WorldWideScience

Sample records for bold brain mapping

  1. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

    Science.gov (United States)

    Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    Purpose To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. Methods A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Results Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. Conclusions The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization. PMID:29351339

  2. Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping.

    Science.gov (United States)

    Chen, Zikuan; Robinson, Jennifer; Calhoun, Vince

    2018-01-01

    To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ0 +δχ, with δχ for BOLD magnetic perturbations and χ0 for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.

  3. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  4. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T

    NARCIS (Netherlands)

    Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; Van der Zwaag, W.

    External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and

  5. Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T.

    Science.gov (United States)

    Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske

    2018-02-20

    External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.

  6. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  7. Mapping effective connectivity in the human brain with concurrent intracranial electrical stimulation and BOLD-fMRI.

    Science.gov (United States)

    Oya, Hiroyuki; Howard, Matthew A; Magnotta, Vincent A; Kruger, Anton; Griffiths, Timothy D; Lemieux, Louis; Carmichael, David W; Petkov, Christopher I; Kawasaki, Hiroto; Kovach, Christopher K; Sutterer, Matthew J; Adolphs, Ralph

    2017-02-01

    Understanding brain function requires knowledge of how one brain region causally influences another. This information is difficult to obtain directly in the human brain, and is instead typically inferred from resting-state fMRI. Here, we demonstrate the safety and scientific promise of a novel and complementary approach: concurrent electrical stimulation and fMRI (es-fMRI) at 3T in awake neurosurgical patients with implanted depth electrodes. We document the results of safety testing, actual experimental setup, and stimulation parameters, that safely and reliably evoke activation in distal structures through stimulation of amygdala, cingulate, or prefrontal cortex. We compare connectivity inferred from the evoked patterns of activation with that estimated from standard resting-state fMRI in the same patients: while connectivity patterns obtained with each approach are correlated, each method produces unique results. Response patterns were stable over the course of 11min of es-fMRI runs. COMPARISON WITH EXISTING METHOD: es-fMRI in awake humans yields unique information about effective connectivity, complementing resting-state fMRI. Although our stimulations were below the level of inducing any apparent behavioral or perceptual effects, a next step would be to use es-fMRI to modulate task performances. This would reveal the acute network-level changes induced by the stimulation that mediate the behavioral and cognitive effects seen with brain stimulation. es-fMRI provides a novel and safe approach for mapping effective connectivity in the human brain in a clinical setting, and will inform treatments for psychiatric and neurodegenerative disorders that use deep brain stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Anatomical and functional assemblies of brain BOLD oscillations

    Science.gov (United States)

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  9. Generate the scale-free brain music from BOLD signals.

    Science.gov (United States)

    Lu, Jing; Guo, Sijia; Chen, Mingming; Wang, Weixia; Yang, Hua; Guo, Daqing; Yao, Dezhong

    2018-01-01

    Many methods have been developed to translate a human electroencephalogram (EEG) into music. In addition to EEG, functional magnetic resonance imaging (fMRI) is another method used to study the brain and can reflect physiological processes. In 2012, we established a method to use simultaneously recorded fMRI and EEG signals to produce EEG-fMRI music, which represents a step toward scale-free brain music. In this study, we used a neural mass model, the Jansen-Rit model, to simulate activity in several cortical brain regions. The interactions between different brain regions were represented by the average normalized diffusion tensor imaging (DTI) structural connectivity with a coupling coefficient that modulated the coupling strength. Seventy-eight brain regions were adopted from the Automated Anatomical Labeling (AAL) template. Furthermore, we used the Balloon-Windkessel hemodynamic model to transform neural activity into a blood-oxygen-level dependent (BOLD) signal. Because the fMRI BOLD signal changes slowly, we used a sampling rate of 250 Hz to produce the temporal series for music generation. Then, the BOLD music was generated for each region using these simulated BOLD signals. Because the BOLD signal is scale free, these music pieces were also scale free, which is similar to classic music. Here, to simulate the case of an epileptic patient, we changed the parameter that determined the amplitude of the excitatory postsynaptic potential (EPSP) in the neural mass model. Finally, we obtained BOLD music for healthy and epileptic patients. The differences in levels of arousal between the 2 pieces of music may provide a potential tool for discriminating the different populations if the differences can be confirmed by more real data. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  10. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  11. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.

    Science.gov (United States)

    Belaïch, Rachida; Boujraf, Saïd; Benzagmout, Mohammed; Magoul, Rabia; Maaroufi, Mustapha; Tizniti, Siham

    2017-11-01

    The goal of this study was assessing the intermittent fasting effect on brain plasticity and oxidative stress (OS) using blood-oxygenation-level dependent (BOLD)-functional magnetic resonance image (fMRI) approach. Evidences of physiological and molecular phenomena involved in this process are discussed and compared to reported literature. Six fully healthy male non-smokers volunteered in this study. All volunteers were right handed, and have an equilibrated, consistent and healthy daily nutritional habit, and a healthy lifestyle. Participants were allowed consuming food during evening and night time while fasting with self-prohibiting food and liquids during 14 hours/day from sunrise to sunset. All participants underwent identical brain BOLD-fMRI protocol. The images were acquired in the Department of Radiology and Clinical Imaging of the University Hospital of Fez, Fez, Morocco. The anatomical brain and BOLD-fMRIs were acquired using a 1.5-Tesla scanner (Signa, General Electric, Milwaukee, United States). BOLD-fMRI image acquisition was done using single-shot gradient echo echo-planer imaging sequence. BOLD-fMRI paradigm consisted of the motor task where volunteers were asked to perform finger taping of the right hand. Two BOLD-fMRI scan sessions were performed, the first one between the 5th and 10th days preceding the start of fasting and the second between days 25th and 28th of the fasting month. All sessions were performed between 3:30 PM and 5:30 PM. Although individual maps were originated from different individual participants, they cover the same anatomic area in each case. Image processing and statistical analysis were conducted with Statistical Parameter Mapping version 8 (2008, Welcome Department of Cognitive Neurology, London UK). The maximal BOLD signal changes were calculated for each subject in the motor area M1; Activation maps were calculated and overlaid on the anatomical images. Group analysis of the data was performed, and the average volume

  12. Baby Brain Map

    Science.gov (United States)

    ... a Member Home Resources & Services Professional Resource Baby Brain Map Mar 17, 2016 The Brain Map was adapted in 2006 by ZERO TO ... supports Adobe Flash Player. To view the Baby Brain Map, please visit this page on a browser ...

  13. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the

  14. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  15. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction.

    Science.gov (United States)

    Domsch, Sebastian; Mie, Moritz B; Wenz, Frederik; Schad, Lothar R

    2014-09-01

    The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T2-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T2(*)-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG/MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27±2% in white matter (WM) and 29±2% in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41±10% (WM) and 46±10% (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35% to 25%. In addition, the preliminary results of the patient are encouraging. The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. Copyright © 2014. Published by Elsevier GmbH.

  16. Non-invasive multiparametric qBOLD approach for robust mapping of the oxygen extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Domsch, Sebastian; Mie, Moritz B.; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine; Wenz, Frederik [Heidelberg Univ., Medical Faculty Mannheim (Germany). Dept. of Radiation Oncology

    2014-10-01

    Introduction: The quantitative blood oxygenation level-dependent (qBOLD) method has not become clinically established yet because long acquisition times are necessary to achieve an acceptable certainty of the parameter estimates. In this work, a non-invasive multiparametric (nimp) qBOLD approach based on a simple analytical model is proposed to facilitate robust oxygen extraction fraction (OEF) mapping within clinically acceptable acquisition times by using separate measurements. Methods: The protocol consisted of a gradient-echo sampled spin-echo sequence (GESSE), a T{sub 2}-weighted Carr-Purcell-Meiboom-Gill (CPMG) sequence, and a T{sub 2}{sup *}-weighted multi-slice multi-echo gradient echo (MMGE) sequence. The GESSE acquisition time was less than 5 minutes and the extra measurement time for CPMG / MMGE was below 2 minutes each. The proposed nimp-qBOLD approach was validated in healthy subjects (N = 5) and one patient. Results: The proposed nimp-qBOLD approach facilitated more robust OEF mapping with significantly reduced inter- and intra-subject variability compared to the standard qBOLD method. Thereby, an average OEF in all subjects of 27 ± 2 % in white matter (WM) and 29 ± 2 % in gray matter (GM) using the nimp-qBOLD method was more stable compared to 41 ± 10 % (WM) and 46 ± 10 % (GM) with standard qBOLD. Moreover, the spatial variance in the image slice (i.e. standard deviation divided by mean) was on average reduced from 35 % to 25 %. In addition, the preliminary results of the patient are encouraging. Conclusion: The proposed nimp-qBOLD technique provides a promising tool for robust OEF mapping within clinically acceptable acquisition times and could therefore provide an important contribution for analyzing tumors or monitoring the success of radio and chemo therapies. (orig.)

  17. BOLD Imaging in Awake Wild-Type and Mu-Opioid Receptor Knock-Out Mice Reveals On-Target Activation Maps in Response to Oxycodone

    Directory of Open Access Journals (Sweden)

    Kelsey Moore

    2016-11-01

    Full Text Available Blood oxygen level dependent (BOLD imaging in awake mice was used to identify differences in brain activity between wild-type, and Mu (µ opioid receptor knock-outs (MuKO in response to oxycodone (OXY. Using a segmented, annotated MRI mouse atlas and computational analysis, patterns of integrated positive and negative BOLD activity were identified across 122 brain areas. The pattern of positive BOLD showed enhanced activation across the brain in WT mice within 15 min of intraperitoneal administration of 2.5 mg of OXY. BOLD activation was detected in 72 regions out of 122, and was most prominent in areas of high µ opioid receptor density (thalamus, ventral tegmental area, substantia nigra, caudate putamen, basal amygdala and hypothalamus, and focus on pain circuits indicated strong activation in major pain processing centers (central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis area, ventral thalamus primary sensory cortex and prelimbic cortex. Importantly, the OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala and preoptic areas. This result indicates that most effects of OXY on positive BOLD are mediated by the µ opioid receptor (on-target effects. OXY also caused an increase in negative BOLD in WT mice in few regions (16 out of 122 and, unlike the positive BOLD response the negative BOLD was only partially eliminated in the MuKO mice (cerebellum, and in some case intensified (hippocampus. Negative BOLD analysis therefore shows activation and deactivation events in the absence of the µ receptor for some areas where receptor expression is normally extremely low or absent (off-target effects. Together, our approach permits establishing opioid-induced BOLD activation maps in awake mice. In addition, comparison of WT and MuKO mutant mice reveals both on-target and off-target activation events, and set an OXY

  18. Blood Flow and Brain Function: Investigations of neurovascular coupling using BOLD fMRI at 7 tesla

    NARCIS (Netherlands)

    Siero, J.C.W.

    2013-01-01

    The advent of ultra high field (7 tesla) MRI systems has opened the possibility to probe biological processes of the human body in great detail. Especially for studying brain function using BOLD fMRI there is a large benefit from the increased magnetic field strength. BOLD fMRI is the working horse

  19. Mapping transient hyperventilation induced alterations with estimates of the multi-scale dynamics of BOLD signal.

    Directory of Open Access Journals (Sweden)

    Vesa J Kiviniemi

    2009-07-01

    Full Text Available Temporal blood oxygen level dependent (BOLD contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD trends of the form 1/f α. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  20. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    Science.gov (United States)

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  1. Patterns of cortical oscillations organize neural activity into whole-brain functional networks evident in the fMRI BOLD signal

    Directory of Open Access Journals (Sweden)

    Jennifer C Whitman

    2013-03-01

    Full Text Available Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG / MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks.

  2. Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zande, F.H.R. van der; Hofman, P.A.M.; Backes, W.H. [Maastricht University Hospital, Department of Radiology, P.O. Box 5800, Maastricht (Netherlands)

    2005-02-01

    Severe carotid artery stenosis or occlusion may put patients at risk for ischaemic stroke. Reduced cerebrovascular reserve capacity is a possible indicator of an imminent ischaemic event and can be determined by assessment of cerebrovascular reactivity to a vasodilative stimulus. However, little is known about the distribution of cerebrovascular reactivity in healthy individuals. In 13 healthy volunteers, dynamic T{sub 2}{sup *} MR images, acquired at alternating inspiratory pCO{sub 2} levels, showed a high percentage of signal change in grey matter, with a strong linear correlation with end-tidal pCO{sub 2}. The mean percentages of signal change for grey and white matter were 5.9{+-}1.2% and 1.9{+-}0.5%, respectively. The mean time lag between CO{sub 2} stimulus and haemodynamic response was 15{+-}4 s for grey matter and 180{+-}12 s for white matter. Parameter mapping revealed a hemispherically symmetrical and homogeneous distribution of cerebrovascular reactivity over the entire grey matter. These findings indicate that it may be feasible to detect exhausted cerebrovascular autoregulation in patients with a compromised cerebral vasculature. (orig.)

  3. Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI

    International Nuclear Information System (INIS)

    Zande, F.H.R. van der; Hofman, P.A.M.; Backes, W.H.

    2005-01-01

    Severe carotid artery stenosis or occlusion may put patients at risk for ischaemic stroke. Reduced cerebrovascular reserve capacity is a possible indicator of an imminent ischaemic event and can be determined by assessment of cerebrovascular reactivity to a vasodilative stimulus. However, little is known about the distribution of cerebrovascular reactivity in healthy individuals. In 13 healthy volunteers, dynamic T 2 * MR images, acquired at alternating inspiratory pCO 2 levels, showed a high percentage of signal change in grey matter, with a strong linear correlation with end-tidal pCO 2 . The mean percentages of signal change for grey and white matter were 5.9±1.2% and 1.9±0.5%, respectively. The mean time lag between CO 2 stimulus and haemodynamic response was 15±4 s for grey matter and 180±12 s for white matter. Parameter mapping revealed a hemispherically symmetrical and homogeneous distribution of cerebrovascular reactivity over the entire grey matter. These findings indicate that it may be feasible to detect exhausted cerebrovascular autoregulation in patients with a compromised cerebral vasculature. (orig.)

  4. Development of BOLD signal hemodynamic responses in the human brain

    NARCIS (Netherlands)

    Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing

  5. Dorsal root ganglion stimulation attenuates the BOLD signal response to noxious sensory input in specific brain regions: Insights into a possible mechanism for analgesia.

    Science.gov (United States)

    Pawela, Christopher P; Kramer, Jeffery M; Hogan, Quinn H

    2017-02-15

    Targeted dorsal root ganglion (DRG) electrical stimulation (i.e. ganglionic field stimulation - GFS) is an emerging therapeutic approach to alleviate chronic pain. Here we describe blood oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to noxious hind-limb stimulation in a rat model that replicates clinical GFS using an electrode implanted adjacent to the DRG. Acute noxious sensory stimulation in the absence of GFS caused robust BOLD fMRI response in brain regions previously associated with sensory and pain-related response, such as primary/secondary somatosensory cortex, retrosplenial granular cortex, thalamus, caudate putamen, nucleus accumbens, globus pallidus, and amygdala. These regions differentially demonstrated either positive or negative correlation to the acute noxious stimulation paradigm, in agreement with previous rat fMRI studies. Therapeutic-level GFS significantly attenuated the global BOLD response to noxious stimulation in these regions. This BOLD signal attenuation persisted for 20minutes after the GFS was discontinued. Control experiments in sham-operated animals showed that the attenuation was not due to the effect of repetitive noxious stimulation. Additional control experiments also revealed minimal BOLD fMRI response to GFS at therapeutic intensity when presented in a standard block-design paradigm. High intensity GFS produced a BOLD signal map similar to acute noxious stimulation when presented in a block-design. These findings are the first to identify the specific brain region responses to neuromodulation at the DRG level and suggest possible mechanisms for GFS-induced treatment of chronic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mapping the brain

    International Nuclear Information System (INIS)

    Begley, S.; Wright, L.; Church, V.; Hager, M.

    1992-01-01

    With powerful new technologies such as positron tomography and superconducting quantum interference device that peer through the skull and see the brain at work, neuroscientists seek the wellsprings of thoughts and emotions, the genesis of intelligence and language. A functional map of the brain is thus obtained and its challenge is to move beyond brain structure to create a detailed diagram of which part do what. For that the brain's cartographers rely on a variety of technologies such as positron tomography and superconducting quantum interference devices. Their performances and uses are briefly reviewed. ills

  7. Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping

    NARCIS (Netherlands)

    Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.

    This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response

  8. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    Science.gov (United States)

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  9. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    Science.gov (United States)

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation.

    Science.gov (United States)

    Fehr, Thorsten; Code, Chris; Herrmann, Manfred

    2007-10-03

    The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.

  11. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.

    Science.gov (United States)

    Yuan, Han; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2012-05-01

    Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~10s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~100 ms) transient brain states reflected in EEG signals, that are referred to as "microstates". To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These

  12. David Ferrier: brain drawings and brain maps.

    Science.gov (United States)

    Lazar, J Wayne

    2013-01-01

    This chapter has two emphases, one is about the men who influenced the visual representations that David Ferrier (1843-1928) used to illustrate his work on localization of brain functions during the years 1873-1875, namely, Alexander Ecker, John C. Galton, and Ernest Waterlow, and the other is about the nature of medical representations and of Ferrier's illustrations in particular. Medical illustrations are characterized either as pictures, line drawings, or brain maps. Ferrier's illustrations will be shown to be increasingly sophisticated brain maps that contrast with early nineteenth-century standards of medical illustrations, as exemplified by John Bell (1763-1829). © 2013 Elsevier B.V. All rights reserved.

  13. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  14. BrainMap `95 workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ``Human Brain Mapping and Modeling.`` The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center`s web site. A book will be published by John Wiley and Sons prior to the end of 1998.

  15. Brain Friendly Techniques: Mind Mapping

    Science.gov (United States)

    Goldberg, Cristine

    2004-01-01

    Mind Mapping can be called the Swiss Army Knife for the brain, a total visual thinking tool or a multi-handed thought catcher. Invented by Tony Buzan in the early 1970s and used by millions around the world, it is a method that can be a part of a techniques repertoire when teaching information literacy, planning, presenting, thinking, and so…

  16. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI.

    Science.gov (United States)

    Kundu, Prantik; Inati, Souheil J; Evans, Jennifer W; Luh, Wen-Ming; Bandettini, Peter A

    2012-04-15

    A central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related signal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques for removing nuisance effects include modeling of noise time courses based on external measurements followed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals that can be characterized in terms of changes in R(2)* and initial signal intensity (S(0)) based on the analysis of echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling. To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed for the degree to which their signal changes fit models for R(2)* and S(0) change, and summary scores were developed to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like "functional network" components from non BOLD-like components related to motion, pulsatility, and other nuisance effects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison with seed-based correlation mapping using conventional noise regressors demonstrated the superiority of the proposed technique for both individual and group level seed-based connectivity analysis, especially in mapping subcortical-cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence was highly robust, which allowed for the

  17. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.

    Science.gov (United States)

    Sorger, Bettina; Kamp, Tabea; Weiskopf, Nikolaus; Peters, Judith Caroline; Goebel, Rainer

    2018-05-15

    Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n=10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most

  18. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  19. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  20. Mapping Language Problems in the Brain

    Science.gov (United States)

    ... issue Health Capsule Mapping Language Problems in the Brain En español Send us your comments We often ... more about how language is organized in the brain, an NIH-funded research team studied people with ...

  1. Audiovisual synchrony enhances BOLD responses in a brain network including multisensory STS while also enhancing target-detection performance for both modalities

    Science.gov (United States)

    Marchant, Jennifer L; Ruff, Christian C; Driver, Jon

    2012-01-01

    The brain seeks to combine related inputs from different senses (e.g., hearing and vision), via multisensory integration. Temporal information can indicate whether stimuli in different senses are related or not. A recent human fMRI study (Noesselt et al. [2007]: J Neurosci 27:11431–11441) used auditory and visual trains of beeps and flashes with erratic timing, manipulating whether auditory and visual trains were synchronous or unrelated in temporal pattern. A region of superior temporal sulcus (STS) showed higher BOLD signal for the synchronous condition. But this could not be related to performance, and it remained unclear if the erratic, unpredictable nature of the stimulus trains was important. Here we compared synchronous audiovisual trains to asynchronous trains, while using a behavioral task requiring detection of higher-intensity target events in either modality. We further varied whether the stimulus trains had predictable temporal pattern or not. Synchrony (versus lag) between auditory and visual trains enhanced behavioral sensitivity (d') to intensity targets in either modality, regardless of predictable versus unpredictable patterning. The analogous contrast in fMRI revealed BOLD increases in several brain areas, including the left STS region reported by Noesselt et al. [2007: J Neurosci 27:11431–11441]. The synchrony effect on BOLD here correlated with the subject-by-subject impact on performance. Predictability of temporal pattern did not affect target detection performance or STS activity, but did lead to an interaction with audiovisual synchrony for BOLD in inferior parietal cortex. PMID:21953980

  2. BOLD fMRI of C-Fiber Mediated Nociceptive Processing in Mouse Brain in Response to Thermal Stimulation of the Forepaws.

    Directory of Open Access Journals (Sweden)

    Simone C Bosshard

    Full Text Available Functional magnetic resonance imaging (fMRI in rodents enables non-invasive studies of brain function in response to peripheral input or at rest. In this study we describe a thermal stimulation paradigm using infrared laser diodes to apply noxious heat to the forepaw of mice in order to study nociceptive processing. Stimulation at 45 and 46°C led to robust BOLD signal changes in various brain structures including the somatosensory cortices and the thalamus. The BOLD signal amplitude scaled with the temperature applied but not with the area irradiated by the laser beam. To demonstrate the specificity of the paradigm for assessing nociceptive signaling we administered the quaternary lidocaine derivative QX-314 to the forepaws, which due to its positive charge cannot readily cross biological membranes. However, upon activation of TRPV1 channels following the administration of capsaicin the BOLD signal was largely abolished, indicative of a selective block of the C-fiber nociceptors due to QX-314 having entered the cells via the now open TRPV1 channels. This demonstrates that the cerebral BOLD response to thermal noxious paw stimulation is specifically mediated by C-fibers.

  3. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. More 'mapping' in brain mapping: statistical comparison of effects

    DEFF Research Database (Denmark)

    Jernigan, Terry Lynne; Gamst, Anthony C.; Fennema-Notestine, Christine

    2003-01-01

    The term 'mapping' in the context of brain imaging conveys to most the concept of localization; that is, a brain map is meant to reveal a relationship between some condition or parameter and specific sites within the brain. However, in reality, conventional voxel-based maps of brain function......, or for that matter of brain structure, are generally constructed using analyses that yield no basis for inferences regarding the spatial nonuniformity of the effects. In the normal analysis path for functional images, for example, there is nowhere a statistical comparison of the observed effect in any voxel relative...... to that in any other voxel. Under these circumstances, strictly speaking, the presence of significant activation serves as a legitimate basis only for inferences about the brain as a unit. In their discussion of results, investigators rarely are content to confirm the brain's role, and instead generally prefer...

  5. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  6. Topographic Brain Mapping: A Window on Brain Function?

    Science.gov (United States)

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  7. Body Maps in the Infant Brain

    Science.gov (United States)

    Marshall, Peter J.; Meltzoff, Andrew N.

    2015-01-01

    Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760

  8. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  9. BrainMap '95 workshop. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The fourth annual BrainMap workshop was held at La Mansion del Rio Hotel in San Antonio December 3--4, 1995. The conference title was ''Human Brain Mapping and Modeling.'' The meeting was attended by 137 registered participants and 30 observers from 82 institutions representing 12 countries. The meeting focused on the technical issues associated with brain mapping and modeling. A total of 23 papers were presented covering the following topics: spatial normalization and registration; functional image analysis; metanalysis and modeling; and new horizons in biological databases. The full program with abstracts was available on the Research Imaging Center's web site. A book will be published by John Wiley and Sons prior to the end of 1998

  10. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  11. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  12. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.

    2009-01-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  13. Brain-mapping projects using the common marmoset.

    Science.gov (United States)

    Okano, Hideyuki; Mitra, Partha

    2015-04-01

    Globally, there is an increasing interest in brain-mapping projects, including the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative project in the USA, the Human Brain Project (HBP) in Europe, and the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) project in Japan. These projects aim to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain. Brain/MINDS is focused on structural and functional mapping of the common marmoset (Callithrix jacchus) brain. This non-human primate has numerous advantages for brain mapping, including a well-developed frontal cortex and a compact brain size, as well as the availability of transgenic technologies. In the present review article, we discuss strategies for structural and functional mapping of the marmoset brain and the relation of the common marmoset to other animals models. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    Laine, F.J.; Fatouros, P.P.; Kraft, K.A.

    1990-01-01

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  15. Optogenetic Approaches for Mesoscopic Brain Mapping.

    Science.gov (United States)

    Kyweriga, Michael; Mohajerani, Majid H

    2016-01-01

    Recent advances in identifying genetically unique neuronal proteins has revolutionized the study of brain circuitry. Researchers are now able to insert specific light-sensitive proteins (opsins) into a wide range of specific cell types via viral injections or by breeding transgenic mice. These opsins enable the activation, inhibition, or modulation of neuronal activity with millisecond control within distinct brain regions defined by genetic markers. Here we present a useful guide to implement this technique into any lab. We first review the materials needed and practical considerations and provide in-depth instructions for acute surgeries in mice. We conclude with all-optical mapping techniques for simultaneous recording and manipulation of population activity of many neurons in vivo by combining arbitrary point optogenetic stimulation and regional voltage-sensitive dye imaging. It is our intent to make these methods available to anyone wishing to use them.

  16. Connectome imaging for mapping human brain pathways.

    Science.gov (United States)

    Shi, Y; Toga, A W

    2017-09-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research.

  17. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  18. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Directory of Open Access Journals (Sweden)

    Abu Bakar Ali Asad

    Full Text Available Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored.Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8. BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail.Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, p<0.02, n = 8, while no significant change was found after the vehicle application. The tail withdrawal behavioral study demonstrated a significant main effect of temperature and a trend towards capsaicin induced reduction of latency at both temperatures.These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate

  19. Decreased BOLD responses in audiovisual processing

    NARCIS (Netherlands)

    Wiersinga-Post, Esther; Tomaskovic, Sonja; Slabu, Lavinia; Renken, Remco; de Smit, Femke; Duifhuis, Hendrikus

    2010-01-01

    Audiovisual processing was studied in a functional magnetic resonance imaging study using the McGurk effect. Perceptual responses and the brain activity patterns were measured as a function of audiovisual delay. In several cortical and subcortical brain areas, BOLD responses correlated negatively

  20. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    Science.gov (United States)

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  1. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.

    Science.gov (United States)

    Peters, James F; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

  2. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  3. Mapping brain structure and function: cellular resolution, global perspective.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  4. Phase congruency map driven brain tumour segmentation

    Science.gov (United States)

    Szilágyi, Tünde; Brady, Michael; Berényi, Ervin

    2015-03-01

    Computer Aided Diagnostic (CAD) systems are already of proven value in healthcare, especially for surgical planning, nevertheless much remains to be done. Gliomas are the most common brain tumours (70%) in adults, with a survival time of just 2-3 months if detected at WHO grades III or higher. Such tumours are extremely variable, necessitating multi-modal Magnetic Resonance Images (MRI). The use of Gadolinium-based contrast agents is only relevant at later stages of the disease where it highlights the enhancing rim of the tumour. Currently, there is no single accepted method that can be used as a reference. There are three main challenges with such images: to decide whether there is tumour present and is so localize it; to construct a mask that separates healthy and diseased tissue; and to differentiate between the tumour core and the surrounding oedema. This paper presents two contributions. First, we develop tumour seed selection based on multiscale multi-modal texture feature vectors. Second, we develop a method based on a local phase congruency based feature map to drive level-set segmentation. The segmentations achieved with our method are more accurate than previously presented methods, particularly for challenging low grade tumours.

  5. Cyto- and receptor architectonic mapping of the human brain.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl

    2018-01-01

    Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Beware of Boldness

    National Research Council Canada - National Science Library

    Crane, Conrad C

    2006-01-01

    ... to be?"1 Army Field Manual 7.0, Training the Force, states that the goals of operational deployments and major training opportunities are to enhance unit readiness and "produce bold, innovative leaders...

  7. Functional mapping of language networks in the normal brain using a word-association task

    International Nuclear Information System (INIS)

    Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash

    2010-01-01

    Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar–occipital–fusiform–thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic

  8. Functional mapping of language networks in the normal brain using a word-association task

    Directory of Open Access Journals (Sweden)

    Ghosh Shantanu

    2010-01-01

    Full Text Available Background: Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. Aim: The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI in normal human subjects. Materials and Methods: Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2FNx01-weighted gradient-echo echo-planar imaging (GE-EPI sequence (TR 4523 ms, TE 64 ms, flip angle 90º with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2 with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Results: Single subject analysis of the functional data (FWE-corrected, P≤0.001 revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG, superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG, anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001 revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Conclusions: Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these

  9. Mutated Genes in Schizophrenia Map to Brain Networks

    Science.gov (United States)

    ... Matters NIH Research Matters August 12, 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks ... have a high number of spontaneous mutations in genes that form a network in the front region ...

  10. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  11. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches.

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A; Kim, Sharon H; Kozberg, Mariel G; Thibodeaux, David N; Zhao, Hanzhi T; Yu, Hang; Hillman, Elizabeth M C

    2016-10-05

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  12. Early anti-correlated BOLD signal changes of physiologic origin.

    Science.gov (United States)

    Bright, Molly G; Bianciardi, Marta; de Zwart, Jacco A; Murphy, Kevin; Duyn, Jeff H

    2014-02-15

    Negative BOLD signals that are synchronous with resting state fluctuations have been observed in large vessels in the cortical sulci and surrounding the ventricles. In this study, we investigated the origin of these negative BOLD signals by applying a Cued Deep Breathing (CDB) task to create transient hypocapnia and a resultant global fMRI signal decrease. We hypothesized that a global stimulus would amplify the effect in large vessels and that using a global negative (vasoconstrictive) stimulus would test whether these voxels exhibit either inherently negative or simply anti-correlated BOLD responses. Significantly anti-correlated, but positive, BOLD signal changes during respiratory challenges were identified in voxels primarily located near edges of brain spaces containing CSF. These positive BOLD responses occurred earlier than the negative CDB response across most of gray matter voxels. These findings confirm earlier suggestions that in some brain regions, local, fractional changes in CSF volume may overwhelm BOLD-related signal changes, leading to signal anti-correlation. We show that regions with CDB anti-correlated signals coincide with most, but not all, of the regions with negative BOLD signal changes observed during a visual and motor stimulus task. Thus, the addition of a physiological challenge to fMRI experiments can help identify which negative BOLD signals are passive physiological anti-correlations and which may have a putative neuronal origin. Published by Elsevier Inc.

  13. Mapping the Alzheimer's brain with connectomics

    Directory of Open Access Journals (Sweden)

    Teng eXie

    2012-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia. As an incurable, progressive and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques (e.g., structural MRI, diffusion MRI, functional MRI and EEG/MEG and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring.

  14. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  15. Reflectance diffuse optical tomography. Its application to human brain mapping

    International Nuclear Information System (INIS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-01-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases. (author)

  16. Mapping glucose-mediated gut-to-brain signalling pathways in humans.

    Science.gov (United States)

    Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T

    2014-08-01

    Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.

  17. Mapping glucose-mediated gut-to-brain signalling pathways in humans☆

    Science.gov (United States)

    Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.

    2014-01-01

    Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436

  18. Brain mapping in tumors: intraoperative or extraoperative?

    Science.gov (United States)

    Duffau, Hugues

    2013-12-01

    In nontumoral epilepsy surgery, the main goal for all preoperative investigation is to first determine the epileptogenic zone, and then to analyze its relation to eloquent cortex, in order to control seizures while avoiding adverse postoperative neurologic outcome. To this end, in addition to neuropsychological assessment, functional neuroimaging and scalp electroencephalography, extraoperative recording, and electrical mapping, especially using subdural strip- or grid-electrodes, has been reported extensively. Nonetheless, in tumoral epilepsy surgery, the rationale is different. Indeed, the first aim is rather to maximize the extent of tumor resection while minimizing postsurgical morbidity, in order to increase the median survival as well as to preserve quality of life. As a consequence, as frequently seen in infiltrating tumors such as gliomas, where these lesions not only grow but also migrate along white matter tracts, the resection should be performed according to functional boundaries both at cortical and subcortical levels. With this in mind, extraoperative mapping by strips/grids is often not sufficient in tumoral surgery, since in essence, it allows study of the cortex but cannot map subcortical pathways. Therefore, intraoperative electrostimulation mapping, especially in awake patients, is more appropriate in tumor surgery, because this technique allows real-time detection of areas crucial for cerebral functions--eloquent cortex and fibers--throughout the resection. In summary, rather than choosing one or the other of different mapping techniques, methodology should be adapted to each pathology, that is, extraoperative mapping in nontumoral epilepsy surgery and intraoperative mapping in tumoral surgery. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  19. Principal tools for exploring the brain and mapping its activity

    International Nuclear Information System (INIS)

    Mazoyer, B.; Mashaal, M.

    1996-01-01

    The electro-encephalography (EEG), magneto-encephalography (MEG), scanner, positron computed tomography, single photon emission computed tomography (SPECT) and NMR imaging are the main methods used to explore human brain and to do a mapping of its activity. These methods are described into details (principle, visualization, uses, advantages, disadvantages). They can be useful to detect the possible anomalies of the human brain. (O.M.)

  20. Template based rodent brain extraction and atlas mapping.

    Science.gov (United States)

    Weimin Huang; Jiaqi Zhang; Zhiping Lin; Su Huang; Yuping Duan; Zhongkang Lu

    2016-08-01

    Accurate rodent brain extraction is the basic step for many translational studies using MR imaging. This paper presents a template based approach with multi-expert refinement to automatic rodent brain extraction. We first build the brain appearance model based on the learning exemplars. Together with the template matching, we encode the rodent brain position into the search space to reliably locate the rodent brain and estimate the rough segmentation. With the initial mask, a level-set segmentation and a mask-based template learning are implemented further to the brain region. The multi-expert fusion is used to generate a new mask. We finally combine the region growing based on the histogram distribution learning to delineate the final brain mask. A high-resolution rodent atlas is used to illustrate that the segmented low resolution anatomic image can be well mapped to the atlas. Tested on a public data set, all brains are located reliably and we achieve the mean Jaccard similarity score at 94.99% for brain segmentation, which is a statistically significant improvement compared to two other rodent brain extraction methods.

  1. Ultrafast bold fMRI using single-shot spin-echo echo planar imaging

    Directory of Open Access Journals (Sweden)

    Boujraf Said

    2009-01-01

    Full Text Available The choice of imaging parameters for functional MRI can have an impact on the accuracy of functional localization by affecting the image quality and the degree of blood oxygenation-dependent (BOLD contrast achieved. By improving sampling efficiency, parallel acquisition techniques such as sensitivity encoding (SENSE have been used to shorten readout trains in single-shot (SS echo planar imaging (EPI. This has been applied to susceptibility artifact reduction and improving spatial resolution. SENSE together with single-shot spin-echo (SS-SE imaging may also reduce off-resonance artifacts. The goal of this work was to investigate the BOLD response of a SENSE-adapted SE-EPI on a three Tesla scanner. Whole-brain fMRI studies of seven healthy right hand-dominant volunteers were carried out in a three Tesla scanner. fMRI was performed using an SS-SE EPI sequence with SENSE. The data was processed using statistical parametric mapping. Both, group and individual subject data analyses were performed. Individual average percentage and maximal percentage signal changes attributed to the BOLD effect in M1 were calculated for all the subjects as a function of echo time. Corresponding activation maps and the sizes of the activated clusters were also calculated. Our results show that susceptibility artifacts were reduced with the use of SENSE; and the acquired BOLD images were free of the typical quadrature artifacts of SS-EPI. Such measures are crucial at high field strengths. SS SE-EPI with SENSE offers further benefits in this regard and is more specific for oxygenation changes in the microvasculature bed. Functional brain activity can be investigated with the help of single-shot spin echo EPI using SENSE at high magnetic fields.

  2. Architectonic Mapping of the Human Brain beyond Brodmann.

    Science.gov (United States)

    Amunts, Katrin; Zilles, Karl

    2015-12-16

    Brodmann has pioneered structural brain mapping. He considered functional and pathological criteria for defining cortical areas in addition to cytoarchitecture. Starting from this idea of structural-functional relationships at the level of cortical areas, we will argue that the cortical architecture is more heterogeneous than Brodmann's map suggests. A triple-scale concept is proposed that includes repetitive modular-like structures and micro- and meso-maps. Criteria for defining a cortical area will be discussed, considering novel preparations, imaging and optical methods, 2D and 3D quantitative architectonics, as well as high-performance computing including analyses of big data. These new approaches contribute to an understanding of the brain on multiple levels and challenge the traditional, mosaic-like segregation of the cerebral cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Computational brain connectivity mapping: A core health and scientific challenge.

    Science.gov (United States)

    Deriche, Rachid

    2016-10-01

    One third of the burden of all the diseases in Europe is due to problems caused by diseases affecting brain. Although exceptional progress have been obtained for exploring the brain during the past decades, it is still terra-incognita and calls for specific efforts in research to better understand its architecture and functioning. To take up this great challenge of modern science and to solve the limited view of the brain provided just by one imaging modality, this article advocates the idea developed in my research group of a global approach involving new generation of models for brain connectivity mapping and strong interactions between structural and functional connectivities. Capitalizing on the strengths of integrated and complementary non invasive imaging modalities such as diffusion Magnetic Resonance Imaging (dMRI) and Electro & Magneto-Encephalography (EEG & MEG) will contribute to achieve new frontiers for identifying and characterizing structural and functional brain connectivities and to provide a detailed mapping of the brain connectivity, both in space and time. Thus leading to an added clinical value for high impact diseases with new perspectives in computational neuro-imaging and cognitive neuroscience. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  5. Functional Maps of Mechanosensory Features in the Drosophila Brain.

    Science.gov (United States)

    Patella, Paola; Wilson, Rachel I

    2018-04-09

    Johnston's organ is the largest mechanosensory organ in Drosophila. It contributes to hearing, touch, vestibular sensing, proprioception, and wind sensing. In this study, we used in vivo 2-photon calcium imaging and unsupervised image segmentation to map the tuning properties of Johnston's organ neurons (JONs) at the site where their axons enter the brain. We then applied the same methodology to study two key brain regions that process signals from JONs: the antennal mechanosensory and motor center (AMMC) and the wedge, which is downstream of the AMMC. First, we identified a diversity of JON response types that tile frequency space and form a rough tonotopic map. Some JON response types are direction selective; others are specialized to encode amplitude modulations over a specific range (dynamic range fractionation). Next, we discovered that both the AMMC and the wedge contain a tonotopic map, with a significant increase in tonotopy-and a narrowing of frequency tuning-at the level of the wedge. Whereas the AMMC tonotopic map is unilateral, the wedge tonotopic map is bilateral. Finally, we identified a subregion of the AMMC/wedge that responds preferentially to the coherent rotation of the two mechanical organs in the same angular direction, indicative of oriented steady air flow (directional wind). Together, these maps reveal the broad organization of the primary and secondary mechanosensory regions of the brain. They provide a framework for future efforts to identify the specific cell types and mechanisms that underlie the hierarchical re-mapping of mechanosensory information in this system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio; Higuchi, Toshihiro; Naruse, Shoji.

    1997-01-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  7. Effects of tissue susceptibility on brain temperature mapping.

    Science.gov (United States)

    Maudsley, Andrew A; Goryawala, Mohammed Z; Sheriff, Sulaiman

    2017-02-01

    A method for mapping of temperature over a large volume of the brain using volumetric proton MR spectroscopic imaging has been implemented and applied to 150 normal subjects. Magnetic susceptibility-induced frequency shifts in gray- and white-matter regions were measured and included as a correction in the temperature mapping calculation. Additional sources of magnetic susceptibility variations of the individual metabolite resonance frequencies were also observed that reflect the cellular-level organization of the brain metabolites, with the most notable differences being attributed to changes of the N-Acetylaspartate resonance frequency that reflect the intra-axonal distribution and orientation of the white-matter tracts with respect to the applied magnetic field. These metabolite-specific susceptibility effects are also shown to change with age. Results indicate no change of apparent brain temperature with age from 18 to 84 years old, with a trend for increased brain temperature throughout the cerebrum in females relative for males on the order of 0.1°C; slightly increased temperatures in the left hemisphere relative to the right; and a lower temperature of 0.3°C in the cerebellum relative to that of cerebral white-matter. This study presents a novel acquisition method for noninvasive measurement of brain temperature that is of potential value for diagnostic purposes and treatment monitoring, while also demonstrating limitations of the measurement due to the confounding effects of tissue susceptibility variations. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mapping the calcitonin receptor in human brain stem

    DEFF Research Database (Denmark)

    Bower, Rebekah L; Eftekhari, Sajedeh; Waldvogel, Henry J

    2016-01-01

    understanding of these hormone systems by mapping CTR expression in the human brain stem, specifically the medulla oblongata. Widespread CTR-like immunoreactivity was observed throughout the medulla. Dense CTR staining was noted in several discrete nuclei, including the nucleus of the solitary tract...... receptors (AMY) are a heterodimer formed by the coexpression of CTR with receptor activity-modifying proteins (RAMPs). CTR with RAMP1 responds potently to both amylin and CGRP. The brain stem is a major site of action for circulating amylin and is a rich site of CGRP binding. This study aimed to enhance our...

  9. Interleaved quantitative BOLD: Combining extravascular R2' - and intravascular R2-measurements for estimation of deoxygenated blood volume and hemoglobin oxygen saturation.

    Science.gov (United States)

    Lee, Hyunyeol; Englund, Erin K; Wehrli, Felix W

    2018-03-23

    Quantitative BOLD (qBOLD), a non-invasive MRI method for assessment of hemodynamic and metabolic properties of the brain in the baseline state, provides spatial maps of deoxygenated blood volume fraction (DBV) and hemoglobin oxygen saturation (HbO 2 ) by means of an analytical model for the temporal evolution of free-induction-decay signals in the extravascular compartment. However, mutual coupling between DBV and HbO 2 in the signal model results in considerable estimation uncertainty precluding achievement of a unique set of solutions. To address this problem, we developed an interleaved qBOLD method (iqBOLD) that combines extravascular R 2 ' and intravascular R 2 mapping techniques so as to obtain prior knowledge for the two unknown parameters. To achieve these goals, asymmetric spin echo and velocity-selective spin-labeling (VSSL) modules were interleaved in a single pulse sequence. Prior to VSSL, arterial blood and CSF signals were suppressed to produce reliable estimates for cerebral venous blood volume fraction (CBV v ) as well as venous blood R 2 (to yield HbO 2 ). Parameter maps derived from the VSSL module were employed to initialize DBV and HbO 2 in the qBOLD processing. Numerical simulations and in vivo experiments at 3 T were performed to evaluate the performance of iqBOLD in comparison to the parent qBOLD method. Data obtained in eight healthy subjects yielded plausible values averaging 60.1 ± 3.3% for HbO 2 and 3.1 ± 0.5 and 2.0 ± 0.4% for DBV in gray and white matter, respectively. Furthermore, the results show that prior estimates of CBV v and HbO 2 from the VSSL component enhance the solution stability in the qBOLD processing, and thus suggest the feasibility of iqBOLD as a promising alternative to the conventional technique for quantifying neurometabolic parameters. Copyright © 2018. Published by Elsevier Inc.

  10. On brain activity mapping: insights and lessons from Brain Decoding Project to map memory patterns in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longnian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-09-01

    The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.

  11. Topographic brain mapping of emotion-related hemisphere asymmetries.

    Science.gov (United States)

    Roschmann, R; Wittling, W

    1992-03-01

    The study used topographic brain mapping of visual evoked potentials to investigate emotion-related hemisphere asymmetries. The stimulus material consisted of color photographs of human faces, grouped into two emotion-related categories: normal faces (neutral stimuli) and faces deformed by dermatological diseases (emotional stimuli). The pictures were presented tachistoscopically to 20 adult right-handed subjects. Brain activity was recorded by 30 EEG electrodes with linked ears as reference. The waveforms were averaged separately with respect to each of the two stimulus conditions. Statistical analysis by means of significance probability mapping revealed significant differences between stimulus conditions for two periods of time, indicating right hemisphere superiority in emotion-related processing. The results are discussed in terms of a 2-stage-model of emotional processing in the cerebral hemispheres.

  12. The role of image registration in brain mapping

    Science.gov (United States)

    Toga, A.W.; Thompson, P.M.

    2008-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  13. A map of octopaminergic neurons in the Drosophila brain.

    Science.gov (United States)

    Busch, Sebastian; Selcho, Mareike; Ito, Kei; Tanimoto, Hiromu

    2009-04-20

    The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain. 2009 Wiley-Liss, Inc.

  14. Connectome analysis for pre-operative brain mapping in neurosurgery

    Science.gov (United States)

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  15. Connectome analysis for pre-operative brain mapping in neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Price, Stephen J; Suckling, John

    2016-10-01

    Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains 'wiring diagram'. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal-parietal-occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits.

  16. Evaluation of MRI sequences for quantitative T1 brain mapping

    Science.gov (United States)

    Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.

    2017-11-01

    T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.

  17. Brain mapping of epileptic activity in a case of idiopathic occipital lobe epilepsy (Panayiotopoulos syndrome).

    Science.gov (United States)

    Leal, Alberto J R; Nunes, Sofia; Martins, António; Secca, Mário Forjaz; Jordão, Constança

    2007-06-01

    The Panayiotopoulos type of occipital lobe epilepsy has generated great interest, but the particular brain areas involved in the peculiar seizure manifestations have not been established. We studied a patient with the syndrome, using high-resolution EEG and simultaneous EEG and functional magnetic resonance imaging (fMRI). Resolution of the scalp EEG was improved using a realistic spline Laplacian algorithm, and produced a complex distribution of current sinks and sources over the occipital lobe. The spike-related blood oxygen level dependent (BOLD) effect was multifocal, with clusters in lateral and inferior occipital lobe and lateral and anterior temporal lobe. We also performed regional dipole seeding in BOLD clusters to determine their relative contribution to generation of scalp spikes. The integrated model of the neurophysiologic and vascular data strongly suggests that the epileptic activity originates in the lateral occipital area, spreading to the occipital pole and lateral temporal lobe.

  18. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors

    Directory of Open Access Journals (Sweden)

    Bob L. Hou

    2016-01-01

    Full Text Available For pre-surgical planning we present quantitative comparison of the location of the hand motor functional area determined by right hand finger tapping BOLD fMRI, resting state BOLD fMRI, and anatomically using high resolution T1 weighted images. Data were obtained on 10 healthy subjects and 25 patients with left sided brain tumors. Our results show that there are important differences in the locations (i.e., >20 mm of the determined hand motor voxels by these three MR imaging methods. This can have significant effect on the pre-surgical planning of these patients depending on the modality used. In 13 of the 25 cases (i.e., 52% the distances between the task-determined and the rs-fMRI determined hand areas were more than 20 mm; in 13 of 25 cases (i.e., 52% the distances between the task-determined and anatomically determined hand areas were >20 mm; and in 16 of 25 cases (i.e., 64% the distances between the rs-fMRI determined and anatomically determined hand areas were more than 20 mm. In just three cases, the distances determined by all three modalities were within 20 mm of each other. The differences in the location or fingerprint of the hand motor areas, as determined by these three MR methods result from the different underlying mechanisms of these three modalities and possibly the effects of tumors on these modalities.

  19. A NO way to BOLD?

    DEFF Research Database (Denmark)

    Aamand, Rasmus; Dalsgaard, Thomas; Ho, Yi Ching Lynn

    2013-01-01

    Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway. On this ......Neurovascular coupling links neuronal activity to vasodilation. Nitric oxide (NO) is a potent vasodilator, and in neurovascular coupling NO production from NO synthases plays an important role. However, another pathway for NO production also exists, namely the nitrate-nitrite-NO pathway...... to stimuli. A faster and smaller BOLD response, with less variation across local cortex, is consistent with an enhanced hemodynamic coupling during elevated nitrate intake. These findings suggest that dietary patterns, via the nitrate-nitrite-NO pathway, may be a potential way to affect key properties....... On this basis, we hypothesized that dietary nitrate (NO3-) could influence the brain's hemodynamic response to neuronal stimulation. In the present study, 20 healthy male participants were given either sodium nitrate (NaNO3) or sodium chloride (NaCl) (saline placebo) in a crossover study and were shown visual...

  20. BOLD magnetic resonance imaging in nephrology

    Science.gov (United States)

    Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E

    2018-01-01

    Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807

  1. BOLD magnetic resonance imaging in nephrology

    Directory of Open Access Journals (Sweden)

    Hall ME

    2018-03-01

    Full Text Available Michael E Hall,1,2 Jennifer H Jordan,3 Luis A Juncos,1,2 W Gregory Hundley,3 John E Hall2 1Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA; 2Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA; 3Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA Abstract: Magnetic resonance (MR imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. Keywords: functional MRI, kidney, oxygenation, chronic kidney disease 

  2. A Mapping Between Structural and Functional Brain Networks.

    Science.gov (United States)

    Meier, Jil; Tewarie, Prejaas; Hillebrand, Arjan; Douw, Linda; van Dijk, Bob W; Stufflebeam, Steven M; Van Mieghem, Piet

    2016-05-01

    The relationship between structural and functional brain networks is still highly debated. Most previous studies have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists a mapping between the connectivity matrices of the resting-state functional and structural networks. We investigate this mapping employing group averaged as well as individual data. We indeed find a significantly high goodness of fit level for this structure-function mapping. Our analysis suggests that a functional connection is shaped by all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping, from function to structure, longer walks in the functional network also seem to possess minor influence on the structural connection strengths. Even though similar overall properties for the structure-function mapping are found for different functional modalities, our results indicate that the structure-function relationship is modality dependent.

  3. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  4. BOLD Granger causality reflects vascular anatomy.

    Directory of Open Access Journals (Sweden)

    J Taylor Webb

    Full Text Available A number of studies have tried to exploit subtle phase differences in BOLD time series to resolve the order of sequential activation of brain regions, or more generally the ability of signal in one region to predict subsequent signal in another region. More recently, such lag-based measures have been applied to investigate directed functional connectivity, although this application has been controversial. We attempted to use large publicly available datasets (FCON 1000, ADHD 200, Human Connectome Project to determine whether consistent spatial patterns of Granger Causality are observed in typical fMRI data. For BOLD datasets from 1,240 typically developing subjects ages 7-40, we measured Granger causality between time series for every pair of 7,266 spherical ROIs covering the gray matter and 264 seed ROIs at hubs of the brain's functional network architecture. Granger causality estimates were strongly reproducible for connections in a test and replication sample (n=620 subjects for each group, as well as in data from a single subject scanned repeatedly, both during resting and passive video viewing. The same effect was even stronger in high temporal resolution fMRI data from the Human Connectome Project, and was observed independently in data collected during performance of 7 task paradigms. The spatial distribution of Granger causality reflected vascular anatomy with a progression from Granger causality sources, in Circle of Willis arterial inflow distributions, to sinks, near large venous vascular structures such as dural venous sinuses and at the periphery of the brain. Attempts to resolve BOLD phase differences with Granger causality should consider the possibility of reproducible vascular confounds, a problem that is independent of the known regional variability of the hemodynamic response.

  5. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  6. Metabolic Changes Underlying Bold Signal Variations after Administration of Zolpidem

    International Nuclear Information System (INIS)

    Rodriguez-Rojas, Rafael; Machado, Calixto; Alvarez, Lazaro; Carballo, Maylen; Perez-Nellar, Jesus; Estevez, Mario; Pavon, Nancy; Chinchilla, Mauricio

    2010-12-01

    Zolpidem is a non-benzodiazepine drug belonging to the imidazopiridine class, which has selectivity for stimulating the effect of gamma aminobutyric acid [GABA] and is used for the therapy of insomnia. Nonetheless, several reports have been published over recent years about a paradoxical arousing effect of Zolpidem in patients with severe brain damage. We studied a PVS case using 1 H-MRS and BOLD signal, before and after Zolpidem administration. Significantly increased BOLD signal was localized in left frontal superior cortex, bilateral cingulated areas, left thalamus and right head of the caudate nucleus. A transient activation was observed in frontal cortex, comprising portions of anterior cingulate, medial, and orbito-frontal cortices. Additionally, significant pharmacological activation in sensory-motor cortex is observed 1 hour after Zolpidem intake. Significant linear correlations of BOLD signal changes were found with primary concentrations of NAA, Glx and Lac in the right frontal cortex. We discussed that when Zolpidem attaches to the modified GABA receptors of the neurodormant cells, dormancy is switched off, inducing brain activation. This might explain the significant correlations of BOLD signal changes and 1 H-MRS metabolites in our patient. We concluded that 1 H-MRS and BOLD signal assessment might contribute to study neurovascular coupling in PVS cases after Zolpidem administration. Although this is a report of a single case, considering our results we recommend to apply this methodology in series of PVS and MCS patients. (author)

  7. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    Science.gov (United States)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-05-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed ( c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  8. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  9. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    Science.gov (United States)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-01-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed (c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  10. Brain microstructure mapping using quantitative and diffusion MRI

    International Nuclear Information System (INIS)

    Lebois, Alice

    2014-01-01

    This thesis is focused on the human brain microstructure mapping using quantitative and diffusion MRI. The T1/T2 quantitative imaging relies on sequences dedicated to the mapping of T1 and T2 relaxation times. Their variations within the tissue are linked to the presence of different water compartments defined by a specific organization of the tissue at the cell scale. Measuring these parameters can help, therefore, to better characterize the brain microstructure. The dMRI, on the other hand, explores the brownian motion of water molecules in the brain tissue, where the water molecules' movement is constrained by natural barriers, such as cell membranes. Thus, the information on their displacement carried by the dMRI signal gives access to the underlying cyto-architecture. Combination of these two modalities is, therefore, a promising way to probe the brain tissue microstructure. The main goal of the present thesis is to set up the methodology to study the microstructure of the white matter of the human brain in vivo. The first part includes the acquisition of a unique MRI database of 79 healthy subjects (the Archi/CONNECT), which includes anatomical high resolution data, relaxometry data, diffusion-weighted data at high spatio-angular resolution and functional data. This database has allowed us to build the first atlas of the anatomical connectivity of the healthy brain through the automatic segmentation of the major white matter bundles, providing an appropriate anatomical reference for the white matter to study individually the quantitative parameters along each fascicle, characterizing its microstructure organization. Emphasis was placed on the construction of the first atlas of the T1/T2 profiles along the major white matter pathways. The profiles of the T1 and T2 relaxation times were then correlated to the quantitative profiles computed from the diffusion MRI data (fractional anisotropy, radial and longitudinal diffusivities, apparent diffusion coefficient

  11. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Mapping brain development during childhood, adolescence and young adulthood

    Science.gov (United States)

    Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Li, Yao

    2009-02-01

    Using optimized voxel-based morphometry (VBM), this study systematically investigated the differences and similarities of brain structural changes during the early three developmental periods of human lives: childhood, adolescence and young adulthood. These brain changes were discussed in relationship to the corresponding cognitive function development during these three periods. Magnetic Resonance Imaging (MRI) data from 158 Chinese healthy children, adolescents and young adults, aged 7.26 to 22.80 years old, were included in this study. Using the customized brain template together with the gray matter/white matter/cerebrospinal fluid prior probability maps, we found that there were more age-related positive changes in the frontal lobe, less in hippocampus and amygdala during childhood, but more in bilateral hippocampus and amygdala and left fusiform gyrus during adolescence and young adulthood. There were more age-related negative changes near to central sulcus during childhood, but these changes extended to the frontal and parietal lobes, mainly in the parietal lobe, during adolescence and young adulthood, and more in the prefrontal lobe during young adulthood. So gray matter volume in the parietal lobe significantly decreased from childhood and continued to decrease till young adulthood. These findings may aid in understanding the age-related differences in cognitive function.

  13. Systems Neuroscience of Psychosis: Mapping Schizophrenia Symptoms onto Brain Systems.

    Science.gov (United States)

    Strik, Werner; Stegmayer, Katharina; Walther, Sebastian; Dierks, Thomas

    2017-01-01

    Schizophrenia research has been in a deadlock for many decades. Despite important advances in clinical treatment, there are still major concerns regarding long-term psychosocial reintegration and disease management, biological heterogeneity, unsatisfactory predictors of individual course and treatment strategies, and a confusing variety of controversial theories about its etiology and pathophysiological mechanisms. In the present perspective on schizophrenia research, we first discuss a methodological pitfall in contemporary schizophrenia research inherent in the attempt to link mental phenomena with the brain: we claim that the time-honored phenomenological method of defining mental symptoms should not be contaminated with the naturalistic approach of modern neuroscience. We then describe our Systems Neuroscience of Psychosis (SyNoPsis) project, which aims to overcome this intrinsic problem of psychiatric research. Considering schizophrenia primarily as a disorder of interindividual communication, we developed a neurobiologically informed semiotics of psychotic disorders, as well as an operational clinical rating scale. The novel psychopathology allows disentangling the clinical manifestations of schizophrenia into behavioral domains matching the functions of three well-described higher-order corticobasal brain systems involved in interindividual human communication, namely, the limbic, associative, and motor loops, including their corticocortical sensorimotor connections. The results of several empirical studies support the hypothesis that the proposed three-dimensional symptom structure, segregated into the affective, the language, and the motor domain, can be specifically mapped onto structural and functional abnormalities of the respective brain systems. New pathophysiological hypotheses derived from this brain system-oriented approach have helped to develop and improve novel treatment strategies with noninvasive brain stimulation and practicable clinical

  14. Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging.

    Science.gov (United States)

    Bernier, Michaël; Croteau, Etienne; Castellano, Christian-Alexandre; Cunnane, Stephen C; Whittingstall, Kevin

    2017-04-15

    Positron emission tomography using [18F]-fluorodeoxyglucose (PET-FDG) is the primary imaging modality used to measure glucose metabolism in the brain (CMRGlu). CMRGlu has been used as a biomarker of brain aging and neurodegenerative diseases, but the complexity and invasive nature of PET often limits its use in research. There is therefore great interest in developing non-invasive metrics for estimating brain CMRGlu. We therefore investigated resting state fMRI metrics such as regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and regional global connectivity (Closeness) with multiple analytical approaches to determine their relationship to CMRGlu. We investigated this relation in two distinct cognitively healthy populations separated by age (27 young adults and 35 older adults). Overall, we found that both regionally and across participants, ReHo strongly correlated with CMRGlu in healthy young and older adults. Moreover, ReHo demonstrated the same age-related differences as CMRGlu throughout all cortical regions, particularly in the default network and frontal areas. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cortical layers, rhythms and BOLD signals.

    Science.gov (United States)

    Scheeringa, René; Fries, Pascal

    2017-11-03

    This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. In vivo mapping of brain myo-inositol.

    Science.gov (United States)

    Haris, Mohammad; Cai, Kejia; Singh, Anup; Hariharan, Hari; Reddy, Ravinder

    2011-02-01

    Myo-Inositol (MI) is one of the most abundant metabolites in the human brain located mainly in glial cells and functions as an osmolyte. The concentration of MI is altered in many brain disorders including Alzheimer's disease and brain tumors. Currently available magnetic resonance spectroscopy (MRS) methods for measuring MI are limited to low spatial resolution. Here, we demonstrate that the hydroxyl protons on MI exhibit chemical exchange with bulk water and saturation of these protons leads to reduction in bulk water signal through a mechanism known as chemical exchange saturation transfer (CEST). The hydroxyl proton exchange rate (k=600 s(-1)) is determined to be in the slow to intermediate exchange regime on the NMR time scale (chemical shift (∆ω)>k), suggesting that the CEST effect of MI (MICEST) can be imaged at high fields such as 7 T (∆ω=1.2×10(3)rad/s) and 9.4 T (∆ω=1.6×10(3) rad/s). Using optimized imaging parameters, concentration dependent broad CEST asymmetry between ~0.2 and 1.5 ppm with a peak at ~0.6 ppm from bulk water was observed. Further, it is demonstrated that MICEST detection is feasible in the human brain at ultra high fields (7 T) without exceeding the allowed limits on radiofrequency specific absorption rate. Results from healthy human volunteers (N=5) showed significantly higher (p=0.03) MICEST effect from white matter (5.2±0.5%) compared to gray matter (4.3±0.5%). The mean coefficient of variations for intra-subject MICEST contrast in WM and GM were 0.49 and 0.58 respectively. Potential overlap of CEST signals from other brain metabolites with the observed MICEST map is discussed. This noninvasive approach potentially opens the way to image MI in vivo and to monitor its alteration in many disease conditions. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Mapping oxygen concentration in the awake mouse brain

    Science.gov (United States)

    Lyons, Declan G; Parpaleix, Alexandre; Roche, Morgane; Charpak, Serge

    2016-01-01

    Although critical for brain function, the physiological values of cerebral oxygen concentration have remained elusive because high-resolution measurements have only been performed during anesthesia, which affects two major parameters modulating tissue oxygenation: neuronal activity and blood flow. Using measurements of capillary erythrocyte-associated transients, fluctuations of oxygen partial pressure (Po2) associated with individual erythrocytes, to infer Po2 in the nearby neuropil, we report the first non-invasive micron-scale mapping of cerebral Po2 in awake, resting mice. Interstitial Po2 has similar values in the olfactory bulb glomerular layer and the somatosensory cortex, whereas there are large capillary hematocrit and erythrocyte flux differences. Awake tissue Po2 is about half that under isoflurane anesthesia, and within the cortex, vascular and interstitial Po2 values display layer-specific differences which dramatically contrast with those recorded under anesthesia. Our findings emphasize the importance of measuring energy parameters non-invasively in physiological conditions to precisely quantify and model brain metabolism. DOI: http://dx.doi.org/10.7554/eLife.12024.001 PMID:26836304

  19. Suitable reference tissues for quantitative susceptibility mapping of the brain.

    Science.gov (United States)

    Straub, Sina; Schneider, Till M; Emmerich, Julian; Freitag, Martin T; Ziener, Christian H; Schlemmer, Heinz-Peter; Ladd, Mark E; Laun, Frederik B

    2017-07-01

    Since quantitative susceptibility mapping (QSM) quantifies magnetic susceptibility relative to a reference value, a suitable reference tissue has to be available to compare different subjects and stages of disease. To find such a suitable reference tissue for QSM of the brain, melanoma patients with and without brain metastases were measured. Twelve reference regions were chosen and assessed for stability of susceptibility values with respect to multiple intra-individual and inter-individual measurements, age, and stage of disease. Cerebrospinal fluid (CSF), the internal capsule and one region in the splenium of the corpus callosum are the regions with the smallest standard deviations of the mean susceptibility value. The mean susceptibility is 0.010 ± 0.014 ppm for CSF in the atrium of the lateral ventricles (csf post ), -0.060 ± 0.019 ppm for the posterior limb of the internal capsule (ci2), and -0.008 ± 0.019 ppm for the splenium of the corpus callosum. csf post and ci2 show nearly no dependence on age or stage of disease, whereas some other regions, e.g., the red nucleus, show moderate dependence on age or disease. The internal capsule and CSF appear to be the most suitable reference regions for QSM of the brain in the melanoma patients studied. Both showed virtually no dependence on age or disease and small variations among patients. Magn Reson Med 78:204-214, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Brain Injury Lesion Imaging Using Preconditioned Quantitative Susceptibility Mapping without Skull Stripping.

    Science.gov (United States)

    Soman, S; Liu, Z; Kim, G; Nemec, U; Holdsworth, S J; Main, K; Lee, B; Kolakowsky-Hayner, S; Selim, M; Furst, A J; Massaband, P; Yesavage, J; Adamson, M M; Spincemallie, P; Moseley, M; Wang, Y

    2018-04-01

    Identifying cerebral microhemorrhage burden can aid in the diagnosis and management of traumatic brain injury, stroke, hypertension, and cerebral amyloid angiopathy. MR imaging susceptibility-based methods are more sensitive than CT for detecting cerebral microhemorrhage, but methods other than quantitative susceptibility mapping provide results that vary with field strength and TE, require additional phase maps to distinguish blood from calcification, and depict cerebral microhemorrhages as bloom artifacts. Quantitative susceptibility mapping provides universal quantification of tissue magnetic property without these constraints but traditionally requires a mask generated by skull-stripping, which can pose challenges at tissue interphases. We evaluated the preconditioned quantitative susceptibility mapping MR imaging method, which does not require skull-stripping, for improved depiction of brain parenchyma and pathology. Fifty-six subjects underwent brain MR imaging with a 3D multiecho gradient recalled echo acquisition. Mask-based quantitative susceptibility mapping images were created using a commonly used mask-based quantitative susceptibility mapping method, and preconditioned quantitative susceptibility images were made using precondition-based total field inversion. All images were reviewed by a neuroradiologist and a radiology resident. Ten subjects (18%), all with traumatic brain injury, demonstrated blood products on 3D gradient recalled echo imaging. All lesions were visible on preconditioned quantitative susceptibility mapping, while 6 were not visible on mask-based quantitative susceptibility mapping. Thirty-one subjects (55%) demonstrated brain parenchyma and/or lesions that were visible on preconditioned quantitative susceptibility mapping but not on mask-based quantitative susceptibility mapping. Six subjects (11%) demonstrated pons artifacts on preconditioned quantitative susceptibility mapping and mask-based quantitative susceptibility mapping

  1. Functional brain mapping using H215O positron emission tomography (I): statistical parametric mapping method

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Lee, Jae Sung; Kim, Kyeong Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H 2 15 O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory

  2. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    Science.gov (United States)

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  3. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    Science.gov (United States)

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  4. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  5. Brain Mapping of drug addiction in witdrawal condition based P300 Signals

    Science.gov (United States)

    Turnip, Arjon; Esti Kusumandari, Dwi; Hidayat, Teddy

    2018-04-01

    Drug abuse for a long time will slowly cause changes in brain structure and performance. These changes tend to occur in the front of the brain which is directly interfere the concentration and the decision-making process. In this study an experiment involving 10 drug users was performed. The process of recording data with EEG system is conducted during craving condition and 1 hour after taking methadone. From brain mapping results obtained that brain activity tend to occur in the upper layer of the brain during craving conditions and tend to be in the midle layer of the brain after one hour of taking methadone.

  6. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W.

    1990-01-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  7. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong

    2004-01-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p -11 , r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p -8 , r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis of brain image of Korean people since the difference

  8. Mapping plasticity: sex/gender and the changing brain

    NARCIS (Netherlands)

    Kleinherenbrink, A.

    2014-01-01

    There is a consensus in the neuroscientific literature that brains are either male or female, and that ‘brain sex’ is a fixed, immutable trait. Feminist critics have challenged this idea, raising questions, for example, about brain plasticity (the role of sociocultural factors in the emergence and

  9. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  10. Research progress of BOLD-fMRI in minimal hepatic encephalopathy

    International Nuclear Information System (INIS)

    Zhou Zhiming; Zhao Jiannong

    2013-01-01

    The minimal hepatic encephalopathy is the early stage of hepatic encephalopathy. It has few apparent clinical symptoms and specific manifestations, and is difficult to diagnose. In the recent years, BOLD-fMRI has been used to study hepatic encephalopathy gradually. Through detection of the brain neuron activities in different states, it can not only locate the abnormal activity of brain functional areas, but also can find the changes of brain functional connectivity. BOLD- fMRI combining with other MR technologies can explore the pathology and pathogenesis of minimal hepatic encephalopathy from micro to macro and from structure to function. (authors)

  11. Zebrafish brain mapping--standardized spaces, length scales, and the power of N and n.

    Science.gov (United States)

    Hunter, Paul R; Hendry, Aenea C; Lowe, Andrew S

    2015-06-01

    Mapping anatomical and functional parameters of the zebrafish brain is moving apace. Research communities undertaking such studies are becoming ever larger and more diverse. The unique features, tools, and technologies associated with zebrafish are propelling them as the 21st century model organism for brain mapping. Uniquely positioned as a vertebrate model system, the zebrafish enables imaging of anatomy and function at different length scales from intraneuronal compartments to sparsely distributed whole brain patterns. With a variety of diverse and established statistical modeling and analytic methods available from the wider brain mapping communities, the richness of zebrafish neuroimaging data is being realized. The statistical power of population observations (N) within and across many samples (n) projected onto a standardized space will provide vast databases for data-driven biological approaches. This article reviews key brain mapping initiatives at different levels of scale that highlight the potential of zebrafish brain mapping. By way of introduction to the next wave of brain mappers, an accessible introduction to the key concepts and caveats associated with neuroimaging are outlined and discussed. © 2014 Wiley Periodicals, Inc.

  12. Mapping Language Function in the Brain: A Review of the Recent Literature.

    Science.gov (United States)

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  13. Differences in Information Mapping Strategies in Left and Right Brain Learners.

    Science.gov (United States)

    Hauck, LaVerne S., Jr.

    The Information Mapping technique was used to present a learning packet, and its usefulness in helping right-brain cerebrally dominant students to achieve the same level of subject mastery as their left-brain counterparts was examined. Reading level, grade point average, and gender were also analyzed. Torrance's "Your Style of Learning and…

  14. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study.

    Science.gov (United States)

    Lin, P-Y; Chao, T-C; Wu, M-L

    2015-03-01

    Quantitative susceptibility mapping of the human brain has demonstrated strong potential in examining iron deposition, which may help in investigating possible brain pathology. This study assesses the reproducibility of quantitative susceptibility mapping across different imaging sites. In this study, the susceptibility values of 5 regions of interest in the human brain were measured on 9 healthy subjects following calibration by using phantom experiments. Each of the subjects was imaged 5 times on 1 scanner with the same procedure repeated on 3 different 3T systems so that both within-site and cross-site quantitative susceptibility mapping precision levels could be assessed. Two quantitative susceptibility mapping algorithms, similar in principle, one by using iterative regularization (iterative quantitative susceptibility mapping) and the other with analytic optimal solutions (deterministic quantitative susceptibility mapping), were implemented, and their performances were compared. Results show that while deterministic quantitative susceptibility mapping had nearly 700 times faster computation speed, residual streaking artifacts seem to be more prominent compared with iterative quantitative susceptibility mapping. With quantitative susceptibility mapping, the putamen, globus pallidus, and caudate nucleus showed smaller imprecision on the order of 0.005 ppm, whereas the red nucleus and substantia nigra, closer to the skull base, had a somewhat larger imprecision of approximately 0.01 ppm. Cross-site errors were not significantly larger than within-site errors. Possible sources of estimation errors are discussed. The reproducibility of quantitative susceptibility mapping in the human brain in vivo is regionally dependent, and the precision levels achieved with quantitative susceptibility mapping should allow longitudinal and multisite studies such as aging-related changes in brain tissue magnetic susceptibility. © 2015 by American Journal of Neuroradiology.

  16. Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach.

    Science.gov (United States)

    Li, Zitong; Guo, Baocheng; Yang, Jing; Herczeg, Gábor; Gonda, Abigél; Balázs, Gergely; Shikano, Takahito; Calboli, Federico C F; Merilä, Juha

    2017-03-01

    Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL-mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single-locus analyses of an F 2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1-6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small-effect loci. Apart from suggesting moderately heritable (h 2  ≈ 0.15-0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL-mapping approach developed here has distinctive advantages

  17. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    Science.gov (United States)

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (pcaffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  18. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition

    Science.gov (United States)

    Li, Wei; Wu, Bing; Liu, Chunlei

    2011-01-01

    Image phase from gradient echo MRI provides a unique contrast that reflects brain tissue composition variations, such as iron and myelin distribution. Phase imaging is emerging as a powerful tool for the investigation of functional brain anatomy and disease diagnosis. However, the quantitative value of phase is compromised by its nonlocal and orientation dependent properties. There is an increasing need for reliable quantification of magnetic susceptibility, the intrinsic property of tissue. In this study, we developed a novel and accurate susceptibility mapping method that is also phase-wrap insensitive. The proposed susceptibility mapping method utilized two complementary equations: (1) the Fourier relationship of phase and magnetic susceptibility; and (2) the first-order partial derivative of the first equation in the spatial frequency domain. In numerical simulation, this method reconstructed the susceptibility map almost free of streaking artifact. Further, the iterative implementation of this method allowed for high quality reconstruction of susceptibility maps of human brain in vivo. The reconstructed susceptibility map provided excellent contrast of iron-rich deep nuclei and white matter bundles from surrounding tissues. Further, it also revealed anisotropic magnetic susceptibility in brain white matter. Hence, the proposed susceptibility mapping method may provide a powerful tool for the study of brain physiology and pathophysiology. Further elucidation of anisotropic magnetic susceptibility in vivo may allow us to gain more insight into the white matter microarchitectures. PMID:21224002

  19. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    International Nuclear Information System (INIS)

    Popescu, Bogdan F Gh; George, Martin J; McCrea, Richard P E; Devon, Richard M; George, Graham N; Hanson, Akela D; Chapman, L Dean; Nichol, Helen; Bergmann, Uwe; Garachtchenko, Alex V; Luening, Katharina; Kelly, Michael E; Harder, Sheri M; Pickering, Ingrid J

    2009-01-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  20. "Extreme Bold" in the Faculty Ranks

    Science.gov (United States)

    Kuusisto, Stephen

    2013-01-01

    Boldness, defense, and the necessity of talking back remain as central to life with disability in one's time as in Francis Bacon's age. "Therefore all deformed persons are extreme bold," Bacon wrote, "first, as in their own defence, as being exposed to scorn, but in process of time, by a general habit." Perhaps no word carries…

  1. Coding space-time stimulus dynamics in auditory brain maps

    Directory of Open Access Journals (Sweden)

    Yunyan eWang

    2014-04-01

    Full Text Available Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl’s midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.

  2. Dynamics of chaotic maps for modelling the multifractal spectrum of human brain Diffusion Tensor Images

    International Nuclear Information System (INIS)

    Provata, A.; Katsaloulis, P.; Verganelakis, D.A.

    2012-01-01

    Highlights: ► Calculation of human brain multifractal spectra. ► Calculations are based on Diffusion Tensor MRI Images. ► Spectra are modelled by coupled Ikeda map dynamics. ► Coupled lattice Ikeda maps model well only positive multifractal spectra. ► Appropriately modified coupled lattice Ikeda maps give correct spectra. - Abstract: The multifractal spectra of 3d Diffusion Tensor Images (DTI) obtained by magnetic resonance imaging of the human brain are studied. They are shown to deviate substantially from artificial brain images with the same white matter intensity. All spectra, obtained from 12 healthy subjects, show common characteristics indicating non-trivial moments of the intensity. To model the spectra the dynamics of the chaotic Ikeda map are used. The DTI multifractal spectra for positive q are best approximated by 3d coupled Ikeda maps in the fully developed chaotic regime. The coupling constants are as small as α = 0.01. These results reflect not only the white tissue non-trivial architectural complexity in the human brain, but also demonstrate the presence and importance of coupling between neuron axons. The architectural complexity is also mirrored by the deviations in the negative q-spectra, where the rare events dominate. To obtain a good agreement in the DTI negative q-spectrum of the brain with the Ikeda dynamics, it is enough to slightly modify the most rare events of the coupled Ikeda distributions. The representation of Diffusion Tensor Images with coupled Ikeda maps is not unique: similar conclusions are drawn when other chaotic maps (Tent, Logistic or Henon maps) are employed in the modelling of the neuron axons network.

  3. Quantification of brain images using Korean standard templates and structural and cytoarchitectonic probabilistic maps

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Kim, Yu Kyeong [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2004-06-01

    Population based structural and functional maps of the brain provide effective tools for the analysis and interpretation of complex and individually variable brain data. Brain MRI and PET standard templates and statistical probabilistic maps based on image data of Korean normal volunteers have been developed and probabilistic maps based on cytoarchitectonic data have been introduced. A quantification method using these data was developed for the objective assessment of regional intensity in the brain images. Age, gender and ethnic specific anatomical and functional brain templates based on MR and PET images of Korean normal volunteers were developed. Korean structural probabilistic maps for 89 brain regions and cytoarchitectonic probabilistic maps for 13 Brodmann areas were transformed onto the standard templates. Brain FDG PET and SPGR MR images of normal volunteers were spatially normalized onto the template of each modality and gender. Regional uptake of radiotracers in PET and gray matter concentration in MR images were then quantified by averaging (or summing) regional intensities weighted using the probabilistic maps of brain regions. Regionally specific effects of aging on glucose metabolism in cingulate cortex were also examined. Quantification program could generate quantification results for single spatially normalized images per 20 seconds. Glucose metabolism change in cingulate gyrus was regionally specific: ratios of glucose metabolism in the rostral anterior cingulate vs. posterior cingulate and the caudal anterior cingulate vs. posterior cingulate were significantly decreased as the age increased. 'Rostral anterior' / 'posterior' was decreased by 3.1% per decade of age (p<10{sup -11}, r=0.81) and 'caudal anterior' / 'posterior' was decreased by 1.7% (p<10{sup -8}, r=0.72). Ethnic specific standard templates and probabilistic maps and quantification program developed in this study will be useful for the analysis

  4. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  5. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  6. Acetazolamide-augmented dynamic BOLD (aczBOLD imaging for assessing cerebrovascular reactivity in chronic steno-occlusive disease of the anterior circulation: An initial experience

    Directory of Open Access Journals (Sweden)

    Junjie Wu

    2017-01-01

    Full Text Available The purpose of this study was to measure cerebrovascular reactivity (CVR in chronic steno-occlusive disease using a novel approach that couples BOLD imaging with acetazolamide (ACZ vasoreactivity (aczBOLD, to evaluate dynamic effects of ACZ on BOLD and to establish the relationship between aczBOLD and dynamic susceptibility contrast (DSC perfusion MRI. Eighteen patients with unilateral chronic steno-occlusive disease of the anterior circulation underwent a 20-min aczBOLD imaging protocol, with ACZ infusion starting at 5 min of scan initiation. AczBOLD reactivity was calculated on a voxel-by-voxel basis to generate CVR maps for subsequent quantitative analyses. Reduced CVR was observed in the diseased vs. the normal hemisphere both by qualitative and quantitative assessment (gray matter (GM: 4.13% ± 1.16% vs. 4.90% ± 0.98%, P = 0.002; white matter (WM: 2.83% ± 1.23% vs. 3.50% ± 0.94%, P = 0.005. In all cases BOLD signal began increasing immediately following ACZ infusion, approaching a plateau at ~8.5 min after infusion, with the tissue volume of reduced augmentation increasing progressively with time, peaking at 2.60 min (time range above 95% of the maximum value: 0–4.43 min for the GM and 1.80 min (time range above 95% of the maximum value: 1.40–3.53 min for the WM. In the diseased hemisphere, aczBOLD CVR significantly correlated with baseline DSC time-to-maximum of the residue function (Tmax (P = 0.008 for the WM and normalized cerebral blood flow (P = 0.003 for the GM, and P = 0.001 for the WM. AczBOLD provides a novel, safe, easily implementable approach to CVR measurement in the routine clinical environments. Further studies can establish quantitative thresholds from aczBOLD towards identification of patients at heightened risk of recurrent ischemia and cognitive decline.

  7. Vascular Steal Explains Early Paradoxical Blood Oxygen Level-Dependent Cerebrovascular Response in Brain Regions with Delayed Arterial Transit Times

    Directory of Open Access Journals (Sweden)

    Julien Poublanc

    2013-04-01

    Full Text Available Introduction: Blood oxygen level-dependent (BOLD magnetic resonance imaging (MRI during manipulation of inhaled carbon dioxide (CO2 can be used to measure cerebrovascular reactivity (CVR and map regions of exhausted cerebrovascular reserve. These regions exhibit a reduced or negative BOLD response to inhaled CO2. In this study, we sought to clarify the mechanism behind the negative BOLD response by investigating its time delay (TD. Dynamic susceptibility contrast (DSC MRI with the injection of a contrast agent was used as the gold standard in order to provide measurement of the blood arrival time to which CVR TD could be compared. We hypothesize that if negative BOLD responses are the result of a steal phenomenon, they should be synchronized with positive BOLD responses from healthy brain tissue, even though the blood arrival time would be delayed. Methods: On a 3-tesla MRI system, BOLD CVR and DSC images were collected in a group of 19 patients with steno-occlusive cerebrovascular disease. For each patient, we generated a CVR magnitude map by regressing the BOLD signal with the end-tidal partial pressure of CO2 (PETCO2, and a CVR TD map by extracting the time of maximum cross-correlation between the BOLD signal and PETCO2. In addition, a blood arrival time map was generated by fitting the DSC signal with a gamma variate function. ROI masks corresponding to varying degrees of reactivity were constructed. Within these masks, the mean CVR magnitude, CVR TD and DSC blood arrival time were extracted and averaged over the 19 patients. CVR magnitude and CVR TD were then plotted against DSC blood arrival time. Results: The results show that CVR magnitude is highly correlated to DSC blood arrival time. As expected, the most compromised tissues with the longest blood arrival time have the lowest (most negative CVR magnitude. However, CVR TD shows a noncontinuous relationship with DSC blood arrival time. CVR TD is well correlated to DSC blood arrival time

  8. Multicenter R2* mapping in the healthy brain

    DEFF Research Database (Denmark)

    Ropele, Stefan; Wattjes, Mike P; Langkammer, Christian

    2014-01-01

    structures. METHODS: R2* mapping was performed in 81 healthy subjects in seven centers using different 3 T systems. R2* was calculated from a dual-echo gradient echo sequence and was assessed in several deep gray matter structures. The inter-scanner and inter-subject variability of R2* was calculated...

  9. One century of brain mapping using Brodmann areas.

    Science.gov (United States)

    Strotzer, Michael

    2009-08-01

    100 years after their publication, Brodmann's maps of the cerebral cortex are universally used to locate neuropsychological functions. On the occasion of this jubilee the life and work of Korbinian Brodmann are reported. The core functions of each single Brodmann area are described and Brodmann's views on neuropsychological processes are depicted.

  10. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    International Nuclear Information System (INIS)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo

    2005-01-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience

  11. Statistical probabilistic mapping in the individual brain space: decreased metabolism in epilepsy with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Su; Lee, Jae Sung; Kim, Yu Kyeong; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2005-07-01

    In the statistical probabilistic mapping, commonly, differences between two or more groups of subjects are statistically analyzed following spatial normalization. However, to our best knowledge, there is few study which performed the statistical mapping in the individual brain space rather than in the stereotaxic brain space, i.e., template space. Therefore, in the current study, a new method for mapping the statistical results in the template space onto individual brain space has been developed. Four young subjects with epilepsy and their age-matched thirty normal healthy subjects were recruited. Both FDG PET and T1 structural MRI was scanned in these groups. Statistical analysis on the decreased FDG metabolism in epilepsy was performed on the SPM with two sample t-test (p < 0.001, intensity threshold 100). To map the statistical results onto individual space, inverse deformation was performed as follows. With SPM deformation toolbox, DCT (discrete cosine transform) basis-encoded deformation fields between individual T1 images and T1 MNI template were obtained. Afterward, inverse of those fields, i.e., inverse deformation fields were obtained. Since both PET and T1 images have been already normalized in the same MNI space, inversely deformed results in PET is on the individual brain MRI space. By applying inverse deformation field on the statistical results of the PET, the statistical map of decreased metabolism in individual spaces were obtained. With statistical results in the template space, localization of decreased metabolism was in the inferior temporal lobe, which was slightly inferior to the hippocampus. The statistical results in the individual space were commonly located in the hippocampus, where the activation should be decreased according to a priori knowledge of neuroscience. With our newly developed statistical mapping on the individual spaces, the localization of the brain functional mapping became more appropriate in the sense of neuroscience.

  12. Functional BOLD MRI: comparison of different field strengths in a motor task

    International Nuclear Information System (INIS)

    Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.

    2008-01-01

    The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)

  13. Image-guided recording system for spatial and temporal mapping of neuronal activities in brain slice.

    Science.gov (United States)

    Choi, Geonho; Lee, Jeonghyeon; Kim, Hyeongeun; Jang, Jaemyung; Im, Changkyun; Jeon, Nooli; Jung, Woonggyu

    2018-03-01

    In this study, we introduce the novel image-guided recording system (IGRS) for efficient interpretation of neuronal activities in the brain slice. IGRS is designed to combine microelectrode array (MEA) and optical coherence tomography at the customized upright microscope. It allows to record multi-site neuronal signals and image of the volumetric brain anatomy in a single body configuration. For convenient interconnection between a brain image and neuronal signals, we developed the automatic mapping protocol that enables us to project acquired neuronal signals on a brain image. To evaluate the performance of IGRS, hippocampal signals of the brain slice were monitored, and corresponding with two-dimensional neuronal maps were successfully reconstructed. Our results indicated that IGRS and mapping protocol can provide the intuitive information regarding long-term and multi-sites neuronal signals. In particular, the temporal and spatial mapping capability of neuronal signals would be a very promising tool to observe and analyze the massive neuronal activity and connectivity in MEA-based electrophysiological studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Increased brain iron deposition is a risk factor for brain atrophy in patients with haemodialysis: a combined study of quantitative susceptibility mapping and whole brain volume analysis.

    Science.gov (United States)

    Chai, Chao; Zhang, Mengjie; Long, Miaomiao; Chu, Zhiqiang; Wang, Tong; Wang, Lijun; Guo, Yu; Yan, Shuo; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2015-08-01

    To explore the correlation between increased brain iron deposition and brain atrophy in patients with haemodialysis and their correlation with clinical biomarkers and neuropsychological test. Forty two patients with haemodialysis and forty one age- and gender-matched healthy controls were recruited in this prospective study. 3D whole brain high resolution T1WI and susceptibility weighted imaging were scanned on a 3 T MRI system. The brain volume was analyzed using voxel-based morphometry (VBM) in patients and to compare with that of healthy controls. Quantitative susceptibility mapping was used to measure and compare the susceptibility of different structures between patients and healthy controls. Correlation analysis was used to investigate the relationship between the brain volume, iron deposition and neuropsychological scores. Stepwise multiple regression analysis was used to explore the effect of clinical biomarkers on the brain volumes in patients. Compared with healthy controls, patients with haemodialysis showed decreased volume of bilateral putamen and left insular lobe (All P brain iron deposition is negatively correlated with the decreased volume of bilateral putamen (P brain iron deposition and dialysis duration was risk factors for brain atrophy in patients with haemodialysis. The decreased gray matter volume of the left insular lobe was correlated with neurocognitive impairment.

  15. Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping.

    Science.gov (United States)

    Yarnykh, Vasily L

    2016-05-01

    Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole brain MPF mapping technique using a minimal number of source images for scan time reduction. The described technique was based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole brain three-dimensional MPF mapping with isotropic 1.25 × 1.25 × 1.25 mm(3) voxel size and a scan time of 20 min. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from eight healthy subjects. Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details, including gray matter structures with high iron content. The proposed synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. © 2015 Wiley Periodicals, Inc.

  16. Calibrating the BOLD signal during a motor task using an extended fusion model incorporating DOT, BOLD and ASL data

    Science.gov (United States)

    Yücel, Meryem A.; Huppert, Theodore J.; Boas, David A.; Gagnon, Louis

    2012-01-01

    Multimodal imaging improves the accuracy of the localization and the quantification of brain activation when measuring different manifestations of the hemodynamic response associated with cerebral activity. In this study, we incorporated cerebral blood flow (CBF) changes measured with arterial spin labeling (ASL), Diffuse Optical Tomography (DOT) and blood oxygen level-dependent (BOLD) recordings to reconstruct changes in oxy- (ΔHbO2) and deoxyhemoglobin (ΔHbR). Using the Grubb relation between relative changes in CBF and cerebral blood volume (CBV), we incorporated the ASL measurement as a prior to the total hemoglobin concentration change (ΔHbT). We applied this ASL fusion model to both synthetic data and experimental multimodal recordings during a 2-sec finger-tapping task. Our results show that the new approach is very powerful in estimating ΔHbO2 and ΔHbR with high spatial and quantitative accuracy. Moreover, our approach allows the computation of baseline total hemoglobin concentration (HbT0) as well as of the BOLD calibration factor M on a single subject basis. We obtained an average HbT0 of 71 μM, an average M value of 0.18 and an average increase of 13 % in cerebral metabolic rate of oxygen (CMRO2), all of which are in agreement with values previously reported in the literature. Our method yields an independent measurement of M, which provides an alternative measurement to validate the hypercapnic calibration of the BOLD signal. PMID:22546318

  17. Three-Dimensional Computer Graphics Brain-Mapping Project

    Science.gov (United States)

    1988-03-24

    1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker

  18. Mapping White Matter Microstructure in the One Month Human Brain.

    Science.gov (United States)

    Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L

    2017-08-29

    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.

  19. Application of statistical parametric mapping in PET and SPECT brain functional imaging

    International Nuclear Information System (INIS)

    Guo Wanhua

    2002-01-01

    Regional of interest (ROI) is the method regularly used to analyze brain functional imaging. But, due to its obvious shortcomings such as subjectivity and poor reproducibility, precise analyzing the brain function was seriously limited. Therefore, statistical parametric mapping (SPM) as an automatic analyze software was developed based on voxel or pixel to resolve this problem. Using numerous mathematical models, it can be used to statistically assess the whole brain pixel. Present review introduces its main principle, modular composition and practical application. It can be concluded, with development of neuroscience, the SPM software will be used more widely in relative field, like neurobiology, cognition and neuropharmacology

  20. Using a concept map as a tool for strategic planning: The Healthy Brain Initiative.

    Science.gov (United States)

    Anderson, Lynda A; Day, Kristine L; Vandenberg, Anna E

    2011-09-01

    Concept mapping is a tool to assist in strategic planning that allows planners to work through a sequence of phases to produce a conceptual framework. Although several studies describe how concept mapping is applied to various public health problems, the flexibility of the methods used in each phase of the process is often overlooked. If practitioners were more aware of the flexibility, more public health endeavors could benefit from using concept mapping as a tool for strategic planning. The objective of this article is to describe how the 6 concept-mapping phases originally outlined by William Trochim guided our strategic planning process and how we adjusted the specific methods in the first 2 phases to meet the specialized needs and requirements to create The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health. In the first stage (phases 1 and 2 of concept mapping), we formed a steering committee, convened 4 work groups over a period of 3 months, and generated an initial set of 42 action items grounded in science. In the second stage (phases 3 and 4), we engaged stakeholders in sorting and rating the action items and constructed a series of concept maps. In the third and final stage (phases 5 and 6), we examined and refined the action items and generated a final concept map consisting of 44 action items. We then selected the top 10 action items, and in 2007, we published The Healthy Brain Initiative: A National Public Health Road Map to Maintaining Cognitive Health, which represents the strategic plan for The Healthy Brain Initiative.

  1. R2* mapping for brain iron: associations with cognition in normal aging.

    Science.gov (United States)

    Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold

    2015-02-01

    Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Modeling epileptic brain states using EEG spectral analysis and topographic mapping.

    Science.gov (United States)

    Direito, Bruno; Teixeira, César; Ribeiro, Bernardete; Castelo-Branco, Miguel; Sales, Francisco; Dourado, António

    2012-09-30

    Changes in the spatio-temporal behavior of the brain electrical activity are believed to be associated to epileptic brain states. We propose a novel methodology to identify the different states of the epileptic brain, based on the topographic mapping of the time varying relative power of delta, theta, alpha, beta and gamma frequency sub-bands, estimated from EEG. Using normalized-cuts segmentation algorithm, points of interest are identified in the topographic mappings and their trajectories over time are used for finding out relations with epileptogenic propagations in the brain. These trajectories are used to train a Hidden Markov Model (HMM), which models the different epileptic brain states and the transition among them. Applied to 10 patients suffering from focal seizures, with a total of 30 seizures over 497.3h of data, the methodology shows good results (an average point-by-point accuracy of 89.31%) for the identification of the four brain states--interictal, preictal, ictal and postictal. The results suggest that the spatio-temporal dynamics captured by the proposed methodology are related to the epileptic brain states and transitions involved in focal seizures. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins.

    Science.gov (United States)

    Fang, Pan; Wang, Xin-Jian; Xue, Yu; Liu, Ming-Qi; Zeng, Wen-Feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-Quan; Yao, Jun; Shen, Hua-Li; Yang, Peng-Yuan

    2016-06-21

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins.

  4. A quantitative brain map of experimental cerebral malaria pathology.

    Directory of Open Access Journals (Sweden)

    Patrick Strangward

    2017-03-01

    Full Text Available The murine model of experimental cerebral malaria (ECM has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM. However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  5. A quantitative brain map of experimental cerebral malaria pathology.

    Science.gov (United States)

    Strangward, Patrick; Haley, Michael J; Shaw, Tovah N; Schwartz, Jean-Marc; Greig, Rachel; Mironov, Aleksandr; de Souza, J Brian; Cruickshank, Sheena M; Craig, Alister G; Milner, Danny A; Allan, Stuart M; Couper, Kevin N

    2017-03-01

    The murine model of experimental cerebral malaria (ECM) has been utilised extensively in recent years to study the pathogenesis of human cerebral malaria (HCM). However, it has been proposed that the aetiologies of ECM and HCM are distinct, and, consequently, no useful mechanistic insights into the pathogenesis of HCM can be obtained from studying the ECM model. Therefore, in order to determine the similarities and differences in the pathology of ECM and HCM, we have performed the first spatial and quantitative histopathological assessment of the ECM syndrome. We demonstrate that the accumulation of parasitised red blood cells (pRBCs) in brain capillaries is a specific feature of ECM that is not observed during mild murine malaria infections. Critically, we show that individual pRBCs appear to occlude murine brain capillaries during ECM. As pRBC-mediated congestion of brain microvessels is a hallmark of HCM, this suggests that the impact of parasite accumulation on cerebral blood flow may ultimately be similar in mice and humans during ECM and HCM, respectively. Additionally, we demonstrate that cerebrovascular CD8+ T-cells appear to co-localise with accumulated pRBCs, an event that corresponds with development of widespread vascular leakage. As in HCM, we show that vascular leakage is not dependent on extensive vascular destruction. Instead, we show that vascular leakage is associated with alterations in transcellular and paracellular transport mechanisms. Finally, as in HCM, we observed axonal injury and demyelination in ECM adjacent to diverse vasculopathies. Collectively, our data therefore shows that, despite very different presentation, and apparently distinct mechanisms, of parasite accumulation, there appear to be a number of comparable features of cerebral pathology in mice and in humans during ECM and HCM, respectively. Thus, when used appropriately, the ECM model may be useful for studying specific pathological features of HCM.

  6. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  7. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  8. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    Science.gov (United States)

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  9. Proficient brain for optimal performance: the MAP model perspective.

    Science.gov (United States)

    Bertollo, Maurizio; di Fronso, Selenia; Filho, Edson; Conforto, Silvia; Schmid, Maurizio; Bortoli, Laura; Comani, Silvia; Robazza, Claudio

    2016-01-01

    Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS) activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP) model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1) and optimal-controlled (Type 2) performances. Methods. Ten elite shooters (6 male and 4 female) with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time) repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha) for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the "neural efficiency hypothesis." We also observed more ERD as related to optimal-controlled performance in conditions of "neural adaptability" and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  10. Proficient brain for optimal performance: the MAP model perspective

    Directory of Open Access Journals (Sweden)

    Maurizio Bertollo

    2016-05-01

    Full Text Available Background. The main goal of the present study was to explore theta and alpha event-related desynchronization/synchronization (ERD/ERS activity during shooting performance. We adopted the idiosyncratic framework of the multi-action plan (MAP model to investigate different processing modes underpinning four types of performance. In particular, we were interested in examining the neural activity associated with optimal-automated (Type 1 and optimal-controlled (Type 2 performances. Methods. Ten elite shooters (6 male and 4 female with extensive international experience participated in the study. ERD/ERS analysis was used to investigate cortical dynamics during performance. A 4 × 3 (performance types × time repeated measures analysis of variance was performed to test the differences among the four types of performance during the three seconds preceding the shots for theta, low alpha, and high alpha frequency bands. The dependent variables were the ERD/ERS percentages in each frequency band (i.e., theta, low alpha, high alpha for each electrode site across the scalp. This analysis was conducted on 120 shots for each participant in three different frequency bands and the individual data were then averaged. Results. We found ERS to be mainly associated with optimal-automatic performance, in agreement with the “neural efficiency hypothesis.” We also observed more ERD as related to optimal-controlled performance in conditions of “neural adaptability” and proficient use of cortical resources. Discussion. These findings are congruent with the MAP conceptualization of four performance states, in which unique psychophysiological states underlie distinct performance-related experiences. From an applied point of view, our findings suggest that the MAP model can be used as a framework to develop performance enhancement strategies based on cognitive and neurofeedback techniques.

  11. Functional MR mapping of higher cognitive brain functions

    International Nuclear Information System (INIS)

    Bellemann, M.E.; Spitzer, M.; Brix, G.; Kammer, T.; Loose, R.; Schwartz, A.; Gueckel, F.

    1995-01-01

    Fifteen normal subjects were examined on a conventional 1.5-T MR system to visualize cortical activation during the performance of high-level cognitive tasks. A computer-controlled videoprojector was employed to present psychometrically optimized activation paradigms. Reaction times and error rates of the volunteers were acquired online during stimulus presentation. The time course of cortical activation was measured in a series of strongly T 2 *-weighted gradient-echo images from three or four adjacent slices. For anatomical correlation, picture elements showing a stimulus-related significant signal increase were color-coded and superimposed on T 1 -weighted spin-echo images. Analysis of the fMRI data revealed a subtle (range 2-5%), but statistically significant increase in signal intensity during the periods of induced cortical activation. Judgment of semantic relatedness of word pairs, for example, activated selectively cortical areas in left frontal and left temporal brain regions. The strength of cortex activation in the semantic task decreased significantly in the course of stimulus presentation and was paralleled by a decrease in the corresponding reaction times. With its move into the area of cognitive neuroscience, fMRI calls both for the careful design of activation schemes and for the acquisition of behavioral data. For example, brain regions involved in language processing could only be identified clearly when psychometrically matched activation paradigms were employed. The reaction time data correlated well with selective learning and thus helped to facilitate interpretation of the fMRI data sets. (orig.) [de

  12. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  13. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    Science.gov (United States)

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  14. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates.

    Science.gov (United States)

    Lin, Xudong; Wang, Shiqi; Yu, Xudong; Liu, Zhuguo; Wang, Fei; Li, Wai Tsun; Cheng, Shuk Han; Dai, Qiuyun; Shi, Peng

    2015-02-07

    The reconstruction of neural activity across complete neural circuits, or brain activity mapping, has great potential in both fundamental and translational neuroscience research. Larval zebrafish, a vertebrate model, has recently been demonstrated to be amenable to whole brain activity mapping in behaving animals. Here we demonstrate a microfluidic array system ("Fish-Trap") that enables high-throughput mapping of brain-wide activity in awake larval zebrafish. Unlike the commonly practiced larva-processing methods using a rigid gel or a capillary tube, which are laborious and time-consuming, the hydrodynamic design of our microfluidic chip allows automatic, gel-free, and anesthetic-free processing of tens of larvae for microscopic imaging with single-cell resolution. Notably, this system provides the capability to directly couple pharmaceutical stimuli with real-time recording of neural activity in a large number of animals, and the local and global effects of pharmacoactive drugs on the nervous system can be directly visualized and evaluated by analyzing drug-induced functional perturbation within or across different brain regions. Using this technology, we tested a set of neurotoxin peptides and obtained new insights into how to exploit neurotoxin derivatives as therapeutic agents. The novel and versatile "Fish-Trap" technology can be readily unitized to study other stimulus (optical, acoustic, or physical) associated functional brain circuits using similar experimental strategies.

  15. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images

    Science.gov (United States)

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-01-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  16. Volumetric B1 (+) mapping of the brain at 7T using DREAM.

    Science.gov (United States)

    Nehrke, Kay; Versluis, Maarten J; Webb, Andrew; Börnert, Peter

    2014-01-01

    To tailor and optimize the Dual Refocusing Echo Acquisition Mode (DREAM) approach for volumetric B1 (+) mapping of the brain at 7T. A new DREAM echo timing scheme based on the virtual stimulated echo was derived to minimize potential effects of transverse relaxation. Furthermore, the DREAM B1 (+) mapping performance was investigated in simulations and experimentally in phantoms and volunteers for volumetric applications, studying and optimizing the accuracy of the sequence with respect to saturation effects, slice profile imperfections, and T1 and T2 relaxation. Volumetric brain protocols were compiled for different isotropic resolutions (5-2.5 mm) and SENSE factors, and were studied in vivo for different RF drive modes (circular/linear polarization) and the application of dielectric pads. Volumetric B1 (+) maps with good SNR at 2.5 mm isotropic resolution were acquired in about 20 s or less. The specific absorption rate was well below the safety limits for all scans. Mild flow artefacts were observed in the large vessels. Moreover, a slight contrast in the ventricle was observed in the B1 (+) maps, which could be attributed to T1 and T2 relaxation effects. DREAM enables safe, very fast, and robust volumetric B1 (+) mapping of the brain at ultrahigh fields. Copyright © 2013 Wiley Periodicals, Inc.

  17. Comparison of ADC map with trace map in the normal and infarct areas of the brains of stroke patients

    International Nuclear Information System (INIS)

    Kim, Seung Hyung; Yoon, Pyeong Ho; Jeong, Eun Kee; Oh, Young Taick; Kim, Dong Ik

    1999-01-01

    To compare ADC mapping with trace mapping in normal and infarct areas of the brains of stroke patients. Eighteen patients diagnosed on the basis of clinical and brain MRI examinations as suffering from brain infarction were included in this study (hyperacute-1, acute-4, subacute-12, chronic-1). Diffusion weighted images of three orthogonal directions of a patient's brain were obtained by means of a single shot EPI pulse sequence, using a diffusion gradient with four serial b-factors. Three ADC maps were then reconstructed by post-image processing and were summed pixel by pixel to yield a trace map. ROIs were selected in the normal areas of white matter, gray matter and CSF of one hemisphere, and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and right/left ratios of ADC and trace values were calculated. Using these values, we then compared the ADC map with the trace map, and compared the degree of anisotropic diffusion between white matter, gray matter and CSF. Except for three, whose infarct lesions were small and lay over white and gray matter, patients were divided into two groups. Those with infarct in the white matter (n=10) were assigned to one group, and those with infarct in the gray matter (n=5) to the other. ROIs were selected in the infarct area and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and infarct/contralateral ratios were calculated. We then compared ADC ratio with trace ratio in white matter and gray matter infarct. In normal white matter, the Dxx ratio was 0.980±0.098, the Dyy ratio 1.019±0.086, the Dzz ratio 0.999±0.111, and the trace ratio 0.995±0.031. In normal gray matter, the Dxx ratio was 1.001±0.058, the Dyy ratio 0.996±0.063, Dzz ratio 1.005±0.070, and the trace ratio 1.001±0.028. In CSF, the Dxx ratio was 1.002±0.064, the Dyy ratio 1.023±0.055, the Dzz ratio 0.999

  18. Stable long-term chronic brain mapping at the single-neuron level.

    Science.gov (United States)

    Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M

    2016-10-01

    Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.

  19. Assessing Mild Cognitive Impairment Progression using a Spherical Brain Mapping of Magnetic Resonance Imaging.

    Science.gov (United States)

    Martinez-Murcia, Francisco Jesus; Górriz, Juan Manuel; Ramírez, Javier; Segovia, Fermín; Salas-Gonzalez, Diego; Castillo-Barnes, Diego; Ortiz, Andrés

    2018-04-04

    The early diagnosis of Alzheimer's Disease (AD), particularly in its prodromal stage, mild cognitive impairment (MCI), still remains a challenge. Many computational tools have been developed to successfully explore and predict the disease progression. In this context, the Spherical Brain Mapping (SBM) proved its ability in detecting differences between AD and aged subjects without symptoms of dementia. Being a very visual tool, its application in predicting MCI conversion to AD could be of great help to understand neurodegeneration and the disease progression. In this work, we aim at predicting the conversion of MCI affected subjects to AD more than 6 months in advance of their conversion session and understanding the progression of the disease by predicting neuropsychological test outcomes from MRI data. In order to do so, SBM is applied to a series of MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The resulting spherical brain maps show statistical and morphological information of the brain in a bidimensional plane, performing at the same time a significant feature reduction that provides a feature vector used in classification analysis. The study achieves up to 92.3% accuracy in the AD versus normal controls (CTL) detection, and up to a 77.6% in detection a of MCI conversions when trained with AD and CTL subjects. The prediction of neuropsychological test outcomes achieved R2 rates up to more than 0.5. Significant regions according to t-test and correlation analysis match reported brain areas in the literature. The results prove that Spherical Brain Mapping offers good ability to predict conversion patterns and cognitive state, at the same time that provides an additional aid for visualizing a two-dimensional abstraction map of the brain.

  20. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  1. On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.

    Science.gov (United States)

    Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui

    2013-10-01

    It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  3. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [Quantitative magnetic resonance imaging of brain iron deposition: comparison between quantitative susceptibility mapping and transverse relaxation rate (R2*) mapping].

    Science.gov (United States)

    Guan, Ji-Jing; Feng, Yan-Qiu

    2018-03-20

    To evaluate the accuracy and sensitivity of quantitative susceptibility mapping (QSM) and transverse relaxation rate (R2*) mapping in the measurement of brain iron deposition. Super paramagnetic iron oxide (SPIO) phantoms and mouse models of Parkinson's disease (PD) related to iron deposition in the substantia nigra (SN) underwent 7.0 T magnetic resonance (MR) scans (Bruker, 70/16) with a multi-echo 3D gradient echo sequence, and the acquired data were processed to obtain QSM and R2*. Linear regression analysis was performed for susceptibility and R2* in the SPIO phantoms containing 5 SPIO concentrations (30, 15, 7.5, 3.75 and 1.875 µg/mL) to evaluate the accuracy of QSM and R2* in quantitative iron analysis. The sensitivities of QSM and R2* mapping in quantitative detection of brain iron deposition were assessed using mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP) in comparison with the control mice. In SPIO phantoms, QSM provided a higher accuracy than R2* mapping and their goodness-of-fit coefficients (R 2 ) were 0.98 and 0.89, respectively. In the mouse models of PD and control mice, the susceptibility of the SN was significantly higher in the PD models (5.19∓1.58 vs 2.98∓0.88, n=5; Pbrain iron deposition than R2*, and the susceptibility derived by QSM can be a potentially useful biomarker for studying PD.

  5. Mapping the brain network of the phonological loop.

    Science.gov (United States)

    Papagno, Costanza; Comi, Alessandro; Riva, Marco; Bizzi, Alberto; Vernice, Mirta; Casarotti, Alessandra; Fava, Enrica; Bello, Lorenzo

    2017-06-01

    The cortical and subcortical neural correlates underlying item and order information in verbal short-term memory (STM) were investigated by means of digit span in 29 patients with direct electrical stimulation during awake surgery for removal of a neoplastic lesion. Stimulation of left Broca's area interfered with span, producing significantly more item than order errors, as compared to the stimulation of the supramarginal/angular gyrus, which also interfered with span but, conversely, produced more order than item errors. Similarly, stimulation of the third segment of the left superior longitudinal fasciculus (SLF-III), also known as anterior segment of the arcuate fascicle (AF), produced more order than item errors. Therefore, we obtained two crucial results: first, we were able to distinguish between content and order information storage. Second, we demonstrated that the SLF-III is involved in transferring order information from Geschwind's area to Broca's area. In a few patients, we demonstrated that also order information of nonverbal material was disrupted by left supramarginal gyrus stimulation. Order information is thus likely stored in the supramarginal gyrus, possibly independently from the nature of the material. Hum Brain Mapp 38:3011-3024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Distinct BOLD activation profiles following central and peripheral oxytocin administration in awake rats

    Directory of Open Access Journals (Sweden)

    Craig F Ferris

    2015-09-01

    Full Text Available A growing body of literature has suggested that intranasal oxytocin (OT or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain-barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level dependent (BOLD signal intensity in response to peripheral OT injections (0.1, 0.5 or 2.5 mg/kg during functional magnetic resonance (fMRI in awake rats imaged at 7.0 tesla. These data were compared to OT (1ug/5 µl given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  7. The average baboon brain: MRI templates and tissue probability maps from 89 individuals.

    Science.gov (United States)

    Love, Scott A; Marie, Damien; Roth, Muriel; Lacoste, Romain; Nazarian, Bruno; Bertello, Alice; Coulon, Olivier; Anton, Jean-Luc; Meguerditchian, Adrien

    2016-05-15

    The baboon (Papio) brain is a remarkable model for investigating the brain. The current work aimed at creating a population-average baboon (Papio anubis) brain template and its left/right hemisphere symmetric version from a large sample of T1-weighted magnetic resonance images collected from 89 individuals. Averaging the prior probability maps output during the segmentation of each individual also produced the first baboon brain tissue probability maps for gray matter, white matter and cerebrospinal fluid. The templates and the tissue probability maps were created using state-of-the-art, freely available software tools and are being made freely and publicly available: http://www.nitrc.org/projects/haiko89/ or http://lpc.univ-amu.fr/spip.php?article589. It is hoped that these images will aid neuroimaging research of the baboon by, for example, providing a modern, high quality normalization target and accompanying standardized coordinate system as well as probabilistic priors that can be used during tissue segmentation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Intrinsic functional brain mapping in reconstructed 4D magnetic susceptibility (χ) data space.

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince

    2015-02-15

    By solving an inverse problem of T2*-weighted magnetic resonance imaging for a dynamic fMRI study, we reconstruct a 4D magnetic susceptibility source (χ) data space for intrinsic functional mapping. A 4D phase dataset is calculated from a 4D complex fMRI dataset. The background field and phase wrapping effect are removed by a Laplacian technique. A 3D χ source map is reconstructed from a 3D phase image by a computed inverse MRI (CIMRI) scheme. A 4D χ data space is reconstructed by repeating the 3D χ source reconstruction for each time point. A functional map is calculated by a temporal correlation between voxel signals in the 4D χ space and the timecourse of the task paradigm. With a finger-tapping experiment, we obtain two 3D functional mappings in the 4D magnitude data space and in the reconstructed 4D χ data space. We find that the χ-based functional mapping reveals co-occurrence of bidirectional responses in a 3D activation map that is different from the conventional magnitude-based mapping. The χ-based functional mapping can also be achieved by a 3D deconvolution of a phase activation map. Based on a subject experimental comparison, we show that the 4D χ tomography method could produce a similar χ activation map as obtained by the 3D deconvolution method. By removing the dipole effect and other fMRI technological contaminations, 4D χ tomography provides a 4D χ data space that allows a more direct and truthful functional mapping of a brain activity. Published by Elsevier B.V.

  9. Technical Aspects of Awake Craniotomy with Mapping for Brain Tumors in a Limited Resource Setting.

    Science.gov (United States)

    Leal, Rafael Teixeira Magalhaes; Barcellos, Bruno Mendonça; Landeiro, Jose Alberto

    2018-05-01

    Brain tumor surgery near or within eloquent regions is increasingly common and is associated with a high risk of neurologic injury. Awake craniotomy with mapping has been shown to be a valid method to preserve neurologic function and increase the extent of resection. However, the technique used varies greatly among centers. Most count on professionals such as neuropsychologists, speech therapists, neurophysiologists, or neurologists to help in intraoperative patient evaluation. We describe our technique with the sole participation of neurosurgeons and anesthesiologists. A retrospective review of 19 patients who underwent awake craniotomies for brain tumors between January 2013 and February 2017 at a tertiary university hospital was performed. We sought to identify and describe the most critical stages involved in this surgery as well as show the complications associated with our technique. Preoperative preparation, positioning, anesthesia, brain mapping, resection, and management of seizures and pain were stages deemed relevant to the accomplishment of an awake craniotomy. Sixteen percent of the patients developed new postoperative deficit. Seizures occurred in 24%. None led to awake craniotomy failure. We provide a thorough description of the technique used in awake craniotomies with mapping used in our institution, where the intraoperative patient evaluation is carried out solely by neurosurgeons and anesthesiologists. The absence of other specialized personnel and equipment does not necessarily preclude successful mapping during awake craniotomy. We hope to provide helpful information for those who wish to offer function-guided tumor resection in their own centers. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  11. Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.

    Science.gov (United States)

    Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo

    2016-01-01

    Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  12. Whole-brain mapping of neuronal activity in the learned helplessness model of depression

    Directory of Open Access Journals (Sweden)

    Yongsoo eKim

    2016-02-01

    Full Text Available Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing helpless behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing resilient behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.

  13. Interpretability of Multivariate Brain Maps in Linear Brain Decoding: Definition, and Heuristic Quantification in Multivariate Analysis of MEG Time-Locked Effects.

    Science.gov (United States)

    Kia, Seyed Mostafa; Vega Pons, Sandro; Weisz, Nathan; Passerini, Andrea

    2016-01-01

    Brain decoding is a popular multivariate approach for hypothesis testing in neuroimaging. Linear classifiers are widely employed in the brain decoding paradigm to discriminate among experimental conditions. Then, the derived linear weights are visualized in the form of multivariate brain maps to further study spatio-temporal patterns of underlying neural activities. It is well known that the brain maps derived from weights of linear classifiers are hard to interpret because of high correlations between predictors, low signal to noise ratios, and the high dimensionality of neuroimaging data. Therefore, improving the interpretability of brain decoding approaches is of primary interest in many neuroimaging studies. Despite extensive studies of this type, at present, there is no formal definition for interpretability of multivariate brain maps. As a consequence, there is no quantitative measure for evaluating the interpretability of different brain decoding methods. In this paper, first, we present a theoretical definition of interpretability in brain decoding; we show that the interpretability of multivariate brain maps can be decomposed into their reproducibility and representativeness. Second, as an application of the proposed definition, we exemplify a heuristic for approximating the interpretability in multivariate analysis of evoked magnetoencephalography (MEG) responses. Third, we propose to combine the approximated interpretability and the generalization performance of the brain decoding into a new multi-objective criterion for model selection. Our results, for the simulated and real MEG data, show that optimizing the hyper-parameters of the regularized linear classifier based on the proposed criterion results in more informative multivariate brain maps. More importantly, the presented definition provides the theoretical background for quantitative evaluation of interpretability, and hence, facilitates the development of more effective brain decoding algorithms

  14. Awake Craniotomy with Noninvasive Brain Mapping by 3-Tesla Functional Magnetic Resonance Imaging for Excision of Low-grade Glioma: A Case of a Young Patient from Pakistan.

    Science.gov (United States)

    Aleem Bhatti, Atta Ul; Jakhrani, Nasir Khan; Parekh, Maria Adnan

    2018-01-01

    The past few years have seen increasing support for gross total resection in the management of low-grade gliomas (LGGs), with a greater extent of resection correlated with better overall survival, progression-free survival, and time to malignant transformation. There is consistent evidence in literature supporting extent of safe resection as a good prognostic indicator as well as positively affecting seizure control, symptomatic relief in pressure symptoms, and longer progression-free and total survival. The operative goal in most LGG cases is to maximize the extent of resection for these benefits while avoiding postoperative neurologic deficits. Several advanced invasive and noninvasive surgical techniques such as intraoperative magnetic resonance imaging (MRI), fluorescence-guided surgery, intraoperative functional pathway mapping, and neuronavigation have been developed in an attempt to better achieve maximal safe resection. We present a case of LGG in a young patient with a 5-year history of refractory seizures and gradual onset walking difficulty. Serial MRI brain scans revealed a progressive increase in right frontal tumor size with substantial edema and parafalcine herniation. Noninvasive brain mapping by functional MRI (fMRI) and sleep-awake-sleep type of anesthesia with endotracheal tube insertion was utilized during an awake craniotomy. Histopathology confirmed a Grade II oligodendroglioma, and genetic analysis revealed no codeletion at 1p/19q. Neurological improvement was remarkable in terms of immediate motor improvement, and the patient remained completely seizure free on a single antiepileptic drug. There is no radiologic or clinical evidence of recurrence 6 months postoperatively. This is the first published report of an awake craniotomy for LGG in Pakistan. The contemporary concept of supratotal resection in LGGs advocates generous functional resection even beyond MRI findings rather than mere excision of oncological boundaries. This relatively

  15. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica ? A Pilot Study

    OpenAIRE

    Doring, Thomas Martin; Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R.; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwen...

  16. Accelerated whole-brain multi-parameter mapping using blind compressed sensing.

    Science.gov (United States)

    Bhave, Sampada; Lingala, Sajan Goud; Johnson, Casey P; Magnotta, Vincent A; Jacob, Mathews

    2016-03-01

    To introduce a blind compressed sensing (BCS) framework to accelerate multi-parameter MR mapping, and demonstrate its feasibility in high-resolution, whole-brain T1ρ and T2 mapping. BCS models the evolution of magnetization at every pixel as a sparse linear combination of bases in a dictionary. Unlike compressed sensing, the dictionary and the sparse coefficients are jointly estimated from undersampled data. Large number of non-orthogonal bases in BCS accounts for more complex signals than low rank representations. The low degree of freedom of BCS, attributed to sparse coefficients, translates to fewer artifacts at high acceleration factors (R). From 2D retrospective undersampling experiments, the mean square errors in T1ρ and T2 maps were observed to be within 0.1% up to R = 10. BCS was observed to be more robust to patient-specific motion as compared to other compressed sensing schemes and resulted in minimal degradation of parameter maps in the presence of motion. Our results suggested that BCS can provide an acceleration factor of 8 in prospective 3D imaging with reasonable reconstructions. BCS considerably reduces scan time for multiparameter mapping of the whole brain with minimal artifacts, and is more robust to motion-induced signal changes compared to current compressed sensing and principal component analysis-based techniques. © 2015 Wiley Periodicals, Inc.

  17. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.

    Science.gov (United States)

    Faisan, Sylvain; Thoraval, Laurent; Armspach, Jean-Paul; Foucher, Jack R; Metz-Lutz, Marie-Noëlle; Heitz, Fabrice

    2005-01-01

    Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes. Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the "hidden" sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets. Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an "ideal" implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected

  18. Functional brain mapping using H{sub 2}{sup 15}O positron emission tomography (I): statistical parametric mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Lee, Jae Sung; Kim, Kyeong Min; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1998-08-01

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H{sub 2}{sup 15}O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory.

  19. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    Science.gov (United States)

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan.

    Science.gov (United States)

    Acosta-Cabronero, Julio; Betts, Matthew J; Cardenas-Blanco, Arturo; Yang, Shan; Nestor, Peter J

    2016-01-13

    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)--a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20-79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM-age associations were identified in several deep-brain nuclei--chiefly the striatum and midbrain-and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. This study used a whole--brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI analysis and prior knowledge

  1. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  2. Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

    Directory of Open Access Journals (Sweden)

    Galina V. Portnova

    2018-01-01

    Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.

  3. Virtual brain mapping: Meta-analysis and visualization in functional neuroimaging

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup

    Results from functional neuroimaging such as positron emission tomography and functional magnetic resonance are often reported as sets of 3-dimensional coordinates in Talairach stereotactic space. By utilizing data collected in the BrainMap database and from our own small XML database we can...... data matrix. By conditioning on elements in the databases other than the coordinate data, e.g., anatomical labels associated with many coordinates we can make conditional novelty detection identifying outliers in the database that might be errorneous entries or seldom occuring patterns. In the Brain......Map database we found errors, e.g., stemming from confusion of centimeters and millimeters during entering and errors in the original article. Conditional probability density modeling also enables generation of probabilistic atlases and automatic probabilistic anatomical labeling of new coordinates...

  4. Mapping of brain function with positron emission tomography for pathophysiological analysis of neurological disorders

    International Nuclear Information System (INIS)

    Nariai, Tadashi

    2001-01-01

    The role of PET is discussed mainly through author's clinical experience in patients with brain lesions from the view of mapping of brain function. Procedure for PET concept in clinical practice is summarized. PET using tracers like [ 15 O]water and [ 18 F]fluorodeoxyglucose for mapping of the function has been used in combination with MRI, MEG (magnetoencephalography), SPECT and other imaging means for morphological identification. Actual those images before and after surgery are presented in cases of epilepsy, moyamoya disease, stegnosis of cervical artery, arteriovenous malformation and oligodendroglioma. Images of [ 11 C]flumazenil in epilepsies are also presented to show the neurological dysfunctions. PET evaluation of neurological functions is concluded to become more important in parallel with the advancement of therapeutics. (K.H.)

  5. Prevalence of incidental findings on magnetic resonance imaging: Cuban project to map the human brain

    International Nuclear Information System (INIS)

    Hernandez Gonzalez, Gertrudis de los Angeles; Alvarez Sanchez, Marilet; Jordan Gonzalez, Jose

    2010-01-01

    To determine the prevalence of incidental findings in healthy subjects of the Cuban Human Brain Mapping Project sample, it was performed a retrospective descriptive study of the magnetic resonance imaging (MRI) obtained from 394 healthy subjects that make up the sample of the project, between 2006-2007, with an age range of 18 to 68 years (mean 33,12), of which 269 (68,27 %) are male and 125 (31,73 %) are women. It was shown that 40,36 % had one or more anomaly in the magnetic resonance imaging (MRI). In total, the number of incidental findings was 188, 23,6 % of which were brain findings and 24,11 % were non-brain findings, among the latter, were the sinusopathy with 20,81 % and maxillary polyps with 3,30 %. The most prevalent brain findings were: intrasellar arachnoidocele, 11,93 %, followed by the prominence of the pituitary gland, 5,84 %, ventricular asymmetry, 1,77 % and bone defects, 1,02 %. Other brain abnormalities found with very low prevalence had no pathological significance, except for two cases with brain tumor, which were immediately sent to a specialist. Incidental findings in MRI are common in the general population (40,36 %), being the sinusopathy, and intrasellar arachnoidocele the most common findings. Asymptomatic individuals who have any type of structural abnormality provide invaluable information on the prevalence of these abnormalities in a presumably healthy population, which may be used as references for epidemiological studies

  6. Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2013-12-01

    Cerebrovascular reactivity (CVR) can be mapped using BOLD fMRI to provide a clinical insight into vascular health that can be used to diagnose cerebrovascular disease. Breath-holds are a readily accessible method for producing the required arterial CO2 increases but their implementation into clinical studies is limited by concerns that patients will demonstrate highly variable performance of breath-hold challenges. This study assesses the repeatability of CVR measurements despite poor task performance, to determine if and how robust results could be achieved with breath-holds in patients. Twelve healthy volunteers were scanned at 3 T. Six functional scans were acquired, each consisting of 6 breath-hold challenges (10, 15, or 20 s duration) interleaved with periods of paced breathing. These scans simulated the varying breath-hold consistency and ability levels that may occur in patient data. Uniform ramps, time-scaled ramps, and end-tidal CO2 data were used as regressors in a general linear model in order to measure CVR at the grey matter, regional, and voxelwise level. The intraclass correlation coefficient (ICC) quantified the repeatability of the CVR measurement for each breath-hold regressor type and scale of interest across the variable task performances. The ramp regressors did not fully account for variability in breath-hold performance and did not achieve acceptable repeatability (ICC0.4). Further analysis of intra-subject CVR variability across the brain (ICCspatial and voxelwise correlation) supported the use of end-tidal CO2 data to extract robust whole-brain CVR maps, despite variability in breath-hold performance. We conclude that the incorporation of end-tidal CO2 monitoring into scanning enables robust, repeatable measurement of CVR that makes breath-hold challenges suitable for routine clinical practice. © 2013.

  7. An Intracranial Electroencephalography (iEEG Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation

    Directory of Open Access Journals (Sweden)

    Yinghua eWang

    2016-04-01

    Full Text Available Object: Before epilepsy surgeries, intracranial electroencephalography (iEEG is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and brain function mapping visualization is still lacking. In this study, we developed a Brain Function Mapping (BFM Tool, which facilitates electrode position registration and brain function mapping visualization, with an application to epilepsy surgeries.Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color / thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import / export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization.Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner.Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.

  8. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    Science.gov (United States)

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438

  9. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  10. Neural imaginaries and clinical epistemology: Rhetorically mapping the adolescent brain in the clinical encounter.

    Science.gov (United States)

    Buchbinder, Mara

    2015-10-01

    The social work of brain images has taken center stage in recent theorizing of the intersections between neuroscience and society. However, neuroimaging is only one of the discursive modes through which public representations of neurobiology travel. This article adopts an expanded view toward the social implications of neuroscientific thinking to examine how neural imaginaries are constructed in the absence of visual evidence. Drawing on ethnographic fieldwork conducted over 18 months (2008-2009) in a United States multidisciplinary pediatric pain clinic, I examine the pragmatic clinical work undertaken to represent ambiguous symptoms in neurobiological form. Focusing on one physician, I illustrate how, by rhetorically mapping the brain as a therapeutic tool, she engaged in a distinctive form of representation that I call neural imagining. In shifting my focus away from the purely material dimensions of brain images, I juxtapose the cultural work of brain scanning technologies with clinical neural imaginaries in which the teenage brain becomes a space of possibility, not to map things as they are, but rather, things as we hope they might be. These neural imaginaries rely upon a distinctive clinical epistemology that privileges the creative work of the imagination over visualization technologies in revealing the truths of the body. By creating a therapeutic space for adolescents to exercise their imaginative faculties and a discursive template for doing so, neural imagining relocates adolescents' agency with respect to epistemologies of bodily knowledge and the role of visualization practices therein. In doing so, it provides a more hopeful alternative to the dominant popular and scientific representations of the teenage brain that view it primarily through the lens of pathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Investigating hyperoxic effects in the rat brain using quantitative susceptibility mapping based on MRI phase.

    Science.gov (United States)

    Hsieh, Meng-Chi; Kuo, Li-Wei; Huang, Yun-An; Chen, Jyh-Horng

    2017-02-01

    To test whether susceptibility imaging can detect microvenous oxygen saturation changes, induced by hyperoxia, in the rat brain. A three-dimensional gradient-echo with a flow compensation sequence was used to acquire T2*-weighted images of rat brains during hyperoxia and normoxia. Quantitative susceptibility mapping (QSM) and QSM-based microvenous oxygenation venography were computed from gradient-echo (GRE) phase images and compared between the two conditions. Pulse oxygen saturation (SpO 2 ) in the cortex was examined and compared with venous oxygen saturation (SvO 2 ) estimated by QSM. Oxygen saturation change calculated by a conventional Δ R2* map was also compared with the ΔSvO 2 estimated by QSM. Susceptibilities of five venous and tissue regions were quantified separately by QSM. Venous susceptibility was reduced by nearly 10%, with an SvO 2 shift of 10% during hyperoxia. A hyperoxic effect, confirmed by SpO 2 measurement, resulted in an SvO 2 increase in the cortex. The ΔSvO 2 between hyperoxia and normoxia was consistent with what was estimated by the Δ R2* map in five regions. These findings suggest that a quantitative susceptibility map is a promising technique for SvO 2 measurement. This method may be useful for quantitatively investigating oxygenation-dependent functional MRI studies. Magn Reson Med 77:592-602, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Fundamental study on brain receptor mapping by neuronuclear medicine imaging. Quantitation of receptor autoradiography in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Shiro

    1988-04-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.).

  13. Brain-to-brain hyperclassification reveals action-specific motor mapping of observed actions in humans.

    Science.gov (United States)

    Smirnov, Dmitry; Lachat, Fanny; Peltola, Tomi; Lahnakoski, Juha M; Koistinen, Olli-Pekka; Glerean, Enrico; Vehtari, Aki; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2017-01-01

    Seeing an action may activate the corresponding action motor code in the observer. It remains unresolved whether seeing and performing an action activates similar action-specific motor codes in the observer and the actor. We used novel hyperclassification approach to reveal shared brain activation signatures of action execution and observation in interacting human subjects. In the first experiment, two "actors" performed four types of hand actions while their haemodynamic brain activations were measured with 3-T functional magnetic resonance imaging (fMRI). The actions were videotaped and shown to 15 "observers" during a second fMRI experiment. Eleven observers saw the videos of one actor, and the remaining four observers saw the videos of the other actor. In a control fMRI experiment, one of the actors performed actions with closed eyes, and five new observers viewed these actions. Bayesian canonical correlation analysis was applied to functionally realign observers' and actors' fMRI data. Hyperclassification of the seen actions was performed with Bayesian logistic regression trained on actors' data and tested with observers' data. Without the functional realignment, between-subjects accuracy was at chance level. With the realignment, the accuracy increased on average by 15 percentage points, exceeding both the chance level and the accuracy without functional realignment. The highest accuracies were observed in occipital, parietal and premotor cortices. Hyperclassification exceeded chance level also when the actor did not see her own actions. We conclude that the functional brain activation signatures underlying action execution and observation are partly shared, yet these activation signatures may be anatomically misaligned across individuals.

  14. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    Science.gov (United States)

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  15. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    Science.gov (United States)

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  16. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    Science.gov (United States)

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  17. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    Science.gov (United States)

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  18. Brain-wide map of efferent projections from rat barrel cortex

    Directory of Open Access Journals (Sweden)

    Izabela M. Zakiewicz

    2014-02-01

    Full Text Available The somatotopically organized whisker barrel field of the rat primary somatosensory (S1 cortex is a commonly used model system for anatomical and physiological investigations of sensory processing. The neural connections of the barrel cortex have been extensively mapped. But most investigations have focused on connections to limited regions of the brain, and overviews in the literature of the connections across the brain thus build on a range of material from different laboratories, presented in numerous publications. Furthermore, given the limitations of the conventional journal article format, analyses and interpretations are hampered by lack of access to the underlying experimental data. New opportunities for analyses have emerged with the recent release of an online resource of experimental data consisting of collections of high-resolution images from 6 experiments in which anterograde tracers were injected in S1 whisker or forelimb representations. Building on this material, we have conducted a detailed analysis of the brain wide distribution of the efferent projections of the rat barrel cortex. We compare our findings with the available literature and reports accumulated in the Brain Architecture Management System (BAMS2 database. We report well-known and less known intracortical and subcortical projections of the barrel cortex, as well as distinct differences between S1 whisker and forelimb related projections. Our results correspond well with recently published overviews, but provide additional information about relative differences among S1 projection targets. Our approach demonstrates how collections of shared experimental image data are suitable for brain-wide analysis and interpretation of connectivity mapping data.

  19. Brain mapping in a patient with congenital blindness – a case for multimodal approaches

    Directory of Open Access Journals (Sweden)

    Jarod L Roland

    2013-07-01

    Full Text Available Recent advances in basic neuroscience research across a wide range of methodologies have contributed significantly to our understanding of human cortical electrophysiology and functional brain imaging. Translation of this research into clinical neurosurgery has opened doors for advanced mapping of functionality that previously was prohibitively difficult, if not impossible. Here we present the case of a unique individual with congenital blindness and medically refractory epilepsy who underwent neurosurgical treatment of her seizures. Pre-operative evaluation presented the challenge of accurately and robustly mapping the cerebral cortex for an individual with a high probability of significant cortical re-organization. Additionally, a blind individual has unique priorities in one’s ability to read Braille by touch and sense the environment primarily by sound than the non-vision impaired person. For these reasons we employed additional measures to map sensory, motor, speech, language, and auditory perception by employing a number of cortical electrophysiologic mapping and functional magnetic resonance imaging methods. Our data show promising results in the application of these adjunctive methods in the pre-operative mapping of otherwise difficult to localize, and highly variable, functional cortical areas.

  20. Simultaneous Imaging of CBF Change and BOLD with Saturation-Recovery-T1 Method.

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    Full Text Available A neuroimaging technique based on the saturation-recovery (SR-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD contrast and cerebral blood flow change (ΔCBF, which is determined by CBF-sensitive T1 relaxation rate change (ΔR1CBF. This technique was validated by quantitatively examining the relationships among ΔR1CBF, ΔCBF, BOLD and relative CBF change (rCBF, which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5, resulting in a baseline CBF value (=1.18 ml/g/min consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1CBF had a better accuracy than apparent R1 change (ΔR1app; nevertheless, ΔR1app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1app. In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.

  1. Seventh Graders' Academic Achievement, Creativity, and Ability to Construct a Cross-Domain Concept Map--A Brain Function Perspective

    Science.gov (United States)

    Yeh, Yu-Chu

    2004-01-01

    This study proposes an interactive model of "cross-domain" concept mapping with an emphasis on brain functions, and it further investigates the relationships between academic achievement, creative thinking, and cross-domain concept mapping. Sixty-nine seventh graders participated in this study which employed two 50-minute instructional…

  2. Right anterior cerebellum BOLD responses reflect age related changes in Simon task sequential effects.

    Science.gov (United States)

    Aisenberg, D; Sapir, A; Close, A; Henik, A; d'Avossa, G

    2018-01-31

    Participants are slower to report a feature, such as color, when the target appears on the side opposite the instructed response, than when the target appears on the same side. This finding suggests that target location, even when task-irrelevant, interferes with response selection. This effect is magnified in older adults. Lengthening the inter-trial interval, however, suffices to normalize the congruency effect in older adults, by re-establishing young-like sequential effects (Aisenberg et al., 2014). We examined the neurological correlates of age related changes by comparing BOLD signals in young and old participants performing a visual version of the Simon task. Participants reported the color of a peripheral target, by a left or right-hand keypress. Generally, BOLD responses were greater following incongruent than congruent targets. Also, they were delayed and of smaller amplitude in old than young participants. BOLD responses in visual and motor regions were also affected by the congruency of the previous target, suggesting that sequential effects may reflect remapping of stimulus location onto the hand used to make a response. Crucially, young participants showed larger BOLD responses in right anterior cerebellum to incongruent targets, when the previous target was congruent, but smaller BOLD responses to incongruent targets when the previous target was incongruent. Old participants, however, showed larger BOLD responses to congruent than incongruent targets, irrespective of the previous target congruency. We conclude that aging may interfere with the trial by trial updating of the mapping between the task-irrelevant target location and response, which takes place during the inter-trial interval in the cerebellum and underlays sequential effects in a Simon task. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Brain-wide maps of Fos expression during fear learning and recall.

    Science.gov (United States)

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    Science.gov (United States)

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-03-03

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  5. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    Science.gov (United States)

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  6. Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer.

    Science.gov (United States)

    Riva, Marco; Casarotti, Alessandra; Comi, Alessandro; Pessina, Federico; Bello, Lorenzo

    2016-09-01

    Music is one of the most sophisticated and fascinating functions of the brain. Yet, how music is instantiated within the brain is not fully characterized. Singing is a peculiar aspect of music, in which both musical and linguistic skills are required to provide a merged vocal output. Identifying the neural correlates of this process is relevant for both clinical and research purposes. An adult white man with a presumed left temporal glioma was studied. He is a professional opera singer. A tailored music evaluation, the Montreal Battery of Evaluation of Amusia, was performed preoperatively and postoperatively, with long-term follow-up. Intraoperative stimulation mapping (ISM) with awake surgery with a specific music evaluation battery was used to identify and preserve the cortical and subcortical structures subserving music, along with standard motor-sensory and language mapping. A total resection of a grade I glioma was achieved. The Montreal Battery of Evaluation of Amusia reported an improvement in musical scores after the surgery. ISM consistently elicited several types of errors in the superior temporal gyrus and, to a lesser extent, in the inferior frontal operculum. Most errors occurred during score reading; fewer errors were elicited during the assessment of rhythm. No spontaneous errors were recorded. These areas did not overlap with eloquent sites for counting or naming. ISM and a tailored music battery enabled better characterization of a specific network within the brain subserving score reading independently from speech with long-term clinical impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions.

    Science.gov (United States)

    Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J

    2016-09-01

    The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.

  8. T1 mapping of the mouse brain following fractionated manganese administration using MP2RAGE.

    Science.gov (United States)

    Driencourt, Luc; Romero, Carola Jacqueline; Lepore, Mario; Eggenschwiler, Florent; Reynaud, Olivier; Just, Nathalie

    2017-01-01

    With the increasing development of transgenic mouse models of neurodegenerative diseases allowing improved understanding of the underlying mechanisms of these disorders, robust quantitative mapping techniques are also needed in rodents. MP2RAGE has shown great potential for structural imaging in humans at high fields. In the present work, MP2RAGE was successfully implemented at 9.4T and 14.1T. Following fractionated injections of MnCl 2 , MP2RAGE images were acquired allowing simultaneous depiction and T 1 mapping of structures in the mouse brain at both fields. In addition, T 1 maps demonstrated significant T 1 shortenings in different structures of the mouse brain (p < 0.0008 at 9.4T, p < 0.000001 at 14.1T). T 1 values recovered to the levels of saline-injected animals 1 month after the last injection except in the pituitary gland. We believe that MP2RAGE represents an important prospective translational tool for further structural MRI.

  9. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    Science.gov (United States)

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  10. Mapping cell-specific functional connections in the mouse brain using ChR2-evoked hemodynamics (Conference Presentation)

    Science.gov (United States)

    Bauer, Adam Q.; Kraft, Andrew; Baxter, Grant A.; Bruchas, Michael; Lee, Jin-Moo; Culver, Joseph P.

    2017-02-01

    Functional magnetic resonance imaging (fMRI) has transformed our understanding of the brain's functional organization. However, mapping subunits of a functional network using hemoglobin alone presents several disadvantages. Evoked and spontaneous hemodynamic fluctuations reflect ensemble activity from several populations of neurons making it difficult to discern excitatory vs inhibitory network activity. Still, blood-based methods of brain mapping remain powerful because hemoglobin provides endogenous contrast in all mammalian brains. To add greater specificity to hemoglobin assays, we integrated optical intrinsic signal(OIS) imaging with optogenetic stimulation to create an Opto-OIS mapping tool that combines the cell-specificity of optogenetics with label-free, hemoglobin imaging. Before mapping, titrated photostimuli determined which stimulus parameters elicited linear hemodynamic responses in the cortex. Optimized stimuli were then scanned over the left hemisphere to create a set of optogenetically-defined effective connectivity (Opto-EC) maps. For many sites investigated, Opto-EC maps exhibited higher spatial specificity than those determined using spontaneous hemodynamic fluctuations. For example, resting-state functional connectivity (RS-FC) patterns exhibited widespread ipsilateral connectivity while Opto-EC maps contained distinct short- and long-range constellations of ipsilateral connectivity. Further, RS-FC maps were usually symmetric about midline while Opto-EC maps displayed more heterogeneous contralateral homotopic connectivity. Both Opto-EC and RS-FC patterns were compared to mouse connectivity data from the Allen Institute. Unlike RS-FC maps, Thy1-based maps collected in awake, behaving mice closely recapitulated the connectivity structure derived using ex vivo anatomical tracer methods. Opto-OIS mapping could be a powerful tool for understanding cellular and molecular contributions to network dynamics and processing in the mouse brain.

  11. MR-based automatic delineation of volumes of interest in human brain PET images using probability maps

    DEFF Research Database (Denmark)

    Svarer, Claus; Madsen, Karina; Hasselbalch, Steen G.

    2005-01-01

    The purpose of this study was to develop and validate an observer-independent approach for automatic generation of volume-of-interest (VOI) brain templates to be used in emission tomography studies of the brain. The method utilizes a VOI probability map created on the basis of a database of several...... delineation of the VOI set. The approach was also shown to work equally well in individuals with pronounced cerebral atrophy. Probability-map-based automatic delineation of VOIs is a fast, objective, reproducible, and safe way to assess regional brain values from PET or SPECT scans. In addition, the method...

  12. New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain.

    Science.gov (United States)

    Chen, A C

    2001-10-01

    With the maturation of EEG/MEG brain mapping and PET/fMRI neuroimaging in the 1990s, greater understanding of pain processing in the brain now elucidates and may even challenge the classical theory of pain mechanisms. This review scans across the cultural diversity of pain expression and modulation in man. It outlines the difficulties in defining and studying human pain. It then focuses on methods of studying the brain in experimental and clinical pain, the cohesive results of brain mapping and neuroimaging of noxious perception, the implication of pain research in understanding human consciousness and the relevance to clinical care as well as to the basic science of human psychophysiology. Non-invasive brain studies in man start to unveil the age-old puzzles of pain-illusion, hypnosis and placebo in pain modulation. The neurophysiological and neurohemodynamic brain measures of experimental pain can now largely satisfy the psychophysiologist's dream, unimaginable only a few years ago, of modelling the body-brain, brain-mind, mind-matter duality in an inter-linking 3-P triad: physics (stimulus energy); physiology (brain activities); and psyche (perception). For neuropsychophysiology greater challenges lie ahead: (a) how to integrate a cohesive theory of human pain in the brain; (b) what levels of analyses are necessary and sufficient; (c) what constitutes the structural organisation of the pain matrix; (d) what are the modes of processing among and across the sites of these structures; and (e) how can neural computation of these processes in the brain be carried out? We may envision that modular identification and delineation of the arousal-attention, emotion-motivation and perception-cognition neural networks of pain processing in the brain will also lead to deeper understanding of the human mind. Two foreseeable impacts on clinical sciences and basic theories from brain mapping/neuroimaging are the plausible central origin in persistent pain and integration of

  13. Mapping the sequence of brain events in response to disgusting food.

    Science.gov (United States)

    Pujol, Jesus; Blanco-Hinojo, Laura; Coronas, Ramón; Esteba-Castillo, Susanna; Rigla, Mercedes; Martínez-Vilavella, Gerard; Deus, Joan; Novell, Ramón; Caixàs, Assumpta

    2018-01-01

    Warning signals indicating that a food is potentially dangerous may evoke a response that is not limited to the feeling of disgust. We investigated the sequence of brain events in response to visual representations of disgusting food using a dynamic image analysis. Functional MRI was acquired in 30 healthy subjects while they were watching a movie showing disgusting food scenes interspersed with the scenes of appetizing food. Imaging analysis included the identification of the global brain response and the generation of frame-by-frame activation maps at the temporal resolution of 2 s. Robust activations were identified in brain structures conventionally associated with the experience of disgust, but our analysis also captured a variety of other brain elements showing distinct temporal evolutions. The earliest events included transient changes in the orbitofrontal cortex and visual areas, followed by a more durable engagement of the periaqueductal gray, a pivotal element in the mediation of responses to threat. A subsequent core phase was characterized by the activation of subcortical and cortical structures directly concerned not only with the emotional dimension of disgust (e.g., amygdala-hippocampus, insula), but also with the regulation of food intake (e.g., hypothalamus). In a later phase, neural excitement extended to broad cortical areas, the thalamus and cerebellum, and finally to the default mode network that signaled the progressive termination of the evoked response. The response to disgusting food representations is not limited to the emotional domain of disgust, and may sequentially involve a variety of broadly distributed brain networks. Hum Brain Mapp 39:369-380, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Specificities of Awake Craniotomy and Brain Mapping in Children for Resection of Supratentorial Tumors in the Language Area.

    Science.gov (United States)

    Delion, Matthieu; Terminassian, Aram; Lehousse, Thierry; Aubin, Ghislaine; Malka, Jean; N'Guyen, Sylvie; Mercier, Philippe; Menei, Philippe

    2015-12-01

    In the pediatric population, awake craniotomy began to be used for the resection of brain tumor located close to eloquent areas. Some specificities must be taken into account to adapt this method to children. The aim of this clinical study is to not only confirm the feasibility of awake craniotomy and language brain mapping in the pediatric population but also identify the specificities and necessary adaptations of the procedure. Six children aged 11 to 16 were operated on while awake under local anesthesia with language brain mapping for supratentorial brain lesions (tumor and cavernoma). The preoperative planning comprised functional magnetic resonance imaging (MRI) and neuropsychologic and psychologic assessment. The specific preoperative preparation is clearly explained including hypnosis conditioning and psychiatric evaluation. The success of the procedure was based on the ability to perform the language brain mapping and the tumor removal without putting the patient to sleep. We investigated the pediatric specificities, psychological experience, and neuropsychologic follow-up. The children experienced little anxiety, probably in large part due to the use of hypnosis. We succeeded in doing the cortical-subcortical mapping and removing the tumor without putting the patient to sleep in all cases. The psychological experience was good, and the neuropsychologic follow-up showed a favorable evolution. Preoperative preparation and hypnosis in children seemed important for performing awake craniotomy and contributing language brain mapping with the best possible psychological experience. The pediatrics specificities are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    Science.gov (United States)

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  16. From Brain Maps to Cognitive Ontologies: Informatics and the Search for Mental Structure.

    Science.gov (United States)

    Poldrack, Russell A; Yarkoni, Tal

    2016-01-01

    A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental function. Here we review the increasingly large role informatics-driven approaches are playing in such efforts. We begin by reviewing a number of challenges conventional neuroimaging approaches face in trying to delineate brain-cognition mappings--for example, the difficulty in establishing the specificity of postulated associations. Next, we demonstrate how these limitations can potentially be overcome using complementary approaches that emphasize large-scale analysis--including meta-analytic methods that synthesize hundreds or thousands of studies at a time; latent-variable approaches that seek to extract structure from data in a bottom-up manner; and predictive modeling approaches capable of quantitatively inferring mental states from patterns of brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude with a speculative discussion of what future informatics developments may hold for cognitive neuroscience.

  17. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.

    Science.gov (United States)

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-08-30

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Distributed XQuery-Based Integration and Visualization of Multimodality Brain Mapping Data.

    Science.gov (United States)

    Detwiler, Landon T; Suciu, Dan; Franklin, Joshua D; Moore, Eider B; Poliakov, Andrew V; Lee, Eunjung S; Corina, David P; Ojemann, George A; Brinkley, James F

    2009-01-01

    This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too "heavyweight" for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a "lightweight" distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts.

  19. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Science.gov (United States)

    Hampson, M; Hoffman, R E

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  20. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  1. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  2. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  3. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  4. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  5. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica - A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Thomas Martin Doring

    Full Text Available Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO using quantitative susceptibility mapping (QSM, a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2* and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman's rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1. Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding.

  6. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    Science.gov (United States)

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  7. Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention.

    Directory of Open Access Journals (Sweden)

    Sofia Crespi

    Full Text Available The neural substrate of the phenomenological experience of a stable visual world remains obscure. One possible mechanism would be to construct spatiotopic neural maps where the response is selective to the position of the stimulus in external space, rather than to retinal eccentricities, but evidence for these maps has been inconsistent. Here we show, with fMRI, that when human subjects perform concomitantly a demanding attentive task on stimuli displayed at the fovea, BOLD responses evoked by moving stimuli irrelevant to the task were mostly tuned in retinotopic coordinates. However, under more unconstrained conditions, where subjects could attend easily to the motion stimuli, BOLD responses were tuned not in retinal but in external coordinates (spatiotopic selectivity in many visual areas, including MT, MST, LO and V6, agreeing with our previous fMRI study. These results indicate that spatial attention may play an important role in mediating spatiotopic selectivity.

  8. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study

    Science.gov (United States)

    Langkammer, Christian; Schweser, Ferdinand; Krebs, Nikolaus; Deistung, Andreas; Goessler, Walter; Scheurer, Eva; Sommer, Karsten; Reishofer, Gernot; Yen, Kathrin; Fazekas, Franz; Ropele, Stefan; Reichenbach, Jürgen R.

    2012-01-01

    Quantitative susceptibility mapping (QSM) is a novel technique which allows determining the bulk magnetic susceptibility distribution of tissue in vivo from gradient echo magnetic resonance phase images. It is commonly assumed that paramagnetic iron is the predominant source of susceptibility variations in gray matter as many studies have reported a reasonable correlation of magnetic susceptibility with brain iron concentrations in vivo. Instead of performing direct comparisons, however, all these studies used the putative iron concentrations reported in the hallmark study by Hallgren and Sourander (1958) for their analysis. Consequently, the extent to which QSM can serve to reliably assess brain iron levels is not yet fully clear. To provide such information we investigated the relation between bulk tissue magnetic susceptibility and brain iron concentration in unfixed (in situ) post mortem brains of 13 subjects using MRI and inductively coupled plasma mass spectrometry. A strong linear correlation between chemically determined iron concentration and bulk magnetic susceptibility was found in gray matter structures (r = 0.84, p < 0.001), whereas the correlation coefficient was much lower in white matter (r = 0.27, p < 0.001). The slope of the overall linear correlation was consistent with theoretical considerations of the magnetism of ferritin supporting that most of the iron in the brain is bound to ferritin proteins. In conclusion, iron is the dominant source of magnetic susceptibility in deep gray matter and can be assessed with QSM. In white matter regions the estimation of iron concentrations by QSM is less accurate and more complex because the counteracting contribution from diamagnetic myelinated neuronal fibers confounds the interpretation. PMID:22634862

  9. Comparing registration methods for mapping brain change using tensor-based morphometry.

    Science.gov (United States)

    Yanovsky, Igor; Leow, Alex D; Lee, Suh; Osher, Stanley J; Thompson, Paul M

    2009-10-01

    Measures of brain changes can be computed from sequential MRI scans, providing valuable information on disease progression for neuroscientific studies and clinical trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy. In this paper, we examine the power of different nonrigid registration models to detect changes in TBM, and their stability when no real changes are present. Specifically, we investigate an asymmetric version of a recently proposed Unbiased registration method, using mutual information as the matching criterion. We compare matching functionals (sum of squared differences and mutual information), as well as large-deformation registration schemes (viscous fluid and inverse-consistent linear elastic registration methods versus Symmetric and Asymmetric Unbiased registration) for detecting changes in serial MRI scans of 10 elderly normal subjects and 10 patients with Alzheimer's Disease scanned at 2-week and 1-year intervals. We also analyzed registration results when matching images corrupted with artificial noise. We demonstrated that the unbiased methods, both symmetric and asymmetric, have higher reproducibility. The unbiased methods were also less likely to detect changes in the absence of any real physiological change. Moreover, they measured biological deformations more accurately by penalizing bias in the corresponding statistical maps.

  10. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  11. 99mTc-HMPAO perfusion indices and brain-mapping in stroke patients

    International Nuclear Information System (INIS)

    Minchev, D.; Klisarova, A.

    1997-01-01

    It is the purpose of the study to establish correlations between 99mTc-HMPAO (hexamethylpropylenaminoxym) perfusion indices and changes in brain-mapping among patients with acute stroke. Forty-six patients with definitely proved stroke syndrome are investigated in the first 72 hours and 15 days after the onset of cerebrovascular accident using clinical, neuro-physiological and 99mTc-HMPAO SPECT methods. Regional and hemispheric perfusion asymmetry correlate with the brain-mapping cerebral disturbance (p < 0.001). In patients presenting focal hypoperfusion there is a significant correlation between perfusion indices and local EEG disturbance (r = 0.87). The dynamic study demonstrates a significant correlation between perfusion indices and electrical cerebral disturbance in the first 72 hours after the onset of the cerebrovascular accident. Fifteen days later no such correlation is documented. The obtained results demonstrate the essential practical bearing of 99mTc-HMPAO SPECT indices on the objective assessment of perfusion hemispheric and regional asymmetry in stroke patients, and the possibility of being used for indirect estimation of the regional cerebral blood flow in acute stroke patients against the background of visual and quantitative EEG changes (author)

  12. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using {sup 99m}Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus.

  13. Brain SPECT analysis using statistical parametric mapping in patients with posttraumatic stress disorder

    International Nuclear Information System (INIS)

    Kim, Euy Neyng; Sohn, Hyung Sun; Kim, Sung Hoon; Chung, Soo Kyo; Yang, Dong Won

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with posttraumatic stress disorder (PTSD) using statistical parametric mapping (SPM99). Noninvasive rCBF measurements using 99m Tc-ethyl cysteinate dimer (ECD) SPECT were performed on 23 patients with PTSD and 21 age matched normal controls without re-exposure to accident-related stimuli. The relative rCBF maps in patients with PTSD and controls were compared. In patients with PTSD, significant increased rCBF was found along the limbic system in the brain. There were a few foci of decreased rCBF in the superior frontal gyrus, parietal and temporal region. PTSD is associated with increased rCBF in limbic areas compared with age-matched normal controls. These findings implicate regions of the limbic brain, which may mediate the response to aversive stimuli in healthy individuals, play on important role in patients suffering from PTSD and suggest that ongoing hyperfunction of 'overlearned survival response' or flashbacks response in these regions after painful, life threatening, or horrifying events without re-exposure to same traumatic stimulus

  14. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    Directory of Open Access Journals (Sweden)

    Mohammad Haris

    Full Text Available Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS has been commonly used to detect the glutamate (Glu changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4% was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  15. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  16. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    Science.gov (United States)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  17. Rapid whole brain myelin water content mapping without an external water standard at 1.5T.

    Science.gov (United States)

    Nguyen, Thanh D; Spincemaille, Pascal; Gauthier, Susan A; Wang, Yi

    2017-06-01

    The objective of this study is to develop rapid whole brain mapping of myelin water content (MWC) at 1.5T. The Fast Acquisition with Spiral Trajectory and T2prep (FAST-T2) pulse sequence originally developed for myelin water fraction (MWF) mapping was modified to obtain fast mapping of T1 and receiver coil sensitivity needed for MWC computation. The accuracy of the proposed T1 mapping was evaluated by comparing with the standard IR-FSE method. Numerical simulations were performed to assess the accuracy and reliability of the proposed MWC mapping. We also compared MWC values obtained with either cerebrospinal fluid (CSF) or an external water tube attached to the subject's head as the water reference. Our results from healthy volunteers show that whole brain MWC mapping is feasible in 7min and provides accurate brain T1 values. Regional brain WC and MWC measurements obtained with the internal CSF-based water standard showed excellent correlation (R>0.99) and negligible bias within narrow limits of agreement compared to those obtained with an external water standard. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-11-01

    Full Text Available Alzheimer's disease (AD is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs, 33 early MCI (EMCI, 32 late MCI (LMCI, and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ scores and global Clinical Dementia Rating (CDR scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE

  19. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo; Lee, Jae Sung

    2002-01-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  20. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  1. Mapping the trajectory of the amygdalothalamic tract in the human brain.

    Science.gov (United States)

    Kamali, Arash; Riascos, Roy F; Pillai, Jay J; Sair, Haris I; Patel, Rajan; Nelson, Flavia M; Lincoln, John A; Tandon, Nitin; Mirbagheri, Saeedeh; Rabiei, Pejman; Keser, Zafer; Hasan, Khader M

    2018-04-01

    Although the thalamus is not considered primarily as a limbic structure, abundant evidence indicates the essential role of the thalamus as a modulator of limbic functions indirectly through the amygdala. The amygdala is a central component of the limbic system and serves an essential role in modulating the core processes including the memory, decision-making, and emotional reactions. The amygdalothalamic pathway is the largest direct amygdalo-diencephalic connection in the primates including the human brain. Given the crucial role of the amygdalothalamic tract (ATT) in memory function and diencephalic amnesia in stroke patients, diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of this pathway noninvasively. To date, few diffusion-weighted studies have focused on the amygdala, yet the fine neuronal connection of the amygdala and thalamus known as the ATT has yet to be elucidated. This study aimed to investigate the utility of high spatial resolution diffusion tensor tractography for mapping the trajectory of the ATT in the human brain. We studied 15 healthy right-handed human subjects (12 men and 3 women with age range of 24-37 years old). Using a high-resolution diffusion tensor tractography technique, for the first time, we were able to reconstruct and measure the trajectory of the ATT. We further revealed the close relationship of the ATT with the temporopontine tract and the fornix bilaterally in 15 healthy adult human brains. © 2018 Wiley Periodicals, Inc.

  2. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. © 2014 Wiley Periodicals, Inc.

  3. A fundamental study on brain receptor mapping by neuronuclear medicine imaging

    International Nuclear Information System (INIS)

    Tsuji, Shiro

    1988-01-01

    The usefulness of autoradiography in the quantitation of the rat brain receptor was evaluated. H-3 spiperone, H-3 quinuclidinyl benzylate (QNB), H-3 muscimol, H-3 diprenorphine, H-3 ketanserin, and H-3 dihydroalprenolol hydrochloride were used for autoradiography. Satisfactory autoradiograms with these H-3 labeled ligants were obtained for incubation time, washing time, and binding curve. The video digitizer system was the most suitable in autoradiography. Using appropriate conditions for the ligand-receptor interaction, receptor autoradiography and in vitro receptor assay were concordant as for the the number of maximum binding sites (Bmax) of the muscarinic acetylcholine receptor and equilibrium dissociation constant (Kd) of its antagonist, H-3 QNB. Receptor autoradiography with high spatial resolution allowed the comparison of Bmax and Kd in the brain. To improve conventional Scatchard analysis, used in the estimation of Bmax and Kd, a new mathematical method was developed for estimating individual rate constants and Bmax on the basis of time courses of association and dissociation. Using the new mathematical method, apparent equilibrium dissociation rate constant was in good agreement with that from a non-isomerization model. Autoradiography may provide a clue for the basic data on brain receptor mapping by a promising emission computerized tomography in neuropsychiatric diseases. (Namekawa, K.)

  4. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    Science.gov (United States)

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  5. Mapping Cortical Laminar Structure in the 3D BigBrain.

    Science.gov (United States)

    Wagstyl, Konrad; Lepage, Claude; Bludau, Sebastian; Zilles, Karl; Fletcher, Paul C; Amunts, Katrin; Evans, Alan C

    2018-07-01

    Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.

  6. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    International Nuclear Information System (INIS)

    Chen, Zhiye; Li, Lin; Sun, Jie; Ma, Lin

    2012-01-01

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  7. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  8. Olfactory map formation in the Drosophila brain: genetic specificity and neuronal variability.

    Science.gov (United States)

    Brochtrup, Anna; Hummel, Thomas

    2011-02-01

    The development of the Drosophila olfactory system is a striking example of how genetic programs specify a large number of different neuron types and assemble them into functional circuits. To ensure precise odorant perception, each sensory neuron has to not only select a single olfactory receptor (OR) type out of a large genomic repertoire but also segregate its synaptic connections in the brain according to the OR class identity. Specification and patterning of second-order interneurons in the olfactory brain center occur largely independent of sensory input, followed by a precise point-to-point matching of sensory and relay neurons. Here we describe recent progress in the understanding of how cell-intrinsic differentiation programs and context-dependent cellular interactions generate a stereotyped sensory map in the Drosophila brain. Recent findings revealed an astonishing morphological diversity among members of the same interneuron class, suggesting an unexpected variability in local microcircuits involved in insect sensory processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Mapping the brain in type II diabetes: Voxel-based morphometry using DARTEL

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiye [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China); Li, Lin [Department of Geriatric Endocrinology, PLA General Hospital, Beijing 100853 (China); Sun, Jie [Department of Endocrinology, PLA General Hospital, Beijing 100853 (China); Ma, Lin, E-mail: cjr.malin@vip.163.com [Department of Radiology, PLA General Hospital, 28 Fuxing Road, Beijing 100853 (China)

    2012-08-15

    Purpose: To investigate the pattern of brain volume changes of the brain in patients with type II diabetes mellitus using voxel-based morphometry. Material and methods: Institutional ethics approval and informed consent were obtained. VBM based on the high resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI images was obtained from 16 type II diabetes patients (mean age 61.2 years) and 16 normal controls (mean age 59.6 years). All images were spatially preprocessed using Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL) algorithm, and the DARTEL templates were made from 100 normal subjects. Statistical parametric mapping was generated using analysis of covariance (ANCOVA). Results: An atrophy pattern of gray matter was seen in type II diabetes patients compared with controls that involved the right superior, middle, and inferior temporal gyri, right precentral gyrus, and left rolandic operculum region. The loss of white matter volume in type II diabetes mellitus was observed in right temporal lobe and left inferior frontal triangle region. ROI analysis revealed that the gray and white matter volume of right temporal lobe were significant lower in type II diabetes mellitus than that in controls (P < 0.05). Conclusion: This work demonstrated that type II diabetes mellitus patients mainly exhibited gray and white matter atrophy in right temporal lobe, and this finding supported that type II diabetes mellitus could lead to subtle diabetic brain structural changes in patients without dementia or macrovascular complications.

  10. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry

    Science.gov (United States)

    Leow, Alex D.; Klunder, Andrea D.; Jack, Clifford R.; Toga, Arthur W.; Dale, Anders M.; Bernstein, Matt A.; Britson, Paula J.; Gunter, Jeffrey L.; Ward, Chadwick P.; Whitwell, Jennifer L.; Borowski, Bret J.; Fleisher, Adam S.; Fox, Nick C.; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E.; Weiner, Michael W.; Thompson, Paul M.

    2007-01-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. A s part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere. PMID:16480900

  11. Predictive Brain Mechanisms in Sound-to-Meaning Mapping during Speech Processing.

    Science.gov (United States)

    Lyu, Bingjiang; Ge, Jianqiao; Niu, Zhendong; Tan, Li Hai; Gao, Jia-Hong

    2016-10-19

    Spoken language comprehension relies not only on the identification of individual words, but also on the expectations arising from contextual information. A distributed frontotemporal network is known to facilitate the mapping of speech sounds onto their corresponding meanings. However, how prior expectations influence this efficient mapping at the neuroanatomical level, especially in terms of individual words, remains unclear. Using fMRI, we addressed this question in the framework of the dual-stream model by scanning native speakers of Mandarin Chinese, a language highly dependent on context. We found that, within the ventral pathway, the violated expectations elicited stronger activations in the left anterior superior temporal gyrus and the ventral inferior frontal gyrus (IFG) for the phonological-semantic prediction of spoken words. Functional connectivity analysis showed that expectations were mediated by both top-down modulation from the left ventral IFG to the anterior temporal regions and enhanced cross-stream integration through strengthened connections between different subregions of the left IFG. By further investigating the dynamic causality within the dual-stream model, we elucidated how the human brain accomplishes sound-to-meaning mapping for words in a predictive manner. In daily communication via spoken language, one of the core processes is understanding the words being used. Effortless and efficient information exchange via speech relies not only on the identification of individual spoken words, but also on the contextual information giving rise to expected meanings. Despite the accumulating evidence for the bottom-up perception of auditory input, it is still not fully understood how the top-down modulation is achieved in the extensive frontotemporal cortical network. Here, we provide a comprehensive description of the neural substrates underlying sound-to-meaning mapping and demonstrate how the dual-stream model functions in the modulation of

  12. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. BOLD signal and functional connectivity associated with loving kindness meditation

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-01-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as “may all beings be happy,” to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices. PMID:24944863

  14. Distinct BOLD Activation Profiles Following Central and Peripheral Oxytocin Administration in Awake Rats.

    Science.gov (United States)

    Ferris, Craig F; Yee, Jason R; Kenkel, William M; Dumais, Kelly Marie; Moore, Kelsey; Veenema, Alexa H; Kulkarni, Praveen; Perkybile, Allison M; Carter, C Sue

    2015-01-01

    A growing body of literature has suggested that intranasal oxytocin (OT) or other systemic routes of administration can alter prosocial behavior, presumably by directly activating OT sensitive neural circuits in the brain. Yet there is no clear evidence that OT given peripherally can cross the blood-brain barrier at levels sufficient to engage the OT receptor. To address this issue we examined changes in blood oxygen level-dependent (BOLD) signal intensity in response to peripheral OT injections (0.1, 0.5, or 2.5 mg/kg) during functional magnetic resonance imaging (fMRI) in awake rats imaged at 7.0 T. These data were compared to OT (1 μg/5 μl) given directly to the brain via the lateral cerebroventricle. Using a 3D annotated MRI atlas of the rat brain segmented into 171 brain areas and computational analysis, we reconstructed the distributed integrated neural circuits identified with BOLD fMRI following central and peripheral OT. Both routes of administration caused significant changes in BOLD signal within the first 10 min of administration. As expected, central OT activated a majority of brain areas known to express a high density of OT receptors, e.g., lateral septum, subiculum, shell of the accumbens, bed nucleus of the stria terminalis. This profile of activation was not matched by peripheral OT. The change in BOLD signal to peripheral OT did not show any discernible dose-response. Interestingly, peripheral OT affected all subdivisions of the olfactory bulb, in addition to the cerebellum and several brainstem areas relevant to the autonomic nervous system, including the solitary tract nucleus. The results from this imaging study do not support a direct central action of peripheral OT on the brain. Instead, the patterns of brain activity suggest that peripheral OT may interact at the level of the olfactory bulb and through sensory afferents from the autonomic nervous system to influence brain activity.

  15. Distributed XQuery-based integration and visualization of multimodality brain mapping data

    Directory of Open Access Journals (Sweden)

    Landon T Detwiler

    2009-01-01

    Full Text Available This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts.

  16. Mapping adenosine A1 receptors in the cat brain by positron emission tomography with [11C]MPDX

    International Nuclear Information System (INIS)

    Shimada, Yuhei; Ishiwata, Kiichi; Kiyosawa, Motohiro; Nariai, Tadashi; Oda, Keiichi; Toyama, Hinako; Suzuki, Fumio; Ono, Kenichirou; Senda, Michio

    2002-01-01

    We evaluated the potential of [ 11 C]MPDX as a radioligand for mapping adenosine A 1 receptors in comparison with previously proposed [ 11 C]KF15372 in cat brain by PET. Two tracers showed the same brain distribution. Brain uptake of [ 11 C]MPDX (Ki=4.2 nM) was much higher and washed out faster than that of [ 11 C]KF15372 (Ki=3.0 nM), and was blocked by carrier-loading or displaced with an A 1 antagonist. The regional A 1 receptor distribution evaluated with kinetic analysis is consistent with that previously measured in vitro. [ 11 C]MPDX PET has a potential for mapping adenosine A 1 receptors in brain

  17. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    Science.gov (United States)

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  18. Resection of highly language-eloquent brain lesions based purely on rTMS language mapping without awake surgery.

    Science.gov (United States)

    Ille, Sebastian; Sollmann, Nico; Butenschoen, Vicki M; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2016-12-01

    The resection of left-sided perisylvian brain lesions harbours the risk of postoperative language impairment. Therefore the individual patient's language distribution is investigated by intraoperative direct cortical stimulation (DCS) during awake surgery. Yet, not all patients qualify for awake surgery. Non-invasive language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) has frequently shown a high correlation in comparison with the results of DCS language mapping in terms of language-negative brain regions. The present study analyses the extent of resection (EOR) and functional outcome of patients who underwent left-sided perisylvian resection of brain lesions based purely on rTMS language mapping. Four patients with left-sided perisylvian brain lesions (two gliomas WHO III, one glioblastoma, one cavernous angioma) underwent rTMS language mapping prior to surgery. Data from rTMS language mapping and rTMS-based diffusion tensor imaging fibre tracking (DTI-FT) were transferred to the intraoperative neuronavigation system. Preoperatively, 5 days after surgery (POD5), and 3 months after surgery (POM3) clinical follow-up examinations were performed. No patient suffered from a new surgery-related aphasia at POM3. Three patients underwent complete resection immediately, while one patient required a second rTMS-based resection some days later to achieve the final, complete resection. The present study shows for the first time the feasibility of successfully resecting language-eloquent brain lesions based purely on the results of negative language maps provided by rTMS language mapping and rTMS-based DTI-FT. In very select cases, this technique can provide a rescue strategy with an optimal functional outcome and EOR when awake surgery is not feasible.

  19. Brain Regions Influencing Implicit Violent Attitudes: A Lesion-Mapping Study.

    Science.gov (United States)

    Cristofori, Irene; Zhong, Wanting; Mandoske, Valerie; Chau, Aileen; Krueger, Frank; Strenziok, Maren; Grafman, Jordan

    2016-03-02

    Increased aggression is common after traumatic brain injuries and may persist after cognitive recovery. Maladaptive aggression and violence are associated with dysfunction in the prefrontal and temporal cortex, but such dysfunctional behaviors are typically measured by explicit scales and history. However, it is well known that answers on explicit scales on sensitive topics--such as aggressive thoughts and behaviors--may not reveal true tendencies. Here, we investigated the neural basis of implicit attitudes toward aggression in humans using a modified version of the Implicit Association Task (IAT) with a unique sample of 112 Vietnam War veterans who suffered penetrating brain injury and 33 healthy controls who also served in combat in Vietnam but had no history of brain injury. We hypothesized that dorsolateral prefrontal cortex (dlPFC) lesions, due to the crucial role of the dlPFC in response inhibition, could influence performance on the IAT. In addition, we investigated the causal contribution of specific brain areas to implicit attitudes toward violence. We found a more positive implicit attitude toward aggression among individuals with lesions to the dlPFC and inferior posterior temporal cortex (ipTC). Furthermore, executive functions were critically involved in regulating implicit attitudes toward violence and aggression. Our findings complement existing evidence on the neural basis of explicit aggression centered on the ventromedial prefrontal cortex. These findings highlight that dlPFC and ipTC play a causal role in modulating implicit attitudes about violence and are crucially involved in the pathogenesis of aggressive behavior. Maladaptive aggression and violence can lead to interpersonal conflict and criminal behavior. Surprisingly little is known about implicit attitudes toward violence and aggression. Here, we used a range of techniques, including voxel-based lesion-symptom mapping, to examine the causal role of brain structures underpinning implicit

  20. Development of visual cortical function in infant macaques: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Tom J Van Grootel

    Full Text Available Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of

  1. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Hauck, Theresa; Maurer, Stefanie; Negwer, Chiara; Zimmer, Claus; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2015-04-11

    Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is used for resection planning in patients suffering from brain lesions within regions known to be involved in language function. Yet we also need data that show whether patients benefit clinically from preoperative rTMS for language mapping. We enrolled 25 patients with language eloquently located brain lesions undergoing preoperative rTMS language mapping (GROUP 1, 2011-2013), with the mapping results not being available for the surgeon, and we matched these patients with 25 subjects who also underwent preoperative rTMS (GROUP 2, 2013-2014), but the mapping results were taken into account during tumor resection. Additionally, cortical language maps were generated by analyzing preoperative rTMS and intraoperative direct cortical stimulation (DCS) data. Mean anterior-posterior (ap) craniotomy extents and overall craniotomy sizes were significantly smaller for the patients in GROUP 2 (Ap: p = 0.0117; overall size: p = 0.0373), and postoperative language deficits were found significantly more frequently for the patients in GROUP 1 (p = 0.0153), although the preoperative language status did not differ between groups (p = 0.7576). Additionally, there was a trend towards fewer unexpected tumor residuals, shorter surgery duration, less peri- or postoperative complications, shorter inpatient stay, and higher postoperative Karnofsky performance status scale (KPS) for the patients in GROUP 2. The present study provides a first hint that the clinical course of patients suffering from brain tumors might be improved by preoperative rTMS language mapping. However, a significant difference between both groups was only found for craniotomy extents and postoperative deficits, but not for other clinical parameters, which only showed a trend toward better results in GROUP 2. Therefore, multicenter trials with higher sample sizes are needed to further investigate the distinct impact of r

  2. Comparison of diffusion-weighted fMRI and BOLD fMRI responses in a verbal working memory task

    International Nuclear Information System (INIS)

    Aso, Toshihiko; Urayama, Shin-ichi; Fukuyama, Hidenao; Le Bihan, Denis

    2013-01-01

    Diffusion-weighted functional MRI (DfMRI) has been reported to have a different response pattern in the visual cortex than that of BOLD-fMRI. Especially, the DfMRI signal shows a constantly faster response at both onset and offset of the stimulus, suggesting that the DfMRI signal might be more directly linked to neuronal events than the hemodynamic response. However, because the DfMRI response also contains a residual sensitivity to BOLD this hypothesis has been challenged. Using a verbal working memory task we show that the DfMRI time-course features are preserved outside visual cortices, but also less liable to between-subject/between-regional variation than the BOLD response. The overall findings not only support the feasibility of DfMRI as an approach for functional brain imaging, but also strengthen the uniqueness of the DfMRI signal origin. (authors)

  3. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    Science.gov (United States)

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  4. Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    Science.gov (United States)

    Kateb, Babak (Inventor); Nikzad, Shouleh (Inventor)

    2017-01-01

    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.

  5. Mapping of functional activity in brain with 18F-fluoro-deoxyglucose

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Greenberg, J.

    1981-01-01

    The efficacy of using the 18 F-fluoro-deoxyglucose ( 18 F-DG) for measuring regional cerebral glucose utilization in man during functional activation is demonstrated. Normal male volunteers subjected to sensory stimuli (visual, auditory, tactile) exhibited focal increases in glucose metabolism in response to the stimulus. Unilateral visual hemifield stimulation caused the contralateral striate cortex to become more active metabolically than the striate cortex ipsilateral to the stimulated hemifield. Similarly, stroking of the fingers and hand of one arm with a brush produced an increase in metabolism in the contralateral postcentral gyrus compared to the homologous ipsilateral region. The auditory stimulus, which consisted of monaural listening to either a meaningful or nonmeaningful story, caused an increase in glucose metabolism in the right temporal cortex independent of which ear was stimulated. These results demonstrate that the 18 F-DG technique is capable of providing functional maps in vivo in the human brain

  6. Analysis of brain SPECT with the statistical parametric mapping package SPM99

    International Nuclear Information System (INIS)

    Barnden, L.R.; Rowe, C.C.

    2000-01-01

    Full text: The Statistical Parametric Mapping (SPM) package of the Welcome Department of Cognitive Neurology permits detection in the brain of different regional uptake in an individual subject or a population of subjects compared to a normal population. SPM does not require a-priori specification of regions of interest. Recently SPM has been upgraded from SPM96 to SPM99. Our aim was to vary brain SPECT processing options in the application of SPM to optimise the final statistical map in three clinical trials. The sensitivity of SPM depends on the fidelity of the preliminary spatial normalisation of each scan to the standard anatomical space defined by a template scan provided with SPM. We generated our own SPECT template and compared spatial normalisation to it and to SPM's internal PET template. We also investigated the effects of scatter subtraction, stripping of scalp activity, reconstruction algorithm, non-linear deformation and derivation of spatial normalisation parameters using co-registered MR. Use of our SPECT template yielded better results than with SPM's PET template. Accuracy of SPECT to MR co-registration was 2.5mm with SPM96 and 1.2mm with SPM99. Stripping of scalp activity improved results with SPM96 but was unnecessary with SPM99. Scatter subtraction increased the sensitivity of SPM. Non-linear deformation additional to linear (affine) transformation only marginally improved the final result. Use of the SPECT template yielded more significant results than those obtained when co registered MR was used to derive the transformation parameters. SPM99 is more robust than SPM96 and optimum SPECT analysis requires a SPECT template. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  7. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  8. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  9. Effect of hypoxia on BOLD fMRI response and total cerebral blood flow in migraine with aura patients

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Hougaard, Anders; Schytz, Henrik W

    2018-01-01

    was measured in the visual cortex ROIs V1-V5. Total cerebral blood flow (CBF) was calculated by measuring the blood velocity in the internal carotid arteries and the basilar artery using phase-contrast mapping (PCM) MRI. Hypoxia induced a greater decrease in BOLD response to visual stimulation in V1-V4 in MA......Experimentally induced hypoxia triggers migraine and aura attacks in patients suffering from migraine with aura (MA). We investigated the blood oxygenation level-dependent (BOLD) signal response to visual stimulation during hypoxia in MA patients and healthy volunteers. In a randomized double......-blind crossover study design, 15 MA patients were allocated to 180 min of normobaric poikilocapnic hypoxia (capillary oxygen saturation 70-75%) or sham (normoxia) on two separate days and 14 healthy volunteers were exposed to hypoxia. The BOLD functional MRI (fMRI) signal response to visual stimulation...

  10. Quantitative Susceptibility Mapping Reveals an Association between Brain Iron Load and Depression Severity

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2017-08-01

    Full Text Available Previous studies have detected abnormal serum ferritin levels in patients with depression; however, the results have been inconsistent. This study used quantitative susceptibility mapping (QSM for the first time to examine brain iron concentration in depressed patients and evaluated whether it is related to severity. We included three groups of age- and gender-matched participants: 30 patients with mild-moderate depression (MD, 14 patients with major depression disorder (MDD and 20 control subjects. All participants underwent MR scans with a 3D gradient-echo sequence reconstructing for QSM and performed the 17-item Hamilton Depression Rating Scale (HDRS test. In MDD, the susceptibility value in the bilateral putamen was significantly increased compared with MD or control subjects. In addition, a significant difference was also observed in the left thalamus in MDD patients compared with controls. However, the susceptibility values did not differ between MD patients and controls. The susceptibility values positively correlated with the severity of depression as indicated by the HDRS scores. Our results provide evidence that brain iron deposition may be associated with depression and may even be a biomarker for investigating the pathophysiological mechanism of depression.

  11. The brain and the subjective experience of time. A voxel based symptom-lesion mapping study.

    Science.gov (United States)

    Trojano, Luigi; Caccavale, Michelina; De Bellis, Francesco; Crisci, Claudio

    2017-06-30

    The aim of the study was to identify the anatomical bases involved in the subjective experience of time, by means of a voxel based symptom-lesion mapping (VLSM) study on patients with focal brain damage. Thirty-three patients (nineteen with right-hemisphere lesions -RBD, and fourteen with left lesion- LBD) and twenty-eight non-neurological controls (NNC) underwent the semi-structured QUEstionnaire for the Subjective experience of Time (QUEST) requiring retrospective and prospective judgements on self-relevant time intervals. All participants also completed tests to assess general cognitive functioning and two questionnaires to evaluate their emotional state. Both groups of brain-damaged patients achieved significantly different scores from NNC on the time performance, without differences between RBD and LBD. VLSM showed a cluster of voxels located in the right inferior parietal lobule significantly related to errors in the prospective items. The lesion subtraction analysis revealed two different patterns possibly associated with errors in the prospective items (the right inferior parietal cortex, rolandic operculum and posterior middle temporal gyrus) and in the retrospective items (superior middle temporal gyrus, white matter posterior to the insula). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Mintun, M.A.; Raichle, M.E.; Herscovitch, P.

    1984-01-01

    Positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) with intravenously administered 15 O-labeled water and an adaptation of the Kety autoradiographic model are well suited to the study of functional-anatomical correlations within the human brain. This model requires arterial blood sampling to determine rCBF from the regional tissue radiotracer concentration (Cr) recorded by the tomograph. Based upon the well-defined, nearly linear relation between Cr and rCBF inherent in the model, we have developed a method for estimating changes in rCBF from changes in Cr without calculating true rCBF and thus without arterial sampling. This study demonstrates that quantitative functional brain mapping does not require the determination of rCBF from Cr when regional neuronal activation is expressed as the change in rCBF from an initial, resting-state measurement. Patterned-flash visual stimulation was used to produce a wide range of increases in rCBF within the striate cortex. Changes in occipital rCBF were found to be accurately estimated directly from Cr over a series of 56 measurements on eight subjects. This adaptation of the PET/autoradiographic method serves to simplify its application and to make it more acceptable to the subject

  13. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors

    International Nuclear Information System (INIS)

    Majos, Agata; Stefanczyk, Ludomir; Goraj, Bozena; Tybor, Krzysztof

    2005-01-01

    The aim of our study was to establish the effectiveness of the functional MRI (fMRI) technique in comparison with intraoperative cortical stimulation (ICS) in planning cortex-saving neurosurgical interventions. The combination of sensory and motor stimulation during fMRI experiments was used to improve the exactness of central sulcus localization. The study subjects were 30 volunteers and 33 patients with brain tumors in the rolandic area. Detailed topographical relations of activated areas in fMRI and intraoperative techniques were compared. The agreement in the location defined by the two methods for motor centers was found to be 84%; for sensory centers it was 83%. When both kinds of activation are taken into account this agreement increases to 98%. A significant relation was found between fMRI and ICS for the agreement of the distance both for motor and sensory centers (p=0.0021-0.0024). Also a strong dependence was found between the agreement of the location and the agreement of the distance for both kinds of stimulation. The spatial correlation between fMRI and ICS methods for the sensorimotor cortex is very high. fMRI combining functional and structural information is very helpful for preoperative neurosurgical planning. The sensitivity of the fMRI technique in brain mapping increases when using both motor and sensory paradigms in the same patient. (orig.)

  14. Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors.

    Science.gov (United States)

    Deh, Kofi; Nguyen, Thanh D; Eskreis-Winkler, Sarah; Prince, Martin R; Spincemaille, Pascal; Gauthier, Susan; Kovanlikaya, Ilhami; Zhang, Yan; Wang, Yi

    2015-12-01

    To assess the reproducibility of brain quantitative susceptibility mapping (QSM) in healthy subjects and in patients with multiple sclerosis (MS) on 1.5 and 3T scanners from two vendors. Ten healthy volunteers and 10 patients were scanned twice on a 3T scanner from one vendor. The healthy volunteers were also scanned on a 1.5T scanner from the same vendor and on a 3T scanner from a second vendor. Similar imaging parameters were used for all scans. QSM images were reconstructed using a recently developed nonlinear morphology-enabled dipole inversion (MEDI) algorithm with L1 regularization. Region-of-interest (ROI) measurements were obtained for 20 major brain structures. Reproducibility was evaluated with voxel-wise and ROI-based Bland-Altman plots and linear correlation analysis. ROI-based QSM measurements showed excellent correlation between all repeated scans (correlation coefficient R ≥ 0.97), with a mean difference of less than 1.24 ppb (healthy subjects) and 4.15 ppb (patients), and 95% limits of agreements of within -25.5 to 25.0 ppb (healthy subjects) and -35.8 to 27.6 ppb (patients). Voxel-based QSM measurements had a good correlation (0.64 ≤ R ≤ 0.88) and limits of agreements of -60 to 60 ppb or less. Brain QSM measurements have good interscanner and same-scanner reproducibility for healthy and MS subjects, respectively, on the systems evaluated in this study. © 2015 Wiley Periodicals, Inc.

  15. Improving fMRI reliability in presurgical mapping for brain tumours.

    Science.gov (United States)

    Stevens, M Tynan R; Clarke, David B; Stroink, Gerhard; Beyea, Steven D; D'Arcy, Ryan Cn

    2016-03-01

    Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  16. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  17. The Subject of Conceptual Mapping: Theological Anthropology across Brain, Body, and World

    Directory of Open Access Journals (Sweden)

    Kidd Erin

    2018-02-01

    Full Text Available Research in conceptual metaphor and conceptual blending-referred to collectively as “conceptual mapping”-identifies human thought as a process of making connections across fields of meaning. Underlying the theory of conceptual mapping is a particular understanding of the mind as embodied. Over the past few decades, researchers in the cognitive sciences have been “putting brain, body, and world back together again.” The result is a picture of the human being as one who develops in transaction with her environment, and whose highest forms of intelligence and meaning-making are rooted in the body’s movement in the world. Conceptual mapping therefore not only gives us insight into how we think, but also into who we are. This calls for a revolution in theological anthropology. Our spirituality must be understood in light of the fact that we are embodied beings, embedded in our environment, whose identities are both material and discursive. Finally, using the example of white supremacy, I show how this revolution in understanding the human person can be useful for ethical reflection, and in thinking about sin and redemption.

  18. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  19. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging.

    Science.gov (United States)

    Nilsson, Markus; Lätt, Jimmy; van Westen, Danielle; Brockstedt, Sara; Lasič, Samo; Ståhlberg, Freddy; Topgaard, Daniel

    2013-06-01

    We present the first in vivo application of the filter-exchange imaging protocol for diffusion MRI. The protocol allows noninvasive mapping of the rate of water exchange between microenvironments with different self-diffusivities, such as the intracellular and extracellular spaces in tissue. Since diffusional water exchange across the cell membrane is a fundamental process in human physiology and pathophysiology, clinically feasible and noninvasive imaging of the water exchange rate would offer new means to diagnose disease and monitor treatment response in conditions such as cancer and edema. The in vivo use of filter-exchange imaging was demonstrated by studying the brain of five healthy volunteers and one intracranial tumor (meningioma). Apparent exchange rates in white matter range from 0.8±0.08 s(-1) in the internal capsule, to 1.6±0.11 s(-1) for frontal white matter, indicating that low values are associated with high myelination. Solid tumor displayed values of up to 2.9±0.8 s(-1). In white matter, the apparent exchange rate values suggest intra-axonal exchange times in the order of seconds, confirming the slow exchange assumption in the analysis of diffusion MRI data. We propose that filter-exchange imaging could be used clinically to map the water exchange rate in pathologies. Filter-exchange imaging may also be valuable for evaluating novel therapies targeting the function of aquaporins. Copyright © 2012 Wiley Periodicals, Inc.

  20. The brain decade in debate: VI. Sensory and motor maps: dynamics and plasticity

    Directory of Open Access Journals (Sweden)

    A. Das

    2001-12-01

    Full Text Available This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC. Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

  1. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  2. Task performance changes the amplitude and timing of the BOLD signal

    Directory of Open Access Journals (Sweden)

    Akhrif Atae

    2017-12-01

    Full Text Available Translational studies comparing imaging data of animals and humans have gained increasing scientific interests. With this upcoming translational approach, however, identifying harmonized statistical analysis as well as shared data acquisition protocols and/or combined statistical approaches is necessary. Following this idea, we applied Bayesian Adaptive Regression Splines (BARS, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, on human hemodynamic responses as measured via fMRI. Forty-seven healthy subjects were investigated while performing the Attention Network Task in the MRI scanner. Fluctuations in the amplitude and timing of the BOLD response were determined and validated externally with brain activation using GLM and also ecologically with the influence of task performance (i.e. good vs. bad performers. In terms of brain activation, bad performers presented reduced activation bilaterally in the parietal lobules, right prefrontal cortex (PFC and striatum. This was accompanied by an enhanced left PFC recruitment. With regard to the amplitude of the BOLD-signal, bad performers showed enhanced values in the left PFC. In addition, in the regions of reduced activation such as the parietal and striatal regions, the temporal dynamics were higher in bad performers. Based on the relation between BOLD response and neural firing with the amplitude of the BOLD signal reflecting gamma power and timing dynamics beta power, we argue that in bad performers, an enhanced left PFC recruitment hints towards an enhanced functioning of gamma-band activity in a compensatory manner. This was accompanied by reduced parieto-striatal activity, associated with increased and potentially conflicting beta-band activity.

  3. MR diffusion tensor analysis of schizophrenic brain using statistical parametric mapping

    International Nuclear Information System (INIS)

    Yamada, Haruyasu; Abe, Osamu; Kasai, Kiyoto

    2005-01-01

    The purpose of this study is to investigate diffusion anisotropy in the schizophrenic brain by voxel-based analysis of diffusion tensor imaging (DTI), using statistical parametric mapping (SPM). We studied 33 patients with schizophrenia diagnosed by diagnostic and statistical manual of mental disorders (DSM)-IV criteria and 42 matched controls. The data was obtained with a 1.5 T MRI system. We used single-shot spin-echo planar sequences (repetition time/echo time (TR/TE)=5000/102 ms, 5 mm slice thickness and 1.5 mm gap, field of view (FOV)=21 x 21 cm 2 , number of excitation (NEX)=4, 128 x 128 pixel matrix) for diffusion tensor acquisition. Diffusion gradients (b-value of 500 or 1000 s/mm 2 ) were applied on two axes simultaneously. Diffusion properties were measured along 6 non-linear directions. The structural distortion induced by the large diffusion gradients was corrected, based on each T 2 -weighted echo-planar image (b=0 s/mm 2 ). The fractional anisotropy (FA) maps were generated on a voxel-by-voxel basis. T 2 -weighted echo-planar images were then segmented into gray matter, white matter, and cerebrospinal fluid, using SPM (Wellcome Department of Imaging, University College London, UK). All apparent diffusion coefficient (ADC) and FA maps in native space were transformed to the stereotactic space by registering each of the images to the same template image. The normalized data was smoothed and analyzed using SPM. The significant FA decrease in the patient group was found in the uncinate fasciculus, parahippocampal white matter, anterior cingulum and other areas (corrected p<0.05). No significant increased region was noted. Our results may reflect reduced diffusion anisotropy of the white matter pathway of the limbic system as shown by the decreased FA. Manual region-of-interest analysis is usually more sensitive than voxel-based analysis, but it is subjective and difficult to set with anatomical reproducibility. Voxel-based analysis of the diffusion tensor

  4. The difference between electrical microstimulation and direct electrical stimulation - towards new opportunities for innovative functional brain mapping?

    Science.gov (United States)

    Vincent, Marion; Rossel, Olivier; Hayashibe, Mitsuhiro; Herbet, Guillaume; Duffau, Hugues; Guiraud, David; Bonnetblanc, François

    2016-04-01

    Both electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the 'gold standard' for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).

  5. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography ? Mass Spectrometry

    International Nuclear Information System (INIS)

    Petyuk, Vladislav A.; Qian, Weijun; Chin, Mark H.; Wang, Haixing H.; Livesay, Eric A.; Monroe, Matthew E.; Adkins, Joshua N.; Jaitly, Navdeep; Anderson, David J.; Camp, David G.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a ''universal'' stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion

  6. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy.

    Science.gov (United States)

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Hiroshima, Satoru; Prueckl, Robert; Guger, Christoph

    2014-11-01

    Electrocortical stimulation (ECS) is the gold standard for functional brain mapping during an awake craniotomy. The critical issue is to set aside enough time to identify eloquent cortices by ECS. High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram is assumed to reflect localized cortical processing. In this report, we used real-time HGA mapping and functional neuronavigation integrated with functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Four patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. During the craniotomy, we recorded electrocorticogram activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated real-time HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared with ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. We found different HGA dynamics of language tasks in frontal and temporal regions. Specificities of the motor and language-fMRI did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate identification of motor and frontal language areas. Furthermore, real-time HGA mapping sheds light on underlying physiological mechanisms related to human brain functions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Rapid and low-invasive functional brain mapping by realtime visualization of high gamma activity for awake craniotomy.

    Science.gov (United States)

    Kamada, K; Ogawa, H; Kapeller, C; Prueckl, R; Guger, C

    2014-01-01

    For neurosurgery with an awake craniotomy, the critical issue is to set aside enough time to identify eloquent cortices by electrocortical stimulation (ECS). High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram (ECoG) is assumed to reflect localized cortical processing. In this report, we used realtime HGA mapping and functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Three patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. After the craniotomy, we recorded ECoG activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated realtime HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared to ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. The investigation times of HGA mapping was significantly shorter than that of ECS mapping. Specificities of the motor and language-fMRI, however, did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate functional mapping.

  8. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J. [Div. of Nuclear Medicine, Yonsei University Medical College, Seoul (Korea); Lee, B.I.; Kim, O.J. [Dept. of Neurology, Yonsei University Medical College, Seoul (Korea)

    2000-11-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14{+-}5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  9. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Lee, J.D.; Kim, H.-J.; Jeon, T.J.; Kim, M.J.; Lee, B.I.; Kim, O.J.

    2000-01-01

    An automated voxel-based analysis of brain images using statistical parametric mapping (SPM) is accepted as a standard approach in the analysis of activation studies in positron emission tomography and functional magnetic resonance imaging. This study aimed to investigate whether or not SPM would increase the diagnostic yield of ictal brain single-photon emission tomography (SPET) in temporal lobe epilepsy (TLE). Twenty-one patients (age 27.14±5.79 years) with temporal lobe epilepsy (right in 8, left in 13) who had a successful seizure outcome after surgery and nine normal subjects were included in the study. The data of ictal and interictal brain SPET of the patients and baseline SPET of the normal control group were analysed using SPM96 software. The t statistic SPM(t) was transformed to SPM(Z) with various thresholds of P<0.05, 0.005 and 0.001, and corrected extent threshold P value of 0.05. The SPM data were compared with the conventional ictal and interictal subtraction method. On group comparison, ictal SPET showed increased uptake within the epileptogenic mesial temporal lobe. On single case analysis, ictal SPET images correctly lateralized the epileptogenic temporal lobe in 18 cases, falsely lateralized it in one and failed to lateralize it in two as compared with the mean image of the normal group at a significance level of P<0.05. Comparing the individual ictal images with the corresponding interictal group, 15 patients were correctly lateralized, one was falsely lateralized and four were not lateralized. At significance levels of P<0.005 and P<0.001, correct lateralization of the epileptogenic temporal lobe was achieved in 15 and 13 patients, respectively, as compared with the normal group. On the other hand, when comparison was made with the corresponding interictal group, only 7 out of 21 patients were correctly lateralized at the threshold of P<0.005 and five at P<0.001. The result of the subtraction method was close to the single case analysis on

  10. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    Science.gov (United States)

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan

    2013-01-01

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  12. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  13. Linear Discriminant Analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli.

    Directory of Open Access Journals (Sweden)

    Hendrik eMandelkow

    2016-03-01

    Full Text Available Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI. However, conventional fMRI analysis based on statistical parametric mapping (SPM and the general linear model (GLM is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA, have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN, Gaussian Naïve Bayes (GNB, and (regularised Linear Discriminant Analysis (LDA in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s. The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these

  14. Somatosensory BOLD fMRI reveals close link between salient blood pressure changes and the murine neuromatrix.

    Science.gov (United States)

    Reimann, Henning Matthias; Todiras, Mihail; Hodge, Russ; Huelnhagen, Till; Millward, Jason Michael; Turner, Robert; Seeliger, Erdmann; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2018-05-15

    The neuromatrix, or "pain matrix", is a network of cortical brain areas which is activated by noxious as well as salient somatosensory stimulation. This has been studied in mice and humans using blood oxygenation level-dependent (BOLD) fMRI. Here we demonstrate that BOLD effects observed in the murine neuromatrix in response to salient somatosensory stimuli are prone to reflect mean arterial blood pressure (MABP) changes, rather than neural activity. We show that a standard electrostimulus typically used in murine somatosensory fMRI can induce substantial elevations in MABP. Equivalent drug-induced MABP changes - without somatosensory stimulation - evoked BOLD patterns in the neuromatrix strikingly similar to those evoked by electrostimulation. This constitutes a serious caveat for murine fMRI. The regional specificity of these BOLD patterns can be attributed to the co-localization of the neuromatrix with large draining veins. Based on these findings we propose a cardiovascular support mechanism whereby abrupt elevations in MABP provide additional energy supply to the neuromatrix and other essential brain areas in fight-or-flight situations. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain.

    Science.gov (United States)

    Dortch, Richard D; Bagnato, Francesca; Gochberg, Daniel F; Gore, John C; Smith, Seth A

    2018-03-24

    To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (t I/ t D ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R 1 of free water (R 1f ), and the rate of MT exchange (k mf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal t I /t D combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. Two optimal sampling schemes were determined: (i) a 5-point scheme (k mf estimated) and (ii) a 4-point scheme (k mf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing k mf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB 0 , B1+, and T 1 ) when optimized t I -t D combinations are selected. © 2018 International Society for Magnetic Resonance in Medicine.

  16. In Vivo Tumour Mapping Using Electrocorticography Alterations During Awake Brain Surgery: A Pilot Study.

    Science.gov (United States)

    Boussen, Salah; Velly, Lionel; Benar, Christian; Metellus, Philippe; Bruder, Nicolas; Trébuchon, Agnès

    2016-09-01

    During awake brain surgery for tumour resection, in situ EEG recording (ECoG) is used to identify eloquent areas surrounding the tumour. We used the ECoG setup to record the electrical activity of cortical and subcortical tumours and then performed frequency and connectivity analyses in order to identify ECoG impairments and map tumours. We selected 16 patients with cortical (8) and subcortical (8) tumours undergoing awake brain surgery. For each patient, we computed the spectral content of tumoural and healthy areas in each frequency band. We computed connectivity of each electrode using connectivity markers (linear and non-linear correlations, phase-locking and coherence). We performed comparisons between healthy and tumour electrodes. The ECoG alterations were used to implement automated classification of the electrodes using clustering or neural network algorithms. ECoG alterations were used to image cortical tumours.Cortical tumours were found to profoundly alter all frequency contents (normalized and absolute power), with an increase in the δ activity and a decreases for the other bands (P < 0.05). Cortical tumour electrodes showed high level of connectivity compared to surrounding electrodes (all markers, P < 0.05). For subcortical tumours, a relative decrease in the γ1 band and in the alpha band in absolute amplitude (P < 0.05) were the only abnormalities. The neural network algorithm classification had a good performance: 93.6 % of the electrodes were classified adequately on a test subject. We found significant spectral and connectivity ECoG changes for cortical tumours, which allowed tumour recognition. Artificial neural algorithm pattern recognition seems promising for electrode classification in awake tumour surgery.

  17. Mapping Magnetic Susceptibility Anisotropies of White Matter in vivo in the Human Brain at 7 Tesla

    Science.gov (United States)

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A.D.; van Zijl, Peter C. M.

    2012-01-01

    High-resolution magnetic resonance phase- or frequency- shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor (χ¯¯). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS = (χ∥ + 2χ⊥)/3 and a magnetic susceptibility anisotropy, MSA = χ∥ − χ⊥, where χ∥ and χ⊥ are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°–30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1×1×1 mm3 frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from −0.037 to −0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with

  18. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    Science.gov (United States)

    Chen, Kewei; Reiman, E. M.; Lawson, M.; Yun, Lang-sheng; Bandy, D.; Palant, A.

    1996-12-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control (baseline) scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0-60 s after radiotracer administration, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20-80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the application of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted the authors to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging.

  19. Methods for the correction of vascular artifacts in PET O-15 water brain-mapping studies

    International Nuclear Information System (INIS)

    Chen, K.; Reiman, E.M.; Good Samaritan Regional Medical Center, Phoenix, AZ; Lawson, M.; Yun, L.S.; Bandy, D.

    1996-01-01

    While positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) can be used to map brain regions that are involved in normal and pathological human behaviors, measurements in the anteromedial temporal lobe can be confounded by the combined effects of radiotracer activity in neighboring arteries and partial-volume averaging. The authors now describe two simple methods to address this vascular artifact. One method utilizes the early frames of a dynamic PET study, while the other method utilizes a coregistered magnetic resonance image (MRI) to characterize the vascular region of interest (VROI). Both methods subsequently assign a common value to each pixel in the VROI for the control scan and the activation scan. To study the vascular artifact and to demonstrate the ability of the proposed methods correcting the vascular artifact, four dynamic PET scans were performed in a single subject during the same behavioral state. For each of the four scans, a vascular scan containing vascular activity was computed as the summation of the images acquired 0--60 s after radiotracer administrations, and a control scan containing minimal vascular activity was computed as the summation of the images acquired 20--80 s after radiotracer administration. t-score maps calculated from the four pairs of vascular and control scans were used to characterize regional blood flow differences related to vascular activity before and after the applications of each vascular artifact correction method. Both methods eliminated the observed differences in vascular activity, as well as the vascular artifact observed in the anteromedial temporal lobes. Using PET data from a study of normal human emotion, these methods permitted us to identify rCBF increases in the anteromedial temporal lobe free from the potentially confounding, combined effects of vascular activity and partial-volume averaging

  20. Hypoxia in Prostate Cancer: Correlation of BOLD-MRI With Pimonidazole Immunohistochemistry-Initial Observations

    International Nuclear Information System (INIS)

    Hoskin, Peter J.; Carnell, Dawn M.; Taylor, N. Jane; Smith, Rowena E.; Stirling, J. James; Daley, Frances M.; Saunders, Michele I.; Bentzen, Soren M.; Collins, David J.; D'Arcy, James A.; Padhani, Anwar P.

    2007-01-01

    Purpose: To investigate the ability of blood oxygen level-dependent (BOLD) MRI to depict clinically significant prostate tumor hypoxia. Methods and Materials: Thirty-three patients with prostate carcinoma undergoing radical prostatectomy were studied preoperatively, using gradient echo sequences without and with contrast medium enhancement, to map relative tissue oxygenation according to relaxivity rates and relative blood volume (rBV). Pimonidazole was administered preoperatively, and whole-mount sections of selected tumor-bearing slices were stained for pimonidazole fixation and tumor and nontumor localization. Histologic and imaging parameters were independently mapped onto patient prostate outlines. Using 5-mm grids, 861 nontumor grid locations were compared with 237 tumor grids (with >50% tumor per location) using contingency table analysis with respect to the ability of imaging to predict pimonidazole staining. Results: Twenty patients completed the imaging and histologic protocols. Pimonidazole staining was found in 33% of nontumor and in 70% of tumor grids. The sensitivity of the MR relaxivity parameter R 2 * in depicting tumor hypoxia was high (88%), improving with the addition of low rBV information (95%) without changing specificity (36% and 29%, respectively). High R 2 * increased the positive predictive value for hypoxia by 6% (70% to 76%); conversely, low R 2 * decreased the likelihood of hypoxia being present by 26% (70% to 44%) and by 41% (71% to 30%) when combined with rBV information. Conclusion: R 2 * maps from BOLD-MRI have high sensitivity but low specificity for defining intraprostatic tumor hypoxia. This together with the negative predictive value of 70% when combined with blood volume information makes BOLD-MRI a potential noninvasive technique for mapping prostatic tumor hypoxia

  1. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    Science.gov (United States)

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  2. Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Brian [Dartmouth College, Departments of Earth Sciences and Chemistry, Hanover, NH (United States); Harper, Steve [University of Georgia, Savannah River Ecology Laboratory, Aiken, SC (United States); Smith, Laura; Flinn, Jane [George Mason University, Department of Psychology, Fairfax, VA (United States)

    2006-02-15

    This report details the application of laser ablation quadrupole ICP-MS for the (multi)elemental mapping of 100-{mu}m-thick sections of rat brain. The laser spot size used was 60 {mu}m, and the laser scan speed was 120 {mu}m s{sup -1}. The analysis was relatively rapid, allowing mapping of a whole brain thin section ({approx}1 cm{sup 2}) in about 2 h. Furthermore, the method was amenable to multi-element data collection including the physiologically important elements P and S and afforded sub {mu}g g{sup -1} detection limits for the important trace elements Cu and Zn. Calibrations were performed with pressed pellets of biological certified reference materials, and the elemental distributions and concentrations of Cu, Zn, and Fe were determined in whole rat brain sections. The distributions and concentration ranges for these elements were consistent with previous studies and demonstrate the utility of this technique for rapid mapping of brain thin sections. (orig.)

  3. Fast T1 mapping of the brain at high field using Look-Locker and fast imaging.

    Science.gov (United States)

    Jiang, Ke; Zhu, Yanjie; Jia, Sen; Wu, Yin; Liu, Xin; Chung, Yiu-Cho

    2017-02-01

    This study aims to develop and evaluate a new method for fast high resolution T1 mapping of the brain based on the Look-Locker technique. Single-shot turboflash sequence with high temporal acceleration is used to sample the recovery of inverted magnetization. Multi-slice interleaved acquisition within one inversion slab is used to reduce the number of inversion pulses and hence SAR. Accuracy of the proposed method was studied using simulation and validated in phantoms. It was then evaluated in healthy volunteers and stroke patients. In-vivo results were compared to values obtained by inversion recovery fast spin echo (IR-FSE) and literatures. With the new method, T 1 values in phantom experiments agreed with reference values with median error map was acquired in 3.35s and the T1 maps of the whole brain were acquired in 2min with two-slice interleaving, with a spatial resolution of 1.1×1.1×4mm 3 . The T 1 values obtained were comparable to those measured with IR-FSE and those reported in literatures. These results demonstrated the feasibility of the proposed method for fast T1 mapping of the brain in both healthy volunteers and stroke patients at 3T. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  5. Evaluation of seizure propagation on ictal brain SPECT using statistical parametric mapping in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Lee, Byung In; Kim, Ok Joon; Kim, Min Jung; Jeon, Jeong Dong

    1999-01-01

    Ictal brain SPECT has a high diagnostic sensitivity exceeding 90 % in the localization of seizure focus, however, it often shows increased uptake within the extratemporal areas due to early propagation of seizure discharge. This study aimed to evaluate seizure propagation on ictal brian SPECT in patients with temporal lobe epilepsy (TLE) by statistical parametric mapping (SPM). Twenty-one patients (age 27.14 5.79 y) with temporal lobe epilepsy (right in 8, left in 13) who had successful seizure outcome after surgery and nine normal control were included. The data of ictal and interictal brain SPECT of the patients and baseline SPECT of normal control group were analyzed using automatic image registration and SPM96 softwares. The statistical analysis was performed to compare the mean SPECT image of normal group with individual ictal SPECT, and each mean image of the interictal groups of the right or left TLE with individual ictal scans. The t statistic SPM [t] was transformed to SPM [Z] with a threshold of 1.64. The statistical results were displayed and rendered on the reference 3 dimensional MRI images with P value of 0.05 and uncorrected extent threshold p value of 0.5 for SPM [Z]. SPM data demonstrated increased uptake within the epileptic lesion in 19 patients (90.4 %), among them, localized increased uptake confined to the epileptogenic lesion was seen in only 4 (19%) but 15 patients (71.4%) showed hyperperfusion within propagation sites. Bi-temporal hyperperfusion was observed in 11 out of 19 patients (57.9%, 5 in the right and 6 in the left); higher uptake within the lesion than contralateral side in 9, similar activity in 1 and higher uptake within contralateral lobe in one. Extra-temporal hyperperfusion was observed in 8 (2 in the right, 3 in the left, 3 in bilateral); unilateral hyperperfusion within the epileptogenic temporal lobe and extra-temporal area in 4, bi-temporal with extra-temporal hyperperfusion in remaining 4. Ictal brain SPECT is highly

  6. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    Science.gov (United States)

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.; Katz, Paul S.; Kristan, William B.; Macagno, Eduardo R.; Mitra, Partha P.; Moroz, Leonid L.; Preuss, Todd M.; Ragsdale, Clifton W.; Sherwood, Chet C.; Stevens, Charles F.; Stüttgen, Maik C.; Tsumoto, Tadaharu; Wilczynski, Walter

    2014-01-01

    Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous system ‘maps’ comprising molecular, anatomical, and physiological data. This research will identify which neural features are likely to generalize across species, and which are unlikely to be broadly conserved. It will also suggest causal relationships between genes, development, adult anatomy, physiology, and, ultimately, behavior. These causal hypotheses can then be tested experimentally. Finally, insights from comparative research can inspire and guide technological development. To promote this research agenda, we recommend that teams of investigators coalesce around specific research questions and select a set of ‘reference species’ to anchor their comparative analyses. These reference species should be chosen not just for practical advantages, but also with regard for their phylogenetic position, behavioral repertoire, well-annotated genome, or other strategic reasons. We envision that the nervous systems of these reference species will be mapped in more detail than those of other species. The collected data may range from the molecular to the behavioral, depending on the research question. To integrate across levels of analysis and across species, standards for data collection, annotation, archiving, and distribution must be developed and respected. To that end, it will help to form networks or consortia of researchers and centers for science, technology, and education that focus on organized data collection, distribution, and training. These activities could be

  7. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    Science.gov (United States)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  8. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  9. Fitness Consequences of Boldness in Juvenile and Adult Largemouth Bass.

    Science.gov (United States)

    Ballew, Nicholas G; Mittelbach, Gary G; Scribner, Kim T

    2017-04-01

    To date, most studies investigating the relationship between personality traits and fitness have focused on a single measure of fitness (such as survival) at a specific life stage. However, many personality traits likely have multiple effects on fitness, potentially operating across different functional contexts and stages of development. Here, we address the fitness consequences of boldness, under seminatural conditions, across life stages and functional contexts in largemouth bass (Micropterus salmoides). Specifically, we report the effect of boldness on (1) juvenile survivorship in an outdoor pond containing natural prey and predators and (2) adult reproductive success in three outdoor ponds across three reproductive seasons (years). Juvenile survival was negatively affected by boldness, with bolder juveniles having a lower probability of survival than shyer juveniles. In contrast, bolder adult male bass had greater reproductive success than their shyer male counterparts. Female reproductive success was not affected by boldness. These findings demonstrate that boldness can affect fitness differently across life stages. Further, boldness was highly consistent across years and significantly heritable, which suggests that boldness has a genetic component. Thus, our results support theory suggesting that fitness trade-offs across life stages may contribute to the maintenance of personality variation within populations.

  10. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal

    Directory of Open Access Journals (Sweden)

    Roberta eSclocco

    2014-04-01

    Full Text Available In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis, in which the EEG regressors take into account both the changes in the spectral profile and the rhythms distinction. We applied it to EEG-fMRI data during a hand grip task in healthy subjects, and compared the results with those obtained by two existing models found in literature. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explored.

  11. Gender differences in working memory networks: a BrainMap meta-analysis.

    Science.gov (United States)

    Hill, Ashley C; Laird, Angela R; Robinson, Jennifer L

    2014-10-01

    Gender differences in psychological processes have been of great interest in a variety of fields. While the majority of research in this area has focused on specific differences in relation to test performance, this study sought to determine the underlying neurofunctional differences observed during working memory, a pivotal cognitive process shown to be predictive of academic achievement and intelligence. Using the BrainMap database, we performed a meta-analysis and applied activation likelihood estimation to our search set. Our results demonstrate consistent working memory networks across genders, but also provide evidence for gender-specific networks whereby females consistently activate more limbic (e.g., amygdala and hippocampus) and prefrontal structures (e.g., right inferior frontal gyrus), and males activate a distributed network inclusive of more parietal regions. These data provide a framework for future investigations using functional or effective connectivity methods to elucidate the underpinnings of gender differences in neural network recruitment during working memory tasks. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    Science.gov (United States)

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. Copyright © 2015. Published by Elsevier Inc.

  13. Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.

    Science.gov (United States)

    Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K

    2017-01-01

    Mapping of the longitudinal relaxation time (T 1 ) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T 1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T 2 -dependent variation of the adiabatic inversion efficiency were investigated by single slice T 1 mapping with inversion recovery EPI measurements, quantitative T 2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T 1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T 1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T 1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Unmasking Language Lateralization in Human Brain Intrinsic Activity

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.

    2016-01-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  15. Blood oxygenation level dependent (BOLD). Renal imaging. Concepts and applications

    International Nuclear Information System (INIS)

    Nissen, Johanna C.; Haneder, Stefan; Schoenberg, Stefan O.; Michaely, Henrik J.

    2010-01-01

    Many renal diseases as well as several pharmacons cause a change in renal blood flow and/or renal oxygenation. The blood oxygenation level dependent (BOLD) imaging takes advantage of local field inhomogeneities and is based on a T2 * -weighted sequence. BOLD is a non-invasive method allowing an estimation of the renal, particularly the medullary oxygenation, and an indirect measurement of blood flow without administration of contrast agents. Thus, effects of different drugs on the kidney and various renal diseases can be controlled and observed. This work will provide an overview of the studies carried out so far and identify ways how BOLD can be used in clinical studies. (orig.)

  16. Effects of glyceryl trinitrate and calcitonin-gene-related peptide on BOLD signal and arterial diameter –methodological studies by fMRI and MRA

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Ashina, Messoud

    2013-01-01

    Over the last decades MRI has proved to be very useful in the field of drug development and discovery. Pharmacological MRI (phMRI) explores the interaction between brain physiology, neuronal activity and drugs[1]. The BOLD-signal is an indirect method to investigate brain activity by way...... of measuring task-related hemodynamic changes. Pharmacological substances that induce hemodynamic changes can therefore potentially alter the BOLD-signal that in turn falsely can be interpreted as changes in neuronal activity. It is therefore important to characterize possible effects of a pharmacological...... substance on the BOLD-response per see before that substance can be used in an fMRI experiment. Furthermore MR-angiography is useful in determining the vascular site-of-action of vasoactive substances....

  17. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  18. Synergetic fMRI-EEG brain mapping in alpha-rhythm voluntary control mode.

    Science.gov (United States)

    Shtark, M B; Verevkin, E G; Kozlova, L I; Mazhirina, K G; Pokrovskii, M A; Petrovskii, E D; Savelov, A A; Starostin, A S; Yarosh, S V

    2015-03-01

    For the first time in neurobiology-related issues, the synergistic spatial dynamics of EEG and fMRI (BOLD phenomenon) was studied during cognitive alpha biofeedback training in the operant conditioning mode (acoustic reinforcement of alpha-rhythm development and stability). Significant changes in alpha-rhythm intensity were found in T6 electrode area (Brodmann area 37). Brodmann areas related to solving alpha-training tasks and maximally involved in the formation of new neuronal network were middle and superior temporal gyri (areas 21, 22, and 37), fusiform gyrus, inferior frontal gyrus (areas 4, 6, and 46), anterior cingulate gyrus (areas 23 and 24), cuneus, and precuneus (area 7). Wide involvement of Brodmann areas is determined by psychological architecture of alpha-rhythm generating system control that includes complex cognitive activities: decision making, retrieval of long-term memory, evaluation of the reward and control efficiency during alpha-EEG biofeedback.

  19. STUDI AWAL: PENGARUH GAME KEKERASAN TERHADAP AKTIVITAS OTAK ANAK MELALUI PEMETAAN SINYAL OTAK (BRAIN MAPPING MENGGUNAKAN WIRELESS EEG

    Directory of Open Access Journals (Sweden)

    Nita Handayani

    2017-06-01

    Full Text Available Brain mapping adalah pemetaan aktivitas kelistrikan otak untuk mempelajari fungsional otak manusia. Pada studi ini, brain mapping digunakan untuk mempelajari pengaruh game kekerasan terhadap aktivitas fungsional otak anak dengan menggunakan wireless EEG (electroencephalography berupa Emotiv Epoc 14-channel. Subjek penelitian ini adalah anak-anak pecandu game kekerasan (10 anak dengan rentang usia antara 12-15 tahun. Aktivitas otak pada saat bermain game akan dibandingkan dengan kondisi rileks. Waktu perekaman EEG selama 42 menit untuk setiap subjek. Dari hasil analisis spektral daya menggunakan periodogram Welch menunjukkan bahwa pada saat bermain game, frekuensi gelombang delta dan theta meningkat terutama pada area frontal (F7, F3, FC5, FC6, F4, F8, dan AF4. Spektral daya gelombang alpha mengalami penurunan sedangkan gelombang beta mengalami peningkatan pada saat bermain game. Hal ini mengindikasikan bahwa anak mengalami beban mental dan berada pada kondisi stres pada saat bermain game kekerasan.

  20. Auditory middle latency responses differ in right- and left-handed subjects: an evaluation through topographic brain mapping.

    Science.gov (United States)

    Mohebbi, Mehrnaz; Mahmoudian, Saeid; Alborzi, Marzieh Sharifian; Najafi-Koopaie, Mojtaba; Farahani, Ehsan Darestani; Farhadi, Mohammad

    2014-09-01

    To investigate the association of handedness with auditory middle latency responses (AMLRs) using topographic brain mapping by comparing amplitudes and latencies in frontocentral and hemispheric regions of interest (ROIs). The study included 44 healthy subjects with normal hearing (22 left handed and 22 right handed). AMLRs were recorded from 29 scalp electrodes in response to binaural 4-kHz tone bursts. Frontocentral ROI comparisons revealed that Pa and Pb amplitudes were significantly larger in the left-handed than the right-handed group. Topographic brain maps showed different distributions in AMLR components between the two groups. In hemispheric comparisons, Pa amplitude differed significantly across groups. A left-hemisphere emphasis of Pa was found in the right-handed group but not in the left-handed group. This study provides evidence that handedness is associated with AMLR components in frontocentral and hemispheric ROI. Handedness should be considered an essential factor in the clinical or experimental use of AMLRs.

  1. The INIA19 template and NeuroMaps atlas for primate brain image parcellation and spatial normalization

    Directory of Open Access Journals (Sweden)

    Torsten eRohlfing

    2012-12-01

    Full Text Available The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains created from high-resolution T1-weighted magnetic resonance (MR images of 19 rhesus macaque (Macaca mulatta animals. Combined with the comprehensive cortical and subcortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely-available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/.

  2. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  3. Working memory in volunteers and schizophrenics using BOLD fMRI

    International Nuclear Information System (INIS)

    Giesel, F.L.; Hohmann, N.; Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J.; Kauczor, H.-U.; Essig, M.

    2005-01-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [de

  4. BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats.

    Science.gov (United States)

    Thacker, Jon; Zhang, Jeff L; Franklin, Tammy; Prasad, Pottumarthi

    2017-07-01

    Blood oxygen level-dependent (BOLD) MRI has been effectively used to monitor changes in renal oxygenation. However, R2* (or T2*) is not specific to blood oxygenation and is dependent on other factors. This study investigates the use of a statistical model that takes these factors into account and maps BOLD MRI measurements to blood pO2. Spin echo and gradient echo images were obtained in six Sprague-Dawley rats and R2 and R2* maps were computed. Measurements were made at baseline, post-nitric oxide synthase inhibitor (L-NAME), and post-furosemide administration. A simulation of each region was performed to map R2' (computed as R2*-R2) to blood pO2. At baseline, blood pO2 in the outer medulla was 30.5 ± 1.2 mmHg and 51.9 ± 5.2 mmHg in the cortex, in agreement with previous invasive studies. Blood pO2 was found to decrease within the outer medulla following L-NAME (P pO2 in the cortex increased following furosemide (P pO2 is sensitive to pharmacological challenges, and baseline pO2 is comparable to literature values. Reporting pO2 instead of R2* could lead to a greater clinical impact of renal BOLD MRI and facilitate the identification of hypoxic regions. Magn Reson Med 78:297-302, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Real-time fMRI neurofeedback of the mediodorsal and anterior thalamus enhances correlation between thalamic BOLD activity and alpha EEG rhythm.

    Science.gov (United States)

    Zotev, Vadim; Misaki, Masaya; Phillips, Raquel; Wong, Chung Ki; Bodurka, Jerzy

    2018-02-01

    Real-time fMRI neurofeedback (rtfMRI-nf) with simultaneous EEG allows volitional modulation of BOLD activity of target brain regions and investigation of related electrophysiological activity. We applied this approach to study correlations between thalamic BOLD activity and alpha EEG rhythm. Healthy volunteers in the experimental group (EG, n = 15) learned to upregulate BOLD activity of the target region consisting of the mediodorsal (MD) and anterior (AN) thalamic nuclei using rtfMRI-nf during retrieval of happy autobiographical memories. Healthy subjects in the control group (CG, n = 14) were provided with a sham feedback. The EG participants were able to significantly increase BOLD activities of the MD and AN. Functional connectivity between the MD and the inferior precuneus was significantly enhanced during the rtfMRI-nf task. Average individual changes in the occipital alpha EEG power significantly correlated with the average MD BOLD activity levels for the EG. Temporal correlations between the occipital alpha EEG power and BOLD activities of the MD and AN were significantly enhanced, during the rtfMRI-nf task, for the EG compared to the CG. Temporal correlations with the alpha power were also significantly enhanced for the posterior nodes of the default mode network, including the precuneus/posterior cingulate, and for the dorsal striatum. Our findings suggest that the temporal correlation between the MD BOLD activity and posterior alpha EEG power is modulated by the interaction between the MD and the inferior precuneus, reflected in their functional connectivity. Our results demonstrate the potential of the rtfMRI-nf with simultaneous EEG for noninvasive neuromodulation studies of human brain function. © 2017 Wiley Periodicals, Inc.

  6. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    Meyer, Philipp T.; Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich; Spetzger, Uwe; Meyer, Georg F.; Sabri, Osama

    2003-01-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  7. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Silvia Tommasin

    2017-07-01

    Full Text Available Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN, are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task.

  8. Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network

    Science.gov (United States)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-01-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420

  9. Task-related modulations of BOLD low-frequency fluctuations within the default mode network

    Science.gov (United States)

    Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico

    2017-07-01

    Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.

  10. fMRI BOLD response to the eyes task in offspring from multiplex alcohol dependence families.

    Science.gov (United States)

    Hill, Shirley Y; Kostelnik, Bryan; Holmes, Brian; Goradia, Dhruman; McDermott, Michael; Diwadkar, Vaibhav; Keshavan, Matcheri

    2007-12-01

    Increased susceptibility for developing alcohol dependence (AD) may be related to structural and functional differences in brain circuits that influence social cognition and more specifically, theory of mind (ToM). Alcohol dependent individuals have a greater likelihood of having deficits in social skills and greater social alienation. These characteristics may be related to inherited differences in the neuroanatomical network that comprises the social brain. Adolescent/young adult participants from multiplex AD families and controls (n = 16) were matched for gender, age, IQ, education, and handedness and administered the Eyes Task of Baron-Cohen during functional magnetic resonance imaging (fMRI). High-risk (HR) subjects showed significantly diminished blood oxygen level dependent (BOLD) response in comparison with low-risk control young adults in the right middle temporal gyrus (RMTG) and the left inferior frontal gyrus (LIFG), areas that have previously been implicated in ToM tasks. Offspring from multiplex families for AD may manifest one aspect of their genetic susceptibility by having a diminished BOLD response in brain regions associated with performance of ToM tasks. These results suggest that those at risk for developing AD may have reduced ability to empathize with others' state of mind, possibly resulting in diminished social skill.

  11. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime [Shimane University Faculty of Medicine, Department of Radiology, Izumo-shi, Shimane (Japan); Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi [Shimane University Hospital, Department of Radiology, Izumo-shi, Shimane (Japan); Takeshita, Haruo [Shimane University Faculty of Medicine, Department of Legal Medicine, Izumo-shi, Shimane (Japan); Kawakami, Kazunori [Fujifilm RI Pharma, Co., Ltd., Tokyo (Japan)

    2017-06-15

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)

  12. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Mori, Hiroshi; Katsube, Takashi; Kitagaki, Hajime; Kanayama, Hidekazu; Tada, Keiji; Yamamoto, Yasushi; Takeshita, Haruo; Kawakami, Kazunori

    2017-01-01

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. (orig.)

  13. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    Science.gov (United States)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  14. Spatial Mapping of Structural and Connectional Imaging Data for the Developing Human Brain with Diffusion Tensor Imaging

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao

    2014-01-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302

  15. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    Science.gov (United States)

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Creating probabilistic maps of the face network in the adolescent brain: A multi-centre functional MRI study

    International Nuclear Information System (INIS)

    Tahmasebi, Amir M.; Mareckova, Klara; Artiges, Eric; Martinot, Jean-Luc; Banaschewski, Tobias; Barker, Gareth J.; Loth, Eva; Schumann, Gunter; Bruehl, Ruediger; Ittermann, Bernd; Buchel, Christian; Conrod, Patricia J.; Flor, Herta; Strohle, Andreas; Garavan, Hugh; Gallinat, Jurgen; Heinz, Andreas; Poline, Jean-Baptiste; Rietschel, Marcella; Smolka, Michael N.; Paus, Tomas

    2012-01-01

    Large-scale magnetic resonance (MR) studies of the human brain offer unique opportunities for identifying genetic and environmental factors shaping the human brain. Here, we describe a dataset collected in the context of a multi-centre study of the adolescent brain, namely the IMAGEN Study. We focus on one of the functional paradigms included in the project to probe the brain network underlying processing of ambiguous and angry faces. Using functional MR (fMRI) data collected in 1,110 adolescents, we constructed probabilistic maps of the neural network engaged consistently while viewing the ambiguous or angry faces; 21 brain regions responding to faces with high probability were identified. We were also able to address several methodological issues, including the minimal sample size yielding a stable location of a test region, namely the fusiform face area (FFA), as well as the effect of acquisition site (eight sites) and scanner (four manufacturers) on the location and magnitude of the fMRI response to faces in the FFA. Finally, we provided a comparison between male and female adolescents in terms of the effect sizes of sex differences in brain response to the ambiguous and angry faces in the 21 regions of interest. Overall, we found a stronger neural response to the ambiguous faces in several cortical regions, including the fusiform face area, in female (vs. male) adolescents, and a slightly stronger response to the angry faces in the amygdala of male (vs. female) adolescents. (authors)

  17. Brain maps 4.0-Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps.

    Science.gov (United States)

    Swanson, Larry W

    2018-04-15

    The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to "Google Maps" for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3-D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  18. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    International Nuclear Information System (INIS)

    Chaudhary, Kapil; Kumaran, S Senthil; Chandra, Sarat P; Wadhawan, Ashima Nehra; Tripathi, Manjari

    2014-01-01

    Functional magnetic resonance imaging (fMRI), a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD) contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery). In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG), middle frontal gyrus (MFG), and superior temporal gyrus (STG), during semantic lexical, judgment, comprehension, and semantic memory tasks. Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease

  19. Mapping of cognitive functions in chronic intractable epilepsy: Role of fMRI

    Directory of Open Access Journals (Sweden)

    Kapil Chaudhary

    2014-01-01

    Full Text Available Background: Functional magnetic resonance imaging (fMRI, a non-invasive technique with high spatial resolution and blood oxygen level dependent (BOLD contrast, has been applied to localize and map cognitive functions in the clinical condition of chronic intractable epilepsy. Purpose: fMRI was used to map the language and memory network in patients of chronic intractable epilepsy pre- and post-surgery. Materials and Methods: After obtaining approval from the institutional ethics committee, six patients with intractable epilepsy with an equal number of age-matched controls were recruited in the study. A 1.5 T MR scanner with 12-channel head coil, integrated with audio-visual fMRI accessories was used. Echo planar imaging sequence was used for BOLD studies. There were two sessions in TLE (pre- and post-surgery. Results: In TLE patients, BOLD activation increased post-surgery in comparison of pre-surgery in inferior frontal gyrus (IFG, middle frontal gyrus (MFG, and superior temporal gyrus (STG, during semantic lexical, judgment, comprehension, and semantic memory tasks. Conclusion: Functional MRI is useful to study the basic concepts related to language and memory lateralization in TLE and guide surgeons for preservation of important brain areas during ATLR. This will help in understanding future directions for the diagnosis and treatment of such disease.

  20. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    Science.gov (United States)

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  1. Comparative neuroimaging in children with cerebral palsy using fMRI and a novel EEG-based brain mapping during a motor task--a preliminary investigation.

    Science.gov (United States)

    Lee, Jae Jin; Lee, Dong Ryul; Shin, Yoon Kyum; Lee, Nam Gi; Han, Bong S; You, Sung Joshua Hyun

    2013-01-01

    The purpose of this study was to compare topographical maps using a novel EEG-based brain mapping system with fMRI in normal and children with cerebral palsy (CP) during a grasping motor task. A normal child (mean ± SD = 13 ± 0 yrs) and four children with CP (mean ± SD = 10.25 ± 2.86 yrs) were recruited from a local community school and medical center. A novel EEG-based brain mapping system with 30 scalp sites (an extension of the 10-20 system) and a 3T MR scanner were used to observe cortical activation patterns during a grasping motor task. Descriptive analysis. In the EEG brain mapping data, the sensorimotor cortex (SMC) and inferior parietal cortex (IPC) were activated in all of the children. The children with CP showed additional activation areas in the premotor cortex (PMC), superior parietal cortex (SPC), and prefrontal cortex (PFC). In the fMRI brain mapping data, SMC activation was observed in all of the children, and the children with CP showed additional activation areas in the PMC and primary somatosensory cortex (PSC). The EEG-based topographical maps were equivalent to the maps obtained from fMRI during the grasping motor task. The results indicate that our novel EEG-based brain mapping system is useful for probing cortical activation patterns in normal children and children with CP.

  2. Comparison between electric-field-navigated and line-navigated TMS for cortical motor mapping in patients with brain tumors.

    Science.gov (United States)

    Sollmann, Nico; Goblirsch-Kolb, Moritz F; Ille, Sebastian; Butenschoen, Vicki M; Boeckh-Behrens, Tobias; Meyer, Bernhard; Ringel, Florian; Krieg, Sandro M

    2016-12-01

    For the navigation of transcranial magnetic stimulation (TMS), various techniques are available. Yet, there are two basic principles underlying them all: electric-field-navigated transcranial magnetic stimulation (En-TMS) and line-navigated transcranial magnetic stimulation (Ln-TMS). The current study was designed to compare both methods. To explore whether there is a difference in clinical applicability, workflow, and mapping results of both techniques, we systematically compared motor mapping via En-TMS and Ln-TMS in 12 patients suffering from brain tumors. The number of motor-positive stimulation spots and the ratio of positive spots per overall stimulation numbers were significantly higher for En-TMS (motor-positive spots: En-TMS vs. Ln-TMS: 128.3 ± 35.0 vs. 41.3 ± 26.8, p mapping in the neurosurgical context for the first time. Although both TMS systems tested in the present study are explicitly designed for application during motor mapping in patients with brain lesions, there are differences in applicability, workflow, and results between En-TMS and Ln-TMS, which should be distinctly considered during clinical use of the technique. However, to draw final conclusions about accuracy, confirmation of motor-positive Ln-TMS spots by intraoperative stimulation is crucial within the scope of upcoming investigations.

  3. Anatomo-clinical overlapping maps (AnaCOM): a new method to create anatomo-functional maps from neuropsychological tests and structural MRI scan of subjects with brain lesions

    Science.gov (United States)

    Kinkingnehun, Serge R. J.; du Boisgueheneuc, Foucaud; Golmard, Jean-Louis; Zhang, Sandy X.; Levy, Richard; Dubois, Bruno

    2004-04-01

    We have developed a new technique to analyze correlations between brain anatomy and its neurological functions. The technique is based on the anatomic MRI of patients with brain lesions who are administered neuropsychological tests. Brain lesions of the MRI scans are first manually segmented. The MRI volumes are then normalized to a reference map, using the segmented area as a mask. After normalization, the brain lesions of the MRI are segmented again in order to redefine the border of the lesions in the context of the normalized brain. Once the MRI is segmented, the patient's score on the neuropsychological test is assigned to each voxel in the lesioned area, while the rest of the voxels of the image are set to 0. Subsequently, the individual patient's MRI images are superimposed, and each voxel is reassigned the average score of the patients who have a lesion at that voxel. A threshold is applied to remove regions having less than three overlaps. This process leads to an anatomo-functional map that links brain areas to functional loss. Other maps can be created to aid in analyzing the functional maps, such as one that indicates the 95% confidence interval of the averaged scores for each area. This anatomo-clinical overlapping map (AnaCOM) method was used to obtain functional maps from patients with lesions in the superior frontal gyrus. By finding particular subregions more responsible for a particular deficit, this method can generate new hypotheses to be tested by conventional group methods.

  4. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury

    International Nuclear Information System (INIS)

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokohama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T 2 *-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p<0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment. (author)

  5. To be so bold: boldness is repeatable and related to within individual behavioural variability in North Island robins.

    Science.gov (United States)

    He, Ruchuan; Pagani-Núñez, Emilio; Chevallier, Clément; Barnett, Craig R A

    2017-07-01

    Behavioural research traditionally focusses on the mean responses of a group of individuals rather than variation in behaviour around the mean or among individuals. However, examining the variation in behaviour among and within individuals may also yield important insights into the evolution and maintenance of behaviour. Repeatability is the most commonly used measure of variability among individuals in behavioural research. However, there are other forms of variation within populations that have received less attention. One such measure is intraindividual variation in behaviour (IIV), which is a short-term fluctuation of within-individual behaviour. Such variation in behaviour might be important during interactions because it could decrease the ability of conspecific and heterospecific individuals to predict the behaviour of the subject, thus increasing the cost of the interaction. In this experiment, we made repeated measures of the latency of North Island robins to attack a prey in a novel situation (a form of boldness) and examined (i) repeatability of boldness (the propensity to take a risk), (ii) IIV of boldness, and (iii) whether there was a significant relationship between these two traits (a behavioural syndrome). We found that boldness was highly repeatable, that there were high levels of IIV in boldness, and that there was a negative relationship between boldness and IIV in boldness. This suggests that despite high levels of repeatability for this behaviour, there were also still significant differences in IIV among different individuals within the population. Moreover, bolder individuals had significantly less IIV in their boldness, which suggests that they were forming routines (which reduces behavioural variability) compared to shyer individuals. Our results definitively demonstrate that IIV itself varies across individuals and is linked with key behavioural traits, and we argue for the importance of future studies aimed at understanding its causes

  6. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus

  7. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    Science.gov (United States)

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic

  8. Individual Variability in Brain Activity: A Nuisance or an Opportunity?

    Science.gov (United States)

    Van Horn, John Darrell; Grafton, Scott T; Miller, Michael B

    2008-12-01

    Functional imaging research has been heavily influenced by results based on population-level inference. However, group average results may belie the unique patterns of activity present in the individual that ordinarily are considered random noise. Recent advances in the evolution of MRI hardware have led to significant improvements in the stability and reproducibility of blood oxygen level dependent (BOLD) measurements. These enhancements provide a unique opportunity for closer examination of individual patterns of brain activity. Three objectives can be accomplished by considering brain scans at the individual level; (1) Mapping functional anatomy at a fine grained analysis; (2) Determining if an individual scan is normative with respect to a reference population; and (3) Understanding the sources of intersubject variability in brain activity. In this review, we detail these objectives, briefly discuss their histories and present recent trends in the analyses of individual variability. Finally, we emphasize the unique opportunities and challenges for understanding individual differences through international collaboration among Pacific Rim investigators.

  9. Working memory in volunteers and schizophrenics using BOLD fMRI; Das Arbeitsgedaechtnis bei Gesunden und bei Schizophrenen: Untersuchungen mit BOLD-fMRT

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, F.L. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie, Heidelberg (Germany); Hohmann, N. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany); Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Seidl, U.; Kress, K.R.; Schoenknecht, P.; Schroeder, J. [Psychiatrische Universitaetsklinik Heidelberg, Sektion Gerontopsychiatrie (Germany); Kauczor, H.-U.; Essig, M. [Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, Abteilung Radiologie (Germany)

    2005-02-01

    Functional magnetic resonance imaging uses the blood oxygen level-dependent effect (BOLD MRI) for noninvasive display of cerebral correlatives of cognitive function. The importance for the understanding of physiological and pathological processes is demonstrated by investigations of working memory in schizophrenics and healthy controls. Working memory is involved in processing rather than storage of information and therefore is linked to complex processes such as learning and problem solving. In schizophrenic psychosis, these functions are clearly restricted. Training effects in the working memory task follow an inverse U-shape function, suggesting that cerebral activation reaches a peak before economics of the brain find a more efficient method and activation decreases. (orig.) [German] Die funktionelle Magnetresonanztomographie (fMRT) nutzt den ''blood oxygen level dependent effect'' (BOLD-Effekt) zur nichtinvasiven Darstellung zerebraler Korrelate kognitiver Funktionen. Die Bedeutung dieses Verfahrens fuer das Verstaendnis physiologischer und pathologischer Prozesse wird anhand von Untersuchungen zum Arbeitsgedaechtnis bei Schizophrenen und gesunden Kontrollpersonen verdeutlicht. Das Arbeitsgedaechtnis dient weniger der Speicherung, sondern vielmehr der Verarbeitung von Informationen und ist deshalb in komplexe Prozesse wie Lernen und Problemloesen eingebunden. Im Rahmen schizophrener Psychosen kommt es zu einer deutlichen Einschraenkung dieser Funktionen. Erwartungsgemaess zeigen sich unter Durchfuehrung eines Arbeitsgedaechtnisparadigmas Unterschiede in der zerebralen Aktivitaet, die jedoch bei den Erkrankten unter Therapie prinzipiell reversibel sind. Von Interesse sind auch Trainingseffekte bei Gesunden, wobei eine verminderte Aktivierung nach Training auf eine ''Oekonomisierung'' schliessen laesst. (orig.)

  10. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K.

    2002-01-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia

  11. Investigation of olfactory function in normal volunteers and patients with anosmia : analysis of brain perfusion SPECTs using statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y. A.; Kim, S. H.; Sohn, H. S.; Chung, S. K. [Catholic University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study was to investigate olfactory function with Tc-99m ECD brain perfusion SPECT using statistical parametric mapping (SPM) analysis in normal volunteers and patients with anosmia. The study populations were 8 subjects matched healthy volunteers and 16 subjects matched patients with anosmia. We obtaibed baseline and post-stimulation (3% butanol) brain perfusion SPECTs in the silent dark room. We analyzed the all SPECTs using SPM. The difference between two sets of brain perfusion SPECTs were compared with t-test. The voxels with p-value of less than 0.01 were considered to be significantly different. We demonstrated increased perfusion in the both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on post-stimulation brain SPECT in normal volunteers, and demonstrated decreased perfusion in the both cingulate gyri, right middle temporal gyrus, right rectal gyrus and both superior and inferior frontal gyri in the 10 patients with anosmia. No significant hypoperfusion area was observed in the other 6 patients with anosmia. The baseline and post-stimulation brain perfusion SPECTs can helpful in the evaluation of olfactory function and be useful in the diagnosis of anosmia.

  12. Investigation of olfactory function in normal volunteers by Tc-99m ECD Brain SPECT: Analysis using statistical parametric mapping

    International Nuclear Information System (INIS)

    Chung, Y.A.; Kim, S.H.; Park, Y.H.; Lee, S.Y.; Sohn, H.S.; Chung, S.K.

    2002-01-01

    The purpose of this study was to investigate olfactory function according to Tc-99m ECD uptake pattern in brain perfusion SPET of normal volunteer by means of statistical parametric mapping (SPM) analysis. The study population was 8 healthy volunteer subjects (M:F = 6:2, age range: 22-54 years, mean 34 years). We performed baseline brain perfusion SPET using 555 MBq of Tc-99m ECD in a silent dark room. Two hours later, we obtained brain perfusion SPET using 1110 MBq of Tc-99m ECD after 3% butanol solution under the same condition. All SPET images were spatially transformed to standard space smoothed and globally normalized. The differences between the baseline and odor-identification SPET images were statistically analyzed using SPM-99 software. The difference between two sets of brain perfusion SPET was considered significant at a threshold of uncorrected p values less than 0.01. SPM analysis revealed significant hyper-perfusion in both cingulated gyri, right middle temporal gyrus, right superior and inferior frontal gyri, right lingual gyrus and right fusiform gyrus on odor-identification SPET. This study shows that brain perfusion SPET can securely support other diagnostic techniques in the evaluation of olfactory function

  13. Effect of steroid on brain tumors and surround edemas : observation with regional cerebral blood volume (rCBV) maps of perfusion MRI

    International Nuclear Information System (INIS)

    Choi, Ju Youl; Sun, Joo Sung; Kim, Sun Yong; Kim, Ji Hyung; Suh, Jung Ho; Cho, Kyung Gi; Kim, Jang Sung

    2000-01-01

    To observe the hemodynamic change in brain tumors and peritumoral edemas after steroid treatment, and then investigate the clinical usefulness of perfusion MRI. We acquired conventional and perfusion MR images in 15 patients with various intracranial tumors (4 glioblastoma multiformes, 4 meningiomas, 3 metastatic tumors, 1 anaplastic ependymoma, 1 anaplastic astrocytoma, 1 hemangioblastoma, and 1 pilocytic astrocytoma). For perfusion MR imaging, a 1.5T unit employing the gradient-echo EPI technique was used, and further perfusion MR images were obtained 2-10 days after intravenous steroid therapy. After processing of the raw data, regional cerebral blood volume (rCBV) maps were reconstructed. The maps were visually evaluated by comparing relative perfusion in brain tumors and peritumoral edemas with that in contralateral white matter. Objective evaluations were performed by comparing the perfusion ratios of brain tumors and peritumoral edemas. Visual evaluations of rCBV maps, showed that in most brain tumors (67%, 10/15), perfusion was high before steroid treatment and showed in (80%, 12/15) decreased afterwards. Objective evaluation, showed that in all brain tumors, perfusion decreased. Visual evaluation of perfusion change in peritumoral edemas revealed change in only one case, but objective evaluation indicated that perfusion decreased significantly in all seven cases. rCBV maps acquired by perfusion MR imaging can provide hemodynamic information about brain tumors and peritumoral edemas. Such maps could prove helpful in the preoperative planning of brain tumor surgery and the monitoring of steroid effects during conservative treatment. (author)

  14. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping.

    Science.gov (United States)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-02-29

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  15. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    International Nuclear Information System (INIS)

    McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W

    2008-01-01

    Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques

  16. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    International Nuclear Information System (INIS)

    Ganzetti, Marco; Mantini, Dante; Wenderoth, Nicole

    2015-01-01

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  17. Brain-wide mapping of axonal connections: workflow for automated detection and spatial analysis of labeling in microscopic sections

    Directory of Open Access Journals (Sweden)

    Eszter Agnes ePapp

    2016-04-01

    Full Text Available Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA and Phaseolus vulgaris leucoagglutinin (Pha-L allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS atlas of the Sprague Dawley rat brain (v2 by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data.

  18. Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data

    Energy Technology Data Exchange (ETDEWEB)

    Ganzetti, Marco; Mantini, Dante [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); University of Oxford, Department of Experimental Psychology, Oxford (United Kingdom); Wenderoth, Nicole [ETH Zurich, Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Zurich (Switzerland); KU Leuven, Laboratory of Movement Control and Neuroplasticity, Faculty of Kinesiology and Rehabilitation Sciences, Leuven (Belgium)

    2015-09-15

    A workflow based on the ratio between standardized T1-weighted (T1-w) and T2-weighted (T2-w) MR images has been proposed as a new tool to study brain structure. This approach was previously used to map structural properties in the healthy brain. Here, we evaluate whether the T1-w/T2-w approach can support the assessment of structural impairments in the diseased brain. We use schizophrenia data to demonstrate the potential clinical utility of the technique. We analyzed T1-w and T2-w images of 36 schizophrenic patients and 35 age-matched controls. These were collected for the Function Biomedical Informatics Research Network (fBIRN) collaborative project, which had an IRB approval and followed the HIPAA guidelines. We computed T1-w/T2-w images for each individual and compared intensities in schizophrenic and control groups on a voxel-wise basis, as well as in regions of interest (ROIs). Our results revealed that the T1-w/T2-w image permits to discriminate brain regions showing group-level differences between patients and controls with greater accuracy than conventional T1-w and T2-w images. Both the ROIs and the voxel-wise analysis showed globally reduced gray and white matter values in patients compared to controls. Significantly reduced values were found in regions such as insula, primary auditory cortex, hippocampus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. Our findings were consistent with previous meta-analyses in schizophrenia corroborating the hypothesis of a potential ''disconnection'' syndrome in conjunction with structural alterations in local gray matter regions. Overall, our study suggested that the T1-w/T2-w technique permits to reliably map structural differences between the brains of patients and healthy individuals. (orig.)

  19. Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels

    DEFF Research Database (Denmark)

    Olsen, Jesper V; Nielsen, Peter Aa; Andersen, Jens R

    2007-01-01

    of recently developed methods for isolation of membrane proteins from 10-20 mg brain tissue [Nielsen, P.Aa., Olsen, J.V., Podtelejnokov, A.V., Andersen, J.R., Mann, M., Wisniewski, J.R., 2005. Proteomic mapping of brain plasma membrane proteins. Mol. Cell. Proteomics 4, 402--408] and the Hys...

  20. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats

    OpenAIRE

    Shumake, Jason; Colorado, Rene A.; Barrett, Douglas W.; Gonzalez-Lima, F.

    2010-01-01

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for...

  1. An autoradiographic map of (3H)diprenorphine binding in rat brain: effects of social interaction

    International Nuclear Information System (INIS)

    Panksepp, J.; Bishop, P.

    1981-01-01

    (3H)Diprenorphine binding was analyzed autoradiographically in the brains of 33 day old rat pups. A photographic atlas of diprenorphine binding in the coronal plane is provided to highlight the dispersion of opioid receptor systems through the brain. To determine whether brain opioid release may be induced by social interactions, half the animals were sacrificed following a 30 min period of social interaction while the other half were sacrificed following 30 min of social isolation. Opioid binding was higher in isolate-tested animals than socially-tested ones, suggesting that social interaction may promote endogenous brain opioid release

  2. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    Science.gov (United States)

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. The subtle body: an interoceptive map of central nervous system function and meditative mind-brain-body integration.

    Science.gov (United States)

    Loizzo, Joseph J

    2016-06-01

    Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. © 2016 New York Academy of Sciences.

  4. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    Science.gov (United States)

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  5. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain.

    Science.gov (United States)

    Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe

    2018-01-01

    Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila , one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

  6. A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain

    Directory of Open Access Journals (Sweden)

    Ignacio Arganda-Carreras

    2018-03-01

    Full Text Available Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.

  7. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps

    Science.gov (United States)

    2018-01-01

    Abstract The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to “Google Maps” for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3‐D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. PMID:29277900

  8. Abnormal pain processing in chronic tension-type headache: a high-density EEG brain mapping study

    DEFF Research Database (Denmark)

    Buchgreitz, L.; Egsgaard, L.L.; Jensen, R.

    2008-01-01

    Central sensitization caused by prolonged nociceptive input from muscles is considered to play an important role for chronification of tension-type headache. In the present study we used a new high-density EEG brain mapping technique to investigate spatiotemporal aspects of brain activity...... in response to muscle pain in 19 patients with chronic tension-type headache (CTTH) and 19 healthy, age- and sex-matched controls. Intramuscular electrical stimuli (single and train of five pulses delivered at 2 Hz) were applied to the trapezius muscle and somatosensory evoked potentials were recorded...... with 128-channel EEG both in- and outside a condition with induced tonic neck/shoulder muscle pain (glutamate injection into the trapezius muscle). Significant reduction in magnitude during and after induced tonic muscle pain was found in controls at the P200 dipole in response to both the first (baseline...

  9. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  10. Investigating structure and function in the healthy human brain: validity of acute versus chronic lesion-symptom mapping.

    Science.gov (United States)

    Karnath, Hans-Otto; Rennig, Johannes

    2017-07-01

    Modern voxel-based lesion-symptom mapping (VLSM) analyses techniques provide powerful tools to examine the relationship between structure and function of the healthy human brain. However, there is still uncertainty on the type of and the appropriate time point of imaging and of behavioral testing for such analyses. Here we tested the validity of the three most common combinations of structural imaging data and behavioral scores used in VLSM analyses. Given the established knowledge about the neural substrate of the primary motor system in humans, we asked the mundane question of where the motor system is represented in the normal human brain, analyzing individual arm motor function of 60 unselected stroke patients. Only the combination of acute behavioral scores and acute structural imaging precisely identified the principal brain area for the emergence of hemiparesis after stroke, i.e., the corticospinal tract (CST). In contrast, VLSM analyses based on chronic behavior-in combination with either chronic or acute imaging-required the exclusion of patients who had recovered from an initial paresis to reveal valid anatomical results. Thus, if the primary research aim of a VLSM lesion analysis is to uncover the neural substrates of a certain function in the healthy human brain and if no longitudinal designs with repeated evaluations are planned, the combination of acute imaging and behavior represents the ideal dataset.

  11. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses.

    Science.gov (United States)

    Xu, Feng; Li, Wenbo; Liu, Peiying; Hua, Jun; Strouse, John J; Pekar, James J; Lu, Hanzhang; van Zijl, Peter C M; Qin, Qin

    2018-01-01

    Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Application of Awake Craniotomy and Intraoperative Brain Mapping for Surgical Resection of Insular Gliomas of the Dominant Hemisphere.

    Science.gov (United States)

    Alimohamadi, Maysam; Shirani, Mohammad; Shariat Moharari, Reza; Pour-Rashidi, Ahmad; Ketabchi, Mehdi; Khajavi, Mohammadreza; Arami, Mohamadali; Amirjamshidi, Abbas

    2016-08-01

    Radical resection of dominant insular gliomas is difficult because of their close vicinity with internal capsule, basal ganglia, and speech centers. Brain mapping techniques can be used to maximize the extent of tumor removal and to minimize postoperative morbidities by precise localization of eloquent cortical and subcortical areas. Patients with newly diagnosed gliomas of dominant insula were enrolled. The exclusion criteria were severe cognitive disturbances, communication difficulty, age greater than 75 years, severe obesity, difficult airways for intubation and severe cardiopulmonary diseases. All were evaluated preoperatively with contrast-enhanced brain magnetic resonance imaging (MRI), functional brain MRI, and diffusion tensor tractography of language and motor systems. All underwent awake craniotomy with the same anesthesiology protocol. Intraoperative monitoring included continuous motor-evoked potential, electromyography, electrocorticography, direct electrical stimulation of cortex, and subcortical tracts. The patients were followed with serial neurologic examination and imaging. Ten patients were enrolled (4 men, 6 women) with a mean age of 43.6 years. Seven patients suffered from low-grade glioma, and 3 patients had high-grade glioma. The most common clinical presentation was seizure followed by speech disturbance, hemiparesis, and memory loss. Extent of tumor resection ranged from 73% to 100%. No mortality or new major postoperative neurologic deficit was encountered. Seizure control improved in three fourths of patients with medical refractory epilepsy. In one patient with speech disorder at presentation, the speech problem became worse after surgery. Brain mapping during awake craniotomy helps to maximize extent of tumor resection while preserving neurologic function in patients with dominant insular lobe glioma. Copyright © 2016. Published by Elsevier Inc.

  13. Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping.

    Science.gov (United States)

    Xia, Shuang; Zheng, Gang; Shen, Wen; Liu, Saifeng; Zhang, Long Jiang; Haacke, E Mark; Lu, Guang Ming

    2015-03-01

    Susceptibility-weighted imaging (SWI) has been used to detect micro-bleeds and iron deposits in the brain. However, no reports have been published on the application of SWI in studying iron changes in the brain of cirrhotic patients. To compare the susceptibility of different brain structures in cirrhotic patients with that in healthy controls and to evaluate susceptibility as a potential biomarker and correlate the measured susceptibility and cadaveric brain iron concentration for a variety of brain structures. Forty-three cirrhotic patients (27 men, 16 women; mean age, 50 ± 9 years) and 34 age- and sex-matched healthy controls (22 men, 12 women; mean age, 47 ± 7 years) were included in this retrospective study. Susceptibility was measured in the frontal white matter, basal ganglia, midbrain, and dentate nucleus and compared with results gathered from two postmortem brain studies. Correlation between susceptibility and clinical biomarkers and neuropsychiatric tests scores was calculated. In cirrhotic patients, the susceptibility of left frontal white matter, bilateral caudate head, and right substantia nigra was higher than that in healthy controls (P brain study (r = 0.835, P = 0.01) in eight deep grey matter structures and another in five brain structures (r = 0.900, P = 0.03). The susceptibility of right caudate head (r = 0.402) and left caudate head (r = 0.408) correlated with neuropsychological test scores (both P brain regions appears to reflect neurocognitive changes. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Right parietal cortex and calculation processing: intraoperative functional mapping of multiplication and addition in patients affected by a brain tumor.

    Science.gov (United States)

    Della Puppa, Alessandro; De Pellegrin, Serena; d'Avella, Elena; Gioffrè, Giorgio; Munari, Marina; Saladini, Marina; Salillas, Elena; Scienza, Renato; Semenza, Carlo

    2013-11-01

    The role of parietal areas in number processing is well known. The significance of intraoperative functional mapping of these areas has been only partially explored, however, and only a few discordant data are available in the surgical literature with regard to the right parietal lobe. The purpose of this study was to evaluate the clinical impact of simple calculation in cortical electrostimulation of right-handed patients affected by a right parietal brain tumor. Calculation mapping in awake surgery was performed in 3 right-handed patients affected by high-grade gliomas located in the right parietal lobe. Preoperatively, none of the patients presented with calculation deficits. In all 3 cases, after sensorimotor and language mapping, cortical and intraparietal sulcus areas involved in single-digit multiplication and addition calculations were mapped using bipolar electrostimulation. In all patients, different sites of the right parietal cortex, mainly in the inferior lobule, were detected as being specifically related to calculation (multiplication or addition). In 2 patients the intraparietal sulcus was functionally specific for multiplication. No functional sites for language were detected. All sites functional for calculation were spared during tumor resection, which was complete in all cases without postoperative neurological deficits. These findings provide intraoperative data in support of an anatomofunctional organization for multiplication and addition within the right parietal area. Furthermore, the study shows the potential clinical relevance of intraoperative mapping of calculation in patients undergoing surgery in the right parietal area. Further and larger studies are needed to confirm these data and assess whether mapped areas are effectively essential for function.

  15. Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area.

    Science.gov (United States)

    Sarfeld, Anna-Sophia; Diekhoff, Svenja; Wang, Ling E; Liuzzi, Gianpiero; Uludağ, Kamil; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2012-05-01

    Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system. Copyright © 2011 Wiley-Liss, Inc.

  16. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Directory of Open Access Journals (Sweden)

    Gonzalez-Brito Manuel

    2008-02-01

    Full Text Available Abstract Background Assessment of cerebral blood flow (CBF by SPECT could be important in the management of patients with severe traumatic brain injury (TBI because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia, or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI on cerebral blood flow (CBF by SPECT cerebral blood perfusion (CBP imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM. Results A significant area of hypoperfusion (P Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.

  17. Patterns of accentuated grey-white differentiation on diffusion-weighted imaging or the apparent diffusion coefficient maps in comatose survivors after global brain injury

    International Nuclear Information System (INIS)

    Kim, E.; Sohn, C.-H.; Chang, K.-H.; Chang, H.-W.; Lee, D.H.

    2011-01-01

    Aim: To determine what disease entities show accentuated grey-white differentiation of the cerebral hemisphere on diffusion-weighted images (DWI) or apparent diffusion coefficient (ADC) maps, and whether there is a correlation between the different patterns and the cause of the brain injury. Methods and materials: The DWI and ADC maps of 19 patients with global brain injury were reviewed and evaluated to investigate whether there was a correlation between the different patterns seen on the DWI and ADC maps and the cause of global brain injury. The ADC values were measured for quantitative analysis. Results: There were three different patterns of ADC decrease: a predominant ADC decrease in only the cerebral cortex (n = 8; pattern I); an ADC decrease in both the cerebral cortex and white matter (WM) and a predominant decrease in the WM (n = 9; pattern II); and a predominant ADC decrease in only the WM (n = 3; pattern III). Conclusion: Pattern I is cerebral cortical injury, suggesting cortical laminar necrosis in hypoxic brain injury. Pattern II is cerebral cortical and WM injury, frequently seen in brain death, while pattern 3 is mainly WM injury, especially found in hypoglycaemic brain injury. It is likely that pattern I is decorticate injury and pattern II is decerebrate injury in hypoxic ischaemic encephalopathy.Patterns I and II are found in severe hypoxic brain injury, and pattern II is frequently shown in brain death, whereas pattern III was found in severe hypoglycaemic injury.

  18. NSF Workshop Report: Discovering General Principles of Nervous System Organization by Comparing Brain Maps across Species

    OpenAIRE

    Striedter, Georg F.; Belgard, T. Grant; Chen, Chun-Chun; Davis, Fred P.; Finlay, Barbara L.; Güntürkün, Onur; Hale, Melina E.; Harris, Julie A.; Hecht, Erin E.; Hof, Patrick R.; Hofmann, Hans A.; Holland, Linda Z.; Iwaniuk, Andrew N.; Jarvis, Erich D.; Karten, Harvey J.

    2014-01-01

    Efforts to understand nervous system structure and function have received new impetus from the federal Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Comparative analyses can contribute to this effort by leading to the discovery of general principles of neural circuit design, information processing, and gene-structure-function relationships that are not apparent from studies on single species. We here propose to extend the comparative approach to nervous sys...

  19. Reorganization of Functional Brain Maps After Exercise Training: Importance of Cerebellar-Thalamic-Cortical Pathway

    OpenAIRE

    Holschneider, DP; Yang, J; Guo, Y; Maarek, J-M I

    2007-01-01

    Exercise training (ET) causes functional and morphologic changes in normal and injured brain. While studies have examined effects of short-term (same day) training on functional brain activation, less work has evaluated effects of long-term training, in particular treadmill running. An improved understanding is relevant as changes in neural reorganization typically require days to weeks, and treadmill training is a component of many neurorehabilitation programs.

  20. Identifying and characterizing systematic temporally-lagged BOLD artifacts.

    Science.gov (United States)

    Byrge, Lisa; Kennedy, Daniel P

    2018-05-01

    Residual noise in the BOLD signal remains problematic for fMRI - particularly for techniques such as functional connectivity, where findings can be spuriously influenced by noise sources that can covary with individual differences. Many such potential noise sources - for instance, motion and respiration - can have a temporally lagged effect on the BOLD signal. Thus, here we present a tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance signals, using a construction similar to a peri-event time histogram. Using this method, we find that framewise displacements - both large and very small - were followed by structured, prolonged, and global changes in the BOLD signal that depend on the magnitude of the preceding displacement and extend for tens of seconds. This residual lagged BOLD structure was consistent across datasets, and independently predicted considerable variance in the global cortical signal (as much as 30-40% in some subjects). Mean functional connectivity estimates varied similarly as a function of displacements occurring many seconds in the past, even after strict censoring. Similar patterns of residual lagged BOLD structure were apparent following respiratory fluctuations (which covaried with framewise displacements), implicating respiration as one likely mechanism underlying the displacement-linked structure observed. Global signal regression largely attenuates this artifactual structure. These findings suggest the need for caution in interpreting results of individual difference studies where noise sources might covary with the individual differences of interest, and highlight the need for further development of preprocessing techniques for mitigating such structure in a more nuanced and targeted manner. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    Science.gov (United States)

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Dictionary-driven Ischemia Detection from Cardiac Phase-Resolved Myocardial BOLD MRI at Rest

    Science.gov (United States)

    Bevilacqua, Marco; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2016-01-01

    Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) method which relies on the inherent spatio-temporal correlation between oxygenation and wall motion to formalize a joint learning and detection problem based on dictionary decomposition. Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns dictionaries to represent only normal observations (corresponding to myocardial territories remote to ischemia). Anomaly detection is based on a modified version of One-class Support Vector Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data set from a canine experimental model emulating acute coronary syndromes. Comparing early ischemic territories identified with UID against infarct territories (after several hours of ischemia), we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. When advances in automated registration and segmentation of CP–BOLD images and full coverage 3D acquisitions become available, we hope that this method can enable pixel-level assessment of ischemia with this truly non-invasive imaging technique. PMID:26292338

  3. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease

    Science.gov (United States)

    Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.

    2011-01-01

    Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427

  4. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  5. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish?

    Science.gov (United States)

    Blanco, Ayelén M; Sánchez-Bretaño, Aída; Delgado, María J; Valenciano, Ana I

    2016-06-01

    Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Resting State BOLD Variability in Alzheimer’s Disease: A Marker of Cognitive Decline or Cerebrovascular Status?

    Directory of Open Access Journals (Sweden)

    Vanessa Scarapicchia

    2018-02-01

    Full Text Available Background: Alzheimer’s disease (AD is a neurodegenerative disorder that may benefit from early diagnosis and intervention. Therefore, there is a need to identify early biomarkers of AD using non-invasive techniques such as functional magnetic resonance imaging (fMRI. Recently, novel approaches to the analysis of resting-state fMRI data have been developed that focus on the moment-to-moment variability in the blood oxygen level dependent (BOLD signal. The objective of the current study was to investigate BOLD variability as a novel early biomarker of AD and its associated psychophysiological correlates.Method: Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI 2 database from 19 participants with AD and 19 similarly aged controls. For each participant, a map of BOLD signal variability (SDBOLD was computed as the standard deviation of the BOLD timeseries at each voxel. Group comparisons were performed to examine global differences in resting state SDBOLD in AD versus healthy controls. Correlations were then examined between participant SDBOLD maps and (1 ADNI-derived composite scores of memory and executive function and (2 neuroimaging markers of cerebrovascular status.Results: Between-group comparisons revealed significant (p < 0.05 increases in SDBOLD in patients with AD relative to healthy controls in right-lateralized frontal regions. Lower memory scores and higher WMH burden were associated with greater SDBOLD in the healthy control group (p < 0.1, but not individuals with AD.Conclusion: The current study provides proof of concept of a novel resting state fMRI analysis technique that is non-invasive, easily accessible, and clinically compatible. To further explore the potential of SDBOLD as a biomarker of AD, additional studies in larger, longitudinal samples are needed to better understand the changes in SDBOLD that characterize earlier stages of disease progression and their underlying psychophysiological

  7. Functional connectivity analysis of the brain network using resting-state fMRI

    International Nuclear Information System (INIS)

    Hayashi, Toshihiro

    2011-01-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. (author)

  8. Fine-mapping the effects of Alzheimer's disease risk loci on brain morphology.

    Science.gov (United States)

    Roshchupkin, Gennady V; Adams, Hieab H; van der Lee, Sven J; Vernooij, Meike W; van Duijn, Cornelia M; Uitterlinden, Andre G; van der Lugt, Aad; Hofman, Albert; Niessen, Wiro J; Ikram, Mohammad A

    2016-12-01

    The neural substrate of genetic risk variants for Alzheimer's disease (AD) remains unknown. We studied their effect on healthy brain morphology to provide insight into disease etiology in the preclinical phase. We included 4071 nondemented, elderly participants of the population-based Rotterdam Study who underwent brain magnetic resonance imaging and genotyping. We performed voxel-based morphometry (VBM) on all gray-matter voxels for 19 previously identified, common AD risk variants. Whole-brain expression data from the Allen Human Brain Atlas was used to examine spatial overlap between VBM association results and expression of genes in AD risk loci regions. Brain regions most significantly associated with AD risk variants were the left postcentral gyrus with ABCA7 (rs4147929, p = 4.45 × 10 -6 ), right superior frontal gyrus by ZCWPW1 (rs1476679, p = 5.12 × 10 -6 ), and right postcentral gyrus by APOE (p = 6.91 × 10 -6 ). Although no individual voxel passed multiple-testing correction, we found significant spatial overlap between the effects of AD risk loci on VBM and the expression of genes (MEF2C, CLU, and SLC24A4) in the Allen Brain Atlas. Results are available online on www.imagene.nl/ADSNPs/. In this single largest imaging genetics data set worldwide, we found that AD risk loci affect cortical gray matter in several brain regions known to be involved in AD, as well as regions that have not been implicated before. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.

    Science.gov (United States)

    Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen

    2018-09-17

    Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update.

    Science.gov (United States)

    Coppola, Angela; Tramontano, Vincenzo; Basaldella, Federica; Arcaro, Chiara; Squintani, Giovanna; Sala, Francesco

    2016-10-01

    Over the past decade, the reluctance to operate in eloquent brain areas has been reconsidered in the light of the advent of new peri-operative functional neuroimaging techniques and new evidence from neuro-oncology. To maximise tumour resection while minimising morbidity should be the goal of brain surgery in children as much as it is in adults, and preservation of brain functions is critical in the light of the increased survival and the expectations in terms of quality of life. Intra-operative neurophysiology is the gold standard to localise and preserve brain functions during surgery and is increasingly used in paediatric neurosurgery. Yet, the developing nervous system has peculiar characteristics in terms of anatomical and physiological maturation, and some technical aspects need to be tailored for its use in children, especially in infants. This paper will review the most recent advances in the field of intra-operative neurophysiology (ION) techniques during brain surgery, focussing on those aspects that are relevant to the paediatric neurosurgery practice.

  11. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior

    Directory of Open Access Journals (Sweden)

    Joris eBressan

    2015-02-01

    Full Text Available A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondyla obscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems.

  12. A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior.

    Science.gov (United States)

    Bressan, Joris M A; Benz, Martin; Oettler, Jan; Heinze, Jürgen; Hartenstein, Volker; Sprecher, Simon G

    2014-01-01

    A wide spectrum of occupied ecological niches and spectacular morphological adaptations make social insects a prime object for comparative neuroanatomical studies. Eusocial insects have evolved complex societies based on caste polyphenism. A diverse behavioral repertoire of morphologically distinct castes of the same species requires a high degree of plasticity in the central nervous system. We have analyzed the central brain neuropils and fiber tract systems of the worker of the ant Cardiocondyla obscurior, a model for the study of social traits. Our analysis is based on whole mount preparations of adult brains labeled with an antibody against Drosophila-Synapsin, which cross-reacts strongly with synapses in Cardiocondyla. Neuropil compartments stand out as domains with a certain texture and intensity of the anti-Synapsin signal. By contrast, fiber tracts, which are composed of bundles of axons accompanied by glia and are devoid of synapses, appear as channels or sheaths with low anti-Synapsin signal. We have generated a digital 3D atlas of the Cardiocondyla brain neuropil. The atlas provides a reference for future studies of brain polymorphisms in distinct castes, brain development or localization of neurotransmitter systems.

  13. Differential Localization of Pain-Related and Pain-Unrelated Neural Responses for Acupuncture at BL60 Using BOLD fMRI

    Directory of Open Access Journals (Sweden)

    Na-Hee Kim

    2013-01-01

    Full Text Available The objective of this study was to differentiate between pain-related and pain-unrelated neural responses of acupuncture at BL60 to investigate the specific effects of acupuncture. A total of 19 healthy volunteers were evaluated. fMRI was performed with sham or verum acupuncture stimulation at the left BL60 before and after local anesthesia. To investigate the relative BOLD signal effect for each session, a one-sample t-test was performed for individual contrast maps, and a paired t-test to investigate the differences between the pre- and post-anesthetic signal effects. Regarding verum acupuncture, areas that were more activated before local anesthesia included the superior, middle, and medial frontal gyri, inferior parietal lobule, superior temporal gyrus, thalamus, middle temporal gyrus, cingulate gyrus, culmen, and cerebellar tonsil. The postcentral gyrus was more deactivated before local anesthesia. After local anesthesia, the middle occipital gyrus, inferior temporal gyrus, postcentral gyrus, precuneus, superior parietal lobule, and declive were deactivated. Pre-anesthetic verum acupuncture at BL60 activated areas of vision and pain transmission. Post-anesthetic verum acupuncture deactivated brain areas of visual function, which is considered to be a pain-unrelated acupuncture response. It indicates that specific effects of acupoint BL60 are to control vision sense as used in the clinical setting.

  14. Effect of CGRP and sumatriptan on the BOLD response in visual cortex

    DEFF Research Database (Denmark)

    Asghar, Mohammed Sohail; Hansen, Adam E; Larsson, Henrik B W

    2012-01-01

    To test the hypothesis that calcitonin gene-related peptide (CGRP) modulates brain activity, we investigated the effect of intravenous CGRP on brain activity in response to a visual stimulus. In addition, we examined if possible alteration in brain activity was reversed by the anti-migraine drug......% of the participants reported headache after CGRP. We found no changes in brain activity after CGRP (P = 0.12) or after placebo (P = 0.41). Sumatriptan did not affect brain activity after CGRP (P = 0.71) or after placebo (P = 0.98). Systemic CGRP or sumatriptan has no direct effects on the BOLD activity in visual...... sumatriptan. Eighteen healthy volunteers were randomly allocated to receive CGRP infusion (1.5 µg/min for 20 min) or placebo. In vivo activity in the visual cortex was recorded before, during and after infusion and after 6 mg subcutaneous sumatriptan by functional magnetic resonance imaging (3 T). 77...

  15. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    Science.gov (United States)

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    Science.gov (United States)

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI.

    Directory of Open Access Journals (Sweden)

    Hiroshi Bandoh

    Full Text Available Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka. The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl, which are homologous to the medial pallium (hippocampus in terrestrial vertebrates. Although the concentration of L-serine (1 mM in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM, the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.

  18. MEG and fMRI fusion for nonlinear estimation of neural and BOLD signal changes

    Directory of Open Access Journals (Sweden)

    Sergey M Plis

    2010-11-01

    Full Text Available The combined analysis of MEG/EEG and functional MRI measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the BOLD response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater SNR, that confirms the expectation arising from the nature of the experiment. The highly nonlinear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources.

  19. Cone-beam CT image contrast and attenuation-map linearity improvement (CALI) for brain stereotactic radiosurgery procedures

    Science.gov (United States)

    Hashemi, Sayed Masoud; Lee, Young; Eriksson, Markus; Nordström, Hâkan; Mainprize, James; Grouza, Vladimir; Huynh, Christopher; Sahgal, Arjun; Song, William Y.; Ruschin, Mark

    2017-03-01

    A Contrast and Attenuation-map (CT-number) Linearity Improvement (CALI) framework is proposed for cone-beam CT (CBCT) images used for brain stereotactic radiosurgery (SRS). The proposed framework is used together with our high spatial resolution iterative reconstruction algorithm and is tailored for the Leksell Gamma Knife ICON (Elekta, Stockholm, Sweden). The incorporated CBCT system in ICON facilitates frameless SRS planning and treatment delivery. The ICON employs a half-cone geometry to accommodate the existing treatment couch. This geometry increases the amount of artifacts and together with other physical imperfections causes image inhomogeneity and contrast reduction. Our proposed framework includes a preprocessing step, involving a shading and beam-hardening artifact correction, and a post-processing step to correct the dome/capping artifact caused by the spatial variations in x-ray energy generated by bowtie-filter. Our shading correction algorithm relies solely on the acquired projection images (i.e. no prior information required) and utilizes filtered-back-projection (FBP) reconstructed images to generate a segmented bone and soft-tissue map. Ideal projections are estimated from the segmented images and a smoothed version of the difference between the ideal and measured projections is used in correction. The proposed beam-hardening and dome artifact corrections are segmentation free. The CALI was tested on CatPhan, as well as patient images acquired on the ICON system. The resulting clinical brain images show substantial improvements in soft contrast visibility, revealing structures such as ventricles and lesions which were otherwise un-detectable in FBP-reconstructed images. The linearity of the reconstructed attenuation-map was also improved, resulting in more accurate CT#.

  20. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  1. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    Directory of Open Access Journals (Sweden)

    Charmaine eDemanuele

    2015-10-01

    Full Text Available Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from fMRI blood oxygenation level dependent (BOLD time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC, but not in the primary visual cortex (V1. Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel

  2. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  3. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.

    Science.gov (United States)

    Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L

    1997-09-01

    A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues.

  4. Optical mapping of the brain activity in children with Down's syndrome

    Science.gov (United States)

    Yuan, Zhen; Lu, Fengmei

    2018-02-01

    Down's syndrome (DS) has been shown to be associated with many neurological complications, including cognitive deficits, seizures, early-onset dementia that resembles Alzheimer's disease, and neurological complications of systemic disorders. DS patients show to have poor performance in executive functions (EF) and fine motor skills. In this study, we examined the brain hemodynamic responses and brain activation patterns of DS children during the completion of EF tasks. Revealing its neural mechanism of DS is not only able to contribute to the early intervention of this children with DS, but also increase understanding of developmental cascades in childhood.

  5. Analysis of individual brain activation maps using hierarchical description and multiscale detection

    International Nuclear Information System (INIS)

    Poline, J.B.; Mazoyer, B.M.

    1994-01-01

    The authors propose a new method for the analysis of brain activation images that aims at detecting activated volumes rather than pixels. The method is based on Poisson process modeling, hierarchical description, and multiscale detection (MSD). Its performances have been assessed using both Monte Carlo simulated images and experimental PET brain activation data. As compared to other methods, the MSD approach shows enhanced sensitivity with a controlled overall type I error, and has the ability to provide an estimate of the spatial limits of the detected signals. It is applicable to any kind of difference image for which the spatial autocorrelation function can be approximated by a stationary Gaussian function

  6. Spatial–temporal signature of resting-state BOLD signals in classic trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-12-01

    Full Text Available Yanping Wang,1 Congying Xu,1 Liping Zhai,1 Xudong Lu,1 Xiaoqiang Wu,1 Yahui Yi,2 Ziyun Liu,1 Qiaobing Guan,1 Xiaoling Zhang1 1Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, 2Department of Radiology, the Second Hospital of Jiaxing City, Jiaxing, Zhejiang, China Abstract: Resting-state functional magnetic resonance imaging (R-fMRI signals are spatiotemporally organized. R-fMRI studies in patients with classic trigeminal neuralgia (CTN have suggested alterations in functional connectivity. However, far less attention has been given to investigations of the local oscillations and their frequency-specific changes in these patients. The objective of this study was to address this issue in patients with CTN. R-fMRI data from 17 patients with CTN and 19 age- and gender-matched healthy controls (HCs were analyzed using amplitude of low-frequency fluctuation (ALFF. The ALFF was computed across different frequencies (slow-4: 0.027–0.073 Hz; slow-5: 0.01–0.027 Hz; and typical band: 0.01–0.08 Hz in patients with CTN compared to HCs. In the typical band, patients with CTN showed increases of ALFF in bilateral temporal, occipital, and left middle frontal regions and in the left middle cingulate gyrus, as well as decreases of ALFF in the right inferior temporal region and in regions (medial prefrontal regions of default mode network. These significant group differences were identified in different sub-bands, with greater brainstem findings in higher frequencies (slow-4 and extensive default mode network and right postparietal results in lower frequencies (slow-5. Furthermore, significant relationships were found between subjective pain ratings and both amplitudes of higher frequency (slow-4 blood oxygen level-dependent (BOLD signals in pain localization brain regions and lower frequencies (slow-5 in pain signaling/modulating brain regions in the patients, and decreased ALFF within the prefrontal regions was significantly

  7. Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal

    Directory of Open Access Journals (Sweden)

    Blanca Guillen

    2018-01-01

    Full Text Available This paper proposes a simple yet effective approach for detecting activated voxels in fMRI data by exploiting the inherent sparsity property of the BOLD signal in temporal and spatial domains. In the time domain, the approach combines the General Linear Model (GLM with a Least Absolute Deviation (LAD based regression method regularized by the pseudonorm l0 to promote sparsity in the parameter vector of the model. In the spatial domain, detection of activated regions is based on thresholding the spatial map of estimated parameters associated with a particular stimulus. The threshold is calculated by exploiting the sparseness of the BOLD signal in the spatial domain assuming a Laplacian distribution model. The proposed approach is validated using synthetic and real fMRI data. For synthetic data, results show that the proposed approach is able to detect most activated voxels without any false activation. For real data, the method is evaluated through comparison with the SPM software. Results indicate that this approach can effectively find activated regions that are similar to those found by SPM, but using a much simpler approach. This study may lead to the development of robust spatial approaches to further simplifying the complexity of classical schemes.

  8. Task effects on BOLD signal correlates of implicit syntactic processing

    Science.gov (United States)

    Caplan, David

    2010-01-01

    BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983

  9. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    Science.gov (United States)

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Functional Topography of Early Periventricular Brain Lesions in Relation to Cytoarchitectonic Probabilistic Maps

    Science.gov (United States)

    Staudt, Martin; Ticini, Luca F.; Grodd, Wolfgang; Krageloh-Mann, Ingeborg; Karnath, Hans-Otto

    2008-01-01

    Early periventricular brain lesions can not only cause cerebral palsy, but can also induce a reorganization of language. Here, we asked whether these different functional consequences can be attributed to topographically distinct portions of the periventricular white matter damage. Eight patients with pre- and perinatally acquired left-sided…

  11. Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Vis, J.B. de; Zwanenburg, J.J.; Kleij, L.A. van der; Spijkerman, J.M.; Hendrikse, J. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Biessels, G.J. [University Medical Center Utrecht, Department of Neurology, Brain Center Rudolf Magnus, Utrecht (Netherlands); Petersen, E.T. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Hvidovre Hospital, Danish Research Centre for Magnetic Resonance, Hvidovre (Denmark)

    2016-05-15

    To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T{sub 2} of the CSF relates to brain atrophy. Twenty-eight subjects [mean age 64 (sd 2) years] were included; T{sub 1}-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (V{sub CSF}) and the T{sub 2} of CSF (T{sub 2,CSF}) was calculated. The correlation between V{sub CSF} / T{sub 2,CSF} and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Relative total, peripheral subarachnoidal, and ventricular V{sub CSF} increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T{sub 2} of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T{sub 2} of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. (orig.)

  12. Brain-Wide Maps of "Fos" Expression during Fear Learning and Recall

    Science.gov (United States)

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    "Fos" induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which "Fos" induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide…

  13. Transcranial Magnetic Stimulation and Connectivity Mapping: Tools for Studying the Neural Bases of Brain Disorders

    OpenAIRE

    Hampson, M.; Hoffman, R. E.

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through...

  14. Brain mapping for long-term recovery of gait after supratentorial stroke: A retrospective cross-sectional study.

    Science.gov (United States)

    Kim, Dae Hyun; Kyeong, Sunghyon; Do, Kyung Hee; Lim, Seong Kyu; Cho, Hyong Keun; Jung, Suk; Kim, Hye Won

    2018-04-01

    The recovery of independent gait after stroke is a main goal of patients and understanding the relationship between brain lesions and the recovery of gait can help physicians set viable rehabilitation plans. Our study investigated the association between variables of gait parameters and brain lesions.Fifty poststroke patients with a mean age of 67.5 ± 1.3 years and an average duration after onset of 62.2 ± 7.9 months were included. Three-dimensional gait analysis and magnetic resonance imaging were conducted for all patients. Twelve quantified gait parameters of temporal-spatial, kinematic, and kinetic data were used. To correlate gait parameters with specific brain lesions, we used a voxel-based lesion symptom mapping analysis. Statistical significance was set to an uncorrected P value 10 voxels.Based on the location of a brain lesion, the following results were obtained: The posterior limb of the internal capsule was significantly associated with gait speed and increased knee extension in the stance phase. The hippocampus and frontal lobe were significantly associated with cadence. The proximal corona radiata was significantly associated with stride length and affected the hip maximal extension angle in the stance phase. The paracentral lobule was significantly associated with the affected knee maximal flexion angle in the swing phase and with the affected ankle maximal dorsiflexion angle in the stance phase. The frontal lobe, thalamus, and the lentiform nucleus were associated with kinetic gait parameters.Cortical, proximal white matter, and learning-related and motor-related areas are mainly associated with one's walking ability after stroke.

  15. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    Science.gov (United States)

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio