WorldWideScience

Sample records for boiling point

  1. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  2. Enzyme engineering reaches the boiling point

    OpenAIRE

    Arnold, Frances H.

    1998-01-01

    The boiled enzyme was toppled as a standard enzymology control when researchers in the 1970s started uncovering enzymes that loved the heat (1). Identification of a variety of intrinsically hyperstable enzymes from hyperthermophilic organisms, with optimal growth temperatures of 100°C and above, has piqued academic curiosity (e.g., how do these proteins withstand such ‘‘extreme’’ conditions?) and generated considerable interest for their possible applications in biotechnology (2, 3). The real...

  3. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  4. Boils

    Science.gov (United States)

    ... the boil is very bad or comes back. Antibacterial soaps and creams cannot help much once a boil ... following may help prevent the spread of infection: Antibacterial soaps Antiseptic (germ-killing) washes Keeping clean (such as ...

  5. MRI monitoring of lesions created at temperature below the boiling point and of lesions created above the boiling point using high intensity focused ultrasound

    OpenAIRE

    Damianou, C.; Ioannides, K.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Iosif, D.; Kyriacou, P. A.

    2010-01-01

    Magnetic Resonance Imaging (MRI) was utilized to monitor lesions created at temperature below the boiling point and lesions created at temperature above the boiling point using High Intensity Focused Ultrasound (HIFU) in freshly excised kidney, liver and brain and in vivo rabbit kidney and brain. T2-weighted fast spin echo (FSE) was proven as an excellent MRI sequence that can detect lesions with temperature above the boiling point in kidney. This advantage is attributed to the significant di...

  6. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  7. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    Science.gov (United States)

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  8. Physical concept and calculation of boiling point in a pulsating heat pipe

    OpenAIRE

    Naumova A. N.; Kravets V. Yu.; Nikolaenko Yu. E.

    2014-01-01

    LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP), that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillar...

  9. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    Science.gov (United States)

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  10. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  11. Simple Alcohols with the Lowest Normal Boiling Point Using Topological Indices

    OpenAIRE

    Goubko, Mikhail; Miloserdov, Oleg

    2015-01-01

    We find simple saturated alcohols with the given number of carbon atoms and the minimal normal boiling point. The boiling point is predicted with a weighted sum of the generalized first Zagreb index, the second Zagreb index, the Wiener index for vertex-weighted graphs, and a simple index caring for the degree of a carbon atom being incident to the hydroxyl group. To find extremal alcohol molecules we characterize chemical trees of order $n$, which minimize the sum of the second Zagreb index a...

  12. Estimation of normal boiling points of trialkyl phosphates using retention indices by gas chromatography

    International Nuclear Information System (INIS)

    Retention indices of several homologous trialkyl phosphates have been determined by gas chromatography on different polar stationary phases namely, Apiezon L, SE-30 and XE-60. Normal boiling points of these trialkyl phosphates have been evaluated and compared with available literature values. Topological indices such as Xu index, atom type index and steric effect index are derived for these phosphates and have been correlated with the normal boiling points using multiple regression analysis. The influences of alkyl chain length, relative position of alkyl branching and steric factors on retention index are investigated and also the effect of polarity of the stationary phase on retention indices is discussed.

  13. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  14. Explaining Melting and Evaporation below Boiling Point. Can Software Help with Particle Ideas?

    Science.gov (United States)

    Papageorgiou, George; Johnson, Philip; Fotiades, Fotis

    2008-01-01

    This paper reports the findings of a study exploring the use of a software package to help pupils understand particulate explanations for melting and evaporation below boiling point. Two matched classes in a primary school in Greece (ages 11-12, n = 16 and 19) were involved in a short intervention of six one hour lessons. Covering the same…

  15. The Analysis of Existence and Influence of the Boiling Point at Vacuum Drying

    OpenAIRE

    NEGRĂU Petru Mircea

    2011-01-01

    Accurate determination of the existence,change and influence of the boiling point of waterinside the material who will be dried is a primarydomain. In this article will be displayed and analyzedrelatively the results of the in-house experiments onvacuum drying wood using radio-frequency waves.

  16. Boiling Point

    Science.gov (United States)

    Jansen, Michael C.

    2002-01-01

    The author recounts his experiences he helped to investigate the accident which destroyed the Space Shuttle Challenger. The focus was on how he used novel approaches to investigate heat transfer in the shuttle's hydrogen tank, after an expert he sought for advice proved unhelpful.

  17. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    Science.gov (United States)

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD. PMID:17568601

  18. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES) USING MOLECULAR DESCRIPTORS

    OpenAIRE

    B. Souyei; M. Korichi

    2013-01-01

    A quantitative structure–property relationship (QSPR) study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes) to their normal boiling point (NBP) and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in r...

  19. Influence of cider-making technology on low-boiling-point volatile compounds

    OpenAIRE

    Mangas, J.J. (Juan); González, M P; Blanco-Gomis, Domingo

    2012-01-01

    Major low-boiling-point aroma components present in twelve ciders obtained by different technological methods involving different pressing speeds and clarification systems were evaluated by gas chromatography. Variance analysis of chromatographic data show that ethyl acetate, methanol, propanol, isobutanol, 2-methyl butanol and 3-methyl butanol contents depend on the pressing speed. In the same way, the metanol, isobutanol, 2-methylbutanol and 3-methylbutanol contents depend on the clarificat...

  20. A regression model for calculating the boiling point isobars of tetrachloromethane-based binary solutions

    Science.gov (United States)

    Preobrazhenskii, M. P.; Rudakov, O. B.

    2016-01-01

    A regression model for calculating the boiling point isobars of tetrachloromethane-organic solvent binary homogeneous systems is proposed. The parameters of the model proposed were calculated for a series of solutions. The correlation between the nonadditivity parameter of the regression model and the hydrophobicity criterion of the organic solvent is established. The parameter value of the proposed model is shown to allow prediction of the potential formation of azeotropic mixtures of solvents with tetrachloromethane.

  1. Structural Vector Description and Estimation of Normal Boiling Points for 66 Aromatic Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular vector-type descriptor containing 6 variables is used to describe the structure of aromatic hydrocarbons (AHs) and relate to normal boiling points (bp) of AHs. The correlation coefficient (R) between the estimated bp and experimental bp is 0.9988 and the root mean square error (RMS) is 7.907° C for 66 AHs. The RMS obtained by cross-validation is 9.131° C, which implies the relationship model having good prediction ability.

  2. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    Science.gov (United States)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  3. Physical concept and calculation of boiling point in a pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. N.

    2014-06-01

    Full Text Available LED development is accompanied by the need to ensure a constructive solution for the thermal conditions problem. For this purpose one can use pulsating heat pipes (PHP, that operate more efficiently after the start of heat carrier boiling. This article describes the physical representation and formula that allows determining the boiling point, which is a lower bound of the PHP effective operating range. It is shown that the main factors influencing the required heat flow are driving capillary pressure and velocity of the vapor bubble. The formula was obtained for the closed PHP made of the copper with water as a heat carrier. Information about this heat flux can be used for further design of cooling systems for heat-sensitive elements, such as LED for promising lighting devices.

  4. SYNTHESIS OF POLYMER-STABILIZED RUTHENIUM COLLOIDS BY LOW BOILING POINT ALCOHOL REDUCTION

    Institute of Scientific and Technical Information of China (English)

    Ya-li Su; Xiu-ru Li; Yue-jin Tong; Yue-sheng Li

    2003-01-01

    Stable and well-dispersed poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloidal clusters were prepared via the reduction of ruthenium(Ⅲ) chloride by refluxing with low boiling point alcohols. Investigation of the size of Ru colloids by transmission electron microscopy (TEM) indicated that the average diameters could be controlled in the range of 1.2-1.6 nm with relative standard deviations of less than 0.33 by changing the molar ratio of PVP to Ru. The X-ray photoelectron spectroscopy (XPS) characterization verified the formation of elemental ruthenium colloids.

  5. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES USING MOLECULAR DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    B. Souyei

    2013-12-01

    Full Text Available A quantitative structure–property relationship (QSPR study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes to their normal boiling point (NBP and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in remarkable correlations with the descriptors of blokes constitutionals (CON, and connectivity indices (CI (R2 = 0.950, δ = 0.766 (R2 = 0.969, δ = 0.782 respectively.

  6. Experimental research on dryout point of flow boiling in narrow annular channels

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An experimental research on the dryout point of flow boiling in narrow annular channels under low mass flux with 1.55 mm and 1.05 mm annular gap, respectively, is conducted. Distilled water is used as working fluid and the range of pressure is limited within 2.0~4.0 MPa and that of mass flux is 26.0~69.0 kg·m-2·s-1. The relation of critical heat flux (CHF) and critical qualities with mass flux and pressure are revealed. It is found that the critical qualities decrease with the increasing mass flux and increase with the increasing inlet qualities in externally heated annuli.Under the same conditions, critical qualities in the outer tube are always larger than those in the inner tube. The appearance of dryout point in bilaterally heated narrow annuli can be judged according to the ratio of qo/qi.

  7. Correlation of normal boiling points of dialkylalkyl phosphonates with topological indices on the gas chromatographic retention data

    International Nuclear Information System (INIS)

    Highlights: • Normal boiling points of dialkylalkyl phosphonates measured by using GC technique. • Retention times have been determined by using temperature programmed technique. • Topological indices derived to encode the structural aspects of phosphonates. • QSPR discipline have been developed for predicting normal boiling points. • Statistical characteristics were used for validity of the QSPR discipline. - Abstract: The normal boiling point of twelve dialkylalkyl phosphonates has been determined using gas chromatographic technique. Dibutylhydrogen phosphonate has been used as reference for computing normal boiling point of dialkylalkyl phosphonates. Retention times of dialkylalkyl phosphonates have been measured by using temperature programmed technique. The topological indices namely, odd–even index, atom type index and steric effect index have been designed to capture surface interaction parameters. It was found to exhibit excellent correlation of the topological indices to the normal boiling point of dialkylalkyl phosphonates. Multiple linear regression analysis has been performed for development of quantitative structure property relationships discipline. It exhibited good predictive power (R2 = 0.998)

  8. Correlation of normal boiling points of dialkylalkyl phosphonates with topological indices on the gas chromatographic retention data

    Energy Technology Data Exchange (ETDEWEB)

    Panneerselvam, K., E-mail: kpselvam@igcar.gov.in; Rao, C.V.S. Brahmmananda; Antony, M.P.

    2015-01-20

    Highlights: • Normal boiling points of dialkylalkyl phosphonates measured by using GC technique. • Retention times have been determined by using temperature programmed technique. • Topological indices derived to encode the structural aspects of phosphonates. • QSPR discipline have been developed for predicting normal boiling points. • Statistical characteristics were used for validity of the QSPR discipline. - Abstract: The normal boiling point of twelve dialkylalkyl phosphonates has been determined using gas chromatographic technique. Dibutylhydrogen phosphonate has been used as reference for computing normal boiling point of dialkylalkyl phosphonates. Retention times of dialkylalkyl phosphonates have been measured by using temperature programmed technique. The topological indices namely, odd–even index, atom type index and steric effect index have been designed to capture surface interaction parameters. It was found to exhibit excellent correlation of the topological indices to the normal boiling point of dialkylalkyl phosphonates. Multiple linear regression analysis has been performed for development of quantitative structure property relationships discipline. It exhibited good predictive power (R{sup 2} = 0.998)

  9. Nickel Catalyzed Conversion of Cyclohexanol into Cyclohexylamine in Water and Low Boiling Point Solvents

    Directory of Open Access Journals (Sweden)

    Yunfei Qi

    2016-04-01

    Full Text Available Nickel is found to demonstrate high performance in the amination of cyclohexanol into cyclohexylamine in water and two solvents with low boiling points: tetrahydrofuran and cyclohexane. Three catalysts, Raney Ni, Ni/Al2O3 and Ni/C, were investigated and it is found that the base, hydrogen, the solvents and the support will affect the activity of the catalyst. In water, all the three catalysts achieved over 85% conversion and 90% cyclohexylamine selectivity in the presence of base and hydrogen at a high temperature. In tetrahydrofuran and cyclohexane, Ni/Al2O3 exhibits better activity than Ni/C under optimal conditions. Ni/C was stable during recycling in aqueous ammonia, while Ni/Al2O3 was not due to the formation of AlO(OH.

  10. Publicly available models to predict normal boiling point of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos [Laboratoire d’Infochimie UMR 7177 CNRS, Université de Strasbourg, 4, rue B. Pascal, Strasbourg 67000 (France); Brunel, Damien Bernard; Rivollet, Fabien [Processium, C.E.I.3 – 62 Bd Niels Bohr – BP 2132, F-69603 Villeurbanne (France); Varnek, Alexandre, E-mail: varnek@unistra.fr [Laboratoire d’Infochimie UMR 7177 CNRS, Université de Strasbourg, 4, rue B. Pascal, Strasbourg 67000 (France)

    2013-02-10

    Quantitative structure–property models to predict the normal boiling point (T{sub b}) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T{sub b} varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (http://infochim.u-strasbg.fr/webserv/VSEngine.html)

  11. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  12. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents

    DEFF Research Database (Denmark)

    Chang, J.F.; Sun, B.Q.; Breiby, Dag Werner;

    2004-01-01

    Chloroform is a general solvent for poly(3-hexylthiophene) (P3HT) active layers in field-effect transistors. However, its low boiling point and rapid evaporation limit the time for crystallization during the spin-coating process, and field-effect mobilities achieved for P3HT films spin-coated from...

  13. Chemical characterization and genotoxic potential related to boiling point for fractionally distilled SRC-I coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Mahlum, D.D.

    1982-07-01

    This report summarizes selected research efforts oriented toward ameliorating the genotoxic potential of direct coal liquefaction materials through modification or optimization of process conditions. The studies described were conducted to evaluate the utility of optimized distillation for coal liquids from the SRC-I process. SRC-I process solvent was distilled into 50/sup 0/F-range boiling point (bp) cuts. Analysis of amino-PAH (APAH) showed that mutagenic APAHs containing 3 or more rings were found primarily in fractions boiling above 750/sup 0/F. Three microbial tester strains were used to screen for genetically active agents in the SRC-I distillate bp cuts. Reverse mutation with the Ames tester strain TA98 demonstrated that mutagens were concentrated in the bp cuts boiling above 700/sup 0/F. For this tester strain most of the genetic activity in these distillates was attributable to chemical fractions enriched in APAH having 3 or more rings. Mutagenicity data obtained with TA98 was in good agreement with sk in carcinogenesis results from the mouse-skin initiation/promotion (in vivo) test system. The strongest response in the forward mutation assay did not occur in the most carcinogenically active fractions. Results of initiation/promotion experiments used to measure the relative potency of bp cuts as initiators of mouse skin carcinogenesis again showed that fractions boiling above 750/sup 0/F. Compounds reaching their highest concentrations in the highest boiling and most carcinogenically active cut included known carcinogens such as benzo(a)pyrene and dimethyl benzanthracene. Thus, all biomedical test results indicate that consideration should be given to conducting distillation so as to minimize, in the distillate product, the concentrations of those biologically active compounds found in cuts boiling above 700/sup 0/C.

  14. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    Science.gov (United States)

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  15. Boiling Point Distribution of Hydrocarbon Types in Diesel Using Solid-Phase Extraction Followed by GC/FID-EIMS

    Institute of Scientific and Technical Information of China (English)

    Li Chengwei; Tian Songbai; Liu Zelong; Zhu Xinyi

    2008-01-01

    In this paper, a method was established to determine the boiling point distribution of hydro-carbon types in diesel. The diesel sample was separated into the saturate and aromatic fractions by means of solid-phase extraction (SPE), and each fraction was analyzed by GC/FID-EIMS. According to the relationship between boiling point and retention time of n-paraffins in the chromatogram, the percent-ages of saturates and aromatics at each temperature interval were calculated. According to the average mass spectra of the saturate and aromatic fractions at each temperature interval, the hydrocarbon types of the sample were identified through summation of characteristic mass fragments. Using this method,the changes in composition of diesel during hydrotreating process were studied. The results showed that hydrogenation of aromatics is the main reaction during the hydrotreating process. The more rings the aromatics have, the easier the hydrogenation reactions would take place. The aromatics were converted into cycloparaffins via the hydrogenation and saturation process, leading to an increase in low boiling point fractions in the hydrotreated oil.

  16. Measurement of the droplets sizes of a flash boiling spray using an improved extended glare point velocimetry and sizing

    Science.gov (United States)

    Shen, Shiquan; Jia, Ming; Wang, Tianyou; Lü, Qieni; Sun, Kai

    2016-04-01

    An improved extended glare point velocimetry and sizing (EGPVS) is proposed to investigate the droplets sizes of a flash boiling spray. When a spherical droplet with a relative refractive index from 1.16 to 1.41 is illuminated by two opposite laser sheets and a charge-coupled device camera is used to collect the s-polarization light at an observation angle of 90°, the intensities of the reflected lights are much stronger than the other order scattering lights. If the intensity of incident laser is controlled appropriately, two glare points from the reflected lights for the droplet are formed at the focused plane, while the intensities of the other order scattering lights are too weak to form any glare points. Then, the droplet diameter can be derived from the distance between the two glare points. In addition, the focused image is relative small, making it possible to measure dense spray. First, the characteristics of the improved EGPVS are discussed, and a series of standard particles are measured for validating this technique. Then, the technique is applied to investigate the droplets sizes of flash boiling spray. It is found that the minimum measurable diameter of droplets is 7.1 μm, and the relative error is less than 4.7 %. The droplet size distributions of spray are different at different stages. The Sauter mean diameter (SMD) of gasoline spray decreases gradually as the fuel temperature increases, which is different from that of a single-component fuel with a sharp decrease in SMD at the flash boiling stage.

  17. On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons

    OpenAIRE

    Albin Jurić; Nenad Trinajstić; Ante MiliÄÂević; Sonja Nikolića

    2004-01-01

    The variable Zagreb vM2 index is introduced and applied to the structure-boiling point modeling of benzenoid hydrocarbons. The linear model obtained (thestandard error of estimate for the fit model Sfit=6.8 oC) is much better than thecorresponding model based on the original Zagreb M2 index (Sfit=16.4 oC). Surprisingly,the model based on the variable vertex-connectivity index (Sfit=6.8 oC) is comparable tothe model based on vM2 index. A comparative study with models based on the vertex-connec...

  18. Annealing-free P3HT:PCBM-based organic solar cells via two halohydrocarbons additives with similar boiling points

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xichang; Wang, Ting [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yang, Ailing [Department of Physics, Ocean University of China, Qingdao 266100 (China); Yang, Chunpeng; Dou, Xiaowei; Chen, Weichao; Wang, Ning [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-02-15

    Highlights: • Two halohydrocarbons were selected as additives for polymer solar cells. • The additives can improve the photocurrent of photovoltaic devices. • Extensive characterization of the blends was done to explore the mechanism. -- Abstract: Efficient annealing-free inverted bulk heterojunction (BHJ) organic solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) (1:1, w/w) have been obtained using two easily accessible halohydrocarbons (1,6-dibromohexane (DBH) and 1-bromodecane (BD)) with the same boiling points as solvent additives. The devices treated with 2.5 wt% additives removed the grain boundary of the large PCBM-rich phase, resulting in more-uniform film morphology on the nanoscale. The more-uniform film morphology greatly improved the short circuit current density of the devices. Finally, PCEs of the devices processed with DBH and BD reached 3.81% and 3.68%, respectively. Both additives with almost the same boiling points had a similar impact on device performance, despite of different chemical structures with different polarities and other physical properties.

  19. Further Analysis of Boiling Points of Small Molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z

    Science.gov (United States)

    Beauchamp, Guy

    2005-01-01

    A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…

  20. Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals

    Science.gov (United States)

    Ling-Wei, Li

    2016-03-01

    The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively investigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374081 and 11004044), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N150905001, L1509006, and N140901001), the Japan Society for the Promotion of Science Postdoctoral Fellowships for Foreign Researchers (Grant No. P10060), and the Alexander von Humboldt (AvH) Foundation (Research stipend to L. Li).

  1. On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Albin Jurić

    2004-12-01

    Full Text Available The variable Zagreb vM2 index is introduced and applied to the structure-boiling point modeling of benzenoid hydrocarbons. The linear model obtained (thestandard error of estimate for the fit model Sfit=6.8 oC is much better than thecorresponding model based on the original Zagreb M2 index (Sfit=16.4 oC. Surprisingly,the model based on the variable vertex-connectivity index (Sfit=6.8 oC is comparable tothe model based on vM2 index. A comparative study with models based on the vertex-connectivity index, edge-connectivity index and several distance indices favours modelsbased on the variable Zagreb vM2 index and variable vertex-connectivity index.However, the multivariate regression with two-, three- and four-descriptors givesimproved models, the best being the model with four-descriptors (but vM2 index is notamong them with Sfit=5 oC, though the four-descriptor model contaning vM2 index isonly slightly inferior (Sfit=5.3 oC.

  2. Boils (Furunculosis)

    Science.gov (United States)

    ... boil starts to drain, wash the area with antibacterial soap and apply some triple antibiotic ointment and a ... avoid spreading the infection to others. Use an antibacterial soap on boil-prone areas when showering, and dry ...

  3. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature

    Science.gov (United States)

    Schmidtke, B.; Petzold, N.; Kahlau, R.; Rössler, E. A.

    2013-08-01

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10-12 s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature Tg is covered. We focus on low-Tg liquids for which the high-temperature limit τ ≅ 10-12 s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" Ecoop(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)], 10.1103/PhysRevE.86.041507. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a Ecoop(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  4. Uncertainty evaluation of brake fluid equilibrium reflux boiling point%制动液平衡回流沸点不确定度的评定

    Institute of Scientific and Technical Information of China (English)

    王静; 张志芳; 唐林

    2014-01-01

    ERBP is the basic indicator of brake fluid performance. Five aspects of the brake fluid equilibri-um reflux boiling point uncertainty are evaluated in this article and to determine which one contributes most. The conclusions have certain significance to guide the brake fluid boiling point test.%平衡回流沸点是衡量制动液产品性能优劣的最基本指标。本文从五个方面对制动液平衡回流沸点不确定度进行评定,以确定哪些分量对最终不确定贡献最大,所得结论对指导制动液沸点检测具有一定意义。

  5. Prediction of Boiling Point of Alkanes by Artificial Neural Network%利用人工神经网络法预测烷烃的沸点

    Institute of Scientific and Technical Information of China (English)

    李谦; 王黎; 李伟; 房晓敏

    2001-01-01

    有机物沸点是有机物的一种非常重要的性质. 采用人工神经网络模型,选用结构描述码作为输入特征参数对烷烃的沸点进行预测,得到了很高的预测精度. 该方法还可作为对有机化合物的其他性质进行预测的一种有效手段.%The boiling point is a very important property of organics. The paper uses the structural discribing code as input data to predict precisely the boiling point of alkanes by artificial neural network. This method proves effective on predicting other important properties of organics.

  6. Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water

    Science.gov (United States)

    Li, Hua; Fujigaya, Tsuyohiko; Nakajima, Hironori; Inada, Akiko; Ito, Kohei

    2016-11-01

    This study attempts to optimize the properties of the anode current collector of a polymer electrolyte membrane water electrolyzer at high temperatures, particularly at the boiling point of water. Different titanium meshes (4 commercial ones and 4 modified ones) with various properties are experimentally examined by operating a cell with each mesh under different conditions. The average pore diameter, thickness, and contact angle of the anode current collector are controlled in the ranges of 10-35 μm, 0.2-0.3 mm, and 0-120°, respectively. These results showed that increasing the temperature from the conventional temperature of 80 °C to the boiling point could reduce both the open circuit voltage and the overvoltages to a large extent without notable dehydration of the membrane. These results also showed that decreasing the contact angle and the thickness suppresses the electrolysis overvoltage largely by decreasing the concentration overvoltage. The effect of the average pore diameter was not evident until the temperature reached the boiling point. Using operating conditions of 100 °C and 2 A/cm2, the electrolysis voltage is minimized to 1.69 V with a hydrophilic titanium mesh with an average pore diameter of 21 μm and a thickness of 0.2 mm.

  7. Influence Factor Analysis of FCC Heavy Gasoline End Boiling Point%催化重汽油干点的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    庞春天; 张颖; 李雅华

    2014-01-01

    国内某石化公司1 Mt/a 的催化裂化装置出现了重汽油干点偏高的情况。通过分析装置现有操作数据并针对该数据进行了详细核算,找到了导致重汽油干点偏高的具体原因。分析讨论了重汽油干点的影响因素,并提出了降低重汽油干点的调整方案。%The heavy gasoline from 1 Mt/a FCC unit in a domestic petrochemical company has higher end boiling point. In this paper, through analyzing and calculating the existed operating data, specific reasons to cause higher end boiling point were determined. The influence factors of heavy gasoline end boiling point were discussed, and the solutions were put forward.

  8. Changes of Petroleum Acid Distribution Characterized by FT-ICR MS in Heavy Acidic Crude Oil after True Boiling Point Distillation

    Institute of Scientific and Technical Information of China (English)

    Liu Yingrong; Zhang Qundan; Wang Wei; Liu Zelong; Zhu Xinyi; Tian Songbai

    2014-01-01

    The molecular transformations of carboxylic acids in heavy acidic SL crude before and after true boiling point distillation were examined by ultra-high resolution negative-ion electrospray ionization (ESI) Fourier transform ion cyclo-tron resonance mass spectrometry (FT-ICR MS). The acid class (heteroatom number), type (z numbers) and carbon number distributions were positively characterized. It was found out that the total acid number (TAN) of SL crude decreased after true boiling point distillation, and the abundance of O2 class in mass spectra was also found to be reduced from 67.6%to 34.5%in SL TBP mixed crude as measured by MS spectra, indicating to a potential carboxylic acid decomposition. However, it was interesting that the carboxylic acids type distribution in both oils was almost the same although their relative abundance in SL TBP mixed crude turned to be much lower, suggesting that various petroleum carboxylic acid types have the similar thermal decomposition reaction behavior. Furthermore, for each O2 type of acids in SL TBP mixed crude, the abundance of carboxylic acids with carbon number higher than 35 was reduced greatly, especially for those with carbon number higher than 60, the mass peaks of which were nearly totally removed, indicating that the large carboxylic acid molecules in heavy fractions decomposed more signiifcantly because of longer heating time during the true boiling point distillation process. As a result, the reduction of TAN may be caused by the thermal decomposition of carboxylic acids especially those with high carbon number, suggesting that quick distillation or much lower pressure is required to avoid the thermal decomposition.

  9. Micro distillation of crude oil to obtain TBP (True Boiling Points) curve; Micro destilacao de petroleo para obtencao da curva PEV (Ponto de Ebulicao Verdadeiro)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria de Lourdes S.P.; Mendes, Luana de Jesus [Fundacao Gorceix, Ouro Preto, MG (Brazil); Medina, Lilian Carmen [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    PETROBRAS and others petroleum companies adopt the ASTM norms as reference method for oil distillation, ASTM D2892 (2005) that uses columns with 14 to 18 theoretical plates and the ASTM D 5236 (2003) , that distills mixture of heavy hydrocarbons with boiling point over 150 deg C. The result of these two distillations is the TBP (True Boiling Point) curve that is the main tool to define the yield of oil derivatives, the 'royalties' payment, the oil price for commercialization and the logistic support of oil location or in new plants projects of distillation and optimization studies. This procedure has some limitations as the volume sample, at least 1L, and the time of distillation, 2 to 4 days. The objective of this work is to propose a new alternative to attain de PEV curve, developing a new methodology using micro scale distillation that uses a more efficient column than the conventional method. Graphics of both methods were created and the results between the conventional and the micro distillation received statistical treatment to prove the equivalence between them. (author)

  10. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene.

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Sen Zhao; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-15

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes. PMID:27250786

  11. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Science.gov (United States)

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-01

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. PMID:26957045

  12. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Zhao, Sen; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-01

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  13. Variation of Boiling Point with Salting Effect in Vapor-Liquid Equilibrium%汽液平衡盐效应中的沸点变化

    Institute of Scientific and Technical Information of China (English)

    孙仁义; 朱元举; 冷春莉

    2003-01-01

    测定了在恒压(100.0kPa)条件下若干含盐双液系(甲醇-水,乙醇-水,正丙醇-水)的沸点变化.实验结果表明引起溶液沸点降低"反常现象"发生的必要条件是易挥发组分被盐析或难挥发组分被盐溶.经热力学分析表明上述实验结果是一个具有普遍意义的结论.%The influence of some nonvolatile salts on boiling point of methanol-water, ethanol-water andn-propanol-water systems was determined at fixed liquid composition and given pressure (100.0 kPa).The experimental results indicate that the requisite of boiling point depression is that the more volatilecomponent must be salted out, the less volatile component must be salted in. This conclusion, basedon thermodynamical consideration, can be taken as a universal rule that governs the variation of boilingpoint when a little nonvolatile salt dissolves in liquid mixture with constant composition.

  14. 打造英语课堂沸点培养学生学科兴趣%Creating a Boiling Point in English Class and Cultivating Students' Interest in the Subject

    Institute of Scientific and Technical Information of China (English)

    洪曼林

    2015-01-01

    要培养小学生英语兴趣,必须提高小学英语课堂质量,努力打造英语课堂的“沸点”,使学生在沸点中,感受英语魅力,收获学习英语的成果,享受学习英语的快乐。为此教师要置情于境,营造课堂沸点;突破教学重点、难点,形成课堂沸点;抓住师生互动,引爆课堂沸点;让课堂精彩到底,在教学结尾处设置教学沸点。%To cultivate the English interest of primary school stu-dents, the English class quality in primary school must be im-proved to strive to create a boiling point in class so that students are in their boiling point, feeling the charm of English and gain-ing English learning results and enjoying the learning happiness. For this purpose, teachers shall be in the actual atmosphere and create a boiling point in class, breaking through key teaching points and difficulties to form the boiling point, igniting the class-room boiling point in interactions between teachers and students to fully make the class exciting and set a boiling point at the end of teaching.

  15. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  16. 烃类及其衍生物闪点、沸点的定量构效关系%QSPR study for predicting flash points and boiling points of hydrocarbon and their derivatives

    Institute of Scientific and Technical Information of China (English)

    杨惠; 陈利平; 谢传欣; 石宁; 陈网桦

    2011-01-01

    The quantitative relationships existed between flash points, boiling points and molecular structures of hydrocarbon and their derivatives were investigated based on the quantitative structure-property relationship ( QSPR) study. 384 molecular descriptors of hydrocarbon and their derivatives were calculated by CODESSA, and these descriptors were pre-selected by best multilinear regression method. Then QSPR models about flash points and boiling points were built. As a result, the five-descriptor linear models were developed to describe the relationship between the molecular structures and the flash points or the boiling points. The non-linear regression models were built based on support vector machine using the five descriptors selected by best multilinear regression method. The compounds were divided into a training set and a test set. The squared correlation coefficient, cross-validation coefficient and mean squared error of each model were calculated. The test set was used to validate the prediction performance of the resulting models. The predicted results indicated that, the prediction results were in good agreement with the experimental values. The models of flash points had robustness, strong generative ability and small prediction error. The predicted results were satisfactory. But the predicted results of boiling points remained to be improved. Compared to the models of hydrocarbons, the performance of the models which added derivatives was decreased. It can be very helpful to expand the applied scope of QSPR study.%基于定量结构-性质相关性( QSPR)原理,研究了烃类及其衍生物闪点、沸点与其分子结构间的内在定量关系.应用CODESSA软件计算384种烃类及其衍生物的分子结构描述符,建立了闪点和沸点的QSPR模型.用最佳多元线性回归(B-MLR)方法筛选得到的分子描述符建立了线性回归模型.用B-MLR方法所选择的5个描述符作为支持向量机(SVM)的输入建立了非线性模型.

  17. 气相色谱法测定苯类的初馏点和干点%Determination of Initial Boiling Point and Dry Point of Benzenes by Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    陈志运; 李志勇

    2001-01-01

    在工业生产中,用气相色谱法测定纯苯和甲苯产品的初馏点、干点及焦炉煤气中的含苯量,该法与常规方法相比,不仅具有测定速度快、结果准确和操作简单等优点,而且还可做到一柱多用。%In the commercial production,the initial boiling point,dry point of pure benzene and toluene products as well as benzol content in COG are determined with gas chromatography.Compare with the conventional method,the gas chromatography not only has advantages of rapid measurement, accurate measurement and simple operation,but also one column can have more applications.

  18. 脂肪族含氧有机物沸点的定量构效关系%Quantitative structure-property relationship of normal boiling point of aliphatic oxygen-containing organic compounds

    Institute of Scientific and Technical Information of China (English)

    刘万强; 曹晨忠

    2012-01-01

    The descriptors of polarizability effect index (PEI),the number of effective carbon (Nc,e(f)> the differences in PEI and Nc,eff between the branching chain and straight chain isomers,SPEI and δ Nc,eff,are derived from molecular structure. The quantitative structure-property relationships (QSPRs) between these descriptors and boiling points of 520 aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters were obtained separately. The QSPRs between these descriptors and boiling points were developed for 520 aliphatic oxygen-containing organic compounds by best subsets regression method. For the training set,the correlation coefficient R2 is 0. 9946 and the standard deviation GO is 6. 70 K. For the test set,R2 is 0. 9857 and s is 6. 10 K. The average relative error is 1. 19%. According to the regression equation,the influences of the number of effective carbon of alkyl,the role of functional groups and their interaction on the boiling point were analyzed. These results showed a good correlation between the boiling points of organic compounds and these descriptors derived from PEI for aliphatic alcohols,ethers,aldehydes,ketones,acids,and esters.

  19. 估算有机物正常沸点的基团贡献法的研究进展%Research Progress of Group - contribution Methods for Estimating Normal Boiling Point of Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    王小艳; 司继林

    2012-01-01

    Normal boiling points are one of the most important properties for organic compounds. Although there are many experimental values of the normal boiling point of organic compounds in the literature, but there are a few normal boiling point of the material cannot be obtained by experiment. We can obtain the normal boiling points by establishing the mathematical model, the group contribution method is the most important research methods to obtain the normal boiling point. A variety of group - contribution methods for estimating normal boiling point of organic compounds have been summarized. It has discussed the principles, advantages and disadvantages, application ranges of Joback method, C - G method, Xu - Wen method, position group contribution method, elements and bonds. The difference of these methods and the development trend of the methods for estimating normal boiling point of organic compounds was discussed.%有机物的正常沸点是重要的物性数据之一。尽管文献中有很多化合物正常沸点的实验值,但一些物质的正常沸点不能由实验获得,可以通过建立数学模型来估算缺少的有机物正常沸点,其中基团贡献法是人们获得正常沸点的最重要研究方法。本文对估算有机物正常沸点的基团贡献法进行了综述。主要介绍了Joback法、C—G法、许文法、定位分布贡献法、元素和化学键法等方法的原理、优缺点及应用范围;并对这些方法进行简单的比较;最后指出了有机物正常沸点的基团贡献法的发展趋势。

  20. Correlation of Boiling Points with Molecular Structure for Halogenated Propanes%卤代丙烷的沸点与分子结构的关联及预测

    Institute of Scientific and Technical Information of China (English)

    王克强; 孙献忠

    2000-01-01

    探讨了卤代丙烷沸点的变化规律,发展了一种直接根据分子结构信息计算和预测卤代丙烷沸点的方法.对53种卤代丙烷的计算结果表明,沸点计算值与实验值的一致性令人满意,平均误差1.18%.本文方法的提出,不仅在一定程度上揭示了卤代丙烷沸点与分子结构之间的定量关系,而且为工程上提供了一种预测卤代丙烷沸点的有效方法.%A correlation was investigated between the boiling points and molecular structure of halogenated propanes,and a method which can be used to calculate and predict the boiling points of halogenated propanes was developed.The results showed that the calculated boiling points are in good agreement with the experimental data,and the mean relative deviation was 1.18% for 53 halogenated propanes.The boiling points of 6 halogenated propanes were predicted for reference and testing in the future.Not only can the method be used to predict haloenated propance,but can help to understand the quantitative relation between boiling point and molecular structure of halogenated propanes as well.

  1. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    OpenAIRE

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2014-01-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becomin...

  2. Analysis of Boiling of Water in a Fixed Container Volume--the reason of boiling and the condition without boiling for water in a container with unchangeable volume and the temperature higher than boiling point%关于固定容器中水沸腾的分析——固定容器中的水在温度高于沸点时发生沸腾的原因与不发生沸腾的物理条件

    Institute of Scientific and Technical Information of China (English)

    罗烛红

    2012-01-01

    In real life; the water in a container with fixed volume will boil, as the temperature of water is increased and reaches the boiling point, However, is there a physical conditioin, under which the water in the closed vessel never boils? It is very interesting for teachers and classmates to answer the above question. Motivated by this, in this paper, we do qualitative analysis of the principle on the ebullition of water in the closed vessel and further discuss the physical condition that makes the water still keep liquid state.%从对应态方程出发定性分析在固定体积和升高温度时水沸腾的原因,也探讨了固定体积和温度达到沸点时水不发生沸腾的物理条件.

  3. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    Science.gov (United States)

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  4. PREDICTING THE BOILING POINT OF PCDD/Fs BY THE QSPR METHOD BASED ON THE MOLECULAR DISTANCE-EDGE VECTOR INDEX

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-05-01

    Full Text Available The quantitative structure property relationship (QSPR for the boiling point (Tb of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs was investigated. The molecular distance-edge vector (MDEV index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR and artificial neural network (ANN, respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

  5. 过冷沸腾起始点和净蒸汽产生点的实验研究%EXPERIMENTAL STUDY ON ONSET OF SUBCOOLED BOILING AND POINT OF NET VAPOR GENERATION

    Institute of Scientific and Technical Information of China (English)

    杨瑞昌; 王彦武; 唐虹; 司徒荣

    2001-01-01

    This paper reports the experimental study of onset of subcooled boiling and point of net vapor generation in a natural circulation system with subcooled boiling. Freon-12 was used as the working medium. In the experiments the onset of subcooled boiling and the point of net vapor generation were determined byvisual observation. The influence of the system pressure, inlet subcooling of the working medium and the input power to the heated section on the onset of subcooled boiling and the point of net vapor generation were investigated in the experiments. Based on the data reduction, the calculation methods of the onset of subcooled boiling and the net vapor generation in the natural circulation system have been presented respectively.%本文报告了使用R-12作工质进行的自然循环过冷沸腾起始点和净蒸汽产生点的实验结果。实验过程中使用可视化方法观察确定过冷沸腾起始点和净蒸汽产生点. 在相当宽广的工质压力、入口过冷度及加热功率范围内研究了上述参数对过冷沸腾起始点和净蒸汽产生点的影响, 在此基础上提出了计算自然循环过冷沸腾起始点和净蒸汽产生点的计算方法。

  6. A Tentative Study on the Relationship Among External Pressure, Vapor Tension and Boiling Point%外压与沸点和蒸气压的关系浅论

    Institute of Scientific and Technical Information of China (English)

    李俊华; 陈彩虹; 屈景年; 曾荣英

    2009-01-01

    The relationship among external pressure, vapor tension and boiling point is discussed in single-component system and two-component system by thermodynamic formulas and phase diagrams. The relationship amongexternal pressure, vapor tension and boiling point is ascertained under different conditions. Meanwhile this relationships is also discussed ulteriorly from microcosmic points.%运用热力学基本公式和相图对单组分系统和二组分系统中外压与沸点和蒸气压之间的关系进行了讨论,明确了不同条件下三者之间的关系,同时从微观角度进行了进一步分析.

  7. 二甲基氯硅烷生产高沸物的综合利用研究进展%Progress in Application of Methyl Chlorosilane High-Boiling Point Residue

    Institute of Scientific and Technical Information of China (English)

    高风; 李永刚; 汪民康; 张文超; 周魁; 林萌; 黄世强

    2012-01-01

    The progress of comprehensive utilization of high-boiling point residue resulting from the production of methylchlorosilane by direct method within China and abroad was reviewed. The advantages and disadvantages of the methods were also summarized, and the directions for utilization of the high-boiling point residue were pointed.%介绍了国内外应用直接法生产甲基氯硅烷过程中产生的高沸物的综合利用研究进展,总结对比了各种方法的优势和不足,展望了高沸物综合利用前景并指出其发展方向.

  8. Molecular polarizability effect index and boiling point of aliphatic aldehydes and alkanones%分子极化效应指数与脂肪族醛酮的沸点

    Institute of Scientific and Technical Information of China (English)

    张秀利; 汪勇先; 林英武; 李俊玲

    2003-01-01

    Based on the molecular polarizabihty effect index,a formula of three parameters was proposed to calculate the boiling point of aliphatic aldehydes and alkanones. ln(820.5 - Tb) = 6.38330- 1.37357 × 10-1 Nc + 5.39350ΔEPI + 8.02603 × 10-2N Where the Nc is the effective length of carbon chain of alkyl group in the aliphatic aldehydes and alkanones. The ΔPEI is the polarizability effect index difference between the corresponding branched and normal alkyl isomer containing the same carbon atom number, which expressed the effcet of carbonyl group on the boiling point of aliphatic aldehydes and alkanones. N is the carbon numbers of aliphatic aldehydes and alkanones.

  9. Application of Topology Index in Aliphatic Aldehydes,Fatty Amines and Aliphatic Hydrocarbons Boiling Point%拓扑指数在脂肪醛、脂肪胺及脂肪烃沸点中的应用

    Institute of Scientific and Technical Information of China (English)

    周长会; 吴启勋; 侯庆高; 高宴梓; 李洪囡; 张瑞

    2013-01-01

    Two matrices and a topological index W were defined,then,topological index W was put into nonlinear regression with the boiling point of aliphatic aldehydes, fatty amines and aliphatic hydrocarbons, respectively, and with good results,the correlation coefficient reaches a good level. The established topological index and two kinds of matrix are easy and convenient to use, which can quickly predict the boiling point of the molecule.%定义了两种矩阵和一种拓扑指数W,将拓扑指数W分别与脂肪醛、脂肪胺及脂肪烃的沸点进行非线性回归,取得了较好的结果,相关性系数达到了良好级别.建立的拓扑指数和两种矩阵简洁方便,可以快速预测分子的沸点.

  10. 低沸点化学物质在无源轿车轮胎温度传感器中的应用%Application of Low-boiling Point Chemicals in Car Tire's Passive Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    张健伟; 赫广田; 董群; 王鉴; 胡林杰

    2012-01-01

    利用低沸点化学物质具有较高的饱和蒸汽压的特性,设计了一种无源轿车轮胎温度监测系统.系统中的温度传感器是将温度变化通过低沸点化学物质的饱和蒸汽压信号转变为磁铁的位移信号,再利用线性霍尔传感器检测位移信号,实现对轮胎内温度的实时监测.低沸点化学物质是温度传感器的核心之一,结合轮胎温度报警的实际条件,通过考察不同低沸点物质的饱和蒸汽压随温度和压力的变化规律,并考虑化学物质使用的安全性,最终确定了该温度传感器中所适用的感温物质.%Considering the fact that low-boiling point chemical substance has higher saturated steam pressure, a car tire' s temperature monitoring system was designed to have tire' s temperature change translated to the magnet displacement signals through saturated steam pressure change of low-boiling point chemical substance in temperature sensor, and then to have the displacement signals detected with liner Hall element and the tire temperature monitored in real time. The low-boiling point chemical substance means important to the temperature sensor, having the rules that saturated steam pressure of different low-boiling point chemicals varies with temperature and pressure studied, and the conditions of tire temperature alarm and chemical substance security considered, the best temperature sensitive substance for passive temperature sensor was determined.

  11. Duality of boiling systems and uncertainty phenomena

    Institute of Scientific and Technical Information of China (English)

    柴立合; 彭晓峰; 王补宣

    2000-01-01

    Interactions among dry patches at high heat flux are theoretically analyzed. The high heat flux boiling experiments on metal plate wall with different materials and thickness are correspondingly conducted. The duality of boiling system, i.e. hydrodynamic performance and self-organized performance is identified. A unified explanation of hydrodynamic models and dry patches models is given. The scatter and uncertainty in boiling data can be mainly attributed to the intrinsic duality, but not the sole surface effects. The present experimental results explain why the deviation point at high flux boiling is seen only on occasion and why the self-organization of dry patches is often ignored in available literature.

  12. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  13. Development of Lubricity Evaluation Bench for Low-boiling Point Dimethyl Ether Fuel%低沸点燃料二甲醚润滑性评估实验台的研制

    Institute of Scientific and Technical Information of China (English)

    宋磊; 陈晓玲; 张武高; 浦耿强

    2012-01-01

    二甲醚在常温常压下为气态,不能用传统方法评估其润滑性能.根据低沸点燃油的物理特性和高频往复机(HFRR)的基本原理,设计可加压的高频往复机,初步搭建用于低沸点燃油的摩擦磨损试验台架,并采用常规燃油进行油品的可分辨性试验.结果表明,该台架可以用于评价不同油品的润滑性,为二甲醚等低沸点燃油润滑性能评估方法的建立奠定了基础.%Because dimethyl ether (DME) is gaseous at normal temperature and pressure, it is impossible to evaluate the lubricity of DME by using traditional methods. According to the principle of High Frequency Reciprocating Rig (HFRR)and the physical properties of low-boiling point fuel,a HFRR with pressure control was designed, and a wear test device for low-boiling point fuel was constructed. A preliminary resolution test with some regular fuels was done. The results show that the lubricity of different fuels can be evaluated by this rig, and it lays a solid foundation for the establishment of lubricity evaluation method about low-boiling point fuel like DME.

  14. Basic research and industrialization of CANDU advanced fuel - Effect of transverse convex curvature on boiling heat transfer and ONB point of nucleate fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Chun; Lee, Young; Lee, Sung Hong [Pusan National University, Pusan (Korea)

    2000-04-01

    Recently, the effect of convex curvature on heat transfer should not be ignored when the radius of curvature tends to be small and/or associated with high heat transfer rate cases. Both analytical and experimental studies were performed to prove the effect of transverse convex curvature on the boiling heat transfer in concentric annuli flows. The effect of the transverse convex surface curvature on ONB are studied analytically in the case of reactor and evaporator. It is seen that the inner wall heat flux depends on R/sub i/, Rc, Re, Pr, {alpha}, and the {theta} of working fluid. An experimental study on the incipience of nucleate boiling is performed as a verification ad extension of previous analyses. Through flow visualization, the results show that the most dominant parameter to affect the heat flux at ONB is found to be the surface curvature. The heat flux data at ONB increases with the Re and the subcooling, and the effect of subcooling on ONB becomes smaller with decreasing Re. The heat flux at ONB increases rapidly as increase in {alpha} due to higher convective motion of bulk flow. Comparison between both results are accomplished with respect to the relative enhancement due to the convex curvature. The relative heat transfer enhancement ratio shows a good agreement between theory and experiment qualitatively and quantitatively. In conclusion, the obtained results suggest that the effect transverse convex curvature appears significantly in the boiling heat transfer. Therefore, it can be clearly expected that the effect should be more strong at the case of critical heat flux condition which is the most important design goal of the advanced nuclear fuel rods. 30 refs., 78 figs. (Author)

  15. Secondary pool boiling effects

    Science.gov (United States)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  16. 低沸点工质板式脉动热管传热特性研究%Effect of Low-Boiling Point Fluid on Pulsating Heat Pipe Heat Transfer Performance

    Institute of Scientific and Technical Information of China (English)

    李雪娇; 贾力; 陆谦逸

    2014-01-01

    To meet the need of electronic equipment work at lower temperature,experiment study on PHP charged with R141b and R600a.Experimental results indicate that low-boiling point fluid pulsating heat pipes start up more quickly and start-up temperature is lower compared with acetone at different heat power.During operation low-boiling pulsating heat pipe has smaller temperature difference、lower heating-surface temperature and smaller thermal resistance.Low-boiling point fluid improve PHP heat transfer performance,with R600a as working fluid,the shortest start-up time is 12 s,during operation,the smallest temperature difference is 0.8℃ with R141b as working fluid.%针对电子设备需要在较低的温度下工作的要求,本文对采用R141b与R600a等低沸点工质,槽道边长为1 mm的板式脉动热管进行传热实验研究.结果表明,对比丙酮工质脉动热管,在不同加热功率下,低沸点工质脉动热管启动时间短,启动温度低,正常运行时冷热端温差小,热端温度低,热阻小.低沸点工质能大幅提高微通道脉动热管传热性能,R600a为工质时,脉动热管启动时间最短仅需要12 s,正常运行时,R141b为工质脉动热管冷热端温度差最小为0.8℃.

  17. Eurodist全自动实沸点蒸馏仪在原油评价中应用研究%Studies on Eurodist Full-automatic True Boiling Point Distillation Instrument Applying in Crude Oil Evaluation

    Institute of Scientific and Technical Information of China (English)

    吴良英; 李建华; 李慧

    2011-01-01

    Operating principle and method of Eurodist full-automatic true boiling point distillation instrument were investigated and used to distill crude oil.After comparing experimental results with ITS Testing Services (UK)Ltd, the conclusion showed that ASTM D2892 and ASTM D5236 is suitable for this instrument, and has applied in crude oil evaluation, and has realized automation for crude oil boiling point distillation.%本文介绍了德国Rofa公司生产的全自动实沸点蒸馏仪的工作原理和操作方法,并利用该仪器在实验室对原油进行蒸馏,其蒸馏的数据与英国Intertek实验室进行了对比,我们对蒸馏的结果进行研究分析,研究结果表明,该仪器完全符合ASTM D2892和ASTM D5236标准方法,已经应用于原油评价工作中,实现了测定原油沸点蒸馏的自动化.

  18. 利用DISLab传感器探究水的沸点与大气压强的关系%Exploring on the relation between boiling point of water and atmospheric pressure using DISLab

    Institute of Scientific and Technical Information of China (English)

    陈剑峰

    2016-01-01

    针对“密闭气体压强与温度间的关系”实验的不足,将DISLab 应用到实验中,通过 DISLab 的压强传感器和温度传感器可以直接精确地读出密闭气体的压强和温度,直观地显示出“压强减少、水的沸点降低”及“压强升高、水的沸点升高”的规律。%Aiming at the deficiency of the experiment of the relation between pressure and temper-ature of sealed gas,a method using DISLab was put forward.By using pressure sensor and tempera-ture sensor,the pressure and temperature could be read directly.It was showed that the lower the pressure,the lower the boiling point of water and the higher the pressure,the higher the boiling point of water.

  19. Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2012-01-01

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting trans...

  20. 定位分布贡献方法估算有机物正常沸点%Position group contribution method for predicting the normal boiling point of organic compounds

    Institute of Scientific and Technical Information of China (English)

    王强; 马沛生; 王昶; 夏淑倩

    2009-01-01

    A new position group contribution model iS proposed for the estimation of normal boiling data of organic compounds involving a carbon chain from C2 to C18. The characteristic of this method iS the use of position distribution function.It could distinguish most of isomers that include cis-or trans-structure from organic compounds.Contributions for hydrocarbons and hydrocarbon derivatives containing oxygen,nitrogen,chlorine,bromine and sulfur,are given.Compared with the predictions,results made use of the most common existing group contribution methods,the overall average absolute difference of boiling point predictions of 417 organic compounds is 4.2 K:and the average absolute percent derivation is 1.0%,which iS compared with 1 2-3 K and 3.2%with the method of Joback.12.1 K and 3.1%with the method of Constantinou-Gani.This new position contribution groups mcthod is not only much more accurate but also has the advantages of simplicity and stability.

  1. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  2. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  3. CONNECTIVITY INDEX OF ENVIRONMENT VALENCE AND QSPR RESEARCH FOR BOILING POINTS OF SATURATED HYDROCARBON%环价连接性指数与饱和烃沸点的QSPR研究

    Institute of Scientific and Technical Information of China (English)

    沐来龙; 冯长君

    2004-01-01

    In this paper, according to the peak numbers of the nuclear magnetic resonance and the Randic embranchment degree (δi) of carbon atom i, the carbon atom's environment valence gi is defined as. gi =(ti+δi)/2. The gi reflect the characteristic of each carbon atom, and as well as the conjunction detail of the carbon atom with other carbon atoms. So, the gi could distinguish better the chemical environment of each carbon atom in the molecule than δi. A connectivity index of environment valence (mS) and its athwart index (mS') are proposed based on the adjacency matrix and the carbon atom's environment valence gi. Among them, the 0S and 0S' include the characteristic and the connectivity of each carbon atom, the 1S and 1S' reflect the second conjunction between carbon atoms. Based on 0S' and N (the number of carbon atom), a new structural parameter symmetry degree (N∝), is defined as. N∝ =[ (0S's0Sc') N]2/3, and the N∝ reflect the size of the molecule as well as the symmetry of the molecule.The N∝, 0S and Rn (the biggest ring's edge numbers of cycloalkanes) of 474 saturated hydrocarbons (216 paraffins and 258 cycloalkanes) were calculated and correlated with their boiling points. The best regression equation was obtained as follow: In ( 1056 - Tb ) = 6. 9480 - 0. 1040N∝ - 0. 0086890S -0. 009614Rn+0. 01998Rm0.5, n=474, R=0. 9989, F=52627, S=5.63K. The model was checked up by the Jackknife's method. It should have overall steadiness and could be used for predicting the boiling point of saturated hydrocarbons.

  4. Aspects of subcooled boiling

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  5. Boiling of an Emulsion in a Yield Stress Fluid

    OpenAIRE

    Guéna, Geoffroy; Wang, Ji; D'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-01-01

    International audience We report the boiling behaviour of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50°C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two pha...

  6. Determination of Boiling Range of Xylene Mixed in PX Device Using Artificial Neural Networks

    OpenAIRE

    Zhu, Ting; Zhu, Yuxuan; Yang, Hong; Li, Hao

    2014-01-01

    Determination of boiling range of xylene mixed in PX device is currently a crucial topic in the practical applications because of the recent disputes of PX project in China. In our study, instead of determining the boiling range of xylene mixed by traditional approach in laboratory or industry, we successfully established two Artificial Neural Networks (ANNs) models to determine the initial boiling point and final boiling point respectively. Results show that the Multilayer Feedforward Neural...

  7. Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis

    OpenAIRE

    Nikolayev, Vadim; Chatain, D.; Garrabos, Y.; Beysens, D.

    2006-01-01

    International audience Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor reco...

  8. Dry patch formed boiling and burnout in potassium pool boiling

    International Nuclear Information System (INIS)

    Experimental results are presented on dry patch formed boiling and burnout in saturated potassium pool boiling on a horizontal plane heater for system pressures from 30 to 760 torr and liquid levels from 5 to 50 mm. The dry patch formation occurs in the intermittent boiling which is often encountered when liquid alkali metals are used under relatively low pressure conditions. Burnout is caused from both continuous nucleate and dry patch formed boiling. The burnout heat flux together with nucleate boiling heat transfer coefficients are empirically correlated with system pressures. A model is also proposed to predict the minimum heat flux to form the dry patch. (author)

  9. Life above the boiling point of water?

    OpenAIRE

    Stetter, Karl Otto; Fiala, G.; Huber, Robert; Huber, Gertrud; Segerer, A.

    1986-01-01

    Various extremely thermophilic archaebacteria exhibit optimum growth at above 80°C. Pyrodictium is the most thermophilic of these organisms, growing at temperatures of up to U 0 ° C and exhibiting optimum growth at about 105°C. All of these organisms grow by diverse types of anaerobic and aerobic metabolism.

  10. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  11. Boiling incipience and convective boiling of neon and nitrogen

    Science.gov (United States)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  12. Microbiological Effectiveness of Disinfecting Water by Boiling in Rural Guatemala

    OpenAIRE

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-01-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water sa...

  13. 基于低沸点化学物质的无源轿车轮胎温度监测系统%A Passive Car Tire Temperature Monitoring System Using Low-boiling Point Chemical Substance

    Institute of Scientific and Technical Information of China (English)

    张健伟; 董群; 王鉴; 胡林杰

    2014-01-01

    利用低沸点化学物质具有较高的饱和蒸汽压的特性,设计了一种无源轿车轮胎温度监测系统。系统中的胎温传感器将温度变化通过低沸点化学物质的饱和蒸汽压的相应变化转变为磁铁的位移信号,再利用线性霍尔传感器转变为电压信号,最后通过信号检测系统对信号进行处理和转换,实现对轮胎温度的实时监测和高温报警。通过静态实验,选定了满足胎温传感器要求的感温物质;通过动态实验,考察了报警系统的检测精确度。结果表明,系统检测相对误差绝对值≤6%,测温精度为1℃。%By utilizing the property of higher saturated vapor pressure of low-boiling point chemical sub-stances, a passive car tire temperature monitoring system is designed, in which the change of temperature in tire temperature sensor is transformed into the displacement signal of magnet through the corresponding change in satu-rated vapor pressure of chemical substance. Then the displacement signal of magnet is transformed into voltage sig-nal by linear Hall sensor, and through certain signal processing and transform, the real time monitoring and high temperature alarm of tire temperature are realized. The temperature sensing chemical substance meeting the require-ments of tire temperature sensor are selected by static test, while the detection accuracy of warning system is investi-gated by dynamic test. The results show that the system achieves a relative error no more than 6% and a temperature measuring accuracy of 1℃.

  14. Experimental Evidence of the Vapor Recoil Mechanism in the Boiling Crisis

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Beysens, D

    2016-01-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  15. Bandages of boiled potato peels.

    Science.gov (United States)

    Patil, A R; Keswani, M H

    1985-08-01

    The use of potato peels as a dressing for burn wounds has been reported previously. A technique of preparing bandage rolls with boiled potato peels is now presented, which makes dressing of a burn wound more convenient. PMID:4041947

  16. High flux film and transition boiling

    Energy Technology Data Exchange (ETDEWEB)

    Witte, L.C.

    1990-01-01

    This report is a bench-scale experiment on transition boiling. The author gives a detailed description on experimental apparatus and conditions. The visual observed boiling phenomena; nucleate boiling and film boiling, and the effect of heat transfer are also elucidated. 10 refs., 11 figs., 1 tab.

  17. Enhanced heat transfer in confined pool boiling

    NARCIS (Netherlands)

    Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.

    2009-01-01

    We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found

  18. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling Liq

  19. LMFBR safety and sodium boiling

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, W.D.; Tschamper, P.M.; Fontana, M.H.; Henry, R.E.; Padilla, A. Jr.

    1978-01-01

    Within the U.S. Fast Breeder Reactor Safety R and D Work Breakdown Structure for Line of Assurance 2, Limit Core Damage, the influence of sodium boiling upon the progression and termination of accidents is being studied in loss of flow, transient overpower, loss of piping integrity, loss of shutdown heat removal system and local fault situations. The pertinent analytical and experimental results of this research to date are surveyed and compared with the requirements for demonstrating the effectiveness of this line of assurance. A discussion of specific technical issues concerned with sodium boiling and the need for future development work is also presented.

  20. The nucleate pool boiling dilemma

    International Nuclear Information System (INIS)

    It is shown that the scatter of experimental data is due to the history and machining finish of the heated surface. All experimental pool boiling data published to date, which does not specify precisely the characteristics of the heated surface cannot be expected to provide reliable design information. (U.K.)

  1. Numerical Modeling and Investigation of Boiling Phenomena

    OpenAIRE

    Kunkelmann, Christian

    2011-01-01

    The subject of the present thesis is the numerical modeling and investigation of boiling phenomena. The heat transfer during boiling is highly efficient and therefore used for many applications in power generation, process engineering and cooling of high performance electronics. The precise knowledge of particular boiling processes, their relevant parameters and limitations is of utmost importance for an optimized application. Therefore, the fundamentals of boiling heat transfer have been...

  2. Zero Boil-Off Tank (ZBOT) Experiment

    Science.gov (United States)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  3. Burnout in boiling heat transfer. part I: pool boiling systems

    International Nuclear Information System (INIS)

    Recent experimental and analytical developments in pool-boiling burnout are reviewed, and results are summarized that clarify the dependence of critical heat flux on heater geometry and fluid properties. New analytical interpretations of burnout are discussed, and the effects of surface condition, aging, acceleration, and transient heating (or cooling) are described. The relation of sound to burnout and new techniques for stabilizing electric heaters at burnout are also considered

  4. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  5. Thermosyphon boiling in vertical channels

    Science.gov (United States)

    Bar-Cohen, A.; Schweitzer, H.

    The thermal characteristics of ebullient cooling systems for VHSIC and VLSI microelectronic component thermal control are studied by experimentally and analytically investigating boiling heat transfer from a pair of flat, closely spaced, isoflux plates immersed in saturated water. A theoretical model for liquid flow rate through the channel is developed and used as a basis for correlating the rate of heat transfer from the channel walls. Experimental results for wall temperature as a function of axial location, heat flux, and plate spacing are presented. The finding that the wall superheat at constant imposed heat flux decreases as the channel is narrowed is explained with the aid of a boiling thermosiphon analysis which yields the mass flux through the channel.

  6. A look-up table for fully developed film-boiling heat transfer

    International Nuclear Information System (INIS)

    An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy

  7. Boiling transition and the possibility of spontaneous nucleation under high subcooling and high mass flux density flow in a tube

    International Nuclear Information System (INIS)

    Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated

  8. Criticality in the slowed-down boiling crisis at zero gravity

    OpenAIRE

    Charignon, Thomas; Lloveras Muntané, Pol Marcel; CHATAIN, Denis; Truskinovsky, Lev; Vives, Eduard; Beysens, Daniel; Nikolayev, Vadim

    2015-01-01

    Boiling crisis is a transition between nucleate and film boiling. It occurs at a threshold value of the heat flux from the heater called CHF (critical heat flux). Usually, boiling crisis studies are hindered by the high CHF and short transition duration (below 1 ms). Here we report on experiments in hydrogen near its liquid-vapor critical point, in which the CHF is low and the dynamics slow enough to be resolved. As under such conditions the surface tension is very small, the experiments are ...

  9. Kandlikar third number map for flow boiling in micro-channels and micro-gravity

    Directory of Open Access Journals (Sweden)

    Awad M.M.

    2015-01-01

    Full Text Available As an extension of the recent work of Baldassari and Marengo (Baldassari C., Marengo M., Flow Boiling in Microchannels and Microgravity, Progress in Energy and Combustion Science 39 (2013 1, pp. 1-36, this note presents Kandlikar third number (K3 map for flow boiling in microchannels and microgravity. Using several data points available in the literature, Kandlikar third number (K3 map was plotted versus the hydraulic diameter (dh as the characteristic dimension for flow boiling in microchannels and microgravity. The ranges of the Kandlikar third number (K3, calculated using the hydraulic diameter (dh, are presented.

  10. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  11. Problem of Boil - off in LNG Supply Chain

    OpenAIRE

    Dobrota, Đorđe; Lalić, Branko; Komar, Ivan

    2013-01-01

    This paper examines the problem of evaporation of Liquefied Natural Gas (LNG) occurring at different places in the LNG supply chain. Evaporation losses in the LNG supply chain are one of the key factors for LNG safety, technical and economic assessment. LNG is stored and transported in tanks as a cryogenic liquid, i.e. as a liquid at a temperature below its boiling point at near atmospheric pressure. Due to heat entering the cryogenic tank during storage and transportatio...

  12. Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Victor V.; Prezhdo, Oleg V.

    2012-01-01

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains small. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required...

  13. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    V S Duryodhan; S G Singh; Amit Agrawal

    2013-12-01

    An experimental study of flow boiling through diverging microchannel has been carried out in this work, with the aim of understanding boiling in nonuniform cross-section microchannel. Diverging microchannel of 4° of divergence angle and 146 m hydraulic diameter (calculated at mid-length) has been employed for the present study with deionised water as working fluid. Effect of mass flux (118–1182 kg/m2-s) and heat flux (1.6–19.2 W/cm2) on single and two-phase pressure drop and average heat transfer coefficient has been studied. Concurrently, flow visualization is carried out to document the various flow regimes and to correlate the pressure drop and average heat transfer coefficient to the underlying flow regime. Four flow regimes have been identified from the measurements: bubbly, slug, slug–annular and periodic dry-out/rewetting. Variation of pressure drop with heat flux shows one maxima which corresponds to transition from bubbly to slug flow. It is shown that significantly large heat transfer coefficient (up to 107 kW/m2-K) can be attained for such systems, for small pressure drop penalty and with good flow stability.

  14. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  15. Boiling turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Lakkaraju, R.

    2013-01-01

    A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.

  16. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good agreemen

  17. Boiling heat transfer with acoustic cavitation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of acoustic cavitation and nanometer granule on boiling heat transfer of horizontal circular copper tube are investigated experimentally and theoretically using acetone as the working fluid according to the boiling procedure. The results show that heat transfer can be enhanced or weakened by generation of the cavitation bubble or addition of the nanometer granules, respectively. The mechanisms of the effects are analyzed.

  18. Transition boiling heat transfer during reflooding transients

    International Nuclear Information System (INIS)

    Transition boiling heat transfer is characterized by a heat flux which declines as the heater wall temperature increases. Steady state transition boiling is also characterized by alternate periods of high and low heat transfer caused by intermittent wetting of the heated surface. In flow boiling, the reason for intermittent wetting depends on the volume fraction of vapor present. At high vapor volume fractions, annular flow exists during what is generally called the nucleate boiling region, and a thin liquid film is present on the surface. The remainder of the passage is filled with vapor carrying entrained droplets. Above the nucleate boiling region there is no liquid film, and heat is transferred to droplet-laden vapor. In the narrow transition boiling region between nucleate boiling and heat transfer to steam, the liquid film is present only part of the time. The intermittent wetting produces significant wall temperature oscillations. Recent phenomenologically based modeling of steady state transition boiling heat transfer at high vapor fractions has been successful in predicting the magnitude of both temperature oscillations and heat transfer rates. After a brief review of the steady state model, this note shows how the results of the steady state analysis for vertical surfaces may be used to obtain heat transfer rates during reflooding transients

  19. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Irvine, T.F., Jr. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  20. Enhanced convective and film boiling heat transfer by surface gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.; Greene, G.A. (Brookhaven National Lab., Upton, NY (United States)); Irvine, T.F., Jr. (State Univ. of New York, Stony Brook, NY (United States). Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  1. Critical heat flux of an impinging water jet on a heated surface with boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [Andong Institute of Informaion Technology, Andong (Korea); Kim, H.D. [Andong National University, Andong (Korea); Choi, K.W. [Incheon University, Incheon (Korea)

    2000-04-01

    The purpose of this paper is to investigate a critical heat flux(CHF) during forced convective subcooled and saturated boiling in free water jet system impinged on a rectangular heated surface. The surface is supplied with subcooled or saturated water through a rectangular jet. Experimental parameters studied are a width of heated surface, a height of supplementary water and a degree of subcooling. Incipient boiling point is observed in the temperature of 6{approx}8 deg.C of superheat of test specimen. CHF depends on jet velocity for various boiling-involved coolant system. CHF also is proportional to the nozzle exit velocity to the power of n, where n is 0.55 and 0.8 for subcooled and saturated boiling, respectively. CHF is enhanced with a higher jet velocity, higher degree of subcooling and smaller width of a heated surface. (author). 18 refs., 13 figs., 1 tab.

  2. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  3. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  4. Heat Transfer in Nucleate Pool Boiling of Binary and Ternary Refrigerant Mixtures

    Institute of Scientific and Technical Information of China (English)

    赵耀华; 刁彦华; 鹤田隆治; 西川日出男

    2004-01-01

    Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants, HFC-134a, HFC-32, and HFC-125, their binary and ternary mixtures under saturated conditions at 0.9MPa. Compared to pure components, both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased. Experimental data were compared with some empirical and semi-empirical correlations available in literature. For binary mixture, the accuracy of the correlations varied considerably with mixtures and the heat flux. Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome. For ternary mixture, the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points, and their concentration difference had important effects on boiling heat transfer coefficients.

  5. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  6. Development of a mechanistic model for forced convection subcooled boiling

    Science.gov (United States)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  7. Overview and Computational Approach for Studying the Physicochemical Characterization of High-Boiling-Point Petroleum Fractions (350°C+ Approche informatique pour l’étude des propriétés physico-chimiques de fraction pétrolière lourde (350°C+

    Directory of Open Access Journals (Sweden)

    Plazas Tovar L.

    2012-06-01

    Full Text Available The processing and upgrading of high-boilingpoint petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C+ from “W, Y and Z” crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization, the thermodynamic properties (molar mass and critical properties and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure. The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. Le traitement et la valorisation des fractions pétrolières lourdes nécessitent une étude très détaillée dans la mesure où le pétrole contient un très grand nombre de composants différents (paraffines, oléfines, naphtènes, arômes. Afin de caractériser les fractions, il est indispensable de déterminer les propriétés thermodynamiques et thermophysiques des

  8. Critical heat flux in subcooled flow boiling

    Science.gov (United States)

    Hall, David Douglas

    The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe

  9. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling

  10. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  11. Our Educational Melting Pot: Have We Reached the Boiling Point?

    Science.gov (United States)

    Lauderdale, Katherine Lynn, Ed.; Bonilla, Carlos A., Ed.

    The articles and excerpts in this collection illustrate the complexity of the melting pot concept. Multiculturalism has become a watchword in American life and education, but it may be that in trying to atone for past transgressions educators and others are simply going too far. These essays illustrate some of the problems of a multicultural…

  12. 21 CFR 872.6710 - Boiling water sterilizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  13. Using Boiling for Treating Waste Activated Sludge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this work we investigated the feasibility of using short time, low superheat boiling to treat biological sludge. The treated sludge exhibited reduced filterability and enhanced settleability. The boiling treatment released a large amount of extra-cellular polymers (ECPs) from the solid phase and reduced the microbial density levels of the total coliform bacteria and the heterotrophic bacteria. A diluted sludge is preferable for its high degree of organic hydrolysis and sufficient reduction in microbial density levels.

  14. How To Boil the Perfect Egg

    Institute of Scientific and Technical Information of China (English)

    小雨

    2007-01-01

    A British inventor says he has cracked(破解)the age-old riddle(难题)of how to boil the perfect egg,get rid of(摆脱)the water. Simon Rhymes uses powerful light bulbs instead of boiling water to cook the egg. The gadget(小发明)does the job in six minutes,and then chons off(削)the top of

  15. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  16. Bubble spreading during the boiling crisis: modelling and experimenting in microgravity

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Y; Lecoutre, C; Chatain, D

    2016-01-01

    Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil the gas bubbles begin to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes its spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. In the experiments both in the Mir spa...

  17. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  18. Burnout in subcooled flow boiling of water. A visual experimental study

    International Nuclear Information System (INIS)

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  19. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  20. Surface boiling of superheated liquid

    International Nuclear Information System (INIS)

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs

  1. Pool boiling of dielectric liquids on porous graphite and extended copper surfaces

    Science.gov (United States)

    Parker, Jack L.

    with Cu pins increases the nucleate boiling heat transfer rate over that on plane copper. On all surfaces, as the inclination angle increases, the heat transfer rate at low superheats increases slightly, then decreases with increasing angle at high superheats. However, the porous graphite and the Cu with corner pins significantly reduce the decline in boiling heat transfer rate with increasing inclination. The peak heat transfer coefficient corresponds to the minimum thermal boiling resistance and occurs at a heat flux ˜10% lower than that at CHF. Although the heat flux at the peak heat transfer coefficient is the most desirable operational point, CHF is the upper limit for cooling by nucleate boiling. Beyond CHF the electronics would overheat. Results also show that increasing the height of the corner pins increases the thermal power removed in nucleate boiling and at CHF. CHF increases linearly with increased liquid subcooling, but decreases with increased surface inclination. The decrease in CHF with increased inclination for the surfaces with corner pins is significantly smaller than on plane surfaces. For electronics cooling applications, the best mode of cooling by nucleate boiling is in saturation boiling of HFE-7100 on 5 mm tall corner pins operating at the heat flux corresponding to the minimum boiling resistance. At this condition and using the saturation temperature of HFE-7100 of 54 °C, the wall temperature is 75.2 °C, well below the limit of 85 °C. If more robust electronics are used and have a higher maximum temperature limit, boiling in 30 K subcooled liquid removed much more power. At the minimum boiling resistance, the wall temperature is 83.4 °C. (Abstract shortened by UMI.)

  2. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    CERN Document Server

    Li, Q; Francois, M M; He, Y L; Luo, K H

    2015-01-01

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 87, 053301 (2013)]. The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid-vapor phase change. Using the model, the liquid-vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Furthermore, the effects of the he...

  3. Measurement of boiling heat transfer coefficient in liquid nitrogen bath by inverse heat conduction method

    Institute of Scientific and Technical Information of China (English)

    Tao JIN; Jian-ping HONG; Hao ZHENG; Ke TANG; Zhi-hua GAN

    2009-01-01

    Inverse heat conduction method (IHCM)is one of the most effective approaches to obtaining the boiling heat transfer coefficient from measured results.This paper focuses on its application in cryogenic boiling heat transfer.Experiments were conducted on the heattransfer of a stainless steel block in a liquid nitrogen bath.with the assumption of a ID conduction condition to realize fast acquisition of the temperature of the test points inside the block.With the inverse-heat conduction theory and the explicit finite difference model,a solving program was developed to calculate the heat flux and the boiling heat transfer coefficient of a stainless steel block in liquid nitrogen bath based on the temperature acquisition data.Considering the oscillating data and some unsmooth transition points in the inverse-heat-conduction calculation result of the heat-transfer coefficient,a two-step data-fitting procedure was proposed to obtain the expression for the boiling heat transfer coefficients.The coefficient was then verified for accuracy by a comparison between the simulation results using this expression and the verifying experimental results of a stainless steel block.The maximum error with a revised segment fitting iS around 6%.which verifies the feasibility of using IHCM to measure the boiling heat transfer coefficient in liquid nitrogen bath.

  4. Did the big bang boil?

    CERN Multimedia

    Wilczek, Frank

    2006-01-01

    "Standard theories tell us that, at some point in the Universe's evolution, free quarks and gluons must have become bound together into the hadronic matter we see today. But was this transition abrupt or smooth?

  5. Structural Changes of Malt Proteins During Boiling

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Changes in the physicochemical properties and structure of proteins derived from two malt varieties (Baudin and Guangmai during wort boiling were investigated by differential scanning calorimetry, SDS-PAGE, two-dimensional electrophoresis, gel filtration chromatography and circular dichroism spectroscopy. The results showed that both protein content and amino acid composition changed only slightly during boiling, and that boiling might cause a gradual unfolding of protein structures, as indicated by the decrease in surface hydrophobicity and free sulfhydryl content and enthalpy value, as well as reduced α-helix contents and markedly increased random coil contents. It was also found that major component of both worts was a boiling-resistant protein with a molecular mass of 40 kDa, and that according to the two-dimensional electrophoresis and SE-HPLC analyses, a small amount of soluble aggregates might be formed via hydrophobic interactions. It was thus concluded that changes of protein structure caused by boiling that might influence beer quality are largely independent of malt variety.

  6. How does surface wettability influence nucleate boiling?

    Science.gov (United States)

    Phan, Hai Trieu; Caney, Nadia; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2009-05-01

    Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).

  7. The entropy balance for boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco-Javier E-mail: fjk@posta.unizar.es

    2001-10-01

    Subcooled forced convection boiling of water is recognized as one of the best means of accommodating the very high heat fluxes that plasma facing components of fusion reactors have to withstand. The boiling curve, giving the wall temperature in function of the applied flux and flow conditions, is essential for the design of such cooling configurations. In this paper, a new entropy balance for subcooled boiling flow, which allows the wall temperature to be obtained, is presented and successfully compared with experimental data from the Joint US-EURATOM R and D Program. The derivation of this entropy balance is based on a new strict application of the Reynolds theorem to multiphase flows recently proposed by the author.

  8. Thermodynamics of Flow Boiling Heat Transfer

    Science.gov (United States)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  9. Water boiling kinetic in rapid decompression

    International Nuclear Information System (INIS)

    This study entering in the frame of a CEA, EDF and Framatome collaboration, has for objective to modelize two-phase flows in case of PWR Loca. The objective is to find, by taking in account the all imbalances, a formulation for the mass transfer at the interface water-vapor by the study of water boiling phenomenon in case of fast decompression such as a primary circuit break. In this accident, the estimation of boiling speeds in an essential parameter for determining the break discharge which conditions the safety systems design

  10. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    Energy Technology Data Exchange (ETDEWEB)

    Briere, E.; Larrauri, D.; Olive, J. [Electricite de France, Chatou (France)

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  11. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    International Nuclear Information System (INIS)

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  12. Application of fractal characteristic quantities of pressure fluctuation in subcooled boiling regime recognition

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dynamical behavior of the subcoole d boiling two-phase system ws introduced and discussed. With the introduction of fractal concept, an analysis of the fractal feature of pressure wave signals fiom nonlinear dynamics point of view. was carried out. Meanwhile, the pseudo phase diagrans of typical time series of sound pressure were given. Finally, through dynamic clustering and on the basis of calculating correlation dimension and Hurst exponent of pressure wave time series on different subcooling conditions, the recognition of developing regime of the two-phase system was delivered, which might provide a promising approach of recognition and diagnosis of a boiling system.

  13. Reexamination of Correlations for Nucleate Site Distribution on Boiling Surface by Fractal Theory

    Institute of Scientific and Technical Information of China (English)

    YangChunxin

    1997-01-01

    Nucleate site distribution plays an essential role in nucleate boiling process.In this paper,it is pointed out that the size and spatial distributioin density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function,and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function.It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory.

  14. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    Energy Technology Data Exchange (ETDEWEB)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  15. Heat Transfer From Electrically Heated Nichrome Wires to Boiling Water at Different Pressures

    Directory of Open Access Journals (Sweden)

    Devi Dayal

    1968-01-01

    Full Text Available Boiling curves for nucleate and film boiling have been drawn for nichrome of three sizes in distilled and degasified water at saturation temperatures under five different sub-atmospheric vapour pressure. It has been observed that (i for the same Q/A (heat transfer, Delta Theta (excess of wire temperature over saturation point of water decreases with pressure in both nucleate and film boiling ranges, (ii Both Q/A max. and Delta Theta/SubC show a rapid decrease with pressure but these variations become more gradual at higher pressures, and (iii Q/A max. and Delta Theta/SubC increase with wire size at all pressures; increase in Delta Theta/SubC however, becomes less conspicuous at higher pressures approaching one atmosphere.

  16. Cryogenic Propellant Boil-Off Reduction System

    Science.gov (United States)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  17. Fuel assembly for a boiling water reactor

    International Nuclear Information System (INIS)

    The fuel assembly of a boiling water reactor contains a number of vertical fuel rods with their lower ends against a bottom tie plate. The rods are positioned by spacers, which are fixed to the canning. The upward motion is reduced by the top plate of a special design. (G.B.)

  18. Classic and Hard-Boiled Detective Fiction.

    Science.gov (United States)

    Reilly, John M.

    Through an analysis of several stories, this paper defines the similarities and differences between classic and hard-boiled detective fiction. The characters and plots of three stories are discussed: "The Red House" by A. A. Milne; "I, The Jury" by Mickey Spillane; and "League of Frightened Men" by Rex Stout. The classic detective story is defined…

  19. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...

  20. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  1. The law of stable equilibrium and the entropy-based boiling curve for flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, F.J. [Universidad de Zaragoza (Spain). Dpto. Ingenieria Mecanica Motores Termicos

    2005-05-01

    Convective flow boiling in sub-cooled fluids is recognized as one of the few means of accommodating very high heat fluxes. There are many available correlations for predicting the inner wall temperature of the heated duct in the several regimes of the empirical Nukiyama boiling curve, although unfortunately there is no physical fundamentals of such curve. Recently, the author has shown that the classical entropy balance could contain key information about boiling heat transfer. So, it was found that the average thermal gap in the heated channel (the inner wall temperature minus the average temperature of the coolant fluid) was strongly correlated with the efficiency of a theoretical reversible engine placed in this thermal gap. From this new correlation, a new boiling curve plotting the wall temperature versus the average fluid temperature was derived and successfully checked against low- and high-pressure water data. This curve suggested a new and simple definition of the critical heat flux (CHF) namely, the value of the coolant average temperature at the maximum. In this work, after briefly reviewing the entropy balance of a non-equilibrium boiling flow and its relationship with the thermodynamic average temperature and the law of stable equilibrium (LSE), the possibilities of the new approach for the design of flow boiling cooling systems are highlighted. Finally, the strong correlation found between the reversible engine efficiency and the thermal driving force is verified again, now with high-pressure refrigerant 22 (R-22) data. (author)

  2. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  3. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  4. Dynamic Bubble Behaviour during Microscale Subcooled Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M.Christopher

    2005-01-01

    @@ Bubble cycles, including initiation, growth and departure, are the physical basis of nucleate boiling. The presentinvestigation, however, reveals unusual bubble motions during subcooled nucleate boiling on microwires 25 orl00μm in diameter. Two types of bubble motions, bubble sweeping and bubble return, are observed in theexperiments. Bubble sweeping describes a bubble moving back and forth along the wire, which is motion parallelto the wire. Bubble return is the bubble moving back to the wire after it has detached or leaping above thewire. Theoretical analyses and numerical simulations are conducted to investigate the driving mechanisms forboth bubble sweeping and return. Marangoni flow from warm to cool regions along the bubble interface is foundto produce the shear stresses needed to drive these unusual bubble movements.

  5. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    张利斌; 李修伦

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39 mm ID and 2.0 m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum.The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  6. Boiling Heat Transfer in Circulating Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model is proposed to predict boiling heat transfer coefficient in a three-phase circulating fluidized bed (CFB), which is a new type of evaporation boiling means for enhancing heat transfer and preventing fouling. To verify the model, experiments are conducted in a stainless steel column with 39mm ID and 2.0m height, in which the heat transfer coefficient is measured for different superficial velocities, steam pressures, particle concentrations and materials of particle. As the steam pressure and particle concentrations increase, the heat transfer coefficient in the bed increases. The heat transfer coefficient increases with the liquid velocity but it exhibits a local minimum. The heat transfer coefficient is correlated with cluster renewed model and two-mechanism method. The prediction of the model is in good agreement with experimental data.

  7. European simplified boiling water reactor (ESBWR) plant

    International Nuclear Information System (INIS)

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility

  8. Self-propelled film-boiling liquids

    CERN Document Server

    Linke, H; Melling, L D; Taormina, M J; Francis, M J; Dow-Hygelund, C C; Narayanan, V K; Taylor, R P; Stout, A

    2005-01-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid.

  9. Self-Sustaining Thorium Boiling Water Reactors

    OpenAIRE

    Ehud Greenspan; Jasmina Vujic; Francesco Ganda; Arias, Francisco J.

    2012-01-01

    A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR) proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorber...

  10. CFD for Subcooled Flow Boiling: Parametric Variations

    Directory of Open Access Journals (Sweden)

    Roland Rzehak

    2013-01-01

    Full Text Available We investigate the present capabilities of CFD for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. Very similar modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant nondimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12 as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, liquid temperature, and bubble size. Robust predictive capabilities of the modeling require that it is validated for a wide range of parameters. It is known that a careful calibration of correlations used in the wall boiling model is necessary to obtain agreement with the measured data. We here consider tests under a variety of conditions concerning liquid subcooling, flow rate, and heat flux. It is investigated to which extent a set of calibrated model parameters suffices to cover at least a certain parameter range.

  11. Pressure drop in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Universidad de Zaragoza, Zaragoza (Spain)

    2003-07-01

    A new mass balance for flow boiling have been recently suggested by the author following a quite simple idea: if the phases have different velocities, they can not cover the same distance -the control volume length for a 1-d system- in the same time. Thus, the time scales of the phases have to be different, and we should scale the time dependent magnitudes of one phase to the other one before combining them. Furthermore, it is reasonable to think that conservation equations should have to include in some manner this evident physical fact. In complete coherence with the former mass balance, a new energy balance, which does include the slip ratio has been also stated. This work, whilst reviews these new fundamentals for saturated flow boiling, stresses those aspects related with the prediction of the pressure drop in saturated flow boiling. The new correlations found for the data carefully measured by Thom during the Cambridge project would confirm the new two-phase flowapproach.

  12. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  13. Steady State Vapor Bubble in Pool Boiling

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  14. Dynamic simulation of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    For the application of modern control theory, specifically optimal control, to the boiling water reactor, it is necessary to have a linear model that is validated. The nonlinear model of the BWR derived on the basis of physical laws and empirical relations is linearized around an operating point and the model if verified against experimental results by simulating various tests such as the pressure transient test, change in power to recirculating pump etc. The transport delay occurring in the model is approximated by various representations and the results are compared with the exact delay representation. Validation such as discussed in the paper forms the basis for devising appropriate control strategies in the presence of disturbances. (author)

  15. Technical and QA plan: Boiling behavior during flow instability

    International Nuclear Information System (INIS)

    The coolant flow in a nuclear reactor core under normal operating conditions is kept as a subcooled liquid. This coolant is evenly distributed throughout the multiple flow channels with a uniform pressure profile across each coolant flow channel. If the coolant flow is reduced, the flow through individual channels will also decrease. A decrease in coolant flow will result in higher coolant temperatures if the heat flux is not reduced. When flow is significantly decreased, localized boiling may occur. This localized boiling can restrict coolant flow and the ability to transfer heat out of the reactor system. The maximum operating power for the reactor may be limited by how the coolant system reacts to a flow instability. One of the methods to assure safe operation during a reducing flow transient, is to operate at a power level below that necessary to initiate a flow excursion. Several correlations have been used to predict the conditions which will proceed a flow excursion. These correlations rely on the steady state behavior of the coolant and are based on steady-state testing. There are two significant points which this project will try to identify. The first is when vapor first forms on the channel surface. This might be designated as the Nucleate Vapor Transition. (Steady state equivalent is ONB). The second is when the vapor formation rate is large enough to lead to flow instability and thermal excursion. This point might be designated as the Significant Vapor Transition. (Steady state equivalent is OSV). A correlation will be developed to relate established steady state relations with the behavior of transient systems

  16. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong, E-mail: chenchong_2012@163.com; Gao, Pu-zhen, E-mail: gaopuzhen@hrbeu.edu.cn; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-09-15

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m{sup 2}, a mass flux range of 200–2400 kg/m{sup 2} s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively.

  17. Heat Transfer of Single and Binary Systems inPool Boiling

    Directory of Open Access Journals (Sweden)

    Abbas J. Sultan

    2010-01-01

    Full Text Available The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigation includes electric heating element submerged in the test liquid mounted vertically. Thermocouple and a digital indictor measured the temperature of the heater surface. The actual heat transfer rate being obtained by multiplying the voltmeter and ammeter readings. A water cooled coil condenses the vapor produced by the heat input and the liquid formed returns to the cylinder for re-evaporation.The boiling results show that the nucleate pool boiling heat transfer coefficients of binary mixtures were always lower than the pure components nucleate pool boiling heat transfer coefficients. This confirmed that the mass transfer resistance to the movement of the more volatile component was responsible for decrease in heat transfer and that the maximum deterioration that was observed at a point was the absolute concentration differences between vapor and liquid phases at their maximum. All the data points were tested with the most widely known correlations namely those of Calus-Leonidopoulos, Fujita and Thome. It was found that Thome's correlation is the more representative form, for it gave the least mean and standard deviations

  18. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m2, a mass flux range of 200–2400 kg/m2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  19. Co-boiling of NAPLs and water during thermal remediation: experimental and modeling study

    Science.gov (United States)

    Krol, M.; Zhao, C.; Mumford, K. G.; Sleep, B. E.; Kueper, B. H.

    2015-12-01

    The persistence of non-aqueous-phase liquids (NAPLs) in the subsurface has led to the development of several remediation technologies to address this environmental problem. One such group of technologies (in situ thermal treatment) uses heat to volatilize contaminants. Subsurface temperature measurements are often used to monitor progress and optimize contaminant removal. However, when NAPL and water are heated together, gas is created at a temperature lower than the boiling point of either liquid (co-boiling), which can affect temperature observations. To examine the effect of co-boiling on observed temperatures and NAPL mass removal, a series of heated laboratory experiments were performed using single and multi-component NAPLs. The experiments consisted of glass jars filled with a mixture of sand, water, and NAPL mixed to obtain an approximately uniform NAPL distribution within the jar. The experiments were heated from the outside and interior temperatures were measured using a thermocouple. The tests showed that local-scale temperature measurements are unreliable in indicating the end of co-boiling and may not indicate complete mass removal. This is because a well-defined co-boiling plateau does not exist when heating a multi-component NAPL and the temperature is dependent on the proximity of NAPL to the monitoring point. To further investigate temperature distributions and the potential to use gas production as a complementary indicator of NAPL removal, a 2D finite-difference mass transport model was used that incorporated heat transport, latent heat, phase change, and a multicomponent gas phase and used a macroscopic invasion percolation (MIP) model to simulate gas movement. Latent heat was calculated by multiplying specific latent heat, which is an intrinsic property of a substance, by the amount of liquid mass being vaporized and its incorporation into the model allowed for the simulation of co-boiling plateaus (during single component NAPL boiling). The

  20. Heat transport in boiling turbulent Rayleigh-B\\'{e}nard convection

    CERN Document Server

    Lakkaraju, Rajaram; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. We consider a cylindrical cell with a diameter equal to its height. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping the temperature difference constant and changing the liquid pressure we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between $2\\times10^6$ and $5\\times10^9$. We find a...

  1. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    Science.gov (United States)

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. PMID:27038338

  2. A review on boiling heat transfer enhancement with nanofluids.

    Science.gov (United States)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  3. Prospective Chemistry Teachers' Misconceptions about Colligative Properties: Boiling Point Elevation and Freezing Point Depression

    Science.gov (United States)

    Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac

    2009-01-01

    This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…

  4. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m2 and CaSO4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  5. Prospective Chemistry Teachers’ Understanding of Boiling: A Phenomenological Study

    OpenAIRE

    CANPOLAT, Nurtaç; PINARBAŞI, Tacettin

    2012-01-01

    This study investigates chemistry prospective teachers’ views regarding boiling phenomenon, and provides a concept analysis on the nature of boiling together with suggestions on how to teach boiling phenomenon in the light of literature and findings of this study. The sample of this study consists of 18 senior prospective chemistry teachers who attend chemistry teacher training program. Data were collected by discussions with the participants. The discussions were specifically focused on pros...

  6. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  7. Simulation of Boiling Water Reactor dynamics

    International Nuclear Information System (INIS)

    This master thesis describes a mathematical model of a boiling water reactor and address the dynamic behaviour of the neutron kinetics, boilding dynamics and pressur stability. The simulation have been done using the SIMNON-program. The meaning were that the result from this work possibly would be adjust to supervision methods suitable for application in computer systems. This master thesis in automatic control has been done at the Department of Automatic Control, Lund Institute of Technology. The initiative to the work came from Sydkraft AB. (author)

  8. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  9. Detection of the Departure from Nucleate Boiling in Nuclear Fuel Rod Simulators

    OpenAIRE

    Amir Zacarias Mesquita; Rogério Rivail Rodrigues

    2013-01-01

    In the thermal hydraulic experiments to determin parameters of heat transfer where fuel rod simulators are heated by electric current, the preservation of the simulators is essential when the heat flux goes to the critical point. One of the most important limits in the design of cooling water reactors is the condition in which the heat transfer coefficient by boiling in the core deteriorates itself. The heat flux just before deterioration is denominated critical heat flux (CHF). At this time,...

  10. The accommodation coefficient of the liquid at temperatures below the boiling

    OpenAIRE

    Bulba Elena E.

    2015-01-01

    Are carried out experimental investigation of the laws of vaporization at temperatures below the boiling point. Is determined the mass rate of evaporation of distilled water in large intervals of time at different temperatures in order to sound conclusions about the stationarity of the process of evaporation of the liquid in the conditions of the experiments performed, and also studied the effect of temperature on the rate of evaporation. Accommodation coefficient is defined in the mathematic...

  11. Pool boiling heat transfer performance of Newtonian nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Saide; Etemad, Seyed Gholamreza [Isfahan University of Technology, Department of Chemical Engineering, Isfahan (Iran); Thibault, Jules [University of Ottawa, Department of Chemical and Biological Engineering, Ottawa, ON (Canada)

    2009-10-15

    Experimental measurements were carried out on the boiling heat transfer characteristics of {gamma}-Al{sub 2}O{sub 3}/water and SnO{sub 2}/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of {gamma}-Al{sub 2}O{sub 3} and SnO{sub 2} nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles. (orig.)

  12. Investigation of Enhanced Boiling Heat Transfer from Porous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LinZhiping; MaTongze; 等

    1994-01-01

    Experimental investigations of boiling heat transfer from porous surfaces at atmospheric pressure were performne.The porous surfaces are plain tubes coverd with metal screens.V-shaped groove tubes covered with screens,plain tubes sintered with screens.and V-shaped groove tubes sintered with screens,The experimental results show that sintering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer,The boiling hystesis was observed in the experiment.This paper discusses the mechanism of the boiling heat transfer from those kinds of porous surfaces stated above.

  13. Mitigation performance indicator for boiling water reactors

    International Nuclear Information System (INIS)

    All U.S. boiling water reactors (BWRs) inject hydrogen for mitigation of intergranular stress corrosion cracking (IGSCC), and most currently use or plan to use noble metals technology. The EPRI Boiling Water Reactor Vessels and Internals Project (BWRVIP) developed a Mitigation Performance Indicator (MPI) in 2006 to accurately depict to management the status of mitigation equipment and as a standardized way to show the overall health of reactor vessel internals from a chemistry perspective. It is a 'Needed' requirement in the EPRI BWR Water Chemistry Guidelines that plants have an MPI, and use of the BWRVIP MPI is a 'Good Practice'. The MPI is aligned with inspection relief criteria for reactor piping and internal components for U.S. BWRs. This paper discusses the history of the MPI, from its first use for plants operating with moderate hydrogen water chemistry (HWC-M) or Noble Metal Chemical Application (NMCA) + HWC to its more recent use for plants operating with On-Line NobleChem™ (OLNC) + HWC. Key mitigation parameters are discussed along with the technical bases for the indicators associated with the parameters. (author)

  14. Zero boil-off system testing

    Science.gov (United States)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  15. Unsteady heat transfer during subcooled film boiling

    Science.gov (United States)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  16. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  17. Interfacial wavy motion during film boiling from a downward-facing curved surface

    International Nuclear Information System (INIS)

    In the process of designing for the APR1400(Advanced Power Reactor 1400 MWe, the concept of in-vessel retention through external vessel cooling(IVR-EVC) was chosen as a severe accident management strategy. The cavity flooding was selected as the external vessel cooling method because of simpler installation relative to flooding within the thermal insulator. In fact, the IVR-EVC concept had not been considered during the initial design phase of the APR1400. Thus, several issues surfaced while applying the IVR concept at a later stage of design. One of these issues centered about delayed flooding of the reactor vessel because of the large volume between the cavity floor and the lower head. The cavity flooding may take as much as forty minutes depending upon the accidents scenario. It is thus not certain whether the flooding time will always be shorter than the time for relocation of the molten core material to the lower plenum of the reactor vessel. In addition, the initial temperature of the vessel, which should be in the vicinity of the saturation point corresponding to the primary system pressure, will far exceed temperature of the cavity flooding water during an accident. Hence, the initial hear removal mechanism for external vessel cooling will most likely be film rather than nucleate boiling. The results of this work indicate, however, that film boiling heat transfer coefficients presently available in the literature tend to underpredict the actual value for the reactor vessel lower head. In this study, In this study, film boiling heat transfer coefficients are obtained from the DELTA(Downward-boiling Experiment Laminar Transition Apparatus) quenching test utilizing the measured temperature histories. They are compared with the other experiment of the same edge angle. The film boiling heat transfer phenomena are visualized through a digital camera

  18. Film boiling heat transfer characteristics of sodium in droplet evaporation on heated tantalum

    International Nuclear Information System (INIS)

    For gaining background information on possible vapor explosion in a hypothetical core disruptive accident of liquid metal cooled fast breeder reactors, the experiment on the film boiling characteristics of sodium was conducted in association with Leidenfrost phenomenon. In a steel container filled with 1.0bar argon gas, sodium droplets were put on a heated disk and the behavior of droplets was observed through pyrex glass windows by a 35mm camera and a color videotape-recorder. A tantalum disk of 70mm dia. and 30mm height was induction-heated by an oil-cooled coil and a high frequency power supply of 20kHz and 30kW rating. The wall temperature of the disk was measured by a 1.6mm O.D. Ta-sheathed W-5%Re/W-26%Re thermocouple embedded beneath the disk. The experimental conditions were the initial droplet temperature and volume : 400-5000C and about 1.0cm3, the initial tantalum disk temperature : 1390-18900C. The heat flux was estimated from the volumetric reducing rate of droplet due to vaporization, based on photographic observation. The data plots of heat flux, though widely scattering, showed a decreasing trend with the wall superheat in the temperature range of 1390-16000C, while an increasing trend in the range of 1600-18900C. The former range suggests to correspond to the transition boiling region and the latter to the film boiling region. Thus, the minimum film boiling point was roughly estimated to be around 16000C and 45W/cm2. In the film boiling region the plots came slightly above the theoretical prediction. (author)

  19. ELEVATION ON BOINLING POINT OF COFFE EXTRACT

    Directory of Open Access Journals (Sweden)

    J. Telis-Romero

    2002-03-01

    Full Text Available The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4ºBrix and pressures between 5.8 × 10³ and 9.4 × 10(4 Pa (abs.. Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2ºBrix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2ºBrix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration.

  20. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.;

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  1. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  2. Technique for technological calculation of critical flow of boiling water

    International Nuclear Information System (INIS)

    Average values of friction factor and mach number for a critical flow of boiling water are determined on the basis of computerized processing of experimental data. Empirical formula, relating these values, which can be used for technological calculations of critical conditions of boiling water flow through transport pipelines, is derived

  3. Bubble transport in subcooled flow boiling

    Science.gov (United States)

    Owoeye, Eyitayo James

    Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise

  4. CFD modelling of subcooled flow boiling for nuclear engineering applications

    International Nuclear Information System (INIS)

    In this work a general-purpose CFD code CFX-5 was used for simulations of subcooled flow boiling. The subcooled boiling model, available in a custom version of CFX-5, uses a special treatment of the wall boiling boundary, which assures the grid invariant solution. The simulation results have been validated against the published experimental data [1] of high-pressure flow boiling in a vertical pipe covering a wide range of conditions (relevant to the pressurized water reactor). In general, a good agreement with the experimental data has been achieved. To adequately predict the lateral distribution of two-phase flow parameters, the modelling of two-phase flow turbulence and non-drag forces under wall boiling conditions have been also investigated in the paper. (author)

  5. Bubble spreading during the boiling crisis: modelling and experimenting in microgravity

    OpenAIRE

    Nikolayev, Vadim; Beysens, D.; Garrabos, Yves; Lecoutre, Carole; Chatain, D.

    2006-01-01

    International audience Boiling is a very efficient way to transfer heat from a heater to the liquid carrier. We discuss the boiling crisis, a transition between two regimes of boiling: nucleate and film boiling. The boiling crisis results in a sharp decrease in the heat transfer rate, which can cause a major accident in industrial heat exchangers. In this communication, we present a physical model of the boiling crisis based on the vapor recoil effect. Under the action of the vapor recoil ...

  6. The Physics of Boiling at Burnout

    Science.gov (United States)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  7. Self-propelled film-boiling liquids

    Science.gov (United States)

    Linke, Heiner; Taormina, Michael; Aleman, Benjamin; Melling, Laura; Dow-Hygelund, Corey; Taylor, Richard; Francis, Matthew

    2006-03-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. Millimeter-sized droplets or slugs accelerate at rates up to 0.1 g and reach terminal velocities of several cm/s, sustained over distances up to a meter. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid. This heat-driven pumping mechanism may be of interest in cooling applications, eliminating the need for an additional power source.

  8. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  9. High level disinfection of a home care device; to boil or not to boil?

    Science.gov (United States)

    Winthrop, K L; Homestead, N

    2012-03-01

    We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively.

  10. A contribution to incipient boiling in the case of subcooled boiling with forced convection

    International Nuclear Information System (INIS)

    The literature gives contradictory statements about incipient subcooled boiling. To clear up these contradictions it seems important to study the effect of different thermo- and hydrodynamic parameters, like heating surface load, system pressure, local supercooling, and flowrate. Further influencing quantities investigated here are the concentration dissolved gases and the surface condition of the heat surface. To carry out the experimental investigations a measuring method which has already been used by Mayinger applied. With this method, incipient boiling can be determined as the first measurable heat transfer improvement in comparison with single-phase forced convection. Besides, photographs sould make it possible to give statements on the quantity and size of the bubbles on the heating surface. (orig./GL)

  11. ELEVATION ON BOINLING POINT OF COFFE EXTRACT

    OpenAIRE

    Telis-Romero J.; Cabral R.A.F.; Kronka G.Z.; Telis V.R.N.

    2002-01-01

    The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4ºBrix and pressures between 5.8 × 10³ and 9.4 × 10(4) Pa (abs.). Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2ºBrix, the rise in boiling point was nearly independent of pressure, varying only with extract concentrat...

  12. Influence of a flow obstacle on boiling two-phase flow

    International Nuclear Information System (INIS)

    Flow obstacle in a boiling channel, such as a spacer of water reactor, influences the boiling heat transfer and flow characteristics. In this study, the experimental investigation was conducted by using a SUS304 tube which had 8 mm in tube diameter and 810, 840, 900 mm in heated length. The test section equipped with the rod-type flow obstacle which had 3.6 mm in cylinder diameter and 20mm in length. On the basis of the detecting point of CHF, CHF in this investigation was classified into two categories. The difference of the location of the CHF has been explained by using the film flow model with influence length of the turbulent effect by flow obstacle. (author)

  13. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas;

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...... pinch point temperature difference to be reached at two locations in the boiler. Compared to the transcritical organic Rankine cycle, the organic split-cycle improves the boiling process without an entailing increase in the boiler pressure, thus enabling an efficient low grade heat to power conversion...

  14. Contribution to the study of natural convection in a boiling medium with power density transfer

    International Nuclear Information System (INIS)

    This study has been carried out in the framework of fast reactor safety studies and deals with the fuel boiling problem in case of flow blockage at the bottom of a fuel assembly. The experimental part of this study bringss new informations characteristic of a boiling fluid bath (water) simulating in a transient and in a steady regime (pressure, temperature, void fraction, heat flux at the walls). It points out a relation between heat losses through the walls and the importance of the monophase zone of the bath. A model has been developed from the analysis of experimental results. It is based on a quasi-stationary state and allows to find the evolution of the characteristic values in confined transient regime

  15. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik;

    2016-01-01

    -motor expansion valve. Two experimental designs (data point sets) are generated using a modified Central Composite Design for each valve and their response surfaces are compared using the quadratic model. Statistical information on the significant model terms are used to clarify whether the effect of fluid flow......Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...... pulsations is statistically significant in terms of the time-averaged flow boiling heat transfer coefficient. The cycle time range from 1 s to 9 s for the pulsations. The results show that the effect of fluid flow pulsations is statistically significant, disregarding the lowest heat flux measurements...

  16. The stability analysis using two fluids (SAT trademark ) code for boiling flow systems

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Dykhuizen, R.C.; Su, M.G.; Jain, P. (Arizona State Univ., Tempe, AZ (USA). Dept. of Mechanical and Aerospace Engineering)

    1988-12-01

    This report presents analyses of dynamic instability and frequency response characteristics of boiling flow systems based on an unequal velocity, unequal temperature two-fluid model of such flow. The dynamic instability analyses in the time domain are incorporated into three options of a computer code SAT, viz., DI01 (steady state, or equilibrium point analysis), DI02(linear stability analysis), and DI03 (nonlinear analysis). The frequency response analysis is incorporated into a fourth option FREQ. Results from dynamic instability experiments carried out in a Refrigerant-113 boiling flow rig are also reported as are comparison of these with linear stability analysis predictions. The overall code structures are described in this document, Volume 2. Descriptions of the various subroutines, functions and variables are also included in this volume. 2 refs., 5 figs.

  17. The stability analysis using two fluids (SAT trademark ) code for boiling flow systems:

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Dykhuizen, R.C.; Su, M.G.; Jain, P. (Arizona State Univ., Tempe, AZ (USA). Dept. of Mechanical and Aerospace Engineering)

    1988-12-01

    This report presents analyses of dynamic instability and frequency response characteristics of boiling flow systems based on an unequal velocity, unequal temperature two-fluid model of such flow. The dynamic instability analyses in the time domain are incorporated into three options of a computer code SAT, viz., DI01 (steady state, or equilibrium point analysis), DI02 (linear stability analysis), and DI03 (nonlinear analysis). The frequency response analysis is incorporated into a fourth option FREQ. Results of dynamic instability experiments carried out in a Refrigerant-113 boiling flow rig are also reported as are comparison of these with linear stability analysis predictions. This document, Volume 1, provides the theoretical model and computational formulation. The governing conservation equations and constitutive equations of the model are described in Volume 1. Also described are the computational techniques used. 57 refs., 12 figs.

  18. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  19. Constant Boiling Substances,Constant Boiling Point and Constant Boiling Distillation of Alcohol%恒沸物、恒沸点与酒精恒沸蒸馏

    Institute of Scientific and Technical Information of China (English)

    金晶; 赵德炎; 赵德新; 赵开健

    2004-01-01

    酒精恒沸蒸馏是在有水酒精中加入第三种物质,如苯、戊烷、环己烷等,使水与添加物形成另一种恒沸物,并先行挥发,而得到无水酒精.该法在蒸馏时不需将原料全部汽化,也不需要很大回流比,只要能做到使新的恒沸物汽化即可,对设备规模的选型和能量消耗均有益.(陶然)

  20. 混合制冷工质核态沸腾的传热研究%Heat transfer in nucleate pool boiling of binary and ternary refrigerant mixtures

    Institute of Scientific and Technical Information of China (English)

    赵耀华; 刁彦华; 鹤田隆治; 西川日出男

    2004-01-01

    Heat transfer coefficients in nucleate pool boiling were measured on a horizontal copper surface for refrigerants,HFC-134a,HFC-32,and HFC-125,their binary and ternary mixtures under saturated conditions at 0.9MPa.Compared to pure components,both binary and ternary mixtures showed lower heat transfer coefficients.This deterioration was more pronounced as heat flux was increased.Experimental data were compared with some empirical and semi-empirical correlations available in literature.For binary mixture,the accuracy of the correlations varied considerably with mixtures and the heat flux.Experimental data for HFC-32/134a/125 were also compared with available correlated equation obtained by Thome.For ternary mixture,the boiling range of binary mixture composed by the pure fluids with the lowest and the medium boiling points,and their concentration difference had important effects on boiling heat transfer coefficients.

  1. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  2. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  3. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  4. Boiling of Refrigerant R-113. Three-dimensional numerical analysis

    International Nuclear Information System (INIS)

    In this paper a forced convective boiling of Refrigerant R-113 in a vertical annular channel has been simulated by the CFX-5 code. The employed subcooled boiling model uses a special treatment of the wall boiling boundary, which assures the grid invariant solution. The simulation results have been validated against the published experimental data. In general a good agreement with the experimental data has been achieved, which shows that the current model may be applied for the Refrigerant R-113 without significantly changing the model parameters. The influence of non-drag forces, bubble diameter size and interfacial drag model on the numerical results has been investigated as well. (author)

  5. Boiling Heat Transfer on Porous Surfaces with Vapor Channels

    Institute of Scientific and Technical Information of China (English)

    吴伟; 杜建华; 王补宣

    2002-01-01

    Boiling heat transfer on porous coated surfaces with vapor channels was investigated experimentally to determine the effects of the size and density of the vapor channels on the boiling heat transfer. Observations showed that bubbles escaping from the channels enhanced the heat transfer. Three regimes were identified: liquid flooding, bubbles in the channel and the bottom drying out region. The maximum heat transfer occurred for an optimum vapor channel density and the boiling heat transfer performance was increased if the channels were open to the bottom of the porous coating.

  6. Subcooled boiling of nano-particle suspensions on Pt wires

    Institute of Scientific and Technical Information of China (English)

    LI Chunhui; WANG Buxuan; PENG Xiaofeng

    2004-01-01

    An experimental investigation is conducted to explore the subcooled boiling characteristics of nano-particle suspensions on Pt wires. Some phenomena are observed for the boiling of water-SiO2 nano-particle suspensions on Pt wires. The experiments show that there exist not any evident differences for boiling of pure water and of nano-particle suspensions at high heat fluxes. However, bubble overlap phenomenon can be easily found for nano-particle suspensions at low heat fluxes, which probably results from the increase of the attracter force between bubbles and of the bubble mass.

  7. Bubble Coalescence Heat Transfer During Subcooled Nucleate Pool Boiling

    Institute of Scientific and Technical Information of China (English)

    Abdoulaye Coulibaly; LIN Xipeng; Bi Jingliang; David M Christopher

    2012-01-01

    Bubble coalescence during subcooled nucleate pool boiling was investigated experimentally using constant wall temperature boundary conditions while the wall heat flux was measured at a various locations to understand the effects of coalescence on the heat transfer. The observations showed that the coalesced bubble moved and oscillated on the heater surface with significant heat transfer variations prior to departure. Some observations also showed coalescence with no increase in the heat transfer rate. The heat flux for boiling with coalescence fluctuated much more than for single bubble boiling due to the vaporization of the liquid layer trapped between the bubbles.

  8. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Dae [Kyunghee University, Yongin (Korea, Republic of)

    2011-05-15

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  9. Analysis of the magnetic corrosion product deposits on a boiling water reactor cladding

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Andrey [Paul Scherrer Institut, Villigen (Switzerland); Degueldre, Claude, E-mail: claude.degueldre@psi.ch [Paul Scherrer Institut, Villigen (Switzerland); Kaufmann, Wilfried [Kernkraftwerk Leibstadt, Leibstadt (Switzerland)

    2013-01-15

    The buildup of corrosion product deposits (CRUD) on the fuel cladding of the boiling water reactor (BWR) before and after zinc injection has been investigated by applying local experimental analytical techniques. Under the BWR water chemistry conditions, Zn addition together with the presence of Ni and Mn induce the formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}] spinel solid solutions. X-ray absorption spectroscopy (XAS) revealed inversion ratios of cation distribution in spinels deposited from the solid solution. Based on this information, a two-site ferrite spinel solid solution model is proposed. Electron probe microanalysis (EPMA) and extended X-ray absorption fine structure (EXAFS) findings suggest the zinc-rich ferrite spinels formation on BWR fuel cladding mainly at lower pin. - Graphical Abstract: Analysis of spinels in corrosion product deposits on boiling water reactor fuel rod. Combining EPMA and XAFS results: schematic representation of the ferrite spinels in terms of the end members and their extent of inversion. Note that the ferrites are represented as a surface between the normal (upper plane, M[Fe{sub 2}]O{sub 4}) and the inverse (lower plane, Fe[MFe]O{sub 4}). Actual compositions red Black-Small-Square for the specimen at low elevation (810 mm), blue Black-Small-Square for the specimen at mid elevation (1800 mm). The results have an impact on the properties of the CRUD material. Highlights: Black-Right-Pointing-Pointer Buildup of corrosion product deposits on fuel claddings of a boiling water reactor (BWR) are investigated. Black-Right-Pointing-Pointer Under BWR water conditions, Zn addition with Ni and Mn induced formation of (Zn,Ni,Mn)[Fe{sub 2}O{sub 4}]. Black-Right-Pointing-Pointer X-Ray Adsorption Spectroscopy (XAS) revealed inversion of cations in spinel solid solutions. Black-Right-Pointing-Pointer Zinc-rich ferrite spinels are formed on BWR fuel cladding mainly at lower pin elevations.

  10. Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger

    Science.gov (United States)

    Wu, Zhi-Yong; Wang, He; Cai, Wei-Hua; Jiang, Yi-Qiang

    2016-07-01

    The aim of this paper is to numerically study boiling heat transfer on the shell-side of spiral wound heat exchanger (SWHE). The physical model for the shell-side of SWHE is established and the volume of fluid (VOF) method is used in the calculation. For propane and ethane, there are thirty cases to be simulated . Through the comparison with experimental data, the cause which leads to the simulation distortion is found, and the satisfied results of calculation are finally achieved. The simulation results show that the VOF model can be adopted well to those calculations whose inlet quality are lower than 0.1 kg/kg, and the calculation deviations are generally within ±20 %. In falling film flow, the heat transfer performance for the shell-side of SWHE is primarily influenced by Reynolds number. The visualization of simulation results displays that the boiling bubbles have three flow directions, besides flowing down with liquid phase, one portion of bubbles flows reversely up, and another portion is blocked at axial gaps of coils where the heat transfer is reduced. The studies of boiling on the shell-side of SWHE not only reveal the characteristics of heat transfer, but also point out the improvement direction of SWHE.

  11. Numerical Prediction for Subcooled Boiling Flow of Liquid Nitrogen in a Vertical Tube with MUSIG Model

    Institute of Scientific and Technical Information of China (English)

    王斯民; 文键; 李亚梅; 杨辉著; 厉彦忠

    2013-01-01

    Multiple size group (MUSIG) model combined with a three-dimensional two-fluid model were em-ployed to predict subcooled boiling flow of liquid nitrogen in a vertical upward tube. Based on the mechanism of boiling heat transfer, some important bubble model parameters were amended to be applicable to the modeling of liquid nitrogen. The distribution of different discrete bubble classes was demonstrated numerically and the distribu-tion patterns of void fraction in the wall-heated tube were analyzed. It was found that the average void fraction in-creases nonlinearly along the axial direction with wall heat flux and it decreases with inlet mass flow rate and sub-cooled temperature. The local void fraction exhibited a U-shape distribution in the radial direction. The partition of the wall heat flux along the tube was obtained. The results showed that heat flux consumed on evaporation is the leading part of surface heat transfer at the rear region of subcooled boiling. The turning point in the pressure drop curve reflects the instability of bubbly flow. Good agreement was achieved on the local heat transfer coefficient against experimental measurements, which demonstrated the accuracy of the numerical model.

  12. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    Science.gov (United States)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-07-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  13. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  14. Theory of hydraulic stability of boiling channels

    International Nuclear Information System (INIS)

    A framework of boiling channel stability theory is analyzed. The fundamental equations are those of STABLE code: Three conservation laws of mass, energy and momentum applied to one-dimensional channel, together with Bankoff' slip and Marinelli-Nelson's pressure drop correlation. These equations are analyzed to yield ''Void Equation'', ''Linearized Void Equation'', ''Volume Conservation Law'' and the ''Flow Impedance'' R(s), defined by the dynamic response of pressure drop to the inlet flow. The impedance contains all the information such a stability index, dominant frequency and damping ratio. It is shown that R is a sum of the form R sub(IA) + N sub(F)-1R sub(D) + N sub(R)R sub(R) + N sub(OR), where N's are non-dimensional parameters and R's characteristic impedances determined by three kinds of parameters, N sub(X), N sub(s) and the power distribution parameter. Systematic edition of the characteristic impedances according to the non-dimensional parameters will reduce the need for case-by-case STABLE calculations. Hydraulic stability of BWR channels under constant system pressure, is a phenomenon with three parameters in view of complexity. Furthermore an analysis is conducted to confirm the above stability structure and three typical instabilities are identified. (auth.)

  15. Burnout heat flux in natural flow boiling

    International Nuclear Information System (INIS)

    Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 50C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm2. A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout

  16. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  17. Zero Boil Off System for Cryogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  18. Boiling local heat transfer enhancement in minichannels using nanofluids.

    Science.gov (United States)

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  19. Boiling of HFE-7100 on a Straight Pin Fin

    Institute of Scientific and Technical Information of China (English)

    Z. W. Liu; W.W. Lin; D.J. Lee; J.P. Hsu

    2001-01-01

    This paper deals with an experimental investigation of pin fin boiling of saturated and subcooled HFE-7100 under atmospheric pressure. Fin base temperature and heat flux data are measured along with the fin tip temperature. The basic features of boiling stability of HFE-7100 boiling on pin fin had been reported for the first time. For a given liquid/heating surface combination there exist upper steady-state (USS) branch and lower steady-state (LSS)branch, and a large, unstable regime located in between. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling can largely enhance heat transfer performance. A longer fin can provide a safer operation.

  20. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  1. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity

    Science.gov (United States)

    Sigalotti, Leonardo Di G.; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (Ts≈0.96 ) is close to the theoretically derived value of Ts=1 at zero ambient pressure for this vdW fluid.

  2. 40 CFR 180.1056 - Boiled linseed oil; exemption from requirement of tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boiled linseed oil; exemption from... From Tolerances § 180.1056 Boiled linseed oil; exemption from requirement of tolerance. Boiled linseed... “boiled linseed oil.” This exemption is limited to use on rice before edible parts form....

  3. Characteristics of phenomenon and sound in microbubble emission boiling

    International Nuclear Information System (INIS)

    Background: Nowadays, the efficient heat transfer technology is required in nuclear energy. Therefore, micro-bubble emission boiling (MEB) is getting more attentions from many researchers due to its extremely high heat-transfer dissipation capability. Purpose: An experimental setup was built up to study the correspondences between the characteristics on the amplitude spectrum of boiling sound in different boiling modes. Methods: The heat element was a copper block heated by four Si-C heaters. The upper of the copper block was a cylinder with the diameter of 10 mm and height of 10 mm. Temperature data were measured by three T-type sheathed thermocouples fitted on the upper of the copper block and recorded by NI acquisition system. The temperature of the heating surface was estimated by extrapolating the temperature distribution. Boiling sound data were acquired by hydrophone and processed by Fourier transform. Bubble behaviors were captured by high-speed video camera with light system. Results: In nucleate boiling region, the boiling was not intensive and as a result, the spectra didn't present any peak. While the MEB fully developed on the heating surface, an obvious peak came into being around the frequency of 300 Hz. This could be explained by analyzing the video data. The periodic expansion and collapse into many extremely small bubbles of the vapor film lead to MEB presenting an obvious characteristic peak in its amplitude spectrum. Conclusion: The boiling mode can be distinguished by its amplitude spectrum. When the MEB fully developed, it presented a characteristic peak in its amplitude spectrum around the frequency between 300-400 Hz. This proved that boiling sound of MEB has a close relation with the behavior of vapor film. (authors)

  4. Numerical Simulation of Pool Boiling from Reentrant Type Structured Surfaces

    OpenAIRE

    Dietl, Jochen

    2015-01-01

    Enhancement of heat transfer in pool boiling can be achieved by employing a structured surface. So called reentrant type surfaces, consisting of subsurface tunnels connected through pores with the pool, were found to strongly improve the performance of heat exchanger tubes. Although employed since decades, several of the processes within the tunnel are not understood and the presented models are not able to predict the different boiling modes. With the rapid development of numerical method...

  5. Hysteresis of boiling for different tunnel-pore surfaces

    OpenAIRE

    Pastuszko Robert; Piasecka Magdalena

    2015-01-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carrie...

  6. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  7. Development of an experimental apparatus for nucleate boiling analysis

    International Nuclear Information System (INIS)

    An experimental apparatus is developed for the study of the parameters that affect nucleate boiling. The experimental set up is tested for nucleate boiling in an annular test section with subcooled water flow. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of the experimental apparatus is analysed by the results and by the problems raised by the operation of the setup. (Author)

  8. Coupling of wall boiling with discrete population balance model

    International Nuclear Information System (INIS)

    A coupling between a polydisperse population balance method (Multiple Size Group Model - MUSIG) and the RPI wall boiling model for nucleate subcooled boiling has been implemented in ANSYS CFX. It allows more accurate prediction of the interfacial area density for mass, momentum and energy transfer between phases in comparison to the usual local-monodisperse bubble size assumption and underlying bulk bubble diameter correlations as they are commonly used in boiling flow applications like e.g. the prediction of subcooled nucleate boiling in rod bundles and fuel assemblies of PWR. The paper outlines the methodology of the coupled CFD model, which automatically avoids possible inconsistencies in the model formulation for the heated wall, when the generated steam bubbles on the heater surface are injected exactly in the bubble size class corresponding to the predicted bubble departure diameter. The coupling of the RPI wall boiling model and the MUSIG model has been implemented for both homogenous/inhomogeneous variants of the MUSIG model. The paper presents the validation of the coupled modeling approach for the well known test case of nucleate subcooled boiling of R113 refrigerant in a circular annulus with inner heated rod based on the experiments of Roy et al. ANSYS CFX results with the newly implemented approach as well as comparison to data and locally-monodisperse simulations are provided. (author)

  9. Void fraction prediction in saturated flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Francisco J Collado [Dpto de Ingenieria Mecanica-Motores Termicos, CPS-B, Universidad de Zaragoza, Maria de Luna 50018-Zaragoza (Spain)

    2005-07-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for

  10. Non linear dynamics of boiling water reactor dynamical system

    International Nuclear Information System (INIS)

    The fifth order phenomenological model of March-Leuba for boiling water reactors include the point reactor kinetics equations for neutron balance and effective delayed neutron precursor groups with one node representation of the heat transfer process and channel thermal hydraulics. This nonlinear mathematical model consists five coupled nonlinear ordinary differential equations. The reactivity feedback (void coefficient of reactivity as well as the fuel temperature coefficient of reactivity), heat transfer process and momentum balance are major reasons for the appearance of nonlinearity in this dynamical system. The linear stability of a dynamical system with the existence of nonlinearity cannot predict a true picture of the stability characteristics of dynamical system; hence nonlinear stability analyses become an essential part to predict the global stable region on the stability map. The linear stable region is analyzed by the eigenvalues. In this stable region all the eigenvalues have negative real parts, but when pair of one of the complex eigenvalues passes transversely through imaginary axis, the dynamical system loses or gain its stability via a Hopf bifurcation and limit cycles emerges from the tip. The study of eigenvalues can predict a few bifurcations. The first Lyapunov coefficient and normal form coefficients can be used for the detection of other bifurcations in the systems. Stable or unstable limit cycles excite from these Hopf points. These limits cycles gains or loses their stability via limit point bifurcation of cycles, period doubling bifurcation of cycles and Neimark-Sacker bifurcation of cycles when one of the parameters of the nuclear dynamical system is varied. The stability of these limit cycles can be studied by Floquet theory and Lyapunov coefficient, but the bifurcations of limit cycles can be investigated only by critical Floquet multiplier which is basically the eigenvalue of the monodromy matrices. The cascade of period doubling

  11. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  12. Hydrogen or Soot?: Partial Oxidation of High-boiling Hydrocarbon Wastes

    OpenAIRE

    LEDERER, J.; Hanika, J. (Jiří); Nečesaný, F.; Poslední, W.; Tukač, V.; Veselý, V

    2015-01-01

    This paper is focused on researching the influence of process parameters of partial oxidation, such as quality of hydrocarbon raw materials that differ in their stock properties (especially boiling point and viscosity) on the composition of output gas (selectivity of the process), and also on the formation extent of soot which could be used as an excellent and valued sorbent CHEZACARB® and/or filler in the rubber industry, e.g. for automotive tires. The effects of steam flow rate and the o...

  13. How high the temperature of a liquid be raised without boiling?

    OpenAIRE

    Das, Mala; Chatterjee, B. K.; Roy, B; Roy, S. C.

    2000-01-01

    How high the temperature of a liquid be raised beyond its boiling point without vaporizing (known as the limit of superheat) is an interesting subject of investigation. A new method of finding the limit of superheat of liquids is presented here. The superheated liquids are taken in the form of drops suspended in visco elastic gel. The nucleation is detected acoustically by a sensitive piezo-electric transducer, coupled to a multi channel scaler and the nucleation is observed as a funtion of t...

  14. Hydrogen or Soot ?: Partial Oxidation of High-Boiling Hydrocarbon Wastes

    OpenAIRE

    LEDERER, J.

    2014-01-01

    This paper is focussed to research of the influence of process parameters of partial oxidation like quality of hydrocarbon raw materials, which differed in their stock properties (especially the boiling point and viscosity), on the composition of output gas (selectivity of the process) and also on the formation extent of soot which can be used as an excellent and valued sorbent CHEZACARB(™) and/or filler in rubber industry, e.g. for automotive tires. The effects of steam flow rate and oxygen...

  15. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling of Liquids Occurs under Certain Conditions but is Mitigated by Stirring

    Directory of Open Access Journals (Sweden)

    Anthony Ferrari

    2015-12-01

    Full Text Available Temporary superheating and sustained nucleation-limited “superboiling” of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating and magnitude (of superheating and superboiling vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an appropriate stir bar and/or with the addition of boiling chips, which provide nucleation sites to support the phase-change from liquid to gas. With proper experimental design and especially proper stirring, the measured temperature of typical organic reaction mixtures heated at reflux will be close to the normal boiling point temperature of the solvent, whether heated using microwave radiation or conventional convective heat transfer. These observations are important to take into consideration when comparing reaction rates under conventional and microwave heating.

  16. Investigating the effect of solvent boiling temperature on the active layer morphology of diffusive bilayer solar cells

    Science.gov (United States)

    Vohra, Varun; Dörling, Bernhard; Higashimine, Koichi; Murata, Hideyuki

    2016-01-01

    Using chlorobenzene as a base solvent for the deposition of the poly(3-hexylthiophene-2,5-diyl) (P3HT) layer in P3HT:phenyl-C61-butyric acid methyl ester diffusive bilayer solar cells, we investigate the effect of adding of small amounts of high-boiling-point solvents with similar chemical structures on the resulting active layer morphologies. The results demonstrate that the crystallinity of the P3HT films as well as the vertical donor-acceptor gradient in the active layer can be tuned by this approach. The use of high-boiling-point solvents improved all photovoltaic parameters and resulted in a 32% increase in power conversion efficiency.

  17. Uncommon water chemistry observations in modern day boiling water reactors

    International Nuclear Information System (INIS)

    Numerous technologies have been developed to mitigate intergranular stress corrosion cracking (IGSCC) of boiling water reactor (BWR) materials that include hydrogen water chemistry (HWC), noble metal chemical application (NMCA) and on-line NMCA (OLNC). These are matured technologies with extensive plant operating experiences, HWC – 32 years, NMCA – 18 years and OLNC – 9 years. Over the past three decades, numerous water chemistry data, dose rate data and IGSCC mitigation data relating to these technologies have been published and presented at many international conferences. However, there are many valuable and critical water chemistry and dose rate data that have gone unnoticed and unreported. The purpose of this paper is to highlight some of the uncommon water chemistry and dose rate experiences that reveal valuable information on the performance and durability of NMCA and OLNC technologies. Data will be presented, that have hitherto been unseen in public domain, from the lead OLNC plant in Switzerland giving reasons for some of the uncommon or overlooked water chemistry observations. They include, decreasing reactor water platinum concentration with each successive OLNC application, lack of increase in reactor water activation products in later applications, gradual disappearance of main steam line radiation (MSLR) monitor response decrease, Curium and Au-199 release during OLNC applications, rapid increase in reactor water clean-up conductivity, and Iodine, Mo-99 and Tc-99m spiking when hydrogen is interrupted and brought back to service, and main steam and reactor water conductivity spiking when clean-up beds or condensate demineralizers are changed. All these observations give valuable information on the success of OLNC applications and also signal the presence of sufficient noble metal on in-reactor surfaces from the long term durability and effectiveness stand point. Some of these observations can be used as secondary parameters, if and when a primary

  18. Heat Transfer of a Liquid-Solid Contact in a Subcooled Pool Boiling System : The Second Burnout Regime

    OpenAIRE

    INADA, Shigeaki; MIYASAKA, Yoshiki; Sakamoto, Kenji

    1987-01-01

    The heat flux was measured at the second burnout point of pool boiling over the range of high subcooling of 30 K to 88 K, under atmospheric pressure. The relation between the heat flux and subcooling was obtained by a mathematical model based on the mass-transfer mechanism of evaporation and condensation through a coalescent vapor bubble, and by a kinetic theory of molecules. The relationship equation gave fairly good agreement with the experimental results and showed that the second burnout ...

  19. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  20. Boiling crisis and non-equilibrium drying transition

    CERN Document Server

    Nikolayev, Vadim

    2016-01-01

    Boiling crisis is the rapid formation of the quasi-continuous vapor film between the heater and the liquid when the heat supply exceeds a critical value. We propose a mechanism for the boiling crisis that is based on the spreading of the dry spot under a vapor bubble. The spreading is initiated by the vapor recoil force, a force coming from the liquid evaporation into the bubble. Since the evaporation intensity increases sharply near the triple contact line, the influence of the vapor recoil can be described as a change of the apparent contact angle. Therefore, for the most usual case of complete wetting of the heating surface by the liquid, the boiling crisis can be understood as a drying transition from complete to partial wetting. The state of nucleate boiling, which is boiling in its usual sense, is characterized by a very large rate of heat transfer from the heating surface to the bulk because the superheated liquid is carried away from the heating surface by the departing vapor bubbles. If the heating p...

  1. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 104 to 105. The data was correlated with the equation Nu = 0.015 Reb0.85 Prb0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  2. Enhanced boiling heat transfer in horizontal test bundles

    Energy Technology Data Exchange (ETDEWEB)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  3. A correlation for nucleate flow boiling in small channels

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.N. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering]|[Argonne National Lab., IL (United States); Wambsganss, M.W. [Argonne National Lab., IL (United States); Chyu, M.C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering; France, D.M. [Univ. of Illinois, Chicago, IL (United States). Dept. of Mechanical Engineering

    1997-08-01

    Compact heat exchangers are becoming more attractive for applications in which energy conservation, space saving, and cost are important considerations. Applications exist in the process industries where phase-change heat transfer realizes more compact designs and improved performance compared to single-phase heat transfer. However, there have been only a few studies in the literature reporting on phase-change heat transfer and two-phase flow in compact heat exchangers, and validated design correlations are lacking. Recent data from experiments on flow boiling of refrigerants in small channels have led researchers to conclude that nucleation is the dominant heat transfer mechanism over a broad range of heat flux and wall superheats. Local heat transfer coefficients and overall two-phase pressure drops were measured for three different refrigerants with circular and non-circular channels in a range of pressures. This data base supports the nucleate boiling mechanism, and it was used to develop a new correlation for heat transfer in nucleate flow boiling. The correlation is based on the Rohsenow boiling model, introducing a confinement number defined by Kew and Cornwell. The new correlation predicts the experimental data for nucleate flow boiling of three refrigerants within {+-}15%.

  4. On the dynamics of bubbles in boiling water

    International Nuclear Information System (INIS)

    Research highlights: → We devote this work to investigate the bubbles dynamics in boiling water. → A simple experiment of laser scattering was designed to obtain dynamical features. → Correlations and non-exponential distributions were found. → A simple model was able to describe several aspects of the system. - Abstract: We investigate the dynamics of many interacting bubbles in boiling water by using a laser scattering experiment. Specifically, we analyze the temporal variations of a laser intensity signal which passed through a sample of boiling water. Our empirical results indicate that the return interval distribution of the laser signal does not follow an exponential distribution; contrariwise, a heavy-tailed distribution has been found. Additionally, we compare the experimental results with those obtained from a minimalist phenomenological model, finding a good agreement.

  5. Pin cooling and dryout in steady local boiling

    International Nuclear Information System (INIS)

    A study is presented of pin cooling and dryout mechanisms in steady local boiling, with the particular objective of understanding the substantial dryout margins observed in the KNS local boiling experiments. Mechanisms for the entry of liquid into the voided region are discussed, and pin cooling by draining liquid films deduced to be likely. The conditions required for interruption of the film flow, and hence for dryout, are examined, with particular attention to vapour/liquid interactions causing film breakdown, inhibition of rewetting and film flooding. This leads to the hypothesis that dryout occurs when a critical vapour velocity is reached, which is shown to be consistent with the limited data on dryout conditions in steady boiling. (orig.)

  6. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  7. Changes of enthalpy slope in subcooled flow boiling

    Science.gov (United States)

    Collado, Francisco J.; Monné, Carlos; Pascau, Antonio

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, #58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance—the control volume length—in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored.

  8. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  9. On mechanism of explosive boiling in nanosecond regime

    Science.gov (United States)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  10. Boiling heat transfer in porous media composed of particles

    International Nuclear Information System (INIS)

    The boiling heat transfer in the porous media composed of spherical fuel elements exerts significant influences on the reactor's efficiency and safety. In the present study an experimental setup was designed and the boiling heat transfer in the porous media composed of spheres of regular distribution was investigated. Four spheres with diameters of 5mm, 6mm, 7mm and 8mm were used in the test sections. The greater particle diameter led to lower heat transfer coefficient, and resulted in higher wall superheat of original nucleation boiling. The variation of heat transfer coefficient was divided into three groups according to two-phase flow patterns and void fraction. A correlation of heat transfer coefficient was proposed with a mean relative deviation of ± 16%. (author)

  11. Visualization of pool boiling from complex surfaces with internal tunnels

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2012-04-01

    Full Text Available The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS, can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  12. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    This paper reports in the experimental results concerning unsteady burnout phenomenon, based on unsteady boiling heat transfer data, burnout heat flux data and the data of changing pressure and water temperature in course of time. These data were acquired by unsteady heating of gas-liquid two phase flow. This experiment simulated the thermohydrodynamic conditions under the runaway power of a nuclear reactor. The following results have been clarified. The boiling with high heat flux showed the same heat transfer characteristics as the steady nuclear boiling curves under each flow condition. Under the conditions of low flow speed and high sub-cool degree, the unsteady burnout heat flux showed the extreme increase of the maximum heat flux owing to the shortening of the time constant. The generation of unsteady burnout phenomena is dominated by two phase flow conditions and by bubble behavior near the heat transfer surface owing to the change of heating conditions and flow conditions. (Tai, I.)

  13. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  14. Immersion cooling nucleate boiling of high power computer chips

    International Nuclear Information System (INIS)

    Highlights: ► Experimental investigations of nucleate boiling of dielectric liquids on porous graphite (PG). ► Marked enhancements in nucleate boiling heat transfer coefficient and CHF. ► Critical heat flux (CHF) increases linearly with increased liquid subcooling. ► PG–Cu spreaders for cooling 10 × 10 computer chips remove up to 100 W. - Abstract: This paper presents experimental results of saturation and subcooled boiling of FC-72 and HFE-7100 dielectric liquids on uniformly heated, 10 × 10 mm porous graphite (PG) surfaces for potential applications to immersion cooling of high power computer chips. The experiments investigated the effects of surface inclination, from upward-facing (0°) to downward-facing (180°), and liquid subcooling from 0 to 30 K on nucleate boiling heat transfer coefficient and critical heat flux. The presented experimental data and correlations for natural convection of dielectric liquids on PG and plane surfaces are important for cooling chips while in the standby mode when surface heat flux 2. The experimental curves of the nucleate boiling heat transfer coefficient for FC-72 dielectric liquid in the upward-facing orientation are used in 3-D thermal analysis for sizing and quantifying the performance of copper (Cu), PG and PG–Cu composite spreaders for removing the dissipated thermal power by an underlying 10 × 10 mm computer chip with non-uniform heat dissipation. The 2 mm-thick spreaders are cooled by either saturation or 30 K subcooled nucleate boiling of FC-72 and the composite spreader consists of 0.4 mm-thick surface layer of PG and 1.6 mm-thick Cu substrate.

  15. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  16. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author)

  17. Pool Boiling Behavior and Critical Heat Flux on Zircaloy and SiC Claddings in Deionized Water under Atmospheric Pressure

    International Nuclear Information System (INIS)

    Recently several researches on SiC material as an alternative of the nuclear fuel cladding have been conducted. From a fundamental point of view, Snead et al. did an extensive investigation on SiC properties. Their work revealed non-irradiated and irradiated material properties. In addition to the existing literature data, they even added new data, particularly in the high-temperature irradiation regime. Moreover, Carpenter has studied performance of a SiC fuel cladding in his Ph. D. thesis. With extensive in-core tests at MITR-II, his works showed the effects of cladding design for monolith and triplex types. He concluded that manufacturing techniques of the SiC cladding affected corrosion rates and swelling behavior after irradiation. For more practical nuclear applications, oxidation rates of a SiC cladding was investigated with a comparison assessment of those of a zircaloy-4 cladding. Lee et al. adopted an oxidation process under the conditions of the Loss of Coolant Accidents (LOCA) in LWRs. They found that SiC oxidation rates were greatly lower than those of zircaloy-4. In order to demonstrate the superiority of SiC cladding in terms of thermal performance, in this study pool boiling heat transfer experiments were carried out in a pool of saturated deionized water (DI water) at atmospheric pressure. For a comparison study, zircaloy-4 claddings, which are current fuel claddings in LWRs, were used as a reference case. Not only measuring nucleate boiling heat transfer coefficient (NBHTC) and critical heat flux (CHF) but also observing boiling behavior of both the claddings were conducted. In this study, pool boiling heat transfer experiments with zircaloy and SiC heaters were carried out. Comparison of the CHF and nucleate boiling heat transfer of the zircaloy-4 and SiC cladding were compared. Specifically, sophisticated high-speed photographs of nucleate boiling, the CHF, and film boiling phenomena were captured. · Structural integrity of the SiC heaters was

  18. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  19. On Boiling of Crude Oil under Elevated Pressure

    CERN Document Server

    Pimenova, Anastasiya V

    2015-01-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  20. On Boiling of Crude Oil under Elevated Pressure

    Science.gov (United States)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  1. Dimensional analysis of boiling heat transfer burnout conditions

    International Nuclear Information System (INIS)

    The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs

  2. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    The onset of nucleate boiling -ONB-, the point of net vapor generation -NVG- and critical heat flux -CHF- on subcooled flow boiling under oscillatory flow condition, focusing on liquid velocity, amplitude and frequency of flow oscillation were investigated experimentally and analytically, for safety technology of nuclear reactors during earthquake. Experiments were conducted using a copper thin-film with 3mm width and 26mm length and subcooled water at 0.1 MPa. The liquid velocity was 0.27, 1.38, 3.20 and 4.07 m/s, respectively; the liquid subcooling was 20K. Frequency of flow oscillation was 2 and 4 Hz, respectively; amplitude of flow oscillation was 25 and 50% in a ratio of main flow rate, respectively. The oscillatory flow was superimposed on the steady flow with a mechanical diaphragm type pump at inlet of a test section. Temperatures at ONB and CHFs obtained in the experiments were decrease with an increasing of the amplitude of the flow oscillation. The decreasing of liquid velocity by the flow oscillation caused ONB and CHF to decrease. The wall heat flux at the NVG was decrease with an increasing of the amplitude of the flow oscillation. The effect of the oscillatory flow on the ONB was examined through stability theory of preexisting nuclei. The CHF in subcooled flow boiling under the oscillatory flow condition was investigated analytically by using a liquid sub-layer model and Kelvin-Helmholtz instability. The NVG was examined through Saha-Zuber model. The trends of the present experimental results were similar to those of predictions based on the models. (author)

  3. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas...

  4. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  5. A Study of the Influence of Solid Particles on Boiling Hysteresis

    Institute of Scientific and Technical Information of China (English)

    M.H.Shi; J.Ma

    1992-01-01

    Experiments have been performed to determine the effects on boiling hysteresis of locally fluidized particles contained in a liquid that serves as coolant for electronic equipment.The results show that Iocally fluidized particles can diminish boiling hysteresis.

  6. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  7. Experiments on microgravity boiling heat transfer by using transparent heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, H. [Kyushu Univ., Fukuoka (Japan). Dept. of Energy and Mech. Eng.

    1997-11-01

    To clarify the relation between the liquid-vapor behavior and the heat transfer characteristics in the boiling phenomena, the structures of transparent heaters were developed for both flow boiling experiments and were applied to the microgravity environment realized by the parabolic flight of aircraft. In the flow boiling experiment, a transparent heated tube makes the heating, the observation of liquid-vapor behavior and the measurement of heat transfer data simultaneously possible. The heat transfer coefficient in the annular flow regime at moderate quality has distinct dependence on gravity provided that the mass velocity is not so high, while no noticeable gravity effect is seen at high quality and in the bubbly flow regime. The measured gravity effect was directly related to the behavior of annular liquid film observed through the transparent tube wall. In the pool boiling experiment, a structure of transparent heating surface realizes both the observation of the macrolayer or microlayer behavior from underneath and the measurements of local surface temperatures and the layer thickness. It was clarified in the microgravity experiments that no vapor stem exists but tiny bubbles are observed in the macrolayer underneath a large coalesced bubble at high heat flux. The heat flux evaluated by the heat conduction across the layer assumes less than 30% of the total to be transferred. The evaporation of the microlayers underneath primary bubbles just after the generation dominates the heat transfer in the microgravity, not only in the isolated bubble region but also in the coalesced bubble region. (orig.) 14 refs.

  8. Electrochemical study of aluminum corrosion in boiling high purity water

    Science.gov (United States)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  9. STEAM TURBINES WITH A LOW-BOILING WORKING AGENT

    OpenAIRE

    Morozov, N.; Karasev, V.

    2010-01-01

    The subject of the article is the assembly of a steam-generator plant with a natural working agent. A method of calculation for steam turbines with a low-boiling working agent is offered, which accounts for the correlation between the adiabatic curve indication, pressure and temperature in the overheated vapor area.

  10. Corrosion fatigue behavior of zirconium in boiling nitric acid

    International Nuclear Information System (INIS)

    The corrosion fatigue behavior of zirconium in boiling nitric acid has been studied to evaluate the reliability of zirconium used in nuclear fuel reprocessing equipment. An apparatus designed for corrosion fatigue tests in boiling nitric acid was used. The crack growth rate of zirconium was measured as a function of the stress intensity factor using TDCB type specimens. After the tests, the fracture morphology was examined with a scanning electron microscope. The crack growth rate was influenced with the texture of specimens and the test environments. In air at room temperature, the crack growth rate at the longitudinal direction of specimens was faster than that of the transverse direction. Moreover, the crack growth rate in boiling nitric acid was more faster than that in air at room temperature. According to the fractographic examination, X-ray analysis, and so on, the observed results were interpreted with based on the crystal anisotropy on mechanical properties and the susceptibility to stress corrosion cracking in boiling nitric acid of zirconium. (author)

  11. Boiling heat transfer and droplet spreading of nanofluids.

    Science.gov (United States)

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  12. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.)

  13. How long does it take to boil an egg? Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Buay, D [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Foong, S K [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Kiang, D [Department of Physics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Kuppan, L [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Liew, V H [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore)

    2006-01-01

    How long does it take to boil an egg? Theoretical prediction, based on a simple adaptation of the solution to the exact thermal diffusion equation for a sphere, is consistent with experiments. The experimental data are also used to estimate an average value for the thermal diffusivity of an egg.

  14. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  15. BORATING OF CARBON AND ALLOY STEEL IN BOILING LAYER

    Directory of Open Access Journals (Sweden)

    N. Koukhareva

    2012-01-01

    Full Text Available The paper describes how to obtain boride coatings on steel 20, 4X5MФС, X12M being treated in a boiling layer of metallothermic powder environment. Phase and chemical compositions, hardness and wear- resistance of boride coatings

  16. Experimental demonstration of contaminant removal from fractured rock by boiling.

    Science.gov (United States)

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix.

  17. Computations of film boiling. Part II: multi-mode film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeeli, A.; Tryggvason, G. [Worcester Polytechnic Institute, MA (United States). Mechanical Engineering Department

    2004-12-01

    Film boiling on horizontal periodic surfaces is investigated by direct numerical simulations. A front tracking/finite difference technique is used to solve the momentum and the energy equations in both phases and to account for inertia, viscosity, and surface deformation. Effect of the unit cell size W on the interface dynamics, heat transfer, and fluid flow is studied for different wall superheats. The simulations are carried out over sufficiently long times to capture several bubble release cycles ands to evaluate the quasi steady-state Nusselt number (Nu). While instantaneous Nusselt number will change as result of a change in the system size, statistically steady-state Nusselt number remains almost the same. Simulations of two-dimensional systems in large unit cells, 5{lambda}{sub d2} < W < 10{lambda}{sub d2}, show a distribution of bubble spacing in the range of 0.61{lambda}{sub d2}-1.46{lambda}{sub d2}. At relatively low superheats (Ja {<=} 0.064) the bubbles are released periodically from the vapor film, but at intermediate superheats (0.064 < Ja < 2.13) permanent vapor jets are formed with no bubble break off. At sufficiently high superheats, the vapor jets start to interact. It is shown that the average bubble spacing does not change with changes in the wall superheat. (author)

  18. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    Science.gov (United States)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2016-04-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  19. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    Science.gov (United States)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  20. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: General. 154.705 Section 154.705... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off...

  1. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    Energy Technology Data Exchange (ETDEWEB)

    Gotovsky, M.A. [Polzunov Institute, Saint Petersburg (Russian Federation)

    2001-07-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  2. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    Science.gov (United States)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  3. Modeling acid-gas generation from boiling chloride brines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  4. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  5. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  6. 76 FR 3540 - U.S. Advanced Boiling Water Reactor Aircraft Impact Design Certification Amendment

    Science.gov (United States)

    2011-01-20

    ... COMMISSION 10 CFR Part 52 RIN 3150-AI84 U.S. Advanced Boiling Water Reactor Aircraft Impact Design... the U.S. Advanced Boiling Water Reactor (ABWR) standard plant design to comply with the NRC's aircraft...--Design Certification Rule for the U.S. Advanced Boiling Water Reactor IV. Section-by-Section Analysis...

  7. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs)....

  8. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    Science.gov (United States)

    Le Corre, Jean-Marie

    the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.

  9. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability

    Science.gov (United States)

    Taylor, M. T.; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007), 10.1103/PhysRevE.75.036304] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  10. A meta-analysis of public compliance to boil water advisories.

    Science.gov (United States)

    Vedachalam, Sridhar; Spotte-Smith, Kyra T; Riha, Susan J

    2016-05-01

    Water utilities that generally provide continuous and reliable service to their customers may sometimes issue an advisory notification when service is interrupted or water quality is compromised. When the contamination is biological, utilities or the local public health agencies issue a 'boil water advisory' (BWA). The public health effectiveness of a BWA depends strongly on an implicit public understanding and compliance. In this study, a meta-analysis of 11 articles that investigated public compliance to BWA notifications was conducted. Awareness of BWA was moderately high, except in situations involving extreme weather. Reported rates of compliance were generally high, but when rate of awareness and non-compliant behavior such as brushing teeth were factored in, the median effective compliance rate was found to be around 68 percent. This does not include situations where people forgot to boil water for some part of the duration, or ingested contaminated water after the BWA was issued but before they became aware of the notification. The two-thirds compliance rate is thus an over-estimate. Results further suggest that timeliness of receipt, content of the advisory, and number of sources reporting the advisory have a significant impact on public response and compliance. This analysis points to improvements in the phrasing and content of BWA notices that could result in greater compliance, and recommends the use of a standard protocol to limit recall bias and capture the public response accurately. PMID:26938499

  11. Developing the technique of image processing for the study of bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    This study presents the development of an image processing technique for studying the dynamic behavior of vapor bubbles in a two-phase bubbly flow. It focuses on the quantitative assessment of some basic parameters such as a local bubble size and size distribution in the range of void fraction between 0.03 < a < 0.07. The image processing methodology is based upon the computer evaluation of high speed motion pictures obtained from the flow field in the region of underdeveloped subcooled flow boiling for a variety of experimental conditions. This technique has the advantage of providing computer measurements and extracting the bubbles of the two-phase bubbly flow. This method appears to be promising for determining the governing mechanisms in subcooled flow boiling, particularly near the point of net vapor generation. The data collected by the image analysis software can be incorporated into the new models and computer codes currently under development which are aimed at incorporating the effect of vapor generation and condensation separately. (author)

  12. Experimental investigation into the effects of coolant additives on boiling phenomena in pressurized water reactors

    International Nuclear Information System (INIS)

    This study investigates the effects of coolant additives like boric acid on boiling phenomena in pressurized water reactors under conditions as realistic as possible. The effects covered range from subcooled boiling to critical boiling conditions (CHF). The focus of this project lies on flow boiling with up to 40 bar and 250 °C in order to generate a data basis for a possible extrapolation to reactor conditions. The results of the experiments are used to implement and validate new models into CFD-Codes in context to a nationwide German joint research project with the specific aim of improving CFD boiling-models. (author)

  13. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    Science.gov (United States)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  14. A new procedure for the determination of distillation temperature distribution of high-boiling petroleum products and fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2011-03-01

    The distribution of distillation temperatures of liquid and semi-fluid products, including petroleum fractions and products, is an important process and practical parameter. It provides information on properties of crude oil and content of particular fractions, classified on the basis of their boiling points, as well as the optimum conditions of atmospheric or vacuum distillation. At present, the distribution of distillation temperatures is often investigated by simulated distillation (SIMDIS) using capillary gas chromatography (CGC) with a short capillary column with polydimethylsiloxane as the stationary phase. This paper presents the results of investigations on the possibility of replacing currently used CGC columns for SIMDIS with a deactivated fused silica capillary tube without any stationary phase. The SIMDIS technique making use of such an empty fused silica column allows a considerable lowering of elution temperature of the analytes, which results in a decrease of the final oven temperature while ensuring a complete separation of the mixture. This eliminates the possibility of decomposition of less thermally stable mixture components and bleeding of the stationary phase which would result in an increase of the detector signal. It also improves the stability of the baseline, which is especially important in the determination of the end point of elution, which is the basis for finding the final temperature of distillation. This is the key parameter for the safety process of hydrocracking, where an excessively high final temperature of distillation of a batch can result in serious damage to an expensive catalyst bed. This paper compares the distribution of distillation temperatures of the fraction from vacuum distillation of petroleum obtained using SIMDIS with that obtained by the proposed procedure. A good agreement between the two procedures was observed. In addition, typical values of elution temperatures of n-paraffin standards obtained by the two

  15. Rising and boiling of a drop of volatile liquid in a heavier one: application to the LMFBR severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pigny, Sylvain L.; Coste, Pierre F. [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: The rising and, simultaneously the boiling, of a droplet of volatile liquid in a heavier one is computation-ally investigated. Our calculations are performed with the help of the SIMMER code, in which a specific DNS algorithm is developed, to represent surface tension between the different media in an explicit way. This is required to represent the physical contact that occurs between two liquids and the vapor from the lighter one, since interfacial heat transfers, and therefore boiling kinetics, merely depend on it. The behavior of the three fluids system is of interest as a key phenomenon related to the transition phase of LMFBR severe accidents, before the formation of a fully developed bubble column. The driven force due to the boiling of steel drops can play a major role in the relocation, and, consequently, the recriticality of UO{sub 2} fuel. The problem is investigated focusing first on analytical experiments, built-up with simulating materials, and for which accurate experimental results are provided. The dependence of results with regard to thermodynamical and physical properties is underlined. This point is of interest in view of some uncertainties in the knowledge of data concerning the materials present in the reactor at high temperature. The pressure level is a key parameter in the accident scenarios: its influence is uppermost on the volumic mass of the gas. It is also outlined. (authors)

  16. The stability analysis using two fluids (SAT) code for boiling flow systems: Volume 4, Experiments and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Dykhuizen, R.C.; Su, M.G.; Jain, P.

    1988-12-01

    This report presents analyses of dynamic instability and frequency response characteristics of boiling flow systems based on an unequal velocity, unequal temperature two-fluid model of such flow. The dynamic instability analyses in the time domain are incorporated into three options of a computer code SAT (steady state, or equilibrium point analyses; linear stability analysis; and nonlinear analysis). The frequency response analysis is incorporated into a fourth option FREQ. Results from dynamic instability experiments carried out in a Refrigerant-113 boiling flow rig are also reported as are comparison of these with linear stability analysis predictions. Descriptions of the model, the computational techniques, the computer codes, the experiments and model validation are divided into the following volumes: Volume 1, theoretical model and computational formulation; Volume 2, coding description; Volume 3, user's manual; and Volume 4, experiments and model validation. Instability experiments run in our Refrigerant-113 boiling flow facility are described in this document. Results from these experiments are compared with predictions of the theoretical model. Instability experiment data from two other facilities and frequency response results from one are compared with theoretical model predictions also. 19 refs., 41 figs.

  17. Numerical modeling of boiling heat transfer in porous media

    International Nuclear Information System (INIS)

    Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance

  18. Catastrophe characteristics of the condensation and pool boiling phenomena

    Science.gov (United States)

    Ma, Xuehu; Xu, Dunqi; Lin, Jifang

    1995-02-01

    Recently, Utaka proposed two types of the transition modes of dropwise condensation, i.e. the continuous and the jumping modes, and presented a criterion for determining the condensation transition mode. Stylianous and Rose proposed two hypotheses, the coalescence-limited transition and the nucleation site saturation transition. Neither Utaka's criterion nor Rose's hypotheses could clearly interpret the physical mechanisms of the transition both from filmwise to dropwise and from dropwise to pseudofilm condensation, and explicitly presented the main factors affecting the transitions. Kalinin hs given a general review of the transition boiling heat transfer. The catastrophe theory will be applied here to eluicidate the complex phenomena of the transitions of the condensation and boiling pattern states.

  19. Computations of film boiling. Part I: numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeeli, A.; Tryggvason, G. [Worcester Polytechnic Institute, MA (United States). Mechanical Engineering Department

    2004-12-01

    A numerical method for direct simulations of boiling flows is presented. The method is similar to the front tracking/finite difference technique of Juric and Tryggvason [Int. J. Multiphase Flow 24 (1998) 387], where one set of conservation equations is used to represent the mass transfer, heat transfer, and fluid flow in the liquid and the vapor, but improves on their numerical technique by elimination of their iterative algorithm. The justification of the mathematical formulation is presented and the numerical method and the code is validated by comparison of the results with the exact solutions of a few analytical problems. A grid refinement test for film boiling on a horizontal surface shows the convergence of results. (author)

  20. Evaluation of boiled potato peel as a wound dressing.

    Science.gov (United States)

    Dattatreya, R M; Nuijen, S; van Swaaij, A C; Klopper, P J

    1991-08-01

    In a series of experiments full thickness skin defects in 68 rats were covered with dressings made of boiled potato peels according to the method developed in Bombay. The wounds closed within 14 days and histologically complete repair of epidermis was found. The cork layer of the potato peel prevents dehydration of the wound and protects against exogenous agents. Experiments with homogenates revealed that a complete structure of the peel is necessary. Steroidal glycosides may have contributed to the favourable results. PMID:1930669

  1. Phase field model for the study of boiling

    International Nuclear Information System (INIS)

    This study concerns both the modeling and the numerical simulation of boiling flows. First we propose a review concerning nucleate boiling at high wall heat flux and focus more particularly on the current understanding of the boiling crisis. From this analysis we deduce a motivation for the numerical simulation of bubble growth dynamics. The main and remaining part of this study is then devoted to the development and analyze of a phase field model for the liquid-vapor flows with phase change. We propose a thermodynamic quasi-compressible formulation whose properties match the one required for the numerical study envisaged. The system of governing equations is a thermodynamically consistent regularization of the sharp interface model, that is the advantage of the di use interface models. We show that the thickness of the interface transition layer can be defined independently from the thermodynamic description of the bulk phases, a property that is numerically attractive. We derive the kinetic relation that allows to analyze the consequences of the phase field formulation on the model of the dissipative mechanisms. Finally we study the numerical resolution of the model with the help of simulations of phase transition in simple configurations as well as of isothermal bubble dynamics. (author)

  2. Boiling Heat Transfer Experiments by using Transparent Heated Microtube

    Science.gov (United States)

    Huang, Shih-Che; Kawanami, Osamu; Kawakami, Kazunari; Honda, Itsuro; Kawashima, Yousuke; Ohta, Haruhiko

    For detailed study of the relationship between boiling bubble behavior and inner wall temperature during flow boiling in microtubes, a transparent heated microtube, whose inner wall was coated with a thin gold film, was employed. Boiling behavior could be observed clearly, and the inner wall temperature of the tube was measured simultaneously with direct heating of the film. Ionized water was used as a test fluid. The experimental conditions were as follows: tube diameter, 1 mm; inlet liquid subcooling, 10 K; mass velocity, 100 kg/m2s and heat flux, up to 469 kW/m2 in the open system. As a result, the frequencies of fluctuation of the inner wall temperature and flow rate were divided into four regions. In addition, the fluctuation range of flow rate increased with increasing heat flux however, this fluctuation decreased drastically for heat flux over 212 kW/m2. The fluctuation of void fraction coincided with that of inner wall temperature.

  3. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  4. Measurement of film dynamics in a boiling liquid film

    International Nuclear Information System (INIS)

    Motivated by understanding the micro-hydrodynamics of boiling heat transfer and its critical heat flux (CHF), the present study investigates the boiling phenomenon in a liquid film whose dynamic thickness is recorded by a confocal optical sensor till micrometres, while the bubble dynamics of the boiling in the film is visualized by high-speed photography (100 fps). This paper is focused on statistical analysis of the thickness signals from the scoping tests from low heat flux till high heat flux (CHF). The dynamic thickness of the liquid film appears peak values, corresponding to the liquid film movements due to nucleation of bubble(s) and its growth and collapse. The maximum thickness decreases rapidly with increasing heat flux, but after 0.625 WM/m2 it keeps almost constant. It reduces again after 1.09 WM/m2 and finally reaches 105 μm prior to the CHF which occurs at 1.563 WM/m2 for the nano heater made of titanium. (author)

  5. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  6. Pool boiling on rectangular fins with tunnel-pore structure

    Directory of Open Access Journals (Sweden)

    Pastuszko A.

    2013-04-01

    Full Text Available Complex experimental investigations were conducted in the area of pool boiling heat transfer on extended surfaces with internal tunnels limited by perforated foil. The experiments were carried out for water and R-123 at atmospheric pressure. The tunnel surfaces were fabricated from 0.05 – 0.1 mm thick perforated copper foil (pore diameters: 0.3, 0.4, 0.5 mm sintered with mini-fins formed by 5 and 10 mm high rectangular fins and horizontal inter-fin surface. The effect of the main fin height, pore diameters and tunnel pitch on nucleate pool boiling was examined. Substantial enhancement of heat transfer coefficient was observed for the investigated surfaces. The highest increase in the heat transfer coefficient was obtained for the 10 mm high fins – about 50kW/m2K for water and 15 kW/m2K for R-123. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing tunnel-pore structures.

  7. Design of Ultrasonically-Activatable Nanoparticles using Low Boiling Point Perfluorocarbons

    OpenAIRE

    Sheeran, Paul S.; Luois, Samantha; Mullin, Lee; Matsunaga, Terry O.; Dayton, Paul A.

    2012-01-01

    Recently, an interest has developed in designing in biomaterials for medical ultrasonics that can provide the acoustic activity of microbubbles, but with improved stability in vivo and a smaller size distribution for extravascular interrogation. One proposed alternative is the phase-change contrast agent. Phase-change contrast agents (PCCAs) consist of perfluorocarbons (PFCs) that are initially in liquid form, but can then be vaporized with acoustic energy. Crucial parameters for PCCAs includ...

  8. Using NMR to Determine the Boiling Point Diagram for a Non-Ideal Solution

    Science.gov (United States)

    Allen, Fritz S.; And Others

    1975-01-01

    Describes an experiment that enables the student to concentrate on the fundamentals of the non-ideal liquid-vapor equilibrium. Presents typical student data and suggests features which might be added to the experiment. (GS)

  9. PREDICTION OF THE VAPOR PRESSURE, BOILING POINT, HEAT OF VAPORIZATION AND DIFFUSION COEFFICIENT OF ORGANIC COMPOUNDS

    Science.gov (United States)

    The prototype computer program SPARC has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC solute-solute physical process models have been developed and tested...

  10. Influence of the equation of state on boiling point. Calculations for crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Paulo S.M.V. [PETROBRAS S.A., Salvador, BA (Brazil). Unidade de Negocios da Bahia]. E-mail: psrocha@petrobras.com.br; Sacramento, Vinicio S.; Costa, Gloria M.N. [Universidade Salvador (UNIFACS), Salvador, BA (Brazil). Centro de Estudos em Petroleo e Gas Natural (CEPGN)]. E-mail: gloria.costa@unifacs.br

    2004-07-01

    Cubic equations of state are used to calculate volumetric and phase behavior of oils. Numerous equations of state have been published in literature and promising new equations continue appearing. A few number of comparative studies, which are limited to predictions of volumetric and vapour-liquid equilibrium properties of oils, have shown that certain equations exhibit a higher overall accuracy. But the reliability of these results is sustained for few experimental data. The saturation pressure is, probably, the most important property of a reservoir fluid for phase behavior studies. Furthermore, it needs a high weighting factor in order to calibrate or tune an equation of state model with experimental data. This paper evaluates the reliability of three equations of state: Soave-Redlich-Kwong, Peng-Robinson and Adachi-Lu-Sugie for predicting the saturation pressure. To explore their strengths and weaknesses and to reexamine the predictive capability of these equations, a total of 120 reservoir fluids obtained from 38 different references were employed. The comparison shows that Soave- Redlich- Kwong and Adachi-Lu- Sugie equations give the best prediction results, but far from the 5% deviation exhibited in literature. (author)

  11. How high the temperature of a liquid be raised without boiling?

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    How high the temperature of a liquid be raised beyond its boiling point without vaporizing (known as the limit of superheat) is an interesting subject of investigation. A new method of finding the limit of superheat of liquids is presented here. The superheated liquids are taken in the form of drops suspended in visco elastic gel. The nucleation is detected acoustically by a sensitive piezo-electric transducer, coupled to a multi channel scaler and the nucleation is observed as a funtion of time and with increase of temperature. The limit of superheat measured by the present method supersedes all other measurements and theoretical predictions in reaching closest to the critical temperature and warrants improved theoretical predictions.

  12. A Low Cost, Self Acting, Liquid Hydrogen Boil-Off Recovery System

    Science.gov (United States)

    Pelfrey, Joy W.; Sharp, Kirk V. (Technical Monitor)

    2001-01-01

    The purpose of this research was to develop a prototype liquid hydrogen boll-off recovery system. Perform analyses to finalize recovery system cycle, design detail components, fabricate hardware, and conduct sub-component, component, and system level tests leading to the delivery of a prototype system. The design point and off-design analyses identified cycle improvements to increase the robustness of the system by adding a by-pass heat exchanger. Based on the design, analysis, and testing conducted, the recovery system will liquefy 31% of the gaseous boil off from a liquid hydrogen storage tank. All components, including a high speed, miniature turbocompressor, were designed and manufacturing drawings were created. All hardware was fabricated and tests were conducted in air, helium, and hydrogen. Testing validated the design, except for the turbocompressor. A rotor-to-stator clearance issue was discovered as a result of a concentricity tolerance stack-up.

  13. Experimental investigation and mechanistic modelling of dilute bubbly bulk boiling

    International Nuclear Information System (INIS)

    During evaporation the geometric shape of the vapour is not described using thermodynamics. In bubbly flows the bubble shape is considered spheric with small diameters and changing into various shapes upon growth. The heat and mass transfer happens at the interfacial area. The forces acting on the bubbles depend on the bubble diameter and shape. In this work the prediction of the bubble diameter and/or bubble number density in bulk boiling was considered outside the vicinity of the heat input area. Thus the boiling effects that happened inside the nearly saturated bulk were under investigation. This situation is relevant for nuclear safety analysis concerning a stagnant coolant in the spent fuel pool. In this research project a new experimental set-up to investigate was built. The experimental set-up consists of an instrumented, partly transparent, high and slender boiling container for visual observation. The direct visual observation of the boiling phenomena is necessary for the identification of basic mechanisms, which should be incorporated in the simulation model. The boiling process has been recorded by means of video images and subsequently was evaluated by digital image processing methods, and by that data concerning the characteristics of the boiling process were generated for the model development and validation. Mechanistic modelling is based on the derivation of relevant mechanisms concluded from observation, which is in line with physical knowledge. In this context two mechanisms were identified; the growth/-shrink mechanism (GSM) of the vapour bubbles and sudden increases of the bubble number density. The GSM was implemented into the CFD-Code ANSYS-CFX using the CFX Expression Language (CEL) by calculation of the internal bubble pressure using the Young-Laplace-Equation. This way a hysteresis is realised as smaller bubbles have an increased internal pressure. The sudden increases of the bubble number density are explainable by liquid super

  14. Rheological Properties and Structural Changes in Different Sections of Boiled Abalone Meat

    Institute of Scientific and Technical Information of China (English)

    GAO Xin; TANG Zhixu; ZHANG Zhaohui; Ogawa Hiroo

    2003-01-01

    Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components weve exchanged after boiling time was increased from 1 h to 3 h.

  15. Boil-off gas vapors are recovered by reliquefaction in LNG

    Energy Technology Data Exchange (ETDEWEB)

    Levay, M.; Petit, P.; Paradowski, H.

    1986-02-24

    Although great care is taken to prevent heat leaks into cryogenic equipment in LNG terminals, boil-off vapors evolve from LNG stored at thermodynamic equilibrium. The quantities of boil-off vapors may be quite considerable. They account for about 1% of the total gas quantity received and sent out at the monitor-de-bretagne LNG terminal of Gaz de France. A novel process has significantly cut boil-off vapor handling costs. It is free of technical problems which would arise from local utilization of the gas and makes boil-off recovery possible under optimum conditions. In addition, the process shows an excellent degree of reliability. Boil-off vapors have a lower heating value than the stored LNG. However, since they mainly consist of methane, their economic usefulness makes vapor recovery necessary. This boil-off gas, with widely fluctuating quantities and qualities, cannot be readily used locally. The vapors must be sent out into the grid.

  16. An analytic model of pool boiling critical heat flux on an immerged downward facing curved surface

    International Nuclear Information System (INIS)

    Highlights: • Thin liquid film and supplement of liquid contribute to the CHF. • CHF increases from the bottom to the upper of the lowerhead. • Evaporation of thin liquid film is dominant nearby bottom region. • The subcooling has significant effects on the CHF. - Abstract: In this paper, an analytical model of the critical heat flux (CHF) on the downward facing curved surface for pool boiling has been proposed, which hypothesizes that the CHF on the downward facing curved is composed of two parts, i.e. the evaporation of the thin liquid film underneath the elongated bubble adhering to the lower head outer surface and the depletion of supplement of liquid due to the relative motion of vapor bubbles along with the downward facing curved. The former adopts the Kelvin–Helmholtz instability analysis of vapor–liquid interface of the vapor jets which penetrating in the thin liquid film. When the heat flux closing to the CHF point, the vapor–liquid interface becomes highly distorted, which block liquid to feed the thin liquid film and the thin liquid film will dry out gradually. While the latter considers that the vapor bubbles move along with the downward facing curved surface, and the liquid in two-phase boundary layer enter the liquid film that will be exhausted when the CHF occurs. Based on the aforementioned mechanism and the energy balance between the thin liquid film evaporation and water feeding, and taking the subcooling of the bulk water into account, the mathematic model about the downward facing curved surface CHF has been proposed. The CHF of the downward facing curved surface for pool boiling increases along with the downward facing orientation except in the vicinity of bottom center region, because in this region the vapor bubble almost stagnates and the evaporation of the thin liquid film is dominant. In addition, the subcooling has significant effect on the CHF. Comparing the result of this model with the published experimental results show

  17. Transient measurement of temperature oscillation during noisy film boiling in superfluid helium II

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Noisy film boiling, which is characterized by a loud noise andsevere mechanical vibration, is a particular phenomenon of superfluid helium II (He II). Experiments have been conducted under various thermal conditions by varying the heating time th and the heat flux q, and the temperature oscillation during noisy film boiling is measured by the superconductor temperature sensors in order to understand the physical mechanism of noisy film boiling.

  18. An analytical and experimental study of pool boiling with particular reference to additives

    International Nuclear Information System (INIS)

    An experimental investigation of nucleate boiling heat transfer and critical heat flux is presented for water and various aqueous solutions boiling from horizontal stainless steel tubes and flat strips at atmospheric pressure. An integral method solution for film boiling is given and compared with existing experimental data. Analytical solutions are also obtained for the temperature profiles with periodic internal heating of a flat plate and a cylinder. (author)

  19. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  20. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  1. A review on augmentation of heat transfer in boiling using surfactants/additives

    Science.gov (United States)

    Acharya, Anil; Pise, Ashok

    2016-09-01

    Studies of heat transfer enhancement in boiling under various conditions and configurations have given different results. Understanding the boiling behaviour from these studies, literature is reviewed in terms of surface texture, heater geometry and orientation, experimental and numerical studies in presence of surfactant/additives. After understanding different behaviour in boiling, the effect of environment friendly surfactant is studied through literature review. Benchmarking of experimental procedure is done by experimenting and comparing some surfactants studied in literature.

  2. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  3. Experimental research conception of thin liquid film boiling and evaporation

    Directory of Open Access Journals (Sweden)

    Feoktistov Dmitry V.

    2015-01-01

    Full Text Available The concept of conducting the experiments for studying thin liquid film boiling and evaporation was developed. Implementing this conception on developed experimental setup, we will obtain the data on the change of liquid film thickness in thermosiphon and temperature distribution in the liquid film, also the evaporation rate of liquid film and heat transfer coefficient change will be calculated using the measured values in the experiment. Three series of preliminary experiment were conducted. As a result, the main influencing factors and their values were defined.

  4. Pool boiling in microgravity with a single specie system

    OpenAIRE

    Sagan, Michael; Colin, Catherine; Tanguy, Sébastien

    2012-01-01

    Pool boiling experiments in microgravity on the small copper plate of 1cm² have been performed in the SOURCE 2 experiment aboard the sounding Rocket Maser 12 launched on February 13th, 2012. The SOURCE 2 experiment is a small-scale tank devoted to the study of heat and mass transfers with a liquid refrigerant HFE7000 pressurised with its vapour. SOURCE 2 (SOUnding Rocket Compere Experiment) was developed in the frame of a French German space programme COMPERE (on the behaviour of propellant i...

  5. Loss of coolant accident at boiling water reactors

    International Nuclear Information System (INIS)

    A revision is made with regard to the methods of thermohydraulic analysis which are used at present in order to determine the efficiency of the safety systems against loss of coolant at boiling water reactors. The object is to establish a program of work in the INEN so that the personnel in charge of the safety of the nuclear plants in Mexico, be able to make in a near future, independent valuations of the safety systems which mitigate the consequences of the above mentioned accident. (author)

  6. Nucleation, solvation and boiling of helium excimer clusters

    CERN Document Server

    Luna, Luis G Mendoza; Watkins, Mark J; Bonifaci, Nelly; Aitken, Frederic; von Haeften, Klaus

    2015-01-01

    Helium excimers generated by a corona discharge were investigated in the gas and normal liquid phases of helium as a function of temperature and pressure between 3.8 and 5.0 K and 0.2 and 5.6 bar. Intense fluorescence in the visible region showed the rotationally resolved $d^3\\Sigma_u^+ \\rightarrow b^3\\Pi_g$ transition of He$_2^*$. With increasing pressure, the rotational lines merged into single features. The observed pressure dependence of linewidths, shapes and lineshifts established phases of coexistence and separation of excimer-helium mixtures, providing detailed insight into nucleation, solvation and boiling of He$_2^*$-He$_n$ clusters.

  7. Microwave-Assisted Superheating and/or Microwave-Specific Superboiling (Nucleation-Limited Boiling) of Liquids Occurs under Certain Conditions but is Mitigated by Stirring

    OpenAIRE

    Anthony Ferrari; Jacob Hunt; Albert Stiegman; Gregory B. Dudley

    2015-01-01

    Temporary superheating and sustained nucleation-limited “superboiling” of unstirred liquids above the normal atmospheric boiling point have been documented during microwave heating. These phenomena are reliably observed under prescribed conditions, although the duration (of superheating) and magnitude (of superheating and superboiling) vary according to system parameters such as volume of the liquid and the size and shape of the vessel. Both phenomena are mitigated by rapid stirring with an a...

  8. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 1st Report, Saturated Liquid

    OpenAIRE

    Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru

    1981-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...

  9. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 2nd Report, Subcooled Liquid

    OpenAIRE

    Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu

    1983-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...

  10. MTD-MFC: unified framework for investigation of diversity of boiling heat transfer curves

    Energy Technology Data Exchange (ETDEWEB)

    Shekriladze, I.G. [Georgian Technical University, Tbilisi (Georgia)], e-mail: shekri@geo.net.ge

    2009-07-01

    A keynote paper presents just the next attempt to promote a discussion of modern state of art in the field of boiling heat transfer research. It is shown how longstanding disregard of internal contradictions of applicable approaches has resulted theoretical deadlock. Alternatively, it also is shown how resolution of these contradictions opens the ways to breakthrough in boiling heat transfer theory. Basic experimental facts, physical models and correlations are reconsidered. Principal contradictions between experimental knowledge and traditional model of 'the theatre of actors' (MTA) are discussed. Crucial role of pumping effect of growing bubble (PEGB) in boiling heat transfer and hydrodynamics is shown. Basic role of control of HTC by thermodynamic conditions on nucleation sites is demonstrated and consequent model of 'the theatre of director' (MTD) is discussed. Universal MTD-based correlation of boiling HTC of all types of liquids is considered. Unified consistent research framework for developed boiling heat transfer and diverse specific boiling heat transfer regimes is outlined through supplementing MTD by so-called multifactoring concept (MFC). The latter links transition from developed boiling mode to diverse boiling curves to a phenomenon of multiplication of factors influencing HTC. The ways of further research of the boiling problem are discussed. (author)

  11. Experimental study on the pool boiling CHF enhancement using magnetic fluid

    International Nuclear Information System (INIS)

    This paper will describe the effects of magnetic fluid on CHF enhancement of pool boiling. In order to evaluate the effects as nanoparticle characteristic of magnetic fluid, we compared the CHF values of pool boiling experiment between magnetic fluid and other nanofluids with several volume concentrations. SEM(Scanning Electron Microscope) images were obtained to explain CHF enhancement through the effect of the deposited nanoparticles, which can change the surface wettability, during the pool boiling experiment. Lastly, the analysis for bubble formation in pool boiling using image processing was performed to demonstrate between the characteristics of bubble formation and CHF enhancement. (author)

  12. Two-dimensional simulation of the downcomer boiling experiment using the CUPID code

    International Nuclear Information System (INIS)

    For the analysis of transient two-phase flows in nuclear reactor components, a three-dimensional thermal hydraulics code, named CUPID, has been being developed. We simulated the DOBO (Downcomer Boiling) experiment in two-dimensions using the CUPID code to evaluate its two-phase flow models and verify its applicability to the downcomer boiling analysis. The simulation result showed that it can reproduce the important characteristics of the downcomer boiling, such as a flow pattern change and a circulation of liquid accelerated by bubbles. The two-phase flow models that require further improvement were identified as well for an enhanced prediction of the downcomer boiling. (author)

  13. Burnout in a high heat-flux boiling system with an impinging jet

    International Nuclear Information System (INIS)

    An experimental study has been made on the fully-developed nucleate boiling at atmospheric pressure in a simple forced-convection boiling system, which consists of a heated flat surface and a small, high-speed jet of water or of freon-113 impinging on the heated surface. A generalized correlation for burnout heat flux data, that is applied to either water or freon-113 is successfully evolved, and it is shown that surface tension has an important role for the onset of burnout phenomenon, not only in the ordinary pool boiling, but also in the present boiling system with a forced flow. (author)

  14. Steady state boiling crisis in a helium vertically heated natural circulation loop - Part 1: Critical heat flux, boiling crisis onset and hysteresis

    Science.gov (United States)

    Furci, H.; Baudouy, B.; Four, A.; Meuris, C.

    2016-01-01

    Experiments were conducted on a 2-m high two-phase helium natural circulation loop operating at 4.2 K and 1 atm. The same loop was used in two experiments with different heated section internal diameter (10 and 6 mm). The power applied on the heated section wall was controlled in increasing and decreasing sequences, and temperature along the section, mass flow rate and pressure drop evolutions were recorded. The values of critical heat flux (CHF) were found at different positions of the test section, and the post-CHF regime was studied. The predictions of CHF by existing correlations were good in the downstream portion of the section, however CHF anomalies have been observed near the entrance, in the low quality region. In resonance with this, the re-wetting of the surface has distinct hysteresis behavior in each of the two CHF regions. Furthermore, hydraulics effects of crisis, namely on friction, were studied (Part 2). This research is the starting point to future works addressing transients conducing to boiling crisis in helium natural circulation loops.

  15. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    Science.gov (United States)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; Nawrocki, David; Clapper, Randy; Kolacz, John; Butcher, Robert; May, Rochelle; Chao, David; Mudawar, Issam; Kharangate, Chirag R.; O'Neill, Lucas E.

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  16. Effect of size sprinkled heat exchange surface on developing boiling

    Directory of Open Access Journals (Sweden)

    Petr Kracík

    2016-06-01

    Full Text Available This article presents research of sprinkled heat exchangers. This type of research has become rather topical in relation to sea water desalination. This process uses sprinkling of exchangers which rapidly separates vapour phase from a liquid phase. Applications help better utilize low-potential heat which is commonly wasted in utility systems. Low-potential heat may increase utilization of primary materials. Our ambition is to analyse and describe the whole sprinkled exchanger. Two heat exchangers were tested with a similar tube pitch: heat exchanger no. 1 had a four-tube bundle and heat exchanger no. 2 had eight-tube bundle. Efforts were made to maintain similar physical characteristics. They were tested at two flow rates (ca 0.07 and 0.11 kg s−1 m−1 and progress of boiling on the bundle was observed. Initial pressure was ca 10 kPa (abs at which no liquid was boiling at any part of the exchanger; the pressure was then lowered. Other input parameters were roughly similar for both flow rates. Temperature of heating water was ca 50°C at a constant flow rate of ca 7.2 L min−1. Results of our experiments provide optimum parameters for the given conditions for both tube bundles.

  17. Subcooled pool boiling on thin wire in microgravity

    Science.gov (United States)

    Zhao, J. F.; Wan, S. X.; Liu, G.; Yan, N.; Hu, W. R.

    2009-01-01

    A new set of experimental data of subcooled pool boiling on a thin wire in microgravity aboard the 22nd Chinese recoverable satellite is reported in the present paper. The temperature-controlled heating method is used. The results of the experiments in normal gravity before and after the flight experiment are also presented, and compared with those in microgravity. The working fluid is degassed R113 at 0.1 MPa and subcooled by 26C nominally. A thin platinum wire of 60μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. It is found that the heat transfer of nucleate pool boiling is slightly enhanced in microgravity comparing with those in normal gravity. It is also found that the correlation of Lienhard and Dhir can predict the CHF with good agreement, although the range of the dimensionless radius is extended by three or more decades above the originally set limit. Three critical bubble diameters are observed in microgravity, which divide the observed vapor bubbles into four regimes with different sizes. Considering the Marangoni effect, a qualitative model is proposed to reveal the mechanism underlying the bubble departure processes, and a quantitative agreement can also be acquired.

  18. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author)

  19. High Heat Flux Burnout in Subcooled Flow Boiling

    Institute of Scientific and Technical Information of China (English)

    G.P.Celata; M.Cumo; 等

    1995-01-01

    The paper reports the results of an experimental research carried out at the Heat transfer divison of the Energy Department,C.R.Casaccia,on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors.I.e.high liquid velocity and subcooling.The experiment was carried out exploring the following parameters:channel diameter(from 2.5to 8.0 mm),heated length(10 and 15cm) ,liquid velocity (from 2 to 40m/s),exit pressure(from atmospheric to 5.0 MPa),inlet temperature(from 30 to 80℃),channel orientation (vertical and horizontal),A maximum CHF value of 60.6MW/m2 has been obtained under the following conditions:Tin-30°,p=2.5MPa,u=40m/s,D=2.5mm(smooth channel) Turbulence promoters(helically coiled wires)have been employed to further enhance the CHF attainable with subcooled flow boiling.Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  20. Critical Heat Flux during Flow Boiling Experiment with Surfactant Solutions

    International Nuclear Information System (INIS)

    Some additives enhance heat transfer, although, the magnitude and mechanism of enhancement are not consistent or clearly understood. A low concentration of surfactant can also reduce the solution's surface tension considerably, and its level of reduction depends on the amount and type of surfactant present in solution. The surfactant concentrations are usually low enough that the addition of surfactant to water causes no significant change in saturation temperature and most other physical properties, except viscosity and surface tension. Reduced surface tension influences the activation of nucleation sites, bubble growth and dynamics, affecting the boiling heat transfer coefficient. Surfactants effect on CHF (Critical Heat Flux) was determined during flow boiling at atmospheric pressure in closed loop filled with water solutions of tri-sodium phosphate (TSP, Na3PO4.12H2O). TSP was added to the containment sump water to adjust pH level during accidents in nuclear power plants. CHF was measured for four water surfactant solutions at different mass fluxes (100 - 500 kg/m2sec) and two inlet subcooling temperatures (50 .deg. C and 75 .deg. C). Wettability was determined by measuring the contact angle at different concentration cases that will substantiate any CHF increase

  1. On-line monitoring of boiling crevice chemistry evolution

    International Nuclear Information System (INIS)

    In a locally restricted geometry on the secondary side of steam generator (SG) in a pressurized water reactor (PWR), impurities in bulk water can be concentrated by boiling process to extreme pH that may then accelerate the corrosion of tubing and adjacent materials. To simulate a real SG tubesheet crevice, a high temperature/high pressure (HT/HP) crevice simulation system was constructed. Primary water was pumped at a high flow rate through a 3/4'' outer-diameter tubing and a crevice section was made on the outer diameter (OD) side of the tubing. The simulated crevice area was monitored with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in the crevice as well as free span. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen (H2) was supplied at a flow rate of about 4 L/hr. In an open tubesheet crevice with 0.15 mm radial gap and 40 mm depth, axial distributions of temperature and ECP were measured as a function of time and available superheat. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant evolution of crevice boiling regions were characterized from temperature and ECP data. Measured data for an open crevice showed a similar behavior to predictions by a thermodynamic equilibrium code. Magnetite-packed crevice had much longer time to reach a steady state than open crevice. (authors)

  2. Radiolysis effects in sub-cooled nucleate boiling

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, S.; Henshaw, J.; Tuson, A.; Sims, H.E. [AEA Technology (United Kingdom)

    2002-07-01

    A hydrogen depleted region may form in the water during bubble formation when boiling occurs in a PWR. This would arise from stripping of gases into the steam phase. The depleted water may then become oxidising due to radiolysis forming H{sub 2}O{sub 2}. The presence of radiolytic oxidising conditions is one of the mechanisms proposed to explain deposits formed in Axial Offset Anomalies. This work describes a model that has been developed to examine this behaviour. The model deals with bubble growth and material transport as well as the radiolysis chemistry. The model simulates diffusion of species through the gas/liquid boundary layer. The appropriate mass conservation equations for this problem are described and the results of their numerical solution discussed. This model indicates the importance of the assumed boundary conditions on the results of the calculations. These boundary conditions are discussed in detail and the most appropriate ones for the actual reactor situation are outlined. The conclusion of this modelling study is that at normal PWR operating conditions of 40 cc H{sub 2} (STP) kg{sup -1} it is unlikely that radiolysis in a subcooled boiling region would be important. The situation is more ambiguous at the 1 to 5 cc H{sub 2} (STP) kg{sup -1} range. (author)

  3. SWR 1000: The new boiling water reactor power plant concept

    International Nuclear Information System (INIS)

    Siemens' Power Generation Group (KWU) is currently developing - on behalf of and in close co-operation with the German nuclear utilities and with support from various European partners - the boiling water reactor SWR 1000. This advanced design concept marks a new era in the successful tradition of boiling water reactor technology in Germany and is aimed, with an electric output of 1000 MW, at assuring competitive power generating costs compared to large-capacity nuclear power plants as well as coal-fired stations, while at the same time meeting the highest of safety standards, including control of a core melt accident. This objective is met by replacing active safety systems with passive safety equipment of diverse design for accident detection and control and by simplifying systems needed for normal plant operation on the basis of past operating experience. A short construction period, flexible fuel cycle lengths of between 12 and 24 months and a high fuel discharge burnup all contribute towards meeting this goal. The design concept fulfils international nuclear regulatory requirements and will reach commercial maturity by the year 2000. (author)

  4. Nucleate boiling pressure drop in an annulus: Book 5

    International Nuclear Information System (INIS)

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D2O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90

  5. Effect of superheat and electric field on saturated film boiling

    Science.gov (United States)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  6. Experimental Research on Flash Boiling Spray of Dimethyl Ether

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang

    2014-01-01

    The high-speed digital imaging technique is applied to observe the developing process of flash boiling spray of dimethyl ether at low ambient pressure, and the effects of nozzle opening pressure and nozzle hole diameter on the spray shape, spray tip penetration and spray angle during the injection are investigated. The experimental results show that the time when the vortex ring structure of flash boiling spray forms and its developing process are determined by the combined action of the bubble growth and breakup in the spray and the air drag on the leading end of spray;with the enhancement of nozzle opening pressure, the spray tip penetration increases and the spray angle decreases. The influence of nozzle hole diameter on the spray tip penetration is relatively complicated, the spray tip penetration is longer with a smaller nozzle hole diameter at the early stage of injection, while the situation is just opposite at the later stage of injection. This paper establishes that the variation of spray angle is consistent with that of nozzle hole diameter.

  7. Drag reduction of flow boiling with polymer additives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The drag-reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×106 and 8.55×106. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW*m-2 to 47.0 kW*m-2, when the mass fraction of PAM is higher than 2.0×10-5, the drag-reducing effect is obvious. Drag-reducing effect of PAM, whose relative molecular mass is 8.55×106, is slightly better than that of 2.56×106 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.

  8. CO 2池沸腾换热关联式理论分析%Theoretical Analysis on Correlation of CO2 Pool Boiling Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    刘圣春; 刘江彬; 宁静红

    2013-01-01

    The common heat transfer correlations of pool boiling is summarized,and a correlation of CO2 heat transfer is at-tained after analyzing heat transfer performance.The deviation within 16% of CO2 fitting formula value compared to prediction values of theoretical pool boiling correlation of conventional refrigerants and experimental fitting correlation of CO2 is obtained, which shows that it is of universal.The effects on pool boiling heat transfer and the variation law are pointed out by analyzing the process of CO2 pool boiling heat transfer,and the common methods,using to enhance pool boiling heat transfer,are summarized in the paper.%总结了常见的池沸腾换热关联式。通过对池沸腾换热过程分析得出CO2在小热流密度和大热流密度范围下的一种分段的换热关联式。将新的拟合公式值和预测关联式值进行比较,得出CO2的拟合公式值与理论关联式及实验拟合关联式的预测值的偏差在±16%之内,具有一定的通用性。通过对CO2池沸腾换热过程的分析,得出池沸腾换热的影响因素及其变化规律,并总结了常用的强化池沸腾换热方法。

  9. Nucleate Pool Boiling of Pure Liquids and Binary Mixtures :Part I—Analytical Model for Boiling Heat Transfer of Pure Liquids on Smooth Tubes

    Institute of Scientific and Technical Information of China (English)

    GuoqingWang; YingkeTan; 等

    1996-01-01

    A mechanism is proposed for nucleate pool boiling heat transfer along with a general model for both pure liquids and binary mixtrues.A combined physical model of bubble growth is also proposed along with a corresponding bubble growth model for pure liquids on smooth tubes.Using the general model and the bubble growth model for pure liquids,an analyticasl model for nucleate pool boiling heat transfer of pure liquids on smooth tubes is developed.

  10. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  11. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the...

  12. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: Ventilation. 154.707 Section 154.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a)...

  13. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  14. 46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo boil-off as fuel: Fuel lines. 154.706 Section 154... Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line...

  15. The cholesterol-raising factor from boiled coffee does not pass a paper filter.

    NARCIS (Netherlands)

    Dusseldorp, van M.; Katan, M.B.; Vliet, van T.; Demacker, P.N.M.; Stalenhoef, A.F.H.

    1991-01-01

    Previous studies have indicated that consumption of boiled coffee raises total and low density lipoprotein (LDL) cholesterol, whereas drip-filtered coffee does not. We have tested the effect on serum lipids of consumed coffee that was first boiled and then filtered through commercial paper coffee fi

  16. Microwave super-heated boiling of organic liquids: Origin, effect and application

    NARCIS (Netherlands)

    Chemat, F.; Esveld, E.

    2001-01-01

    This paper reports the state of the art of the microwave super-heated boiling phenomenon. When a liquid is heated by microwaves, the temperature increases rapidly to reach a steady temperature while refluxing. It happens that this steady state temperature can be up to 40 K higher than the boiling po

  17. Theoretical modeling of CHF for near-saturated pool boiling and flow boiling from short heaters using the interfacial lift-off criterion

    Energy Technology Data Exchange (ETDEWEB)

    Mudawar, I.; Galloway, J.E.; Gersey, C.O. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-12-31

    Pool boiling and flow boiling were examined for near-saturated bulk conditions in order to determine the critical heat flux (CHF) trigger mechanism for each. Photographic studies of the wall region revealed features common to both situations. At fluxes below CHF, the vapor coalesces into a wavy layer which permits wetting only in wetting fronts, the portions of the liquid-vapor interface which contact the wall as a result of the interfacial waviness. Close examination of the interfacial features revealed the waves are generated from the lower edge of the heater in pool boiling and the heater`s upstream region in flow boiling. Wavelengths follow predictions based upon the Kelvin-Helmholtz instability criterion. Critical heat flux in both cases occurs when the pressure force exerted upon the interface due to interfacial curvature, which tends to preserve interfacial contact with the wall prior to CHF, is overcome by the momentum of vapor at the site of the first wetting front, causing the interface to lift away from the wall. It is shown this interfacial lift-off criterion facilitates accurate theoretical modeling of CHF in pool boiling and in flow boiling in both straight and curved channels.

  18. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  19. High conversion pressurized water reactor with boiling channels

    International Nuclear Information System (INIS)

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–233U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–233U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm3, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore, some means of

  20. Proceedings of the International Workshop on Boiling Water Reactor Stability

    International Nuclear Information System (INIS)

    General design criteria for nuclear power plants in every OECD country require that the reactor core and associated coolant, control, and protection systems be designed so that power oscillations which can result in conditions exceeding acceptable fuel design limits are not possible, or they can be reliably and readily detected and suppressed. In practice, this means that reactor cores should be stable with regard to perturbations from their normal operating state, so that expected variations to the operating parameters do not induce undamped power oscillations. These power oscillations can take a variety of forms, from very local power peaks which can cause no damage, or only slight damage to only a few fuel rods, to large core-wide oscillations where entire segments of the core can become neutronically uncoupled, with wide power swings. Ever since the fast boiling water reactors began operating, over 30 years ago, it has been recognized that their operation under certain conditions of power and flow could cause power and flow oscillations. Considerable research was performed at that time to better understand the principal operating parameters which contribute to the initiation of these oscillations, and guidelines were developed to avoid plant operation under the conditions which were the most unstable. Experiments in the the first Special Power Excursion Reactor Test (SPERT-1) program produced spontaneous power oscillations, and investigations in an out-of-pile loop were necessary to demonstrate that the immediate cause of the oscillations was a power-to-reactivity feedback. Further investigations indicated that the instabilities were limited to certain areas on the operating map. These regions could not be absolutely defined, but there was sufficient understanding of them that they could be generally avoided, with only minor examples of instability events. More recently, though, several reactor events, and especially one that occurred at the La Salle Nuclear

  1. Contribution to the development of a Local Predictive Approach of the boiling crisis

    International Nuclear Information System (INIS)

    EDF aims at developing a 'Local Predictive Approach' of the boiling crisis for PWR core configurations, i.e. an approach resulting in (empirical) critical heat flux predictors based on local parameters provided by NEPTUNE-CFD code (for boiling bubbly flows, only in a first stage). Within this general framework, this PhD work consisted in assess one modelling of NEPTUNE-CFD code selected to simulate boiling bubble flows, then improve it. The latter objective led us to focus on the mechanistic modelling of subcooled nucleate boiling in forced convection. After a literature review, we identified physical improvements to be accounted for, especially with respect to bubble sliding phenomenon along the heated wall. Subsequently, we developed a force balance model in order to provide needed closure laws related to bubble detachment diameter from the nucleation site and lift-off bubble diameter from the wall. A new boiling model including such developments was eventually proposed, and preliminary assessed. (author)

  2. A fractal study for nucleate pool boiling heat transfer of nanofluids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, a fractal model for nucleate pool boiling heat transfer of nanofluids is developed based on the fractal distribution of nanoparticles and nucleation sites on boiling surfaces. The model shows the dependences of the heat flux on nanoparticle size and the nanoparticle volume fraction of the suspension, the fractal dimension of the nanoparticle and nucleation site, temperature of nanofluids and properties of fluids. The fractal model predictions show that the natural convection stage continues relatively longer in the case of nanofluids. The addition of nanoparticles causes a decrease of the pool nucleate boiling heat transfer. The nucleate pool boiling heat transfer coefficient is decreased by increasing particle concentration. An excellent agreement between the proposed model predictions and experimental data is found. The validity of the fractal model for nucleate pool boiling heat transfer is thus verified.

  3. Boiling Heat Transfer Enhancement in a Vertical Annulus by Introduction of Air in Liquid Flow%内加热垂直环隙中引入惰性气体时的沸腾传热

    Institute of Scientific and Technical Information of China (English)

    王军; 苗君; 刘芸; 沈自求

    2004-01-01

    In this paper, boiling heat transfer in a vertical annulus with inner side heated with and without air introduction is experimentally studied. Results show that boiling heat transfer is significantly enhanced by the introduction of air. When air is introduced into the liquid with a temperature below boiling point, the enhancement of heat transfer is also detected. It is concluded from the study that the heat transfer enhanced by introduction of inert gas is due to the liquid vaporization at the gas-liquid interface near the wall, which removes a large amount of latent heat and lowers the interfacial temperature considerably. Thus the gas-liquid interface acts as a "heat sink"and the heat transfer is augmented significantly.

  4. Detection of oscillatory components in noise signals and its application to fast detection of sodium boiling in LMFBR's

    International Nuclear Information System (INIS)

    In general, the surveillance of technical plants is performed by observating the mean value of measured signals. In this method not all information included in these signals is used. On the other hand - for example in a reactor - disturbances are possible which generate small oscillatory components in the measured signals. In general, these oscillatory components do not influence the mean value of the signals and consequently do not activate the conventional control system; however they can be found by analysis of the signal's noise component. For the detection of these oscillatory signals the observation of the frequency spectra of the noise signals is particularly advantageous because they produce peaks at the oscillation frequencies. In this paper a new detection system for the fast detection of suddenly appearing peaks in the frequency spectra of noise signals is presented. The prototype of a compact detection unit was developed which continuously computes the power spectral density (PSD) of noise signals and simultaneously supervises the PSD for peaks in the relevant frequency range. The detection method is not affected by the frequency dependance of the PSD and is applicable to any noise signal. General criteria were developed to enable the determination of the optimal detection system and its sensitivity. The upper limits of false alarm rate and detection time were taken into account. The detection criteria are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical results were confirmed in a number of experiments; special experimental and theoretical parameter studies were done for the optimal detection of sodium boiling in LMFBR's. Computations based on these results showed that local and integral sodium boiling can be detected in a wide core range of SNR 300 by observing fluctuations of the neutron flux. In this connection it is important to point out that no additional core instrumentation is necessary because the

  5. Research on instability design method without occurring boiling transition for hyper ABWR plants of extended core power density

    International Nuclear Information System (INIS)

    The hyper ABWR (Advanced Boiling Water Reactor) project aims to develop an advanced BWR concept that is competitive in the global market with both highly economic and safety features. Expecting plant construction within the coming ten years, a research program for substantiating the basic design of a high core power density ABWR was conducted. By inheriting the conventional ABWR design, it is possible to reduce construction costs. In order to achieve the rated core power of over 1650MWe which is almost equivalent to that of the EPR (European Pressurized Water Reactor), the core power density of ABWR will be up-rated by at least 25%. Three key subjects linked to this target were recognized. They are, (1) fuel design applicable to the high power density core, (2) improvement of the evaluation method for the coupled neutronic and thermal-hydraulic instability under a wider power-flow operating range, and (3) improvement of the steam separator performance under high quality conditions. In this paper, the second subject has been focused on. In the second subject, the uncertainty approach was introduced in the instability analysis where the best-estimate plant simulator was combined with a direct prediction of boiling transition by the sub-channel code. By employing the CSAU like method, a safety evaluation system that enables to include influences of uncertainties has been developed. Based on the correlation between the time margin for reaching the boiling transition under power oscillations and the decay ratio in the power-flow operation map, an automatic power oscillation suppressing system was designed. The set-point for activating suppression mechanisms (i.e. scram or SRI) could be determined based on this correlation. It was proposed that the present conservative acceptance criterion of the deterministic decay ratio can be replaced with a more rational one of the time margin with including uncertainties. (author)

  6. Engler Distillation in Measuring the Boiling Range of Solvent Oil%恩氏蒸馏法在溶剂油馏程测定中的应用

    Institute of Scientific and Technical Information of China (English)

    刘明源; 袁鹰

    2015-01-01

    恩氏蒸馏法用于对溶剂油产品馏程的相对比较或对油品中轻重馏分相对含量作大致判断。在本实验中,五种溶剂油产品的所测馏程均在标准馏程范围内,并且随着馏出物的体积百分比增加,温度也随之增加,但达到一定温度后不再上升,此温度即为干点。%Engler distillation is used for comparing the boiling range of solvent oil or judging the relative content of fractions in the oil. In this experiment, the measured boiling range of five solvent oils were in the standard, and with the distillate percentage volume increased, the temperature also increased, but when the temperature reached a certain point and no longer raised, this temperature was the final boiling point.

  7. Boiling water reactor off-gas systems evaluation

    International Nuclear Information System (INIS)

    An evaluation of the off-gas systems for all 25 operating Boiling Water Reactors (BWR) was made to determine the adequacy of their design and operating procedures to reduce the probability of off-gas detonations. The results of the evaluations are that, of the 25 operable units, 13 meet all the acceptance criteria. The other 12 units do not have the features needed to meet the criteria, but have been judged to have, or are committed to provide, features which give reasonable assurance that the potential for external off-gas detonations is minimized. The 12 units which did not originally meet the criteria are aware of the potential hazards associated with off-gas detonations and have agreed to take action to minimize the probability of future detonations

  8. Boiling visualization on vertical fins with tunnel-pore structures

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2012-04-01

    Full Text Available The paper presents experimental studies of nucleate boiling heat transfer from a system of connected horizontal and vertical subsurface tunnels. The experiments were carried out for water at atmospheric pressure. The tunnel external covers were manufactured out of perforated copper foil (holes diameter 0.3 mm, sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. The image acquisition speed was 493 fps (at resolution 400 × 300 pixels with Photonfocus PHOT MV-D1024-160-CL camera. Visualization investigations aimed to identify nucleation sites and flow patterns and to determine the bubble departure diameter and frequency at various superheats for vertical tunnels. At low superheat vapor bubbles are generated nearly exclusively by the vertical tunnel. At medium values of superheat, pores of the horizontal tunnel activate.

  9. Channel-type nuclear reactor with a boiling coolant

    International Nuclear Information System (INIS)

    The invention is aimed at increasing the channel-type reactor safety, in particular, RBMK-type reactors, during accidents resulting in the coolant circulation discontinuation. The reactor core is assembled of vertial technological channels connected in parallel between distributing group collectors and drum-separator. Each technological channel contains a high pressure tube, a fuel assembly with fuel elements and a storage vessel located above the fuel assembly which is filled with water at saturation temperature in the normal operation regime. After dehydration of channels in the course of accident the boiling water from storage vessel is ejected into them. So the device described allows one to reduce the fuel element can temperature in the course of accidents connected with the coolant circulation discontinuation and so to increase the plant safety level

  10. Flow boiling of water on nanocoated surfaces in a microchannel

    CERN Document Server

    Phan, Hai Trieu; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2010-01-01

    Experiments were performed to study the effects of surface wettability on flow boiling of water at atmospheric pressure. The test channel is a single rectangular channel 0.5 mm high, 5 mm wide and 180 mm long. The mass flux was set at 100 kg/m2 s and the base heat flux varied from 30 to 80 kW/m2. Water enters the test channel under subcooled conditions. The samples are silicone oxide (SiOx), titanium (Ti), diamond-like carbon (DLC) and carbon-doped silicon oxide (SiOC) surfaces with static contact angles of 26{\\deg}, 49{\\deg}, 63{\\deg} and 103{\\deg}, respectively. The results show significant impacts of surface wettability on heat transfer coefficient.

  11. Interface oscillation of subcooled flow boiling in locally heated microchannels

    Science.gov (United States)

    Liu, J. T.; Peng, X. F.

    2009-02-01

    An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

  12. Pool boiling of nanoparticle-modified surface with interlaced wettability

    KAUST Repository

    Hsu, Chin-Chi

    2012-01-01

    This study investigated the pool boiling heat transfer under heating surfaces with various interlaced wettability. Nano-silica particles were used as the coating element to vary the interlaced wettability of the surface. The experimental results revealed that when the wettability of a surface is uniform, the critical heat flux increases with the more wettable surface; however, when the wettability of a surface is modified interlacedly, regardless of whether the modified region becomes more hydrophilic or hydrophobic, the critical heat flux is consistently higher than that of the isotropic surface. In addition, this study observed that critical heat flux was higher when the contact angle difference between the plain surface and the modified region was smaller. © 2012 Hsu et al.

  13. Improvements in boiling water reactor designs and safety

    International Nuclear Information System (INIS)

    The advanced boiling water reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990's. Major objectives of the ABWR program are discussed in this paper. They include: design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuverability; and reduced occupational exposure and radwaste. Key features of the ABWR are internal recirculation pumps; fine-motion, electro-hydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling network; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced turbine/generator with 52 last stage buckets; and advanced radwaste technology

  14. Flow Structures Around Micro-bubbles During Subcooled Nucleate Boiling

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; PENG Xiao-Feng; David M. Christopher; WANG Bu-Xuan

    2005-01-01

    The flow structures were investigated around micro bubbles on extremely thin wires during subcooled nucleate boiling. Jet flows emanating from the bubbles were observed visually with the fluid field measurement using high-speed photography and a PIV system. The jet flows induced a strong pumping effect around a bubble. The multi-jet structure was further observed experimentally, indicating the evolution of flow structure around micro bubbles. Numerical simulations explore that the jet flows were induced by a strong Marangoni effect due to high temperature gradients near the wire. The bubble interface with multi-jet structure has abnormal temperature distribution such that the coolest parts were observed at two sides of a bubble extending into the subcooled bulk liquid rather than at the top. Evaporation and condensation on the bubble interface play important roles not only in controlling the intensity of the jet flow, but also in bringing out the multi-jet structure.

  15. Feasibility study on the thorium fueled boiling water breeder reactor

    International Nuclear Information System (INIS)

    The feasibility of (Th,U)O 2 fueled, boiling water breeder reactor based on conventional BWR technology has been studied. In order to determine the potential use of water cooled thorium reactor as a competitive breeder, this study evaluated criticality, breeding and void reactivity coefficient in response to changes made in MFR and fissile enrichments. The result of the study shows that while using light water as moderator, low moderator to fuel volume ratio (MFR=0.5), it was possible to breed fissile fuel in negative void reactivity condition. However the burnup value was lower than the value of the current LWR. On the other hand, heavy water cooled reactor shows relatively wider feasible breeding region, which lead into possibility of designing a core having better neutronic and economic performance than light water with negative void reactivity coefficient. (authors)

  16. Analytical simulation of boiling water reactor pressure suppression pool swell

    International Nuclear Information System (INIS)

    In a loss-of-coolant accident, the pressure suppression pool of a boiling water reactor swells as a steam/air mixture is expelled from the drywell into the pool and large gas bubbles are formed beneath the surface. Many tests have been performed to quantify pool swell loads, but analytical methods have been limited in their ability to provide accurate loading estimates. With advancement of numerical methods, it is now feasible to numerically simulate the pool swell process. A finite difference solution algorithm is used to solve the transient imcompressible equations for the liquid flow field. Boundary conditions at the fluid-gas interface are determined using a simplified gas flow model. The program is used to simulate several pool swell tests: comparison of the simulation with test data shows good agreement

  17. Analytical simulation of boiling water reactor pressure suppression pool swell

    Energy Technology Data Exchange (ETDEWEB)

    Widener, S.K.

    1986-01-01

    In a loss-of-coolant accident, the pressure suppression pool of a boiling water reactor swells as a steam/air mixture is expelled from the drywell into the pool and large gas bubbles are formed beneath the surface. Many tests have been performed to quantify pool swell loads, but analytical methods have been limited in their ability to provide accurate loading estimates. With advancement of numerical methods, it is now feasible to numerically simulate the pool swell process. A finite difference solution algorithm is used to solve the transient imcompressible equations for the liquid flow field. Boundary conditions at the fluid-gas interface are determined using a simplified gas flow model. The program is used to simulate several pool swell tests: comparison of the simulation with test data shows good agreement.

  18. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  19. Operational margin monitoring system for boiling water reactor power plants

    International Nuclear Information System (INIS)

    This paper reports on an on-line operational margin monitoring system which has been developed for boiling water reactor power plants to improve safety, reliability, and quality of reactor operation. The system consists of a steady-state core status prediction module, a transient analysis module, a stability analysis module, and an evaluation and guidance module. This system quantitatively evaluates the thermal margin during abnormal transients as well as the stability margin, which cannot be evaluated by direct monitoring of the plant parameters, either for the current operational state or for a predicted operating state that may be brought about by the intended operation. This system also gives operator guidance as to appropriate or alternate operations when the operating state has or will become marginless

  20. Resolution of US regulatory issues involving boiling water reactor stability

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission (NRC) and the Boiling Water Reactor Owners Group (BWROG) have been reexamining BWR instability characteristics and consequences since the March 1988 instability event at LaSalle Unit 2. The NRC and BWROG concluded that existing reactor protection systems do not prevent violation of the critical power ratio (CPR) safety limits caused by large asymmetric oscillations. The studies are also examining the need to modify the automatic and operator actions previously developed for response to an anticipated transient without scram (ATWS) event because of oscillation effects not fully considered in previous studies. This paper presents the current status of these studies and an assessment of actions needed to resolve the issue. (author)

  1. Nucleate boiling pressure drop in an annulus: Book 3

    International Nuclear Information System (INIS)

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D2O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ''power tilt'' or asymmetric heating of the inner and outer annulus walls. The test facility uses H2O rather than D2O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements

  2. Nucleate boiling pressure drop in an annulus: Book 6

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of a summary of temperature measurements to include recorded minima, maxima, averages and standard deviations.

  3. Nucleate boiling pressure drop in an annulus: Book 7

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists solely of tables of temperature measurements; minima, maxima, averages and standard deviations being measured.

  4. Nucleate boiling pressure drop in an annulus: Book 4

    Energy Technology Data Exchange (ETDEWEB)

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  5. Nucleate boiling pressure drop in an annulus: Book 8

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of tables of temperature measurements.

  6. Nucleate boiling pressure drop in an annulus: Book 3

    Energy Technology Data Exchange (ETDEWEB)

    Block, J.A.; Crowley, C.; Dolan, F.X.; Sam, R.G.; Stoedefalke, B.H.

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ``power tilt`` or asymmetric heating of the inner and outer annulus walls. The test facility uses H{sub 2}O rather than D{sub 2}O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements.

  7. Boiling water reactor stability analysis in the time domain

    International Nuclear Information System (INIS)

    Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation

  8. Nucleate boiling pressure drop in an annulus: Book 2

    International Nuclear Information System (INIS)

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D2O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ''power tilt'' or asymmetric heating of the inner and outer annulus walls. The test facility uses H2O rather than D2O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux

  9. Nucleate boiling pressure drop in an annulus: Book 4

    International Nuclear Information System (INIS)

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D2O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The annulus has a full-scale geometry, and in fat uses SRL dummy hardware for the inner annulus wall in the ribbed geometry. The materials aluminum. The annulus is uniformly heated in the axial direction, but the circumferential heat flux can be varied to provide ''power tilt'' or asymmetric heating of the inner and outer annulus walls. The test facility uses H2O rather than D2O, but it includes the effects of dissolved helium gas present in the reactor. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. This document consists of data plots and summary files of temperature measurements

  10. The stability analysis using two fluids (SAT/trademark/) code for boiling flow systems: Volume 3: User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Dykhuizen, R.C.; Su, M.G.; Jain, P.

    1988-12-01

    This report presents analyses of dynamic instability and frequency response characteristics of boiling flow systems based on an unequal velocity, unequal temperature two-fluid model of such flow. The dynamic instability analyses in the time domain are incorporated into three options of a computer code SAT, viz., DI01 (steady state, or equilibrium point analysis), DI02 (linear stability analysis in time domain), and DI03 (nonlinear analysis in time domain). The frequency response analysis is incorporated into a fourth option FREQ. Results of dynamic instability experiments carried out in a Refrigerant-113 boiling flow rig are also reported as are comparison of these with linear stability analysis predictions. A description of the input file structure of the four codes is present in this volume of the report. Outputs of these codes are also described in detail. Sample input and output files are included in the appendices of this volume.

  11. Development of mathematical modeling technology for flow boiling of liquid nitrogen%液氮流动沸腾数值模拟研究进展

    Institute of Scientific and Technical Information of China (English)

    邵雪锋; 李祥东; 汪荣顺

    2011-01-01

    对已有的针对低温流体的数值模拟进行了总结,比较了可用于液氮流动沸腾的数学模型,指出数值模拟液氮流动沸腾中尚待解决的问题,并对垂直环行管道中的液氮流动沸腾进行了数值模拟.%Some known mathematical modeling technologies for cryogenic fluid were summarized. Mathematical models that can be used to simulate flow boiling of liquid nitrogen were compared, some problems to be resolved were pointed out. Simulation for flow boiling of nitrogen in a vertical annular channel was performed.

  12. 路基中翻浆现象的发生及处理措施%On frost boiling in roadbeds and its treatment measures

    Institute of Scientific and Technical Information of China (English)

    陈晓强

    2011-01-01

    结合近几年工程施工实践,简要分析了影响路基发生翻浆的因素,在此基础上提出了防治和处理翻浆的相关措施,以避免翻浆这一普遍现象的发生,保证道路工程质量。%Combining with the construction practice in recent years,the paper analyzes the factors which influence the frost boiling,and points out the prevention and treatment measures,so as to avoid the frost boiling,which is considered to be common in roadbeds,and to ensure the quality of road projects.

  13. Turning Point

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Moves from the United States and North Korea give new impetus to nuclear disablement and U.S.-North Korea ties The tense situation surrounding denu-clearization on the Korean Peninsula has reached a turning point. On

  14. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff...)-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors.''...

  15. Gold Deposition by Boiling or Cooling Without Boiling: Genesis of the Sangchon Gold Deposits, Hadong Area, South Korea

    Institute of Scientific and Technical Information of China (English)

    Maeng - Eon PARK; Kyu - Youl SUNG; Seong - Taek YUN

    2001-01-01

    In order to understand the mechanism(s) of gold precipitation in the anorthosite- hosted Sangchon gold deposits in the Hadong area, Korea, chemical speciation and reaction path calculations were accomplished by geochemical modeling.The modeling consisted of three- step procedures: reaction with anorthosite, then the simple cooling of the reacted fluid,and finally the boiling of metalliferous fluid. The principal vein minerals of the Sangchon deposits consist of quartz, sericite,kaolinite, pyrite, galena, chalcopyrite, sphalerite and acanthite. The sulfide mineralization is typically zoned from pyrite (preferentially at vein margins) to galena and sphalerite (toward vein center). Electrum is intimately associated with pyrite + chalcopyrite and sphalerite. By comparing the results of modeling with the observed mineral assemblages and paragenesis,the most appropriate evolution path of ore fluids was suggested as follow: reaction of a single fluid with anorthosite at 300℃,then the isobaric cooling of the fluid at temperatures from 2500° to 100℃3 , and then the boiling and cooling of the fluid due to the decrease of pressure and temperature. Calculations also show that all of the observed alteration minerals formed due to fluid - anorthosite interaction at early period, whereas most of sulfides and electrum were precipitated mainly due to cooling.The abundance of gold in veins depends critically on the ratio of total base metals plus iron to sulfide in the aqueous phase,because gold is transported as Au(HS)2- whose solubility is very sensitive to the sulfide activity. Our results of geochemical modeling generally fit to the observed mineral assemblages and mineral composition, indicating the usefulness of numerical simulation for elucidating the genesis of gold deposits.

  16. Exploring the role of intertextuality in concept construction: Urban second graders make sense of evaporation, boiling, and condensation

    Science.gov (United States)

    Varelas, Maria; Pappas, Christine C.; Rife, Amy

    2006-09-01

    The study explores urban second graders' thinking and talking about the concepts of evaporation, boiling, and condensation that emerged in the context of intertextuality within an integrated science-literacy unit on the topic of States of Matter, which emphasized the water cycle. In that unit, children and teacher engaged in a variety of activities (reading information books, doing hands-on explorations, writing, drawing, discussing) in a dialogically oriented way where teacher and children shared the power and the burden of making meaning. The three qualitative interrelated analyses showed children who initiated or continued productive links to texts, broadly defined, that gave them spaces to grapple with complex ideas and ways of expressing them. Although some children showed preference for a certain way of thinking about evaporation, boiling, and condensation, the data do not point toward a definite conclusion relative to whether children subscribe or not to a particular conceptual position. Children had multiple, complex, and often speculative, tentative, and emergent ways of accessing and interpreting these phenomena, and their conceptions were contextually based - different contexts offered opportunities for students to theorize about different aspects of the phenomena (along with some similar aspects). Children also theorized about aspects of the same phenomena in different ways.

  17. Experimental investigation on partial pool boiling heat transfer in pure liquids

    Directory of Open Access Journals (Sweden)

    Fazel Seyed Ali Alavi

    2016-01-01

    Full Text Available Saturated partial pool boiling heat transfer has been experimentally investigated on a horizontal rod heater. The boiling liquids are including water and ethanol. The heating section is made by various materials including SS316, copper, aluminum and brass. Experiments have been performed at several degrees of surface roughness ranging between 30 and 360 micrometer average vertical deviation. The measurements are including boiling heat transfer coefficient, bubble departing diameter and frequency and also nucleation site density. The data have been compared to major existing correlations. It is shown that experimental data do not match with major correlations at the entire range of experiments with acceptable accuracy. In this article, the boiling heat transfer area has been divided in two complementary areas, the induced forced convection area and the boiling affected area. Based on two dimensionless groups, including Eötvös and Roshko numbers, a semi-empirical model have been proposed to predict the boiling heat transfer coefficient. It is shown that the proposed model provides improved performance in prediction of the boiling heat transfer coefficient in comparison with to existing correlations.

  18. Experiments on HFE-7100 pool boiling at atmospheric pressure in horizontal narrow spaces

    Energy Technology Data Exchange (ETDEWEB)

    Guglielmini, G.; Misale, M.; Priarone, A. [Universita degli Studi di Genova (Italy). DIPTEM - Sezione di Termoenergetica e Condizionamento Ambientale

    2009-07-01

    Experiments were performed to examine the pool boiling heat transfer and critical heat flux on a smooth copper circular surface, confined by a face-to-face parallel unheated surface, by changing the gap between the surfaces and the unheated surface diameter. Pool boiling data at atmospheric pressure were obtained for saturated HFE-7100. The gap values investigated, between the boiling surface and the adiabatic one, were s 0.5, 1.0, 2.0, 3.5 mm. To confine the boiling surface, two different Plexiglas plates were used: the former characterised by a diameter D = 60 mm, large as the overall test section support, the latter characterised by a diameter D = 30 mm, large to cover only copper boiling surface (d = 30 mm). For each configuration, boiling curves were obtained up to the thermal crisis. For both different types of confinement, it was observed that the boiling curves match at low wall superheat, except for s = 0.5 mm, 1 mm. However, at high wall superheat, a drastic reduction in heat transfer as well as CHF appears decreasing the channel width s; for all gap sizes, this reduction is less pronounced for the smaller confinement wall (D = 30 mm). Instead, at low wall superheat for gap of 0.5 and 1.0 mm, the heat transfer coefficient is higher for diameter disc of 60 mm. CHF data were also compared with a literature correlation (Misale and al., 2009). (author)

  19. Experimental Study on Convective Boiling Heat Transfer in Vertical Narrow Gap Annular Tube

    Institute of Scientific and Technical Information of China (English)

    Li Bin; He Anding; Wang Yueshe; Zhou Fangde

    2001-01-01

    Experiments are conducted to investigate the characteristics of single-phase forced-flow convection and boiling heat transfer of R113 flowing through annular tube with gap of 1, 1.5 and 2.5 mm, and also the visualization test are carried out to get two-phase flow regime. The data show that the Nusselt numbers for the narrow-gap are higher than those predicted by traditional large channel correlation and boiling heat transfer is enhanced. Based on the data obtained in this investigation, correlations for single-phase, forced convection and flow boiling in annular tube of different gap size has been developed.

  20. Bubble departure in pool and flow boiling systems: A review and latest developments

    International Nuclear Information System (INIS)

    Many of the vapor bubble departure diameter correlations for pool and flow boiling which have been proposed in the open literature are reviewed. In addition, the recent unified bubble detachment model for pool and flow boiling proposed by Zeng et al. (1992a, 1992b) is discussed. It is demonstrated that the unified model, which requires the vapor bubble growth rate as an input, is the only one which satisfactorily predicts vapor bubble departure diameters over the entire range of boiling conditions for which bubble detachment data exist

  1. The influence of three-dimensional capillary-porous coatings on heat transfer at liquid boiling

    Science.gov (United States)

    Surtaev, A. S.; Pavlenko, A. N.; Kalita, V. I.; Kuznetsov, D. V.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu.

    2016-04-01

    The process of heat transfer at pool boiling of liquid (Freon R21) on tubes with three-dimensional plasma-deposited capillary-porous coatings of various thicknesses has been experimentally studied. Comparative analysis of experimental data showed that the heat transfer coefficient for a heater tube with a 500-μm-thick porous coating is more than twice as large as that in liquid boiling on an otherwise similar uncoated tube. At the same time, no intensification of heat exchange in the regime of bubble boiling is observed on a tube with a 100-μm-thick porous coating.

  2. Boiled coffee does not increase serum cholesterol in gerbils and hamsters.

    OpenAIRE

    Mensink, R.P.; Zock, P. L.; Katan, M B; A. C. Beynen

    1992-01-01

    In contrast to drip filter coffee, boiled coffee increases the serum cholesterol level in man. To identify the substance(s) responsible for this effect, it is necessary to find an animal model sensitive to boiled coffee. In this study, three groups of 20 male gerbils and three groups of six male hamsters were fed a control diet or a control diet supplemented with either freeze-dried boiled coffee or freeze-dried filtered coffee. At the end of the 5-week feeding period serum cholesterol levels...

  3. Fourier and Wavelet Transform Analysis of Pressure Signals during Explosive Boiling

    Institute of Scientific and Technical Information of China (English)

    YIN Tie-Nan; HUAI Xiu-Lan

    2008-01-01

    @@ The transient pressure in a liquid-pool during explosive boiling of acetone is measured by a micro-pressure-measuring system.The Fast Fourier transform and continuous wavelet transform methods are applied to investigate the frequency characteristics.The results show that the dominant frequency of the explosive boiling is 0-2MHz,and the bubble cluster formed by numerous tiny bubbles departs twice.Analysis and discussions are also conducted to explain the bubble evolution during the explosive boiling.

  4. Pool boiling on the superhydrophilic surface with TiO2 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Surface with TiO2 nanotube arrays(TNTAs)is superhydrophilic and of great specific area.This paper investigates the pool boiling characteristics at the thermal interface with TNTAs.The results show that the TNTAs interface can enhance the pool boiling heat transfer compared to the pure Ti metal plate.The bubbles formed at the initial nucleation state are very small and released in higher frequency.The pool boiling heat transfer enhancement at the TNTAs interface may be attributed to the high density of nucleate site,high intrinsic heating area of nanotubes layer,superhydrophilicity and the vertically oriented nanotube structure.

  5. Comprehensive Evaluation and Prediction of Enhancement of Boiling Heat Transfer with Additives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A model of evaluation and prediction of enhancement of boiling heat transfer with additives has been propoeed according to fuzzy fundamentals. Correlative appraisement of boiling heat transfer augmentation was done with the model based on 39 additives which were tested by the authors and other researchers. The results show that the evaluation of 35 additives is consistent with experiments, which means that the accuracy of the model is 89.7 percent. In addition, the prediction of the ability of boiling heat transfer enhancement with sodium oleate,polyethylene glycol and Tween-40 is also in good agreement with correspondent experiments.

  6. Pervaporation investigation of recovery of volatile compounds from brown crab boiling juice.

    Science.gov (United States)

    Martínez, Rodrigo; Sanz, M Teresa; Beltrán, Sagrario

    2014-10-01

    Pervaporation has been used to obtain aroma concentrates from brown crab boiling juice. The boiling juice and the obtained permeate have been analysed by Headspace Solid Phase Dynamic Extraction Gas Chromatography/Mass Spectrometry. The effect of feed temperature on the pervaporation performance of the membrane has been analysed. The permeate aroma profile, at 25 ℃ and 40 ℃, was different from that of the boiling juice. Enrichment factors for some of the volatile compounds were much lower than those obtained in model aqueous dilute solutions. Pervaporation performance can be significantly improved by modifying the permeant circuit to include two condensation stages. PMID:23897977

  7. Pressure measurements in boiling particle beds with water at 1 bar

    International Nuclear Information System (INIS)

    Pressures have been measured at the top and bottom of uniformly heated beds of uniform spherical particles with water boiling at atmospheric pressure. Particle sizes used vary from 0.22 to 5 mm diameter and bed heights from 50 to 150 mm. The pressures have been recorded at power levels up to dry-out. The results show how much liquid remains in a boiling bed at different power levels and how the liquid/vapour phase pressure losses vary. The results give a valuable insight into the working of a boiling bed. (author)

  8. Boiling Heat Transfer in an Acoustic Cavitation Field%声空化场下的沸腾传热

    Institute of Scientific and Technical Information of China (English)

    周定伟; 刘登瀛

    2002-01-01

    An experimental study has been carried out to investigate systematically the effects of acoustic cavitation parameters and fluid subcooling on boiling of acetone around a horizontal circular tube. The experimentalresults show that acoustic cavitation enhanced remarkably the boiling heat transfer and decreased the incipientboiling superheat and that cavitation bubbles effect on boiling heat transfer reduced with cavitation distance. Forboiling curves in a form of h-q″, elevated cavitation distance shift nucleate boiling curves to the right of the corresponding ordinary pool boiling curve. The associated mechanism of heat transfer enhancement is analyzed withthe consideration of cavitation bubble influence on vapor embryo.

  9. Measurement on the effect of sound wave in upper plenum of boiling water reactor

    International Nuclear Information System (INIS)

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Especially, when the phases of acoustic sources were different, various acoustic wave effects were checked. (author)

  10. Characterization of laser-tissue interaction processes by low-boiling emitted substances

    Science.gov (United States)

    Weigmann, Hans-Juergen; Lademann, Juergen; Serfling, Ulrike; Lehnert, W.; Sterry, Wolfram; Meffert, H.

    1996-01-01

    Main point in this study was the investigation of the gaseous and low-boiling substances produced in the laser plume during cw CO2 laser and XeCl laser irradiation of tissue by gas chromatography (GC)/mass spectrometry. The characteristic emitted amounts of chemicals were determined quantitatively using porcine muscular tissue. The produced components were used to determine the character of the chemical reaction conditions inside the interaction zone. It was found that the temperature, and the water content of the tissue are the main parameter determining kind and amount of the emitted substances. The relative intensity of the GC peak of benzene corresponds to a high temperature inside the interaction area while a relative strong methylbutanal peak is connected with a lower temperature which favors Maillard type reaction products. The water content of the tissue determines the extent of oxidation processes during laser tissue interaction. For that reason the moisture in the tissue is the most important parameter to reduce the emission of harmful chemicals in the laser plume. The same methods of investigation are applicable to characterize the interaction of a controlled and an uncontrolled rf electrosurgery device with tissue. The results obtained with model tissue are in agreement with the situation characteristic in laser surgery.

  11. Detection of the Departure from Nucleate Boiling in Nuclear Fuel Rod Simulators

    Directory of Open Access Journals (Sweden)

    Amir Zacarias Mesquita

    2013-01-01

    Full Text Available In the thermal hydraulic experiments to determin parameters of heat transfer where fuel rod simulators are heated by electric current, the preservation of the simulators is essential when the heat flux goes to the critical point. One of the most important limits in the design of cooling water reactors is the condition in which the heat transfer coefficient by boiling in the core deteriorates itself. The heat flux just before deterioration is denominated critical heat flux (CHF. At this time, the small increase in heat flux or in the refrigerant inlet temperature at the core, or the small decrease in the inlet flux of cooling, results in changes in the heat transfer mechanism. This causes increases in the surface temperature of the fuel elements causing failures at the fuel (burnout. This paper describes the experiments conducted to detect critical heat flux in nuclear fuel element simulators carried out in the thermal-hydraulic laboratory of Nuclear Technology Development Centre (CDTN. It is concluded that the use of displacement transducer is the most efficient technique for detecting critical heat flux in nuclear simulators heated by electric current in open pool.

  12. Analysis of Void Fraction Distribution and Departure from Nucleate Boiling in Single Subchannel and Bundle Geometries Using Subchannel, System, and Computational Fluid Dynamics Codes

    Directory of Open Access Journals (Sweden)

    Taewan Kim

    2012-01-01

    Full Text Available In order to assess the accuracy and validity of subchannel, system, and computational fluid dynamics codes, the Paul Scherrer Institut has participated in the OECD/NRC PSBT benchmark with the thermal-hydraulic system code TRACE5.0 developed by US NRC, the subchannel code FLICA4 developed by CEA, and the computational fluid dynamic code STAR-CD developed by CD-adapco. The PSBT benchmark consists of a series of void distribution exercises and departure from nucleate boiling exercises. The results reveal that the prediction by the subchannel code FLICA4 agrees with the experimental data reasonably well in both steady-state and transient conditions. The analyses of single-subchannel experiments by means of the computational fluid dynamic code STAR-CD with the CD-adapco boiling model indicate that the prediction of the void fraction has no significant discrepancy from the experiments. The analyses with TRACE point out the necessity to perform additional assessment of the subcooled boiling model and bulk condensation model of TRACE.

  13. Construction of the advanced boiling water reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Nobuo; Noda, Hiroshi [Tokyo Electric Power Co. (Japan). Nuclear Power Plant Construction Dept.

    1996-07-01

    The Advanced Boiling Reactor (ABWR) has been developed with international cooperation between Japan and the US as the generation of plants for the 1990s and beyond. It incorporates the best BWR technologies from the world in challengeable pursuit of improved safety and reliability, reduced construction and operating cost, reduced radiation exposure and radioactive waste. Tokyo Electric Power Company (MPCO) decided to apply the first ABWRs to unit No. 6 and 7 of Kashiwazaki-Kariwa nuclear power station (K-6 and 7). These units are scheduled to commence commercial operation in December 1996 and July 1997 respectively. Particular attention is given in this discussion to the construction period from rock inspection for the reactor building to commercial operation, which is to be achieved in only 52 months through innovative and challenging construction methods. To date, construction work is advancing ahead of the original schedule. This paper describes not only how to shorten the construction period by adoption of a variety of new technologies, such as all-weather construction method and large block module construction method, but also how to check and test the state of the art technologies during manufacturing and installation of new equipment for K-6 and 7.

  14. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  15. Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling

    Science.gov (United States)

    Faghri, Amir

    2005-01-01

    In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which

  16. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  17. BWR [boiling water reactor] shutdown margin model in SIMULATE-3

    International Nuclear Information System (INIS)

    Boiling water reactor (BWR) technical specifications require that the reactor be kept subcritical (by some prescribed margin) when at room temperature rodded conditions with any one control rod fully withdrawn. The design of an acceptable core loading pattern may require hundreds or thousands of neutronic calculations in order to predict the shutdown margin for each control rod. Direct, full-core, three-dimensional calculations with the SIMULATE-3 two-group advanced nodal code require 3 to 6 CPU min (on a SUN-4 workstation) for each statepoint/control rod that is computed. Such computing and manpower requirements may be burdensome, particularly during the early core design process. These requirements have been significantly reduced by the development of a fast, accurate shutdown margin model in SIMULATE-3. The SIMULATE-3 shutdown margin model achieves a high degree of accuracy and speed without using axial collapsing approximations inherent in many models. The mean difference between SIMULATE-3 one-group and two-group calculations is approximately - 12 pcm with a standard deviation of 35 pcm. The SIMULATE-3 shutdown margin model requires a factor of ∼15 less CPU time than is required for stacked independent two-group SIMULATE-3 calculations

  18. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  19. Neutronic challenges of advanced boiling water reactor designs

    International Nuclear Information System (INIS)

    The advancement of Boiling Water Reactor technology has been under investigation at the Center for Advance Nuclear Energy Systems at MIT. The advanced concepts under study provide economic incentives through enabling further power uprates (i.e. increasing vessel power density) or better fuel cycle uranium utilization. The challenges in modeling of three advanced concepts with focus on neutronics are presented. First, the Helical Cruciform Fuel rod has been used in some Russian reactors, and studied at MIT for uprating the power in LWRs through increased heat transfer area per unit core volume. The HCF design requires high fidelity 3D tools to assess its reactor physics behavior as well as thermal and fuel performance. Second, an advanced core design, the BWR-HD, was found to promise 65% higher power density over existing BWRs, while using current licensing tools and existing technology. Its larger assembly size requires stronger coupling between neutronics and thermal hydraulics compared to the current practice. Third is the reduced moderation BWRs, which had been proposed in Japan to enable breeding and burning of fuel as an alternative to sodium fast reactors. Such technology suffers from stronger sensitivity of its neutronics to the void fraction than the traditional BWRs, thus requiring exact modeling of the core conditions such as bypass voiding, to correctly characterize its performance. (author)

  20. Model for boiling and dryout in particle beds

    International Nuclear Information System (INIS)

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained

  1. An Experimental Study of Boiling in Reduced and Zero Gravity Fields

    Science.gov (United States)

    Usiskin, C. M.; Siegel, R.

    1961-01-01

    A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.

  2. Experimental Investigation on Pool Boiling Heat Transfer With Ammonium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Mr.P. Atcha Rao

    2015-11-01

    Full Text Available We have so many applications related to Pool Boiling. The Pool Boiling is mostly useful in arid areas to produce drinking water from impure water like sea water by distillation process. It is very difficult to distill the only water which having high surface tension. The surface tension is important factor to affect heat transfer enhancement in pool boiling. By reducing the surface tension we can increase the heat transfer rate in pool boiling. From so many years we are using surfactants domestically. It is proven previously by experiments that the addition of little amount of surfactant reduces the surface tension and increase the rate of heat transfer. There are different groups of surfactants. From those I‟m conducting experimentation with anionic surfactant Ammonium Dodecyl Sulfate (ADS, which is most human friendly and three times best soluble than Sodium Dodecyl Sulfate, to test the heat transfer enhancement.

  3. Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.)

    DEFF Research Database (Denmark)

    Bach, Vibe; Kidmose, Ulla; Thybo, Anette;

    2013-01-01

    BACKGROUND: The aim of the present study was to investigate the sensory attributes, dry matter and sugar content of five varieties of Jerusalem artichoke tubers and their relation to the appropriateness of the tubers for raw and boiled preparation. RESULTS: Sensory evaluation of raw and boiled...... Jerusalem artichoke tubers was performed by a trained sensory panel and a semi-trained consumer panel of 49 participants, who also evaluated the appropriateness of the tubers for raw and boiled preparation. The appropriateness of raw Jerusalem artichoke tubers was related to Jerusalem artichoke flavour......, green nut flavour, sweetness and colour intensity, whereas the appropriateness of boiled tubers was related to celeriac aroma, sweet aroma, sweetness and colour intensity. In both preparations the variety Dwarf stood out from the others by being the least appropriate tuber. CONCLUSION: A few sensory...

  4. 78 FR 46378 - La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact...

    Science.gov (United States)

    2013-07-31

    ... COMMISSION La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact Regarding an Exemption Request AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and... Waste Management and Environmental Protection, Office of Federal and State Materials and...

  5. CFD Simulations and Experimental Verification on Nucleate Pool Boiling of Liquid Nitrogen

    Science.gov (United States)

    Xiaobin, Zhang; Wei, Xiong; Jianye, Chen; Yuchen, Wang; Tang, K.

    To explore the mechanism of nucleate pool boiling of cryogenic fluids, an experimental apparatus was built to conduct a visualization study and verify the CFD boiling model. Apart from the general measurements of the super-heat and heat flux, the influences of super-heat on bubble departure diameters were specially analyzed. Based on the observations, the whole nucleate boiling process from bubble formation to departure from the heated wall can be divided into three stages: low heat flux stage; transitional stage; fully developed nucleate boiling (FDNB) stage. CFD simulations with several existing correlations and the attained values from the experiments for the bubble diameter were finally conducted, and the results fitted well with the present experimental data.

  6. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m2, the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  7. X ray observations of boiling sodium in a reflux-pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Stoker, G. C.; Thompson, K. R.

    1992-01-01

    X ray observations of boiling sodium in a 75-kW sub t reflux-pool-boiler solar receiver operating at up to 800 C were carried out. Both cinematographic and quantitative observations were made. From the cinematography, the pool free surface was observed before and during the start of boiling. During boiling, the free surface rose out of the field of view, and chaotic motion was observed. From the quantitative observations, void fraction in pencil-like probe volumes was inferred, using a linear array of detectors. Useful data were obtained from three of the eight probe volumes. Information from the other volumes was masked by scattered radiation. During boiling, time-averaged void fractions ranged from 0.6 to 0.8. During hot restarts, void fractions near unity occurred and persisted for up to 1/2 second.

  8. Observation of high heat flux boiling structures in a horizontal pool by a total reflection technique

    International Nuclear Information System (INIS)

    The experiments were carried out for a horizontal pool boiling of saturated water using a transparent ITO heating surface. Details of boiling structure near the heated surface have been clearly observed by applying the total reflection and diagonal view techniques in a synchronized manner. Mechanisms for the bubble coalescence and dry area expansion processes were clearly identified. The base of the large massive bubble was mostly dry with some trapped liquid. The appearance of this large dry area at high heat flux close to CHF was basically resulted from the multiple steps of bubble coalescences which occur while the bubbles are growing, attached to the boiling surface not before they depart from the boiling surface. The thin liquid layer with distributed vapor stems was not observed under the large massive bubble. (author)

  9. Transient CHF enhancement of saturated pool boiling of water using a honeycomb porous media

    International Nuclear Information System (INIS)

    Several studies have been performed to make clear the transient boiling heat transfer during the exponential heat generation which is occurred in reactivity accident of a nuclear reactor. These researches have been focused on the mechanism of the phenomena mainly, not on the enhancement of the transient boiling heat transfer. In a previous study, we proposed a method of CHF enhancement under steady-state conditions using honeycomb porous plate. The CHF was shown experimentally to be enhanced to more than twice that of a plain surface using honeycomb porous plate. The enhancement is considered to result from the capillary supply of liquid onto the heated surface and the release of generated vapor through the channels. In the present paper, enhancement of the transient critical heat flux in pool boiling by the attachment of a honeycomb-structured porous plate on a heated wire is investigated experimentally using water under saturated boiling conditions. (author)

  10. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2015-10-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  11. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  12. Flow boiling of R245fa in vertical small metallic tubes

    OpenAIRE

    Pike-Wilson, Emily Alexandra

    2014-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London The research presented is part of a larger study, dedicated to investigating flow boiling in small to microchannels. The test facility, originally designed by Huo (2005) and since used by Chen (2006) and Mahmoud (2011), has been used to investigate flow boiling of R134a across a range of channel diameters and both seamless cold drawn and welded channels. These previous studies concluded...

  13. Combined effect of electric field and surface modification on pool boiling of R-123

    OpenAIRE

    Ahmad, Syed Waqas

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. The effect of surface modification and high intensity electric field (uniform and non – uniform) acting separately or in combination on pool boiling of R-123 is presented in this thesis. The effect of surface modification was investigated on saturated pool boiling of R-123 for five horizontal copper surfaces modified by different treatments, namely: an emery polished surface, a fine sandblast...

  14. Prediction of bubble departure in forced convection boiling: a mechanistic model

    OpenAIRE

    Colombo, M; Fairweather, M.

    2015-01-01

    In the context of computational fluid dynamic simulations of boiling flows using time-averaged Eulerian multi-phase approaches, the many sub-models required to describe such a complex phenomena are of particular importance. Of interest here, wall boiling requires calculation of the contribution of evaporation to global heat transfer, which in turn relies on determination of the active nucleation site density, bubble departure diameter and frequency of bubble departure. In this paper, an impro...

  15. Heat Transfer of Single and Binary Systems inPool Boiling

    OpenAIRE

    Abbas J. Sultan; Balasim A. Abid

    2010-01-01

    The present research focuses on the study of the effect of mass transfer resistance on the rate of heat transfer in pool boiling. The nucleate pool boiling heat transfer coefficients for binary mixtures (ethanol-n-butanol, acetone-n-butanol, acetone-ethanol, hexane-benzene, hexane-heptane, and methanol-water) were measured at different concentrations of the more volatile components. The systems chosen covered a wide range of mixture behaviors.The experimental set up for the present investigat...

  16. Boiling liquid expanding vapour explosion in CO2 small scale experiments

    OpenAIRE

    Bjerketvedt, Dag; Egeberg, Kjersti; Ke, Wei; Gaathaug, Andre Vagner; Vågsæther, Knut; Nilsen, S. H.

    2011-01-01

    Carbon capture and storage systems require handling large volumes of high pressure CO2. Having thorough knowledge of the related hazards is essential, as is knowing how to prevent, detect, control and mitigate accidents. This paper gives a short description of CO2 Boiling Liquid Expanding Vapour Explosions (BLEVEs) and presents results from preliminary, small scale experiments with CO2 BLEVEs. The mechanism of superheated liquid CO2 boiling is not fully understood. Analogies can be made betwe...

  17. Boiling of Binary Zeotropic Blends in the Plate Heat Exchanger of the Heat Pump

    Directory of Open Access Journals (Sweden)

    Mezentseva Nadezhda N.

    2016-01-01

    Full Text Available In this paper, we consider the process of boiling in the evaporator of the heat pump. Zeotropic binary refrigerants R32/R152a (30/70% and R32/R134a (30/70% are used as working medium. Calculations are made for brazed plate heat exchanger during boiling of zeotropic blend refrigerants with account of peculiarities of this process. Results of calculation of the heat transfer coefficient for zeotropic blends are given.

  18. Transient boiling and void formation during postulated reactivity-initiated accident in BWR: Experimental simulation

    International Nuclear Information System (INIS)

    The current safety analysis of the postulated reactivity initiated accident (RIA) in the boiling water reactor (BWR) neglects the favorable effect of voids because of the difficulties in predicting void formation in transient boiling. This paper presents experimental results on the transient void formation in response to a step heating of a surface facing to low-pressure subcooled water. The void fractions are measured by measuring optically the water surface movement or water velocity induced by the void formation. (author)

  19. Experimental Study of Pool Boiling Heat Transfer Enhancement with R123 under Non Uniform Electric Field

    Directory of Open Access Journals (Sweden)

    Hongling Yu

    2013-02-01

    Full Text Available Experimental investigations are carried out to study the effect of a non uniform electric field on the boiling heat transfer. The study has found that the heat transfer coefficient increases as the electric field strength increases. Enhanced coefficient decreases with heat flux increases and finally reaches a steady value. When the heat flux is small, high voltage has a better enhancement effect. The Onset of Nucleate Boiling (ONB undergoes a larger increase by applying a high voltage.

  20. Photographic study of bubble departure diameter in saturated pool boiling to electrolyte solutions

    OpenAIRE

    Peyghambarzadeh S.M.; Hatami A.; Ebrahimi A; Fazel Alavi S.A.

    2014-01-01

    Bubble departure diameters during saturated pool boiling to pure water and three different electrolyte solutions including NaCl, KNO3, and KCl aqueous solutions are experimentally measured. Variable heat fluxes up to 90 kW/m2 and different salt concentrations from 10.6 to 69.6 kg/m3 are applied in order to investigate their effects on the bubble size during pool boiling around the horizontal rod heater. Visual observations demonstrated that larger vapor bub...

  1. A bifurcation analysis of boiling water reactor on large domain of parametric spaces

    Science.gov (United States)

    Pandey, Vikas; Singh, Suneet

    2016-09-01

    The boiling water reactors (BWRs) are inherently nonlinear physical system, as any other physical system. The reactivity feedback, which is caused by both moderator density and temperature, allows several effects reflecting the nonlinear behavior of the system. Stability analyses of BWR is done with a simplified, reduced order model, which couples point reactor kinetics with thermal hydraulics of the reactor core. The linear stability analysis of the BWR for steady states shows that at a critical value of bifurcation parameter (i.e. feedback gain), Hopf bifurcation occurs. These stable and unstable domains of parametric spaces cannot be predicted by linear stability analysis because the stability of system does not include only stability of the steady states. The stability of other dynamics of the system such as limit cycles must be included in study of stability. The nonlinear stability analysis (i.e. bifurcation analysis) becomes an indispensable component of stability analysis in this scenario. Hopf bifurcation, which occur with one free parameter, is studied here and it formulates birth of limit cycles. The excitation of these limit cycles makes the system bistable in the case of subcritical bifurcation whereas stable limit cycles continues in an unstable region for supercritical bifurcation. The distinction between subcritical and supercritical Hopf is done by two parameter analysis (i.e. codimension-2 bifurcation). In this scenario, Generalized Hopf bifurcation (GH) takes place, which separates sub and supercritical Hopf bifurcation. The various types of bifurcation such as limit point bifurcation of limit cycle (LPC), period doubling bifurcation of limit cycles (PD) and Neimark-Sacker bifurcation of limit cycles (NS) have been identified with the Floquet multipliers. The LPC manifests itself as the region of bistability whereas chaotic region exist because of cascading of PD. This region of bistability and chaotic solutions are drawn on the various

  2. Experimental study of the characteristics of pool boiling CHF enhancement using water-based magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2011-05-15

    Nucleate boiling is a very effective heat transfer mechanism. However, there exists a critical value of heat flux at which nucleate boiling transitions to film boiling shows very poor heat transfer behavior. Critical heat flux(CHF) is a main constraint to the design process because it can generate damages or deformations of material. There have been many efforts to improve the CHF by using nanofluids by researchers. This paper will describe the effects of magnetic fluid on CHF enhancement of pool boiling. We compared the CHF values of pool boiling experiment between magnetic fluid and other nanofluids with several volume concentrations to evaluate the degree of CHF enhancement. SEM(Scanning Electron Microscope) images were obtained to explain CHF enhancement through the effect of the deposited nanoparticles, which can change the surface wettability, during the pool boiling experiment. Lastly, Finally, in order to investigate the effect of magnetic field in the water-based magnetic fluid, magnetic field was analytically calculated by using Biot-Savart law. Using these results, we discussed the CHF enhancement of magnetite-water nanofluids in detailed

  3. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  4. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  5. Calculations of the effect of boiling water on bitumen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Kantzas, A. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; McGee, B. [E-T Energy Limited, Calgary, AB (Canada)

    2006-07-01

    Alberta's vast resources of heavy oil and bitumen are playing an increasing role as a main resource for crude oil. Thermal recovery methods for heavy oil and bitumen include steam injection and steam flooding in which thermal energy is given to the oil to reduce its viscosity and allow it to flow towards a production spot. A viable alternative to steam injection is the electromagnetic heating method for heavy oil and bitumen reservoirs. Electromagnetic heating transfers heat to heavy oil reservoirs based on electromagnetic energy and can be used in situations where steam injection may not work well. The process can also be used to preheat the reservoir before steam injection. This study examined the possible displacement mechanisms of such processes with particular focus on the physics of boiling water in porous media as a potential displacement agent for heavy oil and bitumen. It is very possible that water could vaporize while being electrically heated and the vaporized water could push more heavy oil or bitumen out of reservoir. As such, higher oil recovery could be expected due to water vaporization. The role of water vaporization during electrical heating process was examined and a methodology to estimate the magnitude of incremental oil recovery was developed based on simple conceptual models with numerical simulators and illustrative experiments. The primary contributors of this process appear to be a combination of drainage, imbibition, viscosity reduction and gas expansion. The study showed that the expansion of water into steam could very efficiently flush oil out of pore spaces. It was concluded that water vaporization inside the reservoir can be an additional driving force for heavy oil or bitumen production, and that this alternative to steam injection can offer energy savings for the recovery process. 10 refs., 4 tabs., 6 figs., 1 appendix.

  6. Experimental investigation of wall heat flux partitioning during subcooled nucleate boiling on a vertical wall

    Energy Technology Data Exchange (ETDEWEB)

    Song, Junkyu; Park, Junseok; Jung, Satbyoul; Kim, Hyungdae [Kyung Hee Univ., Youngin (Korea, Republic of)

    2013-10-15

    This study aims to obtain the spatially and temporally synchronized experimental data of liquid-vapor phase and local heat flux distributions on the heated wall during subcooled nucleate boiling, to analyze the data based on the fundamental physical parameters associated with boiling. In this paper, the infrared thermometry and the total reflection techniques were spatially and temporally synchronized in during subcooled vertical plate boiling. The three fundamental heat transfer mechanisms in RPI model of nucleate boiling, evaporation, quenching and convection, were separately detected and calculated from the obtained high-resolution experimental data. The contribution of each heat removal mechanism was found to be 24 %, 39 % and 37 %, respectively, while the only quenching heat flux was dominant (∼95%) in the analyses using heat partitioning correlation of the commercial and developing computational analysis codes, including Fluent and CUPID. A number of experimental investigations have been conducted for the understanding of the exact mechanisms of subcooled flow boiling and critical heat flux (CHF). Bang et al. conducted a visualization study of CHF and found evidence of a liquid layer beneath the large vapor mushroom. Geradi et al. measured time- and space-resolved temperature distribution on bubble nucleation and boiling heat transfer on an ITO-film-coated glass heater by means of the synchronized high-speed video and IR thermometry. There also have been many numerical simulation studies on flow boiling heat transfer. Yun et al. performed the studies to improve the prediction accuracy of subcooled flow boiling heat transfer. However, our understanding of the physical mechanism is still not enough to accurately model boiling heat transfer phenomena with application to the high-fidelity computational thermal-hydraulic analysis code. As nucleate boiling heat transfer and CHF occur along with complex mutual interactions of two-phase flow and transient wall heat

  7. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  8. Experimental Study and Heat Transfer Analysis on the Boiling of Saturated Liquid Nitrogen under Transient Pulsed Laser Irradiation

    Institute of Scientific and Technical Information of China (English)

    Zhaoyi DONG; Xiulan HUAI

    2005-01-01

    The boiling behavior of the liquid nitrogen (LN2) under the transient high heat flux urgently needs to be researched systematically. In this paper, the high power short pulse duration laser was used to heat the saturated LN2 rapidly, and the high-speed photography aided by the spark light system was employed to take series of photos which displayed the process of LN2's boiling behavior under such conditions. Also, a special temperature measuring system was applied to record the temperature variation of the heating surface. The experiments indicated that an explosive boiling happened within LN2 by the laser heating, and a conventional boiling followed up after the newly-defined changeover time. By analyzing the temperature variation of the heating surface, it is found that the latent heat released by the crack of the bubbles in the bubble cluster induced by the explosive boiling is an important factor that greatly influences the boiling heat transfer mechanism.

  9. Nucleate boiling incipience over metallic/non-metallic surfaces

    Science.gov (United States)

    Petralanda, Naiara

    /vapor contact angle. Based on measured values of the chemical potential at incipience, the wall superheat at incipience for heterogeneous boiling on smooth surfaces can be determined.

  10. The effect of surface chemistry on particulate fouling under flow-boiling conditions

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Klimas, S.J

    2001-07-01

    A model of particulate fouling has been developed that takes account of the influence of deposit consolidation on the kinetics of the fouling process. Fouling kinetics predicted by the model are linear, falling-rate or asymptotic, depending on the relative magnitudes of the rate constants for deposition, re-entrainment, and consolidation. One of the key predictions of the model is that the steady-state fouling rate is proportional to the ratio K{lambda}{sub c}/{lambda}, where K, {lambda}{sub c} and {lambda} are the rate constants for deposition, consolidation, and removal, respectively. Tests conducted in a high-temperature recirculating-water loop have demonstrated that chemistry exerts a strong influence on the fouling kinetics of particulate corrosion product under flow-boiling conditions in alkaline water at 270{sup o}C. For example, the fouling rates of lepidocrocite and hematite are 12 and 50 times greater, respectively, than the rate for magnetite. It is argued that the difference can be attributed to the sign of the surface charge that develops on the metal oxide surfaces in the high-temperature coolant, which, in turn, is a function of pH relative to the isoelectric point of the metal oxide. Chemical effects also influence fouling behaviour through the rate of consolidation. For example, when morpholine is used for the alkalizing agent the fouling rate is 3-5 times higher than the case when the pH is controlled using dimethylamine. The difference is attributed to the rate of deposit consolidation, which is 6-20 times greater than the rate of deposit removal for morpholine compared to 0.2-0.3 times the rate of removal for dimethylamine. The results of this investigation, together with the insights provided by the fouling model, are being used to guide the selection of the alkalizing amine to optimize its properties for both corrosion (pH) control and deposit control in the steam generator. (author)

  11. A nondiffusive solution method for RETRAN-03 boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    This paper reports that boiling water reactors (BWRs) are susceptible to thermal-hydraulic instabilities that must be considered in BWR design and operation. Early BWRs were designed to be very stable while operating under natural-circulation conditions. As reactor designs have been modified, stability margins have been reduced, and the potential for stability events, such as occurred at the La Salle and Vermont Yankee plants, has increased. These events and other considerations point to the need for a reliable analysis tool for predicting the dynamic behavior of these events. Transient thermal-hydraulic systems analysis codes have been used to analyze hydrodynamic instabilities, and although the results are often reasonable and exhibit the expected behavior, they are sensitive to changes in node and time-step size and a converged solution cannot be demonstrated by reducing the node and time-step sizes. This sensitivity is due to numerical-diffusion that limits the use of most time domain system analysis codes for BWR stability analyses since it directly affects the decay (or growth) ratio compared for stability events. A conservation equation transport model using the method of characteristics has been developed for use with the RETRAN-03 mixture energy and vapor continuity equations. The model eliminates numerical diffusion in the RETRAN solution. The development and validation of a conservation equation transport model for the RETRAN-03 time domain thermal-hydraulic analysis code that extends the range of application to simulating the dynamic behavior of stability events are presented. RETRAN-03 analyses are presented that compare simulations of hydrodynamic instability events with data

  12. Film boiling on spheres in single- and two-phase flows.

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  13. Film boiling on spheres in single- and two-phase flows. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Theofanous, T.G.

    1994-12-01

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

  14. Burnout in a high heat flux boiling system with forced supply of liquid through a plane jet

    International Nuclear Information System (INIS)

    As for pool boiling, the non-dimensional formula for the burnout heat flux of a simple, basic boiling system has been obtained. On the other hand, in forced convection boiling, the studies on the burnout in forced flow boiling in a channel have been continued, but the derivation of a non-dimensional formula applicable generally is far away from the realization because the phenomena are too complex. Accordingly, in this study, the result of the experiment on the burnout of a boiling system to which liquid is supplied by the plane jet flowing out of a thin rectangular nozzle installed near the front edge of a rectangular heating surface is reported. The experimental apparatus is described, and the experiment was carried out in the ranges of two jet thicknesses at the nozzle outlet, two incident angles of jet and from 1.5 to 15 m/s of jet velocity. Burnout occurs under the situation of sufficiently developed nuclear boiling. A part of the liquid supplied from a plane jet is blown apart by the vapor blowing out of the nuclear boiling liquid layer covering the heating surface in the nuclear boiling with sufficiently developed high heat flux. However, the nuclear boiling liquid layer itself continues to exist on the heating surface till burnout occurs. Only the entering velocity of the plane jet affects burnout heat flux. (Kako, I.)

  15. Evidence for increasing severity of community-onset boils and abscesses in UK General Practice.

    Science.gov (United States)

    Shallcross, L J; Hayward, A C; Johnson, A M; Petersen, I

    2015-08-01

    In England, hospital admissions for severe staphylococcal boils and abscesses trebled between 1989 and 2004. We investigated this trend using routine data from primary and secondary care. We used The Health Improvement Network (THIN), a large primary-care database and national data on hospital admissions from Hospital Episode Statistics (HES). Time trends in the incidence of primary-care consultations for boils and abscesses were estimated for 1995-2010. HES data were used to calculate age-standardized hospital admission rates for boils, abscesses and cellulitis. The incidence of boil or abscess was 450 [95% confidence interval (CI) 447-452] per 100 000 person-years and increased slightly over the study period (incidence rate ratio 1·005, 95% CI 1·004-1·007). The rate of repeat consultation for a boil or abscess increased from 66 (95% CI 59-73) per 100 000 person-years in 1995 to peak at 97 (95% CI 94-101) per 100 000 person-years in 2006, remaining stable thereafter. Hospital admissions for abscesses, carbuncles, furuncles and cellulitis almost doubled, from 123 admissions per 100 000 in 1998/1999 to 236 admissions per 100 000 in 2010/2011. Rising hospitalization and recurrence rates set against a background of stable community incidence suggests increased disease severity. Patients may be experiencing more severe and recurrent staphylococcal skin disease with limited treatment options. PMID:25530161

  16. Gas bubbling-enhanced film boiling of Freon-11 on liquid metal pools. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.A.

    1985-01-01

    In the analysis of severe core damage accidents in LWRs, a major driving force which must be considered in evaluating containment loading and fission product transport is the ex-vessel interaction between molten core debris and structural concrete. Two computer codes have been developed for this purpose, the CORCON-MOD2 model of ex-vessel, core concrete interactions and the VANESA model for aerosol generation and fission product release as a result of molten core-concrete interactions. Under a wide spectrum of reactor designs and accident sequences, it is possible for water to come into contact with the molten core debris and form a coolant pool overlying the core debris which is attacking the concrete. As the concrete decomposes, noncondensable gases are released, which bubble through the melt and across the boiling interface, affecting the liquid-liquid boiling process. Currently, the CORCON code includes the classical Berenson model for film boiling over a horizontal flat plate for this phenomenon. The objectives of this activity are to investigate the influence of transverse noncondensable gas flux on the magnitude of the stable liquid-liquid film boiling heat flux and develop a gas flux-enhanced, liquid-liquid film boiling model for incorporation into the CORCON-MOD2 computer code to replace or modify the Berenson model.

  17. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    Science.gov (United States)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  18. Two-phase flow boiling in small channels: A brief review

    Indian Academy of Sciences (India)

    Madhavi V Sardeshpande; Vivek V Ranade

    2013-12-01

    Boiling flows are encountered in a wide range of industrial applications such as boilers, core and steam generators in nuclear reactors, petroleum transportation, electronic cooling and various types of chemical reactors. Many of these applications involve boiling flows in conventional channels (channel size ≥ 3 mm). The key design issues in two phase flow boiling are variation in flow regimes, occurrence of dry out condition, flow instabilities, and understanding of heat transfer coefficient and vapor quality. This paper briefly reviews published experimental and modeling work in these areas. An attempt is made to provide a perspective and to present available information on boiling in small channels in terms of channel size, flow regimes, heat transfer correlations, pressure drop, critical heat flux and film thickness. An attempt is also made to identify strengths and weaknesses of published approaches and computational models of boiling in small channels. The presented discussion and results will provide an update on the state-of-the-art and will be useful to identify and plan further research in this important area.

  19. Heat transfer behavior on small heaters during saturated pool boiling of FC-72 in microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.; Mullen, J.D. [Maryland Univ., College Park, MD (United States). Dept. of Mechanical Engineering; Yaddanapudi, N. [MetaSensors, Rockville, MD (United States)

    1999-07-01

    Saturated pool boiling of FC-72 on an array of 96 heaters, each 0.27 mm x 0.27 mm in size, was studied in a microgravity environment provided by NASA's KC-135. Each of the heaters was maintained at a constant temperature by means of electronic feedback circuits, and the heat flux through each individual heater was measured at a high sampling rate. Space and time resolved heat flux maps were obtained and correlated with video pictures of boiling on the surface recorded from below. The time resolved heat flux data was then conditionally sampled according to whether or not boiling occurred on the surface and an average heat flux during boiling was obtained. Array averaged heat fluxes in microgravity were slightly larger than in Earth gravity for wall superheats up to about 30 K, but were significantly lower than in Earth gravity at higher superheats. The time-average heat flux conditionally sampled on boiling, however, was independent of the gravity level suggesting that the behavior of small bubbles is not affected by gravity. Heat transfer from the surface occurred primarily through these small bubbles-not much heat transfer was associated with the large bubble that occasionally formed on the surface as a result of coalescence of the small bubbles. (orig.)

  20. Boiling heat transfer of nanofluids--special emphasis on critical heat flux.

    Science.gov (United States)

    Kim, Sung Joong; Kim, Hyungdae

    2013-11-01

    As innovative nanotechnology-based heat-transfer media, nanofluids have evoked considerable interest among researchers owing to their improved thermal properties as well as their extendable applications to various high-power thermal systems. This paper presents a comprehensive review of recent research developments and patents pertaining to nanofluid boiling heat transfer. Nanofluids definitely offer a wide range of potential improvements in boiling heat-transfer performance. However, experimental data available from different studies are currently beset by numerous contradictions, suggesting that the fundamental mechanisms of nanofluid boiling heat transfer are not yet well understood. Consequently application of these technologies has been limited in some aspects. Only a small number of patents related to nanofluid boiling heat transfer have thus far been reported in the literature. Based on the present review, future technological development and research requirements in this area are outlined in line with technical challenges. To utilize nanofluid boiling heat-transfer technologies for practical applications, more systematic and fundamental studies are required to understand the physical mechanisms involved.

  1. U-Tube steam generator modeling for natural circulation and pot-boiling modes

    International Nuclear Information System (INIS)

    A general steam generator model is developed to account for various modes such as natural circulation and pot-boiling modes which can be occurred during transients. The present model can describe not only the swell and shrink phenomena, occurred by any small change in steam flowrates and feedwater flowrates but also natural circulation, pot-boiling, and tube uncovery modes which occur in sequence during the loss of feedwater transient if auxiliary feedwater is not followed by. The void fraction concept is used instead of the quality concept to simulate counter-current flow which takes place in the pot-boiling mode after the natural circulation mode stops. The present model is based on a one-dimensional three-region model to realistically describe the swell and shrink phenomena; downcomer, tube bundle, and steam dome regions. Both of the downcomer water level and two-phase level can be predicted during the pot-boiling mode. To verify the present model in the pot-boiling mode, a simple experiment is done and simulated by the present code. It is shown that the simulated results are relatively in good agreement with the experimental data

  2. Experimental study on forced convection boiling heat transfer on molten alloy

    International Nuclear Information System (INIS)

    In order to clarify the characteristics of forced convection boiling heat transfer on molten metal, basic experiments have been carried out with subcooled water flowing on molten Wood's alloy pool surface. In these experiments, water flows horizontally in a rectangular duct. A cavity filled with Wood's alloy is present in a portion of the bottom of the duct. Wood's alloy is heated by a copper conductor at the bottom of the cavity. The experiments have been carried out with various velocities and subcoolings of water, and temperature of Wood's alloy. Boiling curves on the molten alloy surface were obtained and compared with that on a solid heat transfer surface. It is observed that the boiling curve on molten alloy is in a lower superheat region than the boiling curve on a solid surface. This indicates that the heat transfer performance of forced convection boiling on molten alloy is enhanced by increase of the heat transfer area, due to oscillation of the surface and fragmentation of molten alloy

  3. Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation

    Science.gov (United States)

    Cieśliński, Janusz T.; Kaczmarczyk, Tomasz Z.

    2014-06-01

    The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.

  4. Pool boiling of nanofluids on rough and porous coated tubes: experimental and correlation

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2014-06-01

    Full Text Available The paper deals with pool boiling of water-Al2O3 and water- Cu nanofluids on rough and porous coated horizontal tubes. Commercially available stainless steel tubes having 10 mm outside diameter and 0.6 mm wall thickness were used to fabricate the test heater. The tube surface was roughed with emery paper 360 or polished with abrasive compound. Aluminium porous coatings of 0.15 mm thick with porosity of about 40% were produced by plasma spraying. The experiments were conducted under different absolute operating pressures, i.e., 200, 100, and 10 kPa. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Ultrasonic vibration was used in order to stabilize the dispersion of the nanoparticles. It was observed that independent of operating pressure and roughness of the stainless steel tubes addition of even small amount of nanoparticles augments heat transfer in comparison to boiling of distilled water. Contrary to rough tubes boiling heat transfer coefficient of tested nanofluids on porous coated tubes was lower compared to that for distilled water while boiling on porous coated tubes. A correlation equation for prediction of the average heat transfer coefficient during boiling of nanofluids on smooth, rough and porous coated tubes is proposed. The correlation includes all tested variables in dimensionless form and is valid for low heat flux, i.e., below 100 kW/m2.

  5. Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank

    Science.gov (United States)

    Majumdar, A. K.; Steadman, T. E.; Maroney, J. L.; Sass, J. P.; Fesmire, J. E.

    2007-01-01

    A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicles

  6. A study on the correlations development for film boiling heat transfer on spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)

  7. Mass flow rate sensitivity and uncertainty analysis in natural circulation boiling water reactor core from Monte Carlo simulations

    International Nuclear Information System (INIS)

    Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.

  8. Experimental and theoretical study of pool boiling heat transfer to amine solutions

    Directory of Open Access Journals (Sweden)

    S. M. Peyghambarzadeh

    2009-03-01

    Full Text Available In this investigation, a large number of experiments have been performed to measure the nucleate boiling heat transfer coefficients of water/diethanolamine (DEA and water/monoethanolamine (MEA binary solutions. Based on these experimental data, effects of physical properties such as surface tension and viscosity of mixtures on nucleate boiling heat transfer coefficients and also on bubble dynamics have been discussed. Meanwhile, some photographs have also been selected which illustrate the behaviours of bubbles near the heat transfer surface. In this article, a new correlation has been developed on the basis of the correlation of Stephan and Körner which is known as a successful correlation for the prediction of nucleate boiling heat transfer coefficients of mixtures. Comparison of the prediction of this new correlation with experimental data indicates that this modification can significantly improve the performance of the Stephan and Körner correlation.

  9. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  10. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  11. High-Speed Visualization of Bubble Behaviors for Pool Boiling of R-141b

    Institute of Scientific and Technical Information of China (English)

    Yanhua DIAO; Yaohua ZHAO; Qiuliang WANG

    2006-01-01

    A visualization study on the behavior of bubbles has been carried out for pool boiling of R141b on a horizontal transparent heater at pressure 0.1 MPa. The behaviors of bubbles were recorded by a high-speed camera placed beneath the heater surface. The departure diameter, departure time of bubbles and nucleation site density at different heat flux were obtained. The visualization results show that bubble departure diameter and departure time decrease, while the nucleation site density increases as the heat flux increases. It is also observed that there is no liquid recruited into the microlayer in the experiment. Based on the experimental results, boiling curve for R141b was predicted by using the dynamic microlayer model. As a result, the agreement between the predictive result based on the dynamic microlayer model and the experiment data for boiling curve of R141b is good at high heat flux.

  12. On the determination of boiling water reactor characteristics by noise analysis

    International Nuclear Information System (INIS)

    In boiling water reactors the main noise source is the boiling process in the core and the most important variable is the neutron flux, thus the effect of the steam bubbles on the neutron flux is studied in detail. An experiment has been performed in a small subcritical reactor to measure the response of a neutron detector to the passage of a single air bubble. A mathematical model for the description of the response was tested and the results agree very well with the experiment. Noise measurements in the Dodewaard boiling water reactor are discussed. The construction of a twin self-powered neutron detector, developed to perform steam velocity measurements in the core is described. The low-frequency part of the neutron noise characteristics is considered. The transfer functions exhibit a good agreement with ones obtained by independent means: control rod step experiments and model calculations. (Auth.)

  13. Determination of local boiling in light water reactors by correlation of the neutron noise

    International Nuclear Information System (INIS)

    The power limit of swimming-pool type reactors depends on the phenomenon of the appearance of burn-out. In order to determine this limit we have attempted to detect the local boiling which usually occurs before the burn out. Local boiling has been simulated by an electrically heated plate placed in the core of the reactor Siloette. The study of local boiling, which is based on the properties of the correlation functions for the neutron noise of detectors placed in the core, shows that a privileged frequency occurs in the power spectrum of the noise. It is intended in the future to determine the influence of various parameters on this characteristic frequency. (author)

  14. The effect of a gas dissolved in a coolant on boiling and burnout heat transfer

    International Nuclear Information System (INIS)

    Experiments were conducted to determine the effect of nitrogen dissolved in water on boiling and burnout heat transfer in a cylindrical pipe. Gas liberation from a liquid was found to enhance heat transfer. In the region of subcooled boiling a reduction of the critical heat flux up to about 20% was observed when in the region of burnout development the coolant was degassed at rather a high rate (high pressure and mass flow rates). As the subcooling becomes smaller the difference between q/sub cr/ for a degassed and a gas-saturated boiling coolant decreases. On the attainment of a thermally equilibrium two-phase flow the values of q/sub cr/ practically coincide for both cases

  15. A study of flow boiling phenomena using real time neutron radiography

    Science.gov (United States)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and

  16. Study of density wave phenomena in boiling and condensing two-phase flow systems

    International Nuclear Information System (INIS)

    In this work density wave oscillations are studied. This phenomenon have been widely studied for boiling systems with sub-cooled inlet condition in the past. The main purpose of this work is to characterize the stability region of boiling and condensing systems for sub-cooled and saturated inlet conditions. Stability maps, based on the sub-cooling and the phase-change numbers, are constructed. The limits of the unstable regions are identified and characterized. Finally some numerical simulations are presented in order to describe the nature of the involved phenomena. A high-order numerical solver, based on a homogenous two-phase model for a single boiling channel is implemented. (author)

  17. Quantitative measurement of void fraction in a forced convective flow boiling by using neutron radiography

    International Nuclear Information System (INIS)

    The void fraction in a forced convective flow boiling is very important information for understanding the characteristics of the boiling two-phase flow. Consequently, many experimental investigations have been carried out to obtain the local void fraction so far, but the detail data among the whole of the test-section has not been enough. Especially, the data under subcooled condition are quite limited. In this study, the void fraction distribution in a forced convective boiling was quantitatively measured by using the thermal neutron radiography. These results were compared with several existing void fraction correlations. Although these correlations show a good agreements with experimental results under low heat flux condition, there is no suitable correlation to estimate the void fraction under non-thermal equilibrium condition. (author)

  18. Verification of the IVA4 film boiling model with the data base of Liu and Theofanous

    Energy Technology Data Exchange (ETDEWEB)

    Kolev, N.I. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1998-01-01

    Part 1 of this work presents a closed analytical solution for mixed-convection film boiling on vertical walls. Heat transfer coefficients predicted by the proposed model and experimental data obtained at the Royal Institute of Technology in Sweden by Okkonen et al are compared. All data predicted are inside the {+-}10% error band, with mean averaged error being below 4% using the slightly modified analytical solution. The solution obtained is recommended for practical applications. The method presented here is used in Part 2 as a guideline for developing model for film boiling on spheres. The new semi-empirical film boiling model for spheres used in IVA4 computer code is compared with the experimental data base obtained by Liu and Theofanous. The data are predicted within {+-}30% error band. (author)

  19. Characteristics of liquid and boiling sodium flows in heating pin bundles

    International Nuclear Information System (INIS)

    This study is related to cooling accidents which could occur in sodium cooled fast reactors. Thermo-hydraulic aspects of boiling experiments in pin bundles with helical wire-wrap spacer systems, in the case of undamaged geometries, are analyzed. Differences and analogies in the behavior of multi-rod bundle flows and one-dimensional channel flows are studied. A boiling model is developed for bundle geometries, and predictions obtained with the FLICA code using this models are presented. These predictions are compared with experimental results obtained in a water 19-rod bundle. Then, results of sodium boiling experiments through a 19-rod bundle are interpreted. Both cases of high power and reduced power are envisaged

  20. Dynamics of Discrete Bubble in Nucleate Pool Boiling on Thin Wires in Micro-gravity

    Institute of Scientific and Technical Information of China (English)

    Shixin WAN; Jianfu ZHAO; Gang LIU

    2009-01-01

    A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been per-formed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22no Chinese recoverable satellite. The fluid is degassed Rl13 at 0.1 Mpa and subcooled by 26℃ nominally. A thin platinum wire of 60 μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It's found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.