International Nuclear Information System (INIS)
Gao Qing; Chen Huafu; Gong Qiyong
2009-01-01
Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.
Energy Technology Data Exchange (ETDEWEB)
Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)
2009-10-30
Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.
Decreased BOLD responses in audiovisual processing
Wiersinga-Post, Esther; Tomaskovic, Sonja; Slabu, Lavinia; Renken, Remco; de Smit, Femke; Duifhuis, Hendrikus
2010-01-01
Audiovisual processing was studied in a functional magnetic resonance imaging study using the McGurk effect. Perceptual responses and the brain activity patterns were measured as a function of audiovisual delay. In several cortical and subcortical brain areas, BOLD responses correlated negatively
Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise
Directory of Open Access Journals (Sweden)
Ali Fahim Khan
2015-01-01
Full Text Available Modeling the blood oxygenation level dependent (BOLD signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF.
Placental baseline conditions modulate the hyperoxic BOLD-MRI response.
Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne
2018-01-01
Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
The BOLD cerebrovascular reactivity response to progressive hypercapnia in young and elderly
DEFF Research Database (Denmark)
Bhogal, Alex A.; De Vis, Jill B.; Siero, Jeroen C.W.
2016-01-01
to broaden our interpretation of the BOLD-CVR response. Significant age-related differences were observed. Grey matter CVR at 7 mm Hg above resting PetCO2 was lower amongst elderly (0.19 ± 0.06%ΔBOLD/mm Hg) as compared to young subjects (0.26 ± 0.07%ΔBOLD/mm Hg). White matter CVR at 7 mm Hg above baseline...
Analysis of Time and Space Invariance of BOLD Responses in the Rat Visual System
DEFF Research Database (Denmark)
Bailey, Christopher; Sanganahalli, Basavaraju G; Herman, Peter
2012-01-01
Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level-dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from...... for general linear modeling (GLM) of BOLD responses. Light flashes induced high magnitude neural/BOLD responses reproducibly from both regions. However, neural/BOLD responses from SC and V1 were markedly different. SC signals followed the boxcar shape of the stimulation paradigm at all flash rates, whereas V1...... signals were characterized by onset/offset transients that exhibited different flash rate dependencies. We find that IRF(SC) is generally time-invariant across wider flash rate range compared with IRF(V1), whereas IRF(SC) and IRF(V1) are both space invariant. These results illustrate the importance...
DEFF Research Database (Denmark)
Asghar, Mohammed Sohail; Hansen, Adam E; Pedersen, Simon
2011-01-01
To examine the effect of acetazolamide, known to increase cerebral blood flow (CBF) and glyceryl trinitrate (GTN), known to increase cerebral blood volume (CBV) on the blood oxygenation level-dependent (BOLD) response in humans using 3 T magnetic resonance imaging (MRI), and to evaluate how...... pharmacological agents may modulate cerebral hemodynamic and thereby possibly the BOLD signal....
Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G
2018-01-31
Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.
Directory of Open Access Journals (Sweden)
Maxwell R Bennett
Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.
BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.
Eger, E; Henson, R N A; Driver, J; Dolan, R J
2004-08-01
Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.
Evolution of boldness and life-history in response to selective harvesting
DEFF Research Database (Denmark)
Andersen, Ken Haste; Marty, Lise; Arlinghaus, Robert
2018-01-01
Whether intensive harvesting alters the behavioral repertoire of exploited fishes is currently unknown, but plausible. We extend a fish life-history model to account for boldness as a personality trait that affects foraging intensity, which affects energy intake and risk from predation and fishing...... gear. We systematically investigate life-history and behavioral trait evolution along the boldness–timidity axis in response to the full range of common selectivity and exploitation patterns in fisheries. In agreement with previous studies, we find that any type of harvesting selects for fast life...... histories and that merely elevated, yet unselective, fishing mortality favors boldness. We also find that timid-selective fishing (which can be expected in species targeted by active gear types) selects for increased boldness. By contrast, increased timidity is predicted when fishing targets bolder...
International Nuclear Information System (INIS)
Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey
2012-01-01
Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional
Abnormal Striatal BOLD Responses to Reward Anticipation and Reward Delivery in ADHD
Furukawa, Emi; Bado, Patricia; Tripp, Gail; Mattos, Paulo; Wickens, Jeff R.; Bramati, Ivanei E.; Alsop, Brent; Ferreira, Fernanda Meireles; Lima, Debora; Tovar-Moll, Fernanda; Sergeant, Joseph A.; Moll, Jorge
2014-01-01
Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD. PMID:24586543
Development of BOLD signal hemodynamic responses in the human brain
Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.
2012-01-01
In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing
Correlations of noninvasive BOLD and TOLD MRI with pO2 and relevance to tumor radiation response.
Hallac, Rami R; Zhou, Heling; Pidikiti, Rajesh; Song, Kwang; Stojadinovic, Strahinja; Zhao, Dawen; Solberg, Timothy; Peschke, Peter; Mason, Ralph P
2014-05-01
To examine the potential use of blood oxygenation level dependent (BOLD) and tissue oxygenation level dependent (TOLD) contrast MRI to assess tumor oxygenation and predict radiation response. BOLD and TOLD MRI were performed on Dunning R3327-AT1 rat prostate tumors during hyperoxic gas breathing challenge at 4.7 T. Animals were divided into two groups. In Group 1 (n = 9), subsequent (19) F MRI based on spin lattice relaxation of hexafluorobenzene reporter molecule provided quantitative oximetry for comparison. For Group 2 rats (n = 13) growth delay following a single dose of 30 Gy was compared with preirradiation BOLD and TOLD assessments. Oxygen (100%O2 ) and carbogen (95%O2 /5%CO2 ) challenge elicited similar BOLD, TOLD and pO2 responses. Strong correlations were observed between BOLD or R2* response and quantitative (19) F pO2 measurements. TOLD response showed a general trend with weaker correlation. Irradiation caused a significant tumor growth delay and tumors with larger changes in TOLD and R1 values upon oxygen breathing exhibited significantly increased tumor growth delay. These results provide further insight into the relationships between oxygen sensitive (BOLD/TOLD) MRI and tumor pO2 . Moreover, a larger increase in R1 response to hyperoxic gas challenge coincided with greater tumor growth delay following irradiation. Copyright © 2013 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Casanova, R; Yang, L; Hairston, W D; Laurienti, P J; Maldjian, J A
2009-01-01
Recently we have proposed the use of Tikhonov regularization with temporal smoothness constraints to estimate the BOLD fMRI hemodynamic response function (HRF). The temporal smoothness constraint was imposed on the estimates by using second derivative information while the regularization parameter was selected based on the generalized cross-validation function (GCV). Using one-dimensional simulations, we previously found this method to produce reliable estimates of the HRF time course, especially its time to peak (TTP), being at the same time fast and robust to over-sampling in the HRF estimation. Here, we extend the method to include simultaneous temporal and spatial smoothness constraints. This method does not need Gaussian smoothing as a pre-processing step as usually done in fMRI data analysis. We carried out two-dimensional simulations to compare the two methods: Tikhonov regularization with temporal (Tik-GCV-T) and spatio-temporal (Tik-GCV-ST) smoothness constraints on the estimated HRF. We focus our attention on quantifying the influence of the Gaussian data smoothing and the presence of edges on the performance of these techniques. Our results suggest that the spatial smoothing introduced by regularization is less severe than that produced by Gaussian smoothing. This allows more accurate estimates of the response amplitudes while producing similar estimates of the TTP. We illustrate these ideas using real data. (note)
Directory of Open Access Journals (Sweden)
Hendrik eMandelkow
2016-03-01
Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these
Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task
International Nuclear Information System (INIS)
Aso, Toshihiko; Urayama, Shin-ichi; Fukuyama, Hidenao; Le Bihan, Denis
2013-01-01
Diffusion-weighted functional MRI (DfMRI) has been reported to have a different response pattern in the visual cortex than that of BOLD-fMRI. Especially, the DfMRI signal shows a constantly faster response at both onset and offset of the stimulus, suggesting that the DfMRI signal might be more directly linked to neuronal events than the hemodynamic response. However, because the DfMRI response also contains a residual sensitivity to BOLD this hypothesis has been challenged. Using a verbal working memory task we show that the DfMRI time-course features are preserved outside visual cortices, but also less liable to between-subject/between-regional variation than the BOLD response. The overall findings not only support the feasibility of DfMRI as an approach for functional brain imaging, but also strengthen the uniqueness of the DfMRI signal origin. (authors)
Sustained negative BOLD response in human fMRI finger tapping task.
Directory of Open Access Journals (Sweden)
Yadong Liu
Full Text Available In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD response (sNBR using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."
Sustained negative BOLD response in human fMRI finger tapping task.
Liu, Yadong; Shen, Hui; Zhou, Zongtan; Hu, Dewen
2011-01-01
In this work, we investigated the sustained negative blood oxygen level-dependent (BOLD) response (sNBR) using functional magnetic resonance imaging during a finger tapping task. We observed that the sNBR for this task was more extensive than has previously been reported. The cortical regions involved in sNBR are divided into the following three groups: frontal, somatosensory and occipital. By investigating the spatial structure, area, amplitude, and dynamics of the sNBR in comparison with those of its positive BOLD response (PBR) counterpart, we made the following observations. First, among the three groups, the somatosensory group contained the greatest number of activated voxels and the fewest deactivated voxels. In addition, the amplitude of the sNBR in this group was the smallest among the three groups. Second, the onset and peak time of the sNBR are both larger than those of the PBR, whereas the falling edge time of the sNBR is less than that of the PBR. Third, the long distance between most sNBR foci and their corresponding PBR foci makes it unlikely that they share the same blood supply artery. Fourth, the couplings between the sNBR and its PBR counterpart are distinct among different regions and thus should be investigated separately. These findings imply that the origin of most sNBR foci in the finger-tapping task is much more likely to be neuronal activity suppression rather than "blood steal."
fMRI BOLD response to the eyes task in offspring from multiplex alcohol dependence families.
Hill, Shirley Y; Kostelnik, Bryan; Holmes, Brian; Goradia, Dhruman; McDermott, Michael; Diwadkar, Vaibhav; Keshavan, Matcheri
2007-12-01
Increased susceptibility for developing alcohol dependence (AD) may be related to structural and functional differences in brain circuits that influence social cognition and more specifically, theory of mind (ToM). Alcohol dependent individuals have a greater likelihood of having deficits in social skills and greater social alienation. These characteristics may be related to inherited differences in the neuroanatomical network that comprises the social brain. Adolescent/young adult participants from multiplex AD families and controls (n = 16) were matched for gender, age, IQ, education, and handedness and administered the Eyes Task of Baron-Cohen during functional magnetic resonance imaging (fMRI). High-risk (HR) subjects showed significantly diminished blood oxygen level dependent (BOLD) response in comparison with low-risk control young adults in the right middle temporal gyrus (RMTG) and the left inferior frontal gyrus (LIFG), areas that have previously been implicated in ToM tasks. Offspring from multiplex families for AD may manifest one aspect of their genetic susceptibility by having a diminished BOLD response in brain regions associated with performance of ToM tasks. These results suggest that those at risk for developing AD may have reduced ability to empathize with others' state of mind, possibly resulting in diminished social skill.
Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients
DEFF Research Database (Denmark)
Arngrim, Nanna; Hougaard, Anders; Schytz, Henrik W
2018-01-01
was measured in the visual cortex ROIs V1-V5. Total cerebral blood flow (CBF) was calculated by measuring the blood velocity in the internal carotid arteries and the basilar artery using phase-contrast mapping (PCM) MRI. Hypoxia induced a greater decrease in BOLD response to visual stimulation in V1-V4 in MA......Experimentally induced hypoxia triggers migraine and aura attacks in patients suffering from migraine with aura (MA). We investigated the blood oxygenation level-dependent (BOLD) signal response to visual stimulation during hypoxia in MA patients and healthy volunteers. In a randomized double......-blind crossover study design, 15 MA patients were allocated to 180 min of normobaric poikilocapnic hypoxia (capillary oxygen saturation 70-75%) or sham (normoxia) on two separate days and 14 healthy volunteers were exposed to hypoxia. The BOLD functional MRI (fMRI) signal response to visual stimulation...
Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI.
Directory of Open Access Journals (Sweden)
Hiroshi Bandoh
Full Text Available Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka. The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl, which are homologous to the medial pallium (hippocampus in terrestrial vertebrates. Although the concentration of L-serine (1 mM in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM, the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.
Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis.
Directory of Open Access Journals (Sweden)
E Castaldi
2016-10-01
Full Text Available Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI. After surgery, six out of seven retinitis pigmentosa (RP blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD activity in V1 and the lateral geniculate nucleus (LGN was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation.
Directory of Open Access Journals (Sweden)
Miklós Sárvári
Full Text Available The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the
International Nuclear Information System (INIS)
Tsuchida, Takahiro; Kimura, Koji
2015-01-01
Equivalent non-Gaussian excitation method is proposed to obtain the moments up to the fourth order of the response of systems under non-Gaussian random excitation. The excitation is prescribed by the probability density and power spectrum. Moment equations for the response can be derived from the stochastic differential equations for the excitation and the system. However, the moment equations are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation. In the proposed method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by the second-order polynomial. In order to demonstrate the validity of the method, a linear system to non-Gaussian excitation with generalized Gaussian distribution is analyzed. The results show the method is applicable to non-Gaussian excitation with the widely different kurtosis and bandwidth. (author)
Carere, C.; Van Oers, K.
2004-01-01
A standard handling protocol was used to test the hypothesis that boldness predicts stress responsiveness in body temperature and breath rate. Great tit (Parus major) nestlings were taken from the field, hand reared until independence, and their response to a novel object was assessed. At the age of
Carere, C; van Oers, K
2004-01-01
A standard handling protocol was used to test the hypothesis that boldness predicts stress responsiveness in body temperature and breath rate. Great tit (Parus major) nestlings were taken from the field, hand reared until independence, and their response to a novel object was assessed. At the age of
International Nuclear Information System (INIS)
Tsuchida, Takahiro; Kimura, Koji
2016-01-01
Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; Van der Zwaag, W.
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and
Musso, Francesco; Konrad, Andreas; Vucurevic, Goran; Schäffner, Cornelius; Friedrich, Britta; Frech, Peter; Stoeter, Peter; Winterer, Georg
2006-02-15
Human cortical information processing is thought to be dominated by distributed activity in vector state space (Churchland, P.S., Sejnowski, T.J., 1992. The Computational Brain. MIT Press, Cambridge.). In principle, it should be possible to quantify distributed brain activation with independent component analysis (ICA) through vector-based decomposition, i.e., through a separation of a mixture of sources. Using event-related functional magnetic resonance imaging (fMRI) during a selective attention-requiring task (visual oddball), we explored how the number of independent components within activated cortical areas is related to reaction time. Prior to ICA, the activated cortical areas were determined on the basis of a General linear model (GLM) voxel-by-voxel analysis of the target stimuli (checkerboard reversal). Two activated cortical areas (temporoparietal cortex, medial prefrontal cortex) were further investigated as these cortical regions are known to be the sites of simultaneously active electromagnetic generators which give rise to the compound event-related potential P300 during oddball task conditions. We found that the number of independent components more strongly predicted reaction time than the overall level of "activation" (GLM BOLD-response) in the left temporoparietal area whereas in the medial prefrontal cortex both ICA and GLM predicted reaction time equally well. Comparable correlations were not seen when principle components were used instead of independent components. These results indicate that the number of independently activated components, i.e., a high level of cortical activation complexity in cortical vector state space, may index particularly efficient information processing during selective attention-requiring tasks. To our best knowledge, this is the first report describing a potential relationship between neuronal generators of cognitive processes, the associated electrophysiological evidence for the existence of distributed networks
Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables.
Directory of Open Access Journals (Sweden)
Henning U Voss
2010-12-01
Full Text Available How well a songbird learns a song appears to depend on the formation of a robust auditory template of its tutor's song. Using functional magnetic resonance neuroimaging we examine auditory responses in two groups of zebra finches that differ in the type of song they sing after being tutored by birds producing stuttering-like syllable repetitions in their songs. We find that birds that learn to produce the stuttered syntax show attenuated blood oxygenation level-dependent (BOLD responses to tutor's song, and more pronounced responses to conspecific song primarily in the auditory area field L of the avian forebrain, when compared to birds that produce normal song. These findings are consistent with the presence of a sensory song template critical for song learning in auditory areas of the zebra finch forebrain. In addition, they suggest a relationship between an altered response related to familiarity and/or saliency of song stimuli and the production of variant songs with stuttered syllables.
Nestor, Adrian; Vettel, Jean M; Tarr, Michael J
2013-11-01
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.
BOLD responses in somatosensory cortices better reflect heat sensation than pain.
Moulton, Eric A; Pendse, Gautam; Becerra, Lino R; Borsook, David
2012-04-25
The discovery of cortical networks that participate in pain processing has led to the common generalization that blood oxygen level-dependent (BOLD) responses in these areas indicate the processing of pain. Physical stimuli have fundamental properties that elicit sensations distinguishable from pain, such as heat. We hypothesized that pain intensity coding may reflect the intensity coding of heat sensation during the presentation of thermal stimuli during fMRI. Six 3T fMRI heat scans were collected for 16 healthy subjects, corresponding to perceptual levels of "low innocuous heat," "moderate innocuous heat," "high innocuous heat," "low painful heat," "moderate painful heat," and "high painful heat" delivered by a contact thermode to the face. Subjects rated pain and heat intensity separately after each scan. A general linear model analysis detected different patterns of brain activation for the different phases of the biphasic response to heat. During high painful heat, the early phase was associated with significant anterior insula and anterior cingulate cortex activation. Persistent responses were detected in the right dorsolateral prefrontal cortex and inferior parietal lobule. Only the late phase showed significant correlations with perceptual ratings. Significant heat intensity correlated activation was identified in contralateral primary and secondary somatosensory cortices, motor cortex, and superior temporal lobe. These areas were significantly more related to heat ratings than pain. These results indicate that heat intensity is encoded by the somatosensory cortices, and that pain evaluation may either arise from multimodal evaluative processes, or is a distributed process.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
International Nuclear Information System (INIS)
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-01-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Energy Technology Data Exchange (ETDEWEB)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
International Nuclear Information System (INIS)
Rabrait, C.
2006-01-01
The hemodynamic impulse response to any short stimulus typically lasts around 20 seconds. Thus, the detection of the Blood Oxygenation Level Dependent (BOLD) effect is usually performed using a 2D Echo Planar Imaging (EPI) sequence, with repetition times on the order of 1 or 2 seconds. This temporal resolution is generally enough for detection purposes. Nevertheless, when trying to accurately estimate the hemodynamic response functions (HRF), higher scanning rates represent a real advantage. Thus, in order to reach a temporal resolution around 200 ms, we developed a new acquisition method, based on Echo Volumar Imaging and 2D parallel acquisition (1). Echo Volumar Imaging (EVI) has been proposed in 1977 by Mansfield (2). EVI intrinsically possesses a lot of advantages for functional neuroimaging, as a 3 D single shot acquisition method. Nevertheless, to date, only a few applications have been reported (3, 4). Actually, very restricting hardware requirements make EVI difficult to perform in satisfactory experimental conditions, even today. The critical point in EVI is the echo train duration, which is longer than in EPI, due to 3D acquisition. Indeed, at equal field of view and spatial resolutions, EVI echo train duration must be approximately equal to EPI echo train duration multiplied by the number of slices acquired in EPI. Consequently, EVI is much more sensitive than EPI to geometric distortions, which are related to phase errors, and also to signal losses, which are due to long echo times (TE). Thus, a first improvement has been brought by 'zoomed' or 'localized' EVI (5), which allows to focus on a small volume of interest and thus limit echo train durations compared to full FOV acquisitions.To reduce echo train durations, we chose to apply parallel acquisition. Moreover, since EVI is a 3D acquisition method, we are able to perform parallel acquisition and SENSE reconstruction along the two phase directions (6). The R = 4 under-sampling consists in the
Effect of CGRP and sumatriptan on the BOLD response in visual cortex
DEFF Research Database (Denmark)
Asghar, Mohammed Sohail; Hansen, Adam E; Larsson, Henrik B W
2012-01-01
To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug......% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual...... sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 µg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77...
Towse, Theodore F; Elder, Christopher P; Bush, Emily C; Klockenkemper, Samuel W; Bullock, Jared T; Dortch, Richard D; Damon, Bruce M
2016-12-01
Muscle blood oxygenation-level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre-contraction signal intensity were observed in the soleus muscle. We observed considerable inter-subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects (n = 7) repeated the contraction protocol at two different repetition times (T R : 1000 and 2500 ms) to determine the potential of T 1 -related inflow effects on the magnitude of the post-contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T R values (3.8 ± 0.9 versus 4.0 ± 0.6% for T R = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post-contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction. Copyright © 2016 John Wiley & Sons, Ltd.
Characterisation of random Gaussian and non-Gaussian stress processes in terms of extreme responses
Directory of Open Access Journals (Sweden)
Colin Bruno
2015-01-01
Full Text Available In the field of military land vehicles, random vibration processes generated by all-terrain wheeled vehicles in motion are not classical stochastic processes with a stationary and Gaussian nature. Non-stationarity of processes induced by the variability of the vehicle speed does not form a major difficulty because the designer can have good control over the vehicle speed by characterising the histogram of instantaneous speed of the vehicle during an operational situation. Beyond this non-stationarity problem, the hard point clearly lies in the fact that the random processes are not Gaussian and are generated mainly by the non-linear behaviour of the undercarriage and the strong occurrence of shocks generated by roughness of the terrain. This non-Gaussian nature is expressed particularly by very high flattening levels that can affect the design of structures under extreme stresses conventionally acquired by spectral approaches, inherent to Gaussian processes and based essentially on spectral moments of stress processes. Due to these technical considerations, techniques for characterisation of random excitation processes generated by this type of carrier need to be changed, by proposing innovative characterisation methods based on time domain approaches as described in the body of the text rather than spectral domain approaches.
Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation.
Directory of Open Access Journals (Sweden)
Anders Hougaard
Full Text Available Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks.
Multiple Response Regression for Gaussian Mixture Models with Known Labels.
Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng
2012-12-01
Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.
Directory of Open Access Journals (Sweden)
Yahya Aghakhani
2015-01-01
Conclusions: iEEG-fMRI is a feasible and low-risk method for assessment of hemodynamic changes of very focal IEDs that may not be recorded by scalp EEG. A high concordance rate between the location of the BOLD response and IEDs was seen for mesial temporal (6/7 IEDs. Significant BOLD activation was also seen in areas distant from the active electrode and these sites exhibited maximal BOLD activation in the majority of cases. This implies that iEEG-fMRI may further describe the areas involved in the generation of IEDs beyond the vicinity of the electrode(s.
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske
2018-02-20
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.
Hadi, Shamil M.; Siadat, Mohamad R.; Babajani-Feremi, Abbas
2012-03-01
We investigated the effect of synaptic serotonin concentration on hemodynamic responses. The stimuli paradigm involved the presentation of fearful and threatening facial expressions to a set of 24 subjects who were either5HTTLPR long- or short-allele carriers (12 of each type in each group). The BOLD signals of the rACC from subjects of each group were averaged to increase the signal-to-noise ratio. We used a Bayesian approach to estimate the parameters of the underlying hemodynamic model. Our results, during this perceptual processing of emotional task, showed a negative BOLD signal in the rACC in the subjects with long-alleles. In contrast, the subjects with short-alleles showed positive BOLD signals in the rACC. These results suggest that high synaptic serotonin concentration in the rACC inhibits neuronal activity in a fashion similar to GABA, and a consequent negative BOLD signal ensues.
Directory of Open Access Journals (Sweden)
Kelsey Moore
2016-11-01
Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY
Furey, Maura L; Drevets, Wayne C; Szczepanik, Joanna; Khanna, Ashish; Nugent, Allison; Zarate, Carlos A
2015-03-28
Faster acting antidepressants and biomarkers that predict treatment response are needed to facilitate the development of more effective treatments for patients with major depressive disorders. Here, we evaluate implicitly and explicitly processed emotional faces using neuroimaging to identify potential biomarkers of treatment response to the antimuscarinic, scopolamine. Healthy participants (n=15) and unmedicated-depressed major depressive disorder patients (n=16) participated in a double-blind, placebo-controlled crossover infusion study using scopolamine (4 μg/kg). Before and following scopolamine, blood oxygen-level dependent signal was measured using functional MRI during a selective attention task. Two stimuli comprised of superimposed pictures of faces and houses were presented. Participants attended to one stimulus component and performed a matching task. Face emotion was modulated (happy/sad) creating implicit (attend-houses) and explicit (attend-faces) emotion processing conditions. The pretreatment difference in blood oxygen-level dependent response to happy and sad faces under implicit and explicit conditions (emotion processing biases) within a-priori regions of interest was correlated with subsequent treatment response in major depressive disorder. Correlations were observed exclusively during implicit emotion processing in the regions of interest, which included the subgenual anterior cingulate (Pemotional faces prior to treatment reflect the potential to respond to scopolamine. These findings replicate earlier results, highlighting the potential for pretreatment neural activity in the middle occipital cortices and subgenual anterior cingulate to inform us about the potential to respond clinically to scopolamine. Published by Oxford University Press on behalf of CINP 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H
2017-02-15
Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.
Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M
2016-06-01
Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.
Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin
2018-01-01
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Atabaki, A; Dicke, P W; Karnath, H-O; Thier, P
2013-04-01
Visual scenes explored covertly are initially represented in a retinal frame of reference (FOR). On the other hand, 'later' stages of the cortical network allocating spatial attention most probably use non-retinal or non-eye-centred representations as they may ease the integration of different sensory modalities for the formation of supramodal representations of space. We tested if the cortical areas involved in shifting covert attention are based on eye-centred or non-eye-centred coding by using functional magnetic resonance imaging. Subjects were scanned while detecting a target item (a regularly oriented 'L') amidst a set of distractors (rotated 'L's). The array was centred either 5° right or left of the fixation point, independent of eye-gaze orientation, the latter varied in three steps: straight relative to the head, 10° left or 10° right. A quantitative comparison of the blood-oxygen-level-dependent (BOLD) responses for the three eye-gaze orientations revealed stronger BOLD responses in the right intraparietal sulcus (IPS) and the right frontal eye field (FEF) for search in the contralateral (i.e. left) eye-centred space, independent of whether the array was located in the right or left head-centred hemispace. The left IPS showed the reverse pattern, i.e. an activation by search in the right eye-centred hemispace. In other words, the IPS and the right FEF, members of the cortical network underlying covert search, operate in an eye-centred FOR. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Directory of Open Access Journals (Sweden)
Salem Boussida
Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may
Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A
2000-11-01
Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.
Directory of Open Access Journals (Sweden)
Simone C Bosshard
Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.
Mitchell, Rachel L C
2010-05-01
Selective attention is popularly assessed with colour Stroop tasks in which participants name the ink colour of colour words, whilst resisting interference from the natural tendency to read the words. Prior studies hinted that the key brain regions (dorsolateral prefrontal (dlPFC) and anterior cingulate cortex (ACC)) may vary their degree of involvement, dependent on attentional demand. This study aimed to determine whether a parametrically varied increase in attentional demand resulted in linearly increased activity in these regions, and/or whether additional regions would be recruited during high attentional demand. Twenty-eight healthy young adults underwent fMRI whilst naming the font colour of colour words. Linear increases in BOLD response were assessed with increasing percentage incongruent trials per block (0, 20, 40, 60, 80, and 100%). Whilst ACC activation increased linearly according to incongruity level, dlPFC activity appeared constant. Together with behavioural evidence of reduced Stroop interference, these data support a load-dependent conflict-related response in ACC, but not dlPFC.
Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping
Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.
This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response
Directory of Open Access Journals (Sweden)
Peter F. Cook
2014-09-01
Full Text Available Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler, an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer. A group-level psychophysiological interaction (PPI connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications
Directory of Open Access Journals (Sweden)
Pai-Feng Yang
Full Text Available The objective of this study was to compare the functional connectivity of the lateral and medial thalamocortical pain pathways by investigating the blood oxygen level-dependent (BOLD activation patterns in the forebrain elicited by direct electrical stimulation of the ventroposterior (VP and medial (MT thalamus. An MRI-compatible stimulation electrode was implanted in the VP or MT of α-chloralose-anesthetized rats. Electrical stimulation was applied to the VP or MT at various intensities (50 µA to 300 µA and frequencies (1 Hz to 12 Hz. BOLD responses were analyzed in the ipsilateral forelimb region of the primary somatosensory cortex (iS1FL after VP stimulation and in the ipsilateral cingulate cortex (iCC after MT stimulation. When stimulating the VP, the strongest activation occurred at 3 Hz. The stimulation intensity threshold was 50 µA and the response rapidly peaked at 100 µA. When stimulating the MT, The optimal frequency for stimulation was 9 Hz or 12 Hz, the stimulation intensity threshold was 100 µA and we observed a graded increase in the BOLD response following the application of higher intensity stimuli. We also evaluated c-Fos expression following the application of a 200-µA stimulus. Ventroposterior thalamic stimulation elicited c-Fos-positivity in few cells in the iS1FL and caudate putamen (iCPu. Medial thalamic stimulation, however, produced numerous c-Fos-positive cells in the iCC and iCPu. The differential BOLD responses and c-Fos expressions elicited by VP and MT stimulation indicate differences in stimulus-response properties of the medial and lateral thalamic pain pathways.
Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.
2015-01-01
Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164
Directory of Open Access Journals (Sweden)
Abhishek Mahajan
2016-01-01
Conclusion: Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.
Rymarczyk, Krystyna; Żurawski, Łukasz; Jankowiak-Siuda, Kamila; Szatkowska, Iwona
2018-01-01
Facial mimicry (FM) is an automatic response to imitate the facial expressions of others. However, neural correlates of the phenomenon are as yet not well established. We investigated this issue using simultaneously recorded EMG and BOLD signals during perception of dynamic and static emotional facial expressions of happiness and anger. During display presentations, BOLD signals and zygomaticus major (ZM), corrugator supercilii (CS) and orbicularis oculi (OO) EMG responses were recorded simultaneously from 46 healthy individuals. Subjects reacted spontaneously to happy facial expressions with increased EMG activity in ZM and OO muscles and decreased CS activity, which was interpreted as FM. Facial muscle responses correlated with BOLD activity in regions associated with motor simulation of facial expressions [i.e., inferior frontal gyrus, a classical Mirror Neuron System (MNS)]. Further, we also found correlations for regions associated with emotional processing (i.e., insula, part of the extended MNS). It is concluded that FM involves both motor and emotional brain structures, especially during perception of natural emotional expressions. PMID:29467691
Larger Neural Responses Produce BOLD Signals That Begin Earlier in Time
Directory of Open Access Journals (Sweden)
Serena eThompson
2014-06-01
Full Text Available Functional MRI analyses commonly rely on the assumption that the temporal dynamics of hemodynamic response functions (HRFs are independent of the amplitude of the neural signals that give rise to them. The validity of this assumption is particularly important for techniques that use fMRI to resolve sub-second timing distinctions between responses, in order to make inferences about the ordering of neural processes. Whether or not the detailed shape of the HRF is independent of neural response amplitude remains an open question, however. We performed experiments in which we measured responses in primary visual cortex (V1 to large, contrast-reversing checkerboards at a range of contrast levels, which should produce varying amounts of neural activity. Ten subjects (ages 22-52 were studied in each of two experiments using 3 Tesla scanners. We used rapid, 250 msec, temporal sampling (repetition time, or TR and both short and long inter-stimulus interval (ISI stimulus presentations. We tested for a systematic relationship between the onset of the HRF and its amplitude across conditions, and found a strong negative correlation between the two measures when stimuli were separated in time (long- and medium-ISI experiments, but not the short-ISI experiment. Thus, stimuli that produce larger neural responses, as indexed by HRF amplitude, also produced HRFs with shorter onsets. The relationship between amplitude and latency was strongest in voxels with lowest mean-normalized variance (i.e., parenchymal voxels. The onset differences observed in the longer-ISI experiments are likely attributable to mechanisms of neurovascular coupling, since they are substantially larger than reported differences in the onset of action potentials in V1 as a function of response amplitude.
Nagel, Irene E.; Preuschhof, Claudia; Li, Shu-Chen; Nyberg, Lars; Backman, Lars; Lindenberger, Ulman; Heekeren, Hauke R.
2011-01-01
Individual differences in working memory (WM) performance have rarely been related to individual differences in the functional responsivity of the WM brain network. By neglecting person-to-person variation, comparisons of network activity between younger and older adults using functional imaging techniques often confound differences in activity…
Effects of intranasal insulin application on the hypothalamic BOLD response to glucose ingestion
DEFF Research Database (Denmark)
van Opstal, Anna M.; Akintola, Abimbola A.; Elst, Marjan van der
2017-01-01
The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease. In this s......The hypothalamus is a crucial structure in the brain that responds to metabolic cues and regulates energy homeostasis. Patients with type 2 diabetes demonstrate a lack of hypothalamic neuronal response after glucose ingestion, which is suggested to be an underlying cause of the disease...... effect. Our data provide proof of concept for future experiments testing the potential of intranasal application of insulin to ameliorate defective homeostatic control in patients with type 2 diabetes....
Hermans, Erno J; Bos, Peter A; Ossewaarde, Lindsey; Ramsey, Nick F; Fernández, Guillén; van Honk, Jack
2010-08-01
Correlational evidence in humans shows that levels of the androgen hormone testosterone are positively related to reinforcement sensitivity and competitive drive. Structurally similar anabolic-androgenic steroids (AAS) are moreover widely abused, and animal studies show that rodents self-administer testosterone. These observations suggest that testosterone exerts activational effects on mesolimbic dopaminergic pathways involved in incentive processing and reinforcement regulation. However, there are no data on humans supporting this hypothesis. We used functional magnetic resonance imaging (fMRI) to investigate the effects of testosterone administration on neural activity in terminal regions of the mesolimbic pathway. In a placebo-controlled double-blind crossover design, 12 healthy women received a single sublingual administration of .5 mg of testosterone. During MRI scanning, participants performed a monetary incentive delay task, which is known to elicit robust activation of the ventral striatum during reward anticipation. Results show a positive main effect of testosterone on the differential response in the ventral striatum to cues signaling potential reward versus nonreward. Notably, this effect interacted with levels self-reported intrinsic appetitive motivation: individuals with low intrinsic appetitive motivation exhibited larger testosterone-induced increases but had smaller differential responses after placebo. Thus, the present study lends support to the hypothesis that testosterone affects activity in terminal regions of the mesolimbic dopamine system but suggests that such effects may be specific to individuals with low intrinsic appetitive motivation. By showing a potential mechanism underlying central reinforcement of androgen use, the present findings may moreover have implications for our understanding of the pathophysiology of AAS dependency. Copyright 2010 Elsevier Inc. All rights reserved.
Limits of 2D-TCA in detecting BOLD responses to epileptic activity.
Khatamian, Yasha Borna; Fahoum, Firas; Gotman, Jean
2011-05-01
Two-dimensional temporal clustering analysis (2D-TCA) is a relatively new functional MRI (fMRI) based technique that breaks blood oxygen level dependent activity into separate components based on timing and has shown potential for localizing epileptic activity independently of electroencephalography (EEG). 2D-TCA has only been applied to detect epileptic activity in a few studies and its limits in detecting activity of various forms (i.e. activation size, amplitude, and frequency) have not been investigated. This study evaluated 2D-TCA's ability to detect various forms of both simulated epileptic activity and EEG-fMRI activity detected in patients. When applied to simulated data, 2D-TCA consistently detected activity in 6min runs containing 5 spikes/run, 10 spikes/run, and one 5s long event with hemodynamic response function amplitudes of at least 1.5%, 1.25%, and 1% above baseline respectively. When applied to patient data, while detection of interictal spikes was inconsistent, 2D-TCA consistently produced results similar to those obtained by EEG-fMRI when at least 2 prolonged interictal events (a few seconds each) occurred during the run. However, even for such cases it was determined that 2D-TCA can only be used to validate localization by other means or to create hypotheses as to where activity may occur, as it also detects changes not caused by epileptic activity. Copyright © 2011 Elsevier B.V. All rights reserved.
Approximate bandpass and frequency response models of the difference of Gaussian filter
Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris
2010-12-01
The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.
International Nuclear Information System (INIS)
Zhang Ran-Ran; Xu Wei; Yang Gui-Dong; Han Qun
2015-01-01
In this paper, we consider the response analysis of a Duffing–Rayleigh system with fractional derivative under Gaussian white noise excitation. A stochastic averaging procedure for this system is developed by using the generalized harmonic functions. First, the system state is approximated by a diffusive Markov process. Then, the stationary probability densities are derived from the averaged Itô stochastic differential equation of the system. The accuracy of the analytical results is validated by the results from the Monte Carlo simulation of the original system. Moreover, the effects of different system parameters and noise intensity on the response of the system are also discussed. (paper)
International Nuclear Information System (INIS)
Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S.L.; Shrivastava, S.K.; Desekar, Naresh; Thakur, M.H.
2015-01-01
vaginal vault/local recurrence following primary surgery for cervical cancer. With institutional review board approval and written informed consent 30 women (median age: 45 years) from October 2009 to March 2010 with previous operated carcinoma cervix and suspected clinical vaginal vault/local recurrence were examined with 3.0T-MRI. MRI imaging included conventional and MPMRI sequences [dynamic contrast enhanced (DCE), diffusion weighted (DW), 1H-MR spectroscopy (1HMRS), blood oxygen level dependent hypoxia imaging (BOLD)]. Two radiologists, blinded to pathologic findings, independently assessed the pretherapy MRI findings and then correlated it with histopathology findings. Sensitivity, specificity, positive predictive value, negative predictive value and their confidence intervals were calculated. The pre and post therapy conventional and MPMRI parameters were analyzed and correlated with response to therapy. Of the 30 patients, there were 24 recurrent tumors and 6 benign lesions. The accuracy of diagnosing recurrent vault lesions was highest at combined MPMRI and conventional MRI (100%) than at conventional-MRI (70%) or MPMRI (96.7%) alone. Significant correlation was seen between percentage tumor regression and pre-treatment parameters such as negative enhancement integral (NEI) (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction on the pretherapy MRI (p = 0.01). Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future
National Research Council Canada - National Science Library
Crane, Conrad C
2006-01-01
... to be?"1 Army Field Manual 7.0, Training the Force, states that the goals of operational deployments and major training opportunities are to enhance unit readiness and "produce bold, innovative leaders...
A novel approach to assess the treatment response using Gaussian random field in PET
Energy Technology Data Exchange (ETDEWEB)
Wang, Mengdie [Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China and Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Guo, Ning [Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Hu, Guangshu; Zhang, Hui, E-mail: hzhang@mail.tsinghua.edu.cn, E-mail: li.quanzheng@mgh.harvard.edu [Department of Biomedical Engineering, Tsinghua University, Beijing 100084 (China); El Fakhri, Georges; Li, Quanzheng, E-mail: hzhang@mail.tsinghua.edu.cn, E-mail: li.quanzheng@mgh.harvard.edu [Center for Advanced Medical Imaging Science, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States)
2016-02-15
Purpose: The assessment of early therapeutic response to anticancer therapy is vital for treatment planning and patient management in clinic. With the development of personal treatment plan, the early treatment response, especially before any anatomically apparent changes after treatment, becomes urgent need in clinic. Positron emission tomography (PET) imaging serves an important role in clinical oncology for tumor detection, staging, and therapy response assessment. Many studies on therapy response involve interpretation of differences between two PET images, usually in terms of standardized uptake values (SUVs). However, the quantitative accuracy of this measurement is limited. This work proposes a statistically robust approach for therapy response assessment based on Gaussian random field (GRF) to provide a statistically more meaningful scale to evaluate therapy effects. Methods: The authors propose a new criterion for therapeutic assessment by incorporating image noise into traditional SUV method. An analytical method based on the approximate expressions of the Fisher information matrix was applied to model the variance of individual pixels in reconstructed images. A zero mean unit variance GRF under the null hypothesis (no response to therapy) was obtained by normalizing each pixel of the post-therapy image with the mean and standard deviation of the pretherapy image. The performance of the proposed method was evaluated by Monte Carlo simulation, where XCAT phantoms (128{sup 2} pixels) with lesions of various diameters (2–6 mm), multiple tumor-to-background contrasts (3–10), and different changes in intensity (6.25%–30%) were used. The receiver operating characteristic curves and the corresponding areas under the curve were computed for both the proposed method and the traditional methods whose figure of merit is the percentage change of SUVs. The formula for the false positive rate (FPR) estimation was developed for the proposed therapy response
Effect of luminance contrast on BOLD-fMRI response in deaf and normal occipital visual cortex
International Nuclear Information System (INIS)
Xue Yanping; Zhai Renyou; Jiang Tao; Cui Yong; Zhou Tiangang; Rao Hengyi; Zhuo Yan
2002-01-01
Objective: To examine the effect of luminance contrast stimulus by using blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) within deaf occipital visual cortex, and to compare the distribution, extent, and intensity of activated areas between deaf subjects and normal hearing subjects. Methods: Twelve deaf subjects (average age 16.5) and 15 normal hearing subjects (average age 23.7) were stimulated by 4 kinds of luminance contrast (0.7, 2.2, 50.0, 180.0 lm). The fMRI data were collected on GE 1.5 T Signa Horizon LX MRI system and analyzed by AFNI to generate the activation map. Results: Responding to all 4 kinds of stimulus luminance contrast, all deaf and normal subjects showed significant activations in occipital visual cortex. For both deaf and normal subjects, the number of activated pixels increased significantly with increasing luminance contrast (F normal = 4.27, P deaf = 6.41, P 0.05). The local mean activation level for all activated pixels remained constant with increasing luminance contrast. However, there was an increase in the mean activation level for those activated pixels common to all trials as the stimulus luminance contrast was increased, but no significant difference was found within them (F normal = 0.79, P > 0.05; F deaf = 1.6, P > 0.05). Conclusion: The effect of luminance contrast on occipital visual cortex of deaf is similar to but somewhat higher than that of normal hearing subjects. In addition, it also proved that fMRI is a feasible method in the study of the deaf visual cortex
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Directory of Open Access Journals (Sweden)
Arne F Meyer
Full Text Available Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to
Early anti-correlated BOLD signal changes of physiologic origin.
Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H
2014-02-15
Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. Published by Elsevier Inc.
Directory of Open Access Journals (Sweden)
Abu Bakar Ali Asad
Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate
Directory of Open Access Journals (Sweden)
Na-Hee Kim
2013-01-01
Full Text Available The objective of this study was to differentiate between pain-related and pain-unrelated neural responses of acupuncture at BL60 to investigate the specific effects of acupuncture. A total of 19 healthy volunteers were evaluated. fMRI was performed with sham or verum acupuncture stimulation at the left BL60 before and after local anesthesia. To investigate the relative BOLD signal effect for each session, a one-sample t-test was performed for individual contrast maps, and a paired t-test to investigate the differences between the pre- and post-anesthetic signal effects. Regarding verum acupuncture, areas that were more activated before local anesthesia included the superior, middle, and medial frontal gyri, inferior parietal lobule, superior temporal gyrus, thalamus, middle temporal gyrus, cingulate gyrus, culmen, and cerebellar tonsil. The postcentral gyrus was more deactivated before local anesthesia. After local anesthesia, the middle occipital gyrus, inferior temporal gyrus, postcentral gyrus, precuneus, superior parietal lobule, and declive were deactivated. Pre-anesthetic verum acupuncture at BL60 activated areas of vision and pain transmission. Post-anesthetic verum acupuncture deactivated brain areas of visual function, which is considered to be a pain-unrelated acupuncture response. It indicates that specific effects of acupoint BL60 are to control vision sense as used in the clinical setting.
Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus
2014-08-01
The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.
Mitchell, Rachel L. C.
2005-01-01
Previous studies of the Stroop task propose two key mediators: the prefrontal and cingulate cortices but hints exist of functional specialization within these regions. This study aimed to examine the effect of task modality upon the prefrontal and cingulate response by examining the response to colour, number, and shape Stroop tasks whilst BOLD…
McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G
2009-05-01
The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.
Lu, Kun-Han; Hung, Shao-Chin; Wen, Haiguang; Marussich, Lauren; Liu, Zhongming
2016-01-01
Complex, sustained, dynamic, and naturalistic visual stimulation can evoke distributed brain activities that are highly reproducible within and across individuals. However, the precise origins of such reproducible responses remain incompletely understood. Here, we employed concurrent functional magnetic resonance imaging (fMRI) and eye tracking to investigate the experimental and behavioral factors that influence fMRI activity and its intra- and inter-subject reproducibility during repeated movie stimuli. We found that widely distributed and highly reproducible fMRI responses were attributed primarily to the high-level natural content in the movie. In the absence of such natural content, low-level visual features alone in a spatiotemporally scrambled control stimulus evoked significantly reduced degree and extent of reproducible responses, which were mostly confined to the primary visual cortex (V1). We also found that the varying gaze behavior affected the cortical response at the peripheral part of V1 and in the oculomotor network, with minor effects on the response reproducibility over the extrastriate visual areas. Lastly, scene transitions in the movie stimulus due to film editing partly caused the reproducible fMRI responses at widespread cortical areas, especially along the ventral visual pathway. Therefore, the naturalistic nature of a movie stimulus is necessary for driving highly reliable visual activations. In a movie-stimulation paradigm, scene transitions and individuals’ gaze behavior should be taken as potential confounding factors in order to properly interpret cortical activity that supports natural vision. PMID:27564573
International Nuclear Information System (INIS)
Yang Yong-Ge; Xu Wei; Sun Ya-Hui; Gu Xu-Dong
2016-01-01
This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary. (paper)
Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study
DEFF Research Database (Denmark)
Rostrup, Egill; Law, I; Blinkenberg, M
2000-01-01
Previous fMRI studies of the cerebrovascular response to hypercapnia have shown signal change in cerebral gray matter, but not in white matter. Therefore, the objective of the present study was to compare (15)O PET and T *(2)-weighted MRI during a hypercapnic challenge. The measurements were perf...
Directory of Open Access Journals (Sweden)
Anna M Van Opstal
2015-05-01
Full Text Available Background. Inconsistent findings about the neurobiology of Anorexia Nervosa (AN hinder the development of effective treatments for this severe mental disorder. Therefore the need arises for elucidation of neurobiological factors involved in the pathophysiology of AN. The hypothalamus plays a key role in the neurobiological processes that govern food intake and energy homeostasis, processes that are disturbed in anorexia nervosa (AN. The present study will assess the hypothalamic response to energy intake and the hypothalamic structure in patients with AN and healthy controls. Methods. 10 women aged 18-30 years diagnosed with AN and 11 healthy, lean (BMI <23 kg/m2 women in the same age range were recruited. We used functional magnetic resonance imaging (MRI to determine function of the hypothalamus in response to glucose. Structural MRI was used to determine differences in hypothalamic volume and local grey volume using manual segmentation and voxel-based morphometry.Results. No differences were found in hypothalamic volume and neuronal activity in response to a glucose load between the patients and controls. Whole brain structural analysis showed a significant decrease in grey matter volume in the cingulate cortex in the AN patients, bilaterally.Conclusions. We argue that in spite of various known changes in the hypothalamus the direct hypothalamic response to glucose intake is similar in AN patients and healthy controls.
Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R
2014-02-01
Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli.
de Jong, Peter J.; Georgiadis, Janniko R.
2014-01-01
Lifetime experiences shape people’s attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile–vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-‘hot’ vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-‘hot’) associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899
Marchant, Jennifer L; Ruff, Christian C; Driver, Jon
2012-01-01
The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980
Modelling Inverse Gaussian Data with Censored Response Values: EM versus MCMC
Directory of Open Access Journals (Sweden)
R. S. Sparks
2011-01-01
Full Text Available Low detection limits are common in measure environmental variables. Building models using data containing low or high detection limits without adjusting for the censoring produces biased models. This paper offers approaches to estimate an inverse Gaussian distribution when some of the data used are censored because of low or high detection limits. Adjustments for the censoring can be made if there is between 2% and 20% censoring using either the EM algorithm or MCMC. This paper compares these approaches.
Anatomical and functional assemblies of brain BOLD oscillations
Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania
2011-01-01
Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505
DEFF Research Database (Denmark)
Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi Ching Lynn
2013-01-01
Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this ......Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway...... to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties....... On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual...
He, Ruchuan; Pagani-Núñez, Emilio; Chevallier, Clément; Barnett, Craig R A
2017-07-01
Behavioural research traditionally focusses on the mean responses of a group of individuals rather than variation in behaviour around the mean or among individuals. However, examining the variation in behaviour among and within individuals may also yield important insights into the evolution and maintenance of behaviour. Repeatability is the most commonly used measure of variability among individuals in behavioural research. However, there are other forms of variation within populations that have received less attention. One such measure is intraindividual variation in behaviour (IIV), which is a short-term fluctuation of within-individual behaviour. Such variation in behaviour might be important during interactions because it could decrease the ability of conspecific and heterospecific individuals to predict the behaviour of the subject, thus increasing the cost of the interaction. In this experiment, we made repeated measures of the latency of North Island robins to attack a prey in a novel situation (a form of boldness) and examined (i) repeatability of boldness (the propensity to take a risk), (ii) IIV of boldness, and (iii) whether there was a significant relationship between these two traits (a behavioural syndrome). We found that boldness was highly repeatable, that there were high levels of IIV in boldness, and that there was a negative relationship between boldness and IIV in boldness. This suggests that despite high levels of repeatability for this behaviour, there were also still significant differences in IIV among different individuals within the population. Moreover, bolder individuals had significantly less IIV in their boldness, which suggests that they were forming routines (which reduces behavioural variability) compared to shyer individuals. Our results definitively demonstrate that IIV itself varies across individuals and is linked with key behavioural traits, and we argue for the importance of future studies aimed at understanding its causes
CSIR Research Space (South Africa)
Heyns, T
2012-12-01
Full Text Available Suboptimal haul road management policies such as routine, periodic and urgent maintenance may result in unnecessary cost, both to roads and vehicles. A recent idea is to continually access haul road condition based on measured vehicle response...
Energy Technology Data Exchange (ETDEWEB)
Xiao, Yanwen; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Wang, Liang [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2016-03-15
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
Xiao, Yanwen; Xu, Wei; Wang, Liang
2016-03-01
This paper focuses on the study of the stochastic Van der Pol vibro-impact system with fractional derivative damping under Gaussian white noise excitation. The equations of the original system are simplified by non-smooth transformation. For the simplified equation, the stochastic averaging approach is applied to solve it. Then, the fractional derivative damping term is facilitated by a numerical scheme, therewith the fourth-order Runge-Kutta method is used to obtain the numerical results. And the numerical simulation results fit the analytical solutions. Therefore, the proposed analytical means to study this system are proved to be feasible. In this context, the effects on the response stationary probability density functions (PDFs) caused by noise excitation, restitution condition, and fractional derivative damping are considered, in addition the stochastic P-bifurcation is also explored in this paper through varying the value of the coefficient of fractional derivative damping and the restitution coefficient. These system parameters not only influence the response PDFs of this system but also can cause the stochastic P-bifurcation.
BOLD Granger causality reflects vascular anatomy.
Directory of Open Access Journals (Sweden)
J Taylor Webb
Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping
Robinson, Jennifer; Calhoun, Vince
2018-01-01
Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339
Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.
Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince
2018-01-01
To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.
Analysis of Neural-BOLD Coupling through Four Models of the Neural Metabolic Demand
Directory of Open Access Journals (Sweden)
Christopher W Tyler
2015-12-01
Full Text Available The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD response is still incompletely understood. To address this issue, we compared the fits of four plausible models of neurometabolic coupling dynamics to available data for simultaneous recordings of the local field potential (LFP and the local BOLD response recorded from monkey primary visual cortex over a wide range of stimulus durations. The four models of the metabolic demand driving the BOLD response were: direct coupling with the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of the implied neural population response; and coupling with the non-adaptive intracellular input signal defined by the stimulus time course. Taking all stimulus durations into account, the results imply that the BOLD response is most closely coupled with metabolic demand derived from the intracellular input waveform, without significant influence from the adaptive transients and nonlinearities exhibited by the LFP waveform.
"Extreme Bold" in the Faculty Ranks
Kuusisto, Stephen
2013-01-01
Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…
Directory of Open Access Journals (Sweden)
Marcela Patricia Henríquez-Henríquez
2015-01-01
Full Text Available Intra-individual variability of Response Times (RTisv is considered as potential endophenotype for Attentional Deficit/Hyperactivity Disorder (ADHD. Traditional methods for estimating RTisv lose information regarding Response Times (RTs distribution along the task, with eventual effects on statistical power. Ex-Gaussian analysis captures the dynamic nature of RTisv, estimating normal and exponential components for RT distribution, with specific phenomenological correlates. Here, we applied ex-Gaussian analysis to explore whether intra-individual variability of RTs agrees with criteria proposed by Gottesman and Gould for endophenotypes. Specifically, we evaluated if Normal and/or exponential components of RTs may a Present the stair-like distribution expected for endophenotypes (ADHD>Siblings>Typically Developing children (TD without familiar history of ADHD and b Represent a phenotypic correlate for previously described genetic risk variants. This is a pilot study including 55 subjects (20 ADHD-discordant sibling-pairs and 15 TD children, all aged between 8 and 13 years. Participants resolved a visual Go/Nogo with 10% Nogo probability. Ex-Gaussian distributions were fitted to individual RT data and compared among the three samples. In order to test whether intra-individual variability may represent a correlate for previously described genetic risk variants, VNTRs at DRD4 and SLC6A3 were identified in all sibling pairs following standard protocols. Groups were compared adjusting independent general linear models for the exponential and normal components from the ex-gaussian analysis. Identified trends were confirmed by the non-parametric Jonckheere-Terpstra test. Stair-like distributions were observed for μ (p=0.036 and σ (p=0.009. An additional DRD4-genotype X clinical status interaction was present for τ (p=0,014 reflecting a possible severity factor. Thus, Normal and exponential RTisv components are suitable as ADHD endophenotypes.
Correlation between MEG and BOLD fMRI signals induced by visual flicker stimuli
Institute of Scientific and Technical Information of China (English)
Chu Renxin; Holroyd Tom; Duyn Jeff
2007-01-01
The goal of this work was to investigate how the MEG signal amplitude correlates with that of BOLD fMRI.To investigate the correlation between fMRI and macroscopic electrical activity, BOLD fMRI and MEG was performed on the same subjects (n =5). A visual flicker stimulus of varying temporal frequency was used to elicit neural responses in early visual areas. A strong similarity was observed in frequency tuning curves between both modalities.Although, averaged over subjects, the BOLD tuning curve was somewhat broader than MEG, both BOLD and MEG had maxima at a flicker frequency of 10 Hz. Also, we measured the first and second harmonic components as the stimuli frequency by MEG. In the low stimuli frequency (less than 6 Hz), the second harmonic has comparable amplitude with the first harmonic, which implies that neural frequency response is nonlinear and has more nonlinear components in low frequency than in high frequency.
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
DEFF Research Database (Denmark)
Andersen, Anders Holst; Korsgaard, Inge Riis; Jensen, Just
2002-01-01
In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed...... or random effects). In the different models, expressions are given (when these can be found - otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non...... Gaussian traits are generalisations of the well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part...
DEFF Research Database (Denmark)
Schäfer, Katharina; Blankenburg, Felix; Kupers, Ron
2012-01-01
that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the median nerve at 7Hz evoked robust negative BOLD signals in the primary somatosensory cortex (SI) ipsilateral to stimulation, and positive BOLD signals in contralateral SI. The negative BOLD signal in ipsilateral SI......) at the ipsilateral finger during concomitant stimulation of the contralateral median nerve increased significantly, suggesting augmented functional inhibition. Since the CPT in the ipsilateral hallux did not significantly change in response to median nerve stimulation, it is more likely that the CPT......-increase for the finger is due to functional inhibition (Kastrup et al., 2008) than to changes in selective attention. In conclusion, our data provide evidence that stimulus-induced reductions in relative rCBF may underlie the negative BOLD signal, which in turn may reflect increments in functional inhibition....
Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.
Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T
2009-05-15
In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.
Yücel, Meryem A.; Huppert, Theodore J.; Boas, David A.; Gagnon, Louis
2012-01-01
Multimodal imaging improves the accuracy of the localization and the quantification of brain activation when measuring different manifestations of the hemodynamic response associated with cerebral activity. In this study, we incorporated cerebral blood flow (CBF) changes measured with arterial spin labeling (ASL), Diffuse Optical Tomography (DOT) and blood oxygen level-dependent (BOLD) recordings to reconstruct changes in oxy- (ΔHbO2) and deoxyhemoglobin (ΔHbR). Using the Grubb relation between relative changes in CBF and cerebral blood volume (CBV), we incorporated the ASL measurement as a prior to the total hemoglobin concentration change (ΔHbT). We applied this ASL fusion model to both synthetic data and experimental multimodal recordings during a 2-sec finger-tapping task. Our results show that the new approach is very powerful in estimating ΔHbO2 and ΔHbR with high spatial and quantitative accuracy. Moreover, our approach allows the computation of baseline total hemoglobin concentration (HbT0) as well as of the BOLD calibration factor M on a single subject basis. We obtained an average HbT0 of 71 μM, an average M value of 0.18 and an average increase of 13 % in cerebral metabolic rate of oxygen (CMRO2), all of which are in agreement with values previously reported in the literature. Our method yields an independent measurement of M, which provides an alternative measurement to validate the hypercapnic calibration of the BOLD signal. PMID:22546318
International Nuclear Information System (INIS)
Kashikura, Kenichi; Fujita, Hideaki; Kershaw, J.B.; Matsuura, Tetsuya; Seki, Chie; Kashikura, Akemi; Ardekani, B.A.; Kanno, Iwao
1998-01-01
We investigated: the BOLD signal response during 270 second photic stimulation using an EPI pulse sequence; the BOLD signal response for two different color checkerboards; and the BOLD signal response during six consecutive stimulation series. Ten healthy human subjects (age 25±5.5 years) were studied with a 1.5 T MRI system (Siemens Vision, Erlangen, Germany). Black and white (BW) and red and white (RW) checkerboards alternating at 8 Hz were applied in turns for a total series of six. Stimulation timing was: 30 sec. off, 15 sec. on, 15 sec. off, 270 sec. on, 15 sec. off, 15 sec. on, 15 sec. off. Acquired data were analyzed according to color and/or order: color (without considering the order); color and order (1st BW vs. 1st RW, 2nd BW vs. 2nd RW, 3rd BW vs. 3rd RW); and order (without considering the color). A t-test (p<0.001) was used for obtaining the activated areas, and simple regression and two-way repeated-measures ANOVA were used for testing the statistical significance of the BOLD response. Results were: the BOLD signal responses during sustained photic stimulation maintained a constant level for the full duration and all series, suggesting stable levels of oxygen extraction and metabolism during cortical activation; the BOLD signal responses in two colors showed no significant difference in time response, suggesting that the neuronal populations perceiving black and red give a similar time response; and the effect of habituation or fatigue as observed by a signal decrease was not obtained, although the S.D. for each subject greatly increased with time and might be an indicator for evaluation fatigue or attention. (author)
Directory of Open Access Journals (Sweden)
Vesa J Kiviniemi
2009-07-01
Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo
2009-01-01
Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.
Pintor, L.M.; Sih, A.; Bauer, M.L.
2008-01-01
Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.
Gaussian entanglement revisited
Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo
2018-02-01
We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.
Gaussian mixture models and semantic gating improve reconstructions from human brain activity
Directory of Open Access Journals (Sweden)
Sanne eSchoenmakers
2015-01-01
Full Text Available Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent the prior distribution of natural images. Reconstruction of such images then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up, different mixture components correspond to different character categories. Our framework can automatically infer higher-order semantic categories from lower-level brain areas. Furthermore the framework can gate semantic information from higher-order brain areas to enforce the correct category during reconstruction. When categorical information is not available, we show that automatically learned clusters in the data give a similar improvement in reconstruction. The hybrid Bayesian network leads to highly accurate reconstructions in both supervised and unsupervised settings.
International Nuclear Information System (INIS)
Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.
2009-01-01
In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)
Transfer function between EEG and BOLD signals of epileptic activity
Directory of Open Access Journals (Sweden)
Marco eLeite
2013-01-01
Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.
Directory of Open Access Journals (Sweden)
Lars Michels
Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and
Eliminating the non-Gaussian spectral response of X-ray absorbers for transition-edge sensors
Yan, Daikang; Divan, Ralu; Gades, Lisa M.; Kenesei, Peter; Madden, Timothy J.; Miceli, Antonino; Park, Jun-Sang; Patel, Umeshkumar M.; Quaranta, Orlando; Sharma, Hemant; Bennett, Douglas A.; Doriese, William B.; Fowler, Joseph W.; Gard, Johnathon D.; Hays-Wehle, James P.; Morgan, Kelsey M.; Schmidt, Daniel R.; Swetz, Daniel S.; Ullom, Joel N.
2017-11-01
Transition-edge sensors (TESs) as microcalorimeters for high-energy-resolution X-ray spectroscopy are often fabricated with an absorber made of materials with high Z (for X-ray stopping power) and low heat capacity (for high resolving power). Bismuth represents one of the most compelling options. TESs with evaporated bismuth absorbers have shown spectra with undesirable and unexplained low-energy tails. We have developed TESs with electroplated bismuth absorbers over a gold layer that are not afflicted by this problem and that retain the other positive aspects of this material. To better understand these phenomena, we have studied a series of TESs with gold, gold/evaporated bismuth, and gold/electroplated bismuth absorbers, fabricated on the same die with identical thermal coupling. We show that the bismuth morphology is linked to the spectral response of X-ray TES microcalorimeters.
BOLD magnetic resonance imaging in nephrology
Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E
2018-01-01
Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807
BOLD magnetic resonance imaging in nephrology
Directory of Open Access Journals (Sweden)
Hall ME
2018-03-01
Full Text Available Michael E Hall,1,2 Jennifer H Jordan,3 Luis A Juncos,1,2 W Gregory Hundley,3 John E Hall2 1Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA; 2Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; 3Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: Magnetic resonance (MR imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. Keywords: functional MRI, kidney, oxygenation, chronic kidney disease
Evidence accumulation detected in BOLD signal using slow perceptual decision making
Krueger, Paul M.; van Vugt, Marieke K.; Simen, Patrick; Nystrom, Leigh; Holmes, Philip; Cohen, Jonathan D.
2017-01-01
BACKGROUND: We assessed whether evidence accumulation could be observed in the BOLD signal during perceptual decision making. This presents a challenge since the hemodynamic response is slow, while perceptual decisions are typically fast. NEW METHOD: Guided by theoretical predictions of the drift
CSIR Research Space (South Africa)
Roux, FS
2009-01-01
Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...
Gaussian operations and privacy
International Nuclear Information System (INIS)
Navascues, Miguel; Acin, Antonio
2005-01-01
We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states
Simultaneous Imaging of CBF Change and BOLD with Saturation-Recovery-T1 Method.
Directory of Open Access Journals (Sweden)
Xiao Wang
Full Text Available A neuroimaging technique based on the saturation-recovery (SR-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD contrast and cerebral blood flow change (ΔCBF, which is determined by CBF-sensitive T1 relaxation rate change (ΔR1CBF. This technique was validated by quantitatively examining the relationships among ΔR1CBF, ΔCBF, BOLD and relative CBF change (rCBF, which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5, resulting in a baseline CBF value (=1.18 ml/g/min consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1CBF had a better accuracy than apparent R1 change (ΔR1app; nevertheless, ΔR1app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1app. In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.
Verstynen, Timothy D; Deshpande, Vibhas
2011-04-15
The BOLD signal not only reflects changes in local neural activity, but also exhibits variability from physiological processes like cardiac rhythms and breathing. We investigated how both of these physiological sources are reflected in the pulse oximetry (PO) signal, a direct measure of blood oxygenation, and how this information can be used to account for different types of noise in the BOLD response. Measures of heart rate, respiration and PO were simultaneously recorded while neurologically healthy participants performed an eye-movement task in a 3T MRI. PO exhibited power in frequencies that matched those found in the independently recorded cardiac and respiration signals. Using the phasic and aphasic properties of these signals as nuisance regressors, we found that the different frequency components of the PO signal could be used to identify different types of physiological artifacts in the BOLD response. A comparison of different physiological noise models found that a simple, down-sampled version of the PO signal improves the estimation of task-relevant statistics nearly as well as more established noise models that may run the risk of over-parameterization. These findings suggest that the PO signal captures multiple sources of physiological noise in the BOLD response and provides a simple and efficient way of modeling these noise sources in subsequent analysis. Copyright © 2011 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Jensen Just
2002-05-01
Full Text Available Abstract In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed or random effects. In the different models, expressions are given (when these can be found – otherwise unbiased estimates are given for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non Gaussian traits are generalisations of the well-known formulas for Gaussian traits – and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part of the model (heritability on the normally distributed level of the model or a generalised version of heritability plays a central role in these formulas.
Nonclassicality by Local Gaussian Unitary Operations for Gaussian States
Directory of Open Access Journals (Sweden)
Yangyang Wang
2018-04-01
Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.
DEFF Research Database (Denmark)
Rostrup, Egill; Larsson, Henrik B.W.; Born, Alfred P.
2005-01-01
possible structural changes as measured by diffusion weighted imaging. Eleven healthy sea-level residents were studied after 5 weeks of adaptation to high altitude conditions at Chacaltaya, Bolivia (5260 m). The subjects were studied immediately after return to sea-level in hypoxic and normoxic conditions...... was slightly elevated in high altitude as compared to sea-level adaptation. It is concluded that hypoxia significantly diminishes the BOLD response, and the mechanisms underlying this finding are discussed. Furthermore, altitude adaptation may influence both the magnitude of the activation-related response......, and the examinations repeated 6 months later after re-adaptation to sea-level conditions. The BOLD response, measured at 1.5 T, was severely reduced during acute hypoxia both in the altitude and sea-level adapted states (50% reduction during an average S(a)O(2) of 75%). On average, the BOLD response magnitude was 23...
Development of visual cortical function in infant macaques: A BOLD fMRI study.
Directory of Open Access Journals (Sweden)
Tom J Van Grootel
Full Text Available Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of
Generalized Gaussian Error Calculus
Grabe, Michael
2010-01-01
For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...
Learning conditional Gaussian networks
DEFF Research Database (Denmark)
Bøttcher, Susanne Gammelgaard
This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....
AUTONOMOUS GAUSSIAN DECOMPOSITION
Energy Technology Data Exchange (ETDEWEB)
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Heiles, Carl [Radio Astronomy Lab, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Hennebelle, Patrick [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp-CNRS-Université Paris Diderot, F-91191 Gif-sur Yvette Cedex (France); Goss, W. M. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Dickey, John, E-mail: rlindner@astro.wisc.edu [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)
2015-04-15
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.
Bounded Gaussian process regression
DEFF Research Database (Denmark)
Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan
2013-01-01
We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....
AUTONOMOUS GAUSSIAN DECOMPOSITION
International Nuclear Information System (INIS)
Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John
2015-01-01
We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes
Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention.
Directory of Open Access Journals (Sweden)
Sofia Crespi
Full Text Available The neural substrate of the phenomenological experience of a stable visual world remains obscure. One possible mechanism would be to construct spatiotopic neural maps where the response is selective to the position of the stimulus in external space, rather than to retinal eccentricities, but evidence for these maps has been inconsistent. Here we show, with fMRI, that when human subjects perform concomitantly a demanding attentive task on stimuli displayed at the fovea, BOLD responses evoked by moving stimuli irrelevant to the task were mostly tuned in retinotopic coordinates. However, under more unconstrained conditions, where subjects could attend easily to the motion stimuli, BOLD responses were tuned not in retinal but in external coordinates (spatiotopic selectivity in many visual areas, including MT, MST, LO and V6, agreeing with our previous fMRI study. These results indicate that spatial attention may play an important role in mediating spatiotopic selectivity.
Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging
Directory of Open Access Journals (Sweden)
Henning U. Voss
2014-07-01
Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation
Quantum information with Gaussian states
International Nuclear Information System (INIS)
Wang Xiangbin; Hiroshima, Tohya; Tomita, Akihisa; Hayashi, Masahito
2007-01-01
Quantum optical Gaussian states are a type of important robust quantum states which are manipulatable by the existing technologies. So far, most of the important quantum information experiments are done with such states, including bright Gaussian light and weak Gaussian light. Extending the existing results of quantum information with discrete quantum states to the case of continuous variable quantum states is an interesting theoretical job. The quantum Gaussian states play a central role in such a case. We review the properties and applications of Gaussian states in quantum information with emphasis on the fundamental concepts, the calculation techniques and the effects of imperfections of the real-life experimental setups. Topics here include the elementary properties of Gaussian states and relevant quantum information device, entanglement-based quantum tasks such as quantum teleportation, quantum cryptography with weak and strong Gaussian states and the quantum channel capacity, mathematical theory of quantum entanglement and state estimation for Gaussian states
Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.
Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A
2012-04-15
A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the
Cortical layers, rhythms and BOLD signals.
Scheeringa, René; Fries, Pascal
2017-11-03
This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Chan, Michael W.; Nathanael, George; Kis, Antonella; Amirabadi, Afsaneh; Zhong, Anguo; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Gahunia, Harpal [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada)
2014-05-15
Blood-oxygen-level-dependent (BOLD) MRI has the potential to identify regions of early hypoxic and vascular joint changes in inflammatory arthritis. There is no standard protocol for analysis of BOLD MRI measurements in musculoskeletal disorders. To optimize the following BOLD MRI reading parameters: (1) statistical threshold values (low, r > 0.01 versus high, r > 0.2); (2) summary measures of BOLD contrast (percentage of activated voxels [PT%] versus percentage signal difference between on-and-off signal intensities [diff{sub o}n{sub o}ff]); and (3) direction of BOLD response (positive, negative and positive + negative). Using BOLD MRI protocols at 1.5 T, arthritic (n = 21) and contralateral (n = 21) knees of 21 juvenile rabbits were imaged at baseline and on days 1, 14 and 28 after a unilateral intra-articular injection of carrageenan. Nine non-injected rabbits served as external control knees (n = 18). By comparing arthritic to contralateral knees, receiver operating characteristic curves were used to determine diagnostic accuracy. Using diff{sub o}n{sub o}ff and positive + negative responses, a threshold of r > 0.01 was more accurate than r > 0.2 (P = 0.03 at day 28). Comparison of summary measures yielded no statistically significant difference (P > 0.05). Although positive + negative (AUC = 0.86 at day 28) and negative responses (AUC = 0.90 at day 28) for PT% were the most diagnostically accurate, positive + negative responses for diff{sub o}n{sub o}ff (AUC = 0.78 at day 28) also had acceptable accuracy. The most clinically relevant reading parameters included a lower threshold of r > 0.01 and a positive + negative BOLD response. We propose that diff{sub o}n{sub o}ff is a more clinically relevant summary measure of BOLD MRI, while PT% can be used as an ancillary measure. (orig.)
Gaussian discriminating strength
Rigovacca, L.; Farace, A.; De Pasquale, A.; Giovannetti, V.
2015-10-01
We present a quantifier of nonclassical correlations for bipartite, multimode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in Farace et al., [New J. Phys. 16, 073010 (2014), 10.1088/1367-2630/16/7/073010]. As the latter the new measure exploits the quantum Chernoff bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam splitter a factorized two-mode thermal state. For these density matrices, we study how nonclassical correlations are related with the entanglement present in the system and with its total photon number.
Fitness Consequences of Boldness in Juvenile and Adult Largemouth Bass.
Ballew, Nicholas G; Mittelbach, Gary G; Scribner, Kim T
2017-04-01
To date, most studies investigating the relationship between personality traits and fitness have focused on a single measure of fitness (such as survival) at a specific life stage. However, many personality traits likely have multiple effects on fitness, potentially operating across different functional contexts and stages of development. Here, we address the fitness consequences of boldness, under seminatural conditions, across life stages and functional contexts in largemouth bass (Micropterus salmoides). Specifically, we report the effect of boldness on (1) juvenile survivorship in an outdoor pond containing natural prey and predators and (2) adult reproductive success in three outdoor ponds across three reproductive seasons (years). Juvenile survival was negatively affected by boldness, with bolder juveniles having a lower probability of survival than shyer juveniles. In contrast, bolder adult male bass had greater reproductive success than their shyer male counterparts. Female reproductive success was not affected by boldness. These findings demonstrate that boldness can affect fitness differently across life stages. Further, boldness was highly consistent across years and significantly heritable, which suggests that boldness has a genetic component. Thus, our results support theory suggesting that fitness trade-offs across life stages may contribute to the maintenance of personality variation within populations.
Task performance changes the amplitude and timing of the BOLD signal
Directory of Open Access Journals (Sweden)
Akhrif Atae
2017-12-01
Full Text Available Translational studies comparing imaging data of animals and humans have gained increasing scientific interests. With this upcoming translational approach, however, identifying harmonized statistical analysis as well as shared data acquisition protocols and/or combined statistical approaches is necessary. Following this idea, we applied Bayesian Adaptive Regression Splines (BARS, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, on human hemodynamic responses as measured via fMRI. Forty-seven healthy subjects were investigated while performing the Attention Network Task in the MRI scanner. Fluctuations in the amplitude and timing of the BOLD response were determined and validated externally with brain activation using GLM and also ecologically with the influence of task performance (i.e. good vs. bad performers. In terms of brain activation, bad performers presented reduced activation bilaterally in the parietal lobules, right prefrontal cortex (PFC and striatum. This was accompanied by an enhanced left PFC recruitment. With regard to the amplitude of the BOLD-signal, bad performers showed enhanced values in the left PFC. In addition, in the regions of reduced activation such as the parietal and striatal regions, the temporal dynamics were higher in bad performers. Based on the relation between BOLD response and neural firing with the amplitude of the BOLD signal reflecting gamma power and timing dynamics beta power, we argue that in bad performers, an enhanced left PFC recruitment hints towards an enhanced functioning of gamma-band activity in a compensatory manner. This was accompanied by reduced parieto-striatal activity, associated with increased and potentially conflicting beta-band activity.
Perfusion Quantification Using Gaussian Process Deconvolution
DEFF Research Database (Denmark)
Andersen, Irene Klærke; Have, Anna Szynkowiak; Rasmussen, Carl Edward
2002-01-01
The quantification of perfusion using dynamic susceptibility contrast MRI (DSC-MRI) requires deconvolution to obtain the residual impulse response function (IRF). In this work, a method using the Gaussian process for deconvolution (GPD) is proposed. The fact that the IRF is smooth is incorporated...
Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications
International Nuclear Information System (INIS)
Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J.
2010-01-01
Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2 * -weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)
Directory of Open Access Journals (Sweden)
Hironori Kuga, M.D.
2016-10-01
We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.
Interconversion of pure Gaussian states requiring non-Gaussian operations
Jabbour, Michael G.; García-Patrón, Raúl; Cerf, Nicolas J.
2015-01-01
We analyze the conditions under which local operations and classical communication enable entanglement transformations between bipartite pure Gaussian states. A set of necessary and sufficient conditions had been found [G. Giedke et al., Quant. Inf. Comput. 3, 211 (2003)] for the interconversion between such states that is restricted to Gaussian local operations and classical communication. Here, we exploit majorization theory in order to derive more general (sufficient) conditions for the interconversion between bipartite pure Gaussian states that goes beyond Gaussian local operations. While our technique is applicable to an arbitrary number of modes for each party, it allows us to exhibit surprisingly simple examples of 2 ×2 Gaussian states that necessarily require non-Gaussian local operations to be transformed into each other.
Yurinsky, Vadim Vladimirovich
1995-01-01
Surveys the methods currently applied to study sums of infinite-dimensional independent random vectors in situations where their distributions resemble Gaussian laws. Covers probabilities of large deviations, Chebyshev-type inequalities for seminorms of sums, a method of constructing Edgeworth-type expansions, estimates of characteristic functions for random vectors obtained by smooth mappings of infinite-dimensional sums to Euclidean spaces. A self-contained exposition of the modern research apparatus around CLT, the book is accessible to new graduate students, and can be a useful reference for researchers and teachers of the subject.
Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences
DEFF Research Database (Denmark)
Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam
2004-01-01
to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest...... size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... for global stimulation, subjects breathed a 5% CO(2) gas mixture. Under all conditions, voxels containing primarily large veins and those containing primarily active tissue (i.e., capillaries and small veins) showed distinguishable behavior after hypercapnic normalization. This allowed functional activity...
Directory of Open Access Journals (Sweden)
Craig F Ferris
2015-09-01
Full Text Available A growing body of literature has suggested that intranasal oxytocin (OT or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain-barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level dependent (BOLD signal intensity in response to peripheral OT injections (0.1, 0.5 or 2.5 mg/kg during functional magnetic resonance (fMRI in awake rats imaged at 7.0 tesla. These data were compared to OT (1ug/5 µl given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.
Rotating quantum Gaussian packets
International Nuclear Information System (INIS)
Dodonov, V V
2015-01-01
We study two-dimensional quantum Gaussian packets with a fixed value of mean angular momentum. This value is the sum of two independent parts: the ‘external’ momentum related to the motion of the packet center and the ‘internal’ momentum due to quantum fluctuations. The packets minimizing the mean energy of an isotropic oscillator with the fixed mean angular momentum are found. They exist for ‘co-rotating’ external and internal motions, and they have nonzero correlation coefficients between coordinates and momenta, together with some (moderate) amount of quadrature squeezing. Variances of angular momentum and energy are calculated, too. Differences in the behavior of ‘co-rotating’ and ‘anti-rotating’ packets are shown. The time evolution of rotating Gaussian packets is analyzed, including the cases of a charge in a homogeneous magnetic field and a free particle. In the latter case, the effect of initial shrinking of packets with big enough coordinate-momentum correlation coefficients (followed by the well known expansion) is discovered. This happens due to a competition of ‘focusing’ and ‘de-focusing’ in the orthogonal directions. (paper)
Using BOLD imaging to measure renal oxygenation dynamics in rats injected with diuretics
International Nuclear Information System (INIS)
Kusakabe, Yoshinori; Matsushita, Taro; Honda, Saori; Okada, Sakie; Murase, Kenya
2010-01-01
We used blood oxygenation level-dependent magnetic resonance imaging (BOLD MRI) to measure renal oxygenation dynamics in rats injected with diuretics and evaluated diuretic effect on renal oxygenation. We performed BOLD MRI studies in 32 rats using a 1.5-tesla MR imaging system for animal experiments. We intravenously injected rats with saline (n=7), furosemide (n=7), acetazolamide (n=6), or mannitol (n=6). For controls, 6 rats were not injected with drugs. We estimated the apparent transverse relaxation rate (R 2 *) from the apparent transverse relaxation time (T 2 *)-weighted images and measured the time course of R 2 * at 4-min intervals over approximately 30 min. Compared with preadministration values, the R 2 * value did not change significantly in either the cortex or medulla in the control and mannitol groups but decreased significantly in the saline group; the R 2 * value significantly decreased in the medulla but did not change significantly in the cortex in the furosemide group; and the R 2 * value significantly increased in the medulla and significantly decreased in the cortex in the acetazolamide group. Our study results suggest that BOLD MRI is useful for evaluating the dynamics of renal oxygenation in response to various diuretics in the renal cortex and in the medulla. (author)
Ultrafast bold fMRI using single-shot spin-echo echo planar imaging
Directory of Open Access Journals (Sweden)
Boujraf Said
2009-01-01
Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.
International Nuclear Information System (INIS)
McFadden, Paul; Skenderis, Kostas
2011-01-01
We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work
Palm distributions for log Gaussian Cox processes
DEFF Research Database (Denmark)
Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus Plenge
2017-01-01
This paper establishes a remarkable result regarding Palm distributions for a log Gaussian Cox process: the reduced Palm distribution for a log Gaussian Cox process is itself a log Gaussian Cox process that only differs from the original log Gaussian Cox process in the intensity function. This new...... result is used to study functional summaries for log Gaussian Cox processes....
Directory of Open Access Journals (Sweden)
Ashley D Harris
Full Text Available Several recent studies have reported an inter-individual correlation between regional GABA concentration, as measured by MRS, and the amplitude of the functional blood oxygenation level dependent (BOLD response in the same region. In this study, we set out to investigate whether this coupling generalizes across cortex. In 18 healthy participants, we performed edited MRS measurements of GABA and BOLD-fMRI experiments using regionally related activation paradigms. Regions and tasks were the: occipital cortex with a visual grating stimulus; auditory cortex with a white noise stimulus; sensorimotor cortex with a finger-tapping task; frontal eye field with a saccade task; and dorsolateral prefrontal cortex with a working memory task. In contrast to the prior literature, no correlation between GABA concentration and BOLD activation was detected in any region. The origin of this discrepancy is not clear. Subtle differences in study design or insufficient power may cause differing results; these and other potential reasons for the discrepant results are discussed. This negative result, although it should be interpreted with caution, has a larger sample size than prior positive results, and suggests that the relationship between GABA and the BOLD response may be more complex than previously thought.
Geometry of Gaussian quantum states
International Nuclear Information System (INIS)
Link, Valentin; Strunz, Walter T
2015-01-01
We study the Hilbert–Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert–Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert–Schmidt measure. (paper)
Metabolic Changes Underlying Bold Signal Variations after Administration of Zolpidem
International Nuclear Information System (INIS)
Rodriguez-Rojas, Rafael; Machado, Calixto; Alvarez, Lazaro; Carballo, Maylen; Perez-Nellar, Jesus; Estevez, Mario; Pavon, Nancy; Chinchilla, Mauricio
2010-12-01
Zolpidem is a non-benzodiazepine drug belonging to the imidazopiridine class, which has selectivity for stimulating the effect of gamma aminobutyric acid [GABA] and is used for the therapy of insomnia. Nonetheless, several reports have been published over recent years about a paradoxical arousing effect of Zolpidem in patients with severe brain damage. We studied a PVS case using 1 H-MRS and BOLD signal, before and after Zolpidem administration. Significantly increased BOLD signal was localized in left frontal superior cortex, bilateral cingulated areas, left thalamus and right head of the caudate nucleus. A transient activation was observed in frontal cortex, comprising portions of anterior cingulate, medial, and orbito-frontal cortices. Additionally, significant pharmacological activation in sensory-motor cortex is observed 1 hour after Zolpidem intake. Significant linear correlations of BOLD signal changes were found with primary concentrations of NAA, Glx and Lac in the right frontal cortex. We discussed that when Zolpidem attaches to the modified GABA receptors of the neurodormant cells, dormancy is switched off, inducing brain activation. This might explain the significant correlations of BOLD signal changes and 1 H-MRS metabolites in our patient. We concluded that 1 H-MRS and BOLD signal assessment might contribute to study neurovascular coupling in PVS cases after Zolpidem administration. Although this is a report of a single case, considering our results we recommend to apply this methodology in series of PVS and MCS patients. (author)
Resource theory of non-Gaussian operations
Zhuang, Quntao; Shor, Peter W.; Shapiro, Jeffrey H.
2018-05-01
Non-Gaussian states and operations are crucial for various continuous-variable quantum information processing tasks. To quantitatively understand non-Gaussianity beyond states, we establish a resource theory for non-Gaussian operations. In our framework, we consider Gaussian operations as free operations, and non-Gaussian operations as resources. We define entanglement-assisted non-Gaussianity generating power and show that it is a monotone that is nonincreasing under the set of free superoperations, i.e., concatenation and tensoring with Gaussian channels. For conditional unitary maps, this monotone can be analytically calculated. As examples, we show that the non-Gaussianity of ideal photon-number subtraction and photon-number addition equal the non-Gaussianity of the single-photon Fock state. Based on our non-Gaussianity monotone, we divide non-Gaussian operations into two classes: (i) the finite non-Gaussianity class, e.g., photon-number subtraction, photon-number addition, and all Gaussian-dilatable non-Gaussian channels; and (ii) the diverging non-Gaussianity class, e.g., the binary phase-shift channel and the Kerr nonlinearity. This classification also implies that not all non-Gaussian channels are exactly Gaussian dilatable. Our resource theory enables a quantitative characterization and a first classification of non-Gaussian operations, paving the way towards the full understanding of non-Gaussianity.
Identifying and characterizing systematic temporally-lagged BOLD artifacts.
Byrge, Lisa; Kennedy, Daniel P
2018-05-01
Residual noise in the BOLD signal remains problematic for fMRI - particularly for techniques such as functional connectivity, where findings can be spuriously influenced by noise sources that can covary with individual differences. Many such potential noise sources - for instance, motion and respiration - can have a temporally lagged effect on the BOLD signal. Thus, here we present a tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance signals, using a construction similar to a peri-event time histogram. Using this method, we find that framewise displacements - both large and very small - were followed by structured, prolonged, and global changes in the BOLD signal that depend on the magnitude of the preceding displacement and extend for tens of seconds. This residual lagged BOLD structure was consistent across datasets, and independently predicted considerable variance in the global cortical signal (as much as 30-40% in some subjects). Mean functional connectivity estimates varied similarly as a function of displacements occurring many seconds in the past, even after strict censoring. Similar patterns of residual lagged BOLD structure were apparent following respiratory fluctuations (which covaried with framewise displacements), implicating respiration as one likely mechanism underlying the displacement-linked structure observed. Global signal regression largely attenuates this artifactual structure. These findings suggest the need for caution in interpreting results of individual difference studies where noise sources might covary with the individual differences of interest, and highlight the need for further development of preprocessing techniques for mitigating such structure in a more nuanced and targeted manner. Copyright © 2018 Elsevier Inc. All rights reserved.
Generate the scale-free brain music from BOLD signals.
Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong
2018-01-01
Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf
2018-05-15
The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.
Handbook of Gaussian basis sets
International Nuclear Information System (INIS)
Poirier, R.; Kari, R.; Csizmadia, I.G.
1985-01-01
A collection of a large body of information is presented useful for chemists involved in molecular Gaussian computations. Every effort has been made by the authors to collect all available data for cartesian Gaussian as found in the literature up to July of 1984. The data in this text includes a large collection of polarization function exponents but in this case the collection is not complete. Exponents for Slater type orbitals (STO) were included for completeness. This text offers a collection of Gaussian exponents primarily without criticism. (Auth.)
Identification and estimation of non-Gaussian structural vector autoregressions
DEFF Research Database (Denmark)
Lanne, Markku; Meitz, Mika; Saikkonen, Pentti
-Gaussian components is, without any additional restrictions, identified and leads to (essentially) unique impulse responses. We also introduce an identification scheme under which the maximum likelihood estimator of the non-Gaussian SVAR model is consistent and asymptotically normally distributed. As a consequence......, additional economic identifying restrictions can be tested. In an empirical application, we find a negative impact of a contractionary monetary policy shock on financial markets, and clearly reject the commonly employed recursive identifying restrictions....
Febo, Marcelo; Pira, Ashley S
2011-03-25
Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.
Task effects on BOLD signal correlates of implicit syntactic processing
Caplan, David
2010-01-01
BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983
Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L
2013-01-01
Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus
On the Shaker Simulation of Wind-Induced Non-Gaussian Random Vibration
Directory of Open Access Journals (Sweden)
Fei Xu
2016-01-01
Full Text Available Gaussian signal is produced by ordinary random vibration controllers to test the products in the laboratory, while the field data is usually non-Gaussian. Two methodologies are presented in this paper for shaker simulation of wind-induced non-Gaussian vibration. The first methodology synthesizes the non-Gaussian signal offline and replicates it on the shaker in the Time Waveform Replication (TWR mode. A new synthesis method is used to model the non-Gaussian signal as a Gaussian signal multiplied by an amplitude modulation function (AMF. A case study is presented to show that the synthesized non-Gaussian signal has the same power spectral density (PSD, probability density function (PDF, and loading cycle distribution (LCD as the field data. The second methodology derives a damage equivalent Gaussian signal from the non-Gaussian signal based on the fatigue damage spectrum (FDS and the extreme response spectrum (ERS and reproduces it on the shaker in the closed-loop frequency domain control mode. The PSD level and the duration time of the derived Gaussian signal can be manipulated for accelerated testing purpose. A case study is presented to show that the derived PSD matches the damage potential of the non-Gaussian environment for both fatigue and peak response.
Directory of Open Access Journals (Sweden)
W Alan C Mutch
Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
Ferris, Craig F; Yee, Jason R; Kenkel, William M; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H; Kulkarni, Praveen; Perkybile, Allison M; Carter, C Sue
2015-01-01
A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.
Information geometry of Gaussian channels
International Nuclear Information System (INIS)
Monras, Alex; Illuminati, Fabrizio
2010-01-01
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).
Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S
2017-05-31
Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.
MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes
Directory of Open Access Journals (Sweden)
Sergey M Plis
2010-11-01
Full Text Available The combined analysis of MEG/EEG and functional MRI measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the BOLD response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater SNR, that confirms the expectation arising from the nature of the experiment. The highly nonlinear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.
Background MR gradient noise and non-auditory BOLD activations: a data-driven perspective.
Haller, Sven; Homola, György A; Scheffler, Klaus; Beckmann, Christian F; Bartsch, Andreas J
2009-07-28
The effect of echoplanar imaging (EPI) acoustic background noise on blood oxygenation level dependent (BOLD) activations was investigated. Two EPI pulse sequences were compared: (i) conventional EPI with a pulsating sound component of typically 8-10 Hz, which is a potent physiological stimulus, and (ii) the more recently developed continuous-sound EPI, which is perceived as less distractive despite equivalent peak sound pressure levels. Sixteen healthy subjects performed an established demanding visual n-back working memory task. Using an exploratory data analysis technique (tensorial probabilistic independent component analysis; tensor-PICA), we studied the inter-session/within-subject response variability introduced by continuous-sound versus conventional EPI acoustic background noise in addition to temporal and spatial signal characteristics. The analysis revealed a task-related component associated with the established higher-level working memory and motor feedback response network, which exhibited a significant 19% increase in its average effect size for the continuous-sound as opposed to conventional EPI. Stimulus-related lower-level activations, such as primary visual areas, were not modified. EPI acoustic background noise influences much more than the auditory system per se. This analysis provides additional evidence for an enhancement of task-related, extra-auditory BOLD activations by continuous-sound EPI due to less distractive acoustic background gradient noise.
Gaussian entanglement distribution via satellite
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
DEFF Research Database (Denmark)
Asghar, Mohammed Sohail; Ashina, Messoud
2013-01-01
Over the last decades MRI has proved to be very useful in the field of drug development and discovery. Pharmacological MRI (phMRI) explores the interaction between brain physiology, neuronal activity and drugs[1]. The BOLD-signal is an indirect method to investigate brain activity by way...... of measuring task-related hemodynamic changes. Pharmacological substances that induce hemodynamic changes can therefore potentially alter the BOLD-signal that in turn falsely can be interpreted as changes in neuronal activity. It is therefore important to characterize possible effects of a pharmacological...... substance on the BOLD-response per see before that substance can be used in an fMRI experiment. Furthermore MR-angiography is useful in determining the vascular site-of-action of vasoactive substances....
Tachyon mediated non-Gaussianity
International Nuclear Information System (INIS)
Dutta, Bhaskar; Leblond, Louis; Kumar, Jason
2008-01-01
We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.
Boldness and intermittent locomotion in the bluegill sunfish, Lepomis macrochirus
Alexander D.M. Wilson; Jean-Guy J. Godin
2009-01-01
Intermittent locomotion, characterized by moves interspersed with pauses, is a common pattern of locomotion in animals, but its ecological and evolutionary significance relative to continuous locomotion remains poorly understood. Although many studies have examined individual differences in both intermittent locomotion and boldness separately, to our knowledge, no study to date has investigated the relationship between these 2 traits. Characterizing and understanding this relationship is impo...
Schubert, Ruth; Ritter, Petra; Wüstenberg, Torsten; Preuschhof, Claudia; Curio, Gabriel; Sommer, Werner; Villringer, Arno
2008-11-01
Recent studies investigating the influence of spatial-selective attention on primary somatosensory processing have produced inconsistent results. The aim of this study was to explore the influence of tactile spatial-selective attention on spatiotemporal aspects of evoked neuronal activity in the primary somatosensory cortex (S1). We employed simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) in 14 right-handed subjects during bilateral index finger Braille stimulation to investigate the relationship between attentional effects on somatosensory evoked potential (SEP) components and the blood oxygenation level-dependent (BOLD) signal. The 1st reliable EEG response following left tactile stimulation (P50) was significantly enhanced by spatial-selective attention, which has not been reported before. FMRI analysis revealed increased activity in contralateral S1. Remarkably, the effect of attention on the P50 component as well as long-latency SEP components starting at 190 ms for left stimuli correlated with attentional effects on the BOLD signal in contralateral S1. The implications are 2-fold: First, the correlation between early and long-latency SEP components and the BOLD effect suggest that spatial-selective attention enhances processing in S1 at 2 time points: During an early passage of the signal and during a later passage, probably via re-entrant feedback from higher cortical areas. Second, attentional modulations of the fast electrophysiological signals and the slow hemodynamic response are linearly related in S1.
The Multivariate Gaussian Probability Distribution
DEFF Research Database (Denmark)
Ahrendt, Peter
2005-01-01
This technical report intends to gather information about the multivariate gaussian distribution, that was previously not (at least to my knowledge) to be found in one place and written as a reference manual. Additionally, some useful tips and tricks are collected that may be useful in practical ...
On Gaussian conditional independence structures
Czech Academy of Sciences Publication Activity Database
Lněnička, Radim; Matúš, František
2007-01-01
Roč. 43, č. 3 (2007), s. 327-342 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750603 Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate Gaussian distribution * positive definite matrices * determinants * gaussoids * covariance selection models * Markov perfectness Subject RIV: BA - General Mathematics Impact factor: 0.552, year: 2007
Gaussian processes for machine learning.
Seeger, Matthias
2004-04-01
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network
Directory of Open Access Journals (Sweden)
Silvia Tommasin
2017-07-01
Full Text Available Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN, are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network
Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico
2017-01-01
Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420
Exploring BOLD changes during spatial attention in non-stimulated visual cortex.
Directory of Open Access Journals (Sweden)
Linda Heinemann
Full Text Available Blood oxygen level-dependent (BOLD responses were measured in parts of primary visual cortex that represented unstimulated visual field regions at different distances from a stimulated central target location. The composition of the visual scene varied by the presence or absence of additional peripheral distracter stimuli. Bottom-up effects were assessed by comparing peripheral activity during central stimulation vs. no stimulation. Top-down effects were assessed by comparing active vs. passive conditions. In passive conditions subjects simply watched the central letter stimuli and in active conditions they had to report occurrence of pre-defined targets in a rapid serial letter stream. Onset of the central letter stream enhanced activity in V1 representations of the stimulated region. Within representations of the periphery activation decreased and finally turned into deactivation with increasing distance from the stimulated location. This pattern was most pronounced in the active conditions and during the presence of peripheral stimuli. Active search for a target did not lead to additional enhancement at areas representing the attentional focus but to a stronger deactivation in the vicinity. Suppressed neuronal activity was also found in the non distracter condition suggesting a top-down attention driven effect. Our observations suggest that BOLD signal decreases in primary visual cortex are modulated by bottom-up sensory-driven factors such as the presence of distracters in the visual field as well as by top-down attentional processes.
Task-related modulations of BOLD low-frequency fluctuations within the default mode network
Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico
2017-07-01
Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.
Laguerre Gaussian beam multiplexing through turbulence
CSIR Research Space (South Africa)
Trichili, A
2014-08-17
Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...
Generation of Quasi-Gaussian Pulses Based on Correlation Techniques
Directory of Open Access Journals (Sweden)
POHOATA, S.
2012-02-01
Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics.......Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Gaussian statistics for palaeomagnetic vectors
Love, J. J.; Constable, C. G.
2003-03-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Wang, Rong; Wu, Lingjie; Tang, Zuohua; Sun, Xinghuai; Feng, Xiaoyuan; Tang, Weijun; Qian, Wen; Wang, Jie; Jin, Lixin; Zhong, Yufeng; Xiao, Zebin
2017-04-15
Cross-modal plasticity within the visual and auditory cortices of early binocularly blind macaques is not well studied. In this study, four healthy neonatal macaques were assigned to group A (control group) or group B (binocularly blind group). Sixteen months later, blood oxygenation level-dependent functional imaging (BOLD-fMRI) was conducted to examine the activation in the visual and auditory cortices of each macaque while being tested using pure tones as auditory stimuli. The changes in the BOLD response in the visual and auditory cortices of all macaques were compared with immunofluorescence staining findings. Compared with group A, greater BOLD activity was observed in the bilateral visual cortices of group B, and this effect was particularly obvious in the right visual cortex. In addition, more activated volumes were found in the bilateral auditory cortices of group B than of group A, especially in the right auditory cortex. These findings were consistent with the fact that there were more c-Fos-positive cells in the bilateral visual and auditory cortices of group B compared with group A (p visual cortices of binocularly blind macaques can be reorganized to process auditory stimuli after visual deprivation, and this effect is more obvious in the right than the left visual cortex. These results indicate the establishment of cross-modal plasticity within the visual and auditory cortices. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Reproducing kernel Hilbert spaces of Gaussian priors
Vaart, van der A.W.; Zanten, van J.H.; Clarke, B.; Ghosal, S.
2008-01-01
We review definitions and properties of reproducing kernel Hilbert spaces attached to Gaussian variables and processes, with a view to applications in nonparametric Bayesian statistics using Gaussian priors. The rate of contraction of posterior distributions based on Gaussian priors can be described
Boldness towards novelty and translocation success in captive-raised, orphaned Tasmanian devils.
Sinn, David L; Cawthen, Lisa; Jones, Susan M; Pukk, Chrissy; Jones, Menna E
2014-01-01
Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release. © 2013 Wiley Periodicals, Inc.
Inflation in random Gaussian landscapes
Energy Technology Data Exchange (ETDEWEB)
Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2017-05-01
We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.
General Galilei Covariant Gaussian Maps
Gasbarri, Giulio; Toroš, Marko; Bassi, Angelo
2017-09-01
We characterize general non-Markovian Gaussian maps which are covariant under Galilean transformations. In particular, we consider translational and Galilean covariant maps and show that they reduce to the known Holevo result in the Markovian limit. We apply the results to discuss measures of macroscopicity based on classicalization maps, specifically addressing dissipation, Galilean covariance and non-Markovianity. We further suggest a possible generalization of the macroscopicity measure defined by Nimmrichter and Hornberger [Phys. Rev. Lett. 110, 16 (2013)].
Gaussian Embeddings for Collaborative Filtering
Dos Santos , Ludovic; Piwowarski , Benjamin; Gallinari , Patrick
2017-01-01
International audience; Most collaborative ltering systems, such as matrix factorization, use vector representations for items and users. Those representations are deterministic, and do not allow modeling the uncertainty of the learned representation, which can be useful when a user has a small number of rated items (cold start), or when there is connict-ing information about the behavior of a user or the ratings of an item. In this paper, we leverage recent works in learning Gaussian embeddi...
Gamma rays induced bold seeded high yielding mutant in chickpea
International Nuclear Information System (INIS)
Wani, A.A.; Anis, M.
2001-01-01
In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays ( 60 Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M 1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M 3 , which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent
Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.
Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong
2018-05-01
Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.
Crossing the implementation chasm: a proposal for bold action.
Lorenzi, Nancy M; Novak, Laurie L; Weiss, Jacob B; Gadd, Cynthia S; Unertl, Kim M
2008-01-01
As health care organizations dramatically increase investment in information technology (IT) and the scope of their IT projects, implementation failures become critical events. Implementation failures cause stress on clinical units, increase risk to patients, and result in massive costs that are often not recoverable. At an estimated 28% success rate, the current level of investment defies management logic. This paper asserts that there are "chasms" in IT implementations that represent risky stages in the process. Contributors to the chasms are classified into four categories: design, management, organization, and assessment. The American College of Medical Informatics symposium participants recommend bold action to better understand problems and challenges in implementation and to improve the ability of organizations to bridge these implementation chasms. The bold action includes the creation of a Team Science for Implementation strategy that allows for participation from multiple institutions to address the long standing and costly implementation issues. The outcomes of this endeavor will include a new focus on interdisciplinary research and an inter-organizational knowledge base of strategies and methods to optimize implementations and subsequent achievement of organizational objectives.
Spatiotemporal alignment of in utero BOLD-MRI series.
Turk, Esra Abaci; Luo, Jie; Gagoski, Borjan; Pascau, Javier; Bibbo, Carolina; Robinson, Julian N; Grant, P Ellen; Adalsteinsson, Elfar; Golland, Polina; Malpica, Norberto
2017-08-01
To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412. © 2017 International Society for Magnetic Resonance in Medicine.
BOLD data representing activation and connectivity for rare no-go versus frequent go cues
Directory of Open Access Journals (Sweden)
Harma Meffert
2016-06-01
Full Text Available The neural circuitry underlying response control is often studied using go/no-go tasks, in which participants are required to respond as fast as possible to go cues and withhold from responding to no-go stimuli. In the current task, response control was studied using a fully counterbalanced design in which blocks with a low frequency of no-go cues (75% go, 25% no-go were alternated with blocks with a low frequency of go cues (25% go, 75% no-go; see also “Segregating attention from response control when performing a motor inhibition task: Segregating attention from response control” [1]. We applied a whole brain corrected, paired t-test to the data assessing for regions differentially activated by low frequency no-go cues relative to high frequency go cues. In addition, we conducted a generalized psychophysiological interaction analysis on the data using a right inferior frontal gyrus seed region. This region was identified through the BOLD response t-test and was chosen because right inferior gyrus is highly implicated in response inhibition.
Detecting periodicities with Gaussian processes
Directory of Open Access Journals (Sweden)
Nicolas Durrande
2016-04-01
Full Text Available We consider the problem of detecting and quantifying the periodic component of a function given noise-corrupted observations of a limited number of input/output tuples. Our approach is based on Gaussian process regression, which provides a flexible non-parametric framework for modelling periodic data. We introduce a novel decomposition of the covariance function as the sum of periodic and aperiodic kernels. This decomposition allows for the creation of sub-models which capture the periodic nature of the signal and its complement. To quantify the periodicity of the signal, we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models. Although the method can be applied to many kernels, we give a special emphasis to the Matérn family, from the expression of the reproducing kernel Hilbert space inner product to the implementation of the associated periodic kernels in a Gaussian process toolkit. The proposed method is illustrated by considering the detection of periodically expressed genes in the arabidopsis genome.
Monogamy inequality for distributed gaussian entanglement.
Hiroshima, Tohya; Adesso, Gerardo; Illuminati, Fabrizio
2007-02-02
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
Breaking Gaussian incompatibility on continuous variable quantum systems
Energy Technology Data Exchange (ETDEWEB)
Heinosaari, Teiko, E-mail: teiko.heinosaari@utu.fi [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Kiukas, Jukka, E-mail: jukka.kiukas@aber.ac.uk [Department of Mathematics, Aberystwyth University, Penglais, Aberystwyth, SY23 3BZ (United Kingdom); Schultz, Jussi, E-mail: jussi.schultz@gmail.com [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)
2015-08-15
We characterise Gaussian quantum channels that are Gaussian incompatibility breaking, that is, transform every set of Gaussian measurements into a set obtainable from a joint Gaussian observable via Gaussian postprocessing. Such channels represent local noise which renders measurements useless for Gaussian EPR-steering, providing the appropriate generalisation of entanglement breaking channels for this scenario. Understanding the structure of Gaussian incompatibility breaking channels contributes to the resource theory of noisy continuous variable quantum information protocols.
Directory of Open Access Journals (Sweden)
Junjie Wu
2017-01-01
Full Text Available The purpose of this study was to measure cerebrovascular reactivity (CVR in chronic steno-occlusive disease using a novel approach that couples BOLD imaging with acetazolamide (ACZ vasoreactivity (aczBOLD, to evaluate dynamic effects of ACZ on BOLD and to establish the relationship between aczBOLD and dynamic susceptibility contrast (DSC perfusion MRI. Eighteen patients with unilateral chronic steno-occlusive disease of the anterior circulation underwent a 20-min aczBOLD imaging protocol, with ACZ infusion starting at 5 min of scan initiation. AczBOLD reactivity was calculated on a voxel-by-voxel basis to generate CVR maps for subsequent quantitative analyses. Reduced CVR was observed in the diseased vs. the normal hemisphere both by qualitative and quantitative assessment (gray matter (GM: 4.13% ± 1.16% vs. 4.90% ± 0.98%, P = 0.002; white matter (WM: 2.83% ± 1.23% vs. 3.50% ± 0.94%, P = 0.005. In all cases BOLD signal began increasing immediately following ACZ infusion, approaching a plateau at ~8.5 min after infusion, with the tissue volume of reduced augmentation increasing progressively with time, peaking at 2.60 min (time range above 95% of the maximum value: 0–4.43 min for the GM and 1.80 min (time range above 95% of the maximum value: 1.40–3.53 min for the WM. In the diseased hemisphere, aczBOLD CVR significantly correlated with baseline DSC time-to-maximum of the residue function (Tmax (P = 0.008 for the WM and normalized cerebral blood flow (P = 0.003 for the GM, and P = 0.001 for the WM. AczBOLD provides a novel, safe, easily implementable approach to CVR measurement in the routine clinical environments. Further studies can establish quantitative thresholds from aczBOLD towards identification of patients at heightened risk of recurrent ischemia and cognitive decline.
BOLD signal and functional connectivity associated with loving kindness meditation
Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A
2014-01-01
Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863
Energy Technology Data Exchange (ETDEWEB)
Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R [Duke University Medical Center, Durham, NC (United States)
2015-06-15
Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique.
International Nuclear Information System (INIS)
Adamson, J; Chang, Z; Cai, J; Palta, M; Horton, J; Yin, F; Blitzblau, R
2015-01-01
Purpose: To develop a robust MRI sequence to measure BOLD breath hold induced contrast in context of breast radiotherapy. Methods: Two sequences were selected from prior studies as candidates to measure BOLD contrast attributable to breath holding within the breast: (1) T2* based Gradient Echo EPI (TR/TE = 500/41ms, flip angle = 60°), and (2) T2 based Single Shot Fast Spin Echo (SSFSE) (TR/TE = 3000/60ms). We enrolled ten women post-lumpectomy for breast cancer who were undergoing treatment planning for whole breast radiotherapy. Each session utilized a 1.5T GE MRI and 4 channel breast coil with the subject immobilized prone on a custom board. For each sequence, 1–3 planes of the lumpectomy breast were imaged continuously during a background measurement (1min) and intermittent breath holds (20–40s per breath hold, 3–5 holds per sequence). BOLD contrast was quantified as correlation of changes in per-pixel intensity with the breath hold schedule convolved with a hemodynamic response function. Subtle motion was corrected using a deformable registration algorithm. Correlation with breath-holding was considered significant if p<0.001. Results: The percentage of the breast ROI with positive BOLD contrast measured by the two sequences were in agreement with a correlation coefficient of R=0.72 (p=0.02). While both sequences demonstrated areas with strong BOLD response, the response was more systematic throughout the breast for the SSFSE (T2) sequence (% breast with response in the same direction: 51.2%±0.7% for T2* vs. 68.1%±16% for T2). In addition, the T2 sequence was less prone to magnetic susceptibility artifacts, especially in presence of seroma, and provided a more robust image with little distortion or artifacts. Conclusion: A T2 SSFSE sequence shows promise for measuring BOLD contrast in the context of breast radiotherapy utilizing a breath hold technique. Further study in a larger patient cohort is warranted to better refine this novel technique
A Novel Method for Generating Non-Stationary Gaussian Processes for Use in Digital Radar Simulators
National Research Council Canada - National Science Library
Boehm, James A; Debroux, Patrick S
2007-01-01
This report presents a novel and simple way to determine the transient response of the output of any linear system, described in the s-domain by an nth order polynomial, subjected to white Gaussian noise...
Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data
Directory of Open Access Journals (Sweden)
Ji Hoon Ryoo
2017-08-01
Full Text Available As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.
International Nuclear Information System (INIS)
McHugh, Derek; Buzek, Vladimir; Ziman, Mario
2006-01-01
We present a class of non-Gaussian two-mode continuous-variable states for which the separability criterion for Gaussian states can be employed to detect whether they are separable or not. These states reduce to the two-mode Gaussian states as a special case
Quantum beamstrahlung from gaussian bunches
International Nuclear Information System (INIS)
Chen, P.
1987-08-01
The method of Baier and Katkov is applied to calculate the correction terms to the Sokolov-Ternov radiation formula due to the variation of the magnetic field strength along the trajectory of a radiating particle. We carry the calculation up to the second order in the power expansion of B tau/B, where tau is the formation time of radiation. The expression is then used to estimate the quantum beamstrahlung average energy loss from e + e - bunches with gaussian distribution in bunch currents. We show that the effect of the field variation is to reduce the average energy loss from previous calculations based on the Sokolov-Ternov formula or its equivalent. Due to the limitation of our method, only an upper bound of the reduction is obtained. 18 refs
Prospective MR image alignment between breath-holds: Application to renal BOLD MRI.
Kalis, Inge M; Pilutti, David; Krafft, Axel J; Hennig, Jürgen; Bock, Michael
2017-04-01
To present an image registration method for renal blood oxygen level-dependent (BOLD) measurements that enables semiautomatic assessment of parenchymal and medullary R2* changes under a functional challenge. In a series of breath-hold acquisitions, three-dimensional data were acquired initially for prospective image registration of subsequent BOLD measurements. An algorithm for kidney alignment for BOLD renal imaging (KALIBRI) was implemented to detect the positions of the left and right kidney so that the kidneys were acquired in the subsequent BOLD measurement at consistent anatomical locations. Residual in-plane distortions were corrected retrospectively so that semiautomatic dynamic R2* measurements of the renal cortex and medulla become feasible. KALIBRI was tested in six healthy volunteers during a series of BOLD experiments, which included a 600- to 1000-mL water challenge. Prospective image registration and BOLD imaging of each kidney was achieved within a total measurement time of about 17 s, enabling its execution within a single breath-hold. KALIBRI improved the registration by up to 35% as found with mutual information measures. In four volunteers, a medullary R2* decrease of up to 40% was observed after water ingestion. KALIBRI improves the quality of two-dimensional time-resolved renal BOLD MRI by aligning local renal anatomy, which allows for consistent R2* measurements over many breath-holds. Magn Reson Med 77:1573-1582, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Limit theorems for functionals of Gaussian vectors
Institute of Scientific and Technical Information of China (English)
Hongshuai DAI; Guangjun SHEN; Lingtao KONG
2017-01-01
Operator self-similar processes,as an extension of self-similar processes,have been studied extensively.In this work,we study limit theorems for functionals of Gaussian vectors.Under some conditions,we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.
Palm distributions for log Gaussian Cox processes
DEFF Research Database (Denmark)
Coeurjolly, Jean-Francois; Møller, Jesper; Waagepetersen, Rasmus
This paper reviews useful results related to Palm distributions of spatial point processes and provides a new result regarding the characterization of Palm distributions for the class of log Gaussian Cox processes. This result is used to study functional summary statistics for a log Gaussian Cox...
Gaussian limit of compact spin systems
International Nuclear Information System (INIS)
Bellissard, J.; Angelis, G.F. de
1981-01-01
It is shown that the Wilson and Wilson-Villain U(1) models reproduce, in the low coupling limit, the gaussian lattice approximation of the Euclidean electromagnetic field. By the same methods it is also possible to prove that the plane rotator and the Villain model share a common gaussian behaviour in the low temperature limit. (Auth.)
On the dependence structure of Gaussian queues
Es-Saghouani, A.; Mandjes, M.R.H.
2009-01-01
In this article we study Gaussian queues (that is, queues fed by Gaussian processes, such as fractional Brownian motion (fBm) and the integrated Ornstein-Uhlenbeck (iOU) process), with a focus on the dependence structure of the workload process. The main question is to what extent does the workload
Shedding new light on Gaussian harmonic analysis
Teuwen, J.J.B.
2016-01-01
This dissertation consists out of two rather disjoint parts. One part concerns some results on Gaussian harmonic analysis and the other on an optimization problem in optics. In the first part we study the Ornstein–Uhlenbeck process with respect to the Gaussian measure. We focus on two areas. One is
Entanglement in Gaussian matrix-product states
International Nuclear Information System (INIS)
Adesso, Gerardo; Ericsson, Marie
2006-01-01
Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states
Gaussian vs non-Gaussian turbulence: impact on wind turbine loads
DEFF Research Database (Denmark)
Berg, Jacob; Natarajan, Anand; Mann, Jakob
2016-01-01
taking into account the safety factor for extreme moments. Other extreme load moments as well as the fatigue loads are not affected because of the use of non-Gaussian turbulent inflow. It is suggested that the turbine thus acts like a low-pass filter that averages out the non-Gaussian behaviour, which......From large-eddy simulations of atmospheric turbulence, a representation of Gaussian turbulence is constructed by randomizing the phases of the individual modes of variability. Time series of Gaussian turbulence are constructed and compared with its non-Gaussian counterpart. Time series from the two...
Increasing Entanglement between Gaussian States by Coherent Photon Subtraction
DEFF Research Database (Denmark)
Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa
2007-01-01
We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...
Representation of Gaussian semimartingales with applications to the covariance function
DEFF Research Database (Denmark)
Basse-O'Connor, Andreas
2010-01-01
stationary Gaussian semimartingales and their canonical decomposition. Thirdly, we give a new characterization of the covariance function of Gaussian semimartingales, which enable us to characterize the class of martingales and the processes of bounded variation among the Gaussian semimartingales. We...
Energy Technology Data Exchange (ETDEWEB)
Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J. [Heidelberg Univ. Medizinische Fakultaet Mannheim (Germany). Inst. fuer Klinische Radiologie und Nuklearmedizin; Mie, Moritz B.; Zoellner, Frank G. [Heidelberg Univ. Medizinische Fakultaet Mannheim (DE). Inst. fuer Computerunterstuetzte Klinische Medizin (CKM)
2010-07-01
Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2{sup *}-weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)
Hemodynamic modelling of BOLD fMRI - A machine learning approach
DEFF Research Database (Denmark)
Jacobsen, Danjal Jakup
2007-01-01
This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...
Some continual integrals from gaussian forms
International Nuclear Information System (INIS)
Mazmanishvili, A.S.
1985-01-01
The result summary of continual integration of gaussian functional type is given. The summary contains 124 continual integrals which are the mathematical expectation of the corresponding gaussian form by the continuum of random trajectories of four types: real-valued Ornstein-Uhlenbeck process, Wiener process, complex-valued Ornstein-Uhlenbeck process and the stochastic harmonic one. The summary includes both the known continual integrals and the unpublished before integrals. Mathematical results of the continual integration carried in the work may be applied in the problem of the theory of stochastic process, approaching to the finding of mean from gaussian forms by measures generated by the pointed stochastic processes
Loop corrections to primordial non-Gaussianity
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Gaussian Mixture Model of Heart Rate Variability
Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario
2012-01-01
Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386
Non-Gaussianity from isocurvature perturbations
Energy Technology Data Exchange (ETDEWEB)
Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)
2008-11-15
We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.
Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction.
Domsch, Sebastian; Mie, Moritz B; Wenz, Frederik; Schad, Lothar R
2014-09-01
The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T2(*)-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG/MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27±2% in white matter (WM) and 29±2% in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41±10% (WM) and 46±10% (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35% to 25%. In addition, the preliminary results of the patient are encouraging. The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. Copyright © 2014. Published by Elsevier GmbH.
Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction
Energy Technology Data Exchange (ETDEWEB)
Domsch, Sebastian; Mie, Moritz B.; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine; Wenz, Frederik [Heidelberg Univ., Medical Faculty Mannheim (Germany). Dept. of Radiation Oncology
2014-10-01
Introduction: The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. Methods: The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T{sub 2}-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T{sub 2}{sup *}-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG / MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. Results: The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27 ± 2 % in white matter (WM) and 29 ± 2 % in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41 ± 10 % (WM) and 46 ± 10 % (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35 % to 25 %. In addition, the preliminary results of the patient are encouraging. Conclusion: The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. (orig.)
BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia.
Manka, R; Paetsch, I; Schnackenburg, B; Gebker, R; Fleck, E; Jahnke, C
2010-01-01
Abstract Background The purpose of this study was to determine the ability of Blood Oxygen Level Dependent (BOLD) cardiovascular magnetic resonance (CMR) to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD). Methods Forty-six patients (34 men; age 65 ± 9 years,) with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was perfor...
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
International Nuclear Information System (INIS)
Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they
To Boldly Go: Practical Career Advice for Young Scientists
Fiske, P.
1998-05-01
Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.
Gamma-ray-induced bold seeded early maturing groundnut selections
Energy Technology Data Exchange (ETDEWEB)
Manoharan, V; Thangavelu, S [Regional Research Station, Vriddhachalam, Tamil Nadu (India)
1990-07-01
Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M{sub 1} generation was grown during the post rainy season of 1988-1989. The M{sub 2} generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M{sub 2} plants being 1,730. All the M{sub 2} plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)
Gamma-ray-induced bold seeded early maturing groundnut selections
International Nuclear Information System (INIS)
Manoharan, V.; Thangavelu, S.
1990-01-01
Full text: ''Chico'' is an early maturing (85-90 days) erect groundnut (Arachis hypogaea L.) genotype utilised in groundnut improvement to incorporate earliness in high yielding varieties. Though it has high shelling out-turn, its yield potential is low since it has small seeds. Mutation breeding was started with the objective of improving the seed size. In a preliminary experiment, dry seeds were treated with 20, 30, 40 or 50 kR of gamma rays. The M 1 generation was grown during the post rainy season of 1988-1989. The M 2 generation was planted as individual plant progeny rows during the rainy season of 1989. 105 progeny rows were studied, the total number of M 2 plants being 1,730. All the M 2 plants were harvested 90 days after sowing. Seven mutants with bold seed size were obtained. The mutants had 100 kernel weight ranging from 22.2 to 40.4 g compared to 21.1 g of control. The study is in progress. (author)
Greater BOLD variability in older compared with younger adults during audiovisual speech perception.
Directory of Open Access Journals (Sweden)
Sarah H Baum
Full Text Available Older adults exhibit decreased performance and increased trial-to-trial variability on a range of cognitive tasks, including speech perception. We used blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI to search for neural correlates of these behavioral phenomena. We compared brain responses to simple speech stimuli (audiovisual syllables in 24 healthy older adults (53 to 70 years old and 14 younger adults (23 to 39 years old using two independent analysis strategies: region-of-interest (ROI and voxel-wise whole-brain analysis. While mean response amplitudes were moderately greater in younger adults, older adults had much greater within-subject variability. The greatly increased variability in older adults was observed for both individual voxels in the whole-brain analysis and for ROIs in the left superior temporal sulcus, the left auditory cortex, and the left visual cortex. Increased variability in older adults could not be attributed to differences in head movements between the groups. Increased neural variability may be related to the performance declines and increased behavioral variability that occur with aging.
"Boldness" in the domestic dog differs among breeds and breed groups.
Starling, Melissa J; Branson, Nicholas; Thomson, Peter C; McGreevy, Paul D
2013-07-01
"Boldness" in dogs is believed to be one end of the shy-bold axis, representing a super-trait. Several personality traits fall under the influence of this super-trait. Previous studies on boldness in dogs have found differences among breeds, but grouping breeds on the basis of behavioural similarities has been elusive. This study investigated differences in the expression of boldness among dog breeds, kennel club breed groups, and sub-groups of kennel club breed groups by way of a survey on dog personality circulated among Australian dog-training clubs and internet forums and lists. Breed had a significant effect on boldness (F=1.63, numDF=111, denDF=272, ppurpose. Retrievers were significantly bolder than flushing and pointing breeds (Reg. Coef.=2.148; S.E.=0.593; pdogs. Differences in boldness among groups and sub-groups suggest that behavioural tendencies may be influenced by historical purpose regardless of whether that purpose still factors in selective breeding. Copyright © 2013 Elsevier B.V. All rights reserved.
Functional BOLD MRI: comparison of different field strengths in a motor task
International Nuclear Information System (INIS)
Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.
2008-01-01
The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)
Kim, Tae Won; Barry, James P.
2016-09-01
Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.
Optimal unitary dilation for bosonic Gaussian channels
International Nuclear Information System (INIS)
Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.
2011-01-01
A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.
Phase statistics in non-Gaussian scattering
International Nuclear Information System (INIS)
Watson, Stephen M; Jakeman, Eric; Ridley, Kevin D
2006-01-01
Amplitude weighting can improve the accuracy of frequency measurements in signals corrupted by multiplicative speckle noise. When the speckle field constitutes a circular complex Gaussian process, the optimal function of amplitude weighting is provided by the field intensity, corresponding to the intensity-weighted phase derivative statistic. In this paper, we investigate the phase derivative and intensity-weighted phase derivative returned from a two-dimensional random walk, which constitutes a generic scattering model capable of producing both Gaussian and non-Gaussian fluctuations. Analytical results are developed for the correlation properties of the intensity-weighted phase derivative, as well as limiting probability densities of the scattered field. Numerical simulation is used to generate further probability densities and determine optimal weighting criteria from non-Gaussian fields. The results are relevant to frequency retrieval in radiation scattered from random media
Galaxy bias and primordial non-Gaussianity
Energy Technology Data Exchange (ETDEWEB)
Assassi, Valentin; Baumann, Daniel [DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Schmidt, Fabian, E-mail: assassi@ias.edu, E-mail: D.D.Baumann@uva.nl, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)
2015-12-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation.
Optimal cloning of mixed Gaussian states
International Nuclear Information System (INIS)
Guta, Madalin; Matsumoto, Keiji
2006-01-01
We construct the optimal one to two cloning transformation for the family of displaced thermal equilibrium states of a harmonic oscillator, with a fixed and known temperature. The transformation is Gaussian and it is optimal with respect to the figure of merit based on the joint output state and norm distance. The proof of the result is based on the equivalence between the optimal cloning problem and that of optimal amplification of Gaussian states which is then reduced to an optimization problem for diagonal states of a quantum oscillator. A key concept in finding the optimum is that of stochastic ordering which plays a similar role in the purely classical problem of Gaussian cloning. The result is then extended to the case of n to m cloning of mixed Gaussian states
Encoding information using laguerre gaussian modes
CSIR Research Space (South Africa)
Trichili, A
2015-08-01
Full Text Available The authors experimentally demonstrate an information encoding protocol using the two degrees of freedom of Laguerre Gaussian modes having different radial and azimuthal components. A novel method, based on digital holography, for information...
Interweave Cognitive Radio with Improper Gaussian Signaling
Hedhly, Wafa; Amin, Osama; Alouini, Mohamed-Slim
2018-01-01
Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS
Galaxy bias and primordial non-Gaussianity
International Nuclear Information System (INIS)
Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian
2015-01-01
We present a systematic study of galaxy biasing in the presence of primordial non-Gaussianity. For a large class of non-Gaussian initial conditions, we define a general bias expansion and prove that it is closed under renormalization, thereby showing that the basis of operators in the expansion is complete. We then study the effects of primordial non-Gaussianity on the statistics of galaxies. We show that the equivalence principle enforces a relation between the scale-dependent bias in the galaxy power spectrum and that in the dipolar part of the bispectrum. This provides a powerful consistency check to confirm the primordial origin of any observed scale-dependent bias. Finally, we also discuss the imprints of anisotropic non-Gaussianity as motivated by recent studies of higher-spin fields during inflation
Statistically tuned Gaussian background subtraction technique for ...
Indian Academy of Sciences (India)
temporal median method and mixture of Gaussian model and performance evaluation ... to process the videos captured by unmanned aerial vehicle (UAV). ..... The output is obtained by simulation using MATLAB 2010 in a standalone PC with ...
A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families
Dutta, Subhajit
2014-07-28
Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.
A non-Gaussian multivariate distribution with all lower-dimensional Gaussians and related families
Dutta, Subhajit; Genton, Marc G.
2014-01-01
Several fascinating examples of non-Gaussian bivariate distributions which have marginal distribution functions to be Gaussian have been proposed in the literature. These examples often clarify several properties associated with the normal distribution. In this paper, we generalize this result in the sense that we construct a pp-dimensional distribution for which any proper subset of its components has the Gaussian distribution. However, the jointpp-dimensional distribution is inconsistent with the distribution of these subsets because it is not Gaussian. We study the probabilistic properties of this non-Gaussian multivariate distribution in detail. Interestingly, several popular tests of multivariate normality fail to identify this pp-dimensional distribution as non-Gaussian. We further extend our construction to a class of elliptically contoured distributions as well as skewed distributions arising from selections, for instance the multivariate skew-normal distribution.
A Decentralized Receiver in Gaussian Interference
Directory of Open Access Journals (Sweden)
Christian D. Chapman
2018-04-01
Full Text Available Bounds are developed on the maximum communications rate between a transmitter and a fusion node aided by a cluster of distributed receivers with limited resources for cooperation, all in the presence of an additive Gaussian interferer. The receivers cannot communicate with one another and can only convey processed versions of their observations to the fusion center through a Local Array Network (LAN with limited total throughput. The effectiveness of each bound’s approach for mitigating a strong interferer is assessed over a wide range of channels. It is seen that, if resources are shared effectively, even a simple quantize-and-forward strategy can mitigate an interferer 20 dB stronger than the signal in a diverse range of spatially Ricean channels. Monte-Carlo experiments for the bounds reveal that, while achievable rates are stable when varying the receiver’s observed scattered-path to line-of-sight signal power, the receivers must adapt how they share resources in response to this change. The bounds analyzed are proven to be achievable and are seen to be tight with capacity when LAN resources are either ample or limited.
Gaussian sum rules for optical functions
International Nuclear Information System (INIS)
Kimel, I.
1981-12-01
A new (Gaussian) type of sum rules (GSR) for several optical functions, is presented. The functions considered are: dielectric permeability, refractive index, energy loss function, rotatory power and ellipticity (circular dichroism). While reducing to the usual type of sum rules in a certain limit, the GSR contain in general, a Gaussian factor that serves to improve convergence. GSR might be useful in analysing experimental data. (Author) [pt
Gaussian maximally multipartite-entangled states
Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio
2009-12-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .
Gaussian maximally multipartite-entangled states
International Nuclear Information System (INIS)
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano
2009-01-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.
Non-Gaussian halo assembly bias
International Nuclear Information System (INIS)
Reid, Beth A.; Verde, Licia; Dolag, Klaus; Matarrese, Sabino; Moscardini, Lauro
2010-01-01
The strong dependence of the large-scale dark matter halo bias on the (local) non-Gaussianity parameter, f NL , offers a promising avenue towards constraining primordial non-Gaussianity with large-scale structure surveys. In this paper, we present the first detection of the dependence of the non-Gaussian halo bias on halo formation history using N-body simulations. We also present an analytic derivation of the expected signal based on the extended Press-Schechter formalism. In excellent agreement with our analytic prediction, we find that the halo formation history-dependent contribution to the non-Gaussian halo bias (which we call non-Gaussian halo assembly bias) can be factorized in a form approximately independent of redshift and halo mass. The correction to the non-Gaussian halo bias due to the halo formation history can be as large as 100%, with a suppression of the signal for recently formed halos and enhancement for old halos. This could in principle be a problem for realistic galaxy surveys if observational selection effects were to pick galaxies occupying only recently formed halos. Current semi-analytic galaxy formation models, for example, imply an enhancement in the expected signal of ∼ 23% and ∼ 48% for galaxies at z = 1 selected by stellar mass and star formation rate, respectively
Adaptive Laguerre-Gaussian variant of the Gaussian beam expansion method.
Cagniot, Emmanuel; Fromager, Michael; Ait-Ameur, Kamel
2009-11-01
A variant of the Gaussian beam expansion method consists in expanding the Bessel function J0 appearing in the Fresnel-Kirchhoff integral into a finite sum of complex Gaussian functions to derive an analytical expression for a Laguerre-Gaussian beam diffracted through a hard-edge aperture. However, the validity range of the approximation depends on the number of expansion coefficients that are obtained by optimization-computation directly. We propose another solution consisting in expanding J0 onto a set of collimated Laguerre-Gaussian functions whose waist depends on their number and then, depending on its argument, predicting the suitable number of expansion functions to calculate the integral recursively.
Directory of Open Access Journals (Sweden)
Tyler J. Bruinsma
2018-04-01
Full Text Available Functional magnetic resonance imaging (fMRI is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.
Schadwinkel, Stefan; Gutschalk, Alexander
2010-12-01
A number of physiological studies suggest that feature-selective adaptation is relevant to the pre-processing for auditory streaming, the perceptual separation of overlapping sound sources. Most of these studies are focused on spectral differences between streams, which are considered most important for streaming. However, spatial cues also support streaming, alone or in combination with spectral cues, but physiological studies of spatial cues for streaming remain scarce. Here, we investigate whether the tuning of selective adaptation for interaural time differences (ITD) coincides with the range where streaming perception is observed. FMRI activation that has been shown to adapt depending on the repetition rate was studied with a streaming paradigm where two tones were differently lateralized by ITD. Listeners were presented with five different ΔITD conditions (62.5, 125, 187.5, 343.75, or 687.5 μs) out of an active baseline with no ΔITD during fMRI. The results showed reduced adaptation for conditions with ΔITD ≥ 125 μs, reflected by enhanced sustained BOLD activity. The percentage of streaming perception for these stimuli increased from approximately 20% for ΔITD = 62.5 μs to > 60% for ΔITD = 125 μs. No further sustained BOLD enhancement was observed when the ΔITD was increased beyond ΔITD = 125 μs, whereas the streaming probability continued to increase up to 90% for ΔITD = 687.5 μs. Conversely, the transient BOLD response, at the transition from baseline to ΔITD blocks, increased most prominently as ΔITD was increased from 187.5 to 343.75 μs. These results demonstrate a clear dissociation of transient and sustained components of the BOLD activity in auditory cortex. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Volumetric BOLD fMRI simulation: from neurovascular coupling to multivoxel imaging
International Nuclear Information System (INIS)
Chen, Zikuan; Calhoun, Vince
2012-01-01
The blood oxygenation-level dependent (BOLD) functional magnetic resonance imaging (fMRI) modality has been numerically simulated by calculating single voxel signals. However, the observation on single voxel signals cannot provide information regarding the spatial distribution of the signals. Specifically, a single BOLD voxel signal simulation cannot answer the fundamental question: is the magnetic resonance (MR) image a replica of its underling magnetic susceptibility source? In this paper, we address this problem by proposing a multivoxel volumetric BOLD fMRI simulation model and a susceptibility expression formula for linear neurovascular coupling process, that allow us to examine the BOLD fMRI procedure from neurovascular coupling to MR image formation. Since MRI technology only senses the magnetism property, we represent a linear neurovascular-coupled BOLD state by a magnetic susceptibility expression formula, which accounts for the parameters of cortical vasculature, intravascular blood oxygenation level, and local neuroactivity. Upon the susceptibility expression of a BOLD state, we carry out volumetric BOLD fMRI simulation by calculating the fieldmap (established by susceptibility magnetization) and the complex multivoxel MR image (by intravoxel dephasing). Given the predefined susceptibility source and the calculated complex MR image, we compare the MR magnitude (phase, respectively) image with the predefined susceptibility source (the calculated fieldmap) by spatial correlation. The spatial correlation between the MR magnitude image and the magnetic susceptibility source is about 0.90 for the settings of T E = 30 ms, B 0 = 3 T, voxel size = 100 micron, vessel radius = 3 micron, and blood volume fraction = 2%. Using these parameters value, the spatial correlation between the MR phase image and the susceptibility-induced fieldmap is close to 1.00. Our simulation results show that the MR magnitude image is not an exact replica of the magnetic susceptibility
New gaussian points for the solution of first order ordinary ...
African Journals Online (AJOL)
Numerical experiments carried out using the new Gaussian points revealed there efficiency on stiff differential equations. The results also reveal that methods using the new Gaussian points are more accurate than those using the standard Gaussian points on non-stiff initial value problems. Keywords: Gaussian points ...
Calculations of Sobol indices for the Gaussian process metamodel
Energy Technology Data Exchange (ETDEWEB)
Marrel, Amandine [CEA, DEN, DTN/SMTM/LMTE, F-13108 Saint Paul lez Durance (France)], E-mail: amandine.marrel@cea.fr; Iooss, Bertrand [CEA, DEN, DER/SESI/LCFR, F-13108 Saint Paul lez Durance (France); Laurent, Beatrice [Institut de Mathematiques, Universite de Toulouse (UMR 5219) (France); Roustant, Olivier [Ecole des Mines de Saint-Etienne (France)
2009-03-15
Global sensitivity analysis of complex numerical models can be performed by calculating variance-based importance measures of the input variables, such as the Sobol indices. However, these techniques, requiring a large number of model evaluations, are often unacceptable for time expensive computer codes. A well-known and widely used decision consists in replacing the computer code by a metamodel, predicting the model responses with a negligible computation time and rending straightforward the estimation of Sobol indices. In this paper, we discuss about the Gaussian process model which gives analytical expressions of Sobol indices. Two approaches are studied to compute the Sobol indices: the first based on the predictor of the Gaussian process model and the second based on the global stochastic process model. Comparisons between the two estimates, made on analytical examples, show the superiority of the second approach in terms of convergence and robustness. Moreover, the second approach allows to integrate the modeling error of the Gaussian process model by directly giving some confidence intervals on the Sobol indices. These techniques are finally applied to a real case of hydrogeological modeling.
Global sensitivity analysis using a Gaussian Radial Basis Function metamodel
International Nuclear Information System (INIS)
Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua
2016-01-01
Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.
Calculations of Sobol indices for the Gaussian process metamodel
International Nuclear Information System (INIS)
Marrel, Amandine; Iooss, Bertrand; Laurent, Beatrice; Roustant, Olivier
2009-01-01
Global sensitivity analysis of complex numerical models can be performed by calculating variance-based importance measures of the input variables, such as the Sobol indices. However, these techniques, requiring a large number of model evaluations, are often unacceptable for time expensive computer codes. A well-known and widely used decision consists in replacing the computer code by a metamodel, predicting the model responses with a negligible computation time and rending straightforward the estimation of Sobol indices. In this paper, we discuss about the Gaussian process model which gives analytical expressions of Sobol indices. Two approaches are studied to compute the Sobol indices: the first based on the predictor of the Gaussian process model and the second based on the global stochastic process model. Comparisons between the two estimates, made on analytical examples, show the superiority of the second approach in terms of convergence and robustness. Moreover, the second approach allows to integrate the modeling error of the Gaussian process model by directly giving some confidence intervals on the Sobol indices. These techniques are finally applied to a real case of hydrogeological modeling
DEFF Research Database (Denmark)
Bennedsen, Mikkel
Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, α, of a time series. Our setup encompasses a large class of Gaussian...
Graphical calculus for Gaussian pure states
International Nuclear Information System (INIS)
Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van
2011-01-01
We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.
Variational Gaussian approximation for Poisson data
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Mode entanglement of Gaussian fermionic states
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia.
Manka, Robert; Paetsch, Ingo; Schnackenburg, Bernhard; Gebker, Rolf; Fleck, Eckart; Jahnke, Cosima
2010-09-22
The purpose of this study was to determine the ability of blood oxygen level dependent (BOLD) cardiovascular magnetic resonance (CMR) to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD). Forty-six patients (34 men; age 65 ± 9 years,) with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was performed in 3 short axis slices of the heart at rest and during adenosine stress (140 μg/kg/min) followed by late gadolinium enhancement (LGE) imaging. In all 16 standard myocardial segments, T2* values were derived at rest and under adenosine stress. Quantitative coronary angiography served as the standard of reference and defined normal myocardial segments (i.e. all 16 segments in patients without any CAD), ischemic segments (i.e. supplied by a coronary artery with ≥50% luminal narrowing) and non-ischemic segments (i.e. supplied by a non-significantly stenosed coronary artery in patients with significant CAD). Coronary angiography demonstrated significant CAD in 23 patients. BOLD CMR at rest revealed significantly lower T2* values for ischemic segments (26.7 ± 11.6 ms) compared to normal (31.9 ± 11.9 ms; p BOLD CMR at 3Tesla proved feasible and differentiated between ischemic, non-ischemic, and normal myocardial segments in a clinical patient population. BOLD CMR during vasodilator stress identified patients with significant CAD.
Non-Gaussianity in island cosmology
International Nuclear Information System (INIS)
Piao Yunsong
2009-01-01
In this paper we fully calculate the non-Gaussianity of primordial curvature perturbation of the island universe by using the second order perturbation equation. We find that for the spectral index n s ≅0.96, which is favored by current observations, the non-Gaussianity level f NL seen in an island will generally lie between 30 and 60, which may be tested by the coming observations. In the landscape, the island universe is one of anthropically acceptable cosmological histories. Thus the results obtained in some sense mean the coming observations, especially the measurement of non-Gaussianity, will be significant to clarify how our position in the landscape is populated.
Entanglement negativity bounds for fermionic Gaussian states
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
International Nuclear Information System (INIS)
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-01-01
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom—the symplectic eigenvalues—which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Invariant measures on multimode quantum Gaussian states
Energy Technology Data Exchange (ETDEWEB)
Lupo, C. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Mancini, S. [School of Science and Technology, Universita di Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); De Pasquale, A. [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Facchi, P. [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Roma (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); Pascazio, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy)
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Construction of Capacity Achieving Lattice Gaussian Codes
Alghamdi, Wael
2016-04-01
We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].
Gaussian processes and constructive scalar field theory
International Nuclear Information System (INIS)
Benfatto, G.; Nicolo, F.
1981-01-01
The last years have seen a very deep progress of constructive euclidean field theory, with many implications in the area of the random fields theory. The authors discuss an approach to super-renormalizable scalar field theories, which puts in particular evidence the connections with the theory of the Gaussian processes associated to the elliptic operators. The paper consists of two parts. Part I treats some problems in the theory of Gaussian processes which arise in the approach to the PHI 3 4 theory. Part II is devoted to the discussion of the ultraviolet stability in the PHI 3 4 theory. (Auth.)
Integration of non-Gaussian fields
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille
1996-01-01
The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast....... and Randrup-Thomsen, S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation. Proc. IUTAM Symp., Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, USA, June 1993 (eds.: P. D. Spanos & Y.-T. Wu) pp. 134-162. Springer, Berlin...
Quantum information theory with Gaussian systems
Energy Technology Data Exchange (ETDEWEB)
Krueger, O.
2006-04-06
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Quantum information theory with Gaussian systems
International Nuclear Information System (INIS)
Krueger, O.
2006-01-01
This thesis applies ideas and concepts from quantum information theory to systems of continuous-variables such as the quantum harmonic oscillator. The focus is on three topics: the cloning of coherent states, Gaussian quantum cellular automata and Gaussian private channels. Cloning was investigated both for finite-dimensional and for continuous-variable systems. We construct a private quantum channel for the sequential encryption of coherent states with a classical key, where the key elements have finite precision. For the case of independent one-mode input states, we explicitly estimate this precision, i.e. the number of key bits needed per input state, in terms of these parameters. (orig.)
Model selection for Gaussian kernel PCA denoising
DEFF Research Database (Denmark)
Jørgensen, Kasper Winther; Hansen, Lars Kai
2012-01-01
We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...
Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.
Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming
2015-04-15
Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.
International Nuclear Information System (INIS)
Ji, Se-Wan; Nha, Hyunchul; Kim, M S
2015-01-01
It is a topic of fundamental and practical importance how a quantum correlated state can be reliably distributed through a noisy channel for quantum information processing. The concept of quantum steering recently defined in a rigorous manner is relevant to study it under certain circumstances and here we address quantum steerability of Gaussian states to this aim. In particular, we attempt to reformulate the criterion for Gaussian steering in terms of local and global purities and show that it is sufficient and necessary for the case of steering a 1-mode system by an N-mode system. It subsequently enables us to reinforce a strong monogamy relation under which only one party can steer a local system of 1-mode. Moreover, we show that only a negative partial-transpose state can manifest quantum steerability by Gaussian measurements in relation to the Peres conjecture. We also discuss our formulation for the case of distributing a two-mode squeezed state via one-way quantum channels making dissipation and amplification effects, respectively. Finally, we extend our approach to include non-Gaussian measurements, more precisely, all orders of higher-order squeezing measurements, and find that this broad set of non-Gaussian measurements is not useful to demonstrate steering for Gaussian states beyond Gaussian measurements. (paper)
Research progress of BOLD-fMRI in minimal hepatic encephalopathy
International Nuclear Information System (INIS)
Zhou Zhiming; Zhao Jiannong
2013-01-01
The minimal hepatic encephalopathy is the early stage of hepatic encephalopathy. It has few apparent clinical symptoms and specific manifestations, and is difficult to diagnose. In the recent years, BOLD-fMRI has been used to study hepatic encephalopathy gradually. Through detection of the brain neuron activities in different states, it can not only locate the abnormal activity of brain functional areas, but also can find the changes of brain functional connectivity. BOLD- fMRI combining with other MR technologies can explore the pathology and pathogenesis of minimal hepatic encephalopathy from micro to macro and from structure to function. (authors)
Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla
Siero, J.C.W.
2013-01-01
The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse
How Gaussian can our Universe be?
Cabass, G.; Pajer, E.; Schmidt, F.
2017-01-01
Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of kl2/ks2, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × (ns-1).
Gaussian vector fields on triangulated surfaces
DEFF Research Database (Denmark)
Ipsen, John H
2016-01-01
proven to be very useful to resolve the complex interplay between in-plane ordering of membranes and membrane conformations. In the present work we have developed a procedure for realistic representations of Gaussian models with in-plane vector degrees of freedoms on a triangulated surface. The method...
The Wehrl entropy has Gaussian optimizers
DEFF Research Database (Denmark)
De Palma, Giacomo
2018-01-01
We determine the minimum Wehrl entropy among the quantum states with a given von Neumann entropy and prove that it is achieved by thermal Gaussian states. This result determines the relation between the von Neumann and the Wehrl entropies. The key idea is proving that the quantum-classical channel...
How Gaussian can our Universe be?
Energy Technology Data Exchange (ETDEWEB)
Cabass, G. [Physics Department and INFN, Università di Roma ' ' La Sapienza' ' , P.le Aldo Moro 2, 00185, Rome (Italy); Pajer, E. [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Schmidt, F., E-mail: giovanni.cabass@roma1.infn.it, E-mail: e.pajer@uu.nl, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)
2017-01-01
Gravity is a non-linear theory, and hence, barring cancellations, the initial super-horizon perturbations produced by inflation must contain some minimum amount of mode coupling, or primordial non-Gaussianity. In single-field slow-roll models, where this lower bound is saturated, non-Gaussianity is controlled by two observables: the tensor-to-scalar ratio, which is uncertain by more than fifty orders of magnitude; and the scalar spectral index, or tilt, which is relatively well measured. It is well known that to leading and next-to-leading order in derivatives, the contributions proportional to the tilt disappear from any local observable, and suspicion has been raised that this might happen to all orders, allowing for an arbitrarily low amount of primordial non-Gaussianity. Employing Conformal Fermi Coordinates, we show explicitly that this is not the case. Instead, a contribution of order the tilt appears in local observables. In summary, the floor of physical primordial non-Gaussianity in our Universe has a squeezed-limit scaling of k {sub ℓ}{sup 2}/ k {sub s} {sup 2}, similar to equilateral and orthogonal shapes, and a dimensionless amplitude of order 0.1 × ( n {sub s}−1).
Gaussian shaping filter for nuclear spectrometry
International Nuclear Information System (INIS)
Menezes, A.S.C. de.
1980-01-01
A theorical study of a gaussian shaping filter, using Pade approximation, for using in gamma spectroscopy is presented. This approximation has proved superior to the classical cascade RC integrators approximation in therms of signal-to-noise ratio and pulse simmetry. An experimental filter was designed, simulated in computer, constructed, and tested in the laboratory. (author) [pt
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian U...
Chimera states in Gaussian coupled map lattices
Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian
2018-04-01
We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.
Gaussian curvature on hyperelliptic Riemann surfaces
Indian Academy of Sciences (India)
Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 155–167. c Indian Academy of Sciences. Gaussian curvature on hyperelliptic Riemann surfaces. ABEL CASTORENA. Centro de Ciencias Matemáticas (Universidad Nacional Autónoma de México,. Campus Morelia) Apdo. Postal 61-3 Xangari, C.P. 58089 Morelia,.
Additivity properties of a Gaussian channel
International Nuclear Information System (INIS)
Giovannetti, Vittorio; Lloyd, Seth
2004-01-01
The Amosov-Holevo-Werner conjecture implies the additivity of the minimum Renyi entropies at the output of a channel. The conjecture is proven true for all Renyi entropies of integer order greater than two in a class of Gaussian bosonic channel where the input signal is randomly displaced or where it is coupled linearly to an external environment
Modeling text with generalizable Gaussian mixtures
DEFF Research Database (Denmark)
Hansen, Lars Kai; Sigurdsson, Sigurdur; Kolenda, Thomas
2000-01-01
We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss...
Improving the gaussian effective potential: quantum mechanics
International Nuclear Information System (INIS)
Eboli, O.J.P.; Thomaz, M.T.; Lemos, N.A.
1990-08-01
In order to gain intuition for variational problems in field theory, we analyze variationally the quantum-mechanical anharmonic oscillator [(V(x)sup(k) - sub(2) x sup(2) + sup(λ) - sub(4) λ sup(4)]. Special attention is paid to improvements to the Gaussian effective potential. (author)
Open problems in Gaussian fluid queueing theory
Dȩbicki, K.; Mandjes, M.
2011-01-01
We present three challenging open problems that originate from the analysis of the asymptotic behavior of Gaussian fluid queueing models. In particular, we address the problem of characterizing the correlation structure of the stationary buffer content process, the speed of convergence to
Oracle Wiener filtering of a Gaussian signal
Babenko, A.; Belitser, E.
2011-01-01
We study the problem of filtering a Gaussian process whose trajectories, in some sense, have an unknown smoothness ß0 from the white noise of small intensity e. If we knew the parameter ß0, we would use the Wiener filter which has the meaning of oracle. Our goal is now to mimic the oracle, i.e.,
Oracle Wiener filtering of a Gaussian signal
Babenko, A.; Belitser, E.N.
2011-01-01
We study the problem of filtering a Gaussian process whose trajectories, in some sense, have an unknown smoothness β0 from the white noise of small intensity . If we knew the parameter β0, we would use the Wiener filter which has the meaning of oracle. Our goal is now to mimic the oracle, i.e.,
Estimators for local non-Gaussianities
International Nuclear Information System (INIS)
Creminelli, P.; Senatore, L.; Zaldarriaga, M.
2006-05-01
We study the Likelihood function of data given f NL for the so-called local type of non-Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space, of a Gaussian random field. We compute the Cramer-Rao bound for f NL and show that for small values of f NL the 3- point function estimator saturates the bound and is equivalent to calculating the full Likelihood of the data. However, for sufficiently large f NL , the naive 3-point function estimator has a much larger variance than previously thought. In the limit in which the departure from Gaussianity is detected with high confidence, error bars on f NL only decrease as 1/ln N pix rather than N pix -1/2 as the size of the data set increases. We identify the physical origin of this behavior and explain why it only affects the local type of non- Gaussianity, where the contribution of the first multipoles is always relevant. We find a simple improvement to the 3-point function estimator that makes the square root of its variance decrease as N pix -1/2 even for large f NL , asymptotically approaching the Cramer-Rao bound. We show that using the modified estimator is practically equivalent to computing the full Likelihood of f NL given the data. Thus other statistics of the data, such as the 4-point function and Minkowski functionals, contain no additional information on f NL . In particular, we explicitly show that the recent claims about the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we show that the data do not contain enough information for any statistic to be able to constrain higher order terms in the relation between the Gaussian field and the curvature perturbation, unless these are orders of magnitude larger than the size suggested by the current limits on f NL . (author)
Cosmological information in Gaussianized weak lensing signals
Joachimi, B.; Taylor, A. N.; Kiessling, A.
2011-11-01
Gaussianizing the one-point distribution of the weak gravitational lensing convergence has recently been shown to increase the signal-to-noise ratio contained in two-point statistics. We investigate the information on cosmology that can be extracted from the transformed convergence fields. Employing Box-Cox transformations to determine optimal transformations to Gaussianity, we develop analytical models for the transformed power spectrum, including effects of noise and smoothing. We find that optimized Box-Cox transformations perform substantially better than an offset logarithmic transformation in Gaussianizing the convergence, but both yield very similar results for the signal-to-noise ratio. None of the transformations is capable of eliminating correlations of the power spectra between different angular frequencies, which we demonstrate to have a significant impact on the errors in cosmology. Analytic models of the Gaussianized power spectrum yield good fits to the simulations and produce unbiased parameter estimates in the majority of cases, where the exceptions can be traced back to the limitations in modelling the higher order correlations of the original convergence. In the ideal case, without galaxy shape noise, we find an increase in the cumulative signal-to-noise ratio by a factor of 2.6 for angular frequencies up to ℓ= 1500, and a decrease in the area of the confidence region in the Ωm-σ8 plane, measured in terms of q-values, by a factor of 4.4 for the best performing transformation. When adding a realistic level of shape noise, all transformations perform poorly with little decorrelation of angular frequencies, a maximum increase in signal-to-noise ratio of 34 per cent, and even slightly degraded errors on cosmological parameters. We argue that to find Gaussianizing transformations of practical use, it will be necessary to go beyond transformations of the one-point distribution of the convergence, extend the analysis deeper into the non
van IJzendoorn, M H; Bakermans-Kranenburg, M J
2016-08-01
Despite the sometimes heated debate about the validity of human oxytocin studies, experimental oxytocin research with intranasal administration is a growing field with promising preliminary findings. The effects of intranasally administered oxytocin compared to placebo on brain neural activity have been supported in animal studies and in human studies of neural resting state. In several studies, oxytocin sniffs have been shown to lead to down-regulation of amygdala activation in response to infant attachment vocalisations. Meta-analytic evidence shows that oxytocin enhances the salience of (emotional) stimuli, lowers stress and arousal, and elevates empathic concern and tender care, in particular for offspring and in-group members. Less firm evidence points at the amnestic effects of oxytocin. We also note that the average effect sizes of oxytocin experiments are small to modest, and that most studies include a small number of subjects and thus are seriously underpowered, which implies a high risk for publication bias and nonreplicability. Nevertheless, we argue that the power of within-subjects experiments with oxytocin has been underestimated. Much more work is needed, however, to create a firm knowledge base of the neural and behavioural effects of oxytocin. Human oxytocin research is still taking place in the context of discovery, in which bold conjectures are being generated. In the context of justification, these conjectures should subsequently be subjected to stringent attempts at refutations before we jump to theoretical or clinical conclusions. For this context of justification, we propose a multisite multiple replications project on the social stimuli salience enhancing effect of oxytocin. Clinical application of oxytocin is premature. Meta-analytically, the use of oxytocin in clinical groups tends to show only effectiveness in changing symptomatology in individuals with autism spectrum disorders but, even then, it is not yet a validated therapy and its
Directory of Open Access Journals (Sweden)
Jun Lv
Full Text Available Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG and functional magnetic resonance imaging (fMRI time series.In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.
Elasto-plastic frame under horizontal and vertical Gaussian excitation
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.
1999-01-01
Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Rios, Gonzalo; Tobar, Felipe
2018-01-01
Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformation (or warping). However, overparametrising the kernel and the warping is known to, respectively, hin...
Wavelet entropy of BOLD time series : an application to Rolandic epilepsy
Gupta, Lalit; Jansen, Jacobus F.A.; Hofman, Paul A.M.; Besseling, René M.H.; de Louw, Anton J.A.; Aldenkamp, Albert P.; Backes, Walter H.
2017-01-01
Purpose: To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in
Dwivedi, Yogesh K.; Janssen, M.F.W.H.A.; Slade, Emma L.; Rana, Nripendra P.; Weerakkody, Vishanth; Millard, Jeremy; Hidders, Jan; Snijders, D.
2016-01-01
Innovation is vital to find new solutions to problems, increase quality, and improve profitability. Big open linked data (BOLD) is a fledgling and rapidly evolving field that creates new opportunities for innovation. However, none of the existing literature has yet considered the
Validity of the assumption of Gaussian turbulence; Gyldighed af antagelsen om Gaussisk turbulence
Energy Technology Data Exchange (ETDEWEB)
Nielsen, M.; Hansen, K.S.; Juul Pedersen, B.
2000-07-01
Wind turbines are designed to withstand the impact of turbulent winds, which fluctuations usually are assumed of Gaussian probability distribution. Based on a large number of measurements from many sites, this seems a reasonable assumption in flat homogeneous terrain whereas it may fail in complex terrain. At these sites the wind speed often has a skew distribution with more frequent lulls than gusts. In order to simulate aerodynamic loads, a numerical turbulence simulation method was developed and implemented. This method may simulate multiple time series of variable not necessarily Gaussian distribution without distortion of the spectral distribution or spatial coherence. The simulated time series were used as input to the dynamic-response simulation program Vestas Turbine Simulator (VTS). In this way we simulated the dynamic response of systems exposed to turbulence of either Gaussian or extreme, yet realistic, non-Gaussian probability distribution. Certain loads on turbines with active pitch regulation were enhanced by up to 15% compared to pure Gaussian turbulence. It should, however, be said that the undesired effect depends on the dynamic system, and it might be mitigated by optimisation of the wind turbine regulation system after local turbulence characteristics. (au)
MCEM algorithm for the log-Gaussian Cox process
Delmas, Celine; Dubois-Peyrard, Nathalie; Sabbadin, Regis
2014-01-01
Log-Gaussian Cox processes are an important class of models for aggregated point patterns. They have been largely used in spatial epidemiology (Diggle et al., 2005), in agronomy (Bourgeois et al., 2012), in forestry (Moller et al.), in ecology (sightings of wild animals) or in environmental sciences (radioactivity counts). A log-Gaussian Cox process is a Poisson process with a stochastic intensity depending on a Gaussian random eld. We consider the case where this Gaussian random eld is ...
Large deviations for Gaussian processes in Hoelder norm
International Nuclear Information System (INIS)
Fatalov, V R
2003-01-01
Some results are proved on the exact asymptotic representation of large deviation probabilities for Gaussian processes in the Hoeder norm. The following classes of processes are considered: the Wiener process, the Brownian bridge, fractional Brownian motion, and stationary Gaussian processes with power-law covariance function. The investigation uses the method of double sums for Gaussian fields
Phase space structure of generalized Gaussian cat states
International Nuclear Information System (INIS)
Nicacio, Fernando; Maia, Raphael N.P.; Toscano, Fabricio; Vallejos, Raul O.
2010-01-01
We analyze generalized Gaussian cat states obtained by superposing arbitrary Gaussian states. The structure of the interference term of the Wigner function is always hyperbolic, surviving the action of a thermal reservoir. We also consider certain superpositions of mixed Gaussian states. An application to semiclassical dynamics is discussed.
Linking network usage patterns to traffic Gaussianity fit
de Oliveira Schmidt, R.; Sadre, R.; Melnikov, Nikolay; Schönwälder, Jürgen; Pras, Aiko
Gaussian traffic models are widely used in the domain of network traffic modeling. The central assumption is that traffic aggregates are Gaussian distributed. Due to its importance, the Gaussian character of network traffic has been extensively assessed by researchers in the past years. In 2001,
A comparison of measures of boldness and their relationships to survival in young fish.
Directory of Open Access Journals (Sweden)
James R White
Full Text Available Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior: latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust, which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival.
BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia
Directory of Open Access Journals (Sweden)
Gebker Rolf
2010-09-01
Full Text Available Abstract Background The purpose of this study was to determine the ability of Blood Oxygen Level Dependent (BOLD cardiovascular magnetic resonance (CMR to detect stress-inducible myocardial ischemic reactions in the presence of angiographically significant coronary artery disease (CAD. Methods Forty-six patients (34 men; age 65 ± 9 years, with suspected or known coronary artery disease underwent CMR at 3Tesla prior to clinically indicated invasive coronary angiography. BOLD CMR was performed in 3 short axis slices of the heart at rest and during adenosine stress (140 μg/kg/min followed by late gadolinium enhancement (LGE imaging. In all 16 standard myocardial segments, T2* values were derived at rest and under adenosine stress. Quantitative coronary angiography served as the standard of reference and defined normal myocardial segments (i.e. all 16 segments in patients without any CAD, ischemic segments (i.e. supplied by a coronary artery with ≥50% luminal narrowing and non-ischemic segments (i.e. supplied by a non-significantly stenosed coronary artery in patients with significant CAD. Results Coronary angiography demonstrated significant CAD in 23 patients. BOLD CMR at rest revealed significantly lower T2* values for ischemic segments (26.7 ± 11.6 ms compared to normal (31.9 ± 11.9 ms; p Conclusions Rest and stress BOLD CMR at 3Tesla proved feasible and differentiated between ischemic, non-ischemic, and normal myocardial segments in a clinical patient population. BOLD CMR during vasodilator stress identified patients with significant CAD.
On Alternate Relaying with Improper Gaussian Signaling
Gaafar, Mohamed
2016-06-06
In this letter, we investigate the potential benefits of adopting improper Gaussian signaling (IGS) in a two-hop alternate relaying (AR) system. Given the known benefits of using IGS in interference-limited networks, we propose to use IGS to relieve the inter-relay interference (IRI) impact on the AR system assuming no channel state information is available at the source. In this regard, we assume that the two relays use IGS and the source uses proper Gaussian signaling (PGS). Then, we optimize the degree of impropriety of the relays signal, measured by the circularity coefficient, to maximize the total achievable rate. Simulation results show that using IGS yields a significant performance improvement over PGS, especially when the first hop is a bottleneck due to weak source-relay channel gains and/or strong IRI.
On Alternate Relaying with Improper Gaussian Signaling
Gaafar, Mohamed; Amin, Osama; Ikhlef, Aissa; Chaaban, Anas; Alouini, Mohamed-Slim
2016-01-01
In this letter, we investigate the potential benefits of adopting improper Gaussian signaling (IGS) in a two-hop alternate relaying (AR) system. Given the known benefits of using IGS in interference-limited networks, we propose to use IGS to relieve the inter-relay interference (IRI) impact on the AR system assuming no channel state information is available at the source. In this regard, we assume that the two relays use IGS and the source uses proper Gaussian signaling (PGS). Then, we optimize the degree of impropriety of the relays signal, measured by the circularity coefficient, to maximize the total achievable rate. Simulation results show that using IGS yields a significant performance improvement over PGS, especially when the first hop is a bottleneck due to weak source-relay channel gains and/or strong IRI.
Direct Importance Estimation with Gaussian Mixture Models
Yamada, Makoto; Sugiyama, Masashi
The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.
Fractional Diffusion in Gaussian Noisy Environment
Directory of Open Access Journals (Sweden)
Guannan Hu
2015-03-01
Full Text Available We study the fractional diffusion in a Gaussian noisy environment as described by the fractional order stochastic heat equations of the following form: \\(D_t^{(\\alpha} u(t, x=\\textit{B}u+u\\cdot \\dot W^H\\, where \\(D_t^{(\\alpha}\\ is the Caputo fractional derivative of order \\(\\alpha\\in (0,1\\ with respect to the time variable \\(t\\, \\(\\textit{B}\\ is a second order elliptic operator with respect to the space variable \\(x\\in\\mathbb{R}^d\\ and \\(\\dot W^H\\ a time homogeneous fractional Gaussian noise of Hurst parameter \\(H=(H_1, \\cdots, H_d\\. We obtain conditions satisfied by \\(\\alpha\\ and \\(H\\, so that the square integrable solution \\(u\\ exists uniquely.
Extended Linear Models with Gaussian Priors
DEFF Research Database (Denmark)
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Interweave Cognitive Radio with Improper Gaussian Signaling
Hedhly, Wafa
2018-01-15
Improper Gaussian signaling (IGS) has proven its ability in improving the performance of underlay and overlay cognitive radio paradigms. In this paper, the interweave cognitive radio paradigm is studied when the cognitive user employs IGS. The instantaneous achievable rate performance of both the primary and secondary users are analyzed for specific secondary user sensing and detection capabilities. Next, the IGS scheme is optimized to maximize the achievable rate secondary user while satisfying a target minimum rate requirement for the primary user. Proper Gaussian signaling (PGS) scheme design is also derived to be used as benchmark of the IGS scheme design. Finally, different numerical results are introduced to show the gain reaped from adopting IGS over PGS under different system parameters. The main advantage of employing IGS is observed at low sensing and detection capabilities of the SU, lower PU direct link and higher SU interference on the PU side.
Image reconstruction under non-Gaussian noise
DEFF Research Database (Denmark)
Sciacchitano, Federica
During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... to the ill-posedness of the problem, the simple inversion of the degradation model does not give any good reconstructions. Therefore, to deal with the ill-posedness it is necessary to use some prior information on the solution or the model and the Bayesian approach. Additive Gaussian noise has been......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E
2013-05-01
The difference-of-Gaussians (DOG) filter is a widely used model for the receptive field of neurons in the retina and lateral geniculate nucleus (LGN) and is a potential model in general for responses modulated by an excitatory center with an inhibitory surrounding region. A DOG filter is defined by three standard parameters: the center and surround sigmas (which define the variance of the radially symmetric Gaussians) and the balance (which defines the linear combination of the two Gaussians). These parameters are not directly observable and are typically determined by nonlinear parameter estimation methods applied to the frequency response function. DOG filters show both low-pass (optimal response at zero frequency) and bandpass (optimal response at a nonzero frequency) behavior. This paper reformulates the DOG filter in terms of a directly observable parameter, the zero-crossing radius, and two new (but not directly observable) parameters. In the two-dimensional parameter space, the exact region corresponding to bandpass behavior is determined. A detailed description of the frequency response characteristics of the DOG filter is obtained. It is also found that the directly observable optimal frequency and optimal gain (the ratio of the response at optimal frequency to the response at zero frequency) provide an alternate coordinate system for the bandpass region. Altogether, the DOG filter and its three standard implicit parameters can be determined by three directly observable values. The two-dimensional bandpass region is a potential tool for the analysis of populations of DOG filters (for example, populations of neurons in the retina or LGN), because the clustering of points in this parameter space may indicate an underlying organizational principle. This paper concentrates on circular Gaussians, but the results generalize to multidimensional radially symmetric Gaussians and are given as an appendix.
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
Log Gaussian Cox processes on the sphere
DEFF Research Database (Denmark)
Pacheco, Francisco Andrés Cuevas; Møller, Jesper
We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....
Recognition of Images Degraded by Gaussian Blur
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Farokhi, Sajad; Höschl, Cyril; Suk, Tomáš; Zitová, Barbara; Pedone, M.
2016-01-01
Roč. 25, č. 2 (2016), s. 790-806 ISSN 1057-7149 R&D Projects: GA ČR(CZ) GA15-16928S Institutional support: RVO:67985556 Keywords : Blurred image * object recognition * blur invariant comparison * Gaussian blur * projection operators * image moments * moment invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.828, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0454335.pdf
Adaptive multiple importance sampling for Gaussian processes
Czech Academy of Sciences Publication Activity Database
Xiong, X.; Šmídl, Václav; Filippone, M.
2017-01-01
Roč. 87, č. 8 (2017), s. 1644-1665 ISSN 0094-9655 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Gaussian Process * Bayesian estimation * Adaptive importance sampling Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 0.757, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/smidl-0469804.pdf
Neutron inverse kinetics via Gaussian Processes
International Nuclear Information System (INIS)
Picca, Paolo; Furfaro, Roberto
2012-01-01
Highlights: ► A novel technique for the interpretation of experiments in ADS is presented. ► The technique is based on Bayesian regression, implemented via Gaussian Processes. ► GPs overcome the limits of classical methods, based on PK approximation. ► Results compares GPs and ANN performance, underlining similarities and differences. - Abstract: The paper introduces the application of Gaussian Processes (GPs) to determine the subcriticality level in accelerator-driven systems (ADSs) through the interpretation of pulsed experiment data. ADSs have peculiar kinetic properties due to their special core design. For this reason, classical – inversion techniques based on point kinetic (PK) generally fail to generate an accurate estimate of reactor subcriticality. Similarly to Artificial Neural Networks (ANNs), Gaussian Processes can be successfully trained to learn the underlying inverse neutron kinetic model and, as such, they are not limited to the model choice. Importantly, GPs are strongly rooted into the Bayes’ theorem which makes them a powerful tool for statistical inference. Here, GPs have been designed and trained on a set of kinetics models (e.g. point kinetics and multi-point kinetics) for homogeneous and heterogeneous settings. The results presented in the paper show that GPs are very efficient and accurate in predicting the reactivity for ADS-like systems. The variance computed via GPs may provide an indication on how to generate additional data as function of the desired accuracy.
Resonant non-Gaussianity with equilateral properties
International Nuclear Information System (INIS)
Gwyn, Rhiannon; Rummel, Markus
2012-11-01
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f NL ∝O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Unitarily localizable entanglement of Gaussian states
International Nuclear Information System (INIS)
Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes
Gaussian Hypothesis Testing and Quantum Illumination.
Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario
2017-09-22
Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.
Resonant non-Gaussianity with equilateral properties
Energy Technology Data Exchange (ETDEWEB)
Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which arise for instance in models of axion inflation. The resulting sum of oscillating shape contributions can be used to ''Fourier synthesize'' different non-oscillating shapes in the bispectrum. As an example we reproduce an approximately equilateral shape from the superposition of O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of resonant-type contributions in theories with canonical kinetic terms. The absence of oscillations in the 2-point function together with the structure of the resonant N-point functions, imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK sensitivity of f{sub NL} {proportional_to}O(5) will rule out a resonant origin. We comment on the questions arising from possible embeddings of this idea in a string theory setting.
Gaussian Process-Mixture Conditional Heteroscedasticity.
Platanios, Emmanouil A; Chatzis, Sotirios P
2014-05-01
Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its performance to state-of-the-art methodologies.
Non-Gaussian conductivity fluctuations in semiconductors
International Nuclear Information System (INIS)
Melkonyan, S.V.
2010-01-01
A theoretical study is presented on the statistical properties of conductivity fluctuations caused by concentration and mobility fluctuations of the current carriers. It is established that mobility fluctuations result from random deviations in the thermal equilibrium distribution of the carriers. It is shown that mobility fluctuations have generation-recombination and shot components which do not satisfy the requirements of the central limit theorem, in contrast to the current carrier's concentration fluctuation and intraband component of the mobility fluctuation. It is shown that in general the mobility fluctuation consist of thermal (or intraband) Gaussian and non-thermal (or generation-recombination, shot, etc.) non-Gaussian components. The analyses of theoretical results and experimental data from literature show that the statistical properties of mobility fluctuation and of 1/f-noise fully coincide. The deviation from Gaussian statistics of the mobility or 1/f fluctuations goes hand in hand with the magnitude of non-thermal noise (generation-recombination, shot, burst, pulse noises, etc.).
Perturbative Gaussianizing transforms for cosmological fields
Hall, Alex; Mead, Alexander
2018-01-01
Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.
MINIMUM ENTROPY DECONVOLUTION OF ONE-AND MULTI-DIMENSIONAL NON-GAUSSIAN LINEAR RANDOM PROCESSES
Institute of Scientific and Technical Information of China (English)
程乾生
1990-01-01
The minimum entropy deconvolution is considered as one of the methods for decomposing non-Gaussian linear processes. The concept of peakedness of a system response sequence is presented and its properties are studied. With the aid of the peakedness, the convergence theory of the minimum entropy deconvolution is established. The problem of the minimum entropy deconvolution of multi-dimensional non-Gaussian linear random processes is first investigated and the corresponding theory is given. In addition, the relation between the minimum entropy deconvolution and parameter method is discussed.
Searching for non-Gaussianity in the WMAP data
International Nuclear Information System (INIS)
Bernui, A.; Reboucas, M. J.
2009-01-01
Some analyses of recent cosmic microwave background (CMB) data have provided hints that there are deviations from Gaussianity in the WMAP CMB temperature fluctuations. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to determine whether the reported non-Gaussianity is of cosmological origin, and/or extract further information that may be helpful for identifying its causes. We propose two new non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, which provide a measure of departure from Gaussianity on large angular scales. A distinctive feature of these indicators is that they provide sky maps of non-Gaussianity of the CMB temperature data, thus allowing a possible additional window into their origins. Using these indicators, we find no significant deviation from Gaussianity in the three and five-year WMAP Internal Linear Combination (ILC) map with KQ75 mask, while the ILC unmasked map exhibits deviation from Gaussianity, quantifying therefore the WMAP team recommendation to employ the new mask KQ75 for tests of Gaussianity. We also use our indicators to test for Gaussianity the single frequency foreground unremoved WMAP three and five-year maps, and show that the K and Ka maps exhibit a clear indication of deviation from Gaussianity even with the KQ75 mask. We show that our findings are robust with respect to the details of the method.
Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise
International Nuclear Information System (INIS)
Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2011-01-01
We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.
High-Order Local Pooling and Encoding Gaussians Over a Dictionary of Gaussians.
Li, Peihua; Zeng, Hui; Wang, Qilong; Shiu, Simon C K; Zhang, Lei
2017-07-01
Local pooling (LP) in configuration (feature) space proposed by Boureau et al. explicitly restricts similar features to be aggregated, which can preserve as much discriminative information as possible. At the time it appeared, this method combined with sparse coding achieved competitive classification results with only a small dictionary. However, its performance lags far behind the state-of-the-art results as only the zero-order information is exploited. Inspired by the success of high-order statistical information in existing advanced feature coding or pooling methods, we make an attempt to address the limitation of LP. To this end, we present a novel method called high-order LP (HO-LP) to leverage the information higher than the zero-order one. Our idea is intuitively simple: we compute the first- and second-order statistics per configuration bin and model them as a Gaussian. Accordingly, we employ a collection of Gaussians as visual words to represent the universal probability distribution of features from all classes. Our problem is naturally formulated as encoding Gaussians over a dictionary of Gaussians as visual words. This problem, however, is challenging since the space of Gaussians is not a Euclidean space but forms a Riemannian manifold. We address this challenge by mapping Gaussians into the Euclidean space, which enables us to perform coding with common Euclidean operations rather than complex and often expensive Riemannian operations. Our HO-LP preserves the advantages of the original LP: pooling only similar features and using a small dictionary. Meanwhile, it achieves very promising performance on standard benchmarks, with either conventional, hand-engineered features or deep learning-based features.
Area of isodensity contours in Gaussian and non-Gaussian fields
International Nuclear Information System (INIS)
Ryden, B.S.
1988-01-01
The area of isodensity contours in a smoothed density field can be measured by the contour-crossing statistic N1, the number of times per unit length that a line drawn through the density field pierces an isodensity contour. The contour-crossing statistic distinguishes between Gaussian and non-Gaussian fields and provides a measure of the effective slope of the power spectrum. The statistic is easy to apply and can be used on pencil beams and slices as well as on a three-dimensional field. 10 references
Stochastic differential calculus for Gaussian and non-Gaussian noises: A critical review
Falsone, G.
2018-03-01
In this paper a review of the literature works devoted to the study of stochastic differential equations (SDEs) subjected to Gaussian and non-Gaussian white noises and to fractional Brownian noises is given. In these cases, particular attention must be paid in treating the SDEs because the classical rules of the differential calculus, as the Newton-Leibnitz one, cannot be applied or are applicable with many difficulties. Here all the principal approaches solving the SDEs are reported for any kind of noise, highlighting the negative and positive properties of each one and making the comparisons, where it is possible.
International Nuclear Information System (INIS)
Liu Shixiong; Guo Hong; Liu Mingwei; Wu Guohua
2004-01-01
Propagation characteristics of focused Gaussian beam (FoGB) and fundamental Gaussian beam (FuGB) propagating in vacuum are investigated. Based on the Fourier transform and the angular spectral analysis, the transverse component and the second-order approximate longitudinal component of the electric field are obtained in the paraxial approximation. The electric field components, the phase velocity and the group velocity of FoGB are compared with those of FuGB. The spot size of FoGB is also discussed
International Nuclear Information System (INIS)
Tan, Cheng-Yang; Fermilab
2006-01-01
One common way for measuring the emittance of an electron beam is with the slits method. The usual approach for analyzing the data is to calculate an emittance that is a subset of the parent emittance. This paper shows an alternative way by using the method of correlations which ties the parameters derived from the beamlets to the actual parameters of the parent emittance. For parent distributions that are Gaussian, this method yields exact results. For non-Gaussian beam distributions, this method yields an effective emittance that can serve as a yardstick for emittance comparisons
Energy Technology Data Exchange (ETDEWEB)
Giesel, F.L. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Hohmann, N. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J. [Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany)
2005-02-01
Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) nutzt den ''blood oxygen level dependent effect'' (BOLD-Effekt) zur nichtinvasiven Darstellung zerebraler Korrelate kognitiver Funktionen. Die Bedeutung dieses Verfahrens fuer das Verstaendnis physiologischer und pathologischer Prozesse wird anhand von Untersuchungen zum Arbeitsgedaechtnis bei Schizophrenen und gesunden Kontrollpersonen verdeutlicht. Das Arbeitsgedaechtnis dient weniger der Speicherung, sondern vielmehr der Verarbeitung von Informationen und ist deshalb in komplexe Prozesse wie Lernen und Problemloesen eingebunden. Im Rahmen schizophrener Psychosen kommt es zu einer deutlichen Einschraenkung dieser Funktionen. Erwartungsgemaess zeigen sich unter Durchfuehrung eines Arbeitsgedaechtnisparadigmas Unterschiede in der zerebralen Aktivitaet, die jedoch bei den Erkrankten unter Therapie prinzipiell reversibel sind. Von Interesse sind auch Trainingseffekte bei Gesunden, wobei eine verminderte Aktivierung nach Training auf eine ''Oekonomisierung'' schliessen laesst. (orig.)
Bold Ideas for the 4th H in 4-H: Teen Identified Concerns and Actions
Virginia Brown; Bonnie Braun; JoAnne Leatherman
2015-01-01
This article summarizes a literature review; teen-identified health concerns and issues; and teen bold ideas for actions. Findings from the National 4-H Council and Molina Healthcare Teens Take on Health initiative are provided and implications for 4-H programming tied to the new Cooperative Extension National Framework for Health and Wellness are addressed. The article is intended as background for Extension educators, volunteers and administrators as they review the 4-H Healthy Living Missi...
Electrophysiological correlates of the BOLD signal for EEG-informed fMRI
Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis
2015-01-01
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370
Using CO5BOLD models to predict the effects of granulation on colours .
Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Prakapavičius, D.; Kučinskas, A.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.
In order to investigate the effects of granulation on fluxes and colours, we computed the emerging fluxes from the models in the CO5BOLD grid with metallicities [M/H]=0.0,-1.0,-2.0 and -3.0. These fluxes have been used to compute colours in different photometric systems. We explain here how our computations have been performed and provide some results.
Teacherpreneurs: a bold brand of teacher leadership for 21st-century teaching and learning.
Berry, Barnett
2013-04-19
Challenges facing our public schools demand a bold brand of teacher leadership. Teacherpreneurs, effective teachers who teach students regularly but also incubate and execute the kinds of policies and pedagogies students deserve, represent a new culture of training and ingenuity. Teachers who lead outside the classroom but do not lose their connection to students are best positioned to develop and disseminate best policies and practices for 21st-century teaching and learning.
Directory of Open Access Journals (Sweden)
Gaelle Bettus
Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional
Detection of Acute Tubular Necrosis Using Blood Oxygenation Level-Dependent (BOLD MRI
Directory of Open Access Journals (Sweden)
Frederic Bauer
2017-12-01
Full Text Available Background/Aims: To date, there is no imaging technique to assess tubular function in vivo. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI measures tissue oxygenation based on the transverse relaxation rate (R2*. The present study investigates whether BOLD MRI can assess tubular function using a tubule-specific pharmacological maneuver. Methods: Cross sectional study with 28 participants including 9 subjects with ATN-induced acute kidney injury (AKI, 9 healthy controls, and 10 subjects with nephron sparing tumor resection (NSS with clamping of the renal artery serving as a model of ischemia/reperfusion (I/R-induced subclinical ATN (median clamping time 15 min, no significant decrease of eGFR, p=0.14. BOLD MRI was performed before and 5, 7, and 10 min after intravenous administration of 40 mg furosemide. Results: Urinary neutrophil gelatinase-associated lipocalin was significantly higher in ATN-induced AKI and NSS subjects than in healthy controls (p=0.03 and p=0.01, respectively. Before administration of furosemide, absolute medullary R2*, cortical R2*, and medullary/cortical R2* ratio did not significantly differ between ATN-induced AKI vs. healthy controls and between NSS-I/R vs. contralateral healthy kidneys (p>0.05 each. Furosemide led to a significant decrease in the medullary and cortical R2* of healthy subjects and NSS contralateral kidneys (p<0.05 each, whereas there was no significant change of R2* in ATN-induced AKI and the NSS-I/R kidneys (p>0.05 each. Conclusion: BOLD-MRI is able to detect even mild tubular injury but necessitates a tubule-specific pharmacological maneuver, e.g. blocking the Na+-K+-2Cl- transporter by furosemide.
Non-Gaussianity from Broken Symmetries
Kolb, Edward W; Vallinotto, A; Kolb, Edward W.; Riotto, Antonio; Vallinotto, Alberto
2006-01-01
Recently we studied inflation models in which the inflaton potential is characterized by an underlying approximate global symmetry. In the first work we pointed out that in such a model curvature perturbations are generated after the end of the slow-roll phase of inflation. In this work we develop further the observational implications of the model and compute the degree of non-Gaussianity predicted in the scenario. We find that the corresponding nonlinearity parameter, $f_{NL}$, can be as large as 10^2.
First Passage Time Intervals of Gaussian Processes
Perez, Hector; Kawabata, Tsutomu; Mimaki, Tadashi
1987-08-01
The first passage time problem of a stationary Guassian process is theretically and experimentally studied. Renewal functions are derived for a time-dependent boundary and numerically calculated for a Gaussian process having a seventh-order Butterworth spectrum. The results show a multipeak property not only for the constant boundary but also for a linearly increasing boundary. The first passage time distribution densities were experimentally determined for a constant boundary. The renewal functions were shown to be a fairly good approximation to the distribution density over a limited range.
CMB constraints on running non-Gaussianity
Oppizzi, Filippo; Liguori, Michele; Renzi, Alessandro; Arroja, Frederico; Bartolo, Nicola
2017-01-01
We develop a complete set of tools for CMB forecasting, simulation and estimation of primordial running bispectra, arising from a variety of curvaton and single-field (DBI) models of Inflation. We validate our pipeline using mock CMB running non-Gaussianity realizations and test it on real data by obtaining experimental constraints on the $f_{\\rm NL}$ running spectral index, $n_{\\rm NG}$, using WMAP 9-year data. Our final bounds (68\\% C.L.) read $-0.3< n_{\\rm NG}
Turbo Equalization Using Partial Gaussian Approximation
DEFF Research Database (Denmark)
Zhang, Chuanzong; Wang, Zhongyong; Manchón, Carles Navarro
2016-01-01
This letter deals with turbo equalization for coded data transmission over intersymbol interference (ISI) channels. We propose a message-passing algorithm that uses the expectation propagation rule to convert messages passed from the demodulator and decoder to the equalizer and computes messages...... returned by the equalizer by using a partial Gaussian approximation (PGA). We exploit the specific structure of the ISI channel model to compute the latter messages from the beliefs obtained using a Kalman smoother/equalizer. Doing so leads to a significant complexity reduction compared to the initial PGA...
Optical trapping with Super-Gaussian beams
CSIR Research Space (South Africa)
Mc
2013-04-01
Full Text Available stream_source_info McLaren1_2013.pdf.txt stream_content_type text/plain stream_size 2236 Content-Encoding UTF-8 stream_name McLaren1_2013.pdf.txt Content-Type text/plain; charset=UTF-8 JT2A.34.pdf Optics in the Life... Sciences Congress Technical Digest © 2013 The Optical Society (OSA) Optical trapping with Super-Gaussian beams Melanie McLaren, Thulile Khanyile, Patience Mthunzi and Andrew Forbes* National Laser Centre, Council for Scientific and Industrial Research...
Bregman Cost for Non-Gaussian Noise
DEFF Research Database (Denmark)
Burger, Martin; Dong, Yiqiu; Sciacchitano, Federica
estimator for the Bregman cost if the image is corrupted by Gaussian noise. In this work we extend this result to other noise models with log-concave likelihood density, by introducing two related Bregman cost functions for which the CM and the MAP estimates are proper Bayes estima-tors. Moreover, we also....... From a theoretical point of view it has been argued that the MAP estimate is only in an asymptotic sense a Bayes estimator for the uniform cost function, while the CM estimate is a Bayes estimator for the means squared cost function. Recently, it has been proven that the MAP estimate is a proper Bayes...
Directory of Open Access Journals (Sweden)
Pogodina A. V.
2017-03-01
Full Text Available The article is concerned with the results of the study, subject of which is the submis- sion of the respondents of the different age groups about the social and bold personality. Required property of the respondents was the presence in the Internet environment and participation in various social networks. They assessed social and bold personal- ity in such contexts of communication, as real communication and Internet communication. Analyses were undertaken to determine the structural and content features of emotional and semantic representations of the phenomenon of the social and bold personality, depending on the context of communication, but also the detection of age-sensitive representations of the young respondents (19—35 years, middle-aged respondents (36-55 years and older respondents (from 56 to 70 years. The concept of the “social and bold personality in real communion” is shown to have a high semantic relevance, strongly marked positive emotional coloration and a similar factor structure for respondents of all age groups. The concept of the “social and bold personality in online communication” with a high semantic significance in the perception of the young respondents moves into a zone of moderate and semantic importance in representations of the middle-aged and older respondents. In representations of the respondents of all age groups, the attractiveness of the "social and bold personality in Internet communication" is less than in comparison with the "social and bold personality in the real communication". The age-specific of the social representations about social and bold personality in the real and virtual communication has been analysed in detail.
The effect of sleep deprivation on BOLD activity elicited by a divided attention task.
Jackson, Melinda L; Hughes, Matthew E; Croft, Rodney J; Howard, Mark E; Crewther, David; Kennedy, Gerard A; Owens, Katherine; Pierce, Rob J; O'Donoghue, Fergal J; Johnston, Patrick
2011-06-01
Sleep loss, widespread in today's society and associated with a number of clinical conditions, has a detrimental effect on a variety of cognitive domains including attention. This study examined the sequelae of sleep deprivation upon BOLD fMRI activation during divided attention. Twelve healthy males completed two randomized sessions; one after 27 h of sleep deprivation and one after a normal night of sleep. During each session, BOLD fMRI was measured while subjects completed a cross-modal divided attention task (visual and auditory). After normal sleep, increased BOLD activation was observed bilaterally in the superior frontal gyrus and the inferior parietal lobe during divided attention performance. Subjects reported feeling significantly more sleepy in the sleep deprivation session, and there was a trend towards poorer divided attention task performance. Sleep deprivation led to a down regulation of activation in the left superior frontal gyrus, possibly reflecting an attenuation of top-down control mechanisms on the attentional system. These findings have implications for understanding the neural correlates of divided attention and the neurofunctional changes that occur in individuals who are sleep deprived.
Out-of-equilibrium dynamics in a Gaussian trap model
International Nuclear Information System (INIS)
Diezemann, Gregor
2007-01-01
The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures
Directory of Open Access Journals (Sweden)
Galina V. Portnova
2018-01-01
Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.
50 years of challenging projects and bold visions
International Nuclear Information System (INIS)
Matejka, K.; Kolros, A.; Rataj, J.
2005-01-01
The article commemorates the 50th anniversary of the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, paying particular attention to the department (whose current name is the Department of Nuclear Reactors) that has been educating and training specialists in the theory and technology of nuclear reactors / nuclear power engineering. Both the educational and scientific research activities of the department during the past 15 years are described. The department's fundamental responsibilities include, among other things, the operation and use of the VR-1 training reactor. The prospect of the department in the near future are also outlined. (orig.)
Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties
Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong
2018-03-01
This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.
DEFF Research Database (Denmark)
Møller, Jesper; Jacobsen, Robert Dahl
We introduce a promising alternative to the usual hidden Markov tree model for Gaussian wavelet coefficients, where their variances are specified by the hidden states and take values in a finite set. In our new model, the hidden states have a similar dependence structure but they are jointly Gaus...
DEFF Research Database (Denmark)
Jacobsen, Christian Robert Dahl; Møller, Jesper
2017-01-01
We introduce new estimation methods for a subclass of the Gaussian scale mixture models for wavelet trees by Wainwright, Simoncelli and Willsky that rely on modern results for composite likelihoods and approximate Bayesian inference. Our methodology is illustrated for denoising and edge detection...
Approximation problems with the divergence criterion for Gaussian variablesand Gaussian processes
A.A. Stoorvogel; J.H. van Schuppen (Jan)
1996-01-01
textabstractSystem identification for stationary Gaussian processes includes an approximation problem. Currently the subspace algorithm for this problem enjoys much attention. This algorithm is based on a transformation of a finite time series to canonical variable form followed by a truncation.
Comparison of Gaussian and non-Gaussian Atmospheric Profile Retrievals from Satellite Microwave Data
Kliewer, A.; Forsythe, J. M.; Fletcher, S. J.; Jones, A. S.
2017-12-01
The Cooperative Institute for Research in the Atmosphere at Colorado State University has recently developed two different versions of a mixed-distribution (lognormal combined with a Gaussian) based microwave temperature and mixing ratio retrieval system as well as the original Gaussian-based approach. These retrieval systems are based upon 1DVAR theory but have been adapted to use different descriptive statistics of the lognormal distribution to minimize the background errors. The input radiance data is from the AMSU-A and MHS instruments on the NOAA series of spacecraft. To help illustrate how the three retrievals are affected by the change in the distribution we are in the process of creating a new website to show the output from the different retrievals. Here we present initial results from different dynamical situations to show how the tool could be used by forecasters as well as for educators. However, as the new retrieved values are from a non-Gaussian based 1DVAR then they will display non-Gaussian behaviors that need to pass a quality control measure that is consistent with this distribution, and these new measures are presented here along with initial results for checking the retrievals.
Functional Dual Adaptive Control with Recursive Gaussian Process Model
International Nuclear Information System (INIS)
Prüher, Jakub; Král, Ladislav
2015-01-01
The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)
A Gaussian Approximation Potential for Silicon
Bernstein, Noam; Bartók, Albert; Kermode, James; Csányi, Gábor
We present an interatomic potential for silicon using the Gaussian Approximation Potential (GAP) approach, which uses the Gaussian process regression method to approximate the reference potential energy surface as a sum of atomic energies. Each atomic energy is approximated as a function of the local environment around the atom, which is described with the smooth overlap of atomic environments (SOAP) descriptor. The potential is fit to a database of energies, forces, and stresses calculated using density functional theory (DFT) on a wide range of configurations from zero and finite temperature simulations. These include crystalline phases, liquid, amorphous, and low coordination structures, and diamond-structure point defects, dislocations, surfaces, and cracks. We compare the results of the potential to DFT calculations, as well as to previously published models including Stillinger-Weber, Tersoff, modified embedded atom method (MEAM), and ReaxFF. We show that it is very accurate as compared to the DFT reference results for a wide range of properties, including low energy bulk phases, liquid structure, as well as point, line, and plane defects in the diamond structure.
Statistics of peaks of Gaussian random fields
International Nuclear Information System (INIS)
Bardeen, J.M.; Bond, J.R.; Kaiser, N.; Szalay, A.S.; Stanford Univ., CA; California Univ., Berkeley; Cambridge Univ., England; Fermi National Accelerator Lab., Batavia, IL)
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of upcrossing points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima. 67 references
Overlay Spectrum Sharing using Improper Gaussian Signaling
Amin, Osama
2016-11-30
Improper Gaussian signaling (IGS) scheme has been recently shown to provide performance improvements in interference limited networks as opposed to the conventional proper Gaussian signaling (PGS) scheme. In this paper, we implement the IGS scheme in overlay cognitive radio system, where the secondary transmitter broadcasts a mixture of two different signals. The first signal is selected from the PGS scheme to match the primary message transmission. On the other hand, the second signal is chosen to be from the IGS scheme in order to reduce the interference effect on the primary receiver. We then optimally design the overlay cognitive radio to maximize the secondary link achievable rate while satisfying the primary network quality of service requirements. In particular, we consider full and partial channel knowledge scenarios and derive the feasibility conditions of operating the overlay cognitive radio systems. Moreover, we derive the superiority conditions of the IGS schemes over the PGS schemes supported with closed form expressions for the corresponding power distribution and the circularity coefficient and parameters. Simulation results are provided to support our theoretical derivations.
Versatile Gaussian probes for squeezing estimation
Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo
2017-05-01
We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.
Finite Range Decomposition of Gaussian Processes
Brydges, C D; Mitter, P K
2003-01-01
Let $D$ be the finite difference Laplacian associated to the lattice $bZ^{d}$. For dimension $dge 3$, $age 0$ and $L$ a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent $G^{a}:=(a-D)^{-1}$ can be decomposed as an infinite sum of positive semi-definite functions $ V_{n} $ of finite range, $ V_{n} (x-y) = 0$ for $|x-y|ge O(L)^{n}$. Equivalently, the Gaussian process on the lattice with covariance $G^{a}$ admits a decomposition into independent Gaussian processes with finite range covariances. For $a=0$, $ V_{n} $ has a limiting scaling form $L^{-n(d-2)}Gamma_{ c,ast }{bigl (frac{x-y}{ L^{n}}bigr )}$ as $nrightarrow infty$. As a corollary, such decompositions also exist for fractional powers $(-D)^{-alpha/2}$, $0
Directory of Open Access Journals (Sweden)
Georgios C Manikis
Full Text Available The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer.Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2 at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG and non-Gaussian (MNG and BNG were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE. To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC and F-ratio.All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area.No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.
Relative entropy as a measure of entanglement for Gaussian states
Institute of Scientific and Technical Information of China (English)
Lu Huai-Xin; Zhao Bo
2006-01-01
In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example,the relative entanglement for a two-mode squeezed thermal state has been obtained.
Prediction and retrodiction with continuously monitored Gaussian states
DEFF Research Database (Denmark)
Zhang, Jinglei; Mølmer, Klaus
2017-01-01
Gaussian states of quantum oscillators are fully characterized by the mean values and the covariance matrix of their quadrature observables. We consider the dynamics of a system of oscillators subject to interactions, damping, and continuous probing which maintain their Gaussian state property......(t)$ to Gaussian states implies that the matrix $E(t)$ is also fully characterized by a vector of mean values and a covariance matrix. We derive the dynamical equations for these quantities and we illustrate their use in the retrodiction of measurements on Gaussian systems....
Geometry of perturbed Gaussian states and quantum estimation
International Nuclear Information System (INIS)
Genoni, Marco G; Giorda, Paolo; Paris, Matteo G A
2011-01-01
We address the non-Gaussianity (nG) of states obtained by weakly perturbing a Gaussian state and investigate the relationships with quantum estimation. For classical perturbations, i.e. perturbations to eigenvalues, we found that the nG of the perturbed state may be written as the quantum Fisher information (QFI) distance minus a term depending on the infinitesimal energy change, i.e. it provides a lower bound to statistical distinguishability. Upon moving on isoenergetic surfaces in a neighbourhood of a Gaussian state, nG thus coincides with a proper distance in the Hilbert space and exactly quantifies the statistical distinguishability of the perturbations. On the other hand, for perturbations leaving the covariance matrix unperturbed, we show that nG provides an upper bound to the QFI. Our results show that the geometry of non-Gaussian states in the neighbourhood of a Gaussian state is definitely not trivial and cannot be subsumed by a differential structure. Nevertheless, the analysis of perturbations to a Gaussian state reveals that nG may be a resource for quantum estimation. The nG of specific families of perturbed Gaussian states is analysed in some detail with the aim of finding the maximally non-Gaussian state obtainable from a given Gaussian one. (fast track communication)
Gaussian polynomials and content ideal in trivial extensions
International Nuclear Information System (INIS)
Bakkari, C.; Mahdou, N.
2006-12-01
The goal of this paper is to exhibit a class of Gaussian non-coherent rings R (with zero-divisors) such that wdim(R) = ∞ and fPdim(R) is always at most one and also exhibits a new class of rings (with zerodivisors) which are neither locally Noetherian nor locally domain where Gaussian polynomials have a locally principal content. For this purpose, we study the possible transfer of the 'Gaussian' property and the property 'the content ideal of a Gaussian polynomial is locally principal' to various trivial extension contexts. This article includes a brief discussion of the scopes and limits of our result. (author)
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian
2017-06-15
Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.
Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI
Energy Technology Data Exchange (ETDEWEB)
Zande, F.H.R. van der; Hofman, P.A.M.; Backes, W.H. [Maastricht University Hospital, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands)
2005-02-01
Severe carotid artery stenosis or occlusion may put patients at risk for ischaemic stroke. Reduced cerebrovascular reserve capacity is a possible indicator of an imminent ischaemic event and can be determined by assessment of cerebrovascular reactivity to a vasodilative stimulus. However, little is known about the distribution of cerebrovascular reactivity in healthy individuals. In 13 healthy volunteers, dynamic T{sub 2}{sup *} MR images, acquired at alternating inspiratory pCO{sub 2} levels, showed a high percentage of signal change in grey matter, with a strong linear correlation with end-tidal pCO{sub 2}. The mean percentages of signal change for grey and white matter were 5.9{+-}1.2% and 1.9{+-}0.5%, respectively. The mean time lag between CO{sub 2} stimulus and haemodynamic response was 15{+-}4 s for grey matter and 180{+-}12 s for white matter. Parameter mapping revealed a hemispherically symmetrical and homogeneous distribution of cerebrovascular reactivity over the entire grey matter. These findings indicate that it may be feasible to detect exhausted cerebrovascular autoregulation in patients with a compromised cerebral vasculature. (orig.)
Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI
International Nuclear Information System (INIS)
Zande, F.H.R. van der; Hofman, P.A.M.; Backes, W.H.
2005-01-01
Severe carotid artery stenosis or occlusion may put patients at risk for ischaemic stroke. Reduced cerebrovascular reserve capacity is a possible indicator of an imminent ischaemic event and can be determined by assessment of cerebrovascular reactivity to a vasodilative stimulus. However, little is known about the distribution of cerebrovascular reactivity in healthy individuals. In 13 healthy volunteers, dynamic T 2 * MR images, acquired at alternating inspiratory pCO 2 levels, showed a high percentage of signal change in grey matter, with a strong linear correlation with end-tidal pCO 2 . The mean percentages of signal change for grey and white matter were 5.9±1.2% and 1.9±0.5%, respectively. The mean time lag between CO 2 stimulus and haemodynamic response was 15±4 s for grey matter and 180±12 s for white matter. Parameter mapping revealed a hemispherically symmetrical and homogeneous distribution of cerebrovascular reactivity over the entire grey matter. These findings indicate that it may be feasible to detect exhausted cerebrovascular autoregulation in patients with a compromised cerebral vasculature. (orig.)
Yan, Yuan
2017-07-13
Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.
Yan, Yuan; Genton, Marc G.
2017-01-01
Gaussian likelihood inference has been studied and used extensively in both statistical theory and applications due to its simplicity. However, in practice, the assumption of Gaussianity is rarely met in the analysis of spatial data. In this paper, we study the effect of non-Gaussianity on Gaussian likelihood inference for the parameters of the Matérn covariance model. By using Monte Carlo simulations, we generate spatial data from a Tukey g-and-h random field, a flexible trans-Gaussian random field, with the Matérn covariance function, where g controls skewness and h controls tail heaviness. We use maximum likelihood based on the multivariate Gaussian distribution to estimate the parameters of the Matérn covariance function. We illustrate the effects of non-Gaussianity of the data on the estimated covariance function by means of functional boxplots. Thanks to our tailored simulation design, a comparison of the maximum likelihood estimator under both the increasing and fixed domain asymptotics for spatial data is performed. We find that the maximum likelihood estimator based on Gaussian likelihood is overall satisfying and preferable than the non-distribution-based weighted least squares estimator for data from the Tukey g-and-h random field. We also present the result for Gaussian kriging based on Matérn covariance estimates with data from the Tukey g-and-h random field and observe an overall satisfactory performance.
Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis
International Nuclear Information System (INIS)
Doria, Andrea S.; Crawley, Adrian; Gahunia, Harpal; Rayner, Tammy; Tassos, Vivian; Zhong, Anguo; Moineddin, Rahim; Pritzker, Kenneth; Mendes, Maria; Jong, Roland; Salter, Robert B.
2012-01-01
Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis. (orig.)
Correlative BOLD MR imaging of stages of synovitis in a rabbit model of antigen-induced arthritis
Energy Technology Data Exchange (ETDEWEB)
Doria, Andrea S. [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); University of Toronto, Department of Medical Imaging, Toronto (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto (Canada); Gahunia, Harpal; Rayner, Tammy; Tassos, Vivian; Zhong, Anguo [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Moineddin, Rahim [Family and Community Medicine, Department of Public Health, Toronto (Canada); Pritzker, Kenneth; Mendes, Maria; Jong, Roland [Mount Sinai Hospital, Department of Pathology and Laboratory Medicine, Toronto (Canada); Salter, Robert B. [Hospital for Sick Children, Department of Orthopedic Surgery, Toronto (Canada)
2012-01-15
Because of the ability of blood-oxygen-level-dependent (BOLD) MRI to assess blood oxygenation changes within the microvasculature, this technique holds potential for evaluating early perisynovial changes in inflammatory arthritis. To evaluate the feasibility of BOLD MRI to detect interval perisynovial changes in knees of rabbits with inflammatory arthritis. Rabbit knees were injected with albumin (n=9) or saline (n=6) intra-articularly, or were not injected (control knees, n=9). Except for two rabbits (albumin-injected, n=2 knees; saline-injected, n=2 knees) that unexpectedly died on days 7 and 21 of the experiment, respectively, all other animals were scanned with BOLD MRI on days 0, 1, 7, 14, 21 and 28 after induction of arthritis. T2*-weighted gradient-echo MRI was performed during alternate 30 s of normoxia/hyperoxia. BOLD MRI measurements were compared with clinical, laboratory and histological markers. Percentage of activated voxels was significantly greater in albumin-injected knees than in contralateral saline-injected knees (P=0.04). For albumin-injected knees (P < 0.05) and among different categories of knees (P=0.009), the percentage of activated BOLD voxels varied over time. A quadratic curve for on-and-off BOLD difference was delineated for albumin- and saline-injected knees over time (albumin-injected, P=0.047; saline-injected, P=0.009). A trend toward a significant difference in synovial histological scores between albumin-injected and saline-injected knees was noted only for acute scores (P=0.07). As a proof of concept, BOLD MRI can depict perisynovial changes during progression of experimental arthritis. (orig.)
IBS for non-gaussian distributions
International Nuclear Information System (INIS)
Fedotov, A.; Sidorin, A.O.; Smirnov, A.V.
2010-01-01
In many situations distribution can significantly deviate from Gaussian which requires accurate treatment of IBS. Our original interest in this problem was motivated by the need to have an accurate description of beam evolution due to IBS while distribution is strongly affected by the external electron cooling force. A variety of models with various degrees of approximation were developed and implemented in BETACOOL in the past to address this topic. A more complete treatment based on the friction coefficient and full 3-D diffusion tensor was introduced in BETACOOL at the end of 2007 under the name 'local IBS model'. Such a model allowed us calculation of IBS for an arbitrary beam distribution. The numerical benchmarking of this local IBS algorithm and its comparison with other models was reported before. In this paper, after briefly describing the model and its limitations, they present its comparison with available experimental data.
Optical vortex scanning inside the Gaussian beam
International Nuclear Information System (INIS)
Masajada, J; Leniec, M; Augustyniak, I
2011-01-01
We discussed a new scanning method for optical vortex-based scanning microscopy. The optical vortex is introduced into the incident Gaussian beam by a vortex lens. Then the beam with the optical vortex is focused by an objective and illuminates the sample. By changing the position of the vortex lens we can shift the optical vortex position at the sample plane. By adjusting system parameters we can get 30 times smaller shift at the sample plane compared to the vortex lens shift. Moreover, if the range of vortex shifts is smaller than 3% of the beam radius in the sample plane the amplitude and phase distribution around the phase dislocation remains practically unchanged. Thus we can scan the sample topography precisely with an optical vortex
White Gaussian Noise - Models for Engineers
Jondral, Friedrich K.
2018-04-01
This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.
Gaussian process regression for geometry optimization
Denzel, Alexander; Kästner, Johannes
2018-03-01
We implemented a geometry optimizer based on Gaussian process regression (GPR) to find minimum structures on potential energy surfaces. We tested both a two times differentiable form of the Matérn kernel and the squared exponential kernel. The Matérn kernel performs much better. We give a detailed description of the optimization procedures. These include overshooting the step resulting from GPR in order to obtain a higher degree of interpolation vs. extrapolation. In a benchmark against the Limited-memory Broyden-Fletcher-Goldfarb-Shanno optimizer of the DL-FIND library on 26 test systems, we found the new optimizer to generally reduce the number of required optimization steps.
Gaussian elimination is not optimal, revisited
DEFF Research Database (Denmark)
Macedo, Hugo Daniel
2016-01-01
We refactor the universal law for the tensor product to express matrix multiplication as the product . MN of two matrices . M and . N thus making possible to use such matrix product to encode and transform algorithms performing matrix multiplication using techniques from linear algebra. We explore...... the end results are equations involving matrix products, our exposition builds upon previous works on the category of matrices (and the related category of finite vector spaces) which we extend by showing: why the direct sum . (⊕,0) monoid is not closed, a biproduct encoding of Gaussian elimination...... such possibility and show two stepwise refinements transforming the composition . MN into the Naïve and Strassen's matrix multiplication algorithms. The inspection of the stepwise transformation of the composition of matrices . MN into the Naïve matrix multiplication algorithm evidences that the steps...
Tunnelling through a Gaussian random barrier
International Nuclear Information System (INIS)
Bezak, Viktor
2008-01-01
A thorough analysis of the tunnelling of electrons through a laterally inhomogeneous rectangular barrier is presented. The barrier height is defined as a statistically homogeneous Gaussian random function. In order to simplify calculations, we assume that the electron energy is low enough in comparison with the mean value of the barrier height. The randomness of the barrier height is defined vertically by a constant variance and horizontally by a finite correlation length. We present detailed calculations of the angular probability density for the tunnelled electrons (i.e. for the scattering forwards). The tunnelling manifests a remarkably diffusive character if the wavelength of the electrons is comparable with the correlation length of the barrier
Gaussian process regression for tool wear prediction
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry
Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.
2015-01-01
Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.
Simultaneous Gaussian and exponential inversion for improved analysis of shales by NMR relaxometry
Washburn, Kathryn E.; Anderssen, Endre; Vogt, Sarah J.; Seymour, Joseph D.; Birdwell, Justin E.; Kirkland, Catherine M.; Codd, Sarah L.
2014-01-01
Nuclear magnetic resonance (NMR) relaxometry is commonly used to provide lithology-independent porosity and pore-size estimates for petroleum resource evaluation based on fluid-phase signals. However in shales, substantial hydrogen content is associated with solid and fluid signals and both may be detected. Depending on the motional regime, the signal from the solids may be best described using either exponential or Gaussian decay functions. When the inverse Laplace transform, the standard method for analysis of NMR relaxometry results, is applied to data containing Gaussian decays, this can lead to physically unrealistic responses such as signal or porosity overcall and relaxation times that are too short to be determined using the applied instrument settings. We apply a new simultaneous Gaussian-Exponential (SGE) inversion method to simulated data and measured results obtained on a variety of oil shale samples. The SGE inversion produces more physically realistic results than the inverse Laplace transform and displays more consistent relaxation behavior at high magnetic field strengths. Residuals for the SGE inversion are consistently lower than for the inverse Laplace method and signal overcall at short T2 times is mitigated. Beyond geological samples, the method can also be applied in other fields where the sample relaxation consists of both Gaussian and exponential decays, for example in material, medical and food sciences.
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
Convergence of posteriors for discretized log Gaussian Cox processes
DEFF Research Database (Denmark)
Waagepetersen, Rasmus Plenge
2004-01-01
In Markov chain Monte Carlo posterior computation for log Gaussian Cox processes (LGCPs) a discretization of the continuously indexed Gaussian field is required. It is demonstrated that approximate posterior expectations computed from discretized LGCPs converge to the exact posterior expectations...... when the cell sizes of the discretization tends to zero. The effect of discretization is studied in a data example....
Comparing Fixed and Variable-Width Gaussian Networks
Czech Academy of Sciences Publication Activity Database
Kůrková, Věra; Kainen, P.C.
2014-01-01
Roč. 57, September (2014), s. 23-28 ISSN 0893-6080 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : Gaussian radial and kernel networks * Functionally equivalent networks * Universal approximators * Stabilizers defined by Gaussian kernels * Argminima of error functionals Subject RIV: IN - Informatics, Computer Science Impact factor: 2.708, year: 2014
Two-photon optics of Bessel-Gaussian modes
CSIR Research Space (South Africa)
McLaren, M
2013-09-01
Full Text Available In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum...
Application Of Shared Gamma And Inverse-Gaussian Frailty Models ...
African Journals Online (AJOL)
Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who are clustered according to cancer/tumor types under Parametric Proportional Hazard framework. The result of the ... However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.
Optimality of Gaussian attacks in continuous-variable quantum cryptography.
Navascués, Miguel; Grosshans, Frédéric; Acín, Antonio
2006-11-10
We analyze the asymptotic security of the family of Gaussian modulated quantum key distribution protocols for continuous-variables systems. We prove that the Gaussian unitary attack is optimal for all the considered bounds on the key rate when the first and second momenta of the canonical variables involved are known by the honest parties.
Degeneracy of energy levels of pseudo-Gaussian oscillators
International Nuclear Information System (INIS)
Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina
2015-01-01
We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found
Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.
Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham
2017-11-01
The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume
Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest
Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.
2016-01-01
Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338
BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats.
Thacker, Jon; Zhang, Jeff L; Franklin, Tammy; Prasad, Pottumarthi
2017-07-01
Blood oxygen level-dependent (BOLD) MRI has been effectively used to monitor changes in renal oxygenation. However, R2* (or T2*) is not specific to blood oxygenation and is dependent on other factors. This study investigates the use of a statistical model that takes these factors into account and maps BOLD MRI measurements to blood pO2. Spin echo and gradient echo images were obtained in six Sprague-Dawley rats and R2 and R2* maps were computed. Measurements were made at baseline, post-nitric oxide synthase inhibitor (L-NAME), and post-furosemide administration. A simulation of each region was performed to map R2' (computed as R2*-R2) to blood pO2. At baseline, blood pO2 in the outer medulla was 30.5 ± 1.2 mmHg and 51.9 ± 5.2 mmHg in the cortex, in agreement with previous invasive studies. Blood pO2 was found to decrease within the outer medulla following L-NAME (P pO2 in the cortex increased following furosemide (P pO2 is sensitive to pharmacological challenges, and baseline pO2 is comparable to literature values. Reporting pO2 instead of R2* could lead to a greater clinical impact of renal BOLD MRI and facilitate the identification of hypoxic regions. Magn Reson Med 78:297-302, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Hoskin, Peter J.; Carnell, Dawn M.; Taylor, N. Jane; Smith, Rowena E.; Stirling, J. James; Daley, Frances M.; Saunders, Michele I.; Bentzen, Soren M.; Collins, David J.; D'Arcy, James A.; Padhani, Anwar P.
2007-01-01
Purpose: To investigate the ability of blood oxygen level-dependent (BOLD) MRI to depict clinically significant prostate tumor hypoxia. Methods and Materials: Thirty-three patients with prostate carcinoma undergoing radical prostatectomy were studied preoperatively, using gradient echo sequences without and with contrast medium enhancement, to map relative tissue oxygenation according to relaxivity rates and relative blood volume (rBV). Pimonidazole was administered preoperatively, and whole-mount sections of selected tumor-bearing slices were stained for pimonidazole fixation and tumor and nontumor localization. Histologic and imaging parameters were independently mapped onto patient prostate outlines. Using 5-mm grids, 861 nontumor grid locations were compared with 237 tumor grids (with >50% tumor per location) using contingency table analysis with respect to the ability of imaging to predict pimonidazole staining. Results: Twenty patients completed the imaging and histologic protocols. Pimonidazole staining was found in 33% of nontumor and in 70% of tumor grids. The sensitivity of the MR relaxivity parameter R 2 * in depicting tumor hypoxia was high (88%), improving with the addition of low rBV information (95%) without changing specificity (36% and 29%, respectively). High R 2 * increased the positive predictive value for hypoxia by 6% (70% to 76%); conversely, low R 2 * decreased the likelihood of hypoxia being present by 26% (70% to 44%) and by 41% (71% to 30%) when combined with rBV information. Conclusion: R 2 * maps from BOLD-MRI have high sensitivity but low specificity for defining intraprostatic tumor hypoxia. This together with the negative predictive value of 70% when combined with blood volume information makes BOLD-MRI a potential noninvasive technique for mapping prostatic tumor hypoxia
Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.
Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H
2017-12-01
To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic
Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease
Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.
2011-01-01
Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427
Ultrawide Bandwidth Receiver Based on a Multivariate Generalized Gaussian Distribution
Ahmed, Qasim Zeeshan
2015-04-01
Multivariate generalized Gaussian density (MGGD) is used to approximate the multiple access interference (MAI) and additive white Gaussian noise in pulse-based ultrawide bandwidth (UWB) system. The MGGD probability density function (pdf) is shown to be a better approximation of a UWB system as compared to multivariate Gaussian, multivariate Laplacian and multivariate Gaussian-Laplacian mixture (GLM). The similarity between the simulated and the approximated pdf is measured with the help of modified Kullback-Leibler distance (KLD). It is also shown that MGGD has the smallest KLD as compared to Gaussian, Laplacian and GLM densities. A receiver based on the principles of minimum bit error rate is designed for the MGGD pdf. As the requirement is stringent, the adaptive implementation of the receiver is also carried out in this paper. Training sequence of the desired user is the only requirement when implementing the detector adaptively. © 2002-2012 IEEE.
Gaussian cloning of coherent states with known phases
International Nuclear Information System (INIS)
Alexanian, Moorad
2006-01-01
The fidelity for cloning coherent states is improved over that provided by optimal Gaussian and non-Gaussian cloners for the subset of coherent states that are prepared with known phases. Gaussian quantum cloning duplicates all coherent states with an optimal fidelity of 2/3. Non-Gaussian cloners give optimal single-clone fidelity for a symmetric 1-to-2 cloner of 0.6826. Coherent states that have known phases can be cloned with a fidelity of 4/5. The latter is realized by a combination of two beam splitters and a four-wave mixer operated in the nonlinear regime, all of which are realized by interaction Hamiltonians that are quadratic in the photon operators. Therefore, the known Gaussian devices for cloning coherent states are extended when cloning coherent states with known phases by considering a nonbalanced beam splitter at the input side of the amplifier
BOLD responses in reward regions to hypothetical and imaginary monetary rewards.
Miyapuram Krishna P; Tobler Philippe N; Gregorios-Pippas Lucy; Schultz Wolfram
2012-01-01
Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewa...
BOLD responses in reward regions to hypothetical and imaginary monetary rewards.
Miyapuram, Krishna P; Tobler, Philippe N; Gregorios-Pippas, Lucy; Schultz, Wolfram
2012-01-16
Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary rewards per trial (e.g. 5p) if all trials are to be treated equally. However, small payoffs can have detrimental effects on performance due to their limited buying power. Hypothetical monetary rewards can overcome the limitations of smaller monetary rewards but it is less well known whether predictors of hypothetical rewards activate reward regions. In two experiments, visual stimuli were associated with hypothetical monetary rewards. In Experiment 1, we used stimuli predicting either visually presented or imagined hypothetical monetary rewards, together with non-rewarding control pictures. Activations to reward predictive stimuli occurred in reward regions, namely the medial orbitofrontal cortex and midbrain. In Experiment 2, we parametrically varied the amount of visually presented hypothetical monetary reward keeping constant the amount of actually received reward. Graded activation in midbrain was observed to stimuli predicting increasing hypothetical rewards. The results demonstrate the efficacy of using hypothetical monetary rewards in fMRI studies. Copyright © 2011 Elsevier Inc. All rights reserved.
BOLD responses in reward regions to hypothetical and imaginary monetary rewards
Miyapuram, K.P.; Tobler, P.N.; Gregorios-Pippas, L.; Schultz, W.
2012-01-01
Monetary rewards are uniquely human. Because money is easy to quantify and present visually, it is the reward of choice for most fMRI studies, even though it cannot be handed over to participants inside the scanner. A typical fMRI study requires hundreds of trials and thus small amounts of monetary
Striatal BOLD response reflects the impact of herd information on financial decisions
Directory of Open Access Journals (Sweden)
Christopher J Burke
2010-06-01
Full Text Available Like other species, humans are sensitive to the decisions and actions of conspecifics, which can lead to herd behavior and undesirable outcomes such as stock market bubbles and bank runs. However, how the brain processes this socially derived influence is only poorly understood. Using functional magnetic resonance imaging (fMRI, we scanned participants as they made decisions on whether to buy stocks after observing others’ buying decisions. We demonstrate that activity in the ventral striatum, an area heavily implicated in reward processing, tracked the degree of influence on participants’ decisions arising from the observation of other peoples’ decisions. The signal did not track non-human, non-social control decisions. These findings lend weight to the notion that the ventral striatum is involved in the processing of complex social aspects of decision-making and identify a possible neural basis for herd behavior.
Altered BOLD response during inhibitory and error processing in adolescents with anorexia nervosa.
Directory of Open Access Journals (Sweden)
Christina Wierenga
Full Text Available BACKGROUND: Individuals with anorexia nervosa (AN are often cognitively rigid and behaviorally over-controlled. We previously showed that adult females recovered from AN relative to healthy comparison females had less prefrontal activation during an inhibition task, which suggested a functional brain correlate of altered inhibitory processing in individuals recovered from AN. However, the degree to which these functional brain alterations are related to disease state and whether error processing is altered in AN individuals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, ill adolescent AN females (n = 11 and matched healthy comparison adolescents (CA with no history of an eating disorder (n = 12 performed a validated stop signal task (SST during functional magnetic resonance imaging (fMRI to explore differences in error and inhibitory processing. The groups did not differ on sociodemographic variables or on SST performance. During inhibitory processing, a significant group x difficulty (hard, easy interaction was detected in the right dorsal anterior cingulate cortex (ACC, right middle frontal gyrus (MFG, and left posterior cingulate cortex (PCC, which was characterized by less activation in AN compared to CA participants during hard trials. During error processing, a significant group x accuracy (successful inhibit, failed inhibit interaction in bilateral MFG and right PCC was observed, which was characterized by less activation in AN compared to CA participants during error (i.e., failed inhibit trials. CONCLUSION/SIGNIFICANCE: Consistent with our prior findings in recovered AN, ill AN adolescents, relative to CA, showed less inhibition-related activation within the dorsal ACC, MFG and PCC as inhibitory demand increased. In addition, ill AN adolescents, relative to CA, also showed reduced activation to errors in the bilateral MFG and left PCC. These findings suggest that altered prefrontal and cingulate activation during inhibitory and error processing may represent a behavioral characteristic in AN that is independent of the state of recovery.
Effects of Tasks on BOLD Signal Responses to Sentence Contrasts: Review and Commentary
Caplan, David; Gow, David
2012-01-01
Functional neuroimaging studies of syntactic processing have been interpreted as identifying the neural locations of parsing and interpretive operations. However, current behavioral studies of sentence processing indicate that many operations occur simultaneously with parsing and interpretation. In this review, we point to issues that arise in…
Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation
DEFF Research Database (Denmark)
Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad
2015-01-01
Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend......MRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness...... was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual...
BOLD response to motion verbs in left posterior middle temporal gyrus during story comprehension
DEFF Research Database (Denmark)
Wallentin, Mikkel; Nielsen, Andreas Højlund; Vuust, Peter
2011-01-01
A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action...... knowledge. It has also been found that motion verbs cause activation in LPMT. In this experiment we investigated whether this effect could be replicated in a setting resembling real life language comprehension, i.e. without any overt behavioral task during passive listening to a story. During f......, clauses containing motion verbs were accompanied by a robust activation of LPMT with no other significant effects, consistent with the hypothesis that this brain region is important for processing motion knowledge, even during naturalistic language comprehension conditions....
BOLD Response to Motion Verbs in Left Posterior Middle Temporal Gyrus during Story Comprehension
Wallentin, Mikkel; Nielsen, Andreas Hojlund; Vuust, Peter; Dohn, Anders; Roepstorff, Andreas; Lund, Torben Ellegaard
2011-01-01
A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action knowledge. It has also been found that motion verbs cause…
The Rule of Three for Prizes in Science and the Bold Triptychs of Francis Bacon.
Goldstein, Joseph L
2016-09-22
For many scientific awards, such as Nobels and Laskers, the maximum number of recipients is three. This Rule of Three forces selection committees to make difficult decisions that increase the likelihood of singling out those individuals who open a new field and continue to lead it. The Rule of Three is reminiscent of art's three-panel triptych, a form that the modern master Francis Bacon used to distill complex stories in a bold way. Copyright © 2016 Elsevier Inc. All rights reserved.
BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.
1981-06-01
This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given
Bold Ideas for the 4th H in 4-H: Teen Identified Concerns and Actions
Directory of Open Access Journals (Sweden)
Virginia Brown
2015-03-01
Full Text Available This article summarizes a literature review; teen-identified health concerns and issues; and teen bold ideas for actions. Findings from the National 4-H Council and Molina Healthcare Teens Take on Health initiative are provided and implications for 4-H programming tied to the new Cooperative Extension National Framework for Health and Wellness are addressed. The article is intended as background for Extension educators, volunteers and administrators as they review the 4-H Healthy Living Mission Mandate, learn what mattered to teens and consider how to incorporate the findings into state and local 4-H youth development programming.
BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.
1981-06-01
This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.
Working memory in volunteers and schizophrenics using BOLD fMRI
International Nuclear Information System (INIS)
Giesel, F.L.; Hohmann, N.; Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J.; Kauczor, H.-U.; Essig, M.
2005-01-01
Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [de
Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2014-07-17
Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.
Directory of Open Access Journals (Sweden)
Gert Pfurtscheller
Full Text Available In the resting state, blood oxygen level-dependent (BOLD oscillations with a frequency of about 0.1 Hz are conspicuous. Whether their origin is neural or vascular is not yet fully understood. Furthermore, it is not clear whether these BOLD oscillations interact with slow oscillations in heart rate (HR. To address these two questions, we estimated phase-locking (PL values between precentral gyrus (PCG and insula in 25 scanner-naïve individuals during rest and stimulus-paced finger movements in both hemispheres. PL was quantified in terms of time delay and duration in the frequency band 0.07 to 0.13 Hz. Results revealed both positive and negative time delays. Positive time delays characterize neural BOLD oscillations leading in the PCG, whereas negative time delays represent vascular BOLD oscillations leading in the insula. About 50% of the participants revealed positive time delays distinctive for neural BOLD oscillations, either with short or long unilateral or bilateral phase-locking episodes. An expected preponderance of neural BOLD oscillations was found in the left hemisphere during right-handed movement and unexpectedly in the right hemisphere during rest. Only neural BOLD oscillations were significantly associated with heart rate variability (HRV in the 0.1-Hz range in the first resting state. It is well known that participating in magnetic resonance imaging (MRI studies may be frightening and cause anxiety. In this respect it is important to note that the most significant hemispheric asymmetry (p<0.002 with a right-sided dominance of neural BOLD and a left-sided dominance of vascular BOLD oscillations was found in the first resting session in the scanner-naïve individuals. Whether the enhanced left-sided perfusion (dominance of vascular BOLD or the right-sided dominance of neural BOLD is related to the increased level of anxiety, attention or stress needs further research.
Furnham, Adrian; Crump, John
2014-08-01
This study aimed to examine a Big Five 'bright-side' analysis of a sub-clinical personality disorder, i.e. narcissism. A total of 6957 British adults completed the NEO-PI-R, which measures the Big Five Personality factors at the domain and the facet level, as well as the Hogan Development Survey (HDS), which has a measure of Narcissism called Bold as one of its dysfunctional interpersonal tendencies. Correlation and regression results confirmed many of the associations between the Big Five domains and facets (NEO-PI-R) and sub-clinical narcissism. The Bold (Narcissism) scale from the HDS was the criterion variable in all analyses. Bold individuals are disagreeable extraverts with very low scores on facet Modesty but moderately high scores on Assertiveness, Competence and Achievement Striving. The study confirmed work using different population groups and different measures. Copyright © 2014 John Wiley & Sons, Ltd.
Personality and the collective: bold homing pigeons occupy higher leadership ranks in flocks.
Sasaki, Takao; Mann, Richard P; Warren, Katherine N; Herbert, Tristian; Wilson, Tara; Biro, Dora
2018-05-19
While collective movement is ecologically widespread and conveys numerous benefits on individuals, it also poses a coordination problem: who controls the group's movements? The role that animal 'personalities' play in this question has recently become a focus of research interest. Although many animal groups have distributed leadership (i.e. multiple individuals influence collective decisions), studies linking personality and leadership have focused predominantly on the group's single most influential individual. In this study, we investigate the relationship between personality and the influence of multiple leaders on collective movement using homing pigeons, Columba livia , a species known to display complex multilevel leadership hierarchies during flock flights. Our results show that more exploratory (i.e. 'bold') birds are more likely to occupy higher ranks in the leadership hierarchy and thus have more influence on the direction of collective movement than less exploratory (i.e. 'shy') birds during both free flights around their lofts and homing flights from a distant site. Our data also show that bold pigeons fly faster than shy birds during solo flights. We discuss our results in light of theories about the evolution of personality, with specific reference to the adaptive value of heterogeneity in animal groups.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).
Intraindividual variability of boldness is repeatable across contexts in a wild lizard.
Directory of Open Access Journals (Sweden)
Laura Highcock
Full Text Available Animals do not behave in exactly the same way when repeatedly tested in the same context or situation, even once systematic variation, such as habituation, has been controlled for. This unpredictability is called intraindividual variability (IIV and has been little studied in animals. Here we investigated how IIV in boldness (estimated by flight initiation distances changed across two seasons--the dry, non-breeding season and the wet, breeding season--in a wild population of the Namibian rock agama, Agama planiceps. We found significant differences in IIV both between individuals and seasons, and IIV was higher in the wet season, suggesting plasticity in IIV. Further, IIV was highly repeatable (r = 0.61 between seasons and we found strong negative correlations between consistent individual differences in flight initiation distances, i.e. their boldness, and individuals' IIVs. We suggest that to understand personality in animals, researchers should generate a personality 'profile' that includes not only the relative level of a trait (i.e. its personality, but also its plasticity and variability under natural conditions.
Unemployment in chronic airflow obstruction around the world: results from the BOLD study.
Grønseth, Rune; Erdal, Marta; Tan, Wan C; Obaseki, Daniel O; Amaral, Andre F S; Gislason, Thorarinn; Juvekar, Sanjay K; Koul, Parvaiz A; Studnicka, Michael; Salvi, Sundeep; Burney, Peter; Buist, A Sonia; Vollmer, William M; Johannessen, Ane
2017-09-01
We aimed to examine associations between chronic airflow obstruction (CAO) and unemployment across the world.Cross-sectional data from 26 sites in the Burden of Obstructive Lung Disease (BOLD) study were used to analyse effects of CAO on unemployment. Odds ratios for unemployment in subjects aged 40-65 years were estimated using a multilevel mixed-effects generalised linear model with study site as random effect. Site-by-site heterogeneity was assessed using individual participant data meta-analyses.Out of 18 710 participants, 11.3% had CAO. The ratio of unemployed subjects with CAO divided by subjects without CAO showed large site discrepancies, although these were no longer significant after adjusting for age, sex, smoking and education. The site-adjusted odds ratio (95% CI) for unemployment was 1.79 (1.41-2.27) for CAO cases, decreasing to 1.43 (1.14-1.79) after adjusting for sociodemographic factors, comorbidities and forced vital capacity. Of other covariates that were associated with unemployment, age and education were important risk factors in high-income sites (4.02 (3.53-4.57) and 3.86 (2.80-5.30), respectively), while female sex was important in low- to middle-income sites (3.23 (2.66-3.91)).In the global BOLD study, CAO was associated with increased levels of unemployment, even after adjusting for sociodemographic factors, comorbidities and lung function. Copyright ©ERS 2017.
Loh, Li Cher; Rashid, Abdul; Sholehah, Siti; Gnatiuc, Louisa; Patel, Jaymini H; Burney, Peter
2016-08-01
As a Burden of Obstructive Lung Disease (BOLD) collaboration, we studied the prevalence of chronic obstructive pulmonary disease (COPD) and its associated risk factors in a suburban population in Malaysia. Nonhospitalized men or women of age ≥ 40 years from a Penang district were recruited by stratified simple random sampling. Participants completed detailed questionnaires on respiratory symptoms and exposure to COPD risk factors. Prebronchodilator and post-bronchodilator spirometry conducted was standardized across all international BOLD sites in device and data quality control. Of the 1218 individuals recruited for the study, 663 (340 men and 323 women) had complete questionnaire data and acceptable post-bronchodilator spirometry. The estimated population prevalence of Global Initiative for Chronic Obstructive Lung Disease (GOLD) ≥ stage I was 6.5% or 3.4% based on either fixed forced expiratory volume in 1 s/forced vital capacity ratio of population-based epidemiology data on COPD for Malaysia. Compared with other sites globally, our estimated population prevalence was relatively low. In addition to cigarette smoking, use of biomass fuel and exposure to dusty job represented significant risk to the development of COPD. © 2016 Asian Pacific Society of Respirology.
Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.
2018-01-01
Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.
Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal
Directory of Open Access Journals (Sweden)
Blanca Guillen
2018-01-01
Full Text Available This paper proposes a simple yet effective approach for detecting activated voxels in fMRI data by exploiting the inherent sparsity property of the BOLD signal in temporal and spatial domains. In the time domain, the approach combines the General Linear Model (GLM with a Least Absolute Deviation (LAD based regression method regularized by the pseudonorm l0 to promote sparsity in the parameter vector of the model. In the spatial domain, detection of activated regions is based on thresholding the spatial map of estimated parameters associated with a particular stimulus. The threshold is calculated by exploiting the sparseness of the BOLD signal in the spatial domain assuming a Laplacian distribution model. The proposed approach is validated using synthetic and real fMRI data. For synthetic data, results show that the proposed approach is able to detect most activated voxels without any false activation. For real data, the method is evaluated through comparison with the SPM software. Results indicate that this approach can effectively find activated regions that are similar to those found by SPM, but using a much simpler approach. This study may lead to the development of robust spatial approaches to further simplifying the complexity of classical schemes.
Primordial non-Gaussianity from LAMOST surveys
International Nuclear Information System (INIS)
Gong Yan; Wang Xin; Chen Xuelei; Zheng Zheng
2010-01-01
The primordial non-Gaussianity (PNG) in the matter density perturbation is a very powerful probe of the physics of the very early Universe. The local PNG can induce a distinct scale-dependent bias on the large scale structure distribution of galaxies and quasars, which could be used for constraining it. We study the detection limits of PNG from the surveys of the LAMOST telescope. The cases of the main galaxy survey, the luminous red galaxy (LRG) survey, and the quasar survey of different magnitude limits are considered. We find that the Main1 sample (i.e. the main galaxy survey which is one magnitude deeper than the SDSS main galaxy survey, or r NL are |f NL | NL | NL | is between 50 and 103, depending on the magnitude limit of the survey. With Planck-like priors on cosmological parameters, the quasar survey with g NL | < 43 (2σ). We also discuss the possibility of further tightening the constraint by using the relative bias method proposed by Seljak.
Bayesian nonparametric adaptive control using Gaussian processes.
Chowdhary, Girish; Kingravi, Hassan A; How, Jonathan P; Vela, Patricio A
2015-03-01
Most current model reference adaptive control (MRAC) methods rely on parametric adaptive elements, in which the number of parameters of the adaptive element are fixed a priori, often through expert judgment. An example of such an adaptive element is radial basis function networks (RBFNs), with RBF centers preallocated based on the expected operating domain. If the system operates outside of the expected operating domain, this adaptive element can become noneffective in capturing and canceling the uncertainty, thus rendering the adaptive controller only semiglobal in nature. This paper investigates a Gaussian process-based Bayesian MRAC architecture (GP-MRAC), which leverages the power and flexibility of GP Bayesian nonparametric models of uncertainty. The GP-MRAC does not require the centers to be preallocated, can inherently handle measurement noise, and enables MRAC to handle a broader set of uncertainties, including those that are defined as distributions over functions. We use stochastic stability arguments to show that GP-MRAC guarantees good closed-loop performance with no prior domain knowledge of the uncertainty. Online implementable GP inference methods are compared in numerical simulations against RBFN-MRAC with preallocated centers and are shown to provide better tracking and improved long-term learning.
Glasø, Alexander
2012-01-01
"'To Boldly Go" versus "Last, Best Hope'" examines a total of four American television series from the Star Trek and Babylon 5 franchises, and the portrayal of human civilization in the future. The thesis traces how Star Trek set out "to boldly go" and how Babylon 5 was the "last, best hope" in depicting a coherent, futuristic vision for humanity. The initial chapter focuses on the background of the series and also the ways they differed from one another, while chapter 2 is devoted to the por...
DEFF Research Database (Denmark)
Kim, S.G.; Rostrup, Egill; Larsson, H.B.
1999-01-01
signal changes were measured simultaneously using the flow-sensitive alternating inversion recovery (FAIR) technique. During hypercapnia established by an end-tidal CO2 increase of 1.46 kPa, CBF in the visual cortex increased by 47.3 +/- 17.3% (mean +/- SD; n = 9), and deltaR2* was -0.478 +/- 0.147 sec......The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging depends on at least partial uncoupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) changes. By measuring CBF and BOLD simultaneously, the relative change in CMRO2 can...
Boltzmann-Gaussian transition under specific noise effect
International Nuclear Information System (INIS)
Anh, Chu Thuy; Lan, Nguyen Tri; Viet, Nguyen Ai
2014-01-01
It is observed that a short time data set of market returns presents almost symmetric Boltzmann distribution whereas a long time data set tends to show a Gaussian distribution. To understand this universal phenomenon, many hypotheses which are spreading in a wide range of interdisciplinary research were proposed. In current work, the effects of background fluctuations on symmetric Boltzmann distribution is investigated. The numerical calculation is performed to show that the Gaussian noise may cause the transition from initial Boltzmann distribution to Gaussian one. The obtained results would reflect non-dynamic nature of the transition under consideration.
Legendre Duality of Spherical and Gaussian Spin Glasses
International Nuclear Information System (INIS)
Genovese, Giuseppe; Tantari, Daniele
2015-01-01
The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model
Controllable gaussian-qubit interface for extremal quantum state engineering.
Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro
2010-06-18
We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
Legendre Duality of Spherical and Gaussian Spin Glasses
Energy Technology Data Exchange (ETDEWEB)
Genovese, Giuseppe, E-mail: giuseppe.genovese@math.uzh.ch [Universität Zürich, Institut für Mathematik (Switzerland); Tantari, Daniele, E-mail: daniele.tantari@sns.it [Scuola Normale Superiore di Pisa, Centro Ennio de Giorgi (Italy)
2015-12-15
The classical result of concentration of the Gaussian measure on the sphere in the limit of large dimension induces a natural duality between Gaussian and spherical models of spin glass. We analyse the Legendre variational structure linking the free energies of these two systems, in the spirit of the equivalence of ensembles of statistical mechanics. Our analysis, combined with the previous work (Barra et al., J. Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica symmetric. Lastly, we briefly discuss an application of our result to the study of the Gaussian Hopfield model.
Methods to characterize non-Gaussian noise in TAMA
International Nuclear Information System (INIS)
Ando, Masaki; Arai, K; Takahashi, R; Tatsumi, D; Beyersdorf, P; Kawamura, S; Miyoki, S; Mio, N; Moriwaki, S; Numata, K; Kanda, N; Aso, Y; Fujimoto, M-K; Tsubono, K; Kuroda, K
2003-01-01
We present a data characterization method for the main output signal of the interferometric gravitational-wave detector, in particular targeting at effective detection of burst gravitational waves from stellar core collapse. The time scale of non-Gaussian events is evaluated in this method, and events with longer time scale than real signals are rejected as non-Gaussian noises. As a result of data analysis using 1000 h of real data with the interferometric gravitational-wave detector TAMA300, the false-alarm rate was improved 10 3 times with this non-Gaussian noise evaluation and rejection method
Coincidence Imaging and interference with coherent Gaussian beams
Institute of Scientific and Technical Information of China (English)
CAI Yang-jian; ZHU Shi-yao
2006-01-01
we present a theoretical study of coincidence imaging and interference with coherent Gaussian beams The equations for the coincidence image formation and interference fringes are derived,from which it is clear that the imaging is due to the corresponding focusing in the two paths .The quality and visibility of the images and fringes can be high simultaneously.The nature of the coincidence imaging and interference between quantum entangled photon pairs and coherent Gaussian beams are different .The coincidence image with coherent Gaussian beams is due to intensity-intensity correspondence,a classical nature,while that with entangled photon pairs is due to the amplitude correlation a quantum nature.
Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States
Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi
2009-08-01
We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.
A note on moving average models for Gaussian random fields
DEFF Research Database (Denmark)
Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.
The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...... basis, a general modeling framework which includes several types of non-Gaussian models. We propose a new one-parameter spatial correlation model which arises from a power kernel and show that the associated Hausdorff dimension of the sample paths can take any value between 2 and 3. As a result...
Detection Performance of Signals in Dependent Noise From a Gaussian Mixture Uncertainty Class
National Research Council Canada - National Science Library
Gerlach, K
1998-01-01
... (correlated) multivariate noise from a Gaussian mixture uncertainty class. This uncertainty class is defined using upper and lower bounding functions on the univariate Gaussian mixing distribution function...
DEFF Research Database (Denmark)
Klefoth, Thomas; Skov, Christian; Krause, Jens
2011-01-01
To showcase the importance of genotype × environment interactions and the presence of predation risk in the experimental assessment of boldness in fish, we investigated boldness in terms of feeding behavior and refuge use in two genetically different populations of juvenile carp (Cyprinus carpio)...
International Nuclear Information System (INIS)
Strandlie, A.; Wroldsen, J.
2006-01-01
If any of the probability densities involved in track fitting deviate from the Gaussian assumption, it is plausible that a non-linear estimator which better takes the actual shape of the distribution into account can do better. One such non-linear estimator is the Gaussian-sum filter, which is adequate if the distributions under consideration can be approximated by Gaussian mixtures. The main purpose of this paper is to present a Gaussian-sum filter for track fitting, based on a two-component approximation of the distribution of angular deflections due to multiple scattering. In a simulation study within a linear track model the Gaussian-sum filter is shown to be a competitive alternative to the Kalman filter. Scenarios at various momenta and with various maximum number of components in the Gaussian-sum filter are considered. Particularly at low momenta the Gaussian-sum filter yields a better estimate of the uncertainties than the Kalman filter, and it is also slightly more precise than the latter
International Nuclear Information System (INIS)
Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.
2013-01-01
Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
The location-, word-, and arrow-based Simon effects: An ex-Gaussian analysis.
Luo, Chunming; Proctor, Robert W
2018-04-01
Task-irrelevant spatial information, conveyed by stimulus location, location word, or arrow direction, can influence the response to task-relevant attributes, generating the location-, word-, and arrow-based Simon effects. We examined whether different mechanisms are involved in the generation of these Simon effects by fitting a mathematical ex-Gaussian function to empirical response time (RT) distributions. Specifically, we tested whether which ex-Gaussian parameters (μ, σ, and τ) show Simon effects and whether the location-, word, and arrow-based effects are on different parameters. Results show that the location-based Simon effect occurred on mean RT and μ but not on τ, and a reverse Simon effect occurred on σ. In contrast, a positive word-based Simon effect was obtained on all these measures (including σ), and a positive arrow-based Simon effect was evident on mean RT, σ, and τ but not μ. The arrow-based Simon effect was not different from the word-based Simon effect on τ or σ but was on μ and mean RT. These distinct results on mean RT and ex-Gaussian parameters provide evidence that spatial information conveyed by the various location modes are different in the time-course of activation.
Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies.
Savitsky, Terrance; Vannucci, Marina; Sha, Naijun
2011-02-01
This paper presents a unified treatment of Gaussian process models that extends to data from the exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets with predictors that have an a priori unknown form of possibly nonlinear associations to the response. The modeling approach we describe incorporates Gaussian processes in a generalized linear model framework to obtain a class of nonparametric regression models where the covariance matrix depends on the predictors. We consider, in particular, continuous, categorical and count responses. We also look into models that account for survival outcomes. We explore alternative covariance formulations for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on the important problem of selecting variables from the set of possible predictors and describe a general framework that employs mixture priors. We compare alternative MCMC strategies for posterior inference and achieve a computationally efficient and practical approach. We demonstrate performances on simulated and benchmark data sets.
Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach
International Nuclear Information System (INIS)
Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Piña, Ll.; Rubayo-Soneira, J.
2012-01-01
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.
Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach
Energy Technology Data Exchange (ETDEWEB)
Unn-Toc, W.; Meier, C.; Halberstadt, N. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Uranga-Pina, Ll. [Laboratoire Collisions Agregats et Reactivite, IRSAMC, UMR CNRS 5589, Universite Paul Sabatier, 31062 Toulouse (France); Facultad de Fisica, Universidad de la Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Rubayo-Soneira, J. [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Ave. Salvador Allende y Luaces, Habana 10600, AP 6163 La Habana (Cuba)
2012-08-07
A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.
Optimal multicopy asymmetric Gaussian cloning of coherent states
Fiurášek, Jaromír; Cerf, Nicolas J.
2007-05-01
We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward.
Making tensor factorizations robust to non-gaussian noise.
Energy Technology Data Exchange (ETDEWEB)
Chi, Eric C. (Rice University, Houston, TX); Kolda, Tamara Gibson
2011-03-01
Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an alternating majorization-minimization (MM) algorithm for fitting a CP model using our proposed loss function (CPAL1) and compare its performance to the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).
Simple form for the Gaussian equations in curved space
International Nuclear Information System (INIS)
Mazzitelli, F.D.; Paz, J.P.
1988-01-01
We show that the variational Gaussian equations for λphi 4 theory in an arbitrary background gravitational field admit a simple form, which allows the use of a Schwinger-DeWitt-type expansion in order to renormalize them
Optimal multicopy asymmetric Gaussian cloning of coherent states
International Nuclear Information System (INIS)
Fiurasek, Jaromir; Cerf, Nicolas J.
2007-01-01
We investigate the asymmetric Gaussian cloning of coherent states which produces M copies from N input replicas in such a way that the fidelity of each copy may be different. We show that the optimal asymmetric Gaussian cloning can be performed with a single phase-insensitive amplifier and an array of beam splitters. We obtain a simple analytical expression characterizing the set of optimal asymmetric Gaussian cloning machines and prove the optimality of these cloners using the formalism of Gaussian completely positive maps and semidefinite programming techniques. We also present an alternative implementation of the asymmetric cloning machine where the phase-insensitive amplifier is replaced with a beam splitter, heterodyne detector, and feedforward
Quantifying entanglement in two-mode Gaussian states
Tserkis, Spyros; Ralph, Timothy C.
2017-12-01
Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.
Super-resolving random-Gaussian apodized photon sieve.
Sabatyan, Arash; Roshaninejad, Parisa
2012-09-10
A novel apodized photon sieve is presented in which random dense Gaussian distribution is implemented to modulate the pinhole density in each zone. The random distribution in dense Gaussian distribution causes intrazone discontinuities. Also, the dense Gaussian distribution generates a substantial number of pinholes in order to form a large degree of overlap between the holes in a few innermost zones of the photon sieve; thereby, clear zones are formed. The role of the discontinuities on the focusing properties of the photon sieve is examined as well. Analysis shows that secondary maxima have evidently been suppressed, transmission has increased enormously, and the central maxima width is approximately unchanged in comparison to the dense Gaussian distribution. Theoretical results have been completely verified by experiment.
Mimicking an amplitude damping channel for Laguerre Gaussian Modes
CSIR Research Space (South Africa)
Dudley, Angela L
2010-10-01
Full Text Available An amplitude damping channel for Laguerre-Gaussian (LG) modes is presented. Experimentally the action of the channel on LG modes is in good agreement with that predicted theoretically....
Scalable Gaussian Processes and the search for exoplanets
CERN. Geneva
2015-01-01
Gaussian Processes are a class of non-parametric models that are often used to model stochastic behavior in time series or spatial data. A major limitation for the application of these models to large datasets is the computational cost. The cost of a single evaluation of the model likelihood scales as the third power of the number of data points. In the search for transiting exoplanets, the datasets of interest have tens of thousands to millions of measurements with uneven sampling, rendering naive application of a Gaussian Process model impractical. To attack this problem, we have developed robust approximate methods for Gaussian Process regression that can be applied at this scale. I will describe the general problem of Gaussian Process regression and offer several applicable use cases. Finally, I will present our work on scaling this model to the exciting field of exoplanet discovery and introduce a well-tested open source implementation of these new methods.
Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter
2017-11-01
Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.
Energy Technology Data Exchange (ETDEWEB)
Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)
2017-04-15
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
International Nuclear Information System (INIS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince
2017-01-01
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
Memory effects in the relaxation of the Gaussian trap model
Diezemann, Gregor; Heuer, Andreas
2011-03-01
We investigate the memory effect in a simple model for glassy relaxation, a trap model with a Gaussian density of states. In this model, thermal equilibrium is reached at all finite temperatures and we therefore can consider jumps from low to high temperatures in addition to the quenches usually considered in aging studies. We show that the evolution of the energy following the Kovacs protocol can approximately be expressed as a difference of two monotonously decaying functions and thus show the existence of a so-called Kovacs hump whenever these functions are not single exponentials. It is well established that the Kovacs effect also occurs in the linear response regime, and we show that most of the gross features do not change dramatically when large temperature jumps are considered. However, there is one distinguishing feature that only exists beyond the linear regime, which we discuss in detail. For the memory experiment with inverted temperatures, i.e., jumping up and then down again, we find a very similar behavior apart from an opposite sign of the hump.
Binaural hearing in children using Gaussian enveloped and transposed tones.
Ehlers, Erica; Kan, Alan; Winn, Matthew B; Stoelb, Corey; Litovsky, Ruth Y
2016-04-01
Children who use bilateral cochlear implants (BiCIs) show significantly poorer sound localization skills than their normal hearing (NH) peers. This difference has been attributed, in part, to the fact that cochlear implants (CIs) do not faithfully transmit interaural time differences (ITDs) and interaural level differences (ILDs), which are known to be important cues for sound localization. Interestingly, little is known about binaural sensitivity in NH children, in particular, with stimuli that constrain acoustic cues in a manner representative of CI processing. In order to better understand and evaluate binaural hearing in children with BiCIs, the authors first undertook a study on binaural sensitivity in NH children ages 8-10, and in adults. Experiments evaluated sound discrimination and lateralization using ITD and ILD cues, for stimuli with robust envelope cues, but poor representation of temporal fine structure. Stimuli were spondaic words, Gaussian-enveloped tone pulse trains (100 pulse-per-second), and transposed tones. Results showed that discrimination thresholds in children were adult-like (15-389 μs for ITDs and 0.5-6.0 dB for ILDs). However, lateralization based on the same binaural cues showed higher variability than seen in adults. Results are discussed in the context of factors that may be responsible for poor representation of binaural cues in bilaterally implanted children.
Spatial–temporal signature of resting-state BOLD signals in classic trigeminal neuralgia
Directory of Open Access Journals (Sweden)
Wang Y
2017-12-01
Full Text Available Yanping Wang,1 Congying Xu,1 Liping Zhai,1 Xudong Lu,1 Xiaoqiang Wu,1 Yahui Yi,2 Ziyun Liu,1 Qiaobing Guan,1 Xiaoling Zhang1 1Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, 2Department of Radiology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China Abstract: Resting-state functional magnetic resonance imaging (R-fMRI signals are spatiotemporally organized. R-fMRI studies in patients with classic trigeminal neuralgia (CTN have suggested alterations in functional connectivity. However, far less attention has been given to investigations of the local oscillations and their frequency-specific changes in these patients. The objective of this study was to address this issue in patients with CTN. R-fMRI data from 17 patients with CTN and 19 age- and gender-matched healthy controls (HCs were analyzed using amplitude of low-frequency fluctuation (ALFF. The ALFF was computed across different frequencies (slow-4: 0.027–0.073 Hz; slow-5: 0.01–0.027 Hz; and typical band: 0.01–0.08 Hz in patients with CTN compared to HCs. In the typical band, patients with CTN showed increases of ALFF in bilateral temporal, occipital, and left middle frontal regions and in the left middle cingulate gyrus, as well as decreases of ALFF in the right inferior temporal region and in regions (medial prefrontal regions of default mode network. These significant group differences were identified in different sub-bands, with greater brainstem findings in higher frequencies (slow-4 and extensive default mode network and right postparietal results in lower frequencies (slow-5. Furthermore, significant relationships were found between subjective pain ratings and both amplitudes of higher frequency (slow-4 blood oxygen level-dependent (BOLD signals in pain localization brain regions and lower frequencies (slow-5 in pain signaling/modulating brain regions in the patients, and decreased ALFF within the prefrontal regions was significantly
Energy Technology Data Exchange (ETDEWEB)
Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)
2009-07-01
Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. Copyright © 2016 the American Physiological Society.
International Nuclear Information System (INIS)
Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.
2009-01-01
Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)
Non-gaussianity versus nonlinearity of cosmological perturbations.
Verde, L
2001-06-01
Following the discovery of the cosmic microwave background, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us toward a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, nonlinear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but galaxies might not be faithful tracers of the underlying mass distribution. The relationship between fluctuations in the mass and in the galaxies distribution (bias), is often assumed to be local, but could well be nonlinear. Moreover, galaxy catalogues use the redshift as third spatial coordinate: the resulting redshift-space map of the galaxy distribution is nonlinearly distorted by peculiar velocities. Nonlinear gravitational evolution, biasing, and redshift-space distortion introduce non-gaussianity, even in an initially gaussian fluctuation field. I investigate the statistical tools that allow us, in principle, to disentangle the above different effects, and the observational datasets we require to do so in practice.
GAUSSIAN 76: an ab initio molecular orbital program
International Nuclear Information System (INIS)
Binkley, J.S.; Whiteside, R.; Hariharan, P.C.; Seeger, R.; Hehre, W.J.; Lathan, W.A.; Newton, M.D.; Ditchfield, R.; Pople, J.A.
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans
Gaussian Process Regression for WDM System Performance Prediction
DEFF Research Database (Denmark)
Wass, Jesper; Thrane, Jakob; Piels, Molly
2017-01-01
Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data.......Gaussian process regression is numerically and experimentally investigated to predict the bit error rate of a 24 x 28 CiBd QPSK WDM system. The proposed method produces accurate predictions from multi-dimensional and sparse measurement data....
Revisiting non-Gaussianity from non-attractor inflation models
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
Current inversion induced by colored non-Gaussian noise
International Nuclear Information System (INIS)
Bag, Bidhan Chandra; Hu, Chin-Kung
2009-01-01
We study a stochastic process driven by colored non-Gaussian noises. For the flashing ratchet model we find that there is a current inversion in the variation of the current with the half-cycle period which accounts for the potential on–off operation. The current inversion almost disappears if one switches from non-Gaussian (NG) to Gaussian (G) noise. We also find that at low value of the asymmetry parameter of the potential the mobility controlled current is more negative for NG noise as compared to G noise. But at large magnitude of the parameter the diffusion controlled positive current is higher for the former than for the latter. On increasing the noise correlation time (τ), keeping the noise strength fixed, the mean velocity of a particle first increases and then decreases after passing through a maximum if the noise is non-Gaussian. For Gaussian noise, the current monotonically decreases. The current increases with the noise parameter p, 0< p<5/3, which is 1 for Gaussian noise
Passivity and practical work extraction using Gaussian operations
International Nuclear Information System (INIS)
Brown, Eric G; Huber, Marcus; Friis, Nicolai
2016-01-01
Quantum states that can yield work in a cyclical Hamiltonian process form one of the primary resources in the context of quantum thermodynamics. Conversely, states whose average energy cannot be lowered by unitary transformations are called passive. However, while work may be extracted from non-passive states using arbitrary unitaries, the latter may be hard to realize in practice. It is therefore pertinent to consider the passivity of states under restricted classes of operations that can be feasibly implemented. Here, we ask how restrictive the class of Gaussian unitaries is for the task of work extraction. We investigate the notion of Gaussian passivity, that is, we present necessary and sufficient criteria identifying all states whose energy cannot be lowered by Gaussian unitaries. For all other states we give a prescription for the Gaussian operations that extract the maximal amount of energy. Finally, we show that the gap between passivity and Gaussian passivity is maximal, i.e., Gaussian-passive states may still have a maximal amount of energy that is extractable by arbitrary unitaries, even under entropy constraints. (paper)
Superstatistical generalised Langevin equation: non-Gaussian viscoelastic anomalous diffusion
Ślęzak, Jakub; Metzler, Ralf; Magdziarz, Marcin
2018-02-01
Recent advances in single particle tracking and supercomputing techniques demonstrate the emergence of normal or anomalous, viscoelastic diffusion in conjunction with non-Gaussian distributions in soft, biological, and active matter systems. We here formulate a stochastic model based on a generalised Langevin equation in which non-Gaussian shapes of the probability density function and normal or anomalous diffusion have a common origin, namely a random parametrisation of the stochastic force. We perform a detailed analysis demonstrating how various types of parameter distributions for the memory kernel result in exponential, power law, or power-log law tails of the memory functions. The studied system is also shown to exhibit a further unusual property: the velocity has a Gaussian one point probability density but non-Gaussian joint distributions. This behaviour is reflected in the relaxation from a Gaussian to a non-Gaussian distribution observed for the position variable. We show that our theoretical results are in excellent agreement with stochastic simulations.
Non-Gaussianity from inflation: theory and observations
Bartolo, N.; Komatsu, E.; Matarrese, S.; Riotto, A.
2004-11-01
This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.
Back to Normal! Gaussianizing posterior distributions for cosmological probes
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2014-05-01
We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.
Hadi, Shamil; Siadat, Mohamad R.; Babajani-Feremi, Abbas
2012-03-01
Emotional tasks may result in a strong blood oxygen level-dependent (BOLD) signal in the amygdala in 5- HTTLRP short-allele. Reduced anterior cingulate cortex (ACC)-amygdala connectivity in short-allele provides a potential mechanistic account for the observed increase in amygdala activity. In our study, fearful and threatening facial expressions were presented to two groups of 12 subjects with long- and short-allele carriers. The BOLD signals of the left amygdala of each group were averaged to increase the signal-to-noise ratio. A Bayesian approach was used to estimate the model parameters to elucidate the underlying hemodynamic mechanism. Our results showed a positive BOLD signal in the left amygdala for short-allele individuals, and a negative BOLD signal in the same region for long-allele individuals. This is due to the fact that short-allele is associated with lower availability of serotonin transporter (5-HTT) and this leads to an increase of serotonin (5-HT) concentration in the cACC-amygdala synapse.
Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean
2015-04-01
There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.
Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy
2012-05-01
Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These
The impact of susceptibility gradients on cartesian and spiral EPI for BOLD fMRI
DEFF Research Database (Denmark)
Sangill, Ryan; Wallentin, Mikkel; Østergaard, Leif
2006-01-01
, with special emphasis on spiral EPI (spiral) and cartesian EPI (EPI) and their performance under influence of induced field gradients (SFGs) and stochastic noise. A numerical method for calculating synthetic MR images is developed and used to simulate BOLD fMRI experiments using EPI and spirals. The data...... is then examined for activation using a pixel-wise t test. Nine subjects are scanned with both techniques while performing a motor task. SPM99 is used for analysing the experimental data. The simulated spirals provide generally higher t scores at low SFGs but lose more strength than EPI at higher SFGs, where EPI...... activation is offset from the true position. In the primary motor area spirals provide significantly higher t scores (P SFG areas spirals provide stronger activation than...
Directory of Open Access Journals (Sweden)
Isabelle Lajoie
Full Text Available The current generation of calibrated MRI methods goes beyond simple localization of task-related responses to allow the mapping of resting-state cerebral metabolic rate of oxygen (CMRO2 in micromolar units and estimation of oxygen extraction fraction (OEF. Prior to the adoption of such techniques in neuroscience research applications, knowledge about the precision and accuracy of absolute estimates of CMRO2 and OEF is crucial and remains unexplored to this day. In this study, we addressed the question of methodological precision by assessing the regional inter-subject variance and intra-subject reproducibility of the BOLD calibration parameter M, OEF, O2 delivery and absolute CMRO2 estimates derived from a state-of-the-art calibrated BOLD technique, the QUantitative O2 (QUO2 approach. We acquired simultaneous measurements of CBF and R2* at rest and during periods of hypercapnia (HC and hyperoxia (HO on two separate scan sessions within 24 hours using a clinical 3 T MRI scanner. Maps of M, OEF, oxygen delivery and CMRO2, were estimated from the measured end-tidal O2, CBF0, CBFHC/HO and R2*HC/HO. Variability was assessed by computing the between-subject coefficients of variation (bwCV and within-subject CV (wsCV in seven ROIs. All tests GM-averaged values of CBF0, M, OEF, O2 delivery and CMRO2 were: 49.5 ± 6.4 mL/100 g/min, 4.69 ± 0.91%, 0.37 ± 0.06, 377 ± 51 μmol/100 g/min and 143 ± 34 μmol/100 g/min respectively. The variability of parameter estimates was found to be the lowest when averaged throughout all GM, with general trends toward higher CVs when averaged over smaller regions. Among the MRI measurements, the most reproducible across scans was R2*0 (wsCVGM = 0.33% along with CBF0 (wsCVGM = 3.88% and R2*HC (wsCVGM = 6.7%. CBFHC and R2*HO were found to have a higher intra-subject variability (wsCVGM = 22.4% and wsCVGM = 16% respectively, which is likely due to propagation of random measurement errors, especially for CBFHC due to the
Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics
Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří
2018-06-01
Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral
A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series
Directory of Open Access Journals (Sweden)
Charmaine eDemanuele
2015-10-01
Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel
Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention
Directory of Open Access Journals (Sweden)
Mara eKottlow
2015-05-01
Full Text Available Working memory (WM processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health.We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods.Four temporally coherent networks - the default mode network (DMN, the dorsal attention, the right and the left WM network - were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks’ pre-stimulus activation upon retention-related EEG activity in the theta, alpha and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing.We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be online synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.
Computing moment to moment BOLD activation for real-time neurofeedback
Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.
2013-01-01
Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350
Back pain in seniors: the Back pain Outcomes using Longitudinal Data (BOLD) cohort baseline data.
Jarvik, Jeffrey G; Comstock, Bryan A; Heagerty, Patrick J; Turner, Judith A; Sullivan, Sean D; Shi, Xu; Nerenz, David R; Nedeljkovic, Srdjan S; Kessler, Larry; James, Kathryn; Friedly, Janna L; Bresnahan, Brian W; Bauer, Zoya; Avins, Andrew L; Deyo, Richard A
2014-04-23
Back pain represents a substantial burden globally, ranking first in a recent assessment among causes of years lived with disability. Though back pain is widely studied among working age adults, there are gaps with respect to basic descriptive epidemiology among seniors, especially in the United States. Our goal was to describe how pain, function and health-related quality of life vary by demographic and geographic factors among seniors presenting to primary care providers with new episodes of care for back pain. We examined baseline data from the Back pain Outcomes using Longitudinal Data (BOLD) registry, the largest inception cohort to date of seniors presenting to a primary care provider for back pain. The sample included 5,239 patients ≥ 65 years old with a new primary care visit for back pain at three integrated health systems (Northern California Kaiser-Permanente, Henry Ford Health System [Detroit], and Harvard Vanguard Medical Associates [Boston]). We examined differences in patient characteristics across healthcare sites and associations of patient sociodemographic and clinical characteristics with baseline patient-reported measures of pain, function, and health-related quality of life. Patients differed across sites in demographic and other characteristics. The Detroit site had more African-American patients (50%) compared with the other sites (7-8%). The Boston site had more college graduates (68%) compared with Detroit (20%). Female sex, lower educational status, African-American race, and older age were associated with worse functional disability as measured by the Roland-Morris Disability Questionnaire. Except for age, these factors were also associated with worse pain. Baseline pain and functional impairment varied substantially with a number of factors in the BOLD cohort. Healthcare site was an important factor. After controlling for healthcare site, lower education, female sex, African-American race, and older age were associated with worse
Consistency in boldness, activity and exploration at different stages of life
2013-01-01
Background Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies. PMID:24314274
Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T
International Nuclear Information System (INIS)
Stracke, C.P.; Schoth, F.; Moeller-Hartmann, W.; Krings, T.; Pettersson, L.G.
2005-01-01
The purpose of this study was to investigate if functional activity with spinal cord somatosensory stimulation can be visualized using BOLD fMRI. We investigated nine healthy volunteers using a somatosensory stimulus generator. The stimuli were applied in three different runs at the first, third, and fifth finger tip of the right hand, respectively, corresponding to dermatomes c6, c7, and c8. The stimuli gave an increase of BOLD signal (activation) in three different locations of the spinal cord and brain stem. First, activations could be seen in the spinal segment corresponding to the stimulated dermatome in seven out of nine volunteers for c6 stimulation, two out of eight for c7, and three out of eight for c8. These activations were located close to the posterior margin of the spinal cord, presumably reflecting synaptic transmission to dorsal horn interneurons. Second, activation in the medulla oblongata was evident in four subjects, most likely corresponding to the location of the nucleus cuneatus. The third location of activation, which was the strongest and most reliable observed was inside the spinal cord in the c3 and c4 segments. Activation at these spinal levels was almost invariably observed independently of the dermatome stimulated (9/9 for c6, 8/8 for c7, and 7/8 for c8 stimulation). These activations may pertain to an interneuronal system at this spinal level. The results are discussed in relation to neurophysiological studies on cervical spinal interneuronal pathways in animals and humans. (orig.)
Azulay, Haim; Striem, Ella; Amedi, Amir
2009-05-01
People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.
Scaled unscented transform Gaussian sum filter: Theory and application
Luo, Xiaodong
2010-05-01
In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to
Energy Technology Data Exchange (ETDEWEB)
Nasui, Otilia C.; Chan, Michael W.; Nathanael, George; Rayner, Tammy; Weiss, Ruth; Detzler, Garry; Zhong, Anguo [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); Crawley, Adrian [University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Toronto Western Hospital, Department of Medical Imaging, Toronto, ON (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario (CHEO), Department of Diagnostic Imaging, Ottawa, ON (Canada); Belik, Jaques [The Hospital for Sick Children, Department of Neonatology, Toronto, ON (Canada); Cheng, Hai-Ling; Kassner, Andrea; Doria, Andrea S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Moineddin, Rahim [Department of Public Health, Family and Community Medicine, Toronto, ON (Canada); Jong, Roland; Rogers, Marianne [Mount Sinai Hospital, Department of Pathology, Toronto, ON (Canada)
2014-11-15
Our aim was to test the feasibility of blood oxygen level dependent magnetic resonance imaging (BOLD MRI) and dynamic contrast-enhanced (DCE) MRI to monitor periarticular hypoxic/inflammatory changes over time in a juvenile rabbit model of arthritis. We examined arthritic and contralateral nonarthritic knees of 21 juvenile rabbits at baseline and days 1,14, and 28 after induction of arthritis by unilateral intra-articular injection of carrageenin with BOLD and DCE MRI at 1.5 Tesla (T). Nine noninjected rabbits served as controls. Associations between BOLD and DCE-MRI and corresponding intra-articular oxygen pressure (PO{sub 2}) and blood flow [blood perfusion units (BPU)] (polarographic probes, reference standards) or clinical-histological data were measured by correlation coefficients. Percentage BOLD MRI change obtained in contralateral knees correlated moderately with BPU on day 0 (r = -0.51, p = 0.02) and excellently on day 28 (r = -0.84, p = 0.03). A moderate correlation was observed between peak enhancement DCE MRI (day 1) and BPU measurements in arthritic knees (r = 0.49, p = 0.04). In acute arthritis, BOLD and DCE MRI highly correlated (r = 0.89, p = 0.04; r = 1.0, p < 0.0001) with histological scores in arthritic knees. The proposed techniques are feasible to perform at 1.5 T, and they hold potential as surrogate measures to monitor hypoxic and inflammatory changes over time in arthritis at higher-strength MRI fields. (orig.)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than
International Nuclear Information System (INIS)
Ganguly, Jayanta; Ghosh, Manas
2014-01-01
Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features
Gagnon, Louis; Sakadžić, Sava; Lesage, Frédéric; Musacchia, Joseph J; Lefebvre, Joël; Fang, Qianqian; Yücel, Meryem A; Evans, Karleyton C; Mandeville, Emiri T; Cohen-Adad, Jülien; Polimeni, Jonathan R; Yaseen, Mohammad A; Lo, Eng H; Greve, Douglas N; Buxton, Richard B; Dale, Anders M; Devor, Anna; Boas, David A
2015-02-25
The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences. Copyright © 2015 the authors 0270-6474/15/353663-13$15.00/0.
The ap?ritif effect: alcohol's effects on the brain's response to food aromas in women
Eiler, William J.A.; D?emid?i?, Mario; Case, K. Rose; Soeurt, Christina M.; Armstrong, Cheryl L.H.; Mattes, Richard D.; O'Connor, Sean J.; Harezlak, Jaroslaw; Acton, Anthony J.; Considine, Robert V.; Kareken, David A.
2015-01-01
Objective Consuming alcohol prior to a meal (an ap?ritif) increases food consumption. This greater food consumption may result from increased activity in brain regions that mediate reward and regulate feeding behavior. Using functional magnetic resonance imaging, we evaluated the blood oxygenation level dependent (BOLD) response to the food aromas of either roast beef or Italian meat sauce following pharmacokinetically controlled intravenous infusion of alcohol. Methods BOLD activation to foo...
Capacity and optimal collusion attack channels for Gaussian fingerprinting games
Wang, Ying; Moulin, Pierre
2007-02-01
In content fingerprinting, the same media covertext - image, video, audio, or text - is distributed to many users. A fingerprint, a mark unique to each user, is embedded into each copy of the distributed covertext. In a collusion attack, two or more users may combine their copies in an attempt to "remove" their fingerprints and forge a pirated copy. To trace the forgery back to members of the coalition, we need fingerprinting codes that can reliably identify the fingerprints of those members. Researchers have been focusing on designing or testing fingerprints for Gaussian host signals and the mean square error (MSE) distortion under some classes of collusion attacks, in terms of the detector's error probability in detecting collusion members. For example, under the assumptions of Gaussian fingerprints and Gaussian attacks (the fingerprinted signals are averaged and then the result is passed through a Gaussian test channel), Moulin and Briassouli1 derived optimal strategies in a game-theoretic framework that uses the detector's error probability as the performance measure for a binary decision problem (whether a user participates in the collusion attack or not); Stone2 and Zhao et al. 3 studied average and other non-linear collusion attacks for Gaussian-like fingerprints; Wang et al. 4 stated that the average collusion attack is the most efficient one for orthogonal fingerprints; Kiyavash and Moulin 5 derived a mathematical proof of the optimality of the average collusion attack under some assumptions. In this paper, we also consider Gaussian cover signals, the MSE distortion, and memoryless collusion attacks. We do not make any assumption about the fingerprinting codes used other than an embedding distortion constraint. Also, our only assumptions about the attack channel are an expected distortion constraint, a memoryless constraint, and a fairness constraint. That is, the colluders are allowed to use any arbitrary nonlinear strategy subject to the above
Skewness and kurtosis analysis for non-Gaussian distributions
Celikoglu, Ahmet; Tirnakli, Ugur
2018-06-01
In this paper we address a number of pitfalls regarding the use of kurtosis as a measure of deviations from the Gaussian. We treat kurtosis in both its standard definition and that which arises in q-statistics, namely q-kurtosis. We have recently shown that the relation proposed by Cristelli et al. (2012) between skewness and kurtosis can only be verified for relatively small data sets, independently of the type of statistics chosen; however it fails for sufficiently large data sets, if the fourth moment of the distribution is finite. For infinite fourth moments, kurtosis is not defined as the size of the data set tends to infinity. For distributions with finite fourth moments, the size, N, of the data set for which the standard kurtosis saturates to a fixed value, depends on the deviation of the original distribution from the Gaussian. Nevertheless, using kurtosis as a criterion for deciding which distribution deviates further from the Gaussian can be misleading for small data sets, even for finite fourth moment distributions. Going over to q-statistics, we find that although the value of q-kurtosis is finite in the range of 0 < q < 3, this quantity is not useful for comparing different non-Gaussian distributed data sets, unless the appropriate q value, which truly characterizes the data set of interest, is chosen. Finally, we propose a method to determine the correct q value and thereby to compute the q-kurtosis of q-Gaussian distributed data sets.
Gaussianization for fast and accurate inference from cosmological data
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.