. No intuito de propiciar uma alternativa no manejo da praga em questão, objetivou-se avaliar a atividade inseticida de extratos vegetais em lagartas de primeiro instar de H. armigera. Com isto, avaliou-se a toxicidade aguda dos extratos vegetais, pela contagem de lagartas mortas após 72 horas de tratadas. Os extratos vegetais de Nicotiana tabacum e Azadirachta indica apresentaram mortalidade de 11,31 e 16,80% respectivamente, diferindo estatisticamente. Logo, o produto que apresentou maior valor de mortalidade foi o extrato de A. indica.   Palavras-chaves: Controle biológico, inseticidas botânicos, mortalidade

  14. ATIVIDADE DE DETERRÊNCIA ALIMENTAR DO ÓLEO ESSENCIAL DE LARANJA AMARGA SOBRE Helicoverpa armigera HÜBNER

    Directory of Open Access Journals (Sweden)

    Victor Luiz de Souza Lima

    2017-01-01

    Full Text Available Diversas plantas possuem compostos secundários com propriedades inseticidas e o óleo essencial de laranja amarga mostra-se com grande potencial para o controle de pragas. Recentemente, foi registrada no Brasil a espécie Helicoverpa armigera, uma das maiores pragas da agricultura mundial. Tendo em vista a falta de métodos alternativos aos inseticidas para o controle dessa praga, o objetivo desse trabalho foi avaliar os efeitos do óleo essencial de laranja amarga sobre H. armigera. Foi realizado um teste de escolha para avaliar a atividade deterrente. Folhas de tomate foram imersas em soluções contendo óleo de laranja amarga em três concentrações (1, 10 e 100 mg L-1. As folhas tratadas com óleo e folhas não tratadas foram oferecidas à lagartas de segunda instar e após 24h foi calculado o índice de deterrência alimentar (IDA. A concentração de 1 mg L-1 apresentou 71% de deterrência alimentar. Porém as concentrações de 10 e 100 mg L-1 causaram fitotoxidez às folhas de tomate, inviabilizando o consumo pelas lagartas e a estimativa do IDA. Novos testes devem ser realizados com concentrações menores para evitar a fitotoxidez.

  15. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    Science.gov (United States)

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Multiple Resistances Against Formulated Organophosphates, Pyrethroids, and Newer-Chemistry Insecticides in Populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan.

    Science.gov (United States)

    Qayyum, Mirza Abdul; Wakil, Waqas; Arif, Muhammad Jalal; Sahi, Shahbaz Talib; Saeed, Noor Abid; Russell, Derek Allan

    2015-02-01

    Field populations of Helicoverpa armigera Hübner from 15 localities across the Punjab, Pakistan, were assessed by the leaf dip method for resistance against formulated organophosphates, pyrethroids, and newer insecticide groups. Resistance levels in H. armigera have been incrementally increasing for organophosphate and pyrethroid insecticides after decades of use in Pakistan. Resistance ratios (RRs) documented for organophosphates were 24- to 116-fold for profenofos and 22- to 87-fold for chlorpyrifos. For pyrethroids, RRs were 3- to 69-fold for cypermethrin and 3- to 27-fold for deltamethrin. Resistance levels against newer chemistries were 2- to 24-fold for chlorfenapyr, 1- to 22-fold for spinosad, 1- to 20-fold for indoxacarb, 1- to 18-fold for abamectin, and 1- to 16-fold for emamectin benzoate. Resistant populations of H. armigera were mainly in the southern part of the Punjab, Pakistan. The most resistant populations were collected from Pakpattan, Multan, and Muzzafargarh. Of the nine insecticides tested, LC50 and LC90 values were lower for newer insecticide groups; resistance levels were moderate to very high against organophosphates, very low to high against pyrethroids, and very low to low against the newer-chemistry insecticides. These findings suggest that the newer-chemistry insecticides with different modes of action could be included in insecticide rotations or replace the older insecticides. Supplementing the use of synthetic insecticides with safer alternatives could help to successfully lower the farmer's reliance on insecticides and the incidence of resistance due to repeated use of insecticides against major insect pests. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae)

    OpenAIRE

    Ying Ma; Jingjing Li; Qingbo Tang; Xuening Zhang; Xincheng Zhao; Fengming Yan; Joop J. A. van Loon

    2016-01-01

    Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets containing either a high, medium or low concentration of sucrose, a major feeding stimulant. The responsiveness of the sucrose-best neuron in the lateral sensilla styloconica on the galea was quantified. Resul...

  18. Keanekaragaman spesies parasitoid telur Helicoverpa armigera (Hübner pada sistem tanam monokultur dan polikultur kapas

    Directory of Open Access Journals (Sweden)

    nurindah nurindah

    2017-02-01

    Full Text Available Polyculture system is one of techniques in pest management. In Indonesia, cotton is always intercropped with second food crops such as maize, soybean, mungbean or peanut. This research was aimed to evaluate the effect of culture system, i.e. cotton monoculture vs. cotton intercropped with soybean on the increase of species diversity of H. armigera egg parasitoids and the parasitoid contribution to mortality of H. armigera. The research was arranged in a split plot design with two main factors: three cotton varieties with three levels of trichome density (Tamcot SP 37, Kanesia 8 and LRA 5166 and the subplots were two cultivation systems (cotton monoculture and polyculture, with three replicates. Observations were made by collecting H. armigera eggs on population of first generation (45 days after planting and second generation (75 DAP. The results showed that on cotton polyculture the egg parasitoid complex which consisted of Trichogramma spp. and Trichogrammatoidea spp. was higher than that in cotton monoculture and so was the egg parasitism level. The increase of egg parasitism was 24% in the first generation and 15% in the second generation. Parasitoid species found belonged to the genera Trichogramma and Trichogrammatoidea. In the parasitoid complex, Trichogrammatoidea armigera was dominant on the first generation and Trichogramma chilotraeae on the second. The domination succession could be as a result of the higher host-searching capacity of T. chilotraeae than that of T. armigera.

  19. Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera Larvae immune-primed with Photorhabdus luminescens TT01.

    Directory of Open Access Journals (Sweden)

    Zengyang Zhao

    Full Text Available Although invertebrates are incapable of adaptive immunity, immunal reactions which are functionally similar to the adaptive immunity of vertebrates have been described in many studies of invertebrates including insects. The phenomenon was termed immune priming. In order to understand the molecular mechanism of immune priming, we employed Illumina/Solexa platform to investigate the transcriptional changes of the hemocytes and fat body of Helicoverpa armigera larvae immune-primed with the pathogenic bacteria Photorhabdus luminescens TT01. A total of 43.6 and 65.1 million clean reads with 4.4 and 6.5 gigabase sequence data were obtained from the TT01 (the immune-primed and PBS (non-primed cDNA libraries and assembled into 35,707 all-unigenes (non-redundant transcripts, which has a length varied from 201 to 16,947 bp and a N50 length of 1,997 bp. For 35,707 all-unigenes, 20,438 were functionally annotated and 2,494 were differentially expressed after immune priming. The differentially expressed genes (DEGs are mainly related to immunity, detoxification, development and metabolism of the host insect. Analysis on the annotated immune related DEGs supported a hypothesis that we proposed previously: the immune priming phenomenon observed in H. armigera larvae was achieved by regulation of key innate immune elements. The transcriptome profiling data sets (especially the sequences of 1,022 unannotated DEGs and the clues (such as those on immune-related signal and regulatory pathways obtained from this study will facilitate immune-related novel gene discovery and provide valuable information for further exploring the molecular mechanism of immune priming of invertebrates. All these will increase our understanding of invertebrate immunity which may provide new approaches to control insect pests or prevent epidemic of infectious diseases in economic invertebrates in the future.

  20. Isotopes and trace elements as natal origin markers of Helicoverpa armigera--an experimental model for biosecurity pests.

    Directory of Open Access Journals (Sweden)

    Peter W Holder

    Full Text Available Protecting a nation's primary production sector and natural estate is heavily dependent on the ability to determine the risk presented by incursions of exotic insect species. Identifying the geographic origin of such biosecurity breaches can be crucial in determining this risk and directing the appropriate operational responses and eradication campaigns, as well as ascertaining incursion pathways. Reading natural abundance biogeochemical markers using mass spectrometry is a powerful tool for tracing ecological pathways as well as provenance determination of commercial products and items of forensic interest. However, application of these methods to trace insects has been underutilised to date and our understanding in this field is still in a phase of basic development. In addition, biogeochemical markers have never been considered in the atypical situation of a biosecurity incursion, where sample sizes are often small, and of unknown geographic origin and plant host. These constraints effectively confound the interpretation of the one or two isotope geo-location markers systems that are currently used, which are therefore unlikely to achieve the level of provenance resolution required in biosecurity interceptions. Here, a novel approach is taken to evaluate the potential for provenance resolution of insect samples through multiple biogeochemical markers. The international pest, Helicoverpa armigera, has been used as a model species to assess the validity of using naturally occurring δ2H, 87Sr/86Sr, 207Pb/206Pb and 208Pb/206Pb isotope ratios and trace element concentration signatures from single moth specimens for regional assignment to natal origin. None of the biogeochemical markers selected were individually able to separate moths from the different experimental regions (150-3000 km apart. Conversely, using multivariate analysis, the region of origin was correctly identified for approximately 75% of individual H. armigera samples. The

  1. EFEITO E ATIVIDADE INSETICIDA DE Cinnamomum zeylanicum E Rosmarinus officinalis SOBRE Helicoverpa armigera Hübner,1908 (Lepidoptera:Noctuidae

    Directory of Open Access Journals (Sweden)

    Cristhian Eliseo Durán Aguirre

    2017-02-01

    Full Text Available Resumo: A lagarta-do-algodoeiro, Helicoverpa armigera Hübner, 1908 (Lepidoptera: Noctuidae é uma praga agrícola de grande importância econômica no mundo. O principal método de manejo desse inseto está baseado no uso de pesticidas sintéticos que acarretam efeitos negativos para a saúde humana, o meio ambiente e organismos no-alvos. Os óleos essenciais são metabolitos secundários derivados de plantas que tem ação inseticida em insetos pragas. Além disso, tem pouca persistência no ambiente, são degradáveis e não tem efeitos sobre inimigos naturais. O objetivo de este trabalho foi testar a ação inseticida dos óleos de canela, Cinnamomum zeylanicum e alecrim, Rosmarinus officinalis sobre lagartas de primeiro instar. Foram aplicados os referidos óleos a 5%(m v -1 diante pulverização e avaliou-se a atividade inseticida até 72 horas após tratadas. Os óleos essenciais não apresentaram atividade inseticida, mas, porém, poderiam ter efeitos subletais na biologia dos insetos pragas.

  2. Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in Helicoverpa armigera (Hubner).

    Science.gov (United States)

    Zhang, Yun-Feng; van Loon, Joop J A; Wang, Chen-Zhu

    2010-08-15

    In adult female Helicoverpa armigera (Hübner), the fifth tarsomere of the prothoracic legs bears 14 gustatory trichoid chemosensilla. These chemosensilla were characterized through electrophysiological experiments by stimulating with sucrose, glucose, fructose, maltose, myo-inositol and 20 common amino acids. In electrophysiological recordings from nine sensilla, responses were obtained to certain compounds tested at 100 mmol l(-1), and the response spectra differed from broad to narrow. The four sugars excited the same receptor neuron in sensillum a and sensillum b; sucrose and myo-inositol, sucrose and lysine, myo-inositol and lysine excited two different receptor neurons respectively in sensillum a; fructose and lysine excited two different receptor neurons in sensillum n. Furthermore, the four sugars, myo-inositol and lysine all elicited concentration-dependent electrophysiological responses. These six compounds also induced the proboscis extension reflex (PER) followed by ingestion of the solution when they were applied on the tarsi. Lysine and sucrose caused the strongest electrophysiological responses. However, sucrose had the strongest stimulatory effect on the PER whereas lysine had the weakest. Mixtures of sucrose with the other sugars or with lysine had a similar stimulatory effect on the PER as sucrose alone. The electrophysiological and behavioural responses caused by a range of sucrose concentrations were positively correlated. We conclude that the tarsal gustatory sensilla play an essential role in perceiving sugars available in floral nectar and provide chemosensory information determining feeding behaviour. Tarsal taste-receptor-neuron responses to lysine are implicated in oviposition behaviour.

  3. Characterization of lepidopteran-specific cry1 and cry2 gene harbouring native Bacillus thuringiensis isolates toxic against Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Showkat Ahmad Lone

    2017-09-01

    Full Text Available Bacillus thuringiensis (Bt based biopesticides are feasible alternatives to chemical pesticides. Here, we present the distribution of lepidopteran-specific cry1 and cry2 genes in native B. thuringiensis. Forty four out of 86 colonies were found to harbour crystals by phase contrast microscopy exhibiting a Bt index of 0.51. PCR analysis resulted in the amplification of cry1 in 24 and cry2 in 14 isolates. Twelve of the isolates showed presence of both cry1 and cry2, while 18 isolates did not show presence of either of the genes. Toxicity screening using spore-crystal mixtures against 2nd instar larvae of Helicoverpa armigera revealed that the isolates (50% were either mildly toxic or not toxic (36.36%, and only 13.63% were toxic. The results are interesting, particularly so because the same isolates were previously reported to contain lepidopteran specific vip3A genes also, hence can complement the toxicity of the isolates harbouring vip3A genes.

  4. Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera: Noctuidae) at the regional scale: example from the Darling Downs, Australia.

    Science.gov (United States)

    Scott, Kirsten D; Lawrence, Nicole; Lange, Corinna L; Scott, Leon J; Wilkinson, Kendle S; Merritt, Melissa A; Miles, Melina; Murray, David; Graham, Glenn C

    2005-12-01

    Analysis of gene flow and migration of Helicoverpa armigera (Hübner) in a major cropping region of Australia identified substantial genetic structuring, migration events, and significant population genotype changes over the 38-mo sample period from November 1999 to January 2003. Five highly variable microsatellite markers were used to analyze 916 individuals from 77 collections across 10 localities in the Darling Downs. The molecular data indicate that in some years (e.g., April 2002-March 2003), low levels of H. armigera migration and high differentiation between populations occurred, whereas in other years (e.g., April 2001-March 2002), there were higher levels of adult moth movement resulting in little local structuring of populations. Analysis of populations in other Australian cropping regions provided insight into the quantity and direction of immigration of H. armigera adults into the Darling Downs growing region of Australia. These data provide evidence adult moth movement differs from season to season, highlighting the importance of studies in groups such as the Lepidoptera extending over consecutive years, because short-term sampling may be misleading when population dynamics and migration change so significantly. This research demonstrates the importance of maintaining a coordinated insecticide resistance management strategy, because in some years H. armigera populations may be independent within a region and thus significantly influenced by local management practices; however, periods with high migration will occur and resistance may rapidly spread.

  5. Radiation Induced Sterility On Control Bollworm Helicoverpa armigera Hubner (Lepidoptera: Noctuide) And Inherited Sterility In The F 1 Generation

    International Nuclear Information System (INIS)

    Suharyono; Sutrisno, Singgih

    2002-01-01

    The objectives of this experiments were to obtain the optimum dose of irradiation that caused high sterility level that descended to the next generation ( FI ) and determined the value of mating competitiveness. Nine days old of male pupae were irradiated by gamma rays at doses of 0, 50, 60, 70, 80 , 90, 100, 110, and 120 Gy respectively. The emergence of male moths after irradiation mated with untreated females in two kinds of mating pair combination, first 5 ? IR ( irradiated ) x 5 ? UT ( untreated ), second 15? IR X 5? UT x 5? UT. The irradiated male moths emerging from the first offspring ( F I ) was also mated with the untreated females as the same kind of mating pair combination as the parent. The parameters observed were the number of egg production, egg hatched and the value of mating competitiveness. The experimental design was completed randomized design, a factorial experiment. the first factor was irradiation doses and the second factor was mating pair combination. The data obtained was statistically analyzed using Duncan's Multiple Range test. The result showed a very significant effect of irradiation dosage treatment to the number of eggs whether in parent as well as in F I generation moths. However there was no significant different the effect a vector of mating pair combination to the egg production. The lowest average number of eggs produced by couple 1? IR x I? irradiated by 120 Gy were 201.71 eggs while the untreated couple were 612.31 eggs. The result also indicated that the doses of irradiation did not affect significant different in the percentage of egg hatchet in the parent as well as in the FI moths. The lowest percentage of egg hatched was 0.00 % (or 100 % sterility) produced by 110 and 120 Gy treatment from pair moths of I ? IR x I ? UT. But this was not significant deferent to tile dose of 100 Gy caused 4.27 % egg hatched. The mating competitiveness value due to the treatment of 100 Gy were 0,56 and 0,40 respectively in the parent male and in the FI male moths

  6. New insight to structure-function relationship of GalNAc mediated primary interaction between insecticidal Cry1Ac toxin and HaALP receptor of Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Anindita Sengupta

    Full Text Available Over the last few decades Cry1Ac toxin has been widely used in controlling the insect attack due to its high specificity towards target insects. The pore-forming toxin undergoes a complex mechanism in the insect midgut involving sequential interaction with specific glycosylated receptors in which terminal GalNAc molecule plays a vital role. Recent studies on Cry toxins interactions with specific receptors revealed the importance of several amino acid residues in domain III of Cry1Ac, namely Q509, N510, R511, Y513 and W545, serve as potential binding sites that surround the putative GalNAc binding pocket and mediate the toxin-receptor interaction. In the present study, alanine substitution mutations were generated in the Cry1Ac domain III region and functional significance of those key residues was monitored by insect bioassay on Helicoverpa armigera larvae. In addition, ligand blot analysis and SPR binding assay was performed to monitor the binding characteristics of Cry1Ac wild type and mutant toxins towards HaALP receptor isolated from Helicoverpa armigera. Mutagenesis data revealed that, alanine substitutions in R511, Y513 and W545 substantially impacted the relative affinity towards HaALP receptor and toxicity toward target insect. Furthermore, in silico study of GalNAc-mediated interaction also confirmed the important roles of these residues. This structural analysis will provide a detail insight for evaluating and engineering new generation Cry toxins to address the problem of change in insect behavioral patterns.

  7. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner

    Directory of Open Access Journals (Sweden)

    Farrukh Jamal

    2014-01-01

    Full Text Available An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme kinetic studies demonstrated that MiTI is a competitive inhibitor with a Ki value of 4.1×10−10 M for Helicoverpa trypsin like midgut proteinases. In vivo experiments with different concentrations of MiTI in artificial diet (0.5, 1.0, and 1.5% w/w showed an effective downfall in the larval body weight and an increase in larval mortality. The concentration of MiTI in the artificial diet to cause 50% mortality (LD50 of larvae was 1.5% w/w and that to cause reduction in mass of larvae by 50% (ED50 was 1.0% w/w. Nutritional indices observations suggest the toxic and adverse effects of MiTI on the growth and development of H. armigera larvae. The results suggest a strong bioinsecticidal potential of affinity purified MiTI which can be exploited in insect pest management of crop plants.

  8. LABORATORY AND FIELD EVALUATION OF ESSENTIAL OILS FROM Cymbopogon nardus AS OVIPOSITION DETERRENT AND OVICIDAL ACTIVITIES AGAINST Helicoverpa armigera Hubner ON CHILI PEPPER

    Directory of Open Access Journals (Sweden)

    Wiwin Setiawati

    2011-04-01

    Full Text Available The fruit borer (Helicoverpa armigera Hubner is one of the key pests of chili pepper in Indonesia. Yield loss due to this insect pest may reach up to 60%. Chemical treatment for con-trolling this insect pest is ineffective and eventually leads to environmental pollution. More environmentally safe insecticides are developed based on natural plant ingredients as their active compound such as essential oils. This study aimed to assess the potential of citronella oil for managing H. armigera on chili pepper. The experiments were conducted at the Indonesian Vegetables Research Institute from April 2009 to March 2010 and in Cirebon, West Java from November 2009 to March 2010. A field experiment was designed in a randomized complete block design with five treatments and replicated five times. Citronella oil was extracted by steam distillation from Cymbo-pogon  nardus. The oil was then chemically characterized by using GC-MS and its efficacy (ovicidal and feeding deterrent against H. armigera was tested both in laboratory and field conditions. The GC-MS result showed that major chemical compounds of the citronella oil used were citronella (35.97%, nerol (17.28%, citronellol (10.03%, geranyle acetate (4.44%, elemol (4.38%, limonene (3.98%, and citronnellyle acetate (3.51%. The laboratory experiment revealed that the highest concentration (4,000 ppm of citronella oil reduced egg laying by 53-66%. Ovicidal activity was concentration dependent, and egg hatchability decreased by 15-95% compared to control. The field experiment showed that treatment of citronella oil at 2.0 mL L-1 significantly reduced fruit damage by H. armigera similar to the plots treated with spinosad at the recommended dose (60 g ai ha-1. Application of citronella oil significantly reduced fruit damage by 72% and increased quality of the chili pepper. Because oviposition and feeding deterrent properties are key factors in controlling the pest, therefore this study revealed that

  9. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology.

    Science.gov (United States)

    Agrawal, Aditi; Rajamani, Vijayalakshmi; Reddy, Vanga Siva; Mukherjee, Sunil Kumar; Bhatnagar, Raj K

    2015-10-01

    The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.

  10. Toxicidade e capacidade de ligação de proteínas Cry1 a receptores intestinais de Helicoverpa armigera (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Isis Sebastião

    2015-11-01

    Full Text Available Resumo: O objetivo deste trabalho foi avaliar a toxicidade e a capacidade de ligação das proteínas Cry1Aa, Cry1Ab, Cry1Ac e Cry1Ca, de Bacillus thuringiensis, a receptores intestinais de Helicoverpa armigera. Realizou-se análise de ligação das proteínas ativadas às vesículas de membrana da microvilosidade apical (VMMA do intestino médio deH. armigera, além de ensaios de competição heteróloga para avaliar sua capacidade de ligação. Cry1Ac destacou-se como a proteína mais tóxica, seguida por Cry1Ab e Cry1Aa. A proteína Cry1Ca não foi tóxica às lagartas e, portanto, não foi possível determinar os seus parâmetros de toxicidade CL50 e CL90. As proteínas Cry1Aa, Cry1Ab e Cry1Ac são capazes de se ligar a um mesmo receptor nas membranas intestinais, o que aumenta o risco do desenvolvimento de resistência cruzada. Portanto, a utilização conjunta dessas proteínas deve ser evitada.

  11. Assessment of beneficial role of an insectivorous bird, jungle babbler (Turdoides striatus predation, on Helicoverpa armigera infesting pigeon pea (Cajanus cajan crop

    Directory of Open Access Journals (Sweden)

    Bhavna Bharucha

    2010-04-01

    Full Text Available Jungle babbler (Turdoides striatus, a widely spread sub-tropical insectivorous passerine is considered beneficial to agro-ecosystem, as they devour voraciously on insect matter especially Helicoverpa armigera, the gram pod borer, a notorious pest infesting and causing heavy loses to crops like pigeon pea (Cajanus cajan which is a vital crop of semi-arid tropical and subtropical farming system, providing high quality vegetable protein. Helicoverpa is known to feed on flowers, pods, and seeds and is the most important biotic constraint affecting pigeon pea yields. Jungle babblers have a peculiar foraging style which helps expose the Helicoverpa larvae as well as pupae through various phenological stages of pigeon pea. For comparative assessment of their beneficial role and as a possible bio control agent, in Baroda city (State of Gaujarat, India, was studied, two crops of pigeon pea (insecticide treated and untreated (control were selected. In both treated and control crops, the number of jungle babblers were maximum in pigeon pea fields during october and november in both small pod stage and large pod stage which had heavy infestation of Helicoverpa. Least number of birds was seen during the flowering stage in September. Later in treatment crop three applications of Dunnate and Monocrotophos insecticide spray was done after which the pest population decreased which is reflected in number of birds in the field, while the bird number in control crops grew since insecticide spray was not done and number of larvae increased with the stage of the crop. Along with the main crop pigeon pea, comparative study was also done to see the food preference by these birds in crops like sorghum, maize, cow pea and ploughed and unploughed fields. Maximum number of birds was seen in unploughed field and least in sorghum suggesting that Helicoverpa is preferred food over sorghum grains thus pigeon pea and sorghum can be used as mixed crops to protect the crop from

  12. Assessment of beneficial role of an insectivorous bird, jungle babbler (Turdoides striatus predation, on Helicoverpa armigera infesting pigeon pea (Cajanus cajan crop

    Directory of Open Access Journals (Sweden)

    Bharucha Bhavna

    2010-06-01

    Full Text Available Jungle babbler (Turdoides striatus, a widely spread sub-tropical insectivorous passerine is considered beneficial to agro-ecosystem, as they devour voraciously on insect matter especially Helicoverpa armigera, the gram pod borer, a notorious pest infesting and causing heavy loses to crops like pigeon pea (Cajanus cajan which is a vital crop of semi-arid tropical and subtropical farming system, providing high quality vegetable protein. Helicoverpa is known to feed on flowers, pods, and seeds and is the most important biotic constraint affecting pigeon pea yields. Jungle babblers have a peculiar foraging style which helps expose the Helicoverpa larvae as well as pupae through various phenological stages of pigeon pea. For comparative assessment of their beneficial role and as a possible bio control agent, in Baroda city (State of Gaujarat, India, was studied, two crops of pigeon pea (insecticide treated and untreated (control were selected. In both treated and control crops, the number of jungle babblers were maximum in pigeon pea fields during october and november in both small pod stage and large pod stage which had heavy infestation of Helicoverpa. Least number of birds was seen during the flowering stage in September. Later in treatment crop three applications of Dunnate and Monocrotophos insecticide spray was done after which the pest population decreased which is reflected in number of birds in the field, while the bird number in control crops grew since insecticide spray was not done and number of larvae increased with the stage of the crop. Along with the main crop pigeon pea, comparative study was also done to see the food preference by these birds in crops like sorghum, maize, cow pea and ploughed and unploughed fields. Maximum number of birds was seen in unploughed field and least in sorghum suggesting that Helicoverpa is preferred food over sorghum grains thus pigeon pea

  13. Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin.

    Science.gov (United States)

    Fang, Shangling; Wang, Li; Guo, Wei; Zhang, Xia; Peng, Donghai; Luo, Chunping; Yu, Ziniu; Sun, Ming

    2009-08-01

    Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 mug/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 mug/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.

  14. Presence of snow coverage and its thickness affected the mortality of overwintering pupae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)

    Science.gov (United States)

    Huang, Jian

    2017-04-01

    Helicoverpa armigera causes serious damage to most crops around the world. However, the impacts of snow thickness on the H. armigera overwintering pupae are little known. A field experiment was employed in 2012-2015 at Urumqi, China. At soil depths of 5, 10, and 15 cm, overwintering pupae were embedded with four treatments: no snow cover (NSC), snow cover (SC), increasing snow thickness to 1.5 times the thickness of SC (ISSC-1), and to two times the thickness of SC (ISSC-2). Results suggested that snow cover and increasing snow thickness both significantly increased soil temperatures, which helped to decrease the mortality of overwintering pupae (MOP) of H. armigera. However, the MOP did not always decrease with increases in snow thickness. The MOPs in NSC and ISSC-1 were the highest and the lowest, respectively, though ISSC-2 had much thicker snow thickness than ISSC-1. A maximum snow thickness of 60 cm might lead to the lowest MOP. The longer the snow cover duration (SCD) at a soil depth of 10 cm in March and April was, the higher the MOP was. A thicker snow cover layer led to a higher soil moisture content (SMC) and a lower diurnal soil temperature range (DSTR). The highest and the lowest MOP were at a depth of 15 and 10 cm, respectively. The SMC at the depths of 10 and 15 cm had significant effects on MOP. A lower accumulated temperature (≤0 °C) led to a higher MOP. The DSTR in March of approximately 4.5 °C might cause the lowest MOP. The largest influence factor for the MOPs at depths of 5 and 10 cm and the combined data were the SCDs during the whole experimental period, and for the MOPs at a depth of 15 cm was the soil temperature in November.

  15. The Halo Effect: Suppression of Pink Bollworm on Non-Bt Cotton by Bt Cotton in China

    Science.gov (United States)

    Tabashnik, Bruce E.; Huang, Minsong; Wu, Kongming

    2012-01-01

    In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this “halo effect” against pink bollworm (Pectinophora gossypiella) in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera) decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance. PMID:22848685

  16. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  17. [The effects of transgenic Cry1Ac+Cry2Ab cotton on cotton bollworm control and functional response of predators on whitefly].

    Science.gov (United States)

    Luo, Jun-yu; Zhang, Shuai; Lv, Li-min; Wang, Chun-yi; Zhu, Xiang-zhen; Cui, Jin-jie

    2015-06-01

    In this study, we detected and clarified the roles of transgenic Cry1Ac+Cry2Ab cotton "639020" in controlling cotton bollworm (Helicoverpa armigera) during critical periods of bud stage (second generation of bollworm), flowering stage (third generation of bollworm) and bolling stage (fourth generation of bollworm) as well as the influences of 639020 cotton on functional response of the main predators (Chrysopa sinica larvae, Propylaea japonica, Orius and Erigonidium graminicola ) on whitefly using transgenic Cry1Ac cotton "CCRI41" and conventional cotton "CCRI49" as the control. Our results showed that the 639020 cotton well controlled the second and third generation of bollworm, and the level of insect resistance increased by 52.85% and 16.22% separately compared with that of CCRI41, with a significant effect on the second generation of bollworm. Moreover, the number of bollworm eggs in 639020 cotton field was lower than that in CCRI41 and CCRI49 cotton fields (except the second generation of bollworm) during the cotton bud, flowering and bolling stages. Although the number of bollworm larvae in 639020 cotton field was significantly lower than that in CCRI49 field, and both under the controlling index, it has no significant difference compared with that in CCRI41 cotton field. There were also no obvious changes in predator functions of Chrysopa sinica, Propylaea japonica, Orius and Erigonidium graminicola on bemisia tabaci between 639020, CCRI41 and CCRI49 cotton filed. This study evaluated the safety of new transgenic cotton on environment, anti-insect activity of exogenous gene and the safety of production and application prospect.

  18. Insecticidal Efficacy of Azadirachta indica, Nucleopolyhedrovirus and Chlorantraniliprole Singly or Combined against Field Populations fo Helicoverpa armigera Hübner (Lepidoptera: Noctuidae Eficacia Insecticida de Azadirachta indica, Nucleopolihedrovirus y Clorantraniliprol solo y sus Aplicaciones Integradas contra Poblaciones de Campo de Helicoverpa armigera Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Waqas Wakil

    2012-03-01

    Full Text Available The development of resistance in cosmopolitan insect Helicoverpa armigera Hubner (Lepidoptera: Noctuidae forced the researchers for alternative control measures. In the present study, insecticidal efficacy of formulations of Azadirachta indica, a Nucleopolyhedrovirus (NPV, and new anthranilic diamide insecticide (chlorantraniliprole formulations was determined against 2nd, through 5th larval instars of H. armigera collected from diverse geographical locations in the Punjab province, Pakistan. Azadirachta indica was applied at 5 μL L-1; NPV at 2.1 x 10(5 polyhedral occlusion bodies (POB mL4 and chlorantraniliprole at 0.01 μL L-1, either alone or in combinations with each other. The bioassays were conducted at 27 ± 1 °C and 65 ± 5% relative humidity. The mortality varied greatly among treatments, larval instars, and locations. The combinations of NPV with A. indica and chlorantraniliprole caused higher mortality, pupation and produced an additive effect compared to their application singly in all the tested populations. The population from Rawalpindi was always susceptible while the Gujranwala was the resistant. The results herein suggest that the effectiveness of NPV and A. indica can be improved by the presence of chlorantraniliprole against the larvae of H. armigera.Se determinó la eficacia insecticida de formulaciones de Azadirachta indica, Nucleopolihedrovirus (VPN y el nuevo insecticida diamida antranílico (clorantraniliprol en contra de segundo, tercero, cuarto y quinto estadios larvales de Helicoverpa armigera Hubner (Lepidoptera: Noctuidae recogidos de diversas ubicaciones geográficas de la provincia de Punjab, Pakistán. Azadirachta indica se aplicó en dosis de 5 μL L-1; VPN en dosis 2.1 x 10(5 POB mL-1 y clorantraniliprol fue 0,01 μL L-1 ya sea solos o en combinaciones. Los bioensayos se realizaron a 27 ± 1 °C y 65 ± 5% de humedad relativa. La mortalidad fue notablemente variada entre los tratamientos, estadios larvales y

  19. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    Science.gov (United States)

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  20. A Generalist Herbivore Copes with Specialized Plant Defence: the Effects of Induction and Feeding by Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae on Intact Arabidopsis thaliana (Brassicales) Plants.

    Science.gov (United States)

    Zalucki, M P; Zalucki, J M; Perkins, L E; Schramm, K; Vassão, D G; Gershenzon, J; Heckel, D G

    2017-06-01

    Plants of the Brassicaceae are defended from feeding by generalist insects by constitutively-expressed and herbivory-induced glucosinolates (GS). We induced Arabidopsis plants 1, 16 and 24 h prior to allowing neonate larvae of the generalist Helicoverpa armigera to feed on whole plants for 72 h. These plants were subsequently retested with another group of neonates for a further 72 h. We used wild-type A. thaliana Col-0, and mutant lines lacking indolic GS, aliphatic GS or all GS. We hypothesized that larvae would not grow well on defended plants (WT) compared to those lacking GS, and would not grow well if plants had been primed or fed on for longer, due to the expected induced GS. There was survivorship on all lines suggesting H. armigera is a suitable generalist for these experiments. Larvae performed less well on wild-type and no indolic lines than on no aliphatic and no GS lines. Larvae distributed feeding damage extensively in all lines, more so on wild type and no-indolic lines. Contrary to expectations, larvae grew better on plants that had been induced for 1 to 16 h than on un-induced plants suggesting they moved to and selected less toxic plant parts within a heterogeneously defended plant. Performance declined on all lines if plants had been induced for 24 h, or had been fed upon for a further 72 h. However, contrary to expectation, individual and total GS did not increase after these two treatments. This suggests that Arabidopsis plants induce additional (not GS) defenses after longer induction periods.

  1. Recombinant Helicoverpa armigera nucleopolyhedrovirus with arthropod-specific neurotoxin gene RjAa17f from Rhopalurus junceus enhances the virulence against the host larvae.

    Science.gov (United States)

    Yu, Huan; Zhou, Bin; Meng, Jiao; Xu, Jian; Liu, Tong-Xian; Wang, Dun

    2017-06-01

    A recombinant Helicoverpa armigera nucleopolyhedrovirus (HearNPV) expressing the insect-selective neurotoxin (RjAa17f) from Cuban scorpion Rhopalurus junceus was constructed by replacing the UDP-glucosyltransferase gene (egt) using λ-red homologous recombination system. Another egt deleted control HearNPV was constructed in a similar way by inserting egfp gene into the egt locus. One-step viral growth curve and viral DNA replication curve analysis confirmed that the recombination did not affect the viral growth and DNA replication in host cells. There is no discernable difference in occlusion-body morphogenesis between RjAa17f-HearNPV, Egfp-HearNPV and HZ8-HearNPV, which was confirmed by transmission electron microscopy analysis. However, the insecticidal activity of RjAa17f-HearNPV is enhanced against the third instar H. armigera larvae according to the bioassay on virulence comparison. There is a dramatic reduction (56.9%) in median lethal dose (LD 50 ) and also a reduction (13.4%) in median survival time (ST 50 ) for the recombinant RjAa17f-HearNPV compared to the HZ8-HearNPV, but only a 27.5% reduction in LD 50 and 10.1% reduction in ST 50 value when Egfp-HearNPV is compared with HZ8-HearNPV. The daily diet consumption analysis showed that the RjAa17f-HearNPV was able to inhibit the infected larvae feeding compared with the egt minus HearNPV. These results demonstrated that this novel recombinant RjAa17f-HearNPV could improve the insecticidal effect against its host insects and RjAa17f could be a considerable candidate for other recombinant baculovirus constructions. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  2. Pyrethroid and carbamate resistance in Australian Helicoverpa armigera (Lepidoptera: Noctuidae) from 2008 to 2015: what has changed since the introduction of Bt cotton?

    Science.gov (United States)

    Bird, L J

    2018-01-23

    Pyrethroid and carbamate resistance was evaluated in Helicoverpa armigera from 2008 to 2015. Insects were collected as eggs primarily from cultivated hosts in the major cropping areas of New South Wales and Queensland, Australia. Larvae reared from eggs were tested for resistance to fenvalerate, bifenthrin or methomyl in the F 0 generation using a topical application of a discriminating dose of insecticide. In 2008-2009, resistance to fenvalerate was 71% and no resistance to bifenthrin was recorded. In the following two seasons, resistance to pyrethroids was relatively stable with fenvalerate resistance ranging from 63% to 67% and bifenthrin resistance ranging from 5.6% and 6.4% in 2009-2010 and 2010-2011, respectively. However, in 2011-2012, pyrethroid resistance had increased to 91% and 36% for fenvalerate and bifenthrin, respectively. Resistance remained above 90% for fenvalerate and above 35% for bifenthrin in the following three seasons from 2012 to 2015. In 2008-2009, methomyl resistance was 33% and declined to 22% and 15% in 2009-2010 and 2010-2011, respectively. Methomyl resistance remained at moderate levels from 2011-12 to 2014-15, ranging from 21% to 40%. Factors that influenced selection pressure of pyrethroid and carbamate insecticides and impacted resistance frequency in H. armigera may have been associated with changes in the composition of the cropping landscape. The rapid expansion of the pulse industry and the commensurate increased use of insecticide may have played a role in reselection of high-level pyrethroid resistance, and highlights the need for an urgent and strategic response to insecticide resistance management in the Australian grains industry.

  3. Assessment of beneficial role of an insectivorous bird, jungle babbler (Turdoides striatus predation, on Helicoverpa armigera infesting pigeon pea (Cajanus cajan crop Evaluación del rol benéfico de Turdoides striatus como predator de Helicoverpa armigera en el cultivo de guandul (Cajanus cajan

    Directory of Open Access Journals (Sweden)

    Bhavna Bharucha

    2010-04-01

    Full Text Available Jungle babbler (Turdoides striatus, a widely spread sub-tropical insectivorous passerine is considered beneficial to agro-ecosystem, as they devour voraciously on insect matter especially Helicoverpa armigera, the gram pod borer, a notorious pest infesting and causing heavy loses to crops like pigeon pea (Cajanus cajan which is a vital crop of semi-arid tropical and subtropical farming system, providing high quality vegetable protein. Helicoverpa is known to feed on flowers, pods, and seeds and is the most important biotic constraint affecting pigeon pea yields. Jungle babblers have a peculiar foraging style which helps expose the Helicoverpa larvae as well as pupae through various phenological stages of pigeon pea. For comparative assessment of their beneficial role and as a possible bio control agent, in Baroda city (State of Gaujarat, India, was studied, two crops of pigeon pea (insecticide treated and untreated (control were selected. In both treated and control crops, the number of jungle babblers were maximum in pigeon pea fields during october and november in both small pod stage and large pod stage which had heavy infestation of Helicoverpa. Least number of birds was seen during the flowering stage in September. Later in treatment crop three applications of Dunnate and Monocrotophos insecticide spray was done after which the pest population decreased which is reflected in number of birds in the field, while the bird number in control crops grew since insecticide spray was not done and number of larvae increased with the stage of the crop. Along with the main crop pigeon pea, comparative study was also done to see the food preference by these birds in crops like sorghum, maize, cow pea and ploughed and unploughed fields. Maximum number of birds was seen in unploughed field and least in sorghum suggesting that Helicoverpa is preferred food over sorghum grains thus pigeon pea and sorghum can be used as mixed crops to protect the crop from

  4. Trans-generational desensitization and within-generational resensitization of a sucrose-best neuron in the polyphagous herbivore Helicoverpa armigera (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Ma, Ying; Li, Jingjing; Tang, Qingbo; Zhang, Xuening; Zhao, Xincheng; Yan, Fengming; van Loon, Joop J A

    2016-12-14

    Dietary exposure of insects to a feeding deterrent substance for hours to days can induce habituation and concomitant desensitization of the response of peripheral gustatory neurons to such a substance. In the present study, larvae of the herbivore Helicoverpa armigera were fed on diets containing either a high, medium or low concentration of sucrose, a major feeding stimulant. The responsiveness of the sucrose-best neuron in the lateral sensilla styloconica on the galea was quantified. Results showed the response of the sucrose-best neuron exposed to high-sucrose diets decreased gradually over successive generations, resulting in complete desensitization in the 5 th and subsequent generations. However, the sensitivity was completely restored in the ninth generation after neonate larvae were exposed to low-sucrose diet. These findings demonstrate phenotypic plasticity and exclude inadvertent artificial selection for low sensitivity to sucrose. No significant changes were found in the sensitivity of caterpillars which experienced low- or medium-sucrose diets over the same generations. Such desensitization versus re-sensitization did not generalise to the phagosimulant myo-inositol-sensitive neuron or the feeding deterrent-sensitive neuron. Our results demonstrate that under conditions of high sucrose availability trans-generational desensitization of a neuron sensitive to this feeding stimulant becomes more pronounced whereas re-sensitization occurs within one generation.

  5. Histopathology of the larval midgut of Helicoverpa armigera (Hübner fed on Bacillus thuringiensis crystals and Bt-tomato plants

    Directory of Open Access Journals (Sweden)

    N.M. Abd El-Ghany

    2015-12-01

    Full Text Available The histopathological effects of the spore-crystal complex of indigenous Bacillus thuringiensis (Bt isolate, as well as Cry 2Ab gene expressed in transgenic tomato plants on the midgut of 4th instar larva of Helicoverpa armigera (Hübner (Lepidoptera: Noctuidea has been investigated using the transmission electron microscope (TEM. Remarkable ultrastructural changes were observed in the columnar and goblet cells of the larval midgut after feeding on either transgenic tomato leaves, or spore-crystal complex of Bt. The effects observed included breakdown of microvilli of epithelial cells, increase in the electron density of the cytoplasm and vacuolation associated with different sizes of lysosomes; interruption of the goblet cells and distorted goblet cavities which lost their cytoplasmic projections; destruction of the mitochondria which lost their cristae; degeneration of the endoplasmic reticulum; collapse of the nucleus associated with rupture of nuclear envelope and clumped chromatin. Feeding the larvae on transgenic Bt-tomato plants caused in addition to the aforementioned changes severe vacuolation and degeneration of the nucleus in both columnar and goblet cells and the nuclear membrane was broken into electron dense ring spheres.

  6. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    Science.gov (United States)

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival. © 2016 The Royal Entomological Society.

  7. A novel bio-engineering approach to generate an eminent surface-functionalized template for selective detection of female sex pheromone of Helicoverpa armigera

    Science.gov (United States)

    Moitra, Parikshit; Bhagat, Deepa; Pratap, Rudra; Bhattacharya, Santanu

    2016-01-01

    Plant pests exert serious effects on food production due to which the global crop yields are reduced by ~20–40 percent per year. Hence to meet the world’s food needs, loses of food due to crop pests must be reduced. Herein the silicon dioxide based MEMS devices are covalently functionalized for robust and efficient optical sensing of the female sex pheromones of the pests like Helicoverpa armigera for the first time in literature. The functionalized devices are also capable of selectively measuring the concentration of this pheromone at femtogram level which is much below the concentration of pheromone at the time of pest infestation in an agricultural field. Experiments are also performed in a confined region in the presence of male and female pests and tomato plants which directly mimics the real environmental conditions. Again the reversible use and absolutely trouble free transportation of these pheromone nanosensors heightens their potentials for commercial use. Overall, a novel and unique approach for the selective and reversible sensing of female sex pheromones of certain hazardous pests is reported herein which may be efficiently and economically carried forward from the research laboratory to the agricultural field. PMID:27892521

  8. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    Science.gov (United States)

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  9. Influence of Dual-Bt Protein Corn on Bollworm, Helicoverpa zea (Boddie), Survivorship on Bollgard II Cotton.

    Science.gov (United States)

    Von Kanel, M B; Gore, J; Catchot, A; Cook, D; Musser, F; Caprio, M

    2016-04-01

    Similar Cry proteins are expressed in both Bt corn, Zea mays L., and cotton, Gossypium hirsutum (L.), commercial production systems. At least one generation of corn earworm, Helicoverpa zea (Boddie), completes development on field corn in the Mid-South before dispersing across the landscape into other crop hosts like cotton. A concern is that Bt corn hybrids may result in selection for H. zea populations with a higher probability of causing damage to Bt cotton. The objective of this study was to determine the susceptibility of H. zea offspring from moths that developed on non-Bt and VT Triple Pro (VT3 PRO) field corn to lyophilized Bollgard II cotton tissue expressing Cry1Ac and Cry2Ab. Offspring of individuals reared on VT3 PRO expressing Cry1A.105 and Cry2Ab had a significantly higher LC50 two out of the three years this study was conducted. Excess larvae were placed on artificial diet and allowed to pupate to determine if there were any inheritable fitness costs associated with parental development on VT3 PRO corn. Offspring resulting from males collected from VT3 PRO had significantly lower pupal weight and longer pupal duration compared with offspring of individuals collected from non-Bt corn. However, offspring from females collected from VT3 PRO were not different from non-Bt offspring. Paternal influence on offspring in insects is not commonly observed, but illustrates the side effects of development on a transgenic plant expressing less than a high dose, 25 times the concentration needed to kill susceptible larvae.

  10. Réponse des stades larvaires de Helicoverpa armigera (Hübner (Lepidoptera : Noctuidae à l'application de champignons entomopathogènes Metarhizium anisopliae et Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Tamò, M.

    2012-01-01

    Full Text Available Response of the nymphs of Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae to entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Two experiments on dose/mortality response between the instars of Helicoverpa armigera and two strains of entomopathogenic fungi, Metarhizium anisopliae (Met 31 and Beauveria bassiana (Bb 11 were carried out in laboratory conditions. In the first experiment, M. anisopliae Met 31 was tested on the third instar of H. armigera, while in the second experiment, both Met 31 and Bb 11 were tested on the fourth instar. In all the experiments, the following different doses of conidia per insect were used: 104, 105, 106, 107. The following parameters were measured: mortality and sporulation rates, the number of pupae formed and the number of adults that emerged. Abbott's formula was used to correct the treatment mortality rates. LD50 was determined using Cox-regression. For the third instar in experiment one, no significant difference was observed between high doses (106 and 107 conidia per insect. For instar L4, only the dose of 107 conidia per insect showed high mortality rates (74%. For the strain Bb 11, in spite of the variation observed between the mortality rates induced by high doses (106 and 107 conidia per insect, no significant difference was recorded at the 5% level. No mycosis was observed from cadavers resulting from lower doses when tested on L4. The control recorded the highest numbers of pupae and adults. These two parameters were related to the level of dosage: the higher the dose, the lower the numbers of pupae and adults that emerged. For all the strains of fungi used, whatever the larval stage of H. armigera, the dose/mortality response was significant.

  11. Determining the major Bt refuge crops for cotton bollworm in North China.

    Science.gov (United States)

    Ye, Le-Fu; Fu, Xue; Ouyang, Fang; Xie, Bao-Yu; Ge, Feng

    2015-12-01

    Evaluation of the effectiveness of refuge strategies involved in cotton bollworm Bt resistance management would be aided by technologies that allow monitoring and quantification of key factors that affect the process under field conditions. We hypothesized that characterization of stable carbon and nitrogen isotopes in adult bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) moths may aid in determining the larval host that they developed upon. We found moths reared from larvae fed on peanut, soybean or cotton, respectively, could be differentiated using isotopic analyses that also corresponded to their respective larval host origins. These techniques were then used to classify feral second-generation bollworm moths caught in Bt cotton (Gossypium hirsutum) fields into different populations based on their isotopic signatures. In 2006-2007 feral moths captured in Bt cotton fields predominantly correlated with the peanut (Arachis hypogea) having served as their larval host, indicating this is the most important refuge crop for Bt-susceptible bollworm individuals (providing 58%-64% individuals) during independent moth peaks for the second generation in North China. The remaining feral moths correlated with soybean (Glycine max) (0-10%); other C3 plant (20%-22%) and non-C3 plant (12%-14%) host types also provided some Bt-sensitive moths. Field observations showed that peanut constitutes the primary refuge crop contributing to sustaining Bt-susceptible moths dispersing into cotton in North China. These results suggest that peanut may be a more effective refuge to sustain Bt-susceptible bollworm individuals and reduce the risk of development of a Bt-resistant biotype. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  12. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac, the United States and some other countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. The "natural" refuge strategy focuses on cotton bollworm (Helicoverpa armigera, the primary target of Bt cotton in China that attacks many crops, but it does not apply to another major pest, pink bollworm (Pectinophora gossypiella, which feeds almost entirely on cotton in China. Here we report data showing field-evolved resistance to Cry1Ac by pink bollworm in the Yangtze River Valley of China. Laboratory bioassay data from 51 field-derived strains show that the susceptibility to Cry1Ac was significantly lower during 2008 to 2010 than 2005 to 2007. The percentage of field populations yielding one or more survivors at a diagnostic concentration of Cry1Ac increased from 0% in 2005-2007 to 56% in 2008-2010. However, the median survival at the diagnostic concentration was only 1.6% from 2008 to 2010 and failure of Bt cotton to control pink bollworm has not been reported in China. The early detection of resistance reported here may promote proactive countermeasures, such as a switch to transgenic cotton producing toxins distinct from Cry1A toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton.

  13. Análise da variabilidade genética de populações de Helicoverpa armigera (Lepidoptera: Noctuidae) ocorrendo em culturas de algodão e tomate - doi: 10.5102/ucs.v8i1.1056

    OpenAIRE

    Queiroz, Paulo Roberto; Lima, Luzia Helena Corrêa

    2010-01-01

    Helicoverpa armigera é uma das principais pragas polífagas de distribuição mundial das culturas de interesse econômico. A identificação dessa espécie por meio molecular auxilia no estabelecimento do perfil genético, na caracterização e no monitoramento das populações desse inseto da ordem Lepidoptera. O objetivo desse trabalho foi estabelecer uma metodologia de extração de DNA para H. armigera, determinar perfis eletroforéticos e analisar a variabilidade genética entre as populações desse ins...

  14. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms

    Science.gov (United States)

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-01-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553

  15. Identificação morfológica e molecular de Helicoverpa armigera (Lepidoptera: Noctuidae e ampliação de seu registro de ocorrência no Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre Specht

    2013-06-01

    Full Text Available O objetivo deste trabalho foi descrever métodos para a caracterização morfológica e molecular de Helicoverpa armigera e ampliar o registro de ocorrência da praga no Brasil. As mariposas foram obtidas de lagartas coletadas nas culturas de algodão, milho e soja, com uso de armadilhas luminosas. As coletas foram realizadas na Bahia, no Distrito Federal, no Mato Grosso e no Paraná. A identificação foi baseada na genitália masculina e nas análises das sequências dos genes mitocondriais do citocromo B e da região cox1-tRNALeu-cox2. A genitália masculina foi comparada com as descrições morfológicas na literatura, e as sequências de genes, com as depositadas no GenBank. Ambas as análises confirmaram a presença de H. armigera nos locais de coleta. Ampliou-se o registro de ocorrência da praga para a região Sul do país.

  16. The First Cry2Ac-Type Protein Toxic to Helicoverpa armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Faiza Saleem

    2017-11-01

    Full Text Available The Cry (crystal proteins from Bacillus thuringiensis are known to have toxicity against a variety of insects and have been exploited to control insect pests through transgenic plants and biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA database (Accession No. AM292031. For expression analysis, Escherichia coli DH5α was transformed with the fragment sub-cloned in pET22b expression vector using NdeI and HindIII restriction sites, and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein against lepidopteran and dipteran insects, BL21 (codon plus strain of E. coli was further transformed with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5% Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM K2CO3 (pH 11.5, dialyzed, and freeze-dried. This freeze-dried protein as well as inclusion bodies were used in bioassays against larvae of Helicoverpa armigera and Musca domestica. The freeze-dried protein was toxic to H. armigera larvae with an LC50 value of 131 ng/mL. However, Cry2Ac7 produced in E. coli did not show any mortality to M. domestica larvae. This is the first report of Cry2Ac protein toxic to H. armigera.

  17. The First Cry2Ac-Type Protein Toxic to Helicoverpa armigera: Cloning and Overexpression of Cry2ac7 Gene from SBS-BT1 Strain of Bacillus thuringiensis.

    Science.gov (United States)

    Saleem, Faiza; Shakoori, Abdul Rauf

    2017-11-03

    The Cry (crystal) proteins from Bacillus thuringiensis are known to have toxicity against a variety of insects and have been exploited to control insect pests through transgenic plants and biopesticides. B. thuringiensis SBS BT-1 carrying the cry2 genes was isolated from soil samples in Pakistan. The 2-kb full length cry2Ac gene was cloned, sequenced, and submitted to the EMBL DNA database (Accession No. AM292031). For expression analysis, Escherichia coli DH5α was transformed with the fragment sub-cloned in pET22b expression vector using Nde I and Hin dIII restriction sites, and later confirmed by restriction endonuclease analysis. To assess the toxicity of Cry2Ac7 protein against lepidopteran and dipteran insects, BL21 (codon plus) strain of E. coli was further transformed with the recombinant plasmid. The 65-kDa protein was expressed in the form of inclusion bodies up to 180 OD units per liter of the medium. Inclusions were washed with a buffer containing 1.5% Triton-X 100 and >90% pure Cry2Ac7 was obtained. The inclusion bodies were dissolved in 50 mM K₂CO₃ (pH 11.5), dialyzed, and freeze-dried. This freeze-dried protein as well as inclusion bodies were used in bioassays against larvae of Helicoverpa armigera and Musca domestica . The freeze-dried protein was toxic to H. armigera larvae with an LC 50 value of 131 ng/mL. However, Cry2Ac7 produced in E. coli did not show any mortality to M. domestica larvae. This is the first report of Cry2Ac protein toxic to H. armigera .

  18. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  19. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.).

    Science.gov (United States)

    Das, Alok; Datta, Subhojit; Thakur, Shallu; Shukla, Alok; Ansari, Jamal; Sujayanand, G K; Chaturvedi, Sushil K; Kumar, P A; Singh, N P

    2017-01-01

    Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( Helicoverpa armigera H.) wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt ( cryI ) genes. We designed a plant codon optimized chimeric Bt gene ( cry1Aabc ) using three domains from three different cry1A genes (domains I, II, and III from cry1Aa , cry1Ab , and cry1Ac , respectively) and expressed it under the control of a constitutive promoter in chickpea ( cv . DCP92-3) to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic) shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L) with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering) were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay) led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  20. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L. Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.

    Directory of Open Access Journals (Sweden)

    Alok Das

    2017-08-01

    Full Text Available Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer (Helicoverpa armigera H. wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt (cryI genes. We designed a plant codon optimized chimeric Bt gene (cry1Aabc using three domains from three different cry1A genes (domains I, II, and III from cry1Aa, cry1Ab, and cry1Ac, respectively and expressed it under the control of a constitutive promoter in chickpea (cv. DCP92-3 to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  1. Expression of recombinant and mosaic Cry1Ac receptors from Helicoverpa armigera and their influences on the cytotoxicity of activated Cry1Ac to Spodoptera litura Sl-HP cells.

    Science.gov (United States)

    Xu, Peng; Islam, Mayira; Xiao, Yutao; He, Fei; Li, Yi; Peng, Jianxin; Hong, Huazhu; Liu, Chenxi; Liu, Kaiyu

    2016-05-01

    Bacillus thuringiensis (Bt) toxin receptors play important roles in the killing of pests, and investigation on characterization of the receptors is essential for utilization of Bt and management of insect resistance. Here, recombinant and mosaic receptors of Bt Cry1Ac toxin from Helicoverpa armigera were expressed in Spodoptera litura Sl-HP cells and their influences on cytotoxicity of activated Cry1Ac toxin were investigated. When H. armigera aminopeptidase N1 (APN1), alkaline phosphatase 2 (ALP2) and cadherin fused with or without GFP tag were, respectively, expressed in Sl-HP cells, live cell-immunofluorescence staining detection revealed that the quantity of the toxin binding to cadherin or cadherin-GFP was much more than that binding to ALP2 and APN1 or their fusion proteins with GFP, and only the cadherin- or cadherin-GFP-expressing cells showed aberrant cell morphology after the treatment of the toxin at low concentrations. ALP2 and APN1 fused with or without GFP tag did not significantly enhance the cadherin-mediated cytotoxicity of the toxin. The mosaic ALP-TBR-GFP-GPI was located on cell membrane, but did not bind to the toxin. The mosaic truncated cadherin-GFP-GPI was not located on cell membrane even if the signal peptide was sustained. The concentrations of the toxin resulting in swelling of 50 % cells for noncadherin-expressing Sl-HP cells and cadherin-expressing Hi5 cells were 5.08 and 9.50 µg/ml within 1 h, respectively. Taken together, our data have indicated that the binding affinity of ALP2 and APN1 to activated Cry1Ac toxin is much weaker than that of cadherin and both ALP2 and APN1 do not enhance the cytotoxicity of the toxin even though cadherin is co-expressed, and the mosaic receptor of ALP2 inserted with cadherin toxin binding domain does not mediate cytotoxicity of the toxin. In addition, the noncadherin-expressing Sl-HP cells are more susceptible to activated Cry1Ac than the cadherin-expressing Hi5 cells.

  2. Identification and characterization of aldehyde oxidases (AOXs) in the cotton bollworm

    Science.gov (United States)

    Xu, Wei; Liao, Yalin

    2017-12-01

    Aldehyde oxidases (AOXs) are a family of metabolic enzymes that oxidize aldehydes into carboxylic acids; therefore, they play critical roles in detoxification and degradation of chemicals. By using transcriptomic and genomic approaches, we successfully identified six putative AOX genes (HarmAOX1-6) from cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In silico expression profile, reverse transcription (RT)-PCR, and quantitative PCR (qPCR) analyses showed that HarmAOX1 is highly expressed in adult antennae, tarsi, and larval mouthparts, so they may play an important role in degrading plant-derived compounds. HarmAOX2 is highly and specifically expressed in adult antennae, suggesting a candidate pheromone-degrading enzyme (PDE) to inactivate the sex pheromone components (Z)-11-hexadecenal and (Z)-9-hexadecenal. RNA sequencing data further demonstrated that a number of host plants they feed on could significantly upregulate the expression levels of HarmAOX1 in larvae. This study improves our understanding of insect aldehyde oxidases and insect-plant interactions.

  3. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  4. Análise da variabilidade genética de populações de Helicoverpa armigera (Lepidoptera: Noctuidae ocorrendo em culturas de algodão e tomate - doi: 10.5102/ucs.v8i1.1056

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Queiroz

    2010-10-01

    Full Text Available Helicoverpa armigera é uma das principais pragas polífagas de distribuição mundial das culturas de interesse econômico. A identificação dessa espécie por meio molecular auxilia no estabelecimento do perfil genético, na caracterização e no monitoramento das populações desse inseto da ordem Lepidoptera. O objetivo desse trabalho foi estabelecer uma metodologia de extração de DNA para H. armigera, determinar perfis eletroforéticos e analisar a variabilidade genética entre as populações desse inseto-praga. Os cinco iniciadores de RAPD produziram fragmentos de DNA que revelaram uma similaridade genética inferior a 80% entre as dez populações no dendrograma que foi gerado. Os resultados obtidos com as análises de variância molecular (AMOVA revelaram que a elevada fonte de variação genética foi o resultado da variabilidade dentro de cada população. As causas que levaram a essa elevada variabilidade precisam ser mais bem estudadas nos países onde a praga ocorre.

  5. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species

    DEFF Research Database (Denmark)

    Pearce, S L; Clarke, D F; East, P D

    2017-01-01

    BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics......, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100...

  6. Helicoverpa zea and Bt cotton in the United States.

    Science.gov (United States)

    Luttrell, Randall G; Jackson, Ryan E

    2012-01-01

    Helicoverpa zea (Boddie), the bollworm or corn earworm, is the most important lepidopteran pest of Bt cotton in the United States. Corn is the preferred host, but the insect feeds on most flowering crops and wild host plants. As a cotton pest, bollworm has been closely linked to the insecticide-resistance prone Heliothis virescens (F.), tobacco budworm. Immature stages of the two species are difficult to separate in field environments. Tobacco budworm is very susceptible to most Bt toxins, and Bt cotton is considered to be "high dose." Bollworm is less susceptible to Bt toxins, and Bt cotton is not "high dose" for this pest. Bt cotton is routinely sprayed with traditional insecticides for bollworm control. Assays of bollworm field populations for susceptibility to Bt toxins expressed in Bt cotton have produced variable results since pre-deployment of Bt cottons in 1988 and 1992. Analyses of assay response trends have been used by others to suggest that field resistance has evolved to Bt toxins in bollworm, but disagreement exists on definitions of field resistance and confidence of variable assay results to project changes in susceptibility of field populations. Given historical variability in bollworm response to Bt toxins, erratic field control requiring supplemental insecticides since early field testing of Bt cottons, and dramatic increases in corn acreage in cotton growing areas of the Southern US, continued vigilance and concern for resistance evolution are warranted.

  7. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  8. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of ...

  9. Response of last instar Helicoverpa armigera larvae to Bt toxin ingestion: changes in the development and in the CYP6AE14, CYP6B2 and CYP9A12 gene expression.

    Directory of Open Access Journals (Sweden)

    Pilar Muñoz

    Full Text Available Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.

  10. The ecology of Helicoverpa spp. (Lepidoptera: Noctuidae) in the Riverina region of south-eastern Australia and the implications for tactical and strategic management.

    Science.gov (United States)

    Duffield, S J; Steer, A P

    2006-12-01

    Decisions on the choice of appropriate tactical and strategic control techniques require an understanding of the seasonal distribution and ecology of the target species. To address this need, data were collected from 1997 to 2000 using crop surveys, field sampling and pheromone trapping to monitor the population trends of Helicoverpa armigera (Hübner) and H. punctigera (Wallengren) in the Riverina region of south-eastern Australia. The data gathered are compared to predictions from the HElicoverpa Armigera and Punctigera Simulation (HEAPS) model, that simulates Helicoverpa population dynamics to assist in identifying the drivers of regional populations and provide a framework to make informed decisions. The results highlight the contrasting seasonal dynamics of H. punctigera and H. armigera within the region. Helicoverpa punctigera populations peak in the spring, driven by large scale spring migration into the region and subsequently decline. Helicoverpa armigera populations, conversely, are characterized by a period of spring recruitment of adults from overwintering pupae within the region, followed by a within-season population increase leading to severe late season pressure. The within-season increase of H. armigera is a result of the succession of crop and non-crop hosts with the main driver being sequentially sown, unsprayed maize. Tactical and strategic management options are discussed in light of these findings.

  11. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths

    Science.gov (United States)

    Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...

  12. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species.

    Science.gov (United States)

    Pearce, S L; Clarke, D F; East, P D; Elfekih, S; Gordon, K H J; Jermiin, L S; McGaughran, A; Oakeshott, J G; Papanikolaou, A; Perera, O P; Rane, R V; Richards, S; Tay, W T; Walsh, T K; Anderson, A; Anderson, C J; Asgari, S; Board, P G; Bretschneider, A; Campbell, P M; Chertemps, T; Christeller, J T; Coppin, C W; Downes, S J; Duan, G; Farnsworth, C A; Good, R T; Han, L B; Han, Y C; Hatje, K; Horne, I; Huang, Y P; Hughes, D S T; Jacquin-Joly, E; James, W; Jhangiani, S; Kollmar, M; Kuwar, S S; Li, S; Liu, N-Y; Maibeche, M T; Miller, J R; Montagne, N; Perry, T; Qu, J; Song, S V; Sutton, G G; Vogel, H; Walenz, B P; Xu, W; Zhang, H-J; Zou, Z; Batterham, P; Edwards, O R; Feyereisen, R; Gibbs, R A; Heckel, D G; McGrath, A; Robin, C; Scherer, S E; Worley, K C; Wu, Y D

    2017-07-31

    Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.

  13. Effectiveness of Microbial and Chemical Insecticides for Supplemental Control of Bollworm on Bt and Non-Bt Cottons.

    Science.gov (United States)

    Little, N S; Luttrell, R G; Allen, K C; Perera, O P; Parys, K A

    2017-06-01

    Laboratory and field experiments were conducted to determine the effectiveness of microbial and chemical insecticides for supplemental control of bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on non-Bt (DP1441RF) and Bt (DP1321B2RF) cottons. Neonate and 3rd instar larvae survival was evaluated on leaf tissue treated with microbial and chemical insecticides including a commercial formulation of Bacillus thuringiensis (Dipel), a Heliothis (Helicoverpa) nuclear polyhedrosis virus (NPV; Gemstar), λ-cyhalothrin (Karate Z), and chlorantraniliprole (Prevathon). Residual activity of insecticides was measured in a small plot field experiment. The performance of microbial insecticides, with the exception of a mid-rate of Dipel with neonate larvae, was comparable with that of chemical treatments on non-Bt cotton leaves with regard to 1st and 3rd instar bollworm mortality at 10 d and pupal eclosion at 20-d post treatment. Production-level field evaluations of supplemental bollworm control in non-Bt and Bt cottons with NPV, λ-cyhalothrin, and chlorantraniliprole were also conducted. During both years of the field study, all chemical and microbial treatments were successful in suppressing bollworm larval densities in non-Bt cotton below economic threshold levels. Overall, net returns above bollworm control, regardless of treatment, were negatively correlated with larval abundance and plant damage. In addition, there was no economic benefit for supplemental control of bollworms in Bt cotton at the larval densities observed during this study. These data provide benchmark comparisons for insect resistance management with microbial and chemical insecticides in Bt and non-Bt cottons and strategic optimization of the need to spray non-Bt and Bt cotton in IRM programs. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  14. Microbial agents against Helicoverpa armigera: Where are we and ...

    African Journals Online (AJOL)

    . They are the representative genera of higher microbial mass in the soil. Numerous studies have shown that these productive actino-bacteria can generate an impressive array of secondary metabolites such as antibiotics, antitumor agents, ...

  15. Development of a novel-type transgenic cotton plant for control of cotton bollworm.

    Science.gov (United States)

    Yue, Zhen; Liu, Xiaoguang; Zhou, Zijing; Hou, Guangming; Hua, Jinping; Zhao, Zhangwu

    2016-08-01

    The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants-npf1 and npf2 (with a 120-bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. The Inheritance of the Pheromone Sensory System in TwoHelicoverpaSpecies: Dominance ofH. armigeraand Possible Introgression fromH. assulta.

    Science.gov (United States)

    Xu, Meng; Dong, Jun-Feng; Wu, Han; Zhao, Xin-Cheng; Huang, Ling-Qiao; Wang, Chen-Zhu

    2016-01-01

    Hybridization of sympatric closely related species may sometimes lead to introgression and speciation. The sister species Helicoverpa armigera and Helicoverpa assulta both use (Z)-11-hexadecenal and (Z)-9-hexadecenal as sex pheromone components but in reversed ratios. Female H. armigera and male H. assulta could hybridize and produce fertile male hybrids, which can then backcross with females of the two parent species to get backcross lines in the laboratory. In this study, we compared the olfactory responses to pheromone compounds in the periphery and in the antennal lobes (ALs) of males of the two species, as well as of their hybrids and backcrosses. Single-sensillum recordings were carried out to explore characteristics of male-specific sensilla on the antennae, and in vivo calcium imaging combined with digital 3D-reconstruction was used to describe what happens in the macroglomerular complex (MGC) of the AL. The results show that the population ratio of the two male-specific types of olfactory sensory neurons responding to two sex pheromone components are controlled by a major gene, and that the allele of H. armigera is dominant. Consistently, the study of the representative areas activated by sex pheromone components in the ALs further support the dominance of H. armigera . However, the topological structure of the MGC in the hybrid was similar but not identical to that in H. armigera . All subtypes of male-specific sensilla identified in the two species were found in the male hybrids and backcrosses. Moreover, two new subtypes with broader response spectra (the expanded A subtype and the expanded C subtype) emerged in the hybrids. Based on the inheritance pattern of the pheromone sensory system, we predict that when hybridization of female H. armigera and male H. assulta occurs in the field, male hybrids would readily backcross with female H. armigera , and introgression might occur from H. assulta into H. armigera through repeated backcrossing.

  17. Efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    ... and Betsulfan at 3.2 l ha-1 recorded the highest and lowest yields, respectively. For effective control of cotton bollworms for maximum yield in the ecology, Thionex applied at 2.8 l ha-1 is recommended. Keywords: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides. African Crop Science Journal, Vol. 20, No.

  18. Tarsal taste neurons of Helicoverpa assulta (Guenée) respond to sugars and amino acids, suggesting a role in feeding and oviposition.

    Science.gov (United States)

    Zhang, Yun-Feng; Huang, Ling-Qiao; Ge, Feng; Wang, Chen-Zhu

    2011-10-01

    Helicoverpa assulta and Helicoverpa armigera are sibling species with different host-plant ranges. We have previously reported electrophysiological and behavioral responses of H.armigera to sugars and amino acids. Here we describe a parallel study performed on H. assulta and compare the results obtained with the two species. In females, fourteen gustatory chemosensilla, identified on one ventrolateral side of the fifth tarsomere were stimulated with sucrose, glucose, fructose, maltose, myo-inositol, and the twenty common amino acids, using the tip-recording technique. The taste receptor neurons in eight chemosensilla were identified sensitive to the sugars, myo-inositol, Lys, Glu, Arg, Trp, and Ser which all induced proboscis extension reflex (PER) when tarsi were stimulated. There was a positive correlation between electrophysiological activities and PER responses triggered by sucrose. No stimulatory effect on oviposition was observed with sugar or amino acid mixtures. In males, three chemosensilla showed responses to the four sugars, but generally weaker than in females. The major difference of the two species was the variety of amino acids triggering electrophysiological responses. The stimulatory effect of sugars and amino acids on H.assulta was also generally weaker than that on H. armigera. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. 76 FR 46209 - Importation of Tomatoes From the Economic Community of West African States Into the Continental...

    Science.gov (United States)

    2011-08-02

    ... national plant protection organization of the exporting country with an additional declaration that the...) Ceratitis capitata (Medfly) Ceratitis rosa (natal fruit fly) Helicoverpa armigera (cotton bollworm) H... (NPPO) of the exporting country. Initial approval of production sites would be completed jointly by the...

  20. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review

    Science.gov (United States)

    Verticillium dahliae, a soil-borne pathogen, causes Verticillium wilt, one of the most serious diseases in cotton, deleteriously influencing the crop’s production and quality. Verticillium wilt has become a major obstacle in cotton production since Helicoverpa armigera, the cotton bollworm, became e...

  1. 78 FR 25620 - Importation of Female Squash Flowers From Israel Into the Continental United States

    Science.gov (United States)

    2013-05-02

    ...: Ms. Meredith Jones, Senior Regulatory Policy Specialist, PPQ, APHIS, 4700 River Road Unit 133... both the female squash flower and squash fruit, Helicoverpa armigera (cotton bollworm). All four of... value of female squash flowers imported from other countries. Without basic production and trade...

  2. Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm.

    Directory of Open Access Journals (Sweden)

    Jizhen Wei

    Full Text Available Crystalline (Cry proteins from Bacillus thuringiensis (Bt are used extensively for insect control in sprays and transgenic plants, but their efficacy is reduced by evolution of resistance in pests. Here we evaluated reduced activation of Cry1Ac protoxin as a potential mechanism of resistance in the invasive pest Helicoverpa armigera. Based on the concentration killing 50% of larvae (LC50 for a laboratory-selected resistant strain (LF120 divided by the LC50 for its susceptible parent strain (LF, the resistance ratio was 1600 for Cry1Ac protoxin and 1200 for trypsin-activated Cry1Ac toxin. The high level of resistance to activated toxin as well as to protoxin indicates reduced activation of protoxin is not a major mechanism of resistance to Cry1Ac in LF120. For both insect strains, treatment with either the trypsin inhibitor N-a-tosyl-L-lysine chloromethyl ketone (TLCK or the chymotrypsin inhibitor N-a-tosyl-L-phenylalanine chloromethyl ketone (TPCK did not significantly affect the LC50 of Cry1Ac protoxin. Enzyme activity was higher for LF than LF120 for trypsin-like proteases, but did not differ between strains for chymotrypsin-like proteases. The results here are consistent with previous reports indicating that reduced activation of protoxin is generally not a major mechanism of resistance to Bt proteins.

  3. 7 CFR 301.52-9 - Movement of live pink bollworms.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live pink bollworms. 301.52-9 Section 301... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-9 Movement of live pink bollworms. Regulations requiring a permit for, and otherwise...

  4. Impacts on transfer of the sperm of helicoverpa Armigera by irradiation (L. noctuidae)

    International Nuclear Information System (INIS)

    Liu Xiaohui; Li Yongjun; Wang Huasong; Song Jiaxiang

    2001-01-01

    Gamma irradiation did not influence the quantity of the eupyrene sperm bundles in duplex and that of the eupyrene sperm in spermatophore, but affected the maturing of eupyrene sperm bundles. When males were given sterilizing dose of 400 Gy, the quantity and the activity of the eupyrene sperm in the spermatheca were reduced significantly (P < 0.05)

  5. Sterilization of Helicoverpa armigera (hubner) moth (lepidoptera; Noctudae) by using Gamma rays radiation

    International Nuclear Information System (INIS)

    Subiyakto; Wari D Astati; Sunarto Dwi A

    1998-01-01

    This experiment was conducted at the Radiation Facility, National Atomic Energy, Jakarta and Entomology Laboratory of the Research Institute for Tobacco and Crops Malang in 1991. Sterilization of moth by radiating insect on pupae stage. The dosage were 0 (unradiated), 1,3,5,7,9,11,13,and 15 krad. The treatments were arranged in complete randomized design with three replications. Each treatments were made variation of copulation (1) two females radiated with a make unradiated (2) two females unradiated with a male radiated, and (3) two females radiated with a male radiated. The results showed that sub sterile dosage (LD 50 ) for male was 0.94 krad and 7.02 krad for female. The sterile dosage (LD 95 ) for male was 10.85 krad and 14.35 krad for female. Research of the competition for copulation between the male radiated and unradiated is needed. (author)

  6. Variable selection based cotton bollworm odor spectroscopic detection

    Science.gov (United States)

    Lü, Chengxu; Gai, Shasha; Luo, Min; Zhao, Bo

    2016-10-01

    Aiming at rapid automatic pest detection based efficient and targeting pesticide application and shooting the trouble of reflectance spectral signal covered and attenuated by the solid plant, the possibility of near infrared spectroscopy (NIRS) detection on cotton bollworm odor is studied. Three cotton bollworm odor samples and 3 blank air gas samples were prepared. Different concentrations of cotton bollworm odor were prepared by mixing the above gas samples, resulting a calibration group of 62 samples and a validation group of 31 samples. Spectral collection system includes light source, optical fiber, sample chamber, spectrometer. Spectra were pretreated by baseline correction, modeled with partial least squares (PLS), and optimized by genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS). Minor counts differences are found among spectra of different cotton bollworm odor concentrations. PLS model of all the variables was built presenting RMSEV of 14 and RV2 of 0.89, its theory basis is insect volatilizes specific odor, including pheromone and allelochemics, which are used for intra-specific and inter-specific communication and could be detected by NIR spectroscopy. 28 sensitive variables are selected by GA, presenting the model performance of RMSEV of 14 and RV2 of 0.90. Comparably, 8 sensitive variables are selected by CARS, presenting the model performance of RMSEV of 13 and RV2 of 0.92. CARS model employs only 1.5% variables presenting smaller error than that of all variable. Odor gas based NIR technique shows the potential for cotton bollworm detection.

  7. Binding site alteration is responsible for field-isolated resistance to Bacillus thuringiensis Cry2A insecticidal proteins in two Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Silvia Caccia

    Full Text Available BACKGROUND: Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F(2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac. METHODOLOGY/PRINCIPAL FINDINGS: Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with (125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in (125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins. CONCLUSION/SIGNIFICANCE: This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported

  8. efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    insecticide treatments, Thionex at 2.8 l ha-1 was the most effective. This was ... Key Words: Control, cotton bollworms, efficacy, Ghana, synthetic insecticides ..... work. REFERENCES. Abdulai, M., Abatania, L. and Salifu, A. B. 2006. Farmers' knowledge and perceptions of cotton insect pests and their control practices.

  9. Frequency of alleles conferring resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in Australian populations of Helicoverpa punctigera (Lepidoptera: Noctuidae) from 2002 to 2006.

    Science.gov (United States)

    Downes, S; Parker, T L; Mahon, R J

    2009-04-01

    Helicoverpa punctigera and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are important pests of field and horticultural crops in Australia. The former is endemic to the continent, whereas the latter is also distributed in Africa and Asia. Although H. armigera rapidly developed resistance to virtually every group of insecticide used against it, there is only one report of resistance to an insecticide in H. punctigera. In 1996 the Australian cotton industry adopted Ingard, which expresses the Bacillus thuringiensis (Bt) toxin gene cry1Ac. In 2004/2005, Bollgard II (which expresses Cry1Ac and Cry2Ab) replaced Ingard and has subsequently been grown on 80% of the area planted to cotton, Gossypium hirsutum L. From 2002/2003 to 2006/2007, F2 screens were used to detect resistance to Cry1Ac or Cry2Ab. We detected no alleles conferring resistance to Cry1Ac; the frequency was < 0.0005 (n = 2,180 alleles), with a 95% credibility interval between 0 and 0.0014. However, during the same period, we detected alleles that confer resistance to Cry2Ab at a frequency of 0.0018 (n = 2,192 alleles), with a 95% credibility interval between 0.0005 and 0.0040. For both toxins, the experiment-wise detection probability was 94%, i.e., if there actually was a resistance allele in any tested lines, we would have detected it 94% of the time. The first isolation of Cry2Ab resistance in H. punctigera was before the widespread deployment of Bollgard II. This finding supports our published notion for H. armigera that alleles conferring resistance to Cry2Ab may be present at detectable frequencies in populations before selection by transgenic crops.

  10. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species.

    Directory of Open Access Journals (Sweden)

    Ya-Lan Sun

    Full Text Available Odorant-binding proteins (OBPs mediate both perception and release of semiochemicals in insects. These proteins are the ideal targets for understanding the olfactory code of insects as well as for interfering with their communication system in order to control pest species. The two sibling Lepidopteran species Helicoverpa armigera and H. assulta are two major agricultural pests. As part of our aim to characterize the OBP repertoire of these two species, here we focus our attention on a member of this family, OBP10, particularly interesting for its expression pattern. The protein is specifically expressed in the antennae of both sexes, being absent from other sensory organs. However, it is highly abundant in seminal fluid, is transferred to females during mating and is eventually found on the surface of fertilised eggs. Among the several different volatile compounds present in reproductive organs, OBP10 binds 1-dodecene, a compound reported as an insect repellent. These results have been verified in both H. armigera and H. assulta with no apparent differences between the two species. The recombinant OBP10 binds, besides 1-dodecene, some linear alcohols and several aromatic compounds. The structural similarity of OBP10 with OBP1 of the mosquito Culex quinquefasciatus, a protein reported to bind an oviposition pheromone, and its affinity with 1-dodecene suggest that OBP10 could be a carrier for oviposition deterrents, favouring spreading of the eggs in these species where cannibalism is active among larvae.

  11. Integration of pheromones and biological control for the management of cotton bollworms in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, N.; Ashraf, M.; Hussain, T.; Fatima, B.

    2002-01-01

    The management of cotton bollworms in a semi-isolated area through the use of inundative releases of the egg parasitoid Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in conjunction with pheromones suppressed populations of the pink and spotted bollworms to sub-economic levels. The parasitoid was more effective against pink bollworm than spotted bollworm. Applications of either pheromones or parasitoids by themselves were less effective when compared to the combined treatment. The level of parasitism in the cotton field was comparatively low in June and July but gradually increased during August and September. Maximum parasitism was recorded in November. Studies indicated that temperature affected the establishment of the parasitoid, and populations increased significantly when favourable conditions prevailed in the cotton field. (author)

  12. Sustained susceptibility of pink bollworm to Bt cotton in the United States.

    Science.gov (United States)

    Tabashnik, Bruce E; Morin, Shai; Unnithan, Gopalan C; Yelich, Alex J; Ellers-Kirk, Christa; Harpold, Virginia S; Sisterson, Mark S; Ellsworth, Peter C; Dennehy, Timothy J; Antilla, Larry; Liesner, Leighton; Whitlow, Mike; Staten, Robert T; Fabrick, Jeffrey A; Li, Xianchun; Carrière, Yves

    2012-01-01

    Evolution of resistance by pests can reduce the benefits of transgenic crops that produce toxins from Bacillus thuringiensis (Bt) for insect control. One of the world's most important cotton pests, pink bollworm (Pectinophora gossypiella), has been targeted for control by transgenic cotton producing Bt toxin Cry1Ac in several countries for more than a decade. In China, the frequency of resistance to Cry1Ac has increased, but control failures have not been reported. In western India, pink bollworm resistance to Cry1Ac has caused widespread control failures of Bt cotton. By contrast, in the state of Arizona in the southwestern United States, monitoring data from bioassays and DNA screening demonstrate sustained susceptibility to Cry1Ac for 16 y. From 1996-2005, the main factors that delayed resistance in Arizona appear to be abundant refuges of non-Bt cotton, recessive inheritance of resistance, fitness costs associated with resistance and incomplete resistance. From 2006-2011, refuge abundance was greatly reduced in Arizona, while mass releases of sterile pink bollworm moths were made to delay resistance as part of a multi-tactic eradication program. Sustained susceptibility of pink bollworm to Bt cotton in Arizona has provided a cornerstone for the pink bollworm eradication program and for integrated pest management in cotton. Reduced insecticide use against pink bollworm and other cotton pests has yielded economic benefits for growers, as well as broad environmental and health benefits. We encourage increased efforts to combine Bt crops with other tactics in integrated pest management programs.

  13. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Yunxin Huang

    Full Text Available Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  14. Diminishing returns from increased percent Bt cotton: the case of pink bollworm.

    Science.gov (United States)

    Huang, Yunxin; Wan, Peng; Zhang, Huannan; Huang, Minsong; Li, Zhaohua; Gould, Fred

    2013-01-01

    Regional suppression of pests by transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) has been reported in several cropping systems, but little is known about the functional relationship between the ultimate pest population density and the pervasiveness of Bt crops. Here we address this issue by analyzing 16 years of field data on pink bollworm (Pectinophora gossypiella) population density and percentage of Bt cotton in the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We find that as the percent Bt cotton increased over the years, the cross-year growth rate of pink bollworm from the last generation of one year to the first generation of the next year decreased. However, as the percent Bt cotton increased, the within-year growth rate of pink bollworm from the first to last generation of the same year increased, with a slope approximately opposite to that of the cross-year rates. As a result, we did not find a statistically significant decline in the annual growth rate of pink bollworm as the percent Bt cotton increased over time. Consistent with the data, our modeling analyses predict that the regional average density of pink bollworm declines as the percent Bt cotton increases, but the higher the percent Bt cotton, the slower the decline in pest density. Specifically, we find that 95% Bt cotton is predicted to cause only 3% more reduction in larval density than 80% Bt cotton. The results here suggest that density dependence can act against the decline in pest density and diminish the net effects of Bt cotton on suppression of pink bollworm in the study region. The findings call for more studies of the interactions between pest density-dependence and Bt crops.

  15. Effect of weather factors on the incidence and development of pink bollworm on flowers of advance cotton genotypes

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Hassan, S.W.; Afzal, M.

    2008-01-01

    Ten advance genotypes of cotton Viz. BH-121, NIAB KRISHMA, DNH-137, VH-142, VH-142 BH-125, MNH-635, SLH-267, FNH-245, CRIS-467 and CRIS-82 were used to determine the effect of different weather factors on the incidence and development of pink bollworm (Pectinophora gossyiella) infestation at Nuclear institute for Agriculture and Biology (NIAB) Faisalabad. Trials were laid out using Randomized Complete Block Design (RCBD) with four replications. Finally data were subjected to statistical analysis and for correlation studies between weather factors and pink bollworm. Temperature and relative humidity and rainfall affected negatively for the infestation of pink bollworm on flowers in advance genotypes of cotton. (author)

  16. Cold hardiness of Helicoverpa zea (Lepidoptera: Noctuidae) pupae

    Science.gov (United States)

    A.C. Morey; W.D. Hutchison; R.C. Venette; E.C. Burkness

    2012-01-01

    An insect's cold hardiness affects its potential to overwinter and outbreak in different geographic regions. In this study, we characterized the response of Helicoverpa zea (Boddie) pupae to low temperatures by using controlled laboratory measurements of supercooling point (SCP), lower lethal temperature (LT50), and lower...

  17. Detection and monitoring of pink bollworm moths and invasive insects using pheromone traps and encounter rate models

    Science.gov (United States)

    The pink bollworm moth, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), is one of the most destructive pests in agriculture. An ongoing eradication program using a combination of sex pheromone monitoring and mating disruption, irradiated sterile moth releases, genetically-modified Bt...

  18. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids ... 2.1 Insect culture. A continuous colony of H. armigera was maintained on a chick pea based semi-synthetic diet (Singh and Rembold. 1992) in an insectary at 25 ... tissue culture medium containing the wing discs.

  19. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    Care was taken during dissection as the fat body and muscles tend to obscure the imaginal discs. Imaginal discs were distinctly seen under stereo bino- cular microscope, from one-day old final-instar larvae of. H. armigera. 2.3 Incubation. A pair of mesothoracic wing discs was excised in lepidopteran saline (Bindokas and ...

  20. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  1. Engineered repressible lethality for controlling the pink bollworm, a lepidopteran pest of cotton.

    Directory of Open Access Journals (Sweden)

    Neil I Morrison

    Full Text Available The sterile insect technique (SIT is an environmentally friendly method of pest control in which insects are mass-produced, irradiated and released to mate with wild counterparts. SIT has been used to control major pest insects including the pink bollworm (Pectinophora gossypiella Saunders, a global pest of cotton. Transgenic technology has the potential to overcome disadvantages associated with the SIT, such as the damaging effects of radiation on released insects. A method called RIDL (Release of Insects carrying a Dominant Lethal is designed to circumvent the need to irradiate insects before release. Premature death of insects' progeny can be engineered to provide an equivalent to sterilisation. Moreover, this trait can be suppressed by the provision of a dietary antidote. In the pink bollworm, we generated transformed strains using different DNA constructs, which showed moderate-to-100% engineered mortality. In permissive conditions, this effect was largely suppressed. Survival data on cotton in field cages indicated that field conditions increase the lethal effect. One strain, called OX3402C, showed highly penetrant and highly repressible lethality, and was tested on host plants where its larvae caused minimal damage before death. These results highlight a potentially valuable insecticide-free tool against pink bollworm, and indicate its potential for development in other lepidopteran pests.

  2. Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton.

    Science.gov (United States)

    Fabrick, Jeffrey A; Unnithan, Gopalan C; Yelich, Alex J; DeGain, Ben; Masson, Luke; Zhang, Jie; Carrière, Yves; Tabashnik, Bruce E

    2015-11-12

    Transgenic crops producing Bacillus thuringiensis (Bt) proteins kill key insect pests, providing economic and environmental benefits. However, the evolution of pest resistance threatens the continued success of such Bt crops. To delay or counter resistance, transgenic plant "pyramids" producing two or more Bt proteins that kill the same pest have been adopted extensively. Field populations of the pink bollworm (Pectinophora gossypiella) in the United States have remained susceptible to Bt toxins Cry1Ac and Cry2Ab, but field-evolved practical resistance to Bt cotton producing Cry1Ac has occurred widely in India. Here we used two rounds of laboratory selection to achieve 18,000- to 150,000-fold resistance to Cry2Ab in pink bollworm. Inheritance of resistance to Cry2Ab was recessive, autosomal, conferred primarily by one locus, and independent of Cry1Ac resistance. We created a strain with high resistance to both toxins by crossing the Cry2Ab-resistant strain with a Cry1Ac-resistant strain, followed by one selection with Cry2Ab. This multi-toxin resistant strain survived on field-collected Bt cotton bolls producing both toxins. The results here demonstrate the risk of evolution of resistance to pyramided Bt plants, particularly when toxins are deployed sequentially and refuges are scarce, as seen with Bt cotton and pink bollworm in India.

  3. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  4. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions

    NARCIS (Netherlands)

    Cui, J.J.; Luo, J.Y.; Werf, van der W.; Ma, Y.; Xia, J.Y.

    2011-01-01

    Transgenic cotton (Gossypium hirsutum L.) varieties, adapted to China, have been bred that express two genes for resistance to insects. the Cry1Ac gene from Bacillus thuringiensis (Berliner) (Bt), and a trypsin inhibitor gene from cowpea (CpTI). Effectiveness of the double gene modification in

  5. Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm.

    Science.gov (United States)

    Wan, Peng; Xu, Dong; Cong, Shengbo; Jiang, Yuying; Huang, Yunxin; Wang, Jintao; Wu, Huaiheng; Wang, Ling; Wu, Kongming; Carrière, Yves; Mathias, Andrea; Li, Xianchun; Tabashnik, Bruce E

    2017-05-23

    Extensive cultivation of crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) has suppressed some major pests, reduced insecticide sprays, enhanced pest control by natural enemies, and increased grower profits. However, these benefits are being eroded by evolution of resistance in pests. We report a strategy for combating resistance by crossing transgenic Bt plants with conventional non-Bt plants and then crossing the resulting first-generation (F 1 ) hybrid progeny and sowing the second-generation (F 2 ) seeds. This strategy yields a random mixture within fields of three-quarters of plants that produce Bt toxin and one-quarter that does not. We hypothesized that the non-Bt plants in this mixture promote survival of susceptible insects, thereby delaying evolution of resistance. To test this hypothesis, we compared predictions from computer modeling with data monitoring pink bollworm ( Pectinophora gossypiella ) resistance to Bt toxin Cry1Ac produced by transgenic cotton in an 11-y study at 17 field sites in six provinces of China. The frequency of resistant individuals in the field increased before this strategy was widely deployed and then declined after its widespread adoption boosted the percentage of non-Bt cotton plants in the region. The correspondence between the predicted and observed outcomes implies that this strategy countered evolution of resistance. Despite the increased percentage of non-Bt cotton, suppression of pink bollworm was sustained. Unlike other resistance management tactics that require regulatory intervention, growers adopted this strategy voluntarily, apparently because of advantages that may include better performance as well as lower costs for seeds and insecticides.

  6. Analysis of resistance to Cry1Ac in field-collected pink bollworm, Pectinophora gossypiella (Lepidoptera:Gelechiidae), populations.

    Science.gov (United States)

    Ojha, Abhishek; Sree, K Sowjanya; Sachdev, Bindiya; Rashmi, M A; Ravi, K C; Suresh, P J; Mohan, Komarlingam S; Bhatnagar, Raj K

    2014-01-01

    High survivorship of pink bollworrm, Pectinophora gossypiella in bolls of Bollgard® cotton hybrids and resistance to Cry1Ac protein, expressed in Bollgard cotton were reported in field-populations collected from the state of Gujarat (western India) in 2010. We have found Cry1Ac-resistance in pink bollworm populations sourced from Bollgard and non-Bt cotton fields in the adjoining states of Maharashtra and Madhya Pradesh in Central India. Further, we observed reduced binding of labeled Cry1Ac protein to receptors localized on the brush-border membrane of pink bollworm larval strains with high tolerance to Cry1Ac. These strains were sourced from Bollgard and conventional cotton fields. A pooled Cry1Ac-resistant strain, further selected on Cry1Ac diet also showed significantly reduced binding to Cry1Ac protein. The reduced binding of Cry1Ac to receptors could be an underlying mechanism for the observed resistance in pink bollworm populations feeding on Bollgard hybrids.

  7. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  8. Identification and characterization of digestive serine proteases from inhibitor-resistant Helicoverpa zea larval midgut

    NARCIS (Netherlands)

    Volpicella, M.; Cordewener, J.H.G.; Jongsma, M.A.; Gallerani, R.; Ceci, L.R.; Beekwilder, M.J.

    2006-01-01

    Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet.

  9. Properties of purified gut trypsin from Helicoverpa zea, adapted to to proteinase inhibitors.

    NARCIS (Netherlands)

    Volpicella, M.; Ceci, L.R.; America, T.; Gallarani, R.; Bode, W.; Jongsma, M.A.; Beekwilder, J.

    2003-01-01

    Pest insects such as Helicoverpa spp. frequently feed on plants expressing protease inhibitors. Apparently, their digestive system can adapt to the presence of protease inhibitors. To study this, a trypsin enzyme was purified from the gut of insects that were raised on an inhibitor-containing diet.

  10. Pink bollworm integrated management using sterile insects under field trial conditions, Imperial Valley, California

    International Nuclear Information System (INIS)

    Walters, M.L.; Staten, R.T.; Roberson, R.C.

    2000-01-01

    The pink bollworm moth (Pectinophora gossypiella Saunders) feeds almost exclusively on cotton (Gossypium spp.) and causes economic loss (Pfadt 1978). The pink bollworm (PBW) is often the key pest of cotton in Arizona, southern California, and northwestern Mexico. The larvae (immature stages) bore into the developing cotton fruit, where they feed on the cotton lint and seeds, causing significant damage and dramatically reducing the yield of cotton lint (Pfadt 1978). The PBW is difficult to control with conventional means (insecticides) because it spends the destructive larval phase inside the cotton boll where it is well protected from control measures. Cultural controls, such as a short growing season, have successfully decreased the population in the Imperial Valley (Chu et al. 1992) to the point where eradication may be possible using sterile insects and genetically engineered cotton. Because the PBW is an introduced insect, with few plant hosts other than cultivated cotton, its eradication from continental USA is a desirable and economically attractive alternative to the continued use of pesticides and/or further loss to the pest. Mass releases of sterile insects began in earnest in 1970 in the San Joaquin Valley, California, in order to inhibit normal reproduction and to eradicate the pest in an environmentally responsible manner. Sterile release involves mass production and sexual sterilisation using irradiation (20 krad for PBW adults). This was accomplished by building a rearing facility in Phoenix, AZ. The facility has 6,410 square metres of permanent laboratories, rearing and irradiation chambers and insect packing rooms. The facility operates the year round but with a variable production rate, that is, maximal during the cotton growing season (May through September). Sterile insect technology is based on the monitoring of the native and sterile populations in the field and the subsequent release of appropriate numbers of sterile insects in order to

  11. Complete mitochondrial genome of the pink bollworm Pectinophora gossypiella (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Zhao, Jing; Sun, Yang; Xiao, Liubin; Tan, Yongan; Dai, Hanyang; Bai, Lixin

    2016-05-01

    Pectinophora gossypiella (Lepidoptera: Gelechiidae) is a key pest in many cotton-growing countries of the world. In this study, the complete mitochondrial (mt) genome of the pink bollworm P. gossypiella was determined, which is 15,202 bp in length (GenBank accession number: KM225795) containing 37 typical animal mitochondrial gene and an A + T-rich region. The gene order of P. gossypiella mtDNA was different from the insect ancestral gene order in the translocation of trnM, as shared by previously sequenced lepidopteran mtDNAs. The protein-coding genes (PCGs) have typical mitochondrial start codons ATN, with the exception of COI, Nad5, which uses the start codons CGA, GTT. Eight PCGs stop with complete termination codons (TAA), whereas five PCGs use incomplete stop codon T. All of the tRNA genes had typical cloverleaf secondary structures except for trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. Like other insects, the control region is located between rrnS and trnM with a length of 309 bp and an A + T content of 94.8%, which is the most AT-rich region and comparatively simple, with little evidence of long tandem repeats, but harbors a conserved structure combining the motif ATAGA and a 18-bp poly-T stretch.

  12. Pink bollworm (Lepidoptera: Gelechiidae) on the Southern Plains of Texas and in New Mexico: Distribution; and eradication of a remnant population

    Science.gov (United States)

    Pink bollworm, Pectinophora gossypiella (Saunders), is one of the most economically important insect pests of cotton, Gossypium hirsutum L., in the world. Losses in the U.S. before widespread use of Bt cotton were estimated at $32 million per year. Eradication programs were initiated in the El Pas...

  13. Rearing and gamma radiation effects on mature pupae of pink bollworm and their F1 progeny

    International Nuclear Information System (INIS)

    Qureshi, Z.A.; Ahmed, N.; Hussain, T.

    1993-01-01

    Pink bollworm larvae were successfully reared in captivity on a casein wheat germ diet. The substitution of casein with soyflour, corn-cob grit and wheat germ, and casein for peanut flour, resulted in delayed development, reduced pupal recovery and fecundity of the adult moths. This reduction was more drastic in corn-cob grit and peanut flour diets. The irradiation of mature pupae at 50-200 Gy resulted in decreased adult emergence with increased gamma radiation doses, and more deformed moths were recorded at a dose of 200 Gy. Adults following irradiation of mature pupae when crossed with untreated males or females or treated individuals crossed to treated exhibited reduced fecundity and fertility with the increasing doses. This reduction was more pronounced when treated males were crossed with treated females. Females were relatively more sensitive to gamma radiation, as a reduced number of eggs was obtained when treated females were crossed with untreated males. At 200 Gy, no F 1 progeny were obtained from any cross involving treated parents. The fecundity and fertility were reduced significantly when F 1 males or F 1 females from male parents irradiated as mature pupae were mated with untreated insects at both 100 and 150 Gy. However, inherited sterility was more pronounced when F 1 males were crossed with untreated females than when F 1 females were crossed with untreated males. Similarly reduced fecundity and fertility in F 1 progeny from female parents irradiated as mature pupae, both at 100 and 150 Gy, were also recorded in crosses as described for male F 1 progeny. The fecundity and fertility were the lowest in F 1 progeny of both male and female parents irradiated as mature pupae when compared with the F 1 progeny of male or female irradiated parents separately. (author). 28 refs, 7 tabs

  14. Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm.

    Directory of Open Access Journals (Sweden)

    Josue Ocelotl

    Full Text Available Insecticidal proteins from Bacillus thuringiensis (Bt are used extensively in sprays and transgenic crops for pest control, but their efficacy is reduced when pests evolve resistance. Better understanding of the mode of action of Bt toxins and the mechanisms of insect resistance is needed to enhance the durability of these important alternatives to conventional insecticides. Mode of action models agree that binding of Bt toxins to midgut proteins such as cadherin is essential for toxicity, but some details remain unresolved, such as the role of toxin oligomers. In this study, we evaluated how Bt toxin Cry1Ac and its genetically engineered counterpart Cry1AcMod interact with brush border membrane vesicles (BBMV from resistant and susceptible larvae of Pectinophora gossypiella (pink bollworm, a global pest of cotton. Compared with Cry1Ac, Cry1AcMod lacks 56 amino acids at the amino-terminus including helix α-1; previous work showed that Cry1AcMod formed oligomers in vitro without cadherin and killed P. gossypiella larvae harboring cadherin mutations linked with >1000-fold resistance to Cry1Ac. Here we found that resistance to Cry1Ac was associated with reduced oligomer formation and insertion. In contrast, Cry1AcMod formed oligomers in BBMV from resistant larvae. These results confirm the role of cadherin in oligomerization of Cry1Ac in susceptible larvae and imply that forming oligomers without cadherin promotes toxicity of Cry1AcMod against resistant P. gossypiella larvae that have cadherin mutations.

  15. Emergence of minor pests becoming major pests in GE cotton in China: what are the reasons? What are the alternatives practices to this change of status?

    Science.gov (United States)

    Bergé, Jean Baptiste; Ricroch, Agnès Evelyne

    2010-01-01

    A recent study in China by Lu et al.(1) shows that populations of an occasional cotton pest, mirid bugs (Heteroptera: Miridae), increased following the introduction of genetically engineered (GE) cotton plants. The GE cotton produces a delta-endotoxin from the bacteria Bacillus thuringiensis (Bt) to control the cotton bollworm. Before the introduction of Bt cotton in China, mirid bugs were usually controlled by broad-spectrum pesticide sprays targeted against the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), the most important pest of cotton in China. The effectiveness of the control of H. armigera by Bt cotton cultivation has resulted in a decrease in the amount of insecticides used on Bt cotton compared to conventional cotton. This has led to a lack of control of mirids on Bt cotton due to the reduction in broad-spectrum insecticide use and consequently to a transformation of a minor pest to a main one. We discuss the scientific evidence available in the literature of this phenomenon. We examine the reasons of the emergence of minor pests to become major pests in Bt cotton in China and possible solutions to this change of status.

  16. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA. This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  17. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to bt cotton in India.

    Science.gov (United States)

    Fabrick, Jeffrey A; Ponnuraj, Jeyakumar; Singh, Amar; Tanwar, Raj K; Unnithan, Gopalan C; Yelich, Alex J; Li, Xianchun; Carrière, Yves; Tabashnik, Bruce E

    2014-01-01

    Evolution of resistance by insect pests can reduce the benefits of insecticidal proteins from Bacillus thuringiensis (Bt) that are used extensively in sprays and transgenic crops. Despite considerable knowledge of the genes conferring insect resistance to Bt toxins in laboratory-selected strains and in field populations exposed to Bt sprays, understanding of the genetic basis of field-evolved resistance to Bt crops remains limited. In particular, previous work has not identified the genes conferring resistance in any cases where field-evolved resistance has reduced the efficacy of a Bt crop. Here we report that mutations in a gene encoding a cadherin protein that binds Bt toxin Cry1Ac are associated with field-evolved resistance of pink bollworm (Pectinophora gossypiella) in India to Cry1Ac produced by transgenic cotton. We conducted laboratory bioassays that confirmed previously reported resistance to Cry1Ac in pink bollworm from the state of Gujarat, where Bt cotton producing Cry1Ac has been grown extensively. Analysis of DNA from 436 pink bollworm from seven populations in India detected none of the four cadherin resistance alleles previously reported to be linked with resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona. However, DNA sequencing of pink bollworm derived from resistant and susceptible field populations in India revealed eight novel, severely disrupted cadherin alleles associated with resistance to Cry1Ac. For these eight alleles, analysis of complementary DNA (cDNA) revealed a total of 19 transcript isoforms, each containing a premature stop codon, a deletion of at least 99 base pairs, or both. Seven of the eight disrupted alleles each produced two or more different transcript isoforms, which implicates alternative splicing of messenger RNA (mRNA). This represents the first example of alternative splicing associated with field-evolved resistance that reduced the efficacy of a Bt crop.

  18. Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Thiery B. Charles Alavo

    2015-12-01

    Full Text Available This work has compared the effects of the biofertilizer Bacillus amyloliquefaciens FZB42 with that of compost for cotton production. The population dynamics of pests and predators have been studied in order to check whether the use of both fertilization materials can contribute to pest management in cotton. Three treatments were considered: (i dressing of seeds in rhizobacteria suspension, (ii introduction of rhizobacterial suspension directly in the pocket, same time with the seeds, and (iii fertilization with compost. The study was carried out in northwest Benin (West Africa. Results showed that cotton aphids, Aphis gossypii, pink bollworm, Pectinophora gossypiella, leaf roller, Sylepta derogata, and cotton bugs, Dysdercus sp. are the major insect pests encountered in the experimental plots. Cotton bollworm, Helicoverpa armigera, was present but under the economic threshold. The coccinellid predators, Cheilomenes spp., occurred in the experimental plots and almost suppressed aphid proliferation. Other natural enemies such as chrysopids and ant species also occurred and probably contributed to maintain the cotton bollworm under the economic threshold. The treatment with seeds dressed with the rhizobacteria suspension yielded 39% more cotton compared to the compost fertilization. The use of both fertilization materials without application of chemicals can contribute to pest management in cotton.

  19. Characterization of insecticidal peptides from venom Australian funnel-web spiders

    Directory of Open Access Journals (Sweden)

    E. J. Vonorax

    2006-04-01

    Full Text Available Australian funnel-web spiders are relatively large primitive hunting spiders. Male Atrax robustus spiders have been responsible for a number of human deaths. Venom was collected from the species Hadronyche infensa (Hickman [female], H. formidabilis [male and female], H. versuta [female], and A. robustus (Cambridge [male] and was fractionated by high performance liquid chromatography. This resulted in the isolation and purification of a homologous series of 7 insecticidal peptides of relatively low molecular mass (approximately 4kDa. The amino acid sequences of these toxins consisted of 36 or 37 amino acids and were named atracotoxins. For the major bioassay of these toxins, we used the cotton bollworm, Helicoverpa armigera (Hubner, due to the great damage it causes to crops worldwide. These toxins, when injected subcutaneously into fifth or sixth instar larvae of Helicoverpa armigera,were lethal or caused an apparently irreversible writhing. The toxin from H. versuta venom showed no significant toxicity when subcutaneously injected into newborn mice. One of the toxins was found to have a free acid carboxyl terminus. These toxins have great potential as lead compounds for insecticide design or for incorporation in recombinant baculovirus insecticides.

  20. EFFECTIVENESS OF SOME PATHOGENIC CONTROL AGENTS AGAINST PESTS IN GREENHOUSE VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Dima Markova

    2017-09-01

    Full Text Available Greenhouse tomato and cucumber are attacked by a great number of pests. The most frequently occurred pests are: greenhouse whitefly (Trialeurodes vaporariorum Westw., cotton aphids (Aphis gossypii Glov., tobacco and western flower thrips (Thrips tabaci Lindeman, Frankliniella occidentalis Perg., cotton bollworm (Helicoverpa armigera Hb. and two spotted spider mite (Tetranychus urticae Koch.. Plant protection products applied in practice are not always efficient enough due to arising of resistance to these products in the populations. Moreover their use could results in accumulation of residual amounts and environmental pollution. Recently a great interest to find alternative solutions for pest control is observed. Some viruses, bacteria and fungi which are pathogenic to the pests but safety for human, could be used. There are products with good efficacy, which are developed on this basis and applied for pest control. Investigations for determining of the biological activity in the following products were carried out during the period 2016-2017 in the “Maritsa” Vegetable Crops Research Institute - Plovdiv: Naturalis (a. i. Beauveria bassiana strain АТСС 74040 at a dose of 100 ml/da, Rapax (a. i. Bacillus thuringiensis subsp. kurstaki strain EG 2348 at a dose of 100 ml/da and Helicovex (a. i. Helicoverpa armigera nucleopolyhedrovirus Hear NVP, DSMZ-BV0003 – 7,5 x 1012 NPV/liter at a dose of 20 ml/da. The product Naturalis at a dose 100 ml/da has a good effectiveness (over 75% against greenhouse whitefly, cotton aphids, thrips, and movable forms of the two spotted spider mite in tomato and cucumber grown under greenhouses. The products Rapax at a dose of 100 ml/da and Helicovex at a dose of 20 ml/da have a good biological activity (E = 76,32% and E = 76,92%, respectively towards to the larvae of the cotton bollworm in greenhouse tomatoes.

  1. Similar genetic basis of resistance to Bt toxin Cry1Ac in Boll-selected and diet-selected strains of pink bollworm.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Fabrick

    Full Text Available Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]. The Arizona pooled resistant strain (AZP-R was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3 in the pink bollworm cadherin gene (PgCad1 linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1 progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4 predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.

  2. Efficient isolation, purification, and characterization of the Helicoverpa zea VHDL receptor.

    Science.gov (United States)

    Persaud, Deryck R; Yousefi, Vandad; Haunerland, Norbert

    2003-12-01

    The study of fat body receptors (e.g., VHDL receptor) in Lepidoptera has been irksome due to the fact that isolation and purification of these proteins are difficult and resulted in extremely low yields. A rapid and efficient method is presented for the purification of Helicoverpa zea VHDL receptor by the use of VHDL-biotin ligand complexed to streptavidin coated magnetic beads. The technique can be easily applied to other ligands and allows for the purification of membrane proteins with higher yields compared to previously used methods involving immunopurification. Although the purified protein can be characterized by Western and non-radioactive ligand blots using enhanced chemiluminescence (ECL), a non-radioactive ligand blot method using VHDL-FITC is presented, which allows for the quick analysis of the receptor directly from the blot under standard UV light. Sufficient receptor protein has been derived for amino acid analysis, receptor-ligand and xenobiotic binding studies.

  3. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors ...

    Indian Academy of Sciences (India)

    2012-05-04

    May 4, 2012 ... chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant ...

  4. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China.

    Science.gov (United States)

    Wang, Ling; Ma, Yuemin; Wan, Peng; Liu, Kaiyu; Xiao, Yutao; Wang, Jintao; Cong, Shengbo; Xu, Dong; Wu, Kongming; Fabrick, Jeffrey A; Li, Xianchun; Tabashnik, Bruce E

    2018-03-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. In some previously studied strains of three major lepidopteran pests, resistance to Bt toxin Cry1Ac is associated with mutations disrupting the extracellular or cytoplasmic domains of cadherin proteins that bind Cry1Ac in the midgut of susceptible larvae. Here we report the first case of a cadherin transmembrane mutation associated with insect resistance to Bt. We discovered this mutation in a strain of the devastating global cotton pest, the pink bollworm (Pectinophora gossypiella), derived from a field population in the Yangtze River Valley of China. The mutant allele analyzed here has a 207 base pair deletion and encodes a cadherin protein lacking its transmembrane domain. Relative to a susceptible strain, a strain homozygous for this allele had 220-fold resistance to Cry1Ac and 2.1-fold cross-resistance to Cry2Ab. On transgenic cotton plants producing Cry1Ac, no susceptible larvae survived, but the resistant strain completed its life cycle. Inheritance of resistance to Cry1Ac was autosomal, recessive and tightly linked with the cadherin gene. Transportation of cadherin protein to the cell membrane and susceptibility to Cry1Ac occurred in transfected insect cells expressing the wild type cadherin allele, but not in transfected insect cells expressing the mutant cadherin allele. The results imply that the mutant allele analyzed here confers resistance to Cry1Ac by disrupting cellular trafficking of cadherin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Assessment of Lupin Induced Mutants for Quality Traits and Susceptibility to Callosbruchus chinensis and Heliothis armigera insects

    International Nuclear Information System (INIS)

    Ragab, A.I.; Boshra, S.A.; Mehany, A.L.; Darwish, A.A.; Kharrab, M.M.

    2008-01-01

    This study was conducted to assess 23 induced mutants and two parental varieties Giza1 and Giza2 in the three generations (M3, M4, and M5) for seed quality traits, and susceptibility to two insects i.e C. chinnensis and H.armigera. The obtained results exhibited highly significant decrease for alkaloid content of mutants 20 and 23 as compared with the two local varieties. Most of mutants and Giza 2 showed marked increase for protein content as compared with Giza1, however, the increase did not reach the level of significance for the most mutants as compared with Giza2 in the three generations. Except of M4 generation. marked resistance for infestations with C.chinensis and H.armigera was obtained for mutants 1, 5 and 11 in the three generations. However, for total infestation with the two insects, resistance was obtained in mutants 4 and 10. Except of mutant lines 1, 5 and 11, all mutants showed higher loss percentage than that of the local varieties

  6. Chronic toxicity of five metals to the polar marine microalga Cryothecomonas armigera - Application of a new bioassay.

    Science.gov (United States)

    Koppel, Darren J; Gissi, Francesca; Adams, Merrin S; King, Catherine K; Jolley, Dianne F

    2017-09-01

    The paucity of ecotoxicological data for Antarctic organisms is impeding the development of region-specific water quality guidelines. To address this limitation, toxicity testing protocols need to be developed to account for the unique physiology of polar organisms, in particular their slow growth rates. In this study, a toxicity test protocol was developed to investigate the toxicities of five metals to the polar marine microalga Cryothecomonas armigera. The concentrations which reduced population growth rate by 10% (EC10) after 24-d for Cu, Pb, Zn, Cd and Ni were 21.6, 152, 366, 454, and 1220 μg.L -1 , respectively. At the concentrations used in tests, only Cu and Ni were sufficiently toxic to enable the derivation of EC50 values of 63.1 and 1570 μg.L -1 respectively. All metals affected C. armigera's cellular physiology including cellular chlorophyll a fluorescence, cell complexity and size, and lipid concentrations. However, no changes to cellular membrane permeability were observed. The reduction in cellular lipid concentrations was a more sensitive indicator of toxicity for Cd, Ni, and Pb than growth rate inhibition, with EC10 values of 89, 894, and 11 μg.L -1 , respectively, highlighting its potential as a sensitive measure of metal toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase.

    Science.gov (United States)

    Dabrowska, Paulina; Freitak, Dalial; Vogel, Heiko; Heckel, David G; Boland, Wilhelm

    2009-09-22

    Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike OPDA epimerization (yielding trans-OPDA), the formation of iso-OPDA is enzyme-dependent, and is catalyzed by an inducible glutathione transferase (GSTs) from the larval gut. Purified GST fractions from the gut of Egyptian cotton leafworm (Spodoptera littoralis) and cotton bollworm (Helicoverpa armigera) both exhibited strong OPDA isomerization activity, most likely via transient formation of a glutathione-OPDA conjugate. Out of 16 cytosolic GST proteins cloned from the gut of cotton bollworm larvae and expressed in E. coli, only one catalyzed the OPDA isomerization. The biological function of the double bond shift might be seen in an inactivation of cis-OPDA, similar to the inactivation of prostaglandin A1 to prostaglandin B1 in mammalian tissue. The enzymatic isomerization is particularly widespread among generalist herbivores that have to cope with various amounts of cis-OPDA in their spectrum of host plants.

  8. Feasibility of integrating radiation-induced F1 sterility and biological control for population suppression of the pink bollworm, Pectinophora gossypiella, in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, N.; Ashraf, M.; Hussain, T.; Qureshi, Z.A.

    2002-01-01

    Substitution of casein and wheat germ with locally available ingredients (chickpea flour, soybean flour, wheat husk and sawdust) in the specified casein-wheat germ diet affected various biological parameters of pink bollworm (PBW), Pectinophora gossypiella. The diet containing chickpea flour performed significantly better and is more economical than the other diets tested. The highest PBW field populations were recorded in the month of October when large numbers of fruiting bodies were present in the cotton. Field behavioural observations revealed that mating and other sexual activities of treated and native moths varied significantly with time of night and peak activity was during 03:00-04:00 hours. Male moths treated with 100 Gy as mature pupae responded well to gossyplure baited traps. The attraction of male moths to irradiated virgin females decreased significantly with increasing doses of radiation. Male moths responded more readily to virgin untreated females than to irradiated females. Field-cage studies demonstrated that irradiated moths (100 Gy) released at a 50:1 treated to normal ratio at three week intervals reduced larval infestations inside the cages to subeconomic level. Studies suggested that there is a great potential for integrating the egg parasitoid, Trichogramma chilonis, with the sterile insect technique to control cotton bollworms. (author)

  9. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae and Beneficial Insects on Conventional Cotton Crops in Australia

    Directory of Open Access Journals (Sweden)

    Robert K. Mensah

    2015-04-01

    Full Text Available Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp. against Helicoverpa spp. and beneficial insects (mostly predatory insects was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109 of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha than at higher rates (1.0 L/ha. Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  10. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton.

    Directory of Open Access Journals (Sweden)

    Sharon Downes

    Full Text Available Combinations of dissimilar insecticidal proteins ("pyramids" within transgenic plants are predicted to delay the evolution of pest resistance for significantly longer than crops expressing a single transgene. Field-evolved resistance to Bacillus thuringiensis (Bt transgenic crops has been reported for first generation, single-toxin varieties and the Cry1 class of proteins. Our five year data set shows a significant exponential increase in the frequency of alleles conferring Cry2Ab resistance in Australian field populations of Helicoverpa punctigera since the adoption of a second generation, two-toxin Bt cotton expressing this insecticidal protein. Furthermore, the frequency of cry2Ab resistance alleles in populations from cropping areas is 8-fold higher than that found for populations from non-cropping regions. This report of field evolved resistance to a protein in a dual-toxin Bt-crop has precisely fulfilled the intended function of monitoring for resistance; namely, to provide an early warning of increases in frequencies that may lead to potential failures of the transgenic technology. Furthermore, it demonstrates that pyramids are not 'bullet proof' and that rapid evolution to Bt toxins in the Cry2 class is possible.

  11. Helicoverpa-inducible Thioredoxin h from Cicer arietinum: structural modeling and potential targets.

    Science.gov (United States)

    Singh, Archana; Tyagi, Chetna; Nath, Onkar; Singh, Indrakant K

    2018-04-01

    Thioredoxins are small and universal proteins, which are involved in the cell redox regulation. In plants, they participate in a broad range of biochemical processes like self-incompatibility, seed germination, pathogen & pest defense and oxidative stress tolerance. The h-type of thioredoxin (Trx-h) protein represents the largest Trx family. Herein, we characterized the Helicoverpa - inducible Trx h from an important legume, Cicer arietinum, CaHaTrx-h, 'CGFS' type Trxs, which encodes for a 113 amino acids long protein and possess characteristic motifs "FLKVDVDE" and "VVDFTASWCGPCRFIAPIL" and 73% sequence identity with AtTrx-h. Homology modeling and simulation of the target showed that the extended ß-sheet regions remain stable during the simulation while the helical regions fluctuate between alpha and 3- 10 helical forms and highlights the flexibility of helix2-helix3 and terminal regions probably to accommodate an approaching protein target and facilitate their interaction. During the simulation, the structure exists in five energy minima clusters with biggest cluster size belonging to 20-25 ns time frames. PR-5 and Mannitol Dehydrogenase were nominated as potential targets and share close interaction with CaHaTrx-h via disulfide bond reduction. The study is an effort in the direction of understanding stress-related mechanisms in crop plants to overcome losses in agricultural yield. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    Directory of Open Access Journals (Sweden)

    Linus Gog

    2014-09-01

    Full Text Available The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie, underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L. plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses.

  13. Evolution of Resistance by Helicoverpa zea (Lepidoptera: Noctuidae) Infesting Insecticidal Crops in the Southern United States

    Science.gov (United States)

    Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura

    2016-01-01

    We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533

  14. Induction of inherited sterility and sex ratio distribution due to exposure to substerilising doses of gamma radiation in cotton bollworm Earias vittella fabricius

    International Nuclear Information System (INIS)

    Tamhankar, A.J.; Shantharam, K.

    2005-01-01

    Substerilising doses of gamma radiation induced inherited sterility and sex ratio distortion in the cotton bollworm Earias vittella fabricius. Adults irradiated with 75 Gy and self-crossed, provided sterile F 1 adults, suitable for direct use in sterile insect technique (SIT). In case of 50 Gy, the F 1 adults, when backcrossed, produced F 2 progeny with sex ratio in favour of females (1: >3). With 25 Gy, a sex ratio distortion was recorded in F 1 (1 male: 2.25 females) and self-crossing of F 1 resulted in progeny with a sex ratio of 3:1. Backcrossing of the F 1 female produced F 2 progeny with a sex ratio of 1:5. These results have implications in improving cost/benefit ratio of SIT for this species. (author)

  15. Diapause hormone in the corn earworm, Helicoverpa zea: Optimum temperature for activity, structure–activity relationships, and efficacy in accelerating flesh fly pupariation

    Czech Academy of Sciences Publication Activity Database

    Zhang, Q.; Žďárek, Jan; Nachman, R. J.; Denlinger, D. L.

    2008-01-01

    Roč. 29, č. 2 (2008), s. 196-205 ISSN 0196-9781 Institutional research plan: CEZ:AV0Z40550506 Keywords : diapause hormone * neuropeptide analogs * diapause termination * pupariation * Helicoverpa zea Subject RIV: CC - Organic Chemistry Impact factor: 2.565, year: 2008

  16. Effects of MON810 Bt field corn on adult emergence of Helicoverpa zea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    A 3-yr study (1996-1998) was conducted to evaluate the effects of MON810 Bt corn on Helicoverpa zea (Boddie) emergence and to determine whether delayed larval development as a result of Bt intoxication results in higher levels of diapause induction and pupal mortality. In the 1997 study, there was no difference in prepupal mortality between corn types, although significantly more prepupae from Bt plots than from non-Bt plots died in emergence buckets before constructing pupal chambers in 1998. In all years, significantly fewer moths emerged from prepupae collected from Bt plots, suggesting that effects of the expressed Cry1Ab extended to the prepupal and pupal stages. Late plantings of corn showed the greatest reductions in moth emergence from Bt corn because environmental conditions were more conducive to trigger diapause at the time H. zea was developing in these plantings. This was supported by a significantly greater proportion of diapausing pupae remaining in the ground in the late plantings of both Bt and non-Bt corn. For April and early May plantings, larval feeding on Bt corn delayed the time to pupation, although there was no significant difference in moth emergence between corn types for those larvae that successfully pupated. Although Bt expression had less impact on the proportion of moths emerging, the actual number of moths emerging from Bt corn was significantly reduced because fewer larvae reached pupation. Delays in adult emergence, along with significant reductions in adult emergence from MON810 Bt corn, should reduce the rates of colonization in soybean and other late host crops but may also result in asynchrony of mating between individuals emerging from Bt and non-Bt corn. This, in turn, may contribute to the evolution of resistance to Bt corn.

  17. Development, survival and fitness performance of Helicoverpa zea (Lepidoptera: Noctuidae) in MON810 Bt field corn.

    Science.gov (United States)

    Horner, T A; Dively, G P; Herbert, D A

    2003-06-01

    Helicoverpa zea (Boddie) development, survival, and feeding injury in MON810 transgenic ears of field corn (Zea mays L.) expressing Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins were compared with non-Bt ears at four geographic locations over two growing seasons. Expression of Cry1Ab endotoxin resulted in overall reductions in the percentage of damaged ears by 33% and in the amount of kernels consumed by 60%. Bt-induced effects varied significantly among locations, partly because of the overall level and timing of H. zea infestations, condition of silk tissue at the time of egg hatch, and the possible effects of plant stress. Larvae feeding on Bt ears produced scattered, discontinuous patches of partially consumed kernels, which were arranged more linearly than the compact feeding patterns in non-Bt ears. The feeding patterns suggest that larvae in Bt ears are moving about sampling kernels more frequently than larvae in non-Bt ears. Because not all kernels express the same level of endotoxin, the spatial heterogeneity of toxin distribution within Bt ears may provide an opportunity for development of behavioral responses in H. zea to avoid toxin. MON810 corn suppressed the establishment and development of H. zea to late instars by at least 75%. This level of control is considered a moderate dose, which may increase the risk of resistance development in areas where MON810 corn is widely adopted and H. zea overwinters successfully. Sublethal effects of MON810 corn resulted in prolonged larval and prepupal development, smaller pupae, and reduced fecundity of H. zea. The moderate dose effects and the spatial heterogeneity of toxin distribution among kernels could increase the additive genetic variance for both physiological and behavioral resistance in H. zea populations. Implications of localized population suppression are discussed.

  18. Characterisation of Bacillus thuringiensis kurstaki strains by toxicity ...

    African Journals Online (AJOL)

    , dipel, HD73, HD1dipel) were characterized by investigating their total plasmid profiling; cryIA genes profiling and toxicity towards local isolates of agricultural insects Helicoverpa armigera and Spodoptera litura. Result showed that LC50 for S.

  19. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  20. Population genetic structure of cotton pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) using mitochondrial cytochrome oxidase I (COI) gene sequences from India.

    Science.gov (United States)

    Sridhar, J; Chinna Babu Naik, V; Ghodke, A; Kranthi, S; Kranthi, K R; Singh, B P; Choudhary, J S; Krishna, M S R

    2017-11-01

    Pink bollworm (PBW), Pectinophora gossypiella is one of the most destructive pest's globally inflicting huge economic losses in cotton even during later stages of crop growth. In the present investigation, the population genetic structure, distribution, and genetic diversity of P. gossypiella in cotton growing zones of India using partial mitochondrial DNA cytochrome oxidase-I (COI) gene was addressed. The overall haplotype (Hd), number of nucleotide differences (K), and nucleotide diversity (π) were 0.3028, 0.327, and 0.00047, respectively which suggest that entire population exhibited low level of genetic diversity. Zone-wise clustering of population revealed that central zone recorded low level of Hd (0.2730) as compared to north (0.3619) and south (0.3028) zones. The most common haplotype (H1) reported in all 19 locations could be proposed as ancestral/original haplotype. This haplotype with one mutational step formed star-like phylogeny connected with 11 other haplotypes. The phylogenetic relationship studies revealed that most haplotypes of populations are closely related to each other. Haplotype 5 was exclusively present in Dharwad (South zone) shared with populations of Hanumangarh and Bathinda (North zone). The result indicated that there is no isolation by distance effect among the Indian populations of PBW. The present study reports a low genetic diversity among PBW populations of India and H1, as ancestral haplotype from which other haplotypes have evolved suggests that the migration and dispersal over long distance and invasiveness are major factors.

  1. Biological and Histological Studies on The Effect of Gamma Irradiation on Sex Pheromone Gland of Female Spiny Bollworm Earias Insulana Boisd

    International Nuclear Information System (INIS)

    Mohhamed, H.F.

    2012-01-01

    The present study was carried out to investigate the effect of sex pheromone extraction and bioassay production male attractiveness to alive females on male response and the histological structure of pheromone glands in normal and irradiated females of the spiny bollworm, Earias insulana Boisd. with 100 and 150 Gy. Reproduction of adults irradiated as moths less than 24 hours old or three days was also investigated. Sex pheromone extracts from 1 day old females were less active than those from 3 day old females. The percentage of male moths response to alive female moths at 1 day old was lower than at 3 days old. The sex pheromone production by females was increased as the females became older (from 3 days old to up). The gland of normal female moths is found between 8th and 9th abdominal segments travelling deep inside the body cavity and has large, darkly stained and well defined epithelial cells. The scent gland is of the well developed, tubular and closed ring shaped type. In parental females less than 24 hours old irradiated with 100 Gy, the glandular epithelial cells became loose, rupture, disappeared, shrink, irregular, abnormal or broken and were separated from each other and their nuclei were not clear. The scales were abnormal or loose and there are many vacuoles. The histological effects following gamma irradiation were also noticed in case of parental moths irradiated with 150 Gy. The glandular epithelial cells lost their peculiar shape with the appearance of some vacuoles between them, broken and disappeared in another place and also many secretory cells disappeared and the glands showed increasing. The effects of radiation were continued among females of F1 , generation moths less than 24 hours old descendant of irradiated parental male with 100 and 150 Gy and decreased the fecundity and egg hatch ability significantly. The effect was dose dependent

  2. Анализ этологических и репродуктивных особенностей и динамики развития популяции Heliothis armigera на протяжении сезона

    Directory of Open Access Journals (Sweden)

    Валерия КЕПТИНАРЬ

    2017-06-01

    Full Text Available Information on the fertility of female cotton bollworms and the viability of their laid eggs makes it possible to predict the number of next generation in the crop fields and the harm that this population may cause to the harvest. During the vegetative season of 2016 (the 1st decade of May - the 3rd decade of September, a seasonal monitoring of the Heliothis armigera pest population was carried out using a light trap installed in the immediate vicinity of a soybean field. Due to the conducted research, the emergence and peaks of the cotton bollworm flight were recorded, sex ratio wes determined, as well as reproductive and copulative potential of females were estimated. It was established that in the climatic conditions of the Republic of Moldova, Heliothis armigera pest develops in three generations. The duration of generation development is from the 3rd decade of May to the 3rd decade of September. Male-female ratio was 58% males to 42% females. The copulative and reproductive potential of this pest depends on the succession of generations. The reproductive potential of the first generation was 37.8%, 40.1% for the second generation and 22.1% for the third generation. The copulative potential of H. armigera females was of 65.0% paired 1-2 times and only 35.0% were paired 3-5 times. Реферат. Сведения о плодовитости самок хлопковой совки и жизнеспособности отложенных ими яиц предоставляет возможность прогнозировать численность последующего поколения на участках сельскохозяйственных культур и ту опасность, которую эта популяция нанесет урожаю. На протяжении вегетативного сезона 2016 года (Iдекада мая – III декада сентября был проведен

  3. Cloning and expression of the VHDL receptor from fat body of the corn ear worm, Helicoverpa zea

    Directory of Open Access Journals (Sweden)

    Deryck R. Persaud

    2004-02-01

    Full Text Available In Noctuids, storage proteins are taken up into fat body by receptor-mediated endocytosis. These include arylphorin and a second, structurally unrelated very high-density lipoprotein (VHDL. Previously, we have isolated a single storage protein receptor from the corn earworm, Helicoverpa zea, which binds both VHDL and arylphorin. The receptor protein is a basic, N-terminally blocked, ?80 kDa protein that is associated with fat body membranes. Microsequencing of proteolytic fragments of the isolated receptor protein revealed internal sequences that were used to clone the complete cDNA of the VHDL receptor by 3' and 5' RACE techniques. The receptor protein, when expressed in vitro via a suitable insect expression vector, reacted with antibodies against the native VHDL receptor and bound strongly to its ligand VHDL, thus confirming that the cloned cDNA represents indeed the previously purified VHDL receptor. The receptor protein and a second, similar protein also found associated with the fat body membrane show considerable homology to putative basic juvenile hormone suppressible proteins cloned previously from other Noctuid species. Sequence analysis revealed that the receptor is likely a peripheral membrane protein that may mediate the selective uptake of VHDL.

  4. VHDL, a larval storage protein from the corn earworm, Helicoverpa zea, is a member of the vitellogenin gene family.

    Science.gov (United States)

    Sum, Herbert; Haunerland, Norbert H

    2007-10-01

    The hemolymph of last instar larvae of the corn earworm, Helicoverpa zea contains a blue very high-density lipoprotein (VHDL) that is selectively taken up into fat body prior to pupation. Its amino-terminal sequence was determined by Edman degradation, and used to design a degenerate primer for PCR amplification. With 5' and 3' RACE techniques, the entire cDNA coding for VHDL was amplified and sequenced. Conceptual translation reveals a 173 kDa protein that contains a 15 amino acid signal sequence immediately before the experimentally determined N-terminus of the mature protein. The protein contains a typical lipoprotein N-terminal domain, and shows high sequence similarity to vitellogenins from Lepidoptera and other insect species. VHDL mRNA was not detectable in adult H. zea, and antibodies raised against VHDL did not react with adult hemolymph or yolk proteins. Therefore VHDL, although a member of the vitellogenin gene family, seems to be distinct from the vitellogenin expressed in adult females.

  5. Cloning and expression of the VHDL receptor from fat body of the corn ear worm, Helicoverpa zea.

    Science.gov (United States)

    Persaud, Deryck R; Haunerland, Norbert H

    2004-01-01

    In Noctuids, storage proteins are taken up into fat body by receptor-mediated endocytosis. These include arylphorin and a second, structurally unrelated very high-density lipoprotein (VHDL). Previously, we have isolated a single storage protein receptor from the corn earworm, Helicoverpa zea, which binds both VHDL and arylphorin. The receptor protein is a basic, N-terminally blocked, approximately 80 kDa protein that is associated with fat body membranes. Microsequencing of proteolytic fragments of the isolated receptor protein revealed internal sequences that were used to clone the complete cDNA of the VHDL receptor by 3' and 5' RACE techniques. The receptor protein, when expressed in vitro via a suitable insect expression vector, reacted with antibodies against the native VHDL receptor and bound strongly to its ligand VHDL, thus confirming that the cloned cDNA represents indeed the previously purified VHDL receptor. The receptor protein and a second, similar protein also found associated with the fat body membrane show considerable homology to putative basic juvenile hormone suppressible proteins cloned previously from other Noctuid species. Sequence analysis revealed that the receptor is likely a peripheral membrane protein that may mediate the selective uptake of VHDL.

  6. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae) of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    Science.gov (United States)

    Mitchell, Andrew; Gopurenko, David

    2016-01-01

    Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests.

  7. DNA Barcoding the Heliothinae (Lepidoptera: Noctuidae of Australia and Utility of DNA Barcodes for Pest Identification in Helicoverpa and Relatives.

    Directory of Open Access Journals (Sweden)

    Andrew Mitchell

    Full Text Available Helicoverpa and Heliothis species include some of the world's most significant crop pests, causing billions of dollars of losses globally. As such, a number are regulated quarantine species. For quarantine agencies, the most crucial issue is distinguishing native species from exotics, yet even this task is often not feasible because of poorly known local faunas and the difficulties of identifying closely related species, especially the immature stages. DNA barcoding is a scalable molecular diagnostic method that could provide the solution to this problem, however there has been no large-scale test of the efficacy of DNA barcodes for identifying the Heliothinae of any region of the world to date. This study fills that gap by DNA barcoding the entire heliothine moth fauna of Australia, bar one rare species, and comparing results with existing public domain resources. We find that DNA barcodes provide robust discrimination of all of the major pest species sampled, but poor discrimination of Australian Heliocheilus species, and we discuss ways to improve the use of DNA barcodes for identification of pests.

  8. Cannibalism of Helicoverpa zea (Lepidoptera: Noctuidae) from Bacillus thuringiensis (Bt) transgenic corn versus non-Bt corn.

    Science.gov (United States)

    Chilcutt, Charles F

    2006-06-01

    Because of the importance of cannibalism in population regulation of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in corn, Zea mays L., it is useful to understand the interactions between Bacillus thuringiensis (Bt) transgenic corn and cannibalism. To determine the effects of Bt corn on cannibalism in H. zea, pairs of the same or different instars were taken from Bt or non-Bt corn and placed on artificial diet in proximity. Cannibalism occurred in 91% of pairs and was approximately 7% greater for pairs of larvae reared from Bt transgenic corn (95%) than from non-Bt corn (88%). Also, first instar by first instar pairs had a lower rate of cannibalism than other pairs. Time until cannibalism was not different for larvae from Bt corn versus non-Bt corn. Pupation rate of cannibals and surviving victims was not different for pairs from Bt corn versus non-Bt corn. Finally, cannibalism increased pupation rate of cannibals from both Bt and non-Bt corn by approximately 23 and 12%, respectively, although the increases were not significant. Thus, negative effects of Bt on larvae were compensated by increased cannibalism in comparison with larvae reared on non-Bt corn, which increased larval survival to levels comparable with larvae reared on non-Bt plants.

  9. Effect of MON810 Bt field corn on Helicoverpa zea (Lepidoptera: Noctuidae) cannibalism and its implications to resistance development.

    Science.gov (United States)

    Horner, T A; Dively, G P

    2003-06-01

    Pairs of Helicoverpa zea (Boddie) larvae reared on diet-incorporated MON810 transgenic leaf tissue of field corn (Zea mays L.) were observed in the laboratory to characterize effects of sublethal levels of Bacillus thuringiensis variety kurstaki (Bt) Cry1Ab endotoxins on cannibalistic behavior and mortality. Feeding on sublethal levels of Bt corn reduced the frequency of cannibalistic behaviors exhibited by H. zea when uneven instars were paired together. Exposure to the Bt endotoxin had no significant effect on when cannibalistic mortality occurred or the level of mortality as a result of cannibalism. Assuming that H. zea larvae reared on nonBt corn tissue behaved in a similar way that resistant larvae would if feeding on Bt tissue, sublethal effects of Cry1Ab intoxication may reduce the chances of successful cannibalism by susceptible larvae and thus play a disproportionate role in the survival of multiple ear infestations. Furthermore, cannibalistic encounters could result in partially resistant larvae feeding on nontoxic food, thus temporarily providing an escape from exposure to the Bt endotoxin. These behavior alterations could increase the selective differential between susceptible individuals and those carrying resistance genes.

  10. Managing the sugarcane borer, Diatraea saccharalis, and corn earworm, Helicoverpa zea, using Bt corn and insecticide treatments.

    Science.gov (United States)

    Farias, Juliano R; Costa, Ervandil C; Guedes, Jerson V C; Arbage, Alessandro P; Neto, Armando B; Bigolin, Mauricio; Pinto, Felipe F

    2013-01-01

    The sugarcane borer, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) and the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are important pests of corn in Brazil and have not been successfully managed, because of the difficulty of managing them with pesticides. The objective of this study was to evaluate the effect of Bt corn MON810, transformed with a gene from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) insecticide seed treatment, and foliar insecticide spray using treatments developed for control of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), which is the major pest of corn. The experiments were done under field conditions in early- and late-planted corn in the state of Rio Grande do Sul, Brazil, and in the laboratory. The MON810 corn reduced infestations and damage by D. saccharalis and H. zea. The insecticides used in seed treatments or foliar sprays did not affect D. saccharalis and H. zea infestations or damage levels. The exception was the insecticide seed treatment in non-transformed corn, which reduced early infestations of D. saccharalis. The MON810 corn, therefore, can be used for managing these two pest species, especially D. saccharalis.

  11. Utilization of metarhizium anisopliae and vegetable extract for control of the spodoptera frugiperda and helicoverpa zea (lepidoptera: noctuidae) in the corn

    OpenAIRE

    Eduardo Barbosa Beserra; Aldeni Barbosa da Silva; José Pires Dantas; Aldeni Barbosa da Silva; Eduardo Barbosa Beserra; José Pires Dantas

    2008-01-01

    The potential use of the vegetable extracts and Metarhizium anisopliae about the population and damage of the Spodoptera frugiperda and Helicoverpa zea in corn, it was evaluated when planted in two spacings. The experiment was installed in the culture of corn, in the city of Lagoa Seca/PB, in two areas of 500 m2, in the spacings 0,8 x 0,4 and 0,4 x 0,4 m, with two and one plant for hole. The basis was constituited of: 1) Water as witness; 2) Metarhizium anisopliae; 3) Extracts of Mormodica ch...

  12. Transgenic plants expressing the AaIT/GNA fusion protein show increased resistance and toxicity to both chewing and sucking pests.

    Science.gov (United States)

    Liu, Shu-Min; Li, Jie; Zhu, Jin-Qi; Wang, Xiao-Wei; Wang, Cheng-Shu; Liu, Shu-Sheng; Chen, Xue-Xin; Li, Sheng

    2016-04-01

    The adoption of pest-resistant transgenic plants to reduce yield losses and decrease pesticide use has been successful. To achieve the goal of controlling both chewing and sucking pests in a given transgenic plant, we generated transgenic tobacco, Arabidopsis, and rice plants expressing the fusion protein, AaIT/GNA, in which an insecticidal scorpion venom neurotoxin (Androctonus australis toxin, AaIT) is fused to snowdrop lectin (Galanthus nivalis agglutinin, GNA). Compared with transgenic tobacco and Arabidopsis plants expressing AaIT or GNA, transgenic plants expressing AaIT/GNA exhibited increased resistance and toxicity to one chewing pest, the cotton bollworm, Helicoverpa armigera. Transgenic tobacco and rice plants expressing AaIT/GNA showed increased resistance and toxicity to two sucking pests, the whitefly, Bemisia tabaci, and the rice brown planthopper, Nilaparvata lugens, respectively. Moreover, in the field, transgenic rice plants expressing AaIT/GNA exhibited a significant improvement in grain yield when infested with N. lugens. This study shows that expressing the AaIT/GNA fusion protein in transgenic plants can be a useful approach for controlling pests, particularly sucking pests which are not susceptible to the toxin in Bt crops. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  13. Bt Maize Seed Mixtures for Helicoverpa zea (Lepidoptera: Noctuidae): Larval Movement, Development, and Survival on Non-transgenic Maize.

    Science.gov (United States)

    Burkness, Eric C; Cira, T M; Moser, S E; Hutchison, W D

    2015-12-01

    In 2012 and 2013, field trials were conducted near Rosemount, MN, to assess the movement and development of Helicoverpa zea (Boddie) larvae on non-Bt refuge corn plants within a seed mixture of non-Bt and Bt corn. The Bt corn hybrid expressed three Bt toxins-Cry1Ab, Cry1F, and Vip3A. As the use of seed mixtures for insect resistance management (IRM) continues to be implemented, it is necessary to further characterize how this IRM approach impacts resistance development in ear-feeding Lepidopteran pests. The potential for Bt pollen movement and cross pollination of the non-Bt ears in a seed mixture may lead to Bt toxin exposure to larvae developing on those refuge ears. Larval movement and development by H. zea, feeding on non-Bt refuge plants adjacent to either transgenic Bt or non-Bt plants, were measured to investigate the potential for unintended Bt exposure. Non-Bt plants were infested with H. zea eggs and subplots were destructively sampled twice per week within each treatment to assess larval development, location, and kernel injury. Results indicate that H. zea larval movement between plants is relatively low, ranging from 2-16% of larvae, and occurs mainly after reaching the second instar. Refuge plants in seed mixtures did not produce equivalent numbers of H. zea larvae, kernel injury, and larval development differed as compared with a pure stand of non-Bt plants. This suggests that there may be costs to larvae developing on refuge plants within seed mixtures and additional studies are warranted to define potential impacts. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    Science.gov (United States)

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  15. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s).

    Science.gov (United States)

    Wang, Jie; Peiffer, Michelle; Hoover, Kelli; Rosa, Cristina; Zeng, Rensen; Felton, Gary W

    2017-05-01

    Insect gut-associated microbes modulating plant defenses have been observed in beetles and piercing-sucking insects, but the role of caterpillar-associated bacteria in regulating plant induced defenses has not been adequately examined. We identified bacteria from the regurgitant of field-collected Helicoverpa zea larvae using 16S ribosomal RNA (rRNA) gene sequencing and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. A combination of biochemical, molecular, and confocal electron microscopy methods were used to determine the role of caterpillar-associated bacteria in mediating defenses in Solanum lycopersicum (tomato). Laboratory-reared H. zea inoculated with one of the bacteria identified in field-collected H. zea, Enterobacter ludwigii, induced expression of the tomato defense-related enzyme polyphenol oxidase and genes regulated by jasmonic acid (JA), whereas the salicylic acid (SA)-responsive pathogenesis-related gene was suppressed. Additionally, saliva and its main component glucose oxidase from inoculated caterpillars played an important role in elevating tomato anti-herbivore defenses. However, there were only low detectable amounts of regurgitant or bacteria on H. zea-damaged tomato leaves. Our results suggest that H. zea gut-associated bacteria indirectly mediate plant-insect interactions by triggering salivary elicitors. These findings provide a proof of concept that introducing gut bacteria to a herbivore may provide a novel approach to pest management through indirect induction of plant resistance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  17. People’s Republic of China Scientific Abstracts, Number 171

    Science.gov (United States)

    1977-07-07

    wax moth, Galleria mellonella, the armyworm, Leucania separata, the cotton bollworm, Heliothis armigera, and the green peach aphid, Myzus persicae... Myzus persicae qingfengmycin was better than blasticidin S, The factor causing mortality in different insect species has been tested and discussed

  18. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores.

    Directory of Open Access Journals (Sweden)

    Liuhua Yan

    Full Text Available In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs in tomato (Solanum lycopersicum provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA. The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8 mutant, which was isolated as a suppressor of (prosystemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against

  19. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    Science.gov (United States)

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  20. A 2-year field study shows little evidence that the long-term planting of transgenic insect-resistant cotton affects the community structure of soil nematodes.

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    Full Text Available Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010, we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages, collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical 'real world' conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects-adverse or otherwise-on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants.

  1. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops.

    Directory of Open Access Journals (Sweden)

    Anthony R Ives

    Full Text Available Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.

  2. Changes in the activity and the expression of detoxification enzymes in silkworms (Bombyx mori) after phoxim feeding.

    Science.gov (United States)

    Wang, Y H; Gu, Z Y; Wang, J M; Sun, S S; Wang, B B; Jin, Y Q; Shen, W D; Li, B

    2013-01-01

    Silkworm (Bombyx mori) is an economically important insect. However, non-cocoon caused by chemical insecticide poisoning has largely hindered the development of sericulture. To explore the roles of detoxification enzymes in B. mori after insecticide poisoning, we monitored the activity changes of cytochrome P450 monooxygenase, glutathione-S-transferase, and carboxylesterase in B. mori midgut and fatbody after phoxim feeding. At the same time, the expression levels of detoxification enzyme-related genes were also determined by real-time quantitative PCR. Compare to the control levels, the activity of P450 in the midgut and fatbody was increased to 1.72 and 6.72 folds; the activity of GST was no change in midgut, and in fatbody increased to 1.11 folds; the activity of carboxylesterase in the midgut was decreased to 0.69 folds, and in fatbody increased to 1.13 folds. Correspondingly, the expression levels of detoxifying enzyme genes CYP6ae22, CYP9a21, GSTo1 and Bmcce were increased to 15.99, 3.32, 1.86 and 2.30 folds in the midgut and to 3.58, 1.84, 2.14 and 4.21 folds in the fatbody after phoxim treatment. These results demonstrated the important roles of detoxification enzymes in phoxim metabolism. In addition, the detected activities of such enzymes were generally lower than those in cotton bollworms (Helicoverpa armigera), which may contribute to the high susceptibility of B. mori to insecticides. Our findings laid the foundation for further investigations of the molecular mechanisms of organophosphorus pesticide metabolism in B. mori. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Impact of Inter-Kernel Movement in the Evolution of Resistance to Dual-Toxin Bt-Corn Varieties in Helicoverpa zea (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Caprio, Michael A; Martinez, Jeannette C; Porter, Patrick A; Bynum, Ed

    2016-02-01

    Seeds or kernels on hybrid plants are primarily F(2) tissue and will segregate for heterozygous alleles present in the parental F(1) hybrids. In the case of plants expressing Bt-toxins, the F(2) tissue in the kernels will express toxins as they would segregate in any F(2) tissue. In the case of plants expressing two unlinked toxins, the kernels on a Bt plant fertilized by another Bt plant would express anywhere from 0 to 2 toxins. Larvae of corn earworm [Helicoverpa zea (Boddie)] feed on a number of kernels during development and would therefore be exposed to local habitats (kernels) that varied in their toxin expression. Three models were developed for plants expressing two Bt-toxins, one where the traits are unlinked, a second where the traits were linked and a third model assuming that maternal traits were expressed in all kernels as well as paternally inherited traits. Results suggest that increasing larval movement rates off of expressing kernels tended to increase durability while increasing movement rates off of nonexpressing kernels always decreased durability. An ideal block refuge (no pollen flow between blocks and refuges) was more durable than a seed blend because the refuge expressed no toxins, while pollen contamination from plants expressing toxins in a seed blend reduced durability. A linked-trait model in an ideal refuge model predicted the longest durability. The results suggest that using a seed-blend strategy for a kernel feeding insect on a hybrid crop could dramatically reduce durability through the loss of refuge due to extensive cross-pollination. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management.

    Science.gov (United States)

    Burkness, Eric C; Dively, Galen; Patton, Terry; Morey, Amy C; Hutchison, William D

    2010-01-01

    Sweet corn, Zea mays L., transformed to express a novel vegetative insecticidal protein, Vip3A (event MIR162, Syngenta Seeds, Inc..), produced by the bacterium, Bacillus thuringiensis (Bt), was evaluated over four field seasons in Maryland and two field seasons in Minnesota for efficacy against the corn earworm, Helicoverpa zea (Boddie). Hybrids expressing the Vip3A protein and pyramided in hybrids also expressing the Cry1Ab Bt protein (event Bt11, ATTRIBUTE(®), Syngenta Seeds, Inc.) were compared to hybrids expressing only Cry1Ab or to genetically similar non-Bt hybrids each year. In addition to H. zea efficacy, results for Ostrinia nubilalis (Hübner) and Spodoptera frugiperda (J.E. Smith) are presented. Over all years and locations, the non-Bt hybrids, without insecticide protection, averaged between 43 and 100% ears infested with a range of 0.24 to 1.74 H. zea larvae per ear. By comparison, in the pyramided Vip3A x Cry1Ab hybrids, no larvae were found and only minimal kernel damage (likely due to other insect pests) was recorded. Hybrids expressing only Cry1Ab incurred a moderate level of H. zea feeding damage, with surviving larvae mostly limited to the first or second instar as a result of previously documented growth inhibition from Cry1Ab. These results suggest that the Vip3A protein, pyramided with Cry1Ab, appears to provide the first "high-dose" under field conditions and will be valuable for ongoing resistance management.

  5. Inhibition of Helicoverpa zea (Lepidoptera: Noctuidae) Growth by Transgenic Corn Expressing Bt Toxins and Development of Resistance to Cry1Ab.

    Science.gov (United States)

    Reisig, Dominic D; Reay-Jones, Francis P F

    2015-08-01

    Transgenic corn, Zea mays L., that expresses the Bacillus thuringiensis (Bt) toxin Cry1Ab is only moderately toxic to Helicoverpa zea (Boddie) and has been planted commercially since 1996. Growth and development of H. zea was monitored to determine potential changes in susceptibility to this toxin over time. Small plots of corn hybrids expressing Cry1F, Cry1F × Cry1Ab, Cry1Ab × Cry3Bb1, Cry1A.105 × Cry2Ab2 × Cry3Bb1, Cry1A.105 × Cry2Ab2, and Vip3Aa20 × Cry1Ab × mCry3A were planted in both 2012 and 2013 inNorth and South Carolina with paired non-Bt hybrids from the same genetic background. H. zea larvae were sampled on three time periods from ears and the following factors were measured: kernel area injured (cm(2)) by H. zea larvae, larval number per ear, larval weight, larval length, and larval head width. Pupae were sampled on a single time period and the following factors recorded: number per ear, weight, time to eclosion, and the number that eclosed. There was no reduction in larval weight, number of insect entering the pupal stadium, pupal weight, time to eclosion, and number of pupae able to successfully eclose to adulthood in the hybrid expressing Cry1Ab compared with a non-Bt paired hybrid. As Cry1Ab affected these in 1996, H. zea may be developing resistance to Cry1Ab in corn, although these results are not comprehensive, given the limited sampling period, size, and geography. We also found that the negative impacts on larval growth and development were greater in corn hybrids with pyramided traits compared with single traits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Transgenic Bacillus thuringiensis (Bt) chickpea: India's most wanted ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) is grown widely in India because the seeds are rich source of protein for the vegetarian population of country. However, chickpea cultivation is declining over the period of time due to heavy incidences of pests and diseases. Helicoverpa armigera is a major pest in the field and nonavailability of ...

  7. Utilization potentials of lablab ( Lablab purpureus (L.) Sweet) and ...

    African Journals Online (AJOL)

    Various insect pests, fungal diseases and parasitic plant including Ootheca mutabilis (Sahlb), Podagrica uniforma (Jac.), Nematocerus acerbus (Faust), Anoplocnemis curvipes (F.), Helicoverpa armigera (Hbn), aphids, Colletotrichum sp., Curvularia sp. and Cassytha filiformis (Linn.) were found on lablab plants, causing ...

  8. 2773-IJBCS-Article-Mokho Sarr

    African Journals Online (AJOL)

    hp

    Le cotonnier (Gossypium hirsutum L.), deuxième culture de rente au Sénégal, fournit d'importantes ressources financières à la population rurale. Il est exposé à diverses attaques parasitaires essentiellement occasionnées par les chenilles carpophages (Helicoverpa armigera et Earias spp) et les insectes piqueurs suceurs ...

  9. Research Article

    African Journals Online (AJOL)

    noor

    2012-04-12

    Apr 12, 2012 ... Babr, Rio Grande, Nova Mecb, Pakit and Sahil) exhibiting varying levels of host plant resistance to. Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) as based on fruit infestation. The variety, Sahil, was resistant, whereas Roma VFN was the susceptible variety. Hair length and hair density on lower.

  10. et du neem (Azadirachta indica A. Juss.)

    African Journals Online (AJOL)

    SARAH

    Azadirachta indica A. Juss.) sur Helicoverpa armigera et les Thrips de la tomate. 8936. Boutaleb J. A., 2010. Synthèse des résultats de recherche sur l'utilisation de quelques biopesticides d'origine végétale sur les cultures.

  11. Genotype assembly, biological activity and adaptation of spatially separated isolates of Spodoptera litura nucleopolyhedrovirus

    NARCIS (Netherlands)

    Ali, Ghulam; Abma-Henkens, Marleen H.C.; Werf, van der Wopke; Hemerik, Lia; Vlak, Just M.

    2018-01-01

    The cotton leafworm Spodoptera litura is a polyphagous insect. It has recently made a comeback as a primary insect pest of cotton in Pakistan due to reductions in pesticide use on the advent of genetically modified cotton, resistant to Helicoverpa armigera. Spodoptera litura nucleopolyhedrovirus

  12. 1227-IJBCS-Article-Cocou Angelo Djihinto

    African Journals Online (AJOL)

    Administrateur

    The aim of this survey was to assess the costs of cypermethrin resistance in Helicoverpa armigera strains by using variation in their biological parameters such as fecundity, number of larval slough, development time, weight and survival at each stage of insect development in comparison with susceptible strains. AGB01 and ...

  13. Cry1Ab protein quantification in leaves, stems and grains, and effectiveness to control Spodoptera frugiperda and Helicoverpa zea on two hybrids of genetically modified corn

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-01-01

    Full Text Available A study was carried out to evaluate the infestation and associated damages to the presence of the Spodoptera frugiperda and Helicoverpa zea caterpillars, in two genetically modified (GM corn, Dekalb DKB390 and Agroceres AG8088, expressing the cry1Ab protein. For this objective, an split-splot design with two factors (hybrid x gene was carried out. Negative controls were made with the same corn hybrids without the gene cry1Ab (NoGM. The concentration of the protein Cry1Ab was determined by the ELISA (enzyme linked immuno sorbent assay technique in previously dehydrated stems, leaves and grains of GM corns. Caterpillars sampling of S. frugiperda and associated damage survey were accomplished at 15, 22, 29, 36 and 42 days after the sowing, according to a damage scale with 5 levels (0- pest absence to 5- dead plant. Countings of H. zea caterpillars and associated damage were assessed at 57, 71, 78 and 85 days after the sowing, according to a damage scale with 4 levels (0-pest absence curse to 4-gallery in the corn cob minor than 3cm. Sampled caterpillars were divided in two groups, smaller or equal to 15mm and bigger than 15mm. No insecticide application was accomplished in the GM blocks while NoGM blocks were sprayed with deltametrina (2,8%, 42 days after the sowing. The infestation level and associated damage due to S. frugiperda presence was significantly smaller (p < 0,05 in the GM corns in comparison to NoGM corns. Nevertheless, the number and associated damage of S. frugiperda caterpillars, smaller than 15 mm, were superior in the GM DKB390 corn when compared to the GM AG8088 corn. Differences were not observed in the S. frugiperda infestation and associated damage between GM corns and between NoGM corns. On average, the concentration of Cry1Ab protein was significantly superior in leaves and stems in comparison to the grain and, usually, superior in the GM AG8088 corn comparatively to GM DKB390 corn. No differences were found on level damages

  14. Chemical profile and defensive function of the latex of Euphorbia peplus.

    Science.gov (United States)

    Hua, Juan; Liu, Yan; Xiao, Chao-Jiang; Jing, Shu-Xi; Luo, Shi-Hong; Li, Sheng-Hong

    2017-04-01

    Plant latex is an endogenous fluid secreted from highly specialized laticifer cells and has been suggested to act as a plant defense system. The chemical profile of the latex of Euphorbia peplus was investigated. A total of 13 terpenoids including two previously unknown diterpenoids, (2S*,3S*,4R*,5R*,6R*,8R*,l1R*,13S*,14S*,15R*, 16R*)-5,8,15-triacetoxy-3-benzoyloxy-11,16-dihydroxy-9-oxopepluane and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,8,9,14-pentaacetoxy-3-benzoyloxy-15-hydroxy-7-isobutyroyloxyjatropha-6(17),11E-diene), ten known diterpenoids, and a known acyclic triterpene alcohol peplusol, were identified, using HPLC and UPLC-MS/MS analyses and through comparison with the authentic compounds isolated from the whole plant. The diterpenoids exhibited significant antifeedant activity against a generalist plant-feeding insect, the cotton bollworm (Helicoverpa armigera), with EC 50 values ranging from 0.36 to 4.60 μg/cm 2 . In particular, (2R*,3R*,4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,9,14-tetraacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxyjatropha-6(17),11E-diene and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,14-triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene had EC 50 values of 0.36 and 0.43 μg/cm 2 , respectively, which were approximately 7-fold more potent than commercial neem oil (EC 50  = 2.62 μg/cm 2 ). In addition, the major peplusol showed obvious antifungal activity against three strains of agricultural phytopathogenic fungi, Rhizoctonia solani, Colletotrichum litchi and Fusarium oxysporum f. sp. niveum. The results indicated that terpenoids in the latex of E. peplus are rich and highly diversified, and might function as constitutive defense metabolites against insect herbivores and pathogens for the plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrophysiological and behavioral responses of Microplitis mediator (Hymenoptera: Braconidae) to caterpillar-induced volatiles from cotton.

    Science.gov (United States)

    Yu, Huilin; Zhang, Yongjun; Wyckhuys, Kris A G; Wu, Kongming; Gao, Xiwu; Guo, Yuyuan

    2010-04-01

    Microplitis mediator Haliday (Hymenoptera: Braconidae) is an important larval endoparasitoid of various lepidopteran pests, including Helicoverpa armigera (Hübner). In China, H. armigera is a key pest of cotton and is currently the focus of several biological control efforts that use M. mediator as principal natural enemy of this pest. To improve the success of biological control efforts, behavioral studies are needed that shed light on the interaction between M. mediator and H. armigera. In this study, we determined M. mediator response to volatile compounds from undamaged, mechanically injured, or H. armigera--damaged plants and identified attractive volatiles. In Y-tube olfactometer assays, we found that mechanically damaged plants and/or plants treated with H. armigera oral secretions did not attract wasps. However, volatiles from H. armigera-damaged plants elicited a strong attraction of both M. mediator sexes. Headspace extracts from H. armigera-damaged cotton were analyzed by coupled gas chromatography-electroantennographic detection (GC-EAD), and a total of seven different compounds were found to elicit electroantennogram (EAG) responses, including an unknown compound. Six different EAD-active volatiles were identified from caterpillar-damaged cotton plants, of which 3, 7-dimethyl-1, 3, 6-octatriene and (Z)-3-hexenyl acetate were the principal compounds. Olfactometer assays indicated that individual synthetic compounds of 3, 7-dimethyl-1, 3, 6-octatriene, (Z)-3-hexenyl acetate, and nonanal were attractive to M. mediator. Field cage studies showed that parasitism of H. armigera larvae by M. mediator was higher on cotton plants to which 3,7-dimethyl-1,3, 6-octatriene was applied. Our results show that the combination of terpenoids and green leaf volatiles may not only facilitate host, mate, or food location but may also increase H. armigera parasitism by M. mediator.

  16. History and Current Status of Development and Use of Viral Insecticides in China

    Directory of Open Access Journals (Sweden)

    Xiulian Sun

    2015-01-01

    Full Text Available The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed.

  17. History and current status of development and use of viral insecticides in China.

    Science.gov (United States)

    Sun, Xiulian

    2015-01-20

    The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed.

  18. 2678-IJBCS-Article-Abla Dela Mondedji

    African Journals Online (AJOL)

    hp

    l'envahissement de la flore forestière togolaise par les espèces végétales exotiques : cas du neem (Azadirachta indica). Mémoire de D.E.A., Université de Lomé, 61p. Kranthi KR, Jadhav D, Wanjari R, Kranrhi S,. Russel D. 2001. Pyrethroid resistance and mechanisms of resistance in field strains of Helicoverpa armigera.

  19. Des pratiques culturales influent sur les attaques de deux ravageurs ...

    African Journals Online (AJOL)

    La culture de tomate est attaquée par plusieurs ravageurs dont Helicoverpa armigera et Tuta absoluta. Dans le but d'évaluer l'effet des pratiques culturales de la tomate sur ces principaux ravageurs dans les Niayes (Sénégal), un échantillonnage de 98 parcelles est effectué, sur quatre cycles de culture en saison sèche, de ...

  20. Developing a neem-based pest management product: laboratory evaluations of neem extracts on insect pests resistance to synthetic pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Permana, A.D.; Rahadian, R.; Wibowo, S.A

    1998-12-16

    Laboratory studies has been conducted as a part of a project aimed at the development of a neem-based insecticide for pest management purposes. Permethrin, a pyrethroid insecticide, and neem (Azadirachta indica) products were tested against larvae of Diamondback Moth Plutella xylostella, and Helicoverpa armigera collected from several locations in West Java, Indonesia. The results of bioassay showed that the average LC{sub 50} values of permethrin for Plutella xylostella had been 60-100 fold higher as compared with the normal dosage recommended. Similarly, the LC{sub 50} values obtained for Helicoverpa armigera had been 46-73 fold as compared with the recommended dosage. These facts suggest that both insects have developed resistance to permethrin. The results of bioassay with neem-products tested against Plutella xylostella and Helicoverpa armigera larvae showed that statistically LC{sub 50} values of neem-products for each strain of either Plutella xylostella or Helicoverpa armigera were not significantly different one to another. We also found that neem-treated insects, even though they were not killed directly by the insecticide, were not able to molt to the next instar or pupae, so that very low percentage of adults emerged. The susceptibility of neem-products could not be easily determined by only measuring the LC{sub 50} values from the larval stage, but the disruption of the growth and development of the insect should be considered as well. Our findings suggest that neem-products could be used effectively to control insects which have developed resistance to conventional insecticide. (author)

  1. Processing of Pheromone Information in Related Species of Heliothine Moths

    Directory of Open Access Journals (Sweden)

    Bente G. Berg

    2014-10-01

    Full Text Available In heliothine moths, the male-specific olfactory system is activated by a few odor molecules, each of which is associated with an easily identifiable glomerulus in the primary olfactory center of the brain. This arrangement is linked to two well-defined behavioral responses, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecific females and the other inhibition of attraction via signal information emitted from heterospecifics. The chance of comparing the characteristic properties of pheromone receptor proteins, male-specific sensory neurons and macroglomerular complex (MGC-units in closely-related species is especially intriguing. Here, we review studies on the male-specific olfactory system of heliothine moths with particular emphasis on five closely related species, i.e., Heliothis virescens, Heliothis subflexa, Helicoverpa zea, Helicoverpa assulta and Helicoverpa armigera.

  2. Characterization of the Helicoverpa assulta nucleopolyhedrovirus ...

    Indian Academy of Sciences (India)

    Soo-Dong Woo1 Jae Young Choi2 Yeon Ho Je2 Byung Rae Jin3. Department of Plant Medicine, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 361-763, Korea; School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul ...

  3. Characterization of the Helicoverpa assulta nucleopolyhedrovirus ...

    Indian Academy of Sciences (India)

    Madhu

    The family is divided into two genera, nucleopolyhedrovirus (NPV) and granulovirus. (GV). The NPV has been well investigated because of its potential for use as an insect pest control agent and a vector for the expression of various heterologous genes under the control of polyhedrin promoter (Smith et al 1983; Miller 1988; ...

  4. Characterization of the Helicoverpa assulta nucleopolyhedrovirus ...

    Indian Academy of Sciences (India)

    Madhu

    The Baculoviridae are a diverse family of virus pathogens, which are infectious for arthropods, particularly insects of the order Lepidoptera. Baculovirus infections have been reported in over 600 insect species of the orders. Hymenoptera, Diptera, Coleoptera, Neuroptera, Trichoptera, and Thysanura, as well as in the ...

  5. Efficacy of Bt maize producing the Cry1Ac protein against two important pests of corn in China.

    Science.gov (United States)

    Chen, Hong-Xing; Yang, Rui; Yang, Wang; Zhang, Liu; Camara, Ibrahima; Dong, Xue-Hui; Liu, Yi -Qing; Shi, Wang-Peng

    2016-11-01

    Ostrinia furnacalis (Guenée) and Helicoverpa armigera (Hübner) are the most important pests of maize in China. A laboratory study and a 2-year field study on the efficacy of transgenic maize expressing the Cry1Ac protein BT38 against O. furnacalis and H. armigera were performed. We found that the husks, kernels, and silks of BT38 showed significant efficacy against larvae of O. furnacalis and H. armigera. In the field, when neonate larvae of O. furnacalis and H. armigera were on plants at different growth stages and when levels of leaf-damage or number of damaged silks were used to score efficacy, we found that BT38 showed significant insecticidal efficacy against O. furnacalis and H. armigera, but the non-Bt maize did not show significant efficacy against either pest. These results suggest that the insecticidal efficacy of Bt maize expressing the Cry1Ac protein could be useful in the integrated pest management of these key maize pests.

  6. Efficacy of some synthetic insecticides for control of cotton bollworms ...

    African Journals Online (AJOL)

    African Crop Science Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 20, No 1 (2012) >. Log in or Register to get access to full text downloads.

  7. Streptomyces sp. 173, an insecticidal micro-organism from marine.

    Science.gov (United States)

    Xiong, L; Li, J; Kong, F

    2004-01-01

    To find new insecticidal antibiotics from marine micro-organisms. Strains isolated from seawater and sea sediments from Beidiahe and Dagang of the east coast of China were screened for their insecticidal qualities. The screening was carried out using bioassay of brine shrimp and the insect pest Helicoverpa armigera. The fermentation, preliminary extraction and isolation of Streptomyces sp.173 were carried out. In total 331 isolates were examined through bioassay of brine shrimp and 40 isolates (12.08%) showed potential insecticidal activities. Of the 40 isolates, one isolate, designated Streptomyces sp.173, was found to have strong insecticidal activity against both brine shrimp and H. armigera, similar to that of avermectin B1. The isolated Streptomyces sp.173 has great insecticidal potency. This work indicated that marine micro-organisms could be an important source of insecticidal antibiotics and the improved anti-brine shrimp bioassay is suitable for primary screening.

  8. Comparative studies of tripolyphosphate and glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications.

    Science.gov (United States)

    Gabriel Paulraj, Michael; Ignacimuthu, Savarimuthu; Gandhi, Munusamy Rajiv; Shajahan, Azeez; Ganesan, Pathalam; Packiam, Soosaimanickam Maria; Al-Dhabi, Naif Abdhullah

    2017-11-01

    A nanopesticide formulation was developed using chitosan and a botanical pesticide PONNEEM ® and its antifeedant, larvicidal and growth regulating activities were screened against Helicoverpa armigera, a major lepidopteran pest. Chitosan nanoparticles (CSNs) were prepared by using two different cross-linking agents namely glutaraldehyde (GLA) and tripolyphosphate (TPP). The effects of cross linking agents on CSNs and the biological properties against the insect pest were also studied. Cross linking of chitosan with either TPP or GLA was confirmed through Fourier Transform Infrared (FTIR) spectroscopy. Electron micrograph revealed that the size of CSNs varied from 32 to 90nm. The stability of nanoparticles lasted for 9days in CSNs-TPP-PONNEEM. In CSNs-GLA-PONNEEM, the stability of nanoparticles was higher. CSNs-TPP-PONNEEM treatment recorded 88.5% antifeedant activity and 90.2% larvicidal activity against H. armigera. Weights of H. armigera pupae in CSNs-TPP-PONNEEM treatment were significantly low. Chitosan-based nano-pesticide formulation holds great promise in H. armigera management. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sound-sensitive neurons innervate the ventro-lateral protocerebrum of the heliothine moth brain

    DEFF Research Database (Denmark)

    Pfuhl, Gerit; Zhao, Xin Cheng; Ian, Elena

    2014-01-01

    -sensitive neurons in the moth brain. During intracellular recordings from the lateral protocerebrum in the brain of three noctuid moth species, Heliothis virescens, Helicoverpa armigera and Helicoverpa assulta, we found an assembly of neurons responding to transient sound pulses of broad bandwidth. The majority...... of the auditory neurons ascended from the ventral cord and ramified densely within the anterior region of the ventro-lateral protocerebrum. The physiological and morphological characteristics of these auditory neurons were similar. We detected one additional sound-sensitive neuron, a brain interneuron with its......Many noctuid moth species perceive ultrasound via tympanic ears that are located at the metathorax. Whereas the neural processing of auditory information is well studied at the peripheral and first synaptic level, little is known about the features characterizing higher order sound...

  10. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against Lepidopteran targets using molecular docking

    Directory of Open Access Journals (Sweden)

    Aftab eAhmad

    2015-12-01

    Full Text Available Study and research of Bt (Bacillus thuringiensis transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac insecticidal protein and vegetative insecticidal protein (Vip3Aa have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein. Cry1Ac and Vip3Aa are non-homologous insecticidal proteins possessing receptors against different targets within the midgut of insects. The insecticidal proteins were fused to broaden the insecticidal activity. Molecular docking analysis of the fusion protein against aminopeptidase-N (APN and cadherin receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua and Spodoptera litura revealed that the Ser290, Ser293, Leu337, Thr340 and Arg437 residues of the fusion protein are involved in the interaction with insect receptors. The Helicoverpa armigera cadherin receptor, however, showed no interaction, which might be due to either loss or burial of interactive residues inside the fusion protein. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity against Lepidopteran insect receptors and hence has a potential to be an efficient broad-range insecticidal protein.

  11. Characterizing indirect prey-quality mediated effects of a Bt crop on predatory larvae of the green lacewing, Chrysoperla carnea.

    Science.gov (United States)

    Lawo, Nora C; Wäckers, Felix L; Romeis, Jörg

    2010-11-01

    There is increasing evidence that insecticidal transgenic crops can indirectly cause detrimental effects on arthropod predators or parasitoids when they prey on or parasitize sublethally affected herbivores. Our studies revealed that Chrysoperla carnea is negatively affected when fed Bt-susceptible but not Cry1Ac-resistant Helicoverpa armigera larvae that had fed Bt-transgenic cotton expressing Cry1Ac. This despite the fact that the predators ingested 3.5 times more Cry1Ac when consuming the resistant caterpillars. In order to detect potential differences in the nutrient composition of prey larvae, we evaluated the glycogen and lipid content plus the sugar and free amino acid content and composition of caterpillars fed non-Bt and Bt cotton. The only change in susceptible H. armigera larvae attributable to Bt cotton feeding were changes in sugar concentration and composition. In case of the Cry1Ac-resistant H. armigera strain, feeding on Bt cotton resulted in a reduced glycogen content in the caterpillars. The predators, however, appeared to compensate for the reduced carbohydrate content of the prey by increasing biomass uptake which caused an excess intake of the other analyzed nutritional compounds. Our study clearly proves that nutritional prey-quality factors other then the Bt protein underlie the observed negative effects when C. carnea larvae are fed with Bt cotton-fed prey. Possible factors were an altered sugar composition or fitness costs associated with the excess intake of other nutrients. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Cloning, characterization and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain SWK1, native to Himalayan valley Kashmir.

    Science.gov (United States)

    Reyaz, A L; Arulselvi, P Indra

    2016-05-01

    Bacillus thuringiensis (Bt) is a gram positive bacterium which is effectively being used in pest management strategies as an eco-friendly bioinsecticide. In the present study a new cry2A gene was cloned from a promising indigenous B. thuringiensis SWK1 strain previously characterized for its toxicity against Spodoptera litura and Helicoverpa armigera larvae. The nucleotide sequence of the cloned cry2A gene pointed out that the open reading frame has 1902 bases encoding a polypeptide of 634 amino acid residues with a probable molecular weight of 70kDa. Homology comparisons showed that the deduced amino acid sequence of Cry2A had a similarity of 94% compared to that of the known Cry2Aa protein in the NCBI database and this gene has been named as cry2Al1 by the B. thuringiensis δ-endotoxin Nomenclature Committee. cry2Al1 was ligated into pET 22b vector and expressed in Escherichia coli BL21 (DE3) pLysS under the control of T7 promoter induced by isopropyl-beta-d-thiogalactopyranoside (IPTG). SDS-PAGE analysis confirmed the expression of cry2Al1 as ∼65kDa protein. Insect pest bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 are toxic to S. litura and H. armigera with LC50 2.448μg/ml and H. armigera with 3.374μg/ml respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Participatory evaluation of synthetic and botanical pesticide mixtures for cotton bollworm control

    NARCIS (Netherlands)

    Sinzogan, A.A.C.; Kossou, D.K.; Atachi, P.; Huis, van A.

    2007-01-01

    The bioefficacy of various plant extracts, namely Azadirachta indica A. Juss, Khaya senegalensis Desrousseaux (A. Jussieu) and Hyptis suavuolens (L.) Poit, either alone or in combination with half the recommended dose of synthetic pesticides, was studied with farmers to find a more sustainable

  14. Behavior of Pectinophora gossypiella (gelechiidae) (pink bollworm) males monitored with pheromone trap in cotton

    International Nuclear Information System (INIS)

    Pontes de Melo, Elmo; Degrande, Paulo Eduardo; Aveiro Cessa, Raphael Maia; De Lima Junior, Izidro dos Santos; Barros, Ricardo; Fernandes Nogueira, Rodrigo

    2012-01-01

    The objective of the present study was to evaluate the behavior of p. gossypiella males captured with pheromone-baited traps in cotton field. Three experiments were done during the 2001-02 and 2002-03 growing seasons using the delta opal cotton cultivar. The first experiment was related to the insect population captured during the crop cycle by of two commercially available delta type traps, the second experiment was conducted to evaluate the efficiency of traps in capturing p. gossypiella males and, the third experiment assessed the nocturnal circadian rhythm. It was realized a descriptive analysis of the data collected to first and third experiment. Used in this second experiment consisted of comparing randomly selected groups and the means were compared by t-test, the significance level was set at 5 %, and, the canonical correlation analysis was performed. The delta pheromone trap was more efficient in capturing p. gossypiella than was the PET pheromone trap. Nocturnal activity peaks were found to be related with the time of year and it occurs between 11:00 p.m. and 2:00 a.m.

  15. Efficacy of a Combined Treatment of Neem Oil Formulation and Endosulfan against (Hub. (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Abdul Rashid War

    2014-01-01

    Full Text Available Efficacy of the combined treatment of a neem oil formulation and endosulfan on feeding and midgut enzyme activities of Helicoverpa armigera larvae was studied. The antifeedant activity was recorded at 24 h after treatment and the activities of midgut digestive (total serine protease and trypsin and detoxifying (esterase and glutathione-S-transferase enzymes were estimated at 72 h after treatment. The antifeedant activity in endosulfan + neem oil formulation (endosulfan 0.01% and neem oil formulation 1% at 1:1 ratio was 85.34%, significantly greater than in individual treatments. Midgut digestive enzymes and EST activities were significantly reduced and the GST activity significantly increased in the combined treatment of endosulfan + neem oil formulation, thus showing increased effect of the combined treatment of the two pesticides. These results suggest that neem oil can be used in combination with endosulfan to reduce its quantity.

  16. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  17. Caractérisation du savoir paysan sur les insectes nuisibles du pois d'Angole (Cajanus Cajan (L. Millsp. dans le Nord de l'Ouganda

    Directory of Open Access Journals (Sweden)

    Velay F.

    2001-01-01

    Full Text Available Characterization of indigenous traditional knowledge on insect pests of pigeonpea (Cajanus cajan (L. Millsp. in Northern Uganda. In order to assess the perception of the main insect pests of pigeonpea (Cajanus cajan (L. Millsp. by small farmers and to inventoriate methods traditionally used to control these insects, a survey was conducted in 41 households of Northern Uganda (Lira and Apac districts. Virtually all small farmers (95/ considered blister beetle (Mylabris sp., which is the most conspicious insect damaging pigeonpea at the flowering stage, as the main pest of the crop. This is conflicting with field observations made earlier in Northern Uganda which pointed out pod borers (Helicoverpa armigera Huebner and Maruca vitrata Geyer and pod sucking bugs (mainly Clavigralla sp. as the most damaging pests for pigeonpea production. A new pest of pigeonpea, Luprops baldius Mueller, was identified during this survey. Its adults and larvae are damaging to mature pods in case of late harvest.

  18. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider.

    Science.gov (United States)

    Sun, Yunjun; Fu, Zujiao; He, Xiaohong; Yuan, Chunhua; Ding, Xuezhi; Xia, Liqiu

    2016-03-01

    In order to assess the potency of bi-functional HWTX-XI toxin from spider Ornithoctonus huwena in improving the insecticidal activity of Bacillus thuringiensis, a fusion gene of cry1Ac and hwtx-XI was constructed and expressed in an acrystalliferous B. thuringiensis strain Cry(-)B. Western blot analysis and microscopic observation revealed that the recombinant strain could express 140-kDa Cry1Ac-HWTX-XI fusion protein and produce parasporal inclusions during sporulation. Bioassay using the larvae of Helicoverpa armigera and Spodoptera exigua showed that the Cry1Ac-HWTX-XI fusion was more toxic than the control Cry1Ac protoxin, as revealed by 95% lethal concentration. Our study indicated that the HWTX-XI from spider might be a candidate for enhancing the toxicity of B. thuringiensis products. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Design, Synthesis and Insecticidal Activity of Novel Phenylurea Derivatives

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of novel phenylurea derivatives were designed and synthesized according to the method of active groups linkage and the principle of aromatic groups bioisosterism in this study. The structures of the novel phenylurea derivatives were confirmed based on ESI-MS, IR and 1H-NMR spectral data. All of the compounds were evaluated for the insecticidal activity against the third instars larvae of Spodoptera exigua Hiibner, Plutella xyllostella Linnaeus, Helicoverpa armigera Hubner and Pieris rapae Linne respectively, at the concentration of 10 mg/L. The results showed that all of the derivatives displayed strong insecticidal activity. Most of the compounds presented higher insecticidal activity against S. exigua than the reference compounds tebufenozide, chlorbenzuron and metaflumizone. Among the synthesized compounds, 3b, 3d, 3f, 4b and 4g displayed broad spectrum insecticidal activity.

  20. Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco.

    Science.gov (United States)

    Senthilkumar, Rajendran; Cheng, Chiu-Ping; Yeh, Kai-Wun

    2010-01-01

    Protease inhibitors provide a promising means of engineering plant resistance against attack by insects and pathogens. Sporamin (trypsin inhibitor) from sweet potato and CeCPI (phytocystatin) from taro were stacked in a binary vector, using pMSPOA (a modified sporamin promoter) to drive both genes. Transgenic tobacco lines of T0 and T1 generation with varied inhibitory activity against trypsin and papain showed resistance to both insects and phytopathogens. Larvae of Helicoverpa armigera that ingested tobacco leaves either died or showed delayed growth and development relative to control larvae. Transgenic tobacco-overexpressing the stacked genes also exhibited strong resistance against bacterial soft rot disease caused by Erwinia carotovora and damping-off disease caused by Pythium aphanidermatum. Thus, stacking protease-inhibitor genes, driven by the wound and pathogen responsive pMSPOA promoter, is an effective strategy for engineering crops to resistance against insects and phytopathogens.

  1. Safety assessment and detection method of genetically modified Chinese Kale (Brassica oleracea cv. alboglabra ).

    Science.gov (United States)

    Lin, Chih-Hui; Lu, Chien-Te; Lin, Hsin-Tang; Pan, Tzu-Ming

    2009-03-11

    Sporamins are tuberous storage proteins and account for 80% of soluble protein in sweet potato tubers with trypsin-inhibitory activity. The expression of sporamin protein in transgenic Chinese kale (line BoA 3-1) conferred insecticidal activity toward corn earworm [ Helicoverpa armigera (Hubner)] in a previous report. In this study, we present a preliminary safety assessment of transgenic Chinese kale BoA 3-1. Bioinformatic and simulated gastric fluid (SGF) analyses were performed to evaluate the allergenicity of sporamin protein. The substantial equivalence between transgenic Chinese kale and its wild-type host has been demonstrated by the comparison of important constituents. A reliable real-time polymerase chain reaction (PCR) detection method was also developed to control sample quality. Despite the results of most evaluations in this study being negative, the safety of sporamin in transgenic Chinese kale BoA 3-1 was uncluded because of the allergenic risk revealed by bioinformatic analysis.

  2. A multisensory centrifugal neuron in the olfactory pathway of heliothine moths

    DEFF Research Database (Denmark)

    Zhao, Xin-Cheng; Pfuhl, Gerit; Surlykke, Annemarie

    2013-01-01

    We have characterized, by intracellular recording and staining, a unique type of centrifugal neuron in the brain olfactory center of two heliothine moth species; one in Heliothis virescens and one in Helicoverpa armigera. This unilateral neuron, which is not previously described in any moth, has...... showed that the centrifugal neuron is, in each brain hemisphere, one within a small group of neurons having their somata clustered. In both species the neuron was excited during application of non-odorant airborne signals, including transient sound pulses of broad bandwidth and air velocity changes....... Additional responses to odors were recorded from the neuron in Heliothis virescens. The putative biological significance of the centrifugal antennal-lobe neuron is discussed with regard to its morphological and physiological properties. In particular, a possible role in multisensory processes underlying...

  3. Defense sesterterpenoid lactones from Leucosceptrum canum.

    Science.gov (United States)

    Luo, Shi-Hong; Hua, Juan; Niu, Xue-Mei; Liu, Yan; Li, Chun-Huan; Zhou, Yan-Ying; Jing, Shu-Xi; Zhao, Xu; Li, Sheng-Hong

    2013-02-01

    Ten sesterterpenoids, leucosceptroids E-N (1-10), possessing an α,β-unsaturated γ-lactone moiety, were isolated from the leaves and flowers of a woody Labiatae, Leucosceptrum canum. Their structures including relative stereochemistry were determined by comprehensive 1D and 2D NMR, MS, and in the case of 1 and 10, by single crystal X-ray diffraction analyses. This class of unique plant terpenoids was designated as leucosceptrane sesterterpenoids (=leucosceptroids). The potent antifeedant activity of the most abundant compound, leucosceptroid G (3), and a representative compound, leucosceptroid N (10), against the generalist plant-feeding insect Helicoverpa armigera suggested that they might also be defense compounds of L. canum against insects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Proteomic analysis of the influence of Cu(2+) on the crystal protein production of Bacillus thuringiensis X022.

    Science.gov (United States)

    Liu, Xuemei; Zuo, Mingxing; Wang, Ting; Sun, Yunjun; Liu, Shuang; Hu, Shengbiao; He, Hao; Yang, Qi; Rang, Jie; Quan, Meifang; Xia, Liqiu; Ding, Xuezhi

    2015-10-05

    Bacillus thuringiensis X022, a novel strain isolated from soil in China, produces diamond-shaped parasporal crystals. Specific mineral nutrients, such as Mg, Cu, and Mn, influence insecticidal crystal proteins (ICP) expression and the effects of these elements vary significantly. However, the molecular mechanisms of the effects caused by mineral elements have yet to be reported. The ICP are mainly composed of Cry1Ca, Cry1Ac, and Cry1Da, which have molecular weights of about 130 kDa. ICP production was most efficient when Cu(2+) was added at concentrations ranging from 10(-6) to 10(-4) mol/L at an initial pH of 8.0. Addition of Cu(2+) also evidently increased the toxicity of fermentation broth to Spodoptera exigua and Helicoverpa armigera. After analyzing changes in proteome and fermentation parameters caused by Cu(2+) addition, we propose that Cu(2+) increases PhaR expression and consequently changes the carbon flow. More carbon sources was used to produce intracellular poly-β-hydroxybutyrate (PHB). Increases in PHB as a storage material bring about increases of ICP production. Bacillus thuringiensis X022 mainly expresses Cry1Ca, Cry1Ac, and Cry1Da. Cu(2+) increases the expression of Cry1Da, Cry1Ca, and also enhances the toxicity of fermentation broth to S. exigua and H. armigera.

  5. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Science.gov (United States)

    Jurat-Fuentes, Juan Luis; Karumbaiah, Lohitash; Jakka, Siva Rama Krishna; Ning, Changming; Liu, Chenxi; Wu, Kongming; Jackson, Jerreme; Gould, Fred; Blanco, Carlos; Portilla, Maribel; Perera, Omaththage; Adang, Michael

    2011-03-01

    Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  6. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases.

    Science.gov (United States)

    Lomate, Purushottam R; Hivrale, Vandana K

    2012-08-01

    Wounding of plants by chewing insects or other damage induces the synthesis of defensive proteinase inhibitors (PI) in both wounded and distal unwounded leaves. In the present paper we report the characterization of inducible defensive PI from pigeon pea (Cajanus cajan) and its in vitro interaction with Helicoverpa armigera gut proteinases (HGP). We found that PI activity was induced in local as well as systemic leaves of pigeon pea by the wounding and methyl jasmonate (MeJA) application. Consistent induction of PI was observed in two wild cultivars of pigeon pea at various growth stages. The estimated molecular weight of inducible PI was ~16.5 kDa. Electrophoretic analysis and enzyme assays revealed that the induced PI significantly inhibited total gut proteinase as well as trypsin-like activity from the midgut of H. armigera. The induced PI was found to be inhibitor of trypsin as well as chymotrypsin. Study could be important to know the further roles of defensive PIs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Reduced levels of membrane-bound alkaline phosphatase are common to lepidopteran strains resistant to Cry toxins from Bacillus thuringiensis.

    Directory of Open Access Journals (Sweden)

    Juan Luis Jurat-Fuentes

    Full Text Available Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP were detected by two dimensional differential in-gel electrophoresis (2D-DIGE analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.

  8. Antalya İlinde Kesme Çiçek Seralarında Bulunan Zararlı Böcek ve Akar Türleri

    Directory of Open Access Journals (Sweden)

    Zeliha TIRAŞ

    2016-09-01

    Full Text Available Antalya ili ve ilçelerinde 2014-2015 yıllarında yürütülen bu çalışmada 28 serada 13 kesme çiçek türünde Insecta sınıfına ait 64 tür ve Arachnida sınıfına ait bir tür saptanmıştır. Elde edilen 16 türün kesme çiçeklerde ekonomik düzeyde zararlı, beş türün ise ana zararlı olduğu belirlenmiştir. Önem sırasına göre bu türler; Tetranychus urticae Koch, Frankliniella occidentalis Pergande, Bemisia tabaci Gennadius, Helicoverpa armigera Hübner ve Spodoptera littoralis Boisduval’dir. T. urticae ve F. occidentalis çalışma yapılan tüm ilçelerdeki kesme çiçek seralarında saptanmıştır. F. occidentalis dokuz, H. armigera yedi, T. urticae üç, B.tabaci iki ve S. littoralis iki farklı kesme çiçek türü üzerinde saptanmıştır.

  9. Diversity and abundance of lepidopteran populations from selected crops of district faisalabad, pakistan

    International Nuclear Information System (INIS)

    Maalik, S.; Rana, S.A.; Khan, H.A.; Ashfaq, M.

    2012-01-01

    Lepidopterans are represented by one of the most diverse group of insects. They are phytophagous as well as pollinators at the same time. During present study four crops i.e Wheat, Fodder, Brassica and Vegetables were sampled to assess the diversity and abundance of Lepidopteran populations. A total of 2811 specimens belonging to 14 species and 6 families were recorded. Pieris brassicae (29.46%) was the dominant species followed by Trichoplusia ni (19.28%), Helicoverpa Zea (11.78%), Helicoverpa armigera (11.60%), Spodoptera exigua (6.65%), Psedoplusia includes (5.09%), Spodoptera litura (3.81%), Agrotis ipsilon (4.87%), Plutella xylostella (2.92%), Lymatria dispar (2.24%), Pieris rapae (0.92%), Galleria mellonella (0.71%), Evergestris rimosalis (0.53%) and Menduca sexta (0.14%). Significant differences were observed among different crops by applying Shannon Diversity Index and T- test. CA (Cluster analysis) represented the species association with different crops. Majority of the species showed association with Vegetables and Fodder and least association was observed with Wheat. Such types of studies are necessary to design integrated pest management programs to control these pests. (author)

  10. (-)-Germacrene D receptor neurones in three species of heliothine moths: structure-activity relationships.

    Science.gov (United States)

    Stranden, M; Liblikas, I; König, W A; Almaas, T J; Borg-Karlson, A-K; Mustaparta, H

    2003-07-01

    Specificity of olfactory receptor neurones plays an important role in food and host preferences of a species, and may have become conserved or changed in the evolution of polyphagy and oligophagy. We have identified a major type of plant odour receptor neurones responding to the sesquiterpene germacrene D in three species of heliothine moths, the polyphagous Heliothis virescens and Helicoverpa armigera and the oligophagous Helicoverpa assulta. The neurones respond with high sensitivity and selectivity to (-)-germacrene D, as demonstrated by screening via gas chromatography with numerous mixtures of plant volatiles. Germacrene D was present in both host and non-host plants, but only in half of the tested species. The specificity of the neurones was similar in the three species, as shown by the "secondary" responses to a few other sesquiterpenes. The effect of (-)-germacrene D was about ten times stronger than that of the (+)-enantiomer, which again was about ten times stronger than that of (-)-alpha-ylangene. Weaker effects were obtained for (+)-beta-ylangene, (+)-alpha-copaene, beta-copaene and two unidentified sesquiterpenes. The structure-activity relationship shows that the important properties of (-)-germacrene D in activating the neurones are the ten-membered ring system and the three double bonds acting as electron-rich centres, in addition to the direction of the isopropyl-group responsible for the different effects of the germacrene D enantiomers.

  11. Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China

    Science.gov (United States)

    Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) are cultivated extensively worldwide. However, their benefits are being eroded by increasingly rapid evolution of resistance in pests. In some previously analyzed strains of three major lepidopteran pests, resistance t...

  12. Influence of Crop Management and Environmental Factors on Wolf Spider Assemblages (Araneae: Lycosidae) in an Australian Cotton Cropping System.

    Science.gov (United States)

    Rendon, Dalila; Whitehouse, Mary E A; Hulugalle, Nilantha R; Taylor, Phillip W

    2015-02-01

    Wolf spiders (Lycosidae) are the most abundant ground-hunting spiders in the Australian cotton (Gossypium hirsutum L.) agroecosystems. These spiders have potential in controlling pest bollworms, Helicoverpa spp. (Lepidoptera: Noctuidae) in minimum-tilled fields. A study was carried out during a wet growing season (2011-2012) in Narrabri, New South Wales, Australia, to determine how different crop rotations and tillage affect wolf spider assemblages in cotton fields. Spider abundance and species richness did not differ significantly between simple plots (no winter crop) and complex plots (cotton-wheat Triticum aestivum L.-vetch Vicia benghalensis L. rotation). However, the wolf spider biodiversity, as expressed by the Shannon-Weaver and Simpson's indices, was significantly higher in complex plots. Higher biodiversity reflected a more even distribution of the most dominant species (Venatrix konei Berland, Hogna crispipes Koch, and Tasmanicosa leuckartii Thorell) and the presence of more rare species in complex plots. T. leuckartii was more abundant in complex plots and appears to be sensitive to farming disturbances, whereas V. konei and H. crispipes were similarly abundant in the two plot types, suggesting higher resilience or recolonizing abilities. The demographic structure of these three species varied through the season, but not between plot types. Environmental variables had a significant effect on spider assemblage, but effects of environment and plot treatment were overshadowed by the seasonal progression of cotton stages. Maintaining a high density and even distribution of wolf spiders that prey on Helicoverpa spp. should be considered as a conservation biological control element when implementing agronomic and pest management strategies. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements.

    Science.gov (United States)

    d'Alençon, E; Sezutsu, H; Legeai, F; Permal, E; Bernard-Samain, S; Gimenez, S; Gagneur, C; Cousserans, F; Shimomura, M; Brun-Barale, A; Flutre, T; Couloux, A; East, P; Gordon, K; Mita, K; Quesneville, H; Fournier, P; Feyereisen, R

    2010-04-27

    The recent assembly of the silkworm Bombyx mori genome with 432 Mb on 28 holocentric chromosomes has become a reference in the genomic analysis of the very diverse Order of Lepidoptera. We sequenced BACs from two major pests, the noctuid moths Helicoverpa armigera and Spodoptera frugiperda, corresponding to 15 regions distributed on 11 B. mori chromosomes, each BAC/region being anchored by known orthologous gene(s) to analyze syntenic relationships and genome rearrangements among the three species. Nearly 300 genes and numerous transposable elements were identified, with long interspersed nuclear elements and terminal inverted repeats the most abundant transposable element classes. There was a high degree of synteny conservation between B. mori and the two noctuid species. Conserved syntenic blocks of identified genes were very small, however, approximately 1.3 genes per block between B. mori and the two noctuid species and 2.0 genes per block between S. frugiperda and H. armigera. This corresponds to approximately two chromosome breaks per Mb DNA per My. This is a much higher evolution rate than among species of the Drosophila genus and may be related to the holocentric nature of the lepidopteran genomes. We report a large cluster of eight members of the aminopeptidase N gene family that we estimate to have been present since the Jurassic. In contrast, several clusters of cytochrome P450 genes showed multiple lineage-specific duplication events, in particular in the lepidopteran CYP9A subfamily. Our study highlights the value of the silkworm genome as a reference in lepidopteran comparative genomics.

  14. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis.

    Science.gov (United States)

    Rodrigo-Simón, Ana; de Maagd, Ruud A; Avilla, Carlos; Bakker, Petra L; Molthoff, Jos; González-Zamora, Jose E; Ferré, Juan

    2006-02-01

    The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific binding of the Cry1A proteins should be found if the proteins were toxic to the green lacewing. In control experiments, Cry1Ac was detected bound to the midgut epithelium of intoxicated H. armigera larvae, and cell damage was observed. However, no binding or histopathological effects of the toxin were found in tissue sections of lacewing larvae. Similarly, Cry1Ab or Cry1Ac bound in a specific manner to brush border membrane vesicles from Spodoptera exigua but not to similar fractions from green lacewing larvae. The in vivo and in vitro binding results strongly suggest that the lacewing larval midgut lacks specific receptors for Cry1Ab or Cry1Ac. These results agree with those obtained in bioassays, and we concluded that the Cry toxins tested, even at concentrations higher than those expected in real-life situations, do not have a detrimental effect on the green lacewing when they are ingested either directly or through the prey.

  15. Evaluating the role of a trypsin inhibitor from soap nut (Sapindus trifoliatus L. Var. Emarginatus) seeds against larval gut proteases, its purification and characterization.

    Science.gov (United States)

    Gandreddi, V D Sirisha; Kappala, Vijaya Rachel; Zaveri, Kunal; Patnala, Kiranmayi

    2015-10-22

    The defensive capacities of plant protease Inhibitors (PI) rely on inhibition of proteases in insect guts or those secreted by microorganisms; and also prevent uncontrolled proteolysis and offer protection against proteolytic enzymes of pathogens. An array of chromatographic techniques were employed for purification, homogeneity was assessed by electrophoresis. Specificity, Ki value, nature of inhibition, complex formation was carried out by standard protocols. Action of SNTI on insect gut proteases was computationally evaluated by modeling the proteins by threading and docking studies by piper using Schrodinger tools. We have isolated and purified Soap Nut Trypsin Inhibitor (SNTI) by acetone fractionation, ammonium sulphate precipitation, ion exchange and gel permeation chromatography. The purified inhibitor was homogeneous by both gel filtration and polyacrylamide gel electrophoresis (PAGE). SNTI exhibited a molecular weight of 29 kDa on SDS-PAGE, gel filtration and was negative to Periodic Acid Schiff's stain. SNTI inhibited trypsin and pronase of serine class. SNTI demonstrated non-competitive inhibition with a Ki value of 0.75 ± 0.05×10-10 M. The monoheaded inhibitor formed a stable complex in 1:1 molar ratio. Action of SNTI was computationally evaluated on larval gut proteases from Helicoverpa armigera and Spodoptera frugiperda. SNTI and larval gut proteases were modeled and docked using Schrodinger software. Docking studies revealed strong hydrogen bond interactions between Lys10 and Pro71, Lys299 and Met80 and Van Der Waals interactions between Leu11 and Cys76amino acid residues of SNTI and protease from H. Armigera. Strong hydrogen bonds were observed between SNTI and protease of S. frugiperda at positions Thr79 and Arg80, Asp90 and Gly73, Asp2 and Gly160 respectively. We conclude that SNTI potentially inhibits larval gut proteases of insects and the kinetics exhibited by the protease inhibitor further substantiates its efficacy against serine

  16. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato.

    Science.gov (United States)

    Prabhukarthikeyan, Rathinam; Saravanakumar, Duraisamy; Raguchander, Thiruvengadam

    2014-11-01

    Most of the approaches for biocontrol of pests and diseases have used a single biocontrol agent as antagonist to a single pest or pathogen. This accounts for the inconsistency in the performance of biocontrol agents. The development of a bioformulation possessing a mixture of bioagents could be a viable option for the management of major pests and diseases in crop plants. A bioformulation containing a mixture of Beauveria bassiana (B2) and Bacillus subtilis (EPC8) was tested against Fusarium wilt and fruit borer in tomato under glasshouse and field conditions. The bioformulation with B2 and EPC8 isolates effectively reduced the incidence of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) and fruit borer (Helicoverpa armigera) under glasshouse and field conditions compared with the individual application of B2 and EPC8 isolates and control treatments. In vitro studies showed a higher larval mortality of H. armigera when fed with B2 + EPC8-treated leaves. Further, plants treated with the B2 + EPC8 combination showed a greater accumulation of defence enzymes such as lipoxygenase, peroxidase and polyphenol oxidase against wilt pathogen and fruit borer pest than the other treatments. Moreover, a significant increase in growth parameters and yield was observed in tomato plants treated with B2 + EPC8 compared with the individual bioformulations and untreated control. The combined application of Beauveria and Bacillus isolates B2 and EPC8 effectively reduced wilt disease and fruit borer attack in tomato plants. Results show the possibility of synchronous management of tomato fruit borer pest and wilt disease in a sustainable manner. © 2013 Society of Chemical Industry.

  17. How predictable are the behavioral responses of insects to herbivore induced changes in plants? Responses of two congeneric thrips to induced cotton plants.

    Directory of Open Access Journals (Sweden)

    Rehan Silva

    Full Text Available Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner (Lepidoptera: Noctuidae, Tetranychus urticae (Koch (Trombidiforms: Tetranychidae, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae, F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate.

  18. How Predictable Are the Behavioral Responses of Insects to Herbivore Induced Changes in Plants? Responses of Two Congeneric Thrips to Induced Cotton Plants

    Science.gov (United States)

    Silva, Rehan; Furlong, Michael J.; Wilson, Lewis J.; Walter, Gimme H.

    2013-01-01

    Changes in plants following insect attack are referred to as induced responses. These responses are widely viewed as a form of defence against further insect attack. In the current study we explore whether it is possible to make generalizations about induced plant responses given the unpredictability and variability observed in insect-plant interactions. Experiments were conducted to test for consistency in the responses of two congeneric thrips, Frankliniella schultzei Trybom and Frankliniella occidentalis Pergrande (Thysanoptera: Thripidae) to cotton seedlings (Gossypium hirsutum Linneaus (Malvales: Malvaceae)) damaged by various insect herbivores. In dual-choice experiments that compared intact and damaged cotton seedlings, F. schultzei was attracted to seedlings damaged by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), Tetranychus urticae (Koch) (Trombidiforms: Tetranychidae), Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae), F. schultzei and F. occidentalis but not to mechanically damaged seedlings. In similar tests, F. occidentalis was attracted to undamaged cotton seedlings when simultaneously exposed to seedlings damaged by H. armigera, T. molitor or F. occidentalis. However, when exposed to F. schultzei or T. urticae damaged plants, F. occidentalis was more attracted towards damaged plants. A quantitative relationship was also apparent, F. schultzei showed increased attraction to damaged seedlings as the density of T. urticae or F. schultzei increased. In contrast, although F. occidentalis demonstrated increased attraction to plants damaged by higher densities of T. urticae, there was a negative relationship between attraction and the density of damaging conspecifics. Both species showed greater attraction to T. urticae damaged seedlings than to seedlings damaged by conspecifics. Results demonstrate that the responses of both species of thrips were context dependent, making generalizations difficult to formulate. PMID:23691075

  19. Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae

    Science.gov (United States)

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Ruiz de Escudero, Iñigo; Caballero, Primitivo

    2014-01-01

    This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa) and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204) from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1), respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) with the lowest mean lethal concentration (LC50 = 32.7 μg/mL) reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner), Mamestra brassicae (L.), Spodoptera exigua (Hübner), S. frugiperda (J.E. Smith) and S. littoralis (Boisduval), at concentrations as high as ~3.5 μg/cm2. This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests. PMID:25384108

  20. Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system.

    Directory of Open Access Journals (Sweden)

    Elena Ian

    Full Text Available Male moths possess a highly specialized olfactory system comprised of two segregated sub-arrangements dedicated to processing information about plant odors and pheromones, respectively. Communication between these two sub-systems has been described at the peripheral level, but relatively little is known about putative interactions at subsequent synaptic relays. The male moth faces the challenge of seeking out the conspecific female in a highly dynamic odor world. The female-produced pheromone blend, which is a limited resource serving as guidance for the male, will reach his antennae in intermittent pockets of odor filaments mixed with volatiles from various plants. In the present study we performed calcium imaging for measuring odor-evoked responses in the uni-glomerular antennal-lobe projection neurons (analog to mitral cells in the vertebrate olfactory bulb of Helicoverpa armigera. In order to investigate putative interactions between the two sub-systems tuned to plant volatiles and pheromones, respectively, we performed repeated stimulations with a selection of biologically relevant odors. We found that paired stimulation with a plant odor and the pheromone led to suppressed responses in both sub-systems as compared to those evoked during initial stimulation including application of each odor stimulus alone. The fact that the suppression persisted also after pairing, indicates the existence of a Hebbian-like plasticity in the primary olfactory center established by temporal pairing of the two odor stimulation categories.

  1. Proteomic Analysis of Mamestra Brassicae Nucleopolyhedrovirus Progeny Virions from Two Different Hosts.

    Directory of Open Access Journals (Sweden)

    Dianhai Hou

    Full Text Available Mamestra brassicae nucleopolyhedrovirus (MabrNPV has a wide host range replication in more than one insect species. In this study, a sequenced MabrNPV strain, MabrNPV-CTa, was used to perform proteomic analysis of both BVs and ODVs derived from two infected hosts: Helicoverpa armigera and Spodoptera exigua. A total of 82 and 39 viral proteins were identified in ODVs and BVs, respectively. And totally, 23 and 76 host proteins were identified as virion-associated with ODVs and BVs, respectively. The host proteins incorporated into the virus particles were mainly involved in cytoskeleton, signaling, vesicle trafficking, chaperone and metabolic systems. Some host proteins, such as actin, cyclophilin A and heat shock protein 70 would be important for viral replication. Several host proteins involved in immune response were also identified in BV, and a C-type lectin protein was firstly found to be associated with BV and its family members have been demonstrated to be involved in entry process of other viruses. This study facilitated the annotation of baculovirus genome, and would help us to understand baculovirus virion structure. Furthermore, the identification of host proteins associated with virions produced in vivo would facilitate investigations on the involvement of intriguing host proteins in virus replication.

  2. Developing Cotton IPM by Conserving Parasitoids and Predators of The Main Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2015-09-01

    Full Text Available On early development of intensive cotton program, insect pests were considered as an important aspect in cotton cultivation, so that it needed to be scheduled sprays. The frequency of sprays was 7 times used 12L of chemical insecticides per hectare per season. Development of cotton IPM was emphasized on non-chemical control methods through optimally utilize natural enemies of the cotton main pests (Amrasca biguttulla (IshidaHelicoverpa armigera (Hübner. Conservation of parasitoids and predators by providing the environment that support their population development is an act of supporting the natural enemies as an effective biotic mortality factor of the insect pests. The conservation could be done by improving the plant matter and cultivation techniques that include the use of resistant variety to leafhopper, intercropping cotton with secondary food plants, mulch utilization, using action threshold that considered the presence of natural enemies, and application of botanical insecticides, if needed. Conservation of parasitoids and predators in cotton IPM could control the insect pests without any insecticide spray in obtaining the production of cotton seed. As such, the use of IPM method would increase farmers’ income.

  3. Effects of Site-Mutations Within the 22 kDa No-Core Fragment of the Vip3Aa11 Insecticidal Toxin of Bacillus thuringiensis.

    Science.gov (United States)

    Liu, Ming; Liu, Rongmei; Luo, Guoxing; Li, Haitao; Gao, Jiguo

    2017-05-01

    Bacillus thuringiensis vegetative insecticidal proteins (VIPs) are not homologous to other known Cry proteins, and they act against lepidopteran larvae via a unique process. All reported studies on the mode of action of Vip3 proteins have been performed on the Vip3A family, mostly on the Vip3Aa subfamily. Vip3Aa proteins are activated by midgut proteases, and they cross the peritrophic membrane and bind specific proteins in apical membrane epithelial midgut cells, which results in pore formation and, eventually, death to the insects. Some studies of trypsin-activated protein (core fragment) and the full-length protein show differences in mortality on the same insect species. The N-terminus of Vip3A proteins is responsible for the translocation of the protein across the cell membrane. To determine whether the N-terminus of Vip3Aa11 proteins contribute to insecticidal activity, we exchanged Vip3Aa11 residues with Vip3Aa39 no-core fragment residues using site-directed mutagenesis. Bioassays showed that the toxicity of S9N, S193T, and S194L mutants displayed approximately one- and twofold increases in toxicity against Helicoverpa armigera. Mutant protein R115H demonstrated a threefold decrease in toxicity. This work serves as a guideline for the study of the Vip3Aa11 no-core fragment protein insecticidal mechanism.

  4. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  5. Developing Bisexual Attract-and-Kill for Polyphagous Insects: Ecological Rationale versus Pragmatics.

    Science.gov (United States)

    Gregg, Peter C; Del Socorro, Alice P; Hawes, Anthony J; Binns, Matthew R

    2016-07-01

    We discuss the principles of bisexual attract-and-kill, in which females as well as males are targeted with an attractant, such as a blend of plant volatiles, combined with a toxicant. While the advantages of this strategy have been apparent for over a century, there are few products available to farmers for inclusion in integrated pest management schemes. We describe the development, registration, and commercialization of one such product, Magnet(®), which was targeted against Helicoverpa armigera and H. punctigera in Australian cotton. We advocate an empirical rather than theoretical approach to selecting and blending plant volatiles for such products, and emphasise the importance of field studies on ecologically realistic scales of time and space. The properties required of insecticide partners also are discussed. We describe the studies that were necessary to provide data for registration of the Magnet(®) product. These included evidence of efficacy, including local and area-wide impacts on the target pest, non-target impacts, and safety for consumers and applicators. In the decade required for commercial development, the target market for Magnet(®) has been greatly reduced by the widespread adoption of transgenic insect-resistant cotton in Australia. We discuss potential applications in resistance management for transgenic cotton, and for other pests in cotton and other crops.

  6. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Science.gov (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  7. Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance

    Science.gov (United States)

    Dixit, Sameer; Upadhyay, Santosh Kumar; Singh, Harpal; Sidhu, Om Prakash; Verma, Praveen Chandra; K, Chandrashekar

    2013-01-01

    Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR) and spectra showed up to 16 fold higher methanol as compared to control wild type (WT) plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid) and Bemisia tabaci (whitefly), respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants. PMID:24223989

  8. Steroid hormone 20-hydroxyecdysone regulation of the very-high-density lipoprotein (VHDL) receptor phosphorylation for VHDL uptake.

    Science.gov (United States)

    Dong, Du-Juan; Liu, Wen; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2013-04-01

    During the metamorphic stage of holometabolous insects, the biosynthetic precursors needed for the synthesis of a large number of adult proteins are acquired from the selective absorption of storage proteins. The very-high-density lipoprotein (VHDL), a non-hexameric storage protein, is consumed by the fat body from the hemolymph through VHDL receptor (VHDL-R)-mediated endocytosis. However, the mechanism of the uptake of VHDL by a VHDL-R remains unclear. In this study, a VHDL-R from Helicoverpa armigera was found to be involved in 20E-regulated VHDL uptake through the regulation of steroid hormone 20-hydroxyecdysone (20E). The transcripts of VHDL-R were detected mainly in the fat body and integument during the wandering stage. The transcription of VHDL-R was upregulated by 20E through the ecdysteroid receptor (EcRB1) and Ultraspiracle (USP1). In addition, 20E stimulates the phosphorylation of VHDL-R through protein kinase C for ligand binding. VHDL-R knockdown in larvae results the inhibition of development to adulthood. These data imply that 20E regulates VHDL-R on both transcriptional and posttranslational levels for VHDL absorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Khan

    2017-04-01

    Full Text Available Microbial insecticides are effective, environmental friendly and are widely used worldwide to control insect pests. Nucleopolyhedroviruses and granuloviruses belonging to family Baculoviridae are widely used for control of caterpillar pests on wide varieties of crops and vegetables. The selected baculoviruses (BVs were evaluated for oviposition preference by Trichogramma chilonis (Ishii of virus treated and untreated (water: control host eggs (Sitotroga cerealella Olivier, which revealed no significant difference among the used concentrations regarding oviposition preference. All the used concentrations of Helicoverpa armigera nucleopolyhedrovirus (HaNPV, Spodoptera exigua nucleopolyhedrovirus (SeMNPV and Cydia pomonella granulovirus (CpGV including 12.5×, 6.25×, 2.5×, 1.25× and 0.625× were harmless (E > 30% for parasitism by T. chilonis as comparison of virus treated and untreated control eggs showed similar parasitism i.e., ⩽15% reduction over control in parasitism. Thus it was concluded that all three types of baculoviruses were compatible with the parasitism by T. chilonis at all treated concentrations.

  10. Molecular and Insecticidal Characterization of a Novel Cry-Related Protein from Bacillus Thuringiensis Toxic against Myzus persicae

    Directory of Open Access Journals (Sweden)

    Leopoldo Palma

    2014-11-01

    Full Text Available This study describes the insecticidal activity of a novel Bacillus thuringiensis Cry-related protein with a deduced 799 amino acid sequence (~89 kDa and ~19% pairwise identity to the 95-kDa-aphidicidal protein (sequence number 204 from patent US 8318900 and ~40% pairwise identity to the cancer cell killing Cry proteins (parasporins Cry41Ab1 and Cry41Aa1, respectively. This novel Cry-related protein contained the five conserved amino acid blocks and the three conserved domains commonly found in 3-domain Cry proteins. The protein exhibited toxic activity against the green peach aphid, Myzus persicae (Sulzer (Homoptera: Aphididae with the lowest mean lethal concentration (LC50 = 32.7 μg/mL reported to date for a given Cry protein and this insect species, whereas it had no lethal toxicity against the Lepidoptera of the family Noctuidae Helicoverpa armigera (Hübner, Mamestra brassicae (L., Spodoptera exigua (Hübner, S. frugiperda (J.E. Smith and S. littoralis (Boisduval, at concentrations as high as ~3.5 μg/cm2. This novel Cry-related protein may become a promising environmentally friendly tool for the biological control of M. persicae and possibly also for other sap sucking insect pests.

  11. Assessment of pest and pesticide trends in vegetable crops in united arab emirates and sultanate of oman

    International Nuclear Information System (INIS)

    Waakeh, W.; Aldahmani, J.H.; Deadman, M.L.; Saadi, A.A.

    2007-01-01

    A preliminary survey on pesticide uses in 40 vegetable-growing farms representing different agricultural areas in Oman and the UAE, twenty farms from each country, revealed that all the vegetable farms used pesticides for crop protection. Among the major insect-pests, white flies (Bemisia tabaci), leafminers (Liriomyza trifolii), melon fruit flies (Bactrocera ciliatus), aphids (Aphis spp.) and tobacco leafworm (Spodoptera litteralis) were recorded in Omani farms. In the UAE, white flies, leafminers, cutworms (Agrotis ypsilan), tomato fruitworms (Helicoverpa armigera) and eggplant fruitworms (Leucinodes orbonalis) were the 5 top insect-pests. Among the plant diseases, powdery mildew (Erysiphe spp.), blight (Alternaria spp.), damping off (Pythium spp.), leafspot (Alternaria spp.) and mosaic (CMV) Were major cause of vegetable diseases in Omani farms; whereas, damping off (Pythium aphanidermatum), downy mildew (Pseudoperonspora cubensis), early blight (Alternaria solani), septoria leaf spot (Septoria lycopersici) and anthracnose rip rot (colletotrichum spp.) were the most predominant diseases encountered in most UAE farms. Among the most commonly used pesticides, 29 insecticides, 16 fungicides and 3 herbicides were used by the vegetable farmers. Around 55% of Omani farms used routine application of pesticides, irrespective of the pest presence. Whereas, in the UAE, most farmers started to spray pesticides at 6-20% pest (insect, disease and weeds) infection. Over 65 of the farms, in both the countries, received chemical pest management information from the sales representatives. (author)

  12. The evolution and expression of the moth visual opsin family.

    Directory of Open Access Journals (Sweden)

    Pengjun Xu

    Full Text Available Because visual genes likely evolved in response to their ambient photic environment, the dichotomy between closely related nocturnal moths and diurnal butterflies forms an ideal basis for investigating their evolution. To investigate whether the visual genes of moths are associated with nocturnal dim-light environments or not, we cloned long-wavelength (R, blue (B and ultraviolet (UV opsin genes from 12 species of wild-captured moths and examined their evolutionary functions. Strong purifying selection appeared to constrain the functions of the genes. Dark-treatment altered the levels of mRNA expression in Helicoverpa armigera such that R and UV opsins were up-regulated after dark-treatment, the latter faster than the former. In contrast, B opsins were not significantly up-regulated. Diel changes of opsin mRNA levels in both wild-captured and lab-reared individuals showed no significant fluctuation within the same group. However, the former group had significantly elevated levels of expression compared with the latter. Consequently, environmental conditions appeared to affect the patterns of expression. These findings and the proportional expression of opsins suggested that moths potentially possessed color vision and the visual system played a more important role in the ecology of moths than previously appreciated. This aspect did not differ much from that of diurnal butterflies.

  13. Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab

    Science.gov (United States)

    Evolution of resistance in pests threatens the long-term success of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and ...

  14. Optimal Cotton Insecticide Application Termination Timing: A Meta-Analysis.

    Science.gov (United States)

    Griffin, T W; Zapata, S D

    2016-08-01

    The concept of insecticide termination timing is generally accepted among cotton (Gossypium hirsutum) researchers; however, exact timings are often disputed. Specifically, there is uncertainty regarding the last economic insecticide application to control fruit-feeding pests including tarnished plant bug (Lygus lineolaris (Palisot de Beauvois)), boll weevil (Anthonomus grandis), bollworm (Helicoverpa zea), tobacco budworm (Heliothis virescens), and cotton fleahopper (Pseudatomoscelis seriatus). A systematic review of prior studies was conducted within a meta-analytic framework. Nine publicly available articles were amalgamated to develop an optimal timing principle. These prior studies reported 53 independent multiple means comparison field experiments for a total of 247 trial observations. Stochastic plateau theory integrated with econometric meta-analysis methodology was applied to the meta-database to determine the shape of the functional form of both the agronomic optimal insecticide termination timing and corresponding yield potential. Results indicated that current university insecticide termination timing recommendations are later than overall estimated timing suggested. The estimated 159 heat units (HU) after the fifth position above white flower (NAWF5) was found to be statistically different than the 194 HU termination used as the status quo recommended termination timing. Insecticides applied after 159 HU may have been applied in excess, resulting in unnecessary economic and environmental costs. Empirical results also suggested that extending the insecticide termination time by one unit resulted in a cotton lint yield increase of 0.27 kilograms per hectare up to the timing where the plateau began. Based on economic analyses, profit-maximizing producers may cease application as soon as 124 HU after NAWF5. These results provided insights useful to improve production systems by applying inputs only when benefits were expected to be in excess of the

  15. Rapid detection of vip1-type genes from Bacillus cereus and characterization of a novel vip binary toxin gene.

    Science.gov (United States)

    Yu, Xiumei; Liu, Tao; Liang, Xiaoxing; Tang, Changqing; Zhu, Jun; Wang, Shiquan; Li, Shuangcheng; Deng, Qiming; Wang, Linxia; Zheng, Aiping; Li, Ping

    2011-12-01

    A PCR-restriction fragment length polymorphism (PCR-RFLP) method for identifying vegetative insecticidal protein (vip) 1-type genes from Bacillus cereus was developed by designing specific primers based on the conserved regions of the genes to amplify vip1-type gene fragments. PCR products were digested with endonuclease AciI, and four known vip1-type genes were identified. Vip1Ac and vip1Aa-type genes appeared in 17 of 26 B. cereus strains. A novel vip1-type gene, vip1Ac1, was identified from B. cereus strain HL12. The vip1Ac1 and vip2Ae3 genes were co-expressed in Escherichia coli strain BL21 by vector pCOLADuet-1. The binary toxin showed activity only against Aphis gossypii (Homoptera), but not for Coleptera (Tenebrio molitor, Holotrichia oblita), Lepidoptera (Spodoptera exigua, Helicoverpa armigera, and Chilo suppressalis), Diptera (Culex quinquefasciatus). The LC(50) of this binary toxin for A. gossypii is 87.5 (34.2-145.3) ng mL(-1) . This is probably only the second report that Vip1 and Vip2 binary toxin shows toxicity against homopteran pests. The PCR-RFLP method developed could be very useful for identifying novel Vip1-Vip2-type binary toxins, and the novel binary toxins, Vip1Ac1 and Vip2Ae3, identified in this study may have applications in biological control of insects, thus avoiding potential problems of resistance. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect

    Science.gov (United States)

    Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E.; Wu, Kongming

    2016-01-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control. PMID:26872031

  17. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Yang Fu

    2018-02-01

    Full Text Available C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs and c-di-GMP-degrading enzyme phosphodiesterases (PDEs in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.

  18. A Novel Betabaculovirus Isolated from the Monocot Pest Mocis latipes (Lepidoptera: Noctuidae and the Evolution of Multiple-Copy Genes

    Directory of Open Access Journals (Sweden)

    Daniel M. P. Ardisson-Araújo

    2018-03-01

    Full Text Available In this report, we described the genome of a novel baculovirus isolated from the monocot insect pest Mocis latipes, the striped grass looper. The genome has 134,272 bp in length with a G + C content of 38.3%. Based on the concatenated sequence of the 38 baculovirus core genes, we found that the virus is a betabaculovirus closely related to the noctuid-infecting betabaculoviruses including Pseudaletia unipuncta granulovirus (PsunGV, Trichoplusia ni granulovirus (TnGV, Helicoverpa armigera granulovirus (HearGV, and Xestia c-nigrum granulovirus (XecnGV. The virus may constitute a new Betabaculovirus species tentatively named Mocis latipes granulovirus (MolaGV. After gene content analysis, five open reading frames (ORFs were found to be unique to MolaGV and several auxiliary genes were found including iap-3, iap-5, bro-a, bro-b, and three enhancins. The virus genome lacked both chitinase and cathepsin. We then looked at the evolutionary history of the enhancin gene and found that betabaculovirus acquired this gene from an alphabaculovirus followed by several duplication events. Gene duplication also happened to an endonuclease-like gene. Genomic and gene content analyses revealed both a strict collinearity and gene expansion into the genome of the MolaGV-related species. We also characterized the granulin gene using a recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV and found that occlusion bodies were produced into the nucleus of infected cells and presented a polyhedral shape and no occluded virions within. Overall, betabaculovirus genome sequencing is of importance to the field as few genomes are publicly accessible. Mocis latipes is a secondary pest of maize, rice, and wheat crops in Brazil. Certainly, both the discovery and description of novel baculoviruses may lead to development of greener and safer pesticides in order to counteract and effectively control crop damage-causing insect populations

  19. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.

    Directory of Open Access Journals (Sweden)

    Xiaoshu Tang

    Full Text Available BACKGROUND: The gut of most insects harbours nonpathogenic microorganisms. Recent work suggests that gut microbiota not only provide nutrients, but also involve in the development and maintenance of the host immune system. However, the complexity, dynamics and types of interactions between the insect hosts and their gut microbiota are far from being well understood. METHODS/PRINCIPAL FINDINGS: To determine the composition of the gut microbiota of two lepidopteran pests, Spodoptera littoralis and Helicoverpa armigera, we applied cultivation-independent techniques based on 16S rRNA gene sequencing and microarray. The two insect species were very similar regarding high abundant bacterial families. Different bacteria colonize different niches within the gut. A core community, consisting of Enterococci, Lactobacilli, Clostridia, etc. was revealed in the insect larvae. These bacteria are constantly present in the digestion tract at relatively high frequency despite that developmental stage and diet had a great impact on shaping the bacterial communities. Some low-abundant species might become dominant upon loading external disturbances; the core community, however, did not change significantly. Clearly the insect gut selects for particular bacterial phylotypes. CONCLUSIONS: Because of their importance as agricultural pests, phytophagous Lepidopterans are widely used as experimental models in ecological and physiological studies. Our results demonstrated that a core microbial community exists in the insect gut, which may contribute to the host physiology. Host physiology and food, nevertheless, significantly influence some fringe bacterial species in the gut. The gut microbiota might also serve as a reservoir of microorganisms for ever-changing environments. Understanding these interactions might pave the way for developing novel pest control strategies.

  20. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-Positive Bacillus thuringiensis

    Science.gov (United States)

    Fu, Yang; Yu, Zhaoqing; Liu, Shu; Chen, Bo; Zhu, Li; Li, Zhou; Chou, Shan-Ho; He, Jin

    2018-01-01

    C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis, a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs) and c-di-GMP-degrading enzyme phosphodiesterases (PDEs) in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera. Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium. PMID:29487570

  1. c-di-GMP Regulates Various Phenotypes and Insecticidal Activity of Gram-PositiveBacillus thuringiensis.

    Science.gov (United States)

    Fu, Yang; Yu, Zhaoqing; Liu, Shu; Chen, Bo; Zhu, Li; Li, Zhou; Chou, Shan-Ho; He, Jin

    2018-01-01

    C-di-GMP has been well investigated to play significant roles in the physiology of many Gram-negative bacteria. However, its effect on Gram-positive bacteria is less known. In order to more understand the c-di-GMP functions in Gram-positive bacteria, we have carried out a detailed study on the c-di-GMP-metabolizing enzymes and their physiological functions in Bacillus thuringiensis , a Gram-positive entomopathogenic bacterium that has been applied as an insecticide successfully. We performed a systematic study on the ten putative c-di-GMP-synthesizing enzyme diguanylate cyclases (DGCs) and c-di-GMP-degrading enzyme phosphodiesterases (PDEs) in B. thuringiensis BMB171, and artificially elevated the intracellular c-di-GMP level in BMB171 by deleting one or more pde genes. We found increasing level of intracellular c-di-GMP exhibits similar activities as those in Gram-negative bacteria, including altered activities in cell motility, biofilm formation, and cell-cell aggregation. Unexpectedly, we additionally found a novel function exhibited by the increasing level of c-di-GMP to promote the insecticidal activity of this bacterium against Helicoverpa armigera . Through whole-genome transcriptome profile analyses, we found that 4.3% of the B. thuringiensis genes were differentially transcribed when c-di-GMP level was increased, and 77.3% of such gene products are involved in some regulatory pathways not reported in other bacteria to date. In summary, our study represents the first comprehensive report on the c-di-GMP-metabolizing enzymes, their effects on phenotypes, and the transcriptome mediated by c-di-GMP in an important Gram-positive bacterium.

  2. Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities.

    Science.gov (United States)

    Ni, Hong; Zeng, Siquan; Qin, Xu; Sun, Xiaowen; Zhang, Shan; Zhao, Xiuyun; Yu, Ziniu; Li, Lin

    2015-01-01

    Bacterial chitinases are useful in the biocontrol of agriculturally important pests and fungal pathogens. However, the utility of naturally occurring bacterial chitinases is often limited by their low enzyme activity. In this study, we constructed mutants of a Bacillus thuringiensis chitinase with enhanced activity based on homology modeling, molecular docking, and the site-directed mutagenesis of target residues to modify spatial positions, steric hindrances, or hydrophilicity/hydrophobicity. We first identified a gene from B. thuringiensis YBT-9602 that encodes a chitinase (Chi9602) belonging to glycosyl hydrolase family 18 with conserved substrate-binding and substrate-catalytic motifs. We constructed a structural model of a truncated version of Chi9602 (Chi9602(35-459)) containing the substrate-binding domain using the homologous 1ITX protein of Bacillus circulans as the template. We performed molecular docking analysis of Chi9602(35-459) using di-N-acetyl-D-glucosamine as the ligand. We then selected 10 residues of interest from the docking area for the site-directed mutagenesis experiments and expression in Escherichia coli. Assays of the chitinolytic activity of the purified chitinases revealed that the three mutants exhibited increased chitinolytic activity. The ChiW50A mutant exhibited a greater than 60 % increase in chitinolytic activity, with similar pH, temperature and metal ion requirements, compared to wild-type Chi9602. Furthermore, ChiW50A exhibited pest-controlling activity and antifungal activity. Remarkable synergistic effects of this mutant with B. thuringiensis spore-crystal preparations against Helicoverpa armigera and Caenorhabditis elegans larvae and obvious activity against several plant-pathogenic fungi were observed.

  3. CONSTRUCTION OF SILKWORM MIDGUT cDNA LIBRARY FOR SCREEN AND SEQUENCE ANALYSIS OF PERITROPHIC MEMBRANE PROTEIN GENES.

    Science.gov (United States)

    Zhou, Yi-Jun; Xue, Bin; Li, Yang-Yang; Li, Fan-Chi; Ni, Min; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing; Shen, Wei-De; Gu, Zhi-Ya; Li, Bing

    2016-01-01

    Silkworm is an important economic insect and the model species for Lepidoptera. The midgut of silkworm is an important physiological barrier, as its peritrophic membrane (PM) can resist pathogen invasion. In this study, a silkworm midgut cDNA library was constructed in order to identify silkworm PM genes. The capacity of the initial library was 6.92 × 10(6) pfu/ml, along with a recombination rate of 92.14% and a postamplification titer of 4.10 × 10(9) pfu/ml. Three silkworm PM protein genes were obtained by immunoscreening, two of which were chitin-binding protein (CBP) genes and one of which was a chitin deacetylase (CDA) gene as revealed by sequence analysis. Three genes were named BmCBP02, BmCBP13, and BmCDA17, and their ORF sizes are 678, 1,029, and 645 bp, respectively; all of them contain sequences of chitin-binding domains. Phylogenetic analysis indicated that BmCBP02 has the highest consensus with Mamestra configurata CBP at 61.0%; BmCBP13 has the highest consensus with Loxostege sticticalis PM CBP at 53.35%; BmCDA17 has the highest consensus with Helicoverpa armigera CDA5a at 70.83%. Tissue transcriptional analysis revealed that all three genes were specifically expressed in the midgut, and during the developmental process of fifth-instar silkworms, the transcription of all the genes showed an upward trend. This study laid a foundation for further studies on the functions of silkworm PM genes. © 2015 Wiley Periodicals, Inc.

  4. High Expression of Cry1Ac Protein in Cotton (Gossypium hirsutum by Combining Independent Transgenic Events that Target the Protein to Cytoplasm and Plastids.

    Directory of Open Access Journals (Sweden)

    Amarjeet Kumar Singh

    Full Text Available Transgenic cotton was developed using two constructs containing a truncated and codon-modified cry1Ac gene (1,848 bp, which was originally characterized from Bacillus thuringiensis subspecies kurstaki strain HD73 that encodes a toxin highly effective against many lepidopteran pests. In Construct I, the cry1Ac gene was cloned under FMVde, a strong constitutively expressing promoter, to express the encoded protein in the cytoplasm. In Construct II, the encoded protein was directed to the plastids using a transit peptide taken from the cotton rbcSIb gene. Genetic transformation experiments with Construct I resulted in a single copy insertion event in which the Cry1Ac protein expression level was 2-2.5 times greater than in the Bacillus thuringiensis cotton event Mon 531, which is currently used in varieties and hybrids grown extensively in India and elsewhere. Another high expression event was selected from transgenics developed with Construct II. The Cry protein expression resulting from this event was observed only in the green plant parts. No transgenic protein expression was observed in the non-green parts, including roots, seeds and non-green floral tissues. Thus, leucoplasts may lack the mechanism to allow entry of a protein tagged with the transit peptide from a protein that is only synthesized in tissues containing mature plastids. Combining the two events through sexual crossing led to near additive levels of the toxin at 4-5 times the level currently used in the field. The two high expression events and their combination will allow for effective resistance management against lepidopteran insect pests, particularly Helicoverpa armigera, using a high dosage strategy.

  5. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    Science.gov (United States)

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  6. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  7. Two Year Field Study to Evaluate the Efficacy of Mamestra brassicae Nucleopolyhedrovirus Combined with Proteins Derived from Xestia c-nigrum Granulovirus

    Directory of Open Access Journals (Sweden)

    Chie Goto

    2015-03-01

    Full Text Available Japan has only three registered baculovirus biopesticides despite its long history of studies on insect viruses. High production cost is one of the main hindrances for practical use of baculoviruses. Enhancement of insecticidal effect is one possible way to overcome this problem, so there have been many attempts to develop additives for baculoviruses. We found that alkaline soluble proteins of capsules (GVPs of Xestia c-nigrum granulovirus can increase infectivity of some viruses including Mamestra brassicae nucleopolyhedrovirus (MabrNPV, and previously reported that MabrNPV mixed with GVPs was highly infectious to three important noctuid pests of vegetables in the following order, Helicoverpa armigera, M. brassicae, and Autographa nigrisigna. In this study, small-plot experiments were performed to assess concentrations of MabrNPV and GVPs at three cabbage fields and a broccoli field for the control of M. brassicae. In the first experiment, addition of GVPs (10 µg/mL to MabrNPV at 106 OBs/mL resulted in a significant increase in NPV infection (from 53% to 66%. In the second experiment, the enhancing effect of GVP on NPV infection was confirmed at 10-times lower concentrations of MabrNPV. In the third and fourth experiments, a 50% reduction in GVPs (from 10 µg/mL to 5 µg/mL did not result in a lowering of infectivity of the formulations containing MabrNPV at 105 OBs/mL. These results indicate that GVPs are promising additives for virus insecticides.

  8. Manthar-03: a high-yielding cultivar of wheat released for general cultivation in Southern Punjab

    International Nuclear Information System (INIS)

    Hussain, M.; Akhtar, L.H.; Nasim, M.

    2010-01-01

    We report the release of a new wheat variety Manthar-03. 'Manthar-03' is a high yielding and rust resistant variety of bread wheat with erect growth habit. It was released in the year 2003 as a general purpose variety. Manthar-03 is a selection from CIMMYT material (Entry No. 42 of 29 International Bread Wheat Screening Nursery) made at Regional Agricultural Research Institute (RARI), Bahawalpur during 1996-97. This strain has the famous CIMMYT line 'Kauz' in its parentage (KAUZ//ALTAR 84/AOS). Its pedigree is CM11163-6M-20Y-10M- 0M-0B. It is a more adapted and a high yielder. Genetically, this strain differs from existing commercial cultivars of Punjab. Resistance against leaf rust (5MRMS to 10MR), RRI value of 6.7 and 7.6 for leaf rust and ACI values of 3.4 and 0.7 for leaf rust) and high yield potential (6300 kg ha-1 ) are the major attributes of Manthar-03 that make it a superior variety for its target regions. Manthar-03 is tolerant to wheat aphid and Helicoverpa armigera. The thousand seed weight of this variety is 40-44 g. Seed is amber in color and contains 12.97% protein, 8.2% dry gluten and 1.55% ash. It has good chapati making quality. Plant type of Manthar-03 is erect with plant height 94 cm and droopy flag leaves. It is lodging resistant. It completes heading in 98 days and matures in 142 days. Manthar-03 performs better when planted from 15, November to 1, December, keeping 125 kg ha/sup -1/ seed rate and 125-85-50 kg NPK ha/sup -1/ are applied. (author)

  9. Environmental Factors in the Growth of Jatropha at Potorono Village, Yogyakarta

    Directory of Open Access Journals (Sweden)

    Mohammad Nurcholis

    2015-01-01

    Full Text Available Jatropha curcas is a perennial crop that has been known by Indonesian people for more than seven decades as a plant that produces renewable biofuel. In the present decade, plants producing biofuel are expected to be developed to overcome the lowering nonrenewable fuel reserves. There is a myth that jatropha can grow well on marginal lands and draught condition, perform well on non-fertile soils, no need for agronomic management and is resistant to plant pests and diseases. This study was conducted to identify the environmental factors that influenced the growth of jatropha on the marginal land at Potorono village, Yogyakarta Province, Indonesia. Jatropha has been planted by local people at the village road sides and on the marginal land field at the local governmental land in this village. They grew jatropha on these areas with the purpose of preventing competition of area utilization with food crops. The results showed that the growth of jatropha was restricted by low content of organic matter, plant nutrition and poor soil drainage. Applications of manure and macro nutrients (N, P and K to this crop were able to increase crop performance. The number of shoots, flowers and fruit bunches increased by manure and nutrients treatments. Field observation showed that there were several plant pests, such as Aspidiotus sp., Paracoccus marginatus, Poliphagotarsonemus latus, Selenothrips rubrocinctus, Chrysochoris javanus, Valanga nigricornis, Chloracris prasina, and Helicoverpa armigera that attacked plant leaves and fruits. There were plant leaf necrotic symptoms that caused by plant pathogens were also observed. The diseases are bacterial leaf spot (Xanthomonas ricinicola, cercospora leaf spot (Cercospora ricinella and rust (Phakopsora jatrophicola. Thus, jatropha is like any other plants that need a good agro-ecological condition to grow well and produce high yield.

  10. Assessment of the suitability of Tinopal as an enhancing adjuvant in formulations of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuillemin.

    Science.gov (United States)

    Reddy, Narasimha P; A Khan, Pathan Akbar; Devi, Koduru Uma; Victor, John S; Sharma, Hari C

    2008-09-01

    Biopesticides based on Beauveria bassiana (Bals.) Vuillemin hold great promise for the management of a wide range of insect pests. The conidia in the biopesticide formulation require an adjuvant to protect them from photoinactivation by sunlight. The suitability of Tinopal, an optical brightener used as sunscreen for baculovirus formulations, for use with B. bassiana was assessed. The aim was to study the effect of Tinopal on the growth and photoprotection of B. bassiana, and its effect on the susceptibility of insects to B. bassiana. Tinopal was found to have no adverse effect on the growth of B. bassiana. It was found to confer total protection (approximately 95% conidial germination at 10 g Tinopal L(-1)) from sunlight up to 3 h of exposure, and a better survival rate than controls even up to 4 h. Helicoverpa armigera Hübner larvae fed on diet with 5 g kg(-1) Tinopal were found to have reduced growth. The duration of the larval stage increased by 3-4 days in 1 and 5 g kg(-1) Tinopal treatments. Among the moths that emerged from larvae fed on diet with 5 g kg(-1) Tinopal, a significantly high number were malformed compared with controls. The larvae that were fed diet with Tinopal showed quicker and higher mortality and required a lower effective lethal dose (LC(50)) than the controls. Tinopal was found to have a synergistic effect with B. bassiana in causing insect mortality. Tinopal was found to be a suitable adjuvant for B. bassiana-based biopesticide formulations. It conferred tolerance to sunlight and caused stress in the insect, leading to a synergistic effect with B. bassiana.

  11. In-vitro antimicrobial, antibiofilm, cytotoxic, antifeedant and larvicidal properties of novel quinone isolated from Aegle marmelos (Linn.) Correa.

    Science.gov (United States)

    Rejiniemon, Thankappan Sarasam; Arasu, Mariadhas Valan; Duraipandiyan, Veeramuthu; Ponmurugan, Karuppiah; Al-Dhabi, Naif Abdullah; Arokiyaraj, Selvaraj; Agastian, Paul; Choi, Ki Choon

    2014-10-30

    Plant metabolites have wide applications and have the potential to cure different diseases caused by microorganisms. The aim of the study was to evaluate the antimicrobial, antibiofilm, cytotoxic, antifeedant and larvicidal properties of novel quinine isolated from Aegle marmelos (Linn.) Correa. A compound was obtained by eluting the crude extract, using varying concentrations of the solvents by the chromatographic purification. Broth micro dilution method was used to assess the antimicrobial activity and anticancer study was evaluated using MTT assay. Larvicidal activity was studied using leaf disc no-choice method. Based on the IR, 13C NMR and 1H NMR spectral data, the compounds were identified as quinone related antibiotic. It exhibited significant activity against Gram positive and Gram negative bacteria. The lowest Minimum Inhibitory Concentration (MIC) of the compound against Bacillus subtilis and Staphylococcus aureus was 100 and 75 μg mL(-1) respectively. Against Escherichia coli and Pseudomonas aeruginosa it exhibited MIC value of 25 μg mL(-1). The MIC of the compound against Aspergillus niger, A. clavatus, Penicillium roqueforti was 20 μg mL(-1) and that against Fusarium oxysporum (20 μg mL(-1)), A. oryzae (40 μg mL(-1)), and Candida albicans (60 μg mL(-1)), respectively. It showed effective antibiofilm activity against E. coli, S. typhii and P. aeroginosa at 8 μg mL(-1) and did not exhibit considerable cytotoxic activity against Vero and HEP2 cell lines. Additionally, the compound documented significant antifeedant and larvicidal activities against Helicoverpa armigera and Spodoptera litura at 125, 250, 500 and 1000 ppm concentrations. The results concluded that the compound can be evaluated further in industrial applications and also an agent to prepare botanical new pesticide formulations.

  12. Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypepidase B

    NARCIS (Netherlands)

    Bayes, A.; Rodrigues de la Vega, M.; Vendrell, J.; Aviles, F.X.; Jongsma, M.A.; Beekwilder, M.J.

    2006-01-01

    Carboxypeptidase activity participates in the protein digestion process in the gut of lepidopteran insects, supplying free amino-acids to developing larvae. To study the role of different carboxypeptidases in lepidopteran protein digestion, the effect of potato carboxypeptidase inhibitor (PCI) on

  13. Management of lepidopterans through irradiations

    International Nuclear Information System (INIS)

    Bhati, Dheeraj; Parvez, Asif; Kausar, Hina; Srivastava, Meera

    2012-01-01

    suppression by irradiation include Spodoptera litura, S.exigua, S.frugiperda, Helicoverpa armigera, H.zea, Pectinophora gossypiella, Diatraea saccharalis, Cydia pomonella, C.molesta, Ectomyelois ceratoniae, Ephestia kuehniella, Crocidolomia binotalis, Chilo suppressalis, Ostrinia furnacalis, O.nubilalis, Plutella xylostella and Spilosoma obliqua. (author)

  14. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins.

    Science.gov (United States)

    d'Alençon, Emmanuelle; Bierne, Nicolas; Girard, Pierre-Alain; Magdelenat, Ghislaine; Gimenez, Sylvie; Seninet, Imène; Escoubas, Jean-Michel

    2013-01-01

    The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS

  15. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 329-338 Articles. Characterization of the Helicoverpa assulta nucleopolyhedrovirus genome and sequence analysis of the polyhedrin gene region · Soo-Dong Woo Jae Young Choi Yeon Ho Je Byung Rae Jin · More Details Abstract Fulltext PDF. A local strain of Helicoverpa assulta nucleopolyhedrovirus (HasNPV) was ...

  16. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation.

    Science.gov (United States)

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Isotopes and trace elements as geo-location markers for biosecurity: determining the origin of exotic pests.

    Science.gov (United States)

    Holder, Peter W.; Armstrong, Karen; Clough, Tim; Frew, Russell; van Hale, Robert; Baker, Joel A.; Millet, Marc-Alban

    2010-05-01

    Background. The benefits of accurate point of origin discrimination in biosecurity include achieving appropriate operational responses in exotic pest eradication and post-border incursion campaigns, and identifying risk pathways. Reading natural abundance biogeochemical markers via mass spectrometry methods is a powerful tool for tracing ecological pathways and provenance determination of agricultural products and items of forensic interest. However, the application of these methods to trace insects - man's most damaging competitors - has been underutilised to date and our understanding in this field is still in a phase of basic development. Stable isotope ratio analyses using δ2H, δ13C have given spatial resolution in the monarch butterfly, single host system in eastern North America. Subsequently, the same method was employed in an attempt to determine the origin of important biosecurity pests in New Zealand. However, the results were contentious as the accuracy and limitations of the method in a biosecurity application were unknown. Further investigation has shown the value of existing invertebrate stable isotope geo-location methodology (i.e., using only two light elements) is tenuous in the biosecurity context, where the sample sizes are usually only one or two insects, and the specimens are generally polyphagous and accidentally introduced, and so from an unknown and unpredictable place, point in time and host: The spatial distribution of 2H in New Zealand may not be reliable over insect life-span time-scales; and fractional variables are un-quantified and potentially overwhelm any New Zealand signal. Further, the geo-location value of 13C is uncertain, especially for polyphagous insects. Research aims. The internationally distributed Helicoverpa armigera [Noctuidae] is being used to examine the processes fundamental to the location-to-plant-to-insect biogeochemical profile imprinting in phytophagous insects, including the turn over of elements in adult

  18. Thwarting one of cotton's nemeses

    International Nuclear Information System (INIS)

    Senft, D.

    1991-01-01

    There's not much good to be said for the pink bollworm, cotton's most destructive pest, except that it is being controlled to cut crop damage. Scientists have developed strategies, such as increasing native populations of predatory insects and pest-resistant cotton varieties. Thanks to research, growers today can also use cultural practices such as early plowdown of harvested cotton to break up stalks and bury overwintering pink bollworms. And they can disrupt normal mating by releasing sterile insects and using copies of natural compounds, called pheromones, that the pink bollworm uses to attract mates. Such strategies, together with judicious use of insecticides, put together in various combinations, form what is called an integrated pest management system

  19. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis

    NARCIS (Netherlands)

    Rodrigo-Simón, A.; Maagd, de R.A.; Avilla, C.; Bakker, P.L.; Molthoff, J.W.; González-Zamora, J.; Ferré, J.

    2006-01-01

    The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa

  20. 7 CFR 301.52-1 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Definitions. 301.52-1 Section 301.52-1 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Pink Bollworm Quarantine and Regulations § 301.52-1 Definitions. Terms used in the singular form...

  1. 7 CFR 319.8-10 - Covers.

    Science.gov (United States)

    2010-01-01

    ... more per cubic foot in which case the bales may be moved overland in van-type trucks or box cars if all... inspector, they do not present a risk of carrying live pink bollworms, golden nematode cysts or flag smut...

  2. Losing Chlordimeform Use in Cotton Production. Its Effects on the Economy and Pest Resistance. Agricultural Economic Report Number 587.

    Science.gov (United States)

    Osteen, Craig; Suguiyama, Luis

    This report examines the economic implications of losing chlordimeform use on cotton and considers chlordimeform's role in managing the resistance of bollworms and tobacco budworms to synthetic pyrethroids. It estimates changes in prices, production, acreage, consumer expenditures, aggregate producer returns, regional crop effects, and returns to…

  3. Distribution and Potential Impact of Feral Cotton on the ...

    African Journals Online (AJOL)

    Transgenic Bt cotton with insecticidal properties presents a potential solution to the bollworm infestation in Tanzania. However, concerns associated with transgenic crops viz.; transgene flow to wild and feral relatives, increased potential for resistance evolution, need to be addressed prior to adoption of any transgenic crop.

  4. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  5. Cotton trends in India

    Indian Academy of Sciences (India)

    Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides livelihood to almost 4 million farmers. Damage by Insect pests reduce yields by 50%. Farmers spend most money on controlling bollworms; upto 15 sprays and over Rs 1000 Crs.

  6. Publications | Page 463 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 4621 - 4630 of 6381 ... There is evidence of rising secondary pests in Bt cotton fields in recent years and potential rise in bollworm resistance to Bt protein. Moreover, some field surveys indicate that farmers lack information on proper use of GM technology. China''s Bt seed industry is growing and diversifying,.

  7. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    were not damaged by bollworms. The results (table 1) indicate that they are all insect-resistant plants. The results confirm that the insect-resistance character controlled by the exogenous Bt gene is a dominant character. It did not matter whether the transgenic insect-resistant cotton cultivars CCRI 30 and NewCott 33B were ...

  8. Control of moth pests by mating disruption: Successes and constraints

    NARCIS (Netherlands)

    Cardé, R.T.; Minks, A.K.

    1995-01-01

    Male moths generally find their mates by following the females' pheromone plume to its source. A formulated copy of this message is used to regulate mating of many important pests, including pink bollworm Pectinophora gossypiella, oriental fruit moth Grapholita molesta and tomato pinworm Keiferia

  9. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  10. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  11. Permeability barriers to embryo cryopreservation of Pectinophora gossypiella (Lepidoptera: Gelechiidae)

    Science.gov (United States)

    The aim of this study was to develop a method to cryopreserve the embryos of the pink bollworm moth, Pectinophora gossypiella (Saunders). Previously developed dipteran cryopreservation protocols were not directly adaptable to use with the embryos of this lepidopteran species. Physiochemical and ele...

  12. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA ... Bt (Bacillus thuringiensis) gene and express the CryIA insecticidal proteins for ... Identification of insect resistance: At six-to-eight-leaf stage, three to five bollworms were ...

  13. African Journal of Biotechnology - Vol 15, No 45 (2016)

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella) · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Ahmed M. A. Mohammed, 2547-2557 ...

  14. 7 CFR 319.8-13 - From Northwest Mexico.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false From Northwest Mexico. 319.8-13 Section 319.8-13... for the Entry of Cotton and Covers from Mexico § 319.8-13 From Northwest Mexico. Contingent upon continued freedom of Northwest Mexico and of the West Coast of Mexico from infestations of the pink bollworm...

  15. Publications | Page 291 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... approved for commercial production, with Bt (insect resistant biological pesticide) cotton grown by about 7 million small and resource poor farmers. However, with decreasing populations of bollworm, and... Clean energy and water : assessment of Mexico for improved water services with renewable energy (open access).

  16. Use of indigenous knowledge in the management of field and ...

    African Journals Online (AJOL)

    EJIRO

    pod feeder Shoot fly stem borer Armyworm bollworm grasshopper cotton stainer leaf miner. Pests maize sorghum finger millet beans groundnuts cowpea greengram cotton vegetables sweet potatoes cassava brassicas rice chicken peas. Figure 1. Effects of pests on field crops. used a variety of means ranging from general ...

  17. Evaluation of Feeding Stimulant Mixed with Chemical and Bio ...

    African Journals Online (AJOL)

    The Efficiency of feeding stimulants (Bioenhencer) was studied alone and in combinations with chemical insecticides or entomopathogens against the defoliating pests, Spodoptera littoralis (Boisd.) and Spodoptera exigua Hbn. (in fields of cotton and soybean) and the bollworms Pectinophora gossypiella Saunders and ...

  18. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    The results confirm inheritance and segregation of. the exogenous Bt gene in transgenic CCRI 30 and NewCott 33B, governing resistance to bollworm, and; the exogenous tfdA gene in transgenic TFD, governing resistance to the herbicide 2,4-D. Both resistance characters were governed by a single dominant nuclear gene ...

  19. Essential oils-oriented fenvalerate analogues: syntheses, characterization and biological evaluation

    International Nuclear Information System (INIS)

    Su, H.; Li, H.

    2016-01-01

    A series of essential oils oriented ester derivatives have been designed, synthesized and characterized based on the skeleton of fenvalerate. The preliminary bioassay results indicated that some of the newly synthesized compounds showed better insecticidal activities against Pyrausta nubilalis and Heliothis armigera than that of the control trans-prallethrin chloride. (author)

  20. 2634-IJBCS-Artcile-Mamadou Diatte

    African Journals Online (AJOL)

    hp

    goutte-à-goutte et de décrue (0,09%) (Figure. 2). Les infestations dues ... Tableau 1 : Interaction entre les pratiques culturales et les infestations par les deux principaux ravageurs de la tomate (H. armigera et T. absoluta) dans la zone des. Niayes. Variables .... (Landis et al., 2000; Bianchi et al., 2006 ;. Chaplin-Kramer et al.

  1. Transgenic Bacillus thuringiensis (Bt) chickpea: India's most wanted ...

    African Journals Online (AJOL)

    Sumita

    2013-09-25

    Sep 25, 2013 ... parasitoids are rarely present in high numbers in India. The dipteran parasitoids Carcelia illota, ... Breeding to transfer gene(s) conferring resistance to H. armigera from wild species to the cultivated .... absence of RNA dependent RNA Polymerase orthologs. (Gordon and Waterhouse, 2007) barrier in uptake ...

  2. Efficacy of botanical extracts and entomopathogens on control of ...

    African Journals Online (AJOL)

    ... and 92% weight reduction over control on H. armigera, while for S. litura, 54 and 72% larval mortality and 44 and 79% weight reduction over control was reported. The results of the compatibility studies (entomopathogenic potential biowash of the botanicals with PGP bacteria and fungus) indicate that there was no definite ...

  3. Pheromone mating disruption offers selective management options for key pests

    OpenAIRE

    Welter, Stephen C.; Pickel, Carolyn; Millar, Jocelyn; Cave, Frances; Van Steenwyk, Robert A.; Dunley, John

    2005-01-01

    The direct management of insect pests using pheromones for mating disruption, or “attract and kill” approaches, can provide excellent suppression of key lepidopteran pests in agriculture. Important successes to date include codling moth in pome fruit, oriental fruit moth in peaches and nectarines, tomato pinworm in vegetables, pink bollworm in cotton and omnivorous leafroller in vineyards. Large-scale implementation projects have yielded significant reductions in pesticide use while maintaini...

  4. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    ACSS

    contrast biopesticide treatments had minimum side effects on the natural enemies populations. Key words: Cotton, Helicoverpa amigera. Introduction ... It is mainly grown as a fibre crop for the textile industry, but its seeds provides hulls, oil ... with a photoperiod of 16:8 (Light: Dark) hr. Third instar larvae of the American.

  5. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Antifeedant and Toxic Effect of Crude Extract from Flourensia oolepis and their Impact on Nutritional Parameters of Helicoverpa gelotopoeon · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. C Seminara, L Bollati, S Avalos, G Diaz Napal, SM Palacios, MT Defagó ...

  6. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Science.gov (United States)

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  7. Morphological and chemical characteristics of tomato foliage as ...

    African Journals Online (AJOL)

    Morphological characters and chemical composition of tomato (Lycopersicon esculentum Miller) leaves were measured and compared among nine tomato varieties (Roma VFN, NARC-1, Fs-8802, Tommy, Pant Babr, Rio Grande, Nova Mecb, Pakit and Sahil) exhibiting varying levels of host plant resistance to Helicoverpa ...

  8. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn

    Science.gov (United States)

    Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...

  9. Archaeological Reconnaissance Survey and Salvage Excavation in the Salt Lick Recreation Area.

    Science.gov (United States)

    1979-04-01

    evidently died in childbirth, the feet of the foetus coming first. This female we are led to believe, from the pains taken in burying her, must have...assemblages only serve to docu- ment the occurrence of white-tailed deer, fresh-water unionids and aquatic gastropods on these site, but allow for no...Odocoileus virginianus) Gastropods 4 Pleurocera cf. canaliculatum 3 Lithasia armigera 1 unidentifiable gastropod -aquatic 131 Pel ecypods 1 cf. Fusconaia sp

  10. Isolation of bacillus thuringiensis from different samples from Mansehra District

    International Nuclear Information System (INIS)

    Younis, F.; Lodhi, A.F.; Raza, G.

    2009-01-01

    The insecticidal activity of Bacillus thuringiensis has made it very interesting for the control of a variety of agricultural pests and human disease vectors. The present study is an attempt to explore the potential and diversity. of Bacillus thuringiensis. from the local environment for the control of cotton spotted bollworm (Earias sp.), a major pest of cotton. Two hundred and ninety eight samples of soil, grain dust, wild animal dung, birds dropping, decaying leaves and dead insects were collected from different ecological environments of Mansehra District yielding 438 Bacillus thuringiensis isolates that produce parasporal crystalline inclusions. In this study the soil samples were found to be the richest source for Bacillus thuringiensis. (author)

  11. Effet des extraits du thé de Gambie ( Lippia multiflora Moldenk) et du ...

    African Journals Online (AJOL)

    Les extraits d'amande de neem et de feuilles du Lippia sont obtenus après macération pendant 12 heures dans l'alcool 75°. La fréquence des traitements était de 10 jours et les observations sur les larves de Helicoverpa et les Thrips, de 7 jours après le premier traitement. La parcelle à pulvériser est isolée des voisines ...

  12. Pest Control Section Biochemical Group, Progress Report 1982-86

    International Nuclear Information System (INIS)

    1988-01-01

    Reserch efforts in the Pest Control Section, BARC, a continuator of insect sterilization and pest control section of the erstwhile Biology and Agriculture Division, were continued to develop integrated management practices for the control of important insect pests of agricultural and medical importance. Insect pests chosen are, ubiquitous potato tuberworm, a serious pest of potatoes, cotton bollworms with particular reference to spotted bollworms and a mosquito (Culex fatigans), a vector of filariasis. Keeping these insects as targets, research activities have been concentrated in the fields of biological control with parasities, pathogens and sterile insects, sex pheromones and insect plant interaction with a view to integrate pest management programme. Besides, the research activity also encompasses investigations of basic nature in the fields of insect sex pheromones, insect pathology and insect plant interaction. Studies on insect pheromones relate to the modifying influence of abiotic and biotic factors of the environment on pheromone production and perception and the possibility of insect developing resistance to pheromones. Studies in the field of insect plant interaction are directed towards identifying weak links in the insect plant relationship with a view to exploit them for developing control. Basic studies in the field of insect pathology relate to isolation and identification of entomopathogens, source of their pathogenecity, improvement in their virulence and formulation of cheaper and potent microbial insecticides. This report pertains to the period 1982-86. (Orig.). 11 tables, 5 figures

  13. Target and nontarget effects of novel "triple-stacked" Bt-transgenic cotton 1: canopy arthropod communities.

    Science.gov (United States)

    Whitehouse, M E A; Wilson, L J; Davies, A P; Cross, D; Goldsmith, P; Thompson, A; Harden, S; Baker, G

    2014-02-01

    Transgenic cotton varieties (Bollgard II) expressing two proteins (Cry1Ac and Cry2Ab) from Bacillus thuringiensis (Bt) have been widely adopted in Australia to control larvae of Helicoverpa. A triple-stacked Bt-transgenic cotton producing Cry1Ac, Cry2Ab, and Vip3A proteins (Genuity Bollgard III) is being developed to reduce the chance that Helicoverpa will develop resistance to the Bt proteins. Before its introduction, nontarget effects on the agro-ecosystem need to be evaluated under field conditions. By using beatsheet and suction sampling methods, we compared the invertebrate communities of unsprayed non-Bt-cotton, Bollgard II, and Bollgard III in five experiments across three sites in Australia. We found significant differences between invertebrate communities of non-Bt and Bt (Bollgard II and Bollgard III) cotton only in experiments where lepidopteran larval abundance was high. In beatsheet samples where lepidopterans were absent (Bt crops), organisms associated with flowers and bolls in Bt-cotton were more abundant. In suction samples, where Lepidoptera were present (i.e., in non-Bt-cotton), organisms associated with damaged plant tissue and frass were more common. Hence in our study, Bt- and non-Bt-cotton communities only differed when sufficient lepidopteran larvae were present to exert both direct and indirect effects on species assemblages. There was no overall significant difference between Bollgard II and III communities, despite the addition of the Vip gene in Bollgard III. Consequently, the use of Bollgard III in Australian cotton provides additional protection against the development of resistance by Helicoverpa to Bt toxins, while having no additional effect on cotton invertebrate communities.

  14. p13 from group II baculoviruses is a killing-associated gene

    Directory of Open Access Journals (Sweden)

    Yipeng Qi

    2012-12-01

    Full Text Available p13 gene was first described in Leucania separata multinuclearpolyhedrosis virus (Ls-p13 several years ago, but the functionof P13 protein has not been experimentally investigated todate. In this article, we indicated that the expression of p13from Heliothis armigera single nucleocapsid nucleopolyhedrovirus(Ha-p13 was regulated by both early and late promoter.Luciferase assay demonstrated that the activity of Ha-p13promoter with hr4 enhancer was more than 100 times inheterologous Sf9 cells than that in nature host Hz-AM1 cells.Both Ls-P13 and Ha-P13 are transmembrane proteins. Confocalmicroscopic analysis showed that both mainly located in thecytoplasm membrane at 48 h. Results of RNA interferenceindicated that Ha-p13 was a killing-associated gene for hostinsects H. armigera. The AcMNPV acquired the mentionedkilling activity and markedly accelerate the killing rate whenexpressing Ls-p13. In conclusion, p13 is a killing associatedgene in both homologous and heterologous nucleopolyhedrovirus.

  15. Natural refuge crops, buildup of resistance, and zero-refuge strategy for Bt cotton in China.

    Science.gov (United States)

    Qiao, FangBin; Huang, JiKun; Rozelle, Scott; Wilen, James

    2010-10-01

    In the context of genetically modified crops expressing the Bacillus thuringiensis (Bt) toxin, a 'refuge' refers to a crop of the same or a related species that is planted nearby to enable growth and reproduction of the target pest without the selection pressure imposed by the Bt toxin. The goal of this study is to discuss the role of natural refuge crops in slowing down the buildup of resistance of cotton bollworm (CBW), and to evaluate China's no-refuge policy for Bt cotton. We describe in detail the different factors that China should consider in relation to the refuge policy. Drawing on a review of scientific data, economic analyses of other cases, and a simulation exercise using a bio-economic model, we show that in the case of Bt cotton in China, the no-refuge policy is defensible.

  16. Mediterranean fruit fly preventative release programme in southern California

    International Nuclear Information System (INIS)

    Dowell, Robert V.; Meyer, Fred; Siddiqu, Isi A.; Leon Spaugy, E.

    2000-01-01

    California employs several area-wide pest management programmes that use the release of sterile insects to protect its commercial and dooryard agriculture. The first was developed in response to the discovery of the Mexican fruit fly, Anastrepha ludens, in Tijuana, Mexico and adjacent areas in San Diego County, California. Initially pesticide sprays of malathion and bait were applied to host plants around each fly find site. Additionally, soil sprays of diazion (0.05 kg per 93 m 2 ) were applied under every host plant around each fly find site. It soon became apparent that this approach was expensive and environmentally damaging. This led the interested parties, the California Department of Food and Agriculture (CDFA), the United States Department of Agriculture (USDA) and the government of Mexico to develop a programme that utilises the release of sterile Mexican fruit flies over the city of Tijuana in order to prevent the establishment of a breeding population of this fly in the city. The belief is that preventing the Mexican fruit fly from breeding in Tijuana will help protect both that city and California. To date, no Mexican fruit fly larvae have been found in Tijuana or the adjacent areas of California. The second programme was developed in response to the discovery of the pink bollworm, Pectinophora gossypiella, in cotton in the Imperial Valley area of southern California. As the pink bollworm spread throughout the cotton growing region of southern California, it became a significant pest that threatened the 405,000 hectares of cotton grown in the San Joaquin Valley to the north. To keep this pest out of the San Joaquin Valley, the CDFA/USDA and California cotton growers use the large-scale releases of sterile pink bollworms in areas in which wild pink bollworms are captured each year. Thus far, the pink bollworm has been prevented from establishing a permanent presence in the San Joaquin Valley and the cotton growers in southern California, Arizona and

  17. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm.

    Science.gov (United States)

    Venugopal, P Dilip; Dively, Galen P

    2017-06-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop-pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996-2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes.

  18. Climate change, transgenic corn adoption and field-evolved resistance in corn earworm

    Science.gov (United States)

    Dively, Galen P.

    2017-01-01

    Increased temperature anomaly during the twenty-first century coincides with the proliferation of transgenic crops containing the bacterium Bacillus thuringiensis (Berliner) (Bt) to express insecticidal Cry proteins. Increasing temperatures profoundly affect insect life histories and agricultural pest management. However, the implications of climate change on Bt crop–pest interactions and insect resistance to Bt crops remains unexamined. We analysed the relationship of temperature anomaly and Bt adoption with field-evolved resistance to Cry1Ab Bt sweet corn in a major pest, Helicoverpa zea (Boddie). Increased Bt adoption during 1996–2016 suppressed H. zea populations, but increased temperature anomaly buffers population reduction. Temperature anomaly and its interaction with elevated selection pressure from high Bt acreage probably accelerated the Bt-resistance development. Helicoverpa zea damage to corn ears, kernel area consumed, mean instars and proportion of late instars in Bt varieties increased with Bt adoption and temperature anomaly, through additive or interactive effects. Risk of Bt-resistant H. zea spreading is high given extensive Bt adoption, and the expected increase in overwintering and migration. Our study highlights the challenges posed by climate change for Bt biotechnology-based agricultural pest management, and the need to incorporate evolutionary processes affected by climate change into Bt-resistance management programmes. PMID:28680673

  19. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin.

    Directory of Open Access Journals (Sweden)

    Rod J Mahon

    Full Text Available Crops engineered to produce insecticidal crystal (Cry proteins from the soil bacterium Bacillus thuringiensis (Bt have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips, also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019-0.038 in H. armigera and 0.008 (n = 248 lines, 0.004-0.015 in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016 and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn.

  20. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds.

    Science.gov (United States)

    Wang, Qing; Zhu, Yi; Sun, Lin; Li, Lebin; Jin, Shuangxia; Zhang, Xianlong

    2016-02-01

    A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g(-1) fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g(-1) fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g(-1) fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.

  1. Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase.

    Science.gov (United States)

    Dowd, P F; Lagrimini, L M; Herms, D A

    1998-07-01

    Leaves of transgenic sweetgum (Liquidambar styraciflua) trees that expressed tobacco anionic peroxidase were compared with leaves of L. styraciflua trees that did not express the tobacco enzyme. Leaves of the transgenic trees were generally more resistant to feeding by caterpillars and beetles than wild-type leaves. However, as for past studies with transgenic tobacco and tomato expressing the tobacco anionic peroxidase, the degree of relative resistance depended on the size of insect used and the maturity of the leaf. Decreased growth of gypsy moth larvae appeared mainly due to decreased consumption, and not changes in the nutritional quality of the foliage. Transgenic leaves were more susceptible to feeding by the corn earworm, Helicoverpa zea. Thus, it appears the tobacco anionic peroxidase can contribute to insect resistance, but its effects are more predictable when it is expressed in plant species more closely related to the original gene source.

  2. Supplemental control of lepidopterous pests on Bt transgenic sweet corn with biologically-based spray treatments.

    Science.gov (United States)

    Farrar, Robert R; Shepard, B Merle; Shapiro, Martin; Hassell, Richard L; Schaffer, Mark L; Smith, Chad M

    2009-01-01

    Biologically-based spray treatments, including nucleopolyhedroviruses, neem, and spinosad, were evaluated as supplemental controls for the fall armyworm, Spodoptera frugiperda (J. E. Smith), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on transgenic sweet corn, Zea mays (L.) (Poales: Poaceae), expressing a Cry1Ab toxin from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). Overall, transgenic corn supported lower densities of both pests than did nontransgenic corn. Control of the fall armyworm was improved in both whorl-stage and tassel-stage corn by the use of either a nucleopolyhedrovirus or neem, but the greatest improvement was seen with spinosad. Only spinosad consistently reduced damage to ears, which was caused by both pest species. In general, efficacy of the spray materials did not differ greatly between transgenic and nontransgenic corn.

  3. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  4. Impact of moth suppression/eradication programmes using the sterile insect technique or inherited sterility

    International Nuclear Information System (INIS)

    Bloem, K.A.; Bloem, S.; Carpenter, J.E.

    2005-01-01

    Numerous lepidopteran species have been investigated as candidates for control using the sterile insect technique (SIT) or inherited sterility (IS). However to date only two programmes are operational - the pink bollworm containment programme in the San Joaquin Valley, California, USA, and the codling moth suppression programme in British Columbia, Canada. Both of these programmes have been highly successful in controlling the pest populations, reducing insecticide use, and improving interactions between growers and the general public. However, other benefits, including the positive economic impacts of these programmes, have not been fully quantified. Methods to reduce the cost of lepidopteran programmes might include combining the SIT/IS with other pest control tactics such as mating disruption or the release of natural enemies, the development of genetic sexing strains, or the application of molecular technologies to develop genetic markers and genetic sterility. In future the greatest potential for impact of lepidopteran SIT/IS programmes may be in combating key invasive threats such as the eradication of an outbreak of the painted apple moth in New Zealand. (author)

  5. Systems for harvesting and handling cotton plant residue

    Energy Technology Data Exchange (ETDEWEB)

    Coates, W. [Univ. of Arizona, Tucson, AZ (United States)

    1993-12-31

    In the warmer regions of the United States, cotton plant residue must be buried to prevent it from serving as an overwintering site for insect pests such as the pink bollworm. Most of the field operations used to bury the residue are high energy consumers and tend to degrade soil structure, thereby increasing the potential for erosion. The residue is of little value as a soil amendment and consequently is considered a negative value biomass. A commercial system to harvest cotton plant residue would be of both economic and environmental benefit to cotton producers. Research has been underway at the University of Arizona since the spring of 1991 to develop a commercially viable system for harvesting cotton plant residue. Equipment durability, degree of densification, energy required, cleanliness of the harvested material, and ease of product handling and transport are some of the performance variables which have been measured. Two systems have proven superior. In both, the plants are pulled from the ground using an implement developed specifically for the purpose. In one system, the stalks are baled using a large round baler, while in the other the stalks are chopped with a forage harvester, and then made into packages using a cotton module maker. Field capacities, energy requirements, package density and durability, and ease of handling with commercially available equipment have been measured for both systems. Selection of an optimum system for a specific operation depends upon end use of the product, and upon equipment availability.

  6. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique involves the mass-rearing of insects, which are sterilized by gamma rays from a 60 Co source before being released in a controlled fashion into nature. Matings between the sterile insects released and native insects produce no progeny, and so if enough of these matings occur the pest population can be controlled or even eradicated. A modification of the technique, especially suitable for the suppression of the moths and butterflies, is called the F, or inherited sterility method. In this, lower radiation doses are used such that the released males are only partially sterile (30-60%) and the females are fully sterile. When released males mate with native females some progeny are produced, but they are completely sterile. Thus, full expression of the sterility is delayed by one generation. This article describes the use of the sterile insect technique in controlling the screwworm fly, the tsetse fly, the medfly, the pink bollworm and the melon fly, and of the F 1 sterility method in the eradication of local gypsy moth infestations. 18 refs, 5 figs, 1 tab

  7. Molecular characterization of indigenous Bacillus thuringiensis strains isolated from Kashmir valley.

    Science.gov (United States)

    Reyaz, A L; Gunapriya, L; Indra Arulselvi, P

    2017-06-01

    Bacillus thuringiensis (Bt) being an eco-friendly bioinsecticide is effectively used in pest management strategies and, therefore, isolation and identification of new strains effective against a broad range of target pests is important. In the present study, new indigenous B. thuringiensis strains were isolated and investigated so that these could be used as an alternative and/or support the current commercial strains/cry proteins in use. For this, 159 samples including soil, leaf and spider webs were collected from ten districts of Kashmir valley (India). Of 1447 bacterial strains screened, 68 Bt strains were identified with 4 types of crystalline inclusions. Crystal morphology ranking among the Bt strains was spherical (69.11%) > spore attached (8.82%) > rod (5.88%) = bipyramidal (5.88%) > spherical plus rod (4.41%) > spherical plus bipyramidal (2.94%) = cuboidal (2.94%). SDS-PAGE investigation of the spore-crystal mixture demonstrated Bt strains contained proteins of various molecular weights ranging from 150 to 28 kDa. Insecticidal activity of the 68 indigenous Bt strains against Spodoptera litura neonates showed that Bt strain SWK1 strain had the highest mortality. Lepidopteron active genes (cry1, cry2Ab, cry2Ab) were present in six Bt strains. Further, analysis of a full-length cry2A gene (~1.9 kb) by PCR-RFLP in strain SWK1 revealed that it was a new cry2A gene in Bt strain SWK1 and was named as cry2Al1 (GenBank Accession No. KJ149819.1) using the Bt toxin nomenclature ( http://www.btnomenclature.info ). Insect bioassays with neonate larvae of S. litura and H. armigera showed that the purified Cry2Al1 is toxic to S. litura with LC 50 2.448 µg/ml and H. armigera with LC 50 3.374 µg/ml, respectively. However, it did not produce any mortality in third instar larvae of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi larvae/pupae insects (100 µg/ml) at 28 ± 2 °C and 75 to 85% relative humidity under a photoperiod of 14L:10D.

  8. Short-term assessment of bt maize on non-target arthropods in Brazil Avaliação do efeito de milho bt sobre artrópodos não alvo no Brasil

    Directory of Open Access Journals (Sweden)

    Odair Aparecido Fernandes

    2007-06-01

    Full Text Available Although not yet available for cultivation in Brazil, the effect of Bt maize hybrids on natural enemies and soil dwelling arthropods should be assessed prior to its release to growers. Trials were carried out during one growing season in two different locations with the genetically modified maize hybrids 7590-Bt11 and Avant-ICP4, comparing with their respective non-Bt isogenic hybrids. Arthropods were evaluated through direct observation on plants and pitfall traps. In general, no differences were observed between populations of earwig (Dermaptera: Forficulidae, lady beetles (Coleptera: Coccinellidae, minute pirate bug (Coleoptera: Anthocoridae, ground beetles (Carabidae, tiger beetles (Cicindelidae, and spiders (Araneae. There was no difference in egg parasitism of Helicoverpa zea (Boddie by Trichogramma sp. (Hymenoptera: Trichogrammatidae. Thus, Bt maize hybrids expressing insecticide proteins Cry1A(b and VIP 3A do not cause reduction of the main maize dweeling predators and parasitoids.Embora não haja cultivos comerciais de milho geneticamente modificado no Brasil, o efeito de híbridos de milho Bt sobre inimigos naturais e artrópodos de solo deve ser avaliado antes da liberação aos produtores. Assim, ensaios foram conduzidos durante uma safra em duas localidades. Os híbridos de milho modificado geneticamente 7590-Bt11 e Avant-ICP4 foram comparados com seus respectivos isogênicos não transgênicos. Os artrópodes foram avaliados através de observação direta nas plantas e armadilhas de alçapão. De modo geral, não se observaram diferenças entre as populações de tesourinha (Dermaptera: Forficulidae, joaninhas (Coleptera: Coccinellidae, percevejo-pirata (Coleoptera: Anthocoridae, carabídeos (Carabidae, cicindelídeos (Cicindelidae e aranhas (Araneae. Também não houve diferença no parasitismo de ovos de Helicoverpa zea (Boddie por Trichogramma sp. (Hymenoptera: Trichogrammatidae. Assim, milho geneticamente modificado

  9. Inseticidas para o controle da traça-do-tomateiro e broca-grande e seu impacto sobre Trichogramma pretiosum Insecticides for the control of the South American tomato pinworm and the corn earworm and impact of those products on Trichogramma pretiosum

    Directory of Open Access Journals (Sweden)

    Marina Castelo Branco

    2003-12-01

    Full Text Available Experimentos de campo foram conduzidos entre maio e outubro de 2000 para determinar a eficiência de diversos inseticidas para o controle de Tuta absoluta e Helicoverpa zea e o impacto desses produtos sobre a emergência do parasitóide Trichogramma pretiosum. Os inseticidas testados, bem como as doses em g i.a./ha foram: metoxifenozide (120; 144, clorpirifós (540; 675, tiacloprid (72; 96 e triflumuron (144. O delineamento experimental foi de blocos ao acaso com oito tratamentos (inseticidas e testemunha e cinco repetições, com 40 plantas/parcela. Frutos de tomate foram coletados aos 58, 80 e 87 dias após o transplante das mudas para a determinação da percentagem de frutos danificados pelos insetos. O impacto dos inseticidas sobre T. pretiosum foi avaliado mediante a coleta de 20 ovos de H. zea por parcela aos 61 dias após o transplante, onde foi realizada a avaliação da emergência do parasitóide. Todos os inseticidas reduziram significativamente os danos causados por H. zea. Contudo, nenhum deles foi eficiente para o controle de T. absoluta. Metoxifenozide e clorpirifós (540 não reduziram significativamente o número de ovos parasitados por T. pretiosum quando comparados à testemunha.Field studies were conducted from May to October 2000 to determine the effectiveness of several insecticides in controlling Tuta absoluta and Helicoverpa zea and their impact on emergence of the parasitoid Trichogramma pretiosum. The insecticides tested were: methoxyfenozide (120; 144, clorpirifós (540; 675, tiacloprid (72; 96 and triflumuron (144. Application rates of all insecticides are expressed as g a.i./ha. The experiment was designed as randomized complete block with eight treatments (insecticides and untreated plots with five replications. Tomato fruits were harvested 58; 80 and 87 days after transplanting and the percentage of damaged fruits by both pests determined. The impact of insecticides on T. pretiosum survival was determined

  10. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation

    International Nuclear Information System (INIS)

    Cohen, E.; Rozen, H.; Joseph, T.; Braun, S.; Margulies, L.

    1991-01-01

    Irradiation of Bacillus thuringiensis var. kurstaki HD1 at 300-350 nm for up to 12 hr using a photochemical reactor results in a rapid loss of its toxicity to larvae of Heliothis armigera. Photoprotection of the toxic component was obtained by adsorption of cationic chromophores such as acriflavin (AF), methyl green, and rhodamine B to B. thuringiensis. AF gave the best photoprotection and a level of 0.42 mmol/g dye absorbed per gram of B. thuringiensis was highly toxic even after 12 hr of ultraviolet (uv) irradiation as compared to the control (77.5 and 5% of insect mortality, respectively). Ultraviolet and Fourier-transform infrared spectroscopic studies indicate molecular interactions between B. thuringiensis and AF. The nature of these interactions and energy or charge transfer as possible mechanisms of photoprotection are discussed. It is speculated that tryptophan residues are essential for the toxic effect of B. thuringiensis. It is suggested that photoprotection is attained as energy is transferred from the excited tryptophan moieties to the chromophore molecules

  11. Comparison of seed yielding performance of deltamethrin unprotected and protected plants of five cowpea cultivars at Foumbot, Cameroon

    Directory of Open Access Journals (Sweden)

    Parh, LA.

    1991-01-01

    Full Text Available Losses in seed yields due to damage by seed insect pests were studied on unsprayed and sprayed cowpea plants at Foumbot, located in the western highland savanna zone of Cameroon, in 1988 and 1989. Major pests recorded in the study site were Melanagromyza vignalis Spencer (Diptera : Agromyzidae, Marucatestulalis Geyer (Lepidoptera : Pyralidae, Cydia ptychora Meyrick (Lepidoptera : Tortricidae, Heliothis armigera Hubner (Lepidoptera : Noctuidae, Aphis craccivora Koch (Homoptera : Aphididae, Apion species (Coleoptera : Curculionidae, Coreid bugs (Heteroptera : Coreidae, and Bruchids (Coleoptera : Bruchidae. Yields of undamaged cowpea seeds from unsprayed and sprayed plants of local cultivars acquired from Badun, Melong, Foumbot and Befang were comparable with those from MA 2/1, an improved cultivar from the International Institute for Tropical Agriculture that has been released in Cameroon by the Institute for Agronomie Research. Melanagromyza, Maruca and Coreid bugs caused 70-80 % of seed damage on unsprayed and sprayed plants. Fortnightly spraying of plants with deltamethrin at 12.5g. a. i./ha, significantly reduced yield loss due to damage by Maruca sp., the overall loss in seed yields/ha and % loss of potential seed yield, in all five cowpea cultivars used in this study. However, deltamethrin appeared ineffective in reducing seed yield loss caused by Melanagromyza and Coreid bugs.

  12. Bt Cry1Ie Toxin Does Not Impact the Survival and Pollen Consumption of Chinese Honey Bees, Apis cerana cerana (Hymenoptera, Apidae).

    Science.gov (United States)

    Dai, Ping-Li; Jia, Hui-Ru; Jack, Cameron J; Geng, Li-Li; Liu, Feng; Hou, Chun-Sheng; Diao, Qing-Yun; Ellis, James D

    2016-12-01

    The cry1Ie gene may be a good candidate for the development of Bt maize because over-expression of Cry1Ie is highly toxic to Lepidopteran pests such as Heliothis armigera Hübner and Ostrinia furnacalis Guenée. The Bt cry1Ie gene also has no cross resistance with other insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1Ah, or Cry1F. Chinese honey bees (Apis cerana cerana) are potentially exposed to insect-resistant genetically modified (IRGM) crops expressing Cry1Ie toxin via the collection of IRGM crop pollen. In this study, we tested whether Chinese honey bee workers are negatively affected by sugar syrup containing 20, 200, or 20,000 ng/ml Cry1Ie toxin and 48 ng/ml imidacloprid under controlled laboratory conditions. Our results demonstrated that the Cry1Ie toxin does not adversely impact survival and pollen consumption of Chinese honey bees. However, imidacloprid decreases Chinese honey bee survival and the total pollen consumption on the 5th, 6th, and 18th d of exposure. The described bioassay is suitable to assess the effects of GM expressed toxins against honey bee. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Regulation analysis of AcMNPV-mediated expression of a Chinese scorpion neurotoxin under the IE1, P10 and PH promoter in vivo and its use as a potential bio-insecticide.

    Science.gov (United States)

    Fu, Yuejun; Li, Xing; Du, Jun; Zheng, Shuhua; Liang, Aihua

    2015-10-01

    To analyze the regulation mechanism of AcMNPV (Autographa californica multicapsid nucleopolyhedrovirus)-mediated expression of BmK IT under IE1, P10 and PH promoters in the larva of Heliothis armigera.. The transcription level of BmK IT gene in midgut and epidermal tissue was analyzed by quantitative PCR. The start time of transcription of recombinant BmK IT gene was early under the regulation of IE promoter, whereas transcription of BmK IT was high under the regulation of P10 promoter in the midgut tissue of infected larvae. TdT-UTP nick-end labeling (TUNEL) assay showed the degree of apoptotic cell death in the midgut tissue of AcMNPV-BmK IT-transfected insect larvae was higher than that in the AcMNPV treatment group at 8 h post-infection. The time-effect relationship between the insect's humoral immunity and regulation of promoters was confirmed in the phenoloxidase activity assay. The anti-insect mechanism and regulation of different promoters in AcMNPV-BmK IT at molecular and cellular levels provide an experimental basis for the development of recombinant baculovirus biopesticides.

  14. Biosafety management and commercial use of genetically modified crops in China.

    Science.gov (United States)

    Li, Yunhe; Peng, Yufa; Hallerman, Eric M; Wu, Kongming

    2014-04-01

    As a developing country with relatively limited arable land, China is making great efforts for development and use of genetically modified (GM) crops to boost agricultural productivity. Many GM crop varieties have been developed in China in recent years; in particular, China is playing a leading role in development of insect-resistant GM rice lines. To ensure the safe use of GM crops, biosafety risk assessments are required as an important part of the regulatory oversight of such products. With over 20 years of nationwide promotion of agricultural biotechnology, a relatively well-developed regulatory system for risk assessment and management of GM plants has been developed that establishes a firm basis for safe use of GM crops. So far, a total of seven GM crops involving ten events have been approved for commercial planting, and 5 GM crops with a total of 37 events have been approved for import as processing material in China. However, currently only insect-resistant Bt cotton and disease-resistant papaya have been commercially planted on a large scale. The planting of Bt cotton and disease-resistant papaya have provided efficient protection against cotton bollworms and Papaya ringspot virus (PRSV), respectively. As a consequence, chemical application to these crops has been significantly reduced, enhancing farm income while reducing human and non-target organism exposure to toxic chemicals. This article provides useful information for the colleagues, in particular for them whose mother tongue is not Chinese, to clearly understand the biosafety regulation and commercial use of genetically modified crops in China.

  15. Insect Pest Control Newsletter, No. 81, July 2013

    International Nuclear Information System (INIS)

    2013-07-01

    In response to requests from our readers, this introduction is mainly dedicated to the ongoing efforts to develop alternatives for insect reproductive sterilization and blood sterilization for their use in insect pest control programmes with a sterile insect technique (SIT) component. Radioisotope irradiators that are loaded with either cobalt-60 or caesium-137 producing gamma rays have been routinely used for many decades and have proven to be extremely reliable and safe for these purposes in successful area-wide insect eradication or suppression programmes. These include industrial panoramic-type irradiators in larger programmes, all the way to smaller self-contained irradiators. Nevertheless, the transboundary shipment of self-contained gamma irradiators or radioactive material has become logistically more complex due to security issues. This situation was exacerbated when the production of the Gamma Cell 220 (GC220), the source most commonly used for irradiating insects for sterilization purposes, was discontinued. These events may have created the impression that the use of gamma radiation has become a less viable option, unattainable for insect pest control programmes that want to integrate the SIT. Nevertheless, some of the biggest SIT operational programmes have in recent years been equipped with new self-contained cobalt-60 sources, including the SIT programme against the pink bollworm in Phoenix, Arizona; El Pino Mediterranean fruit fly facility in Guatemala; and the screwworm programme in Panama. Thus these larger and more expensive irradiators, together with panoramic units (that are also costlier than self-contained gamma irradiators) have remained over the years a valid option, especially for larger operational programmes. In addition, the reloading of smaller units with new cobalt or the purchase of refurbished used self-contained irradiators remain viable alternatives

  16. Mass Releases of Genetically Modified Insects in Area-Wide Pest Control Programs and Their Impact on Organic Farmers

    Directory of Open Access Journals (Sweden)

    R. Guy Reeves

    2017-01-01

    Full Text Available The mass release of irradiated insects to reduce the size of agricultural pest populations of the same species has a more than 50-year record of success. Using these techniques, insect pests can be suppressed without necessarily dispersing chemical insecticides into the environment. Ongoing release programs include the suppression of medfly at numerous locations around the globe (e.g., California, Chile and Israel and the pink bollworm eradication program across the southern USA and northern Mexico. These, and other successful area-wide programs, encompass a large number of diverse organic farms without incident. More recently, mass release techniques have been proposed that involve the release of genetically modified insects. Given that the intentional use of genetically modified organisms by farmers will in many jurisdictions preclude organic certification, this prohibits the deliberate use of this technology by organic farmers. However, mass releases of flying insects are not generally conducted by individual farmers but are done on a regional basis, often without the explicit consent of all situated farms (frequently under the auspices of government agencies or growers’ collectives. Consequently, there exists the realistic prospect of organic farms becoming involved in genetically modified insect releases as part of area-wide programs or experiments. Herein, we describe genetically modified insects engineered for mass release and examine their potential impacts on organic farmers, both intended and unintended. This is done both generally and also focusing on a hypothetical organic farm located near an approved experimental release of genetically modified (GM diamondback moths in New York State (USA.

  17. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2006-12-01

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  18. Les cotonniers (Gossypium hirsutum L. génétiquement modifiés, Bt : quel avenir pour la petite agriculture familiale en Afrique francophone ?

    Directory of Open Access Journals (Sweden)

    Berti F.

    2006-01-01

    Full Text Available Gnetically modifi ed cotton (Gossypium hirsutum L. Bt.: what future for small family farms in French-speaking Africa?After a massive adoption in South Africa, genetically modifi ed cultivars are at the door step of francophone Africa. In order toanticipate the impact of Bt cotton on small-scale farming we propose a simple profi t analysis of the crop based on our resultsfound in South Africa and data collected by our colleagues in Mali. Whereas the introduction of Bt cotton can be justifi ed bya threat of the appearance of the bollworm resistance to insecticides, its profi tability seems to be uncertain. The farmer profi tmargin depends on yield level linked with climatic, agricultural and environmental conditions and with the technology feewhich the farmer must be charged for. With a 210 FCFA purchase price for raw cotton, a 25 USD fee per hectare seems to bethe upper limit for which the farmer wouldnʼt be exposed to fi nancial risk. Given the recent drop of the purchase price, theexistence of a technology fee supported by the small-scale farmer is very questionable. At a more general level of the cottonsector, the success of Bt adoption rests on several keys: 1 the prevention of the Bt-toxin resistance; 2 the strengthening of thecontrol of stinging pests; 3 the updating of the seed production sector and 4 the improvement of the extension and trainingnetwork. Bt cotton must be considered as a tool which is part of the integrated crop management but not as the solution of thepoverty alleviation.

  19. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration.

    Science.gov (United States)

    Gayen, Srimonta; Mandal, Chandi Charan; Samanta, Milan Kumar; Dey, Avishek; Sen, Soumitra Kumar

    2016-04-01

    Emergence of resistant insects limits the sustainability of Bacillus thuringiensis (Bt) transgenic crop plants for insect management. Beside this, the presence of unwanted marker gene(s) in the transgenic crops is also a major environmental and health concern. Thus, development of marker free transgenic crop plants expressing a new class of toxin having a different mortality mechanism is necessary for resistance management. In a previous study, we generated an engineered Cry2Aa (D42/K63F/K64P) toxin which has a different mortality mechanism as compared to first generation Bt toxin Cry1A, and this engineered toxin was found to enhance 4.1-6.6-fold toxicity against major lepidopteran insect pests of crop plants. In the present study, we have tested the potency of this engineered synthetic Cry2Aa (D42/K63F/K64P) toxin as a candidate in the development of insect resistant transgenic tobacco plants. Simultaneously, we have eliminated the selectable marker gene from the Cry2Aa (D42/K63F/K64P) expressing tobacco plants by exploiting the Cre/lox mediated recombination methodology, and successfully developed marker free T2 transgenic tobacco plants expressing the engineered Cry2Aa toxin. Realtime and western blot analysis demonstrated the expression of engineered toxin gene in transgenic plants. Insect feeding assays revealed that the marker free T2 progeny of transgenic plants expressing Cry2Aa (D42/K63F/K64P) toxin showed 82-92 and 52-61 % mortality to cotton leaf worm (CLW) and cotton bollworm (CBW) respectively. Thus, this engineered Cry2Aa toxin could be useful for the generation of insect resistant transgenic Bt lines which will protect the crop damages caused by different insect pests such as CLW and CBW.

  20. Synthesis and characterization of chimeric proteins based on cellulase and xylanase from an insect gut bacterium.

    Science.gov (United States)

    Adlakha, Nidhi; Rajagopal, Raman; Kumar, Saravanan; Reddy, Vanga Siva; Yazdani, Syed Shams

    2011-07-01

    Insects living on wood and plants harbor a large variety of bacterial flora in their guts for degrading biomass. We isolated a Paenibacillus strain, designated ICGEB2008, from the gut of a cotton bollworm on the basis of its ability to secrete a variety of plant-hydrolyzing enzymes. In this study, we cloned, expressed, and characterized two enzymes, β-1,4-endoglucanase (Endo5A) and β-1,4-endoxylanase (Xyl11D), from the ICGEB2008 strain and synthesized recombinant bifunctional enzymes based on Endo5A and Xyl11D. The gene encoding Endo5A was obtained from the genome of the ICGEB2008 strain by shotgun cloning. The gene encoding Xyl11D was obtained using primers for conserved xylanase sequences, which were identified by aligning xylanase sequences in other species of Paenibacillus. Endo5A and Xyl11D were overexpressed in Escherichia coli, and their optimal activities were characterized. Both Endo5A and Xyl11D exhibited maximum specific activity at 50°C and pH 6 to 7. To take advantage of this feature, we constructed four bifunctional chimeric models of Endo5A and Xyl11D by fusing the encoding genes either end to end or through a glycine-serine (GS) linker. We predicted three-dimensional structures of the four models using the I-TASSER server and analyzed their secondary structures using circular dichroism (CD) spectroscopy. The chimeric model Endo5A-GS-Xyl11D, in which a linker separated the two enzymes, yielded the highest C-score on the I-TASSER server, exhibited secondary structure properties closest to the native enzymes, and demonstrated 1.6-fold and 2.3-fold higher enzyme activity than Endo5A and Xyl11D, respectively. This bifunctional enzyme could be effective for hydrolyzing plant biomass owing to its broad substrate range.

  1. Impact of FFS on farmer's adoption of IPM options for tomato: A case study from the Gezira State, Sudan

    Directory of Open Access Journals (Sweden)

    Ahmed Mirghani Abdel Rahman

    2012-09-01

    Full Text Available In Sudan pests and diseases are the major problem of vegetables production. Tomato crop is considered as the most important vegetable crop in the country according to its economic and nutrition value. There are many pest and diseases retarding tomato production such as whitefly, American bollworm, TYLCV and powdery mildew. Therefore some IPM options for tomato and onion were validated in FFS in order to help farmers in controlling the most important pests and diseases. The main objective of this study was to determine the impact of FFS on farmer's adoption of IPM options for tomato in the Gezira State, Sudan. Field survey was used to collect data from three Farmer Field Schools in the Gezira State namely: Um Dagarsi, Hantoub and Faris in the 2009/2010 growing season. All FFS participants were used, i.e. 30 FFS- participants from each school. Equal number of non-FFS participants (90 was used for comparison, by using the simple random sampling technique. The collected data were statistically analyzed and interpreted using percentage, frequency distribution and chi-square test. The results showed that the FFS schools were positively affected farmer's adoption of IPM options for tomato. It can be concluded that the FFS approach is very efficient in the transfer of farm technology for vegetable farmers through their participation in various activities of FFS schools. Thus, FFS approach must become national policy, share authority of extension organizations in control and execution of FFS activities with farmer unions for more effective participations of clientele in all activities of the schools and More efforts should be exerted in distribution of all inputs to farmers with reasonable prices through various agricultural centres.

  2. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons.

    Science.gov (United States)

    Gilbert, Clément; Chateigner, Aurélien; Ernenwein, Lise; Barbe, Valérie; Bézier, Annie; Herniou, Elisabeth A; Cordaux, Richard

    2014-01-01

    Horizontal transfer (HT) of DNA is an important factor shaping eukaryote evolution. Although several hundreds of eukaryote-to-eukaryote HTs of transposable elements (TEs) have been reported, the vectors underlying these transfers remain elusive. Here, we show that multiple copies of two TEs from the cabbage looper (Trichoplusia ni) transposed in vivo into genomes of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) during caterpillar infection. We further demonstrate that both TEs underwent recent HT between several sympatric moth species (T. ni, Manduca sexta, Helicoverpa spp.) showing different degrees of susceptibility to AcMNPV. Based on two independent population genomics data sets (reaching a total coverage >330,000X), we report a frequency of one moth TE in ~8,500 AcMNPV genomes. Together, our results provide strong support for the role of viruses as vectors of TE HT between animals, and they call for a systematic evaluation of the frequency and impact of virus-mediated HT on the evolution of host genomes.

  3. Gossypolhemiquinone, a dimeric sesquiterpenoid identified in cotton (Gossypium).

    Science.gov (United States)

    Stipanovic, Robert; Puckhaber, Lorraine; Frelichowski, James; Esquivel, Jesus; Westbrook, John; O'Neil, Mike; Bell, Alois; Dowd, Michael; Hake, Kater; Duke, Sara

    2016-02-01

    The report that the cotton leaf perforator, Bucculatrix thurberiella, is one of the few insect herbivores to attack Gossypium thurberi prompted an investigation of the terpenoids present in the leaves of this wild species of cotton. Members of Gossypium produce subepidermal pigment glands in their leaves that contain the dimeric sesquiterpenoid gossypol as well as other biosynthetically related terpenoids. In addition to gossypol, a previously unknown dimeric sesquiterpenoid, gossypolhemiquinone (GHQ), was identified in trace amounts in G. thurberi, a member of the D genome. Other members of the D genome of Gossypium were subsequently found to contain this compound, but GHQ was not detected in commercial cotton cultivars. When fed to Helicoverpa zea in an artificial diet, GHQ delayed days-to-pupation, reduced pupal weights, and survival to adulthood to a lesser or equal extent than gossypol in comparison to the control diet. However, GHQ had a synergistic effect on survival and days-to-pupation when combined with gossypol at the highest dosage tested (0.18%; 15.5:84.5 GHQ:gossypol). Because gossypol exhibits anti-cancer activity, GHQ was also evaluated for its anti-cancer activity against the National Cancer Institute's 60-Human Tumor Cell Line Screen. Significant inhibitory activity against most of these cell lines was not observed, but the results may offer some promise against leukemia cancer cell lines. Published by Elsevier Ltd.

  4. Incidência natural e biologia de Trichogramma atopovirilia Oatman & Platner, 1983 (Hymenoptera, Trichogrammatidae em ovos de Anticarsia gemmatalis Hübner, 1818 (Lepidoptera, Noctuidae Natural incidence and biology of Trichogramma atopovirilia Oatman & Platner, 1983 (Hymenoptera, Trichogrammatidae in eggs of Anticarsia gemmatalis Hübner, 1818 (Lepidoptera, Noctuidae

    Directory of Open Access Journals (Sweden)

    Carolina L. Cañete

    2003-01-01

    Full Text Available Trichogramma atopovirilia Oatman & Platner is an egg parasitoid of the corn earworm Helicoverpa zea (Boddie (Lepidoptera, Noctuidae, and has recently been collected from eggs of Anticarsia gemmatalis Hübner on soybeans. In order to evaluate the suitability of A. gemmatalis eggs as hosts of T. atopovirilia, field surveys were conducted in 1999 and 2000 on corn and soybeans, and a colony of the parasitoid was established in laboratory. At 25 ºC, development from oviposition to emergence lasted nine days and a sex-ratio of 0.58 (females:males was obtained. Females lived significantly longer (11.4 days when kept in ovipositional activity, than in the absence of host eggs (6.6 days. Total fecundity averaged 104.5 parasitized eggs, resulting in the emergence of 138.3 descendents. Mean daily fecundity was highest (30 eggs/female on the first day. Oviposition continued until one day before the death of the females, however 70% of the eggs were laid during the first four days after emergence. A female-biased progeny was produced during the first three days of oviposition, whereas further ovipositions were male-biased. Females lived significantly longer when exposed to host eggs in comparison to females deprived of eggs. The results show that eggs of A. gemmatalis are suitable for the development of T. atopovirilia, and this parasitoid should be considered in future programs of biological control of the velvetbean caterpillar.

  5. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene.

    Science.gov (United States)

    Stewart, C N; Adang, M J; All, J N; Boerma, H R; Cardineau, G; Tucker, D; Parrott, W A

    1996-09-01

    Somatic embryos of jack, a Glycine max (L.) Merrill cultivar, were transformed using microprojectile bombardment with a synthetic Bacillus thuringiensis insecticidal crystal protein gene (Bt cryIAc) driven by the 35S promoter and linked to the HPH gene. Approximately 10 g of tissue was bombarded, and three transgenic lines were selected on hygromycin-containing media and converted into plants. The recovered lines contained the HPH gene, but the Bt gene was lost in one line. The plasmid was rearranged in the second line, and the third line had two copies, one of which was rear-ranged. The CryIAc protein accumulated up to 46 ng mg-1 extractable protein. In detached-leaf bioassays, plants with an intact copy of the Bt gene, and to a lesser extent those with the rearranged copy, were protected from damage from corn earworm (Helicoverpa zea), soybean looper (Pseudoplusia includens), tobacco budworm (Heliothis virescens), and velvetbean caterpillar (Anticarsia gemmatalis). Corn earworm produced less than 3% defoliation on transgenic plants, compared with 20% on the lepidopteran-resistant breeding line GatIR81-296, and more than 40% on susceptible cultivars. Unlike previous reports of soybean transformation using this technique, all plants were fertile. To our knowledge, this is the first report of a soybean transgenic for a highly expressed insecticidal gene.

  6. Baculovirus Induced Transcripts in Hemocytes from the Larvae of Heliothis virescens

    Directory of Open Access Journals (Sweden)

    Holly J.R. Popham

    2011-10-01

    Full Text Available Using RNA-seq digital difference expression profiling methods, we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV. A reference transcriptome of hemocyte-expressed transcripts was assembled from 202 million 42-base tags by combining the sequence data of all samples, and the assembled sequences were then subject to BLASTx analysis to determine gene identities. We used the fully sequenced HzSNPV reference genome to align 477,264 Illumina sequence tags from infected hemocytes in order to document expression of HzSNPV genes at early points during infection. A comparison of expression profiles of control insects to those lethally infected with HzSNPV revealed differential expression of key cellular stress response genes and genes involved in lipid metabolism. Transcriptional regulation of specific insect hormones in baculovirus-infected insects was also altered. A number of transcripts bearing homology to retroviral elements that were detected add to a growing body of evidence for extensive invasion of errantiviruses into the insect genome. Using this method, we completed the first and most comprehensive gene expression survey of both baculoviral infection and host immune defense in lepidopteran larvae.

  7. Arabidopsis thaliana resistance to insects, mediated by an earthworm-produced organic soil amendment.

    Science.gov (United States)

    Cardoza, Yasmin J

    2011-02-01

    Vermicompost is an organic soil amendment produced by earthworm digestion of organic waste. Studies show that plants grown in soil amended with vermicompost grow faster, are more productive and are less susceptible to a number of arthropod pests. In light of these studies, the present study was designed to determine the type of insect resistance (antixenosis or antibiosis) present in plants grown in vermicompost-amended potting soil. Additionally, the potential role of microarthropods, entomopathogenic organisms and non-pathogenic microbial flora found in vermicompost on insect resistance induction was investigated. Findings show that vermicompost from two different sources (Raleigh, North Carolina, and Portland, Oregon) were both effective in causing Arabidopsis plants to be resistant to the generalist herbivore Helicoverpa zea (Boddie). However, while the Raleigh (Ral) vermicompost plant resistance was expressed as both non-preference (antixenosis) and milder (lower weight and slower development) toxic effect (antibiosis) resistance, Oregon (OSC) vermicompost plant resistance was expressed as acute antibiosis, resulting in lower weights and higher mortality rates. Vermicompost causes plants to have non-preference (antixenosis) and toxic (antibiosis) effects on insects. This resistance affects insect development and survival on plants grown in vermicompost-amended soil. Microarthropods and entomopathogens do not appear to have a role in the resistance, but it is likely that resistance is due to interactions between the microbial communities in vermicompost with plant roots, as is evident from vermicompost sterilization assays conducted in this study. Copyright © 2010 Society of Chemical Industry.

  8. Blended Refuge and Insect Resistance Management for Insecticidal Corn

    Science.gov (United States)

    Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit

    2018-01-01

    Abstract In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. PMID:29220481

  9. Blended Refuge and Insect Resistance Management for Insecticidal Corn.

    Science.gov (United States)

    Onstad, David W; Crespo, Andre L B; Pan, Zaiqi; Crain, Philip R; Thompson, Stephen D; Pilcher, Clinton D; Sethi, Amit

    2018-02-08

    In this review, we evaluate the intentional mixing or blending of insecticidal seed with refuge seed for managing resistance by insects to insecticidal corn (Zea mays). We first describe the pest biology and farming practices that will contribute to weighing trade-offs between using block refuges and blended refuges. Case studies are presented to demonstrate how the trade-offs will differ in different systems. We compare biological aspects of several abstract models to guide the reader through the history of modeling, which has played a key role in the promotion or denigration of blending in various scientific debates about insect resistance management for insecticidal crops. We conclude that the use of blended refuge should be considered on a case-by-case basis after evaluation of insect biology, environment, and farmer behavior. For Diabrotica virgifera virgifera, Ostrinia nubilalis, and Helicoverpa zea in the United States, blended refuge provides similar, if not longer, delays in the evolution of resistance compared to separate block refuges. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  10. Insect damages on structural, morphologic and composition of Bt maize hybrids to silage

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-03-01

    Full Text Available It was aimed to evaluate the effect of insect damage on the morphologic and structural characteristics and chemical composition from maize hybrids DKB 390 and AG 8088 with the Cry1Ab trait versus its nonbiotech counterpart. The GMO did not receive insecticide application and the conventional hybrids received one deltametrina (2.8% application at 42 days. The damages caused bySpodoptera frugiperda and Helicoverpa zea in hybrids with Cry1Ab were smaller than its nonbiotech counterpart. After harvest, 95 days after seedling plants were separated in stalks, ears, leafs, dead leafs and floral pennant. The experimental design was randomized block in factorial arrangement 2 x 2. The height of plant and height of ear, percentage and amount of dead leafs from hybrids with the Cry1Ab were higher than its nonbiotech counterpart. There was higher nutrients transfer from stalks to grain filling and smaller rate stalks:ear on transgenic plant. The quality of the transgenic plants can be better when harvest earlier, by increasing no fiber carbohydrates, but when harvest latter, by increasing stalk percentage and stalk lignin content.

  11. Bats Track and Exploit Changes in Insect Pest Populations

    Science.gov (United States)

    McCracken, Gary F.; Westbrook, John K.; Brown, Veronica A.; Eldridge, Melanie; Federico, Paula; Kunz, Thomas H.

    2012-01-01

    The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators. PMID:22952782

  12. A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm.

    Directory of Open Access Journals (Sweden)

    Fei Yang

    Full Text Available To counter the threat of insect resistance, Bacillus thuringiensis (Bt maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag, as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie. Cross-pollination in RIB caused a majority (>90% of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.

  13. Impact of corn earworm injury on yield of transgenic corn producing Bt toxins in the Carolinas.

    Science.gov (United States)

    Reay-Jones, Francis P F; Reisig, Dominic D

    2014-06-01

    Transgenic corn, Zea mays L., hybrids expressing insecticidal Cry proteins from Bacillus thuringiensis (Bt) and insecticide applications to suppress injury from Helicoverpa zea (Boddie) were evaluated in Florence, SC, and in Plymouth, NC, in 2012 and 2013. Based on kernel area injured, insecticide applications (chlorantraniliprole) every 3-4 d from R1 until H. zea had cycled out of corn reduced injury by 80-93% in Florence and 94-95% in Plymouth. Despite intensive applications of insecticide (13-18 per trial), limited injury still occurred in all treated plots in 2012, except in DKC 68-03 (Genuity VT Double PRO), based on kernels injured (both locations) and proportion of injured ears (Florence only). In 2013, ear injury was low in Plymouth, with no kernel injury in any insecticide-treated plots, except P1498R (non-Bt) and P1498YHR (Optimum Intrasect). Injury in Florence in 2013 did not occur in treated plots of DKC 68-04 (non-Bt), DKC 68-03 (Genuity VT Double PRO), and N785-3111 (Agrisure Viptera). Yields were not significantly affected by insecticide treatment and were not statistically different among near-isolines with and without Bt traits. Yields were not significantly associated with kernel injury based on regression analyses. The value of using Bt corn hybrids to manage H. zea is discussed.

  14. A challenge for the seed mixture refuge strategy in Bt maize: impact of cross-pollination on an ear-feeding pest, corn earworm.

    Science.gov (United States)

    Yang, Fei; Kerns, David L; Head, Graham P; Leonard, B Rogers; Levy, Ronnie; Niu, Ying; Huang, Fangneng

    2014-01-01

    To counter the threat of insect resistance, Bacillus thuringiensis (Bt) maize growers in the U.S. are required to plant structured non-Bt maize refuges. Concerns with refuge compliance led to the introduction of seed mixtures, also called RIB (refuge-in-the-bag), as an alternative approach for implementing refuge for Bt maize products in the U.S. Maize Belt. A major concern in RIB is cross-pollination of maize hybrids that can cause Bt proteins to be present in refuge maize kernels and negatively affect refuge insects. Here we show that a mixed planting of 5% nonBt and 95% Bt maize containing the SmartStax traits expressing Cry1A.105, Cry2Ab2 and Cry1F did not provide an effective refuge for an important above-ground ear-feeding pest, the corn earworm, Helicoverpa zea (Boddie). Cross-pollination in RIB caused a majority (>90%) of refuge kernels to express ≥ one Bt protein. The contamination of Bt proteins in the refuge ears reduced neonate-to-adult survivorship of H. zea to only 4.6%, a reduction of 88.1% relative to larvae feeding on ears of pure non-Bt maize plantings. In addition, the limited survivors on refuge ears had lower pupal mass and took longer to develop to adults.

  15. Corn earworm (Lepidoptera: Noctuidae) in northeastern field corn: infestation levels and the value of transgenic hybrids.

    Science.gov (United States)

    Bohnenblust, Eric; Breining, Jim; Fleischer, Shelby; Roth, Gregory; Tooker, John

    2013-06-01

    Corn earworm, Helicoverpa zea (Boddie), is a polyphagous noctuid pest of agricultural crops across the United States that is gaining attention as a pest of field corn. Before the introduction of transgenic insect-resistant hybrids, this pest was largely ignored in field corn, but now many Bacillus thuringiensis (Bt) corn hybrids have activity against corn earworm. However, the value of control in the northeastern United States is unclear because the risk posed by corn earworm to field corn has not been well characterized. To understand the threat from corn earworm and the value of Bt hybrids in field corn, we assessed corn earworm injury in Bt and non-Bt hybrids at 16 sites across four maturity zones throughout Pennsylvania in 2010, and 10 sites in 2011. We also used corn earworm captures from the PestWatch pheromone trapping network to relate moth activity to larval damage in field corn. Corn earworm damage was less than one kernel per ear at 21 of 26 sites over both years, and the percentage of ears damaged was generally Bt hybrids suppressed corn earworm damage relative to non-Bt hybrids, but we found no differences among Bt traits. Cumulative moth captures through July effectively predicted damage at the end of the season. Currently, the additional benefit of corn earworm control provided by Bt hybrids is typically less than US$4.00/ha in northeastern field corn.

  16. First records of freshwater molluscs from the ecological reserve El Edén, Quintana Roo, México Primeros registros de moluscos dulceacuícolas de la Reserva Ecológica El Edén, Quintana Roo, México

    Directory of Open Access Journals (Sweden)

    Roberto Cózatl-Manzano

    2007-12-01

    Full Text Available The diversity of the freshwater molluscs at El Edén was unknown. This is the first treatment of them, allowing us to compare spatial and temporal species distribution. Eleven species of freshwater molluscs were found in 2 surveys carried in March (dry season and September (rainy season 1998 at the reserve El Edén. A total of 266 individuals were collected; 8 pulmonates, Mayabina spiculata, Mexinauta impluviatus, Physa sp., Biomphalaria havanensis, Drepanotrema lucidum, Drepanotrema kermatoides, Planorbella (Pierosoma trivolvis, and Planorbula armigera; 2 prosobranchs, Pyrgophorus sp. and Pomacea flagellata; and one bivalve, Musculium transversum. Pulmonata dominate over Prosobranchia species in diversity. No significant differences were observed in diversity between dry and rainy seasons. However, species abundance recorded in both seasons was very low, probably due to a combination of inadequate food resources and disadvantageous climate (periodic conditions of drought and flooding. Further studies using a combination of different sampling methods and more frequent samplings are needed to confirm or identify these factors. We suggest that future studies should focus on cultivation of species with economic potential such as the apple snail Pomacea flagellata.La diversidad de moluscos dulceacuícolas de la Reserva Ecológica El Edén se desconocía; este estudio constituye su primer registro. Asimismo, esta investigación permite comparar la distribución espacial y temporal de las especies registradas. Las recolectas se efectuaron en marzo (temporada de sequía y septiembre (lluvia de 1998. Se registran 11 especies (266 individuos en total, 8 pulmonados: Mayabina spiculata, Mexinauta impluviatus, Physa sp., Biomphalaria havanensis, Drepanotrema lucidum, Drepanotrema kermatoides, Planorbella (Pierosoma trivolvis y Planorbula armigera; dos prosobranquios: Pyrgophorus sp. y Pomacea flagellata, y un bivalvo: Musculium transversum. Los pulmonados

  17. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  18. Nutrigenomics in Arma chinensis: transcriptome analysis of Arma chinensis fed on artificial diet and Chinese oak silk moth Antheraea pernyi pupae.

    Directory of Open Access Journals (Sweden)

    Deyu Zou

    Full Text Available BACKGROUND: The insect predator, Arma chinensis, is capable of effectively controlling many pests, such as Colorado potato beetle, cotton bollworm, and mirid bugs. Our previous study demonstrated several life history parameters were diminished for A. chinensis reared on an artificial diet compared to a natural food source like the Chinese oak silk moth pupae. The molecular mechanisms underlying the nutritive impact of the artificial diet on A. chinensis health are unclear. So we utilized transcriptome information to better understand the impact of the artificial diet on A. chinensis at the molecular level. METHODOLOGY/PRINCIPAL FINDINGS: Illumina HiSeq2000 was used to sequence 4.79 and 4.70 Gb of the transcriptome from pupae-fed and artificial diet-fed A. chinensis libraries, respectively, and a de novo transcriptome assembly was performed (Trinity short read assembler. This resulted in 112,029 and 98,724 contigs, clustered into 54,083 and 54,169 unigenes for pupae-fed and diet-fed A. chinensis, respectively. Unigenes from each sample's assembly underwent sequence splicing and redundancy removal to acquire non-redundant unigenes. We obtained 55,189 unigenes of A. chinensis, including 12,046 distinct clusters and 43,143 distinct singletons. Unigene sequences were aligned by BLASTx to nr, Swiss-Prot, KEGG and COG (E-value <10(-5, and further aligned by BLASTn to nt (E-value <10(-5, retrieving proteins of highest sequence similarity with the given unigenes along with their protein functional annotations. Totally, 22,964, 7,898, 18,069, 15,416, 8,066 and 5,341 unigenes were annotated in nr, nt, Swiss-Prot, KEGG, COG and GO, respectively. We compared gene expression variations and found thousands of genes were differentially expressed between pupae-fed and diet-fed A. chinensis. CONCLUSIONS/SIGNIFICANCE: Our study provides abundant genomic data and offers comprehensive sequence information for studying A. chinensis. Additionally, the physiological

  19. History of the sterile insect technique

    International Nuclear Information System (INIS)

    Klassen, W.; Curtis, C.F.

    2005-01-01

    During the 1930s and 1940s the idea of releasing insects of pest species to introduce sterility (sterile insect technique or SIT) into wild populations, and thus control them, was independently conceived in three extremely diverse intellectual environments. The key researchers were A. S. Serebrovskii at Moscow State University, F. L. Vanderplank at a tsetse field research station in rural Tanganyika (now Tanzania), and E. F. Knipling of the United States Department of Agriculture. Serebrovskii's work on chromosomal translocations for pest population suppression could not succeed in the catastrophic conditions in the USSR during World War II, after which he died. Vanderplank used hybrid sterility to suppress a tsetse population in a large field experiment, but lacked the resources to develop this method further. Knipling and his team exploited H. J. Muller's discovery that ionizing radiation can induce dominant lethal mutations, and after World War II this approach was applied on an area-wide basis to eradicate the New World screwworm Cochliomyia hominivorax (Coquerel) in the USA, Mexico, and Central America. Since then very effective programmes integrating the SIT have been mounted against tropical fruit flies, some species of tsetse flies Glossina spp., the pink bollworm Pectinophora gossypiella (Saunders), and the codling moth Cydia pomonella (L.). In non-isolated onion fields in the Netherlands, the onion maggot Delia antiqua (Meigen) has since 1981 been suppressed by the SIT. In the 1970s there was much research conducted on mosquito SIT, which then went into 'eclipse', but now appears to be reviving. Development of the SIT for use against the boll weevil Anthonomus grandis grandis Boheman and the gypsy moth Lymantria dispar (L.) has ended, but it is in progress for two sweetpotato weevil species, Cylas formicarius (F.) and Euscepes postfasciatus (Fairmaire), the false codling moth Cryptophlebia leucotreta (Meyrick), the carob moth Ectomyelois ceratoniae

  20. Soil microflora and enzyme activities in rhizosphere of Transgenic Bt cotton hybrid under different intercropping systems and plant protection schedules

    Science.gov (United States)

    Biradar, D. P.; Alagawadi, A. R.; Basavanneppa, M. A.; Udikeri, S. S.

    2012-04-01

    Field experiments were conducted over three rainy seasons of 2005-06 to 2007-08 on a Vertisol at Dharwad, Karnataka, India to study the effect of intercropping and plant protection schedules on productivity, soil microflora and enzyme activities in the rhizosphere of transgenic Bt cotton hybrid. The experiment consisted of four intercropping systems namely, Bt cotton + okra, Bt cotton + chilli, Bt cotton + onion + chilli and Bt cotton + redgram with four plant protection schedules (zero protection, protection for Bt cotton, protection for intercrop and protection for both crops). Observations on microbial populations and enzyme activities were recorded at 45, 90, 135 and 185 (at harvest) days after sowing (DAS). Averaged over years, Bt cotton + okra intercropping had significantly higher total productivity than Bt cotton + chilli and Bt cotton + redgram intercropping system and was similar to Bt cotton + chilli + onion intercropping system. With respect to plant protection schedules for bollworms, protection for both cotton and intercrops recorded significantly higher yield than the rest of the treatments. Population of total bacteria, fungi, actinomycetes, P-solubilizers, free-living N2 fixers as well as urease, phosphatase and dehydrogenase enzyme activities increased up to 135 days of crop growth followed by a decline. Among the intercropping systems, Bt cotton + chilli recorded significantly higher population of microorganisms and enzyme activities than other cropping systems. While Bt cotton with okra as intercrop recorded the least population of total bacteria and free-living N2 fixers as well as urease activity. Intercropping with redgram resulted in the least population of actinomycetes, fungi and P-solubilizers, whereas Bt cotton with chilli and onion recorded least activities of dehydrogenase and phosphatase. Among the plant protection schedules, zero protection recorded maximum population of microorganisms and enzyme activities. This was followed by the

  1. Insect and pest control newsletter. No. 59

    International Nuclear Information System (INIS)

    2002-07-01

    Analysis and implications of the meeting on 'Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection' that took place at FAO headquarters in Rome in April 2002 are discussed in this issue. This very timely meeting was jointly organized by FAO/IAEA and the International Plant Protection Convention (IPPC) secretariat and chaired by Alan Robinson. Experts in both the technology of transformation as well as regulatory procedures and risk assessment participated. Transgenic technology is now almost routinely used in many insect species and currently arthropod transgenesis is mainly concerned with the stability and fitness of these strains. These topics will probably be the main issues to be addressed in a new Coordinated Research Project (CRP), is being proposed for initiation in 2003. From the regulatory point of view, risk assessment is mainly focused on horizontal transmission and the impact on biodiversity, and these concerns will need to be addressed when moving on a case-by-case basis, from the laboratory through field cages to open field release. Regulatory approval in the USA for the first field cage release of genetically transformed arthropod (pink bollworm) provided a timely background for the meeting. The proceedings of the meeting should provide the basis for the rational development of the use of transgenic arthropods. Following resolutions by IAEA and also FAO governing bodies in support of the PATTEC initiative, that was launched by African Heads of State (reported in previous issues), several press releases and media reports have been issued on this topic. Of particular importance is a press release issued jointly by FAO, IAEA, OAU and WHO (text given inside this newsletter) at the beginning of the World Food Summit - Five Years Later, recently held in Rome in June 2002. This joint press release acknowledges the magnitude of the tsetse problem in tsetse-infested areas of sub-Saharan Africa, where about 85 percent of the poor

  2. Ensacamento de frutos do tomateiro visando ao controle de pragas e à redução de defensivos Paper bags for pest control and pesticide use reduction on tomato fruits

    Directory of Open Access Journals (Sweden)

    Alexandre Luis Jordão

    2002-06-01

    Full Text Available O ensacamento de frutos durante o seu desenvolvimento na planta, além do objetivo de controlar pragas pode reduzir resíduos de defensivos e manejar aspectos qualitativos. Com o objetivo de controle das pragas Neoleucinodes elegantalis, Helicoverpa zea e Tuta absoluta e redução de resíduos de inseticidas, pencas de tomates, foram ensacadas com papel-manteiga. Além do efeito do ensacamento, foram testados dois repelentes de insetos. Foram realizados cinco tratamentos. A eficiência do ensacamento e dos repelentes foi verificada por meio do número médio de lagartas encontradas por tratamento. A quantidade de resíduo de metamidofós encontrada nos frutos ensacados e nos frutos expostos diretamente à pulverização foi comparada ao limite máximo permitido. Verificou-se, também, a qualidade dos frutos produzidos pelo método do ensacamento através de análises físico-químicas dos tomates. Os custos do método do ensacamento foram comparados aos do método químico. O ensacamento, associado ou não aos repelentes, reduz o ataque das lagartas N. elegantalis e H. zea aos frutos. Para o controle de T. absoluta é necessária a integração com controle químico nas épocas de maior infestação. Os frutos não ensacados possuíam quantidade de metamidofós seis vezes superiores ao máximo tolerado e os frutos ensacados quantidade três vezes inferiores a este limite. O ensacamento das pencas de tomates não modificou os parâmetros físico-químicos dos frutos produzidos. O método do ensacamento requer maior investimento econômico, porém esse investimento atinge um mercado diferencial, com preços mais elevados.The development of fruits in paper bags aims at the control of pests, reduction of pesticide residues and the management of qualitative aspects. This work evaluates the efficacy of paper bags in combination with deodorant tablets and garlic clove on the control of the pest agents Neoleucinodes elegantalis, Helicoverpa zea and Tuta

  3. Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth

    Directory of Open Access Journals (Sweden)

    Xin-Cheng eZhao

    2014-10-01

    Full Text Available In the primary olfactory centre of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odours and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other reproductive isolation via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe, demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e. the mushroom body calyces and the lateral horn. In the study presented here, we have labelled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odours, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models of distinct uniglomerular projection neuron types into the relevant atlas.

  4. Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Tian, Donglan; Tooker, John; Peiffer, Michelle; Chung, Seung Ho; Felton, Gary W

    2012-10-01

    Trichomes contribute to plant resistance against herbivory by physical and chemical deterrents. To better understand their role in plant defense, we systemically studied trichome morphology, chemical composition and the response of the insect herbivores Helicoverpa zea and Leptinotarsa decemlineata (Colorado potato beetle = CPB) on the tomato hairless (hl), hairy (woolly) mutants and wild-type Rutgers (RU) and Alisa Craig (AC) plants. Hairless mutants showed reduced number of twisted glandular trichomes (types I, IV, VI and VII) on leaf and stem compared to wild-type Rutgers (RU), while woolly mutants showed high density of non-glandular trichomes (types II, III and V) but only on the leaf. In both mutants, trichome numbers were increased by methyl jasmonate (MeJA), but the types of trichomes present were not affected by MeJA treatment. Glandular trichomes contained high levels of monoterpenes and sesquiterpenes. A similar pattern of transcript accumulation was observed for monoterpene MTS1 (=TPS5) and sesquiterpene synthase SST1 (=TPS9) genes in trichomes. While high density of non-glandular trichome on leaves negatively influenced CPB feeding behavior and growth, it stimulated H. zea growth. High glandular trichome density impaired H. zea growth, but had no effect on CPB. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that glandular trichomes highly express protein inhibitors (PIN2), polyphenol oxidase (PPOF) and hydroperoxide lyase (HPL) when compared to non-glandular trichomes. The SlCycB2 gene, which participates in woolly trichome formation, was highly expressed in the woolly mutant trichomes. PIN2 in trichomes was highly induced by insect feeding in both mutant and wild-type plants. Thus, both the densities of trichomes and the chemical defenses residing in the trichomes are inducible.

  5. Regional pest suppression associated with widespread Bt maize adoption benefits vegetable growers.

    Science.gov (United States)

    Dively, Galen P; Venugopal, P Dilip; Bean, Dick; Whalen, Joanne; Holmstrom, Kristian; Kuhar, Thomas P; Doughty, Hélène B; Patton, Terry; Cissel, William; Hutchison, William D

    2018-03-27

    Transgenic crops containing the bacterium Bacillus thuringiensis (Bt) genes reduce pests and insecticide usage, promote biocontrol services, and economically benefit growers. Area-wide Bt adoption suppresses pests regionally, with declines expanding beyond the planted Bt crops into other non-Bt crop fields. However, the offsite benefits to growers of other crops from such regional suppression remain uncertain. With data spanning 1976-2016, we demonstrate that vegetable growers benefit via decreased crop damage and insecticide applications in relation to pest suppression in the Mid-Atlantic United States. We provide evidence for the regional suppression of Ostrinia nubilalis (Hübner), European corn borer, and Helicoverpa zea (Boddie), corn earworm, populations in association with widespread Bt maize adoption (1996-2016) and decreased economic levels for injury in vegetable crops [peppers ( Capsicum annuum L.), green beans ( Phaseolus vulgaris L.), and sweet corn ( Zea mays L., convar. saccharata )] compared with the pre-Bt period (1976-1995). Moth populations of both species significantly declined in association with widespread Bt maize (field corn) adoption, even as increased temperatures buffered the population reduction. We show marked decreases in the number of recommended insecticidal applications, insecticides applied, and O. nubilalis damage in vegetable crops in association with widespread Bt maize adoption. These offsite benefits to vegetable growers in the agricultural landscape have not been previously documented, and the positive impacts identified here expand on the reported ecological effects of Bt adoption. Our results also underscore the need to account for offsite economic benefits of pest suppression, in addition to the direct economic benefits of Bt crops.

  6. Effects of Interplanting Flowering Plants on the Biological Control of Corn Earworm (Lepidoptera: Noctuidae) and Thrips (Thysanoptera: Thripidae) in Sweet Corn.

    Science.gov (United States)

    Manandhar, Roshan; Wright, Mark G

    2016-02-01

    Natural enemy exploitation of food resources and alternative hosts in noncrop vegetation has been shown to be an effective means of enhancing natural enemy populations in diversified agro-ecosystem. Field trials were conducted in Hawaii to examine effects of interplanting flowering plants on 1) parasitism of corn earworm, Helicoverpa zea (Boddie) eggs by Trichogramma spp., and 2) abundance of Orius spp. in relation to prey (H. zea eggs and thrips [primarily, Frankliniella occidentalis (Pergande) and Frankliniella williamsi Hood]). Sweet corn (maize), Zea mays L., was interplanted with three flowering plants, buckwheat, Fagopyrum esculentum Moench, cowpea, Vigna unguiculata (L.), and sunn hemp, Crotolaria juncea L., at 2:1 and 4:1 (corn: flowering plant) ratios in 2009 and 2010, respectively. In 2009, the abundance of Orius spp. was significantly greater in the buckwheat-interplanted treatment compared to the monocrop control at similar levels of prey availability, indicating buckwheat flowers might have provided both prey and nectar resources. In 2010, cowpea and sunn hemp flowering plants provided a source of an alternate host insect's eggs for Trichogramma spp. oviposition, resulting in significantly higher parasitism of H. zea eggs in the cowpea- and sunn hemp-interplanted treatments compared to the monocrop control. Despite of differences in pest and natural enemy interactions in two field trials, our findings suggested that provisioning of an alternate host insect's eggs through flowering plants is an effective means for enhancing Trichogramma spp. and provisioning of both nectar and prey resources through flowering plants is important for enhancing predation by Orius spp. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Agronomical indicators and incidence of insect borers of tomato fruits protected with non-woven fabric bags

    Directory of Open Access Journals (Sweden)

    Rosenya Michely Cintra Filgueiras

    Full Text Available ABSTRACT: Fruit bagging is an efficient mechanical control technique used in fruit growing. However, to date, few studies have evaluated the efficacy of bagging in the cultivation of vegetables, including tomato crops. The objective of this study was to evaluate the effectiveness of bagging of tomato flowers and/or fruits using a non-woven fabric (NWF for the control of Helicoverpa spp., Neoleucinodes elegantalis, and Tuta absoluta, to evaluate the effect of this technique on the final yield, and determine the optimal period for bagging. Tests were conducted in a commercial crop of staked ‘Valerin’ tomato plants located in the municipality of Ubajara, Ceará State, Brazil. The experimental design was randomized blocks with a 2x4 factorial design (sprayed versus unsprayed plants, and both plant groups were bagged with NWF bags at different growth stages [flowers bagging, bagging of bunches of fruits with a diameter of 1.5cm, bagging of bunches of fruits with a diameter of 3.0cm, and unbagged bunches (control], with five repetitions. We evaluated the number of fruits per bunch, number of bunches per plant, weight of each fruit, longitudinal and transverse diameter, percentage of bored fruits, yield loss caused by insect infestation, and final yield. Bagging of ‘Valerin’ tomato bunches with NWF bags was effective for the control of N. elegantalis, and productivity increased by 21.5% when bagging was done in bunches of fruits with a diameter of 1.5cm compared with unbagged fruits; therefore, this growth period was the most suitable for bagging.

  8. Associations of planting date, drought stress, and insects with Fusarium ear rot and fumonisin B1 contamination in California maize.

    Science.gov (United States)

    Parsons, M W; Munkvold, G P

    2010-05-01

    Fusarium ear rot, caused by Fusarium verticillioides, is one of the most common diseases of maize, causing yield and quality reductions and contamination of grain by fumonisins and other mycotoxins. Drought stress and various insects have been implicated as factors affecting disease severity. Field studies were conducted to evaluate the interactions and relative influences of drought stress, insect infestation, and planting date upon Fusarium ear rot severity and fumonisin B1 contamination. Three hybrids varying in partial resistance to Fusarium ear rot were sown on three planting dates and subjected to four irrigation regimes to induce differing levels of drought stress. A foliar-spray insecticide treatment was imposed to induce differing levels of insect injury. Populations of thrips (Frankliniella spp.), damage by corn earworm (Helicoverpa zeae), Fusarium ear rot symptoms, and fumonisin B1 levels were assessed. There were significant effects of hybrid, planting date, insecticide treatment, and drought stress on Fusarium ear rot symptoms and fumonisin B1 contamination, and these factors also had significant interacting effects. The most influential factors were hybrid and insecticide treatment, but their effects were influenced by planting date and drought stress. The more resistant hybrids and the insecticide-treated plots consistently had lower Fusarium ear rot severity and fumonisin B1 contamination. Later planting dates typically had higher thrips populations, more Fusarium ear rot, and higher levels of fumonisin B1. Insect activity was significantly correlated with disease severity and fumonisin contamination, and the correlations were strongest for thrips. The results of this study confirm the influence of thrips on Fusarium ear rot severity in California, USA, and also establish a strong association between thrips and fumonisin B1 levels.

  9. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    Science.gov (United States)

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Biologia, Seleção e Avaliação de Linhagens de Trichogramma spp. para o Controle da Lagarta-da-Espiga em Milho Semente

    Directory of Open Access Journals (Sweden)

    Josemar Foresti

    2012-03-01

    Abstract. The objective was to study the biology of Trichogramma spp. in eggs of Anagasta kuehniella (Zeller and Helicoverpa zea (Boddie, select and evaluate a strain of the parasitoid to control of H. zea in corn seed. In the biology study was offered eggs of the natural and alternative host to Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman & Platner. To verify the potential of parasitism were offered 40 eggs of both hosts per parasitoid. In greenhouse, a study was conducted to determine the optimal number of parasitoids to be released by egg of H. zea. It was established 60 eggs of H. zea and varied the number of parasitoids. In the field were evaluated of parasitism with the release of 100, 200, 400 and 800 thousand parasitoids per hectare, chemical control and treatment without released and insecticide. In the biology study, the duration of egg – adult period and sex ratio of parasitoids were similar in the two hosts. The number of parasitoids generated per egg of A. kuehniella and H. zea varied from 1.10 to 1.20 and from 2.22 to 2.67, respectively. The capacity of parasitism of T. pretiosum female was 93.70 and 82.75 eggs of A. kuehniella and H. zea, respectively. In greenhouse, the percentage of parasitism of T. pretiosum had established when released 5.33 parasitoids per egg of H. zea. In field, the greater efficiency of control occurred where released 100 thousand parasitoids per hectare in four seasons from the observation of early infestation of H. zea.

  11. Isolation and Characterization of a Baculovirus Associated with the Insect Parasitoid Wasp, Cotesia marginiventris, or Its Host, Trichoplusia ni

    Science.gov (United States)

    Grasela, James J.; McIntosh, Arthur H.; Shelby, Kent S.; Long, Steve

    2008-01-01

    A multiple nucleopolyhedrovirus (MNPV) was isolated from Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) larvae that had been stung by the parasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). The wild type virus was plaque purified by infecting a Heliothis subflexa (BCIRL- HsAM1) cell line and isolating several clones. The mean estimated genomic size of this virus based on PstI, BstEII, StyI, HindIII restriction profiles was estimated to be 106 ± 2.5 kbp (mean±SE). A clone designated as TnMNPV/CmBCL9 was used in bioassays against several lepidopteran pests and in comparative studies with the baculoviruses AcMNPV, AgMNPV, AfMNPV, PxMNPV and HzSNPV of Autographa califomica, Anticarsia gemmatalis, Anagrapha falcifera, Plutella xylostella, and Helicoverpa zea, respectively. Infectivity studies showed that TnMNPV/CmBCL9 was highly infectious for Heliothis subflexa and T. ni, with an LC50 value 0.07 occlusion bodies/mm2 in both species and also infectious for H. zea and Heliothis virescens with LC50 values of 0.22 and 0.27 occlusion bodies/mm2, respectively. Restriction endonuclease analysis of the isolate and selected baculoviruses revealed profiles that were very similar to AfMNPV but different from the restriction endonuclease profiles of the other baculoviruses. Hybridization studies suggest that the TnMNPV/CmBCL9 was closely related to AfMNPV and AcMNPV-HPP. Further support for this comes from a phylogenetic analysis employing a split-graphs network, comparing the polh, egt, and p10 genes from TnMNPV/CmBCL9 with those from other baculoviruses and suggests that this virus is closely related to the AcMNPV variants, AfMNPV and RoMNPV of Rachiplusia ou. PMID:20334593

  12. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects.

    Science.gov (United States)

    Jing, Xiangfeng; Grebenok, Robert J; Behmer, Spencer T

    2014-08-01

    Insects lack the ability to synthesize sterols de novo so they acquire this essential nutrient from their food. Cholesterol is the dominant sterol found in most insects, but in plant vegetative tissue it makes up only a small fraction of the total sterol profile. Instead, plants mostly contain phytosterols; plant-feeding insects generate the majority of their cholesterol by metabolizing phytosterols. However, not all phytosterols are readily converted to cholesterol, and some are even deleterious when ingested above a threshold level. In a recent study we showed that caterpillars reared on tobacco accumulating novel sterols/steroids exhibited reduced performance, even when suitable sterols were present. In the current study we examined how the dominant sterols (cholesterol and stigmasterol) and steroids (cholestanol and cholestanone) typical of the modified tobacco plants affected two insect herbivores (Heliothis virescens and Helicoverpa zea). The sterols/steroids were incorporated into synthetic diets singly, as well as in various combinations, ratios and amounts. For each insect species, a range of performance values was recorded for two generations, with the eggs from the 1st-generation adults as the source of neonates for the 2nd-generation. Performance on the novel steroids (cholestanol and cholestanone) was extremely poor compared to suitable sterols (cholesterol and stigmasterol). Additionally, performance tended to decrease as the ratio of the novel dietary steroids increased. We discuss how the balance of different dietary sterols/steroids affected our two caterpillar species, relate this back to recent studies on sterol/steroid metabolism in these two species, and consider the potential application of sterol/steroid modification in crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants.

    Science.gov (United States)

    Schmelz, Eric A; Engelberth, Juergen; Alborn, Hans T; O'Donnell, Phillip; Sammons, Matt; Toshima, Hiroaki; Tumlinson, James H

    2003-09-02

    Phytohormones regulate the protective responses of plants against both biotic and abiotic stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. A bottleneck in crosstalk research is the quantification of numerous interacting phytohormones and regulators. The chemical analysis of salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid is typically achieved by using separate and complex methodologies. Moreover, pathogen-produced phytohormone mimics, such as the phytotoxin coronatine (COR), have not been directly quantified in plant tissues. We address these problems by using a simple preparation and a GC-MS-based metabolic profiling approach. Plant tissue is extracted in aqueous 1-propanol and mixed with dichloromethane. Carboxylic acids present in the organic layer are methylated by using trimethylsilyldiazomethane; analytes are volatilized under heat, collected on a polymeric absorbent, and eluted with solvent into a sample vial. Analytes are separated by using gas chromatography and quantified by using chemical-ionization mass spectrometry that produces predominantly [M+H]+ parent ions. We use this technique to examine levels of COR, phytohormones, and volatile organic compounds in model systems, including Arabidopsis thaliana during infection with Pseudomonas syringae pv. tomato DC3000, corn (Zea mays) under herbivory by corn earworm (Helicoverpa zea), tobacco (Nicotiana tabacum) after mechanical damage, and tomato (Lycopersicon esculentum) during drought stress. Numerous complex changes induced by pathogen infection, including the accumulation of COR, salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid illustrate the potential and simplicity of this approach in quantifying signaling crosstalk interactions that occur at the level of synthesis and accumulation.

  14. Manejo de lepidópteros-praga na cultura do milho com o evento Bt piramidado Cry1A.105 e Cry2Ab2

    Directory of Open Access Journals (Sweden)

    José Magid Waquil

    2013-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficácia do evento piramidado (MON 89034, que expressa as proteínas Cry1A.105 e Cry2Ab2, no controle dos principais lepidópteros-praga da cultura do milho no Brasil, Spodoptera frugiperda, Helicoverpa spp. e Diatraea saccharalis. Os ensaios foram conduzidos em quatro regiões do país, com o híbrido DKB 390, submetido a seis tratamentos: híbrido com o evento piramidado, híbrido com o evento que expressa apenas a proteína Cry1A(b (MON 810 e híbrido convencional (não Bt, todos com e sem manejo integrado de S. frugiperda. Para o evento piramidado, não foi necessário o controle químico em nenhum dos locais avaliados. Diferenças significativas foram observadas entre os tratamentos quanto aos danos e à presença de lagartas. Em geral, essas variáveis foram mais baixas no híbrido com o evento piramidado e mais altas no híbrido convencional, sem controle químico. Sob alta infestação, o controle químico reduziu os danos causados por S. frugiperda e D. saccharalis, tanto no evento que expressa apenas uma proteína, como no híbrido convencional. Com base nos danos causados pelos insetos, o evento piramidado Cry1A.105 e Cry2Ab2 é eficiente no controle dos principais lepidópteros-pragas do milho no Brasil.

  15. Survival of Corn Earworm (Lepidoptera: Noctuidae) on Bt Maize and Cross-Pollinated Refuge Ears From Seed Blends.

    Science.gov (United States)

    Crespo, André Luiz Barreto; Alves, Analiza Piovesan; Wang, Yiwei; Hong, Bonnie; Flexner, John Lindsey; Catchot, Angus; Buntin, David; Cook, Donald

    2016-02-01

    Refuge is mandated in the United States where genetically modified maize (Zea mays L.) expressing insecticidal proteins derived from Bacillus thuringiensis Berliner (Bt) are cultivated. Currently, refuge is deployed in different ways including blocks, field strips, or seed blends containing Bt and non-Bt maize. Seed blends provide practical advantages for refuge implementation. However, concerns related to the movement of insect larvae, potential differential survival of heterozygous resistant larvae, reduction in insect production, and cross-pollination of ears resulting in sublethal selection, have delayed seed blend use for Lepidoptera in the southern United States, where maize plantings are used as refuge for Helicoverpa zea (Boddie). In this study, we evaluated the relative survival of H. zea in Bt events and in seed blends compared with pure stand refuge and the relative survival of H. zea on the individual components of the pyramid 1507xMON810xMIR162. The results showed variation on the production of H. zea in refuge plants from seed blends compared with pure stand refuge plants. The relative survival of H. zea on the events 1507, MON810, MIR162, and 1507xMON810xMIR162 ranked similarly across the three locations tested. These results can be used in computer simulation modeling efforts to evaluate the feasibility of seed blends as a refuge deployment strategy with the pyramid 1507xMON810xMIR162. Because the reduction on survival of H. zea due to blending was variable, a sensitivity analysis that includes all possible scenarios of reduction in survival should be considered. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and cry2Ab2 expressed in Smartstax corn hybrids against lepidopteran insect pests in the northern United States.

    Science.gov (United States)

    Rule, D M; Nolting, S P; Prasifka, P L; Storer, N P; Hopkins, B W; Scherder, E F; Siebert, M W; Hendrix, W H

    2014-02-01

    Commercial field corn (Zea mays L.) hybrids transformed to express some or all of the lepidopteran insect-resistant traits present in SmartStax corn hybrids were evaluated for insecticidal efficacy against a wide range oflepidopteran corn pests common to the northern United States, during 2008 to 2011 at locations in 15 states. SmartStax hybrids contain a pyramid of two Bacillus thuringiensis (Bt) derived events for lepidopteran control: event TC1507 expressing Cry1F protein and MON 89034 expressing CrylA.105 + Cry2Ab2. These studies focused on characterization of the relative efficacy of each event when expressed alone or in combination, and compared with non-Bt hybrid. Corn hybrids containing pyramided insecticidal proteins Cry1F + Cry1A.105 + Cry2Ab2 (SmartStax) consistently showed reduced plant feeding damage by a wide range of lepidopteran larvae compared with single event and non-Bt hybrids. Corn hybrids expressing TC1507 or MON 89034 as single or pyramided events were consistently efficacious against Ostrinia nubilalis (Hübner). SmartStax hybrids had less injury from Agrotis ipsilon (Hufnagel) and Striacosta albicosta (Smith) than corn hybrids containing only event MON 89034 but were not more efficacious than single event TC1507 hybrids. Corn hybrids with event MON 89034 provided better control of Helicoverpa zea (Boddie), than event TC1507 alone. Spodoptera frugiperda (J.E. Smith) efficacy was higher for hybrids with pyramid events and single events compared with the non-Bt hybrids. The spectra of activity of events TC1507 and MON 89034 differed. The combination of TC1507 + MON 89034 provided redundant control of some pests where the spectra overlapped and thereby are expected to confer a resistance management benefit.

  17. A comparison of Bt transgene, hybrid background, water stress, and insect stress effects on corn leaf and ear injury and subsequent yield.

    Science.gov (United States)

    Brewer, Michael J; Odvody, Gary N; Anderson, Darwin J; Remmers, Jeffrey C

    2014-06-01

    Experimentally manipulated water and insect stresses were applied to field-grown corn with different Bacillus thuringiensis (Bt) transgenes and no Bt transgenes, and different nontransgenic hybrid backgrounds (2011 and 2012, Corpus Christi, TX). Differences in leaf injury, ear injury, and yield were detected among experimental factors and their interactions. Under high and low water stress, injury from noctuid larvae (Lepidoptera: Noctuidae) on leaves during vegetative growth (primarily from fall armyworm, Spodoptera frugiperda J.E. Smith) and on developing ears (primarily from corn earworm, Helicoverpa zea [Boddie]) was lowest on more recent releases of Bt hybrids (newer Bt hybrids) expressing Cry1A.105+Cry2Ab2 and Cry 3Bb1, compared with earlier Bt hybrids (older Bt hybrids) expressing Cry1Ab and Cry3Bb1 and non-Bt hybrids. High water stress led to increased leaf injury under substantial fall armyworm feeding pressure in 2011 (as high as 8.7 on a 1-9 scale of increasing injury). In contrast, ear injury by corn earworm (as high as 20 cm(2) of surface area of injury) was greater in low water stress conditions. Six hybrid backgrounds did not influence leaf injury, while ear injury differences across hybrid backgrounds were detected for non-Bt and older Bt hybrid versions. While newer Bt hybrids expressing Cry1A.105+Cry2Ab2 and Cry 3Bb1 had consistent low leaf injury and high yield and low but less consistent ear injury across six hybrid backgrounds, water stress was a key factor that influenced yield. Bt transgenes played a more variable and lesser role when interacting with water stress to affect yield. These results exemplify the interplay of water and insect stress with plant injury and yield, their interactions with Bt transgenes, and the importance of these interactions in considering strategies for Bt transgene use where water stress is common.

  18. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests.

    Science.gov (United States)

    Siebert, M W; Nolting, S P; Hendrix, W; Dhavala, S; Craig, C; Leonard, B R; Stewart, S D; All, J; Musser, F R; Buntin, G D; Samuel, L

    2012-10-01

    Studies were conducted across the southern United States to characterize the efficacy of multiple Bacillus thuringiensis (Bt) events in a field corn, Zea mays L., hybrid for control of common lepidopteran and coleopteran pests. Cry1F protein in event TC1507 and Cry1A.105 + Cry2Ab2 proteins in event MON 89034 were evaluated against pests infesting corn on above-ground plant tissue including foliage, stalks, and ears. Cry34Ab1/Cry35Ab1 proteins in event DAS-59122-7 and Cry3Bb1 in event MON 88017 were evaluated against the larvae of Mexican corn rootworm, Diabrotica virgifera zeae Krysan and Smith, which occur below-ground. Field corn hybrids containing Cry1F, Cry1A.105 + Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 insecticidal proteins (SmartStax) consistently demonstrated reductions in plant injury and/or reduced larval survivorship as compared with a non-Bt field corn hybrid. Efficacy provided by a field corn hybrid with multiple Bt proteins was statistically equal to or significantly better than corn hybrids containing a single event active against target pests. Single event field corn hybrids provided very high levels of control of southwestern corn borer, Diatraea grandiosella (Dyar), lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), and fall armyworm, Spodoptera frugiperda (J.E. Smith), and were not significantly different than field corn hybrids with multiple events. Significant increases in efficacy were observed for a field corn hybrid with multiple Bt events for sugarcane borer, Diatraea saccharalis (F.), beet armyworm, Spodoptera exigua (Hübner), corn earworm, Helicoverpa zea (Boddie), and Mexican corn rootworm. Utilization of field corn hybrids containing multiple Bt events provides a means for managing insect resistance to Bt proteins and reduces non-Bt corn refuge requirements.

  19. Yield Losses in Transgenic Cry1Ab and Non-Bt Corn as Assessed Using a Crop-Life-Table Approach.

    Science.gov (United States)

    Silva, Gerson A; Picanço, Marcelo C; Ferreira, Lino R; Ferreira, Dalton O; Farias, Elizeu S; Souza, Thadeu C; Rodrigues-Silva, Nilson; Pereira, Eliseu José G

    2018-02-09

    In this study, we constructed crop life tables for Bacillus thuringiensis Berliner (Bt) Cry1Ab and non-Bt corn hybrids, in which yield-loss factors and abundance of predaceous arthropods were recorded during 2 yr at two locations. Corn kernel/grain was the yield component that had the heaviest losses and that determined the overall yield loss in the corn hybrids across years and locations. Yield losses in both corn hybrids were primarily caused by kernel-destroying insects. Helicoverpa zea (Boddie) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) were the key loss factors at one location, while at the other, the key loss factor was the silk fly larvae, Euxesta spp. (Diptera: Ulidiidae). Although the realized yield of corn grains was not different (P > 0.05) between Cry1Ab and non-Bt corn hybrids, the Bt corn hybrid reduced (P corn fields. Various species of natural enemies were recorded, particularly the earwig Doru luteipes (Scudder) (Dermaptera: Forficulidae), which was the most abundant and frequent predaceous insect. These results indicate that integration of pest management practices should be pursued to effectively minimize losses by kernel-destroying insects during corn reproductive stages when growing non-Bt or certain low-dose Bt corn cultivars for fall armyworm and corn earworm, such as those producing Cry1Ab or other Cry toxins. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Cross-pollination of nontransgenic corn ears with transgenic Bt corn: efficacy against lepidopteran pests and implications for resistance management.

    Science.gov (United States)

    Burkness, E C; O'Rourke, P K; Hutchison, W D

    2011-10-01

    The efficacy of nontransgenic sweet corn, Zea mays L., hybrids cross-pollinated by Bacillus thuringiensis (Bt) sweet corn hybrids expressing Cry1Ab toxin was evaluated in both field and laboratory studies in Minnesota in 2000. Non-Bt and Bt hybrids (maternal plants) were cross-pollinated with pollen from both non-Bt and Bt hybrids (paternal plants) to create four crosses. Subsequent crosses were evaluated for efficacy in the field against European corn borer, Ostrinia nubilalis (Hübner), and corn earworm, Helicoverpa zea (Boddie), and in laboratory bioassays against O. nubilalis. Field studies indicated that crosses with maternal Bt plants led to low levels of survival for both O. nubilalis and H. zea compared with the non-Bt x non-Bt cross. However, the cross between non-Bt ears and Bt pollen led to survival rates of 43 and 63% for O. nubilalis and H. zea larvae, respectively. This intermediate level of survival also was reflected in the number of kernels damaged. Laboratory bioassays for O. nubilalis, further confirmed field results with larval survival on kernels from the cross between non-Bt ears and Bt pollen reaching 60% compared with non-Bt crossed with non-Bt. These results suggest that non-Bt refuge plants, when planted in proximity to Bt plants, and cross-pollinated, can result in sublethal exposure of O. nubilalis and H. zea larvae to Bt and may undermine the high-dose/refuge resistance management strategy for corn hybrids expressing Cry1Ab.

  1. A comparison of alternative plant mixes for conservation bio-control by native beneficial arthropods in vegetable cropping systems in Queensland Australia.

    Science.gov (United States)

    Qureshi, S A; Midmore, D J; Syeda, S S; Reid, D J

    2010-02-01

    Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly on four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted sig-nificantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hübner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to

  2. Evaluation of two cotton varieties CRSP1 and CRSP2 for genetic transformation efficiency, expression of transgenes Cry1Ac + Cry2A, GT gene and insect mortality

    Directory of Open Access Journals (Sweden)

    Arfan Ali

    2016-03-01

    Full Text Available Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/μl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/μl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23–90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.

  3. Evaluation of two cotton varieties CRSP1 and CRSP2 for genetic transformation efficiency, expression of transgenes Cry1Ac + Cry2A, GT gene and insect mortality.

    Science.gov (United States)

    Ali, Arfan; Ahmed, Shafique; Ahmad Nasir, Idrees; Rao, Abdul Qayyum; Ahmad, Saghir; Husnain, Tayyab

    2016-03-01

    Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized) earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/μl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/μl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23-90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.

  4. Environmental Distribution and Diversity of Insecticidal Proteins of Bacillus thuringiensis Berliner

    Directory of Open Access Journals (Sweden)

    Xavier, R.

    2007-01-01

    , however, the B. thuringiensis isolates BTRX-23 to BTRX-30 have two distinct protein profiles corresponding to 130 kDa and 68 kDa. These results show that there may be more than one B. thuringiensis strain that can infect Bombyx mori. The preliminary bioassay against second instar larvae of Heliothis armigera showed varying mortality rate. In conclusion, despite the ubiquitous presence of B. thuringiensis strains in different environments, specifically the sericulture environment supports B. thuringiensis in a significant manner compared to other environments. Further the ICPs produced by different strains of B. thuringiensis are unique in terms of the protein profile and hence may also differ in their insecticidal activities.

  5. Interference among cotton neighbours after differential reproductive damage.

    Science.gov (United States)

    Sadras, Victor O

    1997-02-01

    In indeterminate plant species, the rate of vegetative growth usually declines during the stage of active reproductive growth. Fruit shedding, as induced by insect herbivores, could counteract this decline. Due to the relative increase in vegetative growth, plants that have suffered reproductive damage could be better able to intercept light and acquire soil resources than undamaged plants. If so, plants with damaged neighbours might grow less than their counterparts with smaller, undamaged neighbours. This hypothesis was tested in high- and low-density cotton crops subjected to three treatments: (i) undamaged controls; (ii) uniformly damaged, in which all plants were damaged; (iii) non-uniformly damaged, in which every second plant was damaged. Damaged plants had their flowerbuds and young fruits manually removed at 85 days after sowing to simulate shedding as induced by Helicoverpa spp. (Lepidoptera) and mirid bugs (Hemiptera). As expected, damaged plants had greater leaf area and more vegetative dry matter than undamaged ones. This was most pronounced at high plant density. Neighbour status did not affect vegetative growth but it had a substantial, asymmetric effect on the reproductive growth of target plants. Damaged targets recovered to the level of undamaged controls in terms of total fruit number but had a large reduction in the mass of mature fruit due to the limited time available for recovery. The effect of neighbour status, if any, on the production of mature fruit in damaged targets was overridden by the limit imposed to recovery by the duration of the growing season. In contrast, neighbour status affected the production of mature fruit of undamaged targets: undamaged targets with damaged neighbours had 34% (low density) and 56% (high density) less mature fruit mass than their counterparts with undamaged neighbours. This was because (i) reproductive allocation and (ii) the proportion of total fruit that reached maturity in target plants declined with

  6. Use of natural enemies and biorational pest control of corne

    Directory of Open Access Journals (Sweden)

    Cipriano García Gutiérrez

    2012-09-01

    Full Text Available A general analysis of the potential use of natural enemies and biorational insecticides for control of main pests of corn in thestate of Sinaloa is presented. A discuss on their composition, dosage, toxicity and type of effect on beneficial organisms(natural enemies and pollinators is too included. The work revealed that is possible implement the use of these natural enemies and products for the control of neonate larvae of Spodoptera frugiperda fall armyworm (J. E Smith with Nomuraea rileyi (Farlow (Samson; against thrips Frankliniella occidentalis (Pergande using the nematodes Steinernema riobravis (Cabanillas and Poinar, S. feltiae (Filipjev and Heterorhabditis bacteriophora (Poinar at doses of 10,000 IJ (4x10 ~ IJ/m; against the corn silk fly Euxesta stigmatias (Loew encouraging the natural parasitism of Spalangia sp., while for the cutworm Agrotis ipsilon (Hufnagel can be with spinosad (soluble concentrate at doses of 0.123 kg a. i, and to the corn earwormHelicoverpa zea (Boddie using the analog of methoxyfenozide molting hormone (24% at 144 mg of a. i/L. The biorational control agents that not affect significantly to the natural enemies were the nucleopoliedrosis virus SfMNPV and SeMNPV; N. rileyi and Isaria fumosorosea (Wize; Bacillus thuringiensis (Berlinier; the azadirachtin (neem and parasitoids. In the case of products of chemical synthesis: Spinosad, oxymatrine and bifenthrin showed high rates of mortality in the control of corn pests, so these are considered as of high and moderate risk to Aphis mellifera (L. bees, the methoxyfenozide presented relatively low toxicity to natural enemies. In general, biorational products have repellent effect on larvae and adults of these insects, inhibit feeding and induce molting, also causing deformities and impede the development and growth, too interfere with sexual intercourse and copulate, reducing the oviposition, as well as cause sterility of adults, so these may also constitute a risk to

  7. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn

    Science.gov (United States)

    Dively, Galen P.; Finkenbinder, Chad

    2016-01-01

    Background Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. Methodology/Major Findings We present field monitoring data using Cry1Ab (1996–2016) and Cry1A.105+Cry2Ab2 (2010–2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab—event Bt11, and Cry1A.105+Cry2Ab2—event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. Conclusions/Significance After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt

  8. Lepidoptera (Crambidae, Noctuidae, and Pyralidae) Injury to Corn Containing Single and Pyramided Bt Traits, and Blended or Block Refuge, in the Southern United States.

    Science.gov (United States)

    Reisig, D D; Akin, D S; All, J N; Bessin, R T; Brewer, M J; Buntin, D G; Catchot, A L; Cook, D; Flanders, K L; Huang, F-N; Johnson, D W; Leonard, B R; Mcleod, P J; Porter, R P; Reay-Jones, F P F; Tindall, K V; Stewart, S D; Troxclair, N N; Youngman, R R; Rice, M E

    2015-02-01

    Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae); corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae); southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae); sugarcane borer, Diatraea saccharalis F. (Lepidoptera: Crambidae); and lesser cornstalk borer, Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), are lepidopteran pests of corn, Zea mays L., in the southern United States. Blended refuge for transgenic plants expressing the insecticidal protein derivative from Bacillus thuringiensis (Bt) has recently been approved as an alternative resistance management strategy in the northern United States. We conducted a two-year study with 39 experiments across 12 states in the southern United States to evaluate plant injury from these five species of Lepidoptera to corn expressing Cry1F and Cry1Ab, as both single and pyramided traits, a pyramid of Cry1Ab×Vip3Aa20, and a pyramid of Cry1F×Cry1Ab plus non-Bt in a blended refuge. Leaf injury and kernel damage from corn earworm and fall armyworm, and stalking tunneling by southwestern corn borer, were similar in Cry1F×Cry1Ab plants compared with the Cry1F×Cry1Ab plus non-Bt blended refuge averaged across five-plant clusters. When measured on an individual plant basis, leaf injury, kernel damage, stalk tunneling (southwestern corn borer), and dead or injured plants (lesser cornstalk borer) were greater in the blended non-Bt refuge plants compared to Cry1F×Cry1Ab plants in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment. When non-Bt blended refuge plants were compared to a structured refuge of non-Bt plants, no significant difference was detected in leaf injury, kernel damage, or stalk tunneling (southwestern corn borer). Plant stands in the non-Bt and pyramided Cry1F×Cry1Ab blended refuge treatment had more stalk tunneling from sugarcane borer and plant death from lesser cornstalk borer compared to a pyramided Cry1F×Cry1Ab structured refuge

  9. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn.

    Science.gov (United States)

    Dively, Galen P; Venugopal, P Dilip; Finkenbinder, Chad

    2016-01-01

    Transgenic corn engineered with genes expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Berliner) (Bt) are now a major tool in insect pest management. With its widespread use, insect resistance is a major threat to the sustainability of the Bt transgenic technology. For all Bt corn expressing Cry toxins, the high dose requirement for resistance management is not achieved for corn earworm, Helicoverpa zea (Boddie), which is more tolerant to the Bt toxins. We present field monitoring data using Cry1Ab (1996-2016) and Cry1A.105+Cry2Ab2 (2010-2016) expressing sweet corn hybrids as in-field screens to measure changes in field efficacy and Cry toxin susceptibility to H. zea. Larvae successfully damaged an increasing proportion of ears, consumed more kernel area, and reached later developmental stages (4th - 6th instars) in both types of Bt hybrids (Cry1Ab-event Bt11, and Cry1A.105+Cry2Ab2-event MON89034) since their commercial introduction. Yearly patterns of H. zea population abundance were unrelated to reductions in control efficacy. There was no evidence of field efficacy or tissue toxicity differences among different Cry1Ab hybrids that could contribute to the decline in control efficacy. Supportive data from laboratory bioassays demonstrate significant differences in weight gain and fitness characteristics between the Maryland H. zea strain and a susceptible strain. In bioassays with Cry1Ab expressing green leaf tissue, Maryland H. zea strain gained more weight than the susceptible strain at all concentrations tested. Fitness of the Maryland H. zea strain was significantly lower than that of the susceptible strain as indicated by lower hatch rate, longer time to adult eclosion, lower pupal weight, and reduced survival to adulthood. After ruling out possible contributing factors, the rapid change in field efficacy in recent years and decreased susceptibility of H. zea to Bt sweet corn provide strong evidence of field-evolved resistance in H

  10. Bt pollen dispersal and Bt kernel mosaics: integrity of non-Bt refugia for lepidopteran resistance management in maize.

    Science.gov (United States)

    Burkness, Eric C; Hutchison, W D

    2012-10-01

    Field trials were conducted at Rosemount, MN in 2009 and 2010, to measure pollen movement from Bt corn to adjacent blocks of non-Bt refuge corn. As the use of Bt corn hybrids continues to increase in the United States, and new insect resistance management (IRM) plans are implemented, it is necessary to measure the efficacy of these IRM plans. In Minnesota, the primary lepidopteran pests of corn include the European corn borer, Ostrinia nubilalis (Hübner) and corn earworm, Helicoverpa zea (Boddie). The primary IRM plan in transgenic corn is the use of hybrids expressing a high dose of insecticidal proteins and an insect refuge containing hybrids not expressing insecticidal proteins that produce susceptible insects. Wind-assisted pollen movement in corn occurs readily, and is the primary method of pollination for corn. The combination of pollen movement and viability determines the potential for cross pollination of refuge corn. In 2009 and 2010, cross pollination occurred with the highest frequency on the north and east sides of Bt corn fields, but was found at some level in all directions. Highest levels of cross pollination (75%) were found within the first four rows (3 m) of non-Bt corn adjacent to Bt corn, and in general decreasing levels of cross pollination were found the further the non-Bt corn was planted from the Bt corn. A mosaic of Bt cross-pollinated kernels was found throughout the ear, but in both years the ear tip had the highest percentage of cross-pollinated kernels; this pattern may be linked to the synchrony of pollen shed and silking between Bt and non-Bt corn hybrids. The dominant wind direction in both years was from WNW. However, in both years, there were also prevailing winds from SSW and WSW. Further studies are needed to quantify Bt levels in cross-pollinated kernels, measure the Bt dose of such kernels and associated lepidopteran pest survival, and measure the impact of Bt pollen on lepidopteran pests, particularly when considering the

  11. Impact of Lepidoptera (Crambidae, Noctuidae, and Pyralidae) Pests on Corn Containing Pyramided Bt Traits and a Blended Refuge in the Southern United States.

    Science.gov (United States)

    Reay-Jones, F P F; Bessin, R T; Brewer, M J; Buntin, D G; Catchot, A L; Cook, D R; Flanders, K L; Kerns, D L; Porter, R P; Reisig, D D; Stewart, S D; Rice, M E

    2016-08-01

    Blended refuge for transgenic plants expressing Bacillus thuringiensis (Bt) toxins has been approved in the northern United States as a resistance management strategy alternative to a structured refuge. A three-year study (2012-2014) was conducted with 54 trials across nine states in the southern United States to evaluate plant injury from lepidopteran pests of corn and yield in a corn hybrid expressing Cry1F × Cry1Ab × Vip3Aa20 (Pioneer Brand Optimum Leptra) planted as a pure stand and in refuge blends of 5, 10, and 20% in both early and late plantings. Injury by corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), was generally proportional to the percentage of non-Bt corn within each refuge blend. Across locations, ear injury in plots with 100% Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) corn ranged from no injury to a maximum of 0.42 cm(2) per ear in Mississippi in 2013. Leaf injury ratings in 100% non-Bt plots in early and late planted trials in 2014 were 86- and 70-fold greater than in 100% Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) plots. Plants in plots with blended refuges had significantly greater leaf injury in 2012 (5, 10, and 20% refuge blends), in the early-planted corn in 2013 (10 and 20% only), and in both early- and late-planted corn in 2014 (20% only) as compared with leaf injury in a pure stand of Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) seen during these years. Corn ears in plots with blended refuges also had significantly greater area of kernels injured in 2012 (5, 10, and 20%), in early- and late-planted corn in 2013 (5, 10, and 20%), and in early (10 and 20% only)- and late-planted corn (5, 10, and 20%) in 2014 as compared with ear injury in a pure stand of Cry1F × Cry1Ab × Vip3Aa20 (Optimum Leptra) seen during these years. Infestations of southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera

  12. Economics of area-wide pest control

    International Nuclear Information System (INIS)

    Mumford, J.D.

    2000-01-01

    Area-wide pest management is commonly practised throughout the world, probably much more so than is generally recognised (Lindquist 2000, Klassen 2000). Apart from highly publicised area-wide schemes such as the sterile insect technique (SIT) for fruit flies, pheromone disruption for cotton bollworms and classical biological control, there are many examples of actions such as concerted host plant eradication, enforced closed crop seasons, organised pesticide rotation for resistance management, coordination of resistant crop genotypes, etc., some going back several centuries, which should also be considered as area-wide practices. Each of these is faced with many of the economic issues generally associated with area-wide management which will be discussed below. In general, there are to be four major questions to answer in devising an area-wide pest management programme: 1) Should a particular pest be controlled locally or area-wide? 2) What is an appropriate area over which management should be attempted? 3) Within that area what form of control is most efficient? 4) What level of organisation should be used to get the job done? It should be noted that apart from clearly objective measures such as technical effectiveness (say, mortality) or cost efficiency (mortality per dollar), there are many subjective measures that come into the evaluation of area-wide control due to the element of risk (for example, in quarantine and eradication), the boundaries of externalities (for example, variable probabilities of pesticide drift under different conditions or target organism sensitivities) and time preferences for returns on capital investments (such as insect rearing facilities or research to develop pheromone technologies). As a result of these subjective components, it may sometimes be difficult to reach clearly agreed decisions based on objective economic analyses, even with a consensus on the data used. There are three general classes of economic problems in comparing

  13. Adoption of Bt Cotton: Threats and Challenges Adopción de Algodón Bt: Desafíos y Amenazas

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal Bilal

    2012-09-01

    Full Text Available Adopting new technology always involves advantages and risks; Bt cotton (Gossypium hirsutum L. is a new technology well known in developed countries for its many advantages, such as reduced pesticide application, better insect pest control, and higher lint yield. However, its success in developing countries is still a question mark. Global adoption of Bt cotton has risen dramatically from 0.76 million ha when introduced in 1996 to 7.85 million ha in the 2005 cotton-growing season where 54% of the cotton crops in the USA, 76% in China, and 80% in Australia were grown with single or multiple Bt genes. Bollworms are serious cotton pests causing 30-40% yield reduction in Pakistan and 20-66% potential crop losses in India. The major advances shown in this review include: (1 Evolution of Bt cotton may prove to be a green revolution to enhance cotton yield; (2 adoption of Bt cotton by farmers is increasing due to its beneficial environmental effects by reducing pesticide application: however, a high seed price has compelled farmers to use illegal non-approved Bt causing huge damage to crops because of low tolerance to insect pests; and (3 some factors responsible for changes in the efficiency of the Bt gene and Bt cotton yield include internal phenology (genetics, atmospheric changes (CO2 concentration, nutrition, insect pests, boll distribution pattern, disease and nematodes, removal of fruiting branch and/or floral bud, introduction of Bt gene, and terpenoids and tannin production in the plant body.La adopción de nueva tecnología siempre involucra ventajas y riesgos; algodón Bt (Gossypium hirsutum L. es una nueva tecnología bien conocida en países desarrollados por muchas ventajas como reducida aplicación de pesticidas, mejor control de insectos plaga, y mayor producción de fibra, pero su éxito en países en desarrollo aún conlleva dudas. La adopción global de algodón Bt ha aumentado dramáticamente de 0,76 millones de hectáreas en su

  14. New systems for the large-scale production of male tsetse flies (Diptera: Glossinidae)

    International Nuclear Information System (INIS)

    Opiyo, E.; Luger, D.; Robinson, A.S.

    2000-01-01

    emerge directly into the production cages in the right sex and number. This eliminates the need for manual sex separation before mating and the same procedure can be used to produce only males for release. For the SIT aerial release in Zanzibar, sterile flies were placed in boxes and dropped from an aircraft along predetermined flight paths. Boxes are expensive and require much space within the aircraft. For fruit flies, pink bollworms and screw-worms, a chilled adult release system was developed and this will also be required for future tsetse SIT programmes. Limited experiments were carried out on the long-term effects of chilling on male tsetse flies