WorldWideScience

Sample records for boilers

  1. Central heating: package boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farahan, E.

    1977-05-01

    Performance and cost data for electrical and fossil-fired package boilers currently available from manufacturers are provided. Performance characteristics investigated include: unit efficiency, rated capacity, and average expected lifetime of units. Costs are tabulated for equipment and installation of various package boilers. The information supplied in this report will simplify the process of selecting package boilers required for industrial, commercial, and residential applications.

  2. Boiler conversions for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kinni, J. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    Boiler conversions from grate- and oil-fired boilers to bubbling fluidized bed combustion have been most common in pulp and paper industry. Water treatment sludge combustion, need for additional capacity and tightened emission limits have been the driving forces for the conversion. To accomplish a boiler conversion for biofuel, the lower part of the boiler is replaced with a fluidized bed bottom and new fuel, ash and air systems are added. The Imatran Voima Rauhalahti pulverized-peat-fired boiler was converted to bubbling fluidized bed firing in 1993. In the conversion the boiler capacity was increased by 10 % to 295 MWth and NO{sub x} emissions dropped. In the Kymmene Kuusankoski boiler, the reason for conversion was the combustion of high chlorine content biosludge. The emissions have been under general European limits. During the next years, the emission limits will tighten and the boilers will be designed for most complete combustion and compounds, which can be removed from flue gases, will be taken care of after the boiler. (orig.) 3 refs.

  3. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...

  4. ENERGY STAR Certified Boilers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Boilers that are effective as of October 1,...

  5. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... size. The model has been formulated with a specied building-up of the pressure during the start-up of the plant, i.e. the steam production during start-up of the boiler is output from the model. The steam outputs together with requirements with respect to steam space load have been utilized to dene...... of the boiler is (with an acceptable accuracy) proportional with the volume of the boiler. For the dynamic operation capability a cost function penalizing limited dynamic operation capability and vise-versa has been dened. The main idea is that it by mean of the parameters in this function is possible to t its...

  6. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  7. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... a boiler plant dynamically means that the boiler designs must be able to absorb any uctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  8. Optimising boiler performance.

    Science.gov (United States)

    Mayoh, Paul

    2009-01-01

    Soaring fuel costs continue to put the squeeze on already tight health service budgets. Yet it is estimated that combining established good practice with improved technologies could save between 10% and 30% of fuel costs for boilers. Paul Mayoh, UK technical manager at Spirax Sarco, examines some of the practical measures that healthcare organisations can take to gain their share of these potential savings.

  9. Optimization of Load Assignment to Boilers in Industrial Boiler Plants

    Institute of Scientific and Technical Information of China (English)

    CAO Jia-cong; QIU Guang; CAO Shuang-hua; LIU Feng-qiang

    2004-01-01

    Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.

  10. DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH

    OpenAIRE

    Zelený, Zbynĕk; Hrdlička, Jan

    2016-01-01

    Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...

  11. Super Boiler 2nd Generation Technology for Watertube Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  12. Boiler design for fuel economy

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, M.P.; Sastry, C.V.R.L.; Tharakraj, M.

    1980-03-01

    In view of the limited fuel resources and ever increasing demand, Bharat Heavy Electricals, Ltd. (BHEL), as the leading boiler manufacturer, always endeavours to effect fuel economy in all possible avenues, leaving no stone unturned in this effort. This paper outlines some of the major efforts of BHEL in the area of boiler design to effect fuel economy.

  13. Boiler for ships; Hakuyo boira

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, F. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1999-07-20

    In this paper, production and technology trend of boiler for ships in 1998 are described. The actual results of main boiler are as follows. As the main boiler for LNG ships, 4 boilers produced by Mitsui Engineering and Shipbuilding for Qatar Project, 8 produced by Kawasaki Heavy Industries for South Korea and 10 produced by Mitsubishi Heavy Industries for domestic use and South Korea. 1998 was an active year for the main boiler for ships. The auxiliary boiler of steam pressure of 16k to 25k equipping for tanker ships was 115 (4,441t/h of steam quantity in total), it greatly increased in comparison with 88 (3,172t/h) produced in the proceeding year. Donkey boilers of steam pressure of 6k to 10k equipping for container ships and bulk cargo was 147 (672t/h), and it substantially decreased in comparison with 274 (693t/h) of the proceeding year, but capacity per boiler increased. The gas exhaust economizer for turbo power generation plants was 6 produced for VLCC. (NEDO)

  14. Boilers a practical reference

    CERN Document Server

    Rayaprolu, Kumar

    2012-01-01

    AAbrasion and Abrasion Index (see Wear)Absolute or Dynamic Viscosity (æ) (see Viscosity in Fluid Characteristics)Acid Cleaning (see Commissioning)Acid Rain (also see Air Pollution Emissions and Controls and Gas Cleaning)Acid Sludge (see Refuse Fuels from Refinery in Liquid Fuels)Acid Smuts (see Oil Ash)Acoustic Soot Blowers (see Sonic Horns)Acoustic Enclosure (see Noise Control)Acoustic Leak Detection SystemAdiabatic Flame Temperature (see Combustion)Aeroderivative (see Types of GTs in Turbines, Gas)Ageing of Boiler ComponentsAgro-Fuels and FiringAir Ducts (see Draught Plant)Air Flow Measureme

  15. Pellet wood gasification boiler / Combination boiler. Market review. 7. ed.; Scheitholzvergaser-/Kombikessel. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2010-08-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) report on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  16. Market review. Pellet wood gasification boiler / combination boiler. 8. ed.; Marktuebersicht. Scheitholzvergaser-/Kombikessel

    Energy Technology Data Exchange (ETDEWEB)

    Uth, Joern

    2012-01-15

    In the market review under consideration on pellet wood gasification boilers and combination boilers, the Federal Ministry of Food, Agriculture and Consumer Protection (Bonn, Federal Republic of Germany) reports on planning and installation of wood-fired heating systems, recommendations regarding to the technical assessment of boiler systems, buffers/combination boilers, prices of pellet wood gasification boilers, data sheets of the compared pellet wood gasification boilers, pellet wood combination boilers, prices of pellet wood combination boilers, data sheets of the compared pellet wood gasification boilers, list of providers.

  17. 30 CFR 77.413 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boilers. 77.413 Section 77.413 Mineral... Mechanical Equipment § 77.413 Boilers. (a) Boilers shall be equipped with guarded, well-maintained water... the gages shall be kept clean and free of scale and rust. (b) Boilers shall be equipped with...

  18. 29 CFR 1915.162 - Ship's boilers.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ship's boilers. 1915.162 Section 1915.162 Labor Regulations... Ship's boilers. (a) Before work is performed in the fire, steam, or water spaces of a boiler where... dead boiler with the live system or systems shall be secured, blanked, and tagged indicating...

  19. 49 CFR 230.47 - Boiler number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Boiler number. 230.47 Section 230.47..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.47 Boiler number. (a) Generally. The builder's number of the boiler, if known,...

  20. 46 CFR 61.05-10 - Boilers in service.

    Science.gov (United States)

    2010-10-01

    ... INSPECTIONS Tests and Inspections of Boilers § 61.05-10 Boilers in service. (a) Each boiler, including superheater, reheater, economizer, auxiliary boiler, low-pressure heating boiler, and unfired steam boiler... 46 Shipping 2 2010-10-01 2010-10-01 false Boilers in service. 61.05-10 Section 61.05-10...

  1. Green boilers; La chaudiere verte

    Energy Technology Data Exchange (ETDEWEB)

    Scrive, L.; Lebois, P.; Schlienger, M.; Moser, D. [Gaz de France (GDF), 75 - Paris (France)

    1997-12-31

    The ``green`` boiler was designed and developed by the Gaz de France and GEC Alsthom Stein Fasel partnership. It is a new make of steam boiler with smoke tubes from 4 to 15 MW. This range meets tow of the requirements guaranteed by the engineer: a NOx emission level lower than 100 mg/m{sup 3} (n) with 3% of oxygen and an combustion output of no less than 95 + 2% on n.v.c. A pilot operation was carried out by CNI Technologies in France. This 8.6 MW boiler was installed in June 1995 and performances checks were carried out by Apave Normandie in September 1995. This environmentally friendly boiler as well as the results obtained during the pilot operation are addressed in this article. (authors)

  2. Boiler-turbine life extension

    Energy Technology Data Exchange (ETDEWEB)

    Natzkov, S. [TOTEMA, Ltd., Sofia (Bulgaria); Nikolov, M. [CERB, Sofia (Bulgaria)

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  3. CFD Simulation On CFBC Boiler

    Directory of Open Access Journals (Sweden)

    Amol S. Kinkar

    2015-02-01

    Full Text Available Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays an important role to complete the power generation cycle such as CFBC Circulating Fluidized Bed Combustion FBC Fluidized Bed Combustion AFBC Atmospheric Fluidized Bed Combustion Boiler CO Boiler RG amp WHR Boiler Waster heat recovery Boiler. This paper is intended to comprehensively give an account of knowledge related to refractory amp its failure in CFBC boiler with due effect of flue gas flow during operation on refractory by using latest technology of CAD Computer aided Design amp CAE Computer aided Engineering. By conceptual application of these technology the full scale model is able to analyze in regards the flow of flue gas amp bed material flow inside the CFBC loop via CFD Computational Fluid Dynamics software. The results obtained are helpful to understand the impact of gas amp particles on refractory in different areas amp also helped to choose suitable refractory material in different regions.

  4. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  5. Structured Mathematical Modeling of Industrial Boiler

    Directory of Open Access Journals (Sweden)

    Abdullah Nur Aziz

    2014-04-01

    Full Text Available As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. The model describes the temperature dynamics of the boiler subsystems such as economizer, steam drum, desuperheater, and superheater. The mathematical model was examined using industrial boiler performance test data.It can be used to build a boiler simulator or help operators run a boiler effectively.

  6. Boiler for generating high quality vapor

    Science.gov (United States)

    Gray, V. H.; Marto, P. J.; Joslyn, A. W.

    1972-01-01

    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets.

  7. New controls spark boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Engels, T. (Monsanto, University Park, IL (United States))

    1993-09-01

    Monsanto's NutraSweet plant in University Park, IL, produces aspartame, the patented NutraSweet artificial sweetener product. Until recently, boiler control was managed by a '60s-era Fireye jackshaft system in which air and natural gas were mechanically linked with an offset to compensate for oxygen trim. The interlocking devices on the Fireye system were becoming obsolete, and the boiler needed a new front end retrofitted for low emissions. In order to improve boiler control efficiency, we decided to modernize and automate the entire boiler control system. We replaced the original jackshaft system, and installed a Gordon-Piet burner system, including gas valves, air dampers, blowers, and burner. The upgrade challenges included developing a control strategy and selecting and implementing a process control system. Since our plant has standardized on the PROVOX process management information system from Fisher Controls (now Fisher-Rosemount Systems) to support most of our process, it was a natural and logical choice for boiler controls as well. 2 figs.

  8. ECUT energy data reference series: boilers

    Energy Technology Data Exchange (ETDEWEB)

    Chockie, A.D.; Johnson, D.R.

    1984-09-01

    Information on the population and fuel consumption of water-tube, fire-tube and cast iron boilers is summarized. The use of each boiler type in the industrial and commercial sector is examined. Specific information on each boiler type includes (for both 1980 and 2000) the average efficiency of the boiler, the capital stock, the amount of fuel consumed, and the activity level as measured by operational load factor.

  9. Structured Mathematical Modeling of Industrial Boiler

    OpenAIRE

    Abdullah Nur Aziz; Yul Yunazwin Nazaruddin; Parsaulian Siregar; Yazid Bindar

    2014-01-01

    As a major utility system in industry, boilers consume a large portion of the total energy and costs. Significant reduction of boiler cost operation can be gained through improvements in efficiency. In accomplishing such a goal, an adequate dynamic model that comprehensively reflects boiler characteristics is required. This paper outlines the idea of developing a mathematical model of a water-tube industrial boiler based on first principles guided by the bond graph method in its derivation. T...

  10. Sootblowing optimization for improved boiler performance

    Science.gov (United States)

    James, John Robert; McDermott, John; Piche, Stephen; Pickard, Fred; Parikh, Neel J

    2013-07-30

    A sootblowing control system that uses predictive models to bridge the gap between sootblower operation and boiler performance goals. The system uses predictive modeling and heuristics (rules) associated with different zones in a boiler to determine an optimal sequence of sootblower operations and achieve boiler performance targets. The system performs the sootblower optimization while observing any operational constraints placed on the sootblowers.

  11. Cracking and corrosion recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)

    1998-12-31

    The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.

  12. Failure Analysis of 600 MW Supercritical Boiler Water Wall

    OpenAIRE

    Fu Huilin; Cai Zhengchun; Yan Xiaozhong; He Jinqiao; Zhou Yucai

    2013-01-01

    Boiler tube often causes abnormal boiler outage, bringing greater economic losses. This thesis mainly comes from the dynamics of boiler water, boiler furnace accident location of wall temperature distribution to explore the cause of the accident boiler. Calculation results show that the deformation will seriously reduce the boiler allowable maximum temperature difference between the screens. And the boiler is not over-temperature, low temperature difference between the screens, which have bur...

  13. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  14. Further development of recovery boiler; Soodakattilan kehitystyoe

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Siiskonen, P.; Sundstroem, K. [Tampella Power Oy, Tampere (Finland)] [and others

    1996-12-01

    The global model of a recovery boiler was further developed. The aim is to be able to model the velocity, temperature and concentration fields in a boiler. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. The preliminary study of NO{sub x} and fly ash behaviour in a boiler was carried out. The study concerning flow field in the superheater area was carried out a 2-dimensional case in which the inflow parameters were taken from global model of a recovery boiler. Further the prediction methods of fouling in a recovery boiler were developed based on theoretical calculations of smelting behaviour of multicomponent mixtures and measurements at operating recovery boilers. (author)

  15. Inception report and gap analysis. Boiler inspection

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    This inception and gap analysis report on boilers in Latvia, has been prepared in the framework of the 'Implementation of the EU directive on energy performance of buildings: development of the Latvian Scheme for energy auditing of building and inspection of boilers'. The report is the basis for the establishment of training of boiler inspectors; it develops a gap analysis for better understanding and estimating the number of installations in Latvia and develops suggestions for the institutional set up. In particular includes information on existing standard and regulation on boiler, suggestion for the content of the training material of experts for boiler inspections and a syllabus of the training course. A specific section is dedicated to the suggestion for certification system of trained boiler inspectors. (au)

  16. CFD Simulation On CFBC Boiler

    OpenAIRE

    Amol S. Kinkar; G. M. Dhote; R.R. Chokkar

    2015-01-01

    Abstract Heavy industrialization amp modernization of society demands in increasing of power cause to research amp develop new technology amp efficient utilization of existing power units. Variety of sources are available for power generation such as conventional sources like thermal hydro nuclear and renewable sources like wind tidal biomass geothermal amp solar. Out of these most common amp economical way for producing the power is by thermal power stations. Various industrial boilers plays...

  17. Energy storage-boiler tank

    Science.gov (United States)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-01-01

    Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.

  18. Research of Boiler Combustion Regulation for Reducing Nox Emission and its Effect on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-dong; LUAN Tao; CHENG Lin; XIAO Kun

    2007-01-01

    The effect of boiler combustion regulation on Nox emission of two 1025t/h boilers has been studied. The researches show that Nox emission is influenced by coal species, operation conditions, etc, and can be reduced by regulating the combustion conditions. The effect of combustion regulation on boiler efficiency has also been checked.

  19. Stress-Assisted Corrosion in Boiler Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  20. Boiler corrosion. Corrosion of boilers at low boiler water temperatures. Heizkessel-Korrosion. Korrosion von Heizkesseln bei tiefen Kesselwassertemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-02-01

    Thermostatic cast iron and steel 35.8 specimens were inserted between the fire tubes of a test boiler and exposed to flue gases for a period of three weeks. The corrosion rates at material temperatures between 20 and 60deg C as well as the effects of continuous and intermittent boiler operation were determined. Details are given on the specimens alloying constituents, the testing and test conditions (schematic representation of the experimental set-up). Diagrams and tables facilitate access to test results informing about corrosion rates and corrosion product structure analyses for continuous burner operation. While low boiler water temperatures (below 60deg C in the case of extra light heating oils) are found to necessarily involve higher risks and shorter boiler service lives, low flue gas temperatures alone are considered not to be increasing the risk of boiler corrosion. (HWJ).

  1. 46 CFR 109.555 - Propulsion boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion boilers. 109.555 Section 109.555 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.555 Propulsion boilers. The master or person in charge and the engineer in charge...

  2. Developing Boiler Concepts as Integrated Units

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    With the objective to be able to optimize the design and operation of steam boiler concepts Aalborg Industries A/S [1] has together with Aalborg University, Institute of Energy Technology [9] carried out a development project paying special attention to the boiler concept as an integrated unit...... - consisting of pressure part, burner and control system. The Technical University of Denmark, MEK - Energy Engineering Section [12] has participated in the modelling process. The project has included static and dynamic modelling of the boiler concept. For optimization of operation, verication of performance......, emissions and to obtain long time operation experiences with the boiler concept, a full scale prototype has been built and these tests have been accomplished on the prototype. By applying this integrated unit approach to the boiler concept development it has been possible to optimize the different building...

  3. PAH emission from the industrial boilers.

    Science.gov (United States)

    Li, C; Mi, H; Lee, W; You, W; Wang, Y

    1999-10-01

    Polycyclic aromatic hydrocarbons (PAHs) emitted from 25 industrial boilers were investigated. The fuels used for these 25 boilers included 21 heavy oil, two diesel, a co-combustion of heavy oil and natural gas (HO+NG) and a co-combustion of coke oven gas and blast furnace gas (COG+BFG) boilers. PAH samples from the stack flue gas (gas and particle phases) of these 25 boilers were collected by using a PAH stack sampling system. Twenty one individual PAHs were analyzed primarily by a gas chromatography/mass spectrometer (GC/MS). Total-PAH concentration in the flue gas of 83 measured data for these 25 boiler stacks ranged between 29.0 and 4250 microg/m(3) and averaged 488 microg/m(3). The average of PAH-homologue mass (F%) counted for the total-PAH mass was 54.7%, 9.47% and 15.3% for the 2-ring, 3-ring and 4-ring PAHs, respectively. The PAHs in the stack flue gas were dominant in the lower molecular weight PAHs. The emission factors (EFs) of total-PAHs were 13,300, 2920, 2880 and 208 microg/kg-fuel for the heavy oil, diesel, HO+NG and COG+BFG fueled-boiler, respectively. Nap was the most predominant PAH occurring in the stack flue gas. In addition, the EF of 21 individual PAHs in heavy-oil boiler were almost the highest among the four various fueled-boilers except for those of FL and BkF in the diesel boiler. Furthermore, the EF of total-PAHs or BaP for heavy oil were both one order of magnitude higher than that for the diesel-fueled boiler.

  4. Computer system for monitoring power boiler operation

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Weglowski, B.; Zima, W.; Duda, P.; Gradziel, S.; Sobota, T.; Cebula, A.; Taler, D. [Cracow University of Technology, Krakow (Poland). Inst. for Process & Power Engineering

    2008-02-15

    The computer-based boiler performance monitoring system was developed to perform thermal-hydraulic computations of the boiler working parameters in an on-line mode. Measurements of temperatures, heat flux, pressures, mass flowrates, and gas analysis data were used to perform the heat transfer analysis in the evaporator, furnace, and convection pass. A new construction technique of heat flux tubes for determining heat flux absorbed by membrane water-walls is also presented. The current paper presents the results of heat flux measurement in coal-fired steam boilers. During changes of the boiler load, the necessary natural water circulation cannot be exceeded. A rapid increase of pressure may cause fading of the boiling process in water-wall tubes, whereas a rapid decrease of pressure leads to water boiling in all elements of the boiler's evaporator - water-wall tubes and downcomers. Both cases can cause flow stagnation in the water circulation leading to pipe cracking. Two flowmeters were assembled on central downcomers, and an investigation of natural water circulation in an OP-210 boiler was carried out. On the basis of these measurements, the maximum rates of pressure change in the boiler evaporator were determined. The on-line computation of the conditions in the combustion chamber allows for real-time determination of the heat flowrate transferred to the power boiler evaporator. Furthermore, with a quantitative indication of surface cleanliness, selective sootblowing can be directed at specific problem areas. A boiler monitoring system is also incorporated to provide details of changes in boiler efficiency and operating conditions following sootblowing, so that the effects of a particular sootblowing sequence can be analysed and optimized at a later stage.

  5. 10 CFR 431.82 - Definitions concerning commercial packaged boilers.

    Science.gov (United States)

    2010-01-01

    ... COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Packaged Boilers § 431.82 Definitions concerning commercial...). Commercial packaged boiler means a type of packaged low pressure boiler that is industrial equipment with a... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial packaged boilers....

  6. 49 CFR 230.36 - Hydrostatic testing of boilers.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... 49 Transportation 4 2010-10-01 2010-10-01 false Hydrostatic testing of boilers. 230.36 Section...

  7. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  8. 49 CFR 230.30 - Lap-joint seam boilers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lap-joint seam boilers. 230.30 Section 230.30..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Inspection and Repair § 230.30 Lap-joint seam boilers. Every boiler having lap-joint longitudinal...

  9. 46 CFR 61.05-20 - Boiler safety valves.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler safety valves. 61.05-20 Section 61.05-20 Shipping... INSPECTIONS Tests and Inspections of Boilers § 61.05-20 Boiler safety valves. Each safety valve for a drum, superheater, or reheater of a boiler shall be tested at the interval specified by table 61.05-10....

  10. 46 CFR 61.05-15 - Boiler mountings and attachments.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler mountings and attachments. 61.05-15 Section 61.05... TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-15 Boiler mountings and attachments. (a....05-10. (b) Each stud or bolt for each boiler mounting that paragraph (c) of this section requires...

  11. 40 CFR 65.149 - Boilers and process heaters.

    Science.gov (United States)

    2010-07-01

    ... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Boilers and process heaters. 65.149... System or a Process § 65.149 Boilers and process heaters. (a) Boiler and process heater equipment...

  12. 30 CFR 56.13030 - Boilers.

    Science.gov (United States)

    2010-07-01

    ... Valves BNon-ASME Code Boilers and Pressure Vessels CStorage of Mild Steel Covered Arc Welding Electrodes... American Society of Mechanical Engineers, 22 Law Drive, P.O. Box 2900, Fairfield, New Jersey 07007,...

  13. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  14. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph;

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...... submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has...... been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant....

  15. Boiler scale prevention employing an organic chelant

    Science.gov (United States)

    Wallace, Steven L.; Griffin, Jr., Freddie; Tvedt, Jr., Thorwald J.

    1984-01-01

    An improved method of treating boiler water which employs an oxygen scavenging compound and a compound to control pH together with a chelating agent, wherein the chelating agent is hydroxyethylethylenediaminetriacetic acid.

  16. New thinking for the boiler room.

    Science.gov (United States)

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  17. Removal of External Deposits on Boiler Tubes

    Directory of Open Access Journals (Sweden)

    C. P. De

    1970-07-01

    Full Text Available The superheater tubes in Port and Starboard boilers were found to have completely clogged by heavy deposits, which on analysis mainly vanadium pentoxide and sodium sulphmatter. The cleaning of the deposits was accomplished by alternate spraying with 15-20 per cent hydrogen peroxide and washing with hot water jets. Over the past two years, since the date of cleaning, the IN ship is operating without any trouble in the boilers.

  18. Boiler burden reduced at Bedford site.

    Science.gov (United States)

    Horsley, Chris

    2011-10-01

    With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.

  19. IHI-FW circulating fluidized bed boiler

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Omata, K.; Ishimoto, R.; Asai, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))

    1993-07-01

    The technology and application of the circulating fluidized bed boiler (IHI-FW) are outlined. Circulating fluidized bed boilers have various features as compared with bubbling fluidized bed boilers as follows; a high combustion efficiency, efficient use of limestone for desulfurization, low NOx emission, adaptability to various fuels and capability to cope with load change. The IHI-FW boiler is furthermore featured by water-wall furnace of all-welded structure, water-cooled/steam cooled cyclone, and simple circulating system. The 30 t/h circulating fluidized bed boiler was introduced into the Tsu Works, Omikenshi Co., Ltd., Japan for private power generation. The boiler equipped with a backup heavy oil burner mainly uses semi-anthracite coal, and besides sulfur capture and NOx reduction functions of a bed, a bag filter with a high dust collecting efficiency is installed in an exhaust gas system. The installation period was reduced to 2.5 months, a half of conventional ones, by more assembly in a factory followed by less field works. 7 figs., 2 tabs.

  20. Assessment of physical workload in boiler operations.

    Science.gov (United States)

    Rodrigues, Valéria Antônia Justino; Braga, Camila Soares; Campos, Julio César Costa; Souza, Amaury Paulo de; Minette, Luciano José; Sensato, Guilherme Luciano; Moraes, Angelo Casali de; Silva, Emília Pio da

    2012-01-01

    The use of boiler wood-fired is fairly common equipment utilized in steam generation for energy production in small industries. The boiler activities are considered dangerous and heavy, mainly due to risks of explosions and the lack of mechanization of the process. This study assessed the burden of physical labor that operators of boilers are subjected during the workday. Assessment of these conditions was carried out through quantitative and qualitative measurements. A heart rate monitor, a wet-bulb globe thermometer (WBGT), a tape-measure and a digital infrared camera were the instruments used to collect the quantitative data. The Nordic Questionnaire and the Painful Areas Diagram were used to relate the health problems of the boiler operator with activity. With study, was concluded that the boiler activity may cause pains in the body of intensity different, muscle fatigue and diseases due to excessive weight and the exposure to heat. The research contributed to improve the boiler operator's workplace and working conditions.

  1. Corrosion of oil-fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1989-05-01

    Depending on the surface temperature of the flue gas side the corrosion of oil fired domestic boilers proceeds either mainly by acid corrosion or by oxygen corrosion: (1) At surface temperatures of 60/sup 0/C and higher the corrosion mechanism of acid corrosion prevails and the corrosion rates amount to 0.1-0.3 mm/year (values referred to continuous burner operation). The corrosion products consist of soluble iron(II)- and iron(III)sulfates. Higher corrosion rates can be attributed to an appreciable catalytic formation of sulfur trioxide on the corrosion products formed on the convective heating surfaces. (2) At surface temperatures of 40/sup 0/C the mechanism of oxygen corrosion already dominates and the corrosion rates are about ten times higher (1.5-3 mm/year, referred to continuous burner operation). The high portion of iron oxide hydrates, especially goethit (/alpha/-FeOOH), makes the corrosion products difficult to remove. (3) Distinctly reduced service lives are also expected for the so called reduced temperature boilers ('Niedertemperaturkessel') and low temperature boilers ('Tieftemperaturkessel'): According to the manufacturers these boilers may be operated at boiler water temperatures well below 60/sup 0/C, as they are equipped with constructive measures to enhance the surface temperature on the flue gas side. However, these measures are only fully effective under stationary conditions. Some of the results were obtained from weight loss measurements on test specimen made from St 35.8 and gray cast iron, that were exposed to the flue gases of an fired experimental boiler. Other important results come from field measurements of the sulfuric acid content of about 30 boilers that are in practical use. (orig.).

  2. Fuel sulfur and boiler fouling

    Energy Technology Data Exchange (ETDEWEB)

    Litzke, W.; Celebi, Y.; Butcher, T. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    Fouling of the heat transfer surfaces of boilers and furnaces by `soot` leads to reduced efficiency and increased service requirements. The average level of annual efficiency reduction as a result of fouling if generally accepted as 2% per year. Improving the efficiency of equipment in the field may be the most important oil heat conservation opportunity at present. Improvements can be realized by reducing fouling rates, promoting lower firing rates in existing equipment, and enabling excess air levels to be set lower without raising concerns about increased service requirements. In spite of the importance of efficiency in the field there is very little data available on efficiency degradation rates with modern equipment, actual field operating conditions (excess air and smoke number settings) and service problems which affect efficiency. During 1993-94 field tests were initiated to obtain such data and to obtain information that would compliment existing and current laboratory work. Experimental work conducted on a bench scale level have included tests with various advanced burners, fuel types, and different operating conditions which have been done at the BNL Rapid Fouling Test Facility. This report will focus on the field study of fouling effects on ten residential heating service problems at each site are summarized. In addition, the technical difficulties involved with conducting such a field study shall also be discussed as the findings should serve to improve future work in this area.

  3. Scandinavian baffle boiler design revisited

    Directory of Open Access Journals (Sweden)

    Stepanov Borivoj Lj.

    2015-01-01

    Full Text Available The aim of this paper is to examine whether the use of baffles in a combustion chamber, one of the well-known low-cost methods for the boiler performance improvement, can be enhanced. Modern day tools like computational fluid dynamics were not present at the time when these measures were invented, developed and successfully applied. The objective of this study is to determine the influence of location and length of a baffle in a furnace, for different mass flows, on gas residence time. The numerical simulations have been performed of a simple Scandinavian stove like furnace. The isothermal model is used, while air is used as a medium and turbulence is modeled by realizable k-epsilon model. The Lagrange particle tracking is used for the residence time distribution determination. The statistical analysis yielded the average residence time. The results of the computational fluid dynamics studies for different baffle positions, dimensions and flow rates show from up to 17% decrease to up to 13 % increase of residence time. The conclusion is that vertical position of the baffle is the most important factor, followed by the length of the baffle, while the least important showed to be the mass flow. [Projekat Ministarstva nauke Republike Srbije, br. III 43008: Development of methods, sensors and systems for monitoring of quality of water, air and land

  4. Boiler house modernization through shared savings program

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W. [Tecogen, Waltham, MA (United States)

    1995-12-31

    Throughout Poland as well as the rest of Eastern Europe, communities and industries rely on small heat only boilers to provide district and process heat. Together these two sectors produce about 85,000 MW from boilers in the 2 to 35 MW size range. The bulk of these units were installed prior to 1992 and must be completely overhauled to meet the emission regulations which will be coming into effect on January 1, 1998. Since the only practical fuel is coal in most cases, these boilers must be either retrofit with emission control technology or be replaced entirely. The question that arises is how to accomplish this given the current tight control of capital in Poland and other East European countries. A solution that we have for this problem is shared savings. These boilers are typically operating with a quiet low efficiency as compared to western standards and with excessive manual labor. Installing modernization equipment to improve the efficiency and to automate the process provides savings. ECOGY provides the funds for the modernization to improve the efficiency, add automation and install emission control equipment. The savings that are generated during the operation of the modernized boiler system are split between the client company and ECOGY for a number of years and then the system is turned over in entirety to the client. Depending on the operating capacity, the shared savings agreement will usually span 6 to 10 years.

  5. Computer simulation of the fire-tube boiler hydrodynamics

    Directory of Open Access Journals (Sweden)

    Khaustov Sergei A.

    2015-01-01

    Full Text Available Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  6. Independent Research and Design of 600-MW Supercritical CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to further develop and improve the technologies for large-capacity supercritical CFB boiler, the key technologies for large CFB boiler were systematically studied, based on the development of first domestically-made 210-MW and 330-MW CFB boilers. The scheme of 600-MW supercritical CFB boiler was designed, including the furnace structure, key components, steam-water system and auxiliary systems, which laid a technical foundation for the engineering applications.

  7. Application of GPRS and GIS in Boiler Remote Monitoring System

    OpenAIRE

    Hongchao Wang; Yifeng Wu

    2012-01-01

    Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the ...

  8. Computer simulation of the fire-tube boiler hydrodynamics

    OpenAIRE

    Khaustov Sergei A.; Zavorin Alexander S.; Buvakov Konstantin V.; Sheikin Vyacheslav A.

    2015-01-01

    Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.

  9. 46 CFR 176.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and boilers. 176.812 Section 176.812... TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.812 Pressure vessels and boilers. (a.... (b) Periodic inspection and testing requirements for boilers are contained in § 61.05 in subchapter...

  10. 40 CFR 761.71 - High efficiency boilers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false High efficiency boilers. 761.71... PROHIBITIONS Storage and Disposal § 761.71 High efficiency boilers. (a) To burn mineral oil dielectric fluid containing a PCB concentration of ≥50 ppm, but boiler shall comply with the...

  11. 46 CFR 56.50-30 - Boiler feed piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Boiler feed piping. 56.50-30 Section 56.50-30 Shipping... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-30 Boiler feed piping. (a) General... least two separate means of supplying feed water for the boilers. All feed pumps shall be fitted...

  12. 46 CFR 109.205 - Inspection of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inspection of boilers and machinery. 109.205 Section 109... OPERATIONS Tests, Drills, and Inspections § 109.205 Inspection of boilers and machinery. The chief engineer or engineer in charge, before he assumes charge of the boilers and machinery of a unit shall...

  13. THERMAL BOUNDARY LAYER IN CFB BOILER RISER

    Institute of Scientific and Technical Information of China (English)

    Jinwei; Wang; Xinmu; Zhao; Yu; Wang; Xing; Xing; Jiansheng; Zhang; Guangxi; Yue

    2006-01-01

    Measurement of temperature profiles of gas-solid two-phase flow at different heights in commercial-scale circulating fluidized bed (CFB) boilers was carried out. Experimental results showed that the thickness of thermal boundary layer was generally independent of the distance from the air distributor, except when close to the riser outlet. Through analysis of flow and combustion characteristics in the riser, it was found that the main reasons for the phenomena were: 1) the hydrodynamic boundary layer was thinner than the thermal layer and hardly changed along the CFB boiler height, and 2) both radial and axial mass and heat exchanges were strong in the CFB boiler. Numerical simulation of gas flow in the outlet zone confirmed that the distribution of the thermal boundary layer was dominated by the flow field characteristics.

  14. Evaluation of thermal overload in boiler operators.

    Science.gov (United States)

    Braga, Camila Soares; Rodrigues, Valéria Antônia Justino; Campos, Julio César Costa; de Souza, Amaury Paulo; Minette, Luciano José; de Moraes, Angêlo Casali; Sensato, Guilherme Luciano

    2012-01-01

    The Brazilians educational institutions need a large energy demand for the operation of laundries, restaurants and accommodation of students. Much of that energy comes from steam generated in boilers with wood fuel. The laboral activity in boiler may present problems for the operator's health due to exposure to excessive heat, and its operation has a high degree of risk. This paper describes an analysis made the conditions of thermal environment in the operation of a B category boiler, located at a Higher Education Institution, located in the Zona da Mata Mineira The equipments used to collect data were Meter WBGT of the Heat Index; Meter of Wet Bulb Index and Globe Thermometer (WBGT); Politeste Instruments, an anemometer and an Infrared Thermometer. By the application of questionnaires, the second phase consisted of collecting data on environmental factors (temperature natural environment, globe temperature, relative humidity and air velocity). The study concluded that during the period evaluated, the activity had thermal overload.

  15. Direct contact, binary fluid geothermal boiler

    Science.gov (United States)

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  16. Planning Annual Shutdown Inspection for BFB Boiler

    OpenAIRE

    Sorsa, Tatu

    2014-01-01

    The goal of this thesis was to create an illustrative guidebook of annual inspection planning for BFB boiler to help power plant operator when planning of annual inspection is topical. This thesis was made for Andritz Oy and it is based on inspection reports and experiences of BFB boiler’s maintenance and inspection staff. In this thesis it is shown how to plan an annual inspection for BFB boiler and thesis gives good tools and hints for operator to manage inspection from the beginning ...

  17. Transients in a circulating fluidized bed boiler

    Science.gov (United States)

    Baskakov, A. P.; Munts, V. A.; Pavlyuk, E. Yu.

    2013-11-01

    Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

  18. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearised versions of the model are analysed to determine how gain, time constants and right half plane zeros (caused by the shrink-and-swell phenomenon) depend on the steam flow load. Furthermore...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  19. Central heating: fossil-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, C.F.; Baker, N.R.; Tison, R.R.

    1979-05-01

    This evaluation provides performance and cost data for fossil-fuel-fired steam boilers, hot-water generators, and thermal fluid generators currently available from manufacturers. Advanced-technology fluidized-bed boilers also are covered. Performance characteristics investigated include unit efficiencies, turndown capacity, and pollution requirements. Costs are tabulated for equipment and installation of both field-erected and packaged units. The information compiled in this evaluation will assist in the process of selecting energy-conversion units required for industrial, commercial, and residential applications.

  20. Application of GPRS and GIS in Boiler Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Hongchao Wang

    2012-12-01

    Full Text Available Application of GPRS and GIS in boiler remote monitoring system was designed in this paper by combining the advantage of GPRS and GIS in remote data transmission with configuration monitoring technology. The detail information of the operating conditions of the industrial boiler can be viewed by marking the location of boiler on the electronic map dynamically which can realize the unified management for industrial boiler of a region or city conveniently. Experimental application show that the system has convenience to use, high reliability, which play an active role to improve the operating efficiency, to prevent the boiler accident, and to decrease the energy consumption.

  1. Super Boiler: Packed Media/Transport Membrane Boiler Development and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Liss, William E; Cygan, David F

    2013-04-17

    Gas Technology Institute (GTI) and Cleaver-Brooks developed a new gas-fired steam generation system the Super Boiler for increased energy efficiency, reduced equipment size, and reduced emissions. The system consists of a firetube boiler with a unique staged furnace design, a two-stage burner system with engineered internal recirculation and inter-stage cooling integral to the boiler, unique convective pass design with extended internal surfaces for enhanced heat transfer, and a novel integrated heat recovery system to extract maximum energy from the flue gas. With these combined innovations, the Super Boiler technical goals were set at 94% HHV fuel efficiency, operation on natural gas with <5 ppmv NOx (referenced to 3%O2), and 50% smaller than conventional boilers of similar steam output. To demonstrate these technical goals, the project culminated in the industrial demonstration of this new high-efficiency technology on a 300 HP boiler at Clement Pappas, a juice bottler located in Ontario, California. The Super Boiler combustion system is based on two stage combustion which combines air staging, internal flue gas recirculation, inter-stage cooling, and unique fuel-air mixing technology to achieve low emissions rather than external flue gas recirculation which is most commonly used today. The two-stage combustion provides lower emissions because of the integrated design of the boiler and combustion system which permit precise control of peak flame temperatures in both primary and secondary stages of combustion. To reduce equipment size, the Super Boiler's dual furnace design increases radiant heat transfer to the furnace walls, allowing shorter overall furnace length, and also employs convective tubes with extended surfaces that increase heat transfer by up to 18-fold compared to conventional bare tubes. In this way, a two-pass boiler can achieve the same efficiency as a traditional three or four-pass firetube boiler design. The Super Boiler is consequently

  2. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2007-01-01

    This paper focuses on model analysis of a dynamic model of a bottom fired one-pass smoke tube boiler. Linearized versions of the model are analyzed and show large variations in system gains at steady state as function of load whereas gain variations near the desired bandwidth are small. An analysis...

  3. Selecting Actuator Configuration for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Leth, John-Josef; Wisniewski, Rafal

    2009-01-01

    with particular focus on a boiler in a power plant operated by DONG Energy - a Danish energy supplier. The problem has been reformulated using mathematic notions from economics. The selection of actuator configuration has been limited to the fuel system which in the considered plant consists of three different...

  4. Environmental control during steam boiler washing

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcio A.B.; Abreu Pereira, Vera L. de [Companhia Petroquimica do Nordeste (COPENE), Camacari, BA (Brazil). Div. de Engenharia Ambiental; Ringler, Ulrich E.S. [PROMON Engenharia Ltda., Salvador, BA (Brazil)

    1993-12-31

    The washing and chemical cleaning of boilers, activities of a high polluting potential, are responsible for the generation of wastewater of high contents of heavy metals, suspended solids and chemical oxygen demand (COD). This paper describes the actions carried out by COPENE - Petroquimica do Nordeste S/A - in order to reduce this problem. (author). 10 refs., 3 figs., 2 tabs.

  5. Debugging and Rectification of Electric Heating Boilers

    Institute of Scientific and Technical Information of China (English)

    GE; Cheng-song

    2015-01-01

    Steam system of CRARL mainly provides steam for dissolving system,and steam was transported through pipes.The major equipment is a150kW steam electric heating boiler(FH-JZ-003),with rated evaporation 0.2T/h and rated pressure 1.0MPa.It was found during debugging

  6. Is That Boiler Ready To Blow?

    Science.gov (United States)

    Robinson, Glenn S.; Trombley, Robert E.

    2001-01-01

    Discusses implementation of a thorough assessment program to determine the condition of boilers, pressure vessels and other plant equipment to determine the feasibility of part or entire system replacement. Assessment basics are examined as are tips for selecting the right inspection and engineering contractor for assessments. (GR)

  7. Thermal Analysis of Superheater Platen Tubesin Boilers

    Directory of Open Access Journals (Sweden)

    Shahram Falahatkar

    2014-01-01

    Full Text Available Superheaters are among the most important components of boilers and have major importance due to this operation in high temperatures and pressures. Turbines are sensitive to the fluctuation of superheaterstemperature;therefore even the slightest fluctuation in the outlet vapor temperature from the superheaters does damage the turbine axis and fins. Examining the potential damages of combustion in the boilers and components such as the superheaters can have a vital contribution to the progression of the productivity of boiler, turbine and the power plant altogether it solutions are to be fund to improve such systems. In this study, the focus is on the nearest tube set of superheaters to the combustion chamber.These types of tubes are exposed to a wide range ofcombustion flames such that the most heat transfer to them is radiation type.Here, the 320 MW boiler of Isfahan power plant (Iran, the combustion chamber, 16 burners and the platensuperheater tubes were remodeled by CFD technique. The fluid motion, the heat transfer and combustion processes are analyzed. The two-equation turbulence model of k-εis adopted to measure the eddy viscosity. The eddy dissipation model is used to calculate the combustion as well as the P-1 radiation model to quantify the radiation. The overheated zones of superheater tubes and the combustion chamber are identified in order toimprove this problem by applying the radiation thermal shields and knees with porous crust which are introduced as the new techniques.

  8. Guide to Low-Emission Boiler and Combustion Equipment Selection

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2002-05-06

    Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guide covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.

  9. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  10. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  11. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  12. Life extension of boilers using weld overlay protection

    Energy Technology Data Exchange (ETDEWEB)

    Lai, G.; Hulsizer, P. [Welding Services Inc., Norcross, GA (United States); Brooks, R. [Welding Services Inc., Welding Services Europe, Spijkenisse (Netherlands)

    1998-12-31

    The presentation describes the status of modern weld overlay technology for refurbishment, upgrading and life extension of boilers. The approaches to life extension of boilers include field overlay application, shop-fabricated panels for replacement of the worn, corroded waterwall and shop-fabricated overlay tubing for replacement of individual tubes in superheaters, generating banks and other areas. The characteristics of weld overlay products are briefly described. Also discussed are successful applications of various corrosion-resistant overlays for life extension of boiler tubes in waste-to-energy boilers, coal-fired boilers and chemical recovery boilers. Types of corrosion and selection of weld overlay alloys in these systems are also discussed. (orig.) 14 refs.

  13. A Rule-Based Industrial Boiler Selection System

    Science.gov (United States)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  14. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  15. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been dened. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the ue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...

  16. R&D and Demonstration of Large Domestic CFB Boilers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In order to develop large CFB boilers with independent intellectual property,Xi'an Thermal Power Research Institute (TPRI) established a laboratory with complete functions for the technical development of CFB boilers.This laboratory consists ofa 1-MW and a 4-MW CFB combustion test facilities and a laboratory for limestone desulphurization performance evaluation.It carried out tests on CFB combustion and desulphurization for Chinese typical coals and limestone and research on heat-transfer characteristics and key parts,and developed the first home-made 100-MW CFB boiler.Based on the experience of R&D,the laboratory further researched key techniques for enlarging capacity systematically,and cooperating with Harbin Boiler Co.(HBC),developed the first domestic 210-MW CFB boiler with independent intellectual property and put it into engineering demonstration,laying a solid foundation for the development of CFB boilers of even larger capacity.

  17. Maximising safety in the boiler house.

    Science.gov (United States)

    Derry, Carr

    2013-03-01

    Last month's HEJ featured an article, the second in our new series of guidance pieces aimed principally at Technician-level engineers, highlighting some of the key steps that boiler operators can take to maximise system performance and efficiency, and thus reduce running both costs and carbon footprint. In the third such article, Derry Carr, C.Env, I.Eng, BSc (Hons), M.I.Plant.E., M.S.O.E., technical manager & group gas manager at Dalkia, who is vice-chairman of the Combustion Engineering Association, examines the key regulatory and safety obligations for hospital energy managers and boiler technicians, a number of which have seen changes in recent years with revision to guidance and other documentation.

  18. Recovery boiler model; Soodakattilan kehitystyoe III

    Energy Technology Data Exchange (ETDEWEB)

    Janka, K.; Ylitalo, M.; Sundstroem, K.; Helke, R.; Heinola, M. [Kvaerner Pulping Oy, Tampere (Finland)

    1997-10-01

    The recovery boiler model was further tested and developed. At this moment the model includes submodels for: droplet drying, pyrolysis, char burning, gas burning and for droplet trajectory. During 1996 the formation of CH{sub 4} during pyrolysis and release of sulfur was included to the model. Further the formation of NO from fuel nitrogen and formation of thermal- NO were included to the model using Arrhenius type reaction rate equations. The calculated results are realistic and the model is used as a tool to find out methods to increase the efficiency and availability and decrease the emissions. Analysing the results of the earlier field study of 8 boilers showed that the furnace heat load, fuming rate, find the black liquor composition have influence on the enrichment of the potassium to the fly ash. (orig.)

  19. TRIO specification of a steam boiler controller

    Energy Technology Data Exchange (ETDEWEB)

    Gargantini, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione; Morzenti, A. [Politecnico di Milano (Italy). Dipt. di Electronica e Informazione

    1996-12-31

    We specify a controller for a steam boiler starting from an informal descriptions of its requirements. The specification is formalized in the temporal logic TRIO and its object-oriented extension TRIO+. To obtain a maximum of abstraction and reuse we make the specification parametric with respect to all equipment and hardware features, and we avoid to impose any particular strategy in the management of the available resources and in the control of the critical physical quantities. (orig.)

  20. Circulating fluidized bed boilers design and operations

    CERN Document Server

    Basu, Prabir

    1991-01-01

    This book provides practicing engineers and students with insight into the design and operation of circulating fluidized bed (CFB) boilers. Through a combination of theoretical concepts and practical experience, this book gives the reader a basic understanding of the many aspects of this subject.Important environmental considerations, including solid waste disposal and predicted emissions, are addressed individually in separate chapters. This book places an emphasis on combustion, hydrodynamics, heat transfer, and material issues, and illustrates these concepts with numerous examples of pres

  1. Computer monitoring and optimization of the steam boiler performance

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  3. Optimised control of coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Owens, D.H.; MacConnell, P.F.A.; Neuffer, D.; Dando, R. [University of Exeter, Exeter (United Kingdom). Centre for System and Control Engineering

    1997-07-01

    The objective of the project is to develop and specify a control methodology that will enable existing coal combustion plant to take maximum advantage of modern control techniques. The research is specifically aimed at chain-grate stoker plant (such as the test facility at the Coal Research Establishment, Cheltenham) on which little work has been done for thirty years yet which still represents a large proportion of industrial coal-fired plant in operation worldwide. In detail, the project: reviewed existing control strategies for moving grate stokers, highlighting their limitations and areas for improvements; carried out plant trials to identify the system characteristics such as response time and input/output behaviour; developed a theoretical process based on physical and chemical laws and backed up by trial data; specified control strategies for a single boiler; simulated and evaluated the control strategies using model simulations; developed of an optimised. Control strategy for a single boiler; and assessed the applicability and effects of this control strategy on multiple boiler installations. 67 refs., 34 figs.

  4. Particulate emission abatement for Krakow boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  5. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  6. Application of 1-hydroxyethylidene-1, 1-diphosphonic acid in boiler water for industrial boilers.

    Science.gov (United States)

    Zeng, Bin; Li, Mao-Dong; Zhu, Zhi-Ping; Zhao, Jun-Ming; Zhang, Hui

    2013-01-01

    The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.

  7. Materials and boiler rig testing to support chemical cleaning of once-through AGR boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tice, D.R.; Platts, N.; Raffel, A.S. [Serco Assurance (United Kingdom); Rudge, A. [British Energy Generation Ltd. (United Kingdom)

    2002-07-01

    An extensive programme of work has been carried out to evaluate two candidate inhibited cleaning solutions for possible implementation on plant, which would be the first chemical clean of an AGR boiler. The two candidate cleaning solutions considered were a Stannine-inhibited citric acid/formic acid mixture (GOM106) and inhibited hydrofluoric acid. Citric acid-based cleaning processes are widely used within the UK Power Industry. The GOM106 solution, comprising a mixture of 3% citric acid, 0.5% formic acid and 0.05% Stannine LTP inhibitor, buffered with ammonia to pH 3.5, was developed specifically for the AGR boilers during the 1970's. Although a considerable amount of materials testing work was carried out by British Energy's predecessor companies to produce a recommended cleaning procedure there were some remaining concerns with the use of GOM106, from these earlier studies, for example, an increased risk of pitting attack associated with the removal of thick 9Cr oxide deposits and a risk of unacceptable damage in critical locations such as the upper transition joints and other weld locations. Hence, additional testing was still required to validate the solution for use on plant. Inhibited hydrofluoric acid (HFA) was also evaluated as an alternative reagent to GOM106. HFA has been used extensively for cleaning mild and low'alloy steel boiler tubes in fossil-fired plant in the UK and elsewhere in Europe and is known to remove oxide quickly. Waste treatment is also easier than for the GOM106 process and some protection against damage to the boiler tube materials is provided by complexing of fluoride with ferric ion. Validation of the potential reagents and inhibitors was achieved by assessing the rate and effectiveness of oxide removal from specimens of helical boiler tubing and welds, together with establishing the extent of any metal loss or localised damage. The initial materials testing resulted in the inhibited ammoniated citric / formic acid

  8. Water Boiler Change-Over in Mini-TPP Mode

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2011-01-01

    Full Text Available The paper considers water boiler modernization by its change-over in mini-TPP mode with an expansion tank and a heating turbine of small capacity.  A software complex permitting to evaluate competitive ability of such water boiler modernization in comparison with a cogeneration plant.

  9. 46 CFR 115.812 - Pressure vessels and boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pressure vessels and boilers. 115.812 Section 115.812 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... CERTIFICATION Material Inspections § 115.812 Pressure vessels and boilers. (a) Pressure vessels must be...

  10. CFD investigation of flow through internally riffled boiler tubes

    DEFF Research Database (Denmark)

    Rasmussen, Christian; Houbak, Niels; Sørensen, Jens Nørkær

    1997-01-01

    In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements.......In this paper we show how to model the swirling flow in an internally riffled boiler tube. The flow field is visualized and the results are compared with measurements....

  11. 21 CFR 173.310 - Boiler water additives.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Specific Usage Additives § 173.310 Boiler water additives. Boiler water additives may be safely... Applied Nutrition's Library, Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740... Center for Food Safety and Applied Nutrition's Library, Food and Drug Administration, 5100 Paint...

  12. Large CFB Boilers with Good Prospects in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Changsui

    2007-01-01

    @@ Since many CFB boilers have been put into use, there exist a number of problems urgent to be solved. Based on investigation and analysis on the operating condition of large CFB boilers, ten kinds of the common problems are summed up and relative countermeasures are put forward.

  13. Assessment of the candidate markets for liquid boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    Liquid fuels can be produced from coal in a number of indirect and direct liquefaction processes. While indirect coal liquefaction has been proved commercially outside the United States, most attention in this country has focused on the direct liquefaction processes, which include the processes under examination in this report; namely, the Exxon Donor Solvent (EDS), the H-Coal, and the Solvent Refined Coal (SRC) II processes. The objectives of the study were to: compare the boiler fuels of direct coal liquefaction with residual fuel oil (No. 6 fuel oil) including physical characteristics and environmental hazards, such as carcinogenic characteristics and toxic hazard characteristics; determine whether a boiler fuel market would exist for the coal liquefaction products given their physical characteristics and potential environmental hazards; determine the advantages of utilizing methanol as a boiler fuel on a continuous basis in commercial boilers utilizing existing technology; identify the potential regional candidate markets for direct coal liquefaction products as liquid boiler fuels; determine the distributing and handling costs associated with marketing coal liquefaction products as liquid boiler fuels; determine the current regulatory issues associated with the marketing of coal liquefaction products as boiler fuels; and determine and evaluate other institutional issues associated with the marketing of direct coal liquefaction products as boiler fuels.

  14. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... bed. (3) Where a boiler or process heater of less than 44 megawatts (150 million British thermal units... heaters. 63.988 Section 63.988 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters....

  15. Conversion of a recovery boiler to bark burning

    Energy Technology Data Exchange (ETDEWEB)

    Barsin, J.A.; Pottera, J.; Stewart, G.

    1988-03-01

    Georgia-Pacific (GP) operates a large integrated pulp and paper mill in Crossett, Ark., which produces in excess of 1400 dry tons/day of various grades of bleached kraft paper. Steam generation in the mill is approximately 1.2 million lb/h, which is supplied by a 1500-ton recovery boiler, a 400,000-lb/h wood-waste boiler, and two power boilers. Because GP wanted to minimize its use of natural gas as a boiler fuel and because it had a retired recovery boiler which could be converted, the decision was made to proceed with this fuel conversion product as a means of reducing energy costs per ton of product. This paper also discusses the biomass fuel handling system.

  16. The structure and behavior of salts in kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Backman, R.; Badoi, R.D.; Enestam, S. [Aabo Akademi Univ., Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The melting behavior in the salt system (Na,K)(CO{sub 3},SO{sub 4},S,Cl,OH) is investigated by laboratory methods to enhance and further develop a chemical model for salt mixtures with compositions relevant for recovery boilers. The model, based on both literature data and experimental work can be used as (a) submodel in models for the over-all chemistry in recovery boilers and to estimate (b) deposit formation on heat transfer surfaces (fouling), (c) the melting properties of the fly ash, and (d) the smelt bed in recovery boilers. Experimental techniques used are thermal analysis, high temperature microscopy` and scanning electron microscopy. The model is implemented in a global calculation model which can handle both gas phases and condensed phases in the recovery boiler. The model gives a detailed description of the chemical reactions involved in the fume and dust formation in different locations of the flue gas channel in the boiler. (orig.)

  17. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation......, corrosion of steam coils, deactivation of SCR catalysts and utilization of residual products. Abroad range of research tools as probe measurements on power plants, entrain flow reactorstudies and deposit modelling have been used to gain an improved understanding of ash transformation and ash deposit...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  18. Multiloop control of a drum boiler

    Directory of Open Access Journals (Sweden)

    Alena Kozáková

    2014-05-01

    Full Text Available The Equivalent Subsystems Method (ESM (Kozáková et al., 2011 is methodology of decentralized controller design in the frequency domain which allows designing local controllers using any SISO frequency domain method. The paper deals with the digital ESM version where digital local PID controllers guaranteeing required performance for the full system are designed for individual equivalent subsystems using the practice-oriented Sine-wave method (Bucz et al., 2012. The proposed decentralized controller design procedure was verified on the nonlinear benchmark drum boiler simulation model (Morilla, 2012.

  19. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  20. Establishing an energy efficiency recommendation for commercial boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ware, Michelle J.

    2000-08-01

    To assist the federal government in meeting its energy reduction goals, President Clinton's Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25th percentile of efficiency. Under the direction of DOE's Federal Energy Management Program (FEMP), the Procurement Challenge's goal is to create efficiency recommendations for all energy-using products that could substantially impact the government's energy reduction goals, like commercial boilers. A typical 5,000,000 Btuh boiler, with a thermal efficiency of 83.2%, can have lifetime energy cost savings of $40,000 when compared to a boiler with a thermal efficiency of 78%. For the federal market, which makes up 2% of the boiler market, this means lifetime energy cost savings of over $25,600,000. To establish efficiency recommendations, FEMP uses standardized performance ratings for products sold in the marketplace. Currently, the boiler industry uses combustion efficiency and, sometimes, thermal efficiency performance measures when specifying a commercial boiler. For many years, the industry has used these efficiency measures interchangeably, causing confusion about boiler performance measurements, and making it difficult for FEMP to establish the top 25th percentile of efficiency. This paper will illustrate the method used to establish FEMP's recommendation for boilers. The method involved defining a correlation between thermal and combustion efficiency among boiler classifications; using the correlation to model a data set of all the boiler types available in the market; and identifying how the correlation affected the top 25th percentile analysis. The paper also will discuss the applicability of this method for evaluating other equipment for which there are limited data on performance ratings.

  1. Oil condensation boilers and problems with sulphur. Sulphur separation for oil-fired condensation boilers and flue gas scrubbers - six measurements at different boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1988-11-01

    Three condensation boilers, one condensating scrubber boiler and two waste gas scrubbers were the objects of measurements made to determine to what degree sulphur is separated. The three condensation boilers which are only equipped with a condenser for the condensation of the combustion water shaved separation levels of between 0.5 and 3.5%. They are therefore not suitable for cutting the SO/sub 2/-emissions from the combustion of sulphur-containing fuel oil. The washer boilers showed better results (40-45%) despite the fact that it works with acid washing liquid (2.85 pH). To explain the high level of separation one must assume that under oxygen influence a large part of the sulphur dioxide is further oxidised to sulphuric acid. Alkaline washers showed very good separations of up to 90%. Here again a large part of the sulphur dioxide further oxidises to sulfates.

  2. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers.

    Science.gov (United States)

    2010-10-01

    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  3. 46 CFR 52.20-17 - Opening between boiler and safety valve (modifies PFT-44).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Opening between boiler and safety valve (modifies PFT-44). 52.20-17 Section 52.20-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Firetube Boilers § 52.20-17 Opening between boiler and safety...

  4. 46 CFR 91.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the..., respecting material and inspection of hulls, boilers, and machinery, and the certificate of...

  5. 46 CFR 189.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery... inspection of hulls, boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels... chapter, respecting material and construction of hulls, boilers, and machinery, and certificate...

  6. 46 CFR 71.15-1 - Standards in inspection of hulls, boilers, and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Standards in inspection of hulls, boilers, and machinery..., boilers, and machinery. In the inspection of hulls, boilers, and machinery of vessels, the standards... and inspection of hulls, boilers, and machinery, and the certificate of classification...

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  9. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-08-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2005.

  10. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-07-17

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April 1 to June 30, 2006.

  11. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-04-20

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of January 1 to March 31, 2006.

  12. Boiler Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2005.

  13. Boiler Materials For Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2006-09-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2006.

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-04-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  16. Supercritical boiler material selection using fuzzy analytic network process

    Directory of Open Access Journals (Sweden)

    Saikat Ranjan Maity

    2012-08-01

    Full Text Available The recent development of world is being adversely affected by the scarcity of power and energy. To survive in the next generation, it is thus necessary to explore the non-conventional energy sources and efficiently consume the available sources. For efficient exploitation of the existing energy sources, a great scope lies in the use of Rankin cycle-based thermal power plants. Today, the gross efficiency of Rankin cycle-based thermal power plants is less than 28% which has been increased up to 40% with reheating and regenerative cycles. But, it can be further improved up to 47% by using supercritical power plant technology. Supercritical power plants use supercritical boilers which are able to withstand a very high temperature (650-720˚C and pressure (22.1 MPa while producing superheated steam. The thermal efficiency of a supercritical boiler greatly depends on the material of its different components. The supercritical boiler material should possess high creep rupture strength, high thermal conductivity, low thermal expansion, high specific heat and very high temperature withstandability. This paper considers a list of seven supercritical boiler materials whose performance is evaluated based on seven pivotal criteria. Given the intricacy and difficulty of this supercritical boiler material selection problem having interactions and interdependencies between different criteria, this paper applies fuzzy analytic network process to select the most appropriate material for a supercritical boiler. Rene 41 is the best supercritical boiler material, whereas, Haynes 230 is the worst preferred choice.

  17. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  18. Modeling operation mode of pellet boilers for residential heating

    Science.gov (United States)

    Petrocelli, D.; Lezzi, A. M.

    2014-11-01

    In recent years the consumption of wood pellets as energy source for residential heating lias increased, not only as fuel for stoves, but also for small-scale residential boilers that, produce hot water used for both space heating and domestic hot water. Reduction of fuel consumption and pollutant emissions (CO, dust., HC) is an obvious target of wood pellet boiler manufacturers, however they are also quite interested in producing low- maintenance appliances. The need of frequent maintenance turns in higher operating costs and inconvenience for the user, and in lower boiler efficiency and higher emissions also. The aim of this paper is to present a theoretical model able to simulate the dynamic behavior of a pellet boiler. The model takes into account many features of real pellet boilers. Furthermore, with this model, it is possible to pay more attention to the influence of the boiler control strategy. Control strategy evaluation is based not only on pellet consumption and on total emissions, but also on critical operating conditions such as start-up and stop or prolonged operation at substantially reduced power level. Results are obtained for a residential heating system based on a wood pellet boiler coupled with a thermal energy storage. Results obtained so far show a weak dependence of performance in terms of fuel consumption and total emissions on control strategy, however some control strategies present some critical issues regarding maintenance frequency.

  19. Smooth Surfaces: A review of current and planned smooth surface technologies for fouling resistance in boiler

    Energy Technology Data Exchange (ETDEWEB)

    Corkery, Robert; Baefver, Linda; Davidsson, Kent; Feiler, Adam

    2012-02-15

    Here we have described the basics of boilers, fuels, combustion, flue gas composition and mechanisms of deposition. We have reviewed coating technologies for boiler tubes, including their materials compositions, nano structures and performances. The surface forces in boilers, in particular those relevant to formation of unwanted deposits in boilers have also been reviewed, and some comparative calculations have been included to indicate the procedures needed for further study. Finally practical recommendations on the important considerations in minimizing deposition on boiler surfaces are made

  20. Industrial Research of Condensing Unit for Natural Gas Boiler House

    Science.gov (United States)

    Ziemele, Jelena; Blumberga, Dagnija; Talcis, Normunds; Laicane, Ilze

    2012-12-01

    In the course of work industrial research was carried out at the boiler plant A/S "Imanta" where a 10MW passive condensing economizer working on natural gas was installed after the 116MW water boiler. The work describes the design of the condensing economizer and wiring diagram. During the industrial experiment, the following measurements were made: the temperature of water before and after the economizer; the ambient temperature; the quantity of water passing through the economizer; heat, produced by the economizer and water boilers. The work summarizes the data from 2010-2011.

  1. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle;

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  2. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  3. Model-based Control of a Bottom Fired Marine Boiler

    DEFF Research Database (Denmark)

    Solberg, Brian; Karstensen, Claus M. S.; Andersen, Palle;

    2005-01-01

    This paper focuses on applying model based MIMO control to minimize variations in water level for a specific boiler type. A first principles model is put up. The model is linearized and an LQG controller is designed. Furthermore the benefit of using a steam °ow measurement is compared to a strategy...... relying on estimates of the disturbance. Preliminary tests at the boiler system show that the designed controller is able to control the boiler process. Furthermore it can be concluded that relying on estimates of the steam flow in the control strategy does not decrease the controller performance...

  4. Improvement of steam temperature control in supercritical once thru boilers

    OpenAIRE

    黒石, 卓司; 藤川, 卓爾

    2009-01-01

     New steam temperature control logic for supercritical once thru boilers was developed from the view point of simplicity similar to that of the conventional sub-critical drum type boilers. Water wall outlet steam temperature can be controlled more easily due to larger specific heat capacity of steam than super heater outlet steam temperature. By dividing temperature control into two parts, one at water wall outlet by fuel flow and the other at SH(super heater) outlet by SH spray flow, boiler ...

  5. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  6. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  7. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  8. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  9. COAL COMBUSTION EFFICIENCY IN CFB BOILER

    Institute of Scientific and Technical Information of China (English)

    Hairui Yang; Guangxi Yue

    2005-01-01

    The carbon content in the fly ash from most Chinese circulating fluidized bed (CFB) boilers is much higher than expected, thus directly influencing the combustion efficiency. In the present paper, carbon burnout was investigated both in field tests and laboratory experiments. The effect of coal property, operation condition, gas-solid mixing, char deactivation,residence time and cyclone performance are analyzed seriatim based on large amount of experimental results.A coal index is proposed to describe the coal rank, defined by the ratio of the volatile content to the coal heat value, is a useful parameter to analyze the char burnout. The carbon content in the fly ash depends on the coal rank strongly. CFB boilers burning anthracite, which has low coal index, usually have high carbon content in the fly ash. On the contrary, the CFB boilers burning brown coal, which has high coal index, normally have low carbon content.Poor gas-solid mixing in the furnace is another important reason of the higher carbon content in the fly ash. Increasing the velocity and rigidity of the secondary air could extend the penetration depth and induce more oxygen into the furnace center. Better gas solid mixing will decrease the lean oxygen core area and increase char combustion efficiency.The fine char particles could be divided into two groups according to their reactivity. One group is "fresh" char particles with high reactivity and certain amount of volatile content. The other group of char particles has experienced sufficient combustion time both in the furnace and in the cyclone, with nearly no volatile. These "old" chars in the fly ash will be deactivated during combustion of large coal particles and have very low carbon reactivity. The generated fine inert char particles by attrition of large coal particles could not easily burn out even with the fly ash recirculation. The fraction of large coal particles in coal feed should be reduced during fuel preparation process.The cyclone

  10. Study of Corrosion in a Biomass Boiler

    Directory of Open Access Journals (Sweden)

    C. Berlanga

    2013-01-01

    Full Text Available Biomass plants, apart from producing energy, help to reduce CO2(g emissions. One of the biggest problems for their development is superheater corrosion due to fuel corrosivity, especially of the straw. This limits both the temperature of the vapour and also the effectiveness of the plant. In order to know more about the reactions which happen inside the boiler of biomass, thermodynamic calculations using software (HSC Chemistry have been carried out. Field tests have been carried out in the Sangüesa Biomass Plant in Navarra (Spain: determination of the types of oxides and the deposits formed on the superheaters tubes as well as a program to measure temperatures. Finally, the global results are discussed.

  11. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  12. Control Properties of Bottom Fired Marine Boilers

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Karstensen, Claus M. S.

    2005-01-01

    and to verify whether nonlinear control is needed. Finally a controller based on single loop theory is used to analyse if input constraints become active when rejecting transient behaviour from the disturbance steam flow. The model analysis shows large variations in system gains at steady state as function...... supported by a dynamical decoupling. The results indicate that input constraints will become active when the controller responds to transients in the steam flow disturbance. For this reason an MPC (model predictive control) strategy capable of handling constraints on states and control signals should...... the interactions in the system are inspected to analyse potential benefit from using a multivariable control strategy in favour of the current strategy based on single loop theory. An analysis of the nonlinear model is carried out to further determine the nonlinear characteristics of the boiler system...

  13. Rapid ignition of fluidized bed boiler

    Science.gov (United States)

    Osborn, Liman D.

    1976-12-14

    A fluidized bed boiler is started up by directing into the static bed of inert and carbonaceous granules a downwardly angled burner so that the hot gases cause spouting. Air is introduced into the bed at a rate insufficient to fluidize the entire bed. Three regions are now formed in the bed, a region of lowest gas resistance, a fluidized region and a static region with a mobile region at the interface of the fluidized and static regions. Particles are transferred by the spouting action to form a conical heap with the carbonaceous granules concentrated at the top. The hot burner gases ignite the carbonaceous matter on the top of the bed which becomes distributed in the bed by the spouting action and bed movement. Thereafter the rate of air introduction is increased to fluidize the entire bed, the spouter/burner is shut off, and the entire fluidized bed is ignited.

  14. 46 CFR 52.01-2 - Adoption of section I of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section I of the ASME Boiler and Pressure...) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-2 Adoption of section I of the ASME Boiler and Pressure Vessel Code. (a) Main power boilers and auxiliary boilers shall be designed,...

  15. Numerical simulation of a biomass fired grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2006-01-01

    Computational fluid dynamic (CFD) analysis of the thermal flow in the combustion furnace of a biomass-fired grate boiler provides crucial insight into the boiler's performance. Quite a few factors play important roles in a general CFD analysis, such as grid, models, discretization scheme and so on....... For a grate boiler, the modeling the interaction of the fuel bed and the gas phase above the bed is also essential. Much effort can be found in literature on developing bed models whose results are introduced into CFD simulations of freeboard as inlet conditions. This paper presents a CFD analysis...... of the largest biomass-fired grate boiler in Denmark. The focus of this paper is to study how significantly an accurate bed model can affect overall CFD results, i.e., how necessarily it is to develop an accurate bed model in terms of the reliability of CFD results. The ultimate purpose of the study is to obtain...

  16. Emissions from Power Plant and Industrial Boiler Sector

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides hourly data on SO2, NOx, and CO2 emissions; gross load, steam load, and heat input; from electricity generation units and industrial boilers from...

  17. Transparent and Explicable Boiler Fouling Monitoring with Fuzzy Neural Newtwork

    Institute of Scientific and Technical Information of China (English)

    BinWu; You-TingShen

    1998-01-01

    Fouling on boiler beating surfaces is one of the important factors that damage boiler's economical performance and safety,with on-line monitoring of foiling states on boler heating surfaces,it is possible to optimize sootblower system,to visualize fouling states,to improve performance,as well as to remedy the insufficiency of experiment research in boiler heating surface fouling process.New method based on Fuzzy Neural Network(FNN) is presented to monitor fouling states on boiler heating surfaces on-line.Compared with regular methods,since FNN's reasoning process is transparent and comprehensible,it is possible to explain and comprehend reasoning process,which makes the FNN based system perform as an additional operation consulting system.

  18. Energy efficiency in boilers; Eficiencia energetica em caldeiras

    Energy Technology Data Exchange (ETDEWEB)

    Ponte, Ricardo Silva The [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Dept. de Engenharia Eletrica], email: ricthe@dee.ufc.br; Barbosa, Marcos Antonio Pinheiro; Rufino, Maria da Gracas [Universidade de Fortaleza (UNIFOR), CE (Brazil). Dept. de Engenharia Eletrica], emails: marcos_apb@unifor.br, gsrufino@unifor.br

    2010-07-01

    The boiler is vapor generator equipment that has been widely used in industrial milieu as in electric energy generation in thermoelectric plants. Since their first conception, the boilers have been changed in order to provide security and energetic efficiency. They can present high losses of energy if they don't be operated according to some criteria. A considerable part of boilers operation cost include fuel expenses. So, the adoption of effective steps in order to reduce fuel consumption is important to industry economy, besides it brings environmental benefits through the reduction of pollution liberation. The present article has the objective of emphasizing the effective steps for the economy of energy in boilers, such as, the regulation of combustion; the control of soot and incrustations; the installation of economizers, air heaters and super heaters; the reduction in purges and reintroduction of condensed steam. (author)

  19. Brief introduction of GEF efficient industrial boiler project in China

    Energy Technology Data Exchange (ETDEWEB)

    Meijian, T.

    1996-12-31

    The present situation of installed industrial boilers, their efficiency and environmental impact are assessed. And the factors contribute to the low efficiency and serious pollution are summarized. Based on WB-assisted GEF project, {open_quotes}Efficient Industrial Boiler Project{close_quotes} aimed at CO{sub 2} mitigation in China, a series of effective measures to bring the GHG emission under control are addressed, in technology, system performance, and operation management aspects.

  20. Industrial Research of Condensing Unit for Natural Gas Boiler House

    OpenAIRE

    Ziemele, J; Blumberga, D; Talcis, N; Burmistre, I

    2012-01-01

    In the course of work industrial research was carried out at the boiler plant A/S “Imanta” where a 10MW passive condensing economizer working on natural gas was installed after the 116MW water boiler. The work describes the design of the condensing economizer and wiring diagram. During the industrial experiment, the following measurements were made: the temperature of water before and after the economizer; the ambient temperature; the quantity of water passing through ...

  1. Performance analysis of heating plants equipped with condensing boilers

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Schibuola, L.

    1986-01-01

    The behaviour of the condensing boilers is strictly bound to the temperature of the water coming back from the plant. This temperature depends on the control modes and on the meteorological conditions. The seasonal performance has been computed for a heating plant of a building equipped with a condensing boiler simulating the load at short time intervals through a suitable modification of TRNSYS. The study has been carried out in the climate of Padova. For other towns a rough estimate is proposed.

  2. Effect of maintenance on boiler efficiency. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.; Gibbons, C.; Morgan, P.

    1985-01-01

    This study was carried out on fourteen boiler installations under site conditions by monitoring flue-gas oxygen content and temperature together with ambient air temperature to enable the combustion-loss to be calculated. By undertaking the tests on boilers in both clean and dirty conditions, and recording data every minute over a period of two to three days, representative mean combustion-loss figures were obtained.

  3. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    OpenAIRE

    K Sujatha; VENMATHI, M.; N. Pappa

    2012-01-01

    Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2), excess oxygen (O2), Nitrogen dioxide (NOx), Sulphur dioxide (SOx) and Carbon monox...

  4. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  5. On the design of residential condensing gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    1997-02-01

    Two main topics are dealt with in this thesis. Firstly, the performance of condensing boilers with finned tube heat exchangers and premix burners is evaluated. Secondly, ways of avoiding condensate formation in the flue system are evaluated. In the first investigation, a transient heat transfer approach is used to predict performance of different boiler configurations connected to different heating systems. The smallest efficiency difference between heat loads and heating systems is obtained when the heat exchanger gives a small temperature difference between flue gases and return water, the heat transfer coefficient is low and the thermostat hysteresis is large. Taking into account heat exchanger size, the best boiler is one with higher heat transfer per unit area which only causes a small efficiency loss. The total heating cost at part load, including gas and electricity, has a maximum at the lowest simulated heat load. The heat supplied by the circulation heat pump is responsible for this. The second investigation evaluates methods of drying the flue gases. Reheating the flue gases in different ways and water removal in an adsorbent bed are evaluated. Reheating is tested in two specially designed boilers. The necessary reheating is calculated to approximately 100-150 deg C if an uninsulated masonry chimney is used. The tested boilers show that it is possible to design a proper boiler. The losses, stand-by and convective/radiative, must be kept at a minimum in order to obtain a high efficiency. 86 refs, 70 figs, 16 tabs

  6. Establishing an Energy Efficiency Recommendation for Commercial Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ware, Michelle, J.

    2000-08-01

    To assist the federal government in meeting its energy reduction goals, President Clinton’s Executive Order 12902 established the Procurement Challenge, which directed all federal agencies to purchase equipment within the top 25~ percentile of efficiency. Under the direction of DOE’s Federal Energy Management Program (FEMP), the Procurement Challenge’s goal is to create efficiency recommendations for all energy-using products (e.g. commercial boilers, chillers, motors) that could substantially impact the government’s energy reduction goals. When establishing efficiency recommendations, FEMP looks at standardized performance ratings for products sold in the U.S. marketplace. Currently, the commercial boiler industry uses combustion efficiency and, sometimes, thermal efficiency as metrics when specifying boiler performance. For many years, the industry has used both metrics interchangeably, causing confusion in the market place about boiler performance. This paper discusses the method used to establish FEMP’s efficiency recommendation for commercial boilers in lieu of the various, and somewhat confusing, efficiency ratings currently available. The paper also discusses potential energy cost savings for federal agencies that improve the efficiency of boilers specified and purchased.

  7. Exhaust gas side corrosion of oil fired central heating boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-09-01

    While Swiss boiler producers aim primarily at achieving low exhaust gas temperatures, in our northern neighbouring country, lower boiler water temperatures are being set as favourite objectives to be met. The first method aims at reducing the exhaust gas losses, i.e. of the heat content of the exhaust gases; the second one aims at reducing service life losses (= losses in the off-air of the boiler). Flue-gas caused corrosion, however, sets practical limits to the energy-saving reduction of the exhaust gas and boiler water temperatures. To be able to define this practical limit more exactly is the main goal of this project which is supported by NEFF and which is carried out in cooperation with the Institute for Energy Engineering of the ETHZ (Professor P. Suter). In addition to this, however, the author also head to find out about sill inexplained cases of corrosion in boilers which are being operated correctly, i.e. with comparably high boiler water and exhaust gas temperatures.

  8. Notice of construction for proposed backup package boiler

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The Hanford Site steam plant consists of coal-fired boilers located at the 200 East and the 200 West Areas. These boilers have provided steam to heat and cool facilities in the 200 Areas since the early 1940`s. As part of Project L-017, ``Steam System Rehabilitation, Phase II``, the 200 West Area coal-fired boilers will be permanently shut down. The shut down will only occur after a proposed package backup boiler (50,000 pounds per hour (lb/hr) steam, firing No. 2 oil) is installed at the 200 West Area. The proposed backup boiler will provide back-up services when the 200 East Area steam line, which provides steam to the 200 West Area, is down for maintenance or, when the demand for steam exceeds the supply available from the 200 East Plant. This application is a request for approval to construct and operate the package backup boiler. This request is being made pursuant to Washington Administration Code (WAC) Chapter 173-400, ``General Regulations for Air Pollution Sources``, and Chapter 173-460, ``Controls for New Sources of Toxic Air Pollutants``.

  9. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  10. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  11. Ultra-Supercritical Pressure CFB Boiler Conceptual Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan; Steve Goidich; Archie Robertson; Song Wu

    2006-06-30

    Electric utility interest in supercritical pressure steam cycles has revived in the United States after waning in the 1980s. Since supercritical cycles yield higher plant efficiencies than subcritical plants along with a proportional reduction in traditional stack gas pollutants and CO{sub 2} release rates, the interest is to pursue even more advanced steam conditions. The advantages of supercritical (SC) and ultra supercritical (USC) pressure steam conditions have been demonstrated in the high gas temperature, high heat flux environment of large pulverized coal-fired (PC) boilers. Interest in circulating fluidized bed (CFB) combustion, as an alternative to PC combustion, has been steadily increasing. Although CFB boilers as large as 300 MWe are now in operation, they are drum type, subcritical pressure units. With their sizes being much smaller than and their combustion temperatures much lower than those of PC boilers (300 MWe versus 1,000 MWe and 1600 F versus 3500 F), a conceptual design study was conducted herein to investigate the technical feasibility and economics of USC CFB boilers. The conceptual study was conducted at 400 MWe and 800 MWe nominal plant sizes with high sulfur Illinois No. 6 coal used as the fuel. The USC CFB plants had higher heating value efficiencies of 40.6 and 41.3 percent respectively and their CFB boilers, which reflect conventional design practices, can be built without the need for an R&D effort. Assuming construction at a generic Ohio River Valley site with union labor, total plant costs in January 2006 dollars were estimated to be $1,551/kW and $1,244/kW with costs of electricity of $52.21/MWhr and $44.08/MWhr, respectively. Based on the above, this study has shown that large USC CFB boilers are feasible and that they can operate with performance and costs that are competitive with comparable USC PC boilers.

  12. Orion Boiler Plate Airdrop Test System

    Science.gov (United States)

    Machin, Ricardo A.; Evans, Carol T.

    2013-01-01

    On the 29th of February 2012 the Orion Capsule Parachute Assembly System (CPAS) project attempted to perform an airdrop test of a boilerplate test article for the second time. The first attempt (Cluster Development Test 2, July 2008) to deliver a similar boilerplate from a C-17 using the Low Velocity Air Drop (LVAD) technique resulted in the programmer parachute failing to properly inflate, the test article failing to achieve the desired test initiation conditions, and the test article a total loss. This paper will pick up where the CDT-2 failure investigation left off, describing the test technique that was adopted, and outline the modeling that was performed to gain confidence that the second attempt would be successful. The second boiler plate test (Cluster Development Test 3-3) was indeed a complete success and has subsequently been repeated several times, allowing the CPAS project to proceed with the full scale system level development testing required to integrate the hardware to the first Entry Flight Test vehicle as well as go into the Critical Design Review with minimum risk and a mature design.

  13. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  14. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Gandy, David W. [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Shingledecker, John P. [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2011-05-11

    Coal-fired power plants are a significant part of the nation's power generating capacity, currently accounting for more than 55% of the country's total electricity production. Extending the reliable lifetimes of fossil fired boiler components and reducing the maintenance costs are essential for economic operation of power plants. Corrosion and erosion are leading causes of superheater and reheater boiler tube failures leading to unscheduled costly outages. Several types of coatings and weld overlays have been used to extend the service life of boiler tubes; however, the protection afforded by such materials was limited approximately one to eight years. Power companies are more recently focused in achieving greater plant efficiency by increasing steam temperature and pressure into the advanced-ultrasupercritical (A-USC) condition with steam temperatures approaching 760°C (1400°F) and operating pressures in excess of 35MPa (5075 psig). Unfortunately, laboratory and field testing suggests that the resultant fireside environment when operating under A-USC conditions can potentially cause significant corrosion to conventional and advanced boiler materials1-2. In order to improve reliability and availability of fossil fired A-USC boilers, it is essential to develop advanced nanostructured coatings that provide excellent corrosion and erosion resistance without adversely affecting the other properties such as toughness and thermal fatigue strength of the component material.

  15. Analysis of a waste-heat boiler by CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongziang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    Waste-heat boilers play important roles in the continuous operation of a smelter and in the conservation of energy. However, the fluid flow and heat transfer behaviour has not been well studied, concerning the boiler performance and design. This presentation describes simulated gas flow and heat transfer of a waste-heat boiler in the Outokumpu copper flash smelting process. The governing transport equations for the conservation of mass, momentum and enthalpy were solved with a commercial CFD-code PHOENICS. The standard k-{epsilon} turbulence model and a composite-flux radiation model were used in the computations. The computational results show that the flow is strongly recirculating and distinctly three-dimensional in most part of the boiler, particularly in the radiation section. The predicted flow pattern and temperature distribution were in a good agreement with laboratory models and industrial measurements. The results provide detailed information of flow pattern, the temperature distribution and gas cooling efficiency. The CFD proved to be a useful tool in analysing the boiler operation. (author)

  16. Investigations of operation problems at a 200 MWe PF boiler

    Directory of Open Access Journals (Sweden)

    Peta Sandile

    2015-09-01

    Full Text Available To minimize oxides of nitrogen (NOx emission, maximize boiler combustion efficiency, achieve safe and reliable burner combustion, it is crucial to master global boiler and at-the-burner control of fuel and air flows. Non-uniform pulverized fuel (PF and air flows to burners reduce flame stability and pose risk to boiler safety by risk of reverse flue gas and fuel flow into burners. This paper presents integrated techniques implemented at pilot ESKOM power plants for the determination of global boiler air/flue gas distribution, wind-box air distribution and measures for making uniform the flow being delivered to burners within a wind-box system. This is achieved by Process Flow Modelling, at-the-burner static pressure measurements and CFD characterization. Global boiler mass and energy balances combined with validated site measurements are used in an integrated approach to calculate the total (stoichiometric + excess air mass flow rate required to burn the coal quality being fired, determine the actual quantity of air that flows through the burners and the furnace ingress air. CFD analysis and use of at-the-burner static, total pressure and temperature measurements are utilized in a 2-pronged approach to determine root-causes for burner fires and to evaluate secondary air distribution between burners.

  17. Plasma-supported coal combustion in boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    Askarova, A.S.; Karpenko, E.I.; Lavrishcheva, Y.I.; Messerle, V.E.; Ustimenko, A.B. [Kazakh National University, Alma Ata (Kazakhstan). Dept. of Physics

    2007-12-15

    Plasma activation promotes more effective and environmentally friendly low-rank coal combustion. This paper presents Plasma Fuel Systems that increase the burning efficiency of coal. The systems were tested for fuel oil-free start-up of coal-fired boilers and stabilization of a pulverized-coal flame in power-generating boilers equipped with different types of burners, and burning all types of power-generating coal. Also, numerical modeling results of a plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler are discussed in this paper. Two kinetic mathematical models were used in the investigation of the processes of air/fuel mixture plasma activation: ignition and combustion. A I-D kinetic code PLASMA-COAL calculates the concentrations of species, temperatures, and velocities of the treated coal/air mixture in a burner incorporating a plasma source. The I-D simulation results are initial data for the 3-D-modeling of power boiler furnaces by the code FLOREAN. A comprehensive image of plasma-activated coal combustion processes in a furnace of a pulverized-coal-fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated.

  18. Slag monitoring system for combustion chambers of steam boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

    2009-07-01

    The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

  19. How much Energy is Embodied in your Central Heating Boiler?

    Science.gov (United States)

    Koubogiannis, D.; Nouhou, C.

    2016-11-01

    Life Cycle Analysis (LCA) is an important tool in current research to quantitatively assess energy consumption and environmental impact of a building. In the context of LCA, the Embodied Energy (EE) related to the building and the corresponding Embodied CO2 emissions are valuable data. In such a case, these data concern the constitutive materials of the building and any subsystem, component or equipment in it. Usually, after calculating the mass of these materials, embodied energy values are estimated multiplying them by the corresponding EE coefficients concerning the production of these materials (EEMP). However, apart from transportation energy costs, another part of EE is that consumed for the manufacturing of any item as a finished product. The present work focuses on the manufacturing EE (EEMFG) of central heating boilers in Hellenic dwellings. Six typical boilers of different types are studied. Each of them is analyzed to its constitutive materials and its EEMP is estimated. For four of them, the boiler house where it was constructed in Greece was visited and data were collected. Based on them the corresponding boiler EEMFG values are estimated. The results concerning the EE for material production and manufacturing, as well as the results concerning the corresponding ECO2 values are discussed and assessed. Benchmark values correlating EE and ECO2 with the mass or the heat rate of the boiler are extracted.

  20. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  1. Optimisation of Marine Boilers using Model-based Multivariable Control

    DEFF Research Database (Denmark)

    Solberg, Brian

    Traditionally, marine boilers have been controlled using classical single loop controllers. To optimise marine boiler performance, reduce new installation time and minimise the physical dimensions of these large steel constructions, a more comprehensive and coherent control strategy is needed. Th......). In the thesis the pressure control is based on this new method when on/off burner switching is required while the water level control is handled by a model predictive controller........ This research deals with the application of advanced control to a specific class of marine boilers combining well-known design methods for multivariable systems. This thesis presents contributions for modelling and control of the one-pass smoke tube marine boilers as well as for hybrid systems control. Much...... of the focus has been directed towards water level control which is complicated by the nature of the disturbances acting on the system as well as by low frequency sensor noise. This focus was motivated by an estimated large potential to minimise the boiler geometry by reducing water level fluctuations...

  2. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  3. Mekanisme Proses Pemanasan Air Di Dalam Boiler Dengan Mempergunakan Heater Tambahan Untuk Efisiensi Pembakaran

    OpenAIRE

    Helmon Sihombing

    2010-01-01

    Pada proses pemanasan air, air yang berasal dari raw water (air tanah) tidak langsung dibakar didalam boiler. dalam hal ini digunakan peralatan instrumen Deaerator dan economizer yang berfungsi untuk pemanasan awal sebelum dibakar didalam boiler. Fungsi deaerator dan economizer ini adalah sebagai komponen pembantu untuk memanaskan air sebelum dibakar didalam boiler. Apabila pemanasan air langsung dilakukan didalam boiler maka akan membutuhkan waktu yang cukup lama dan menggunakan bahan b...

  4. 46 CFR 97.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 97.30-1 Section... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 97.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief...

  5. 46 CFR 196.30-1 - Repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Repairs to boilers and pressure vessels. 196.30-1... VESSELS OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 196.30-1 Repairs to boilers and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the Chief...

  6. 46 CFR 167.25-1 - Boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Boilers, pressure vessels, piping and appurtenances. 167... SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-1 Boilers, pressure vessels, piping and... the following standards for boilers, pressure vessels, piping and appurtenances: (1)...

  7. 46 CFR 167.25-5 - Inspection of boilers, pressure vessels, piping and appurtenances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inspection of boilers, pressure vessels, piping and...) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Marine Engineering § 167.25-5 Inspection of boilers, pressure vessels, piping and appurtenances. The inspection of boilers, pressure vessels, piping and...

  8. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the...

  9. 46 CFR 109.421 - Report of repairs to boilers and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Report of repairs to boilers and pressure vessels. 109... Report of repairs to boilers and pressure vessels. Before making repairs, except normal repairs and maintenance such as replacement of valves or pressure seals, to boilers or unfired pressure vessels...

  10. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Permits for boilers and industrial... PROGRAM Special Forms of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous.... Owners and operators of new boilers and industrial furnaces (those not operating under the interim...

  11. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Science.gov (United States)

    2011-05-18

    ... AGENCY 40 CFR Parts 60 and 63 RIN 2060-AQ25; 2060-AO12 Industrial, Commercial, and Institutional Boilers... Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters'' and ``Standards...: Industrial, Commercial, and Institutional Boilers and Process Heaters'': Mr. Brian Shrager, Energy...

  12. Characterization and quantification of deposits build up and removal in straw suspension fired boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Shafique Bashir, Muhammad; Wedel, Stig;

    : 1) The influence of local boiler conditions on deposit formation in suspension fired boilers using wood or co-firing straw and wood, 2) quantification of deposit removal in biomass suspension firing boilers with regards both to natural shedding and soot blower induced shedding, 3) established...

  13. Steam Boiler: Extended FOCUS Specification and its Verification in Isabelle/HOL

    OpenAIRE

    Maria Spichkova

    2016-01-01

    The main idea of this case study was taken from [1]. This paper represents an extension of the Focus specification [1] of the steam boiler, its translation in Isabelle/HOL [2] and the corresponding formal Isabelle/HOL proofs for the translated specifications, which show that the specified steam boiler architecture fulfills the specified steam boiler requirements.

  14. 46 CFR 78.33-1 - Repairs of boiler and pressure vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Repairs of boiler and pressure vessels. 78.33-1 Section... OPERATIONS Reports of Accidents, Repairs, and Unsafe Equipment § 78.33-1 Repairs of boiler and pressure vessels. (a) Before making any repairs to boilers or unfired pressure vessels, the chief engineer...

  15. 7 CFR 51.2833 - U.S. No. 1 Boilers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. No. 1 Boilers. 51.2833 Section 51.2833 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...) Grades § 51.2833 U.S. No. 1 Boilers. U.S. No. 1 Boilers consists of onions which meet all...

  16. 46 CFR 62.35-20 - Oil-fired main boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Oil-fired main boilers. 62.35-20 Section 62.35-20... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-20 Oil-fired main boilers. (a) General. (1) All main boilers, regardless of intended mode of operation, must be provided with...

  17. 46 CFR 52.01-35 - Auxiliary, donkey, fired thermal fluid heater, and heating boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Auxiliary, donkey, fired thermal fluid heater, and... requirements for miscellaneous boiler types, such as donkey, fired thermal fluid heater, heating boiler, etc... (CONTINUED) MARINE ENGINEERING POWER BOILERS General Requirements § 52.01-35 Auxiliary, donkey, fired...

  18. Aspects of new material application for boilers construction; Aspekty wdrazania nowych materialow w budowie kotlow

    Energy Technology Data Exchange (ETDEWEB)

    Czerniawski, R. [RAFAKO S.A., Raciborz (Poland)

    1996-12-31

    Review of steel types commonly used for energetic boilers construction has been done. The worldwide trends in new materials application for improvement of boilers quality have been discussed. The mechanical properties of boiler construction steels have been shown and compared. 3 refs, 5 figs, 1 tab.

  19. 46 CFR 196.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery. 196.15-15 Section... VESSELS OPERATIONS Test, Drills, and Inspections § 196.15-15 Examination of boilers and machinery. (a) It shall be the duty of the chief engineer when he assumes charge of the boilers and machinery of a...

  20. 46 CFR 97.15-15 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Examination of boilers and machinery. 97.15-15 Section... VESSELS OPERATIONS Tests, Drills, and Inspections § 97.15-15 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel...

  1. 46 CFR 78.17-30 - Examination of boilers and machinery.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Examination of boilers and machinery. 78.17-30 Section... OPERATIONS Tests, Drills, and Inspections § 78.17-30 Examination of boilers and machinery. It shall be the duty of the chief engineer when assuming charge of the boilers and machinery of a vessel to...

  2. 46 CFR 32.35-1 - Boilers and machinery-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Boilers and machinery-TB/ALL. 32.35-1 Section 32.35-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-1 Boilers and machinery—TB/ALL. Boilers, main and...

  3. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  4. Heat flux distribution on circulating fluidized bed boiler water wall

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The future of circulating fluidized bed (CFB)combustion technology is in raising the steam parameters to supercritical levels.Understanding the heat flux distribution on the water wall is one of the most important issues in the design and operation of supercritical pressure CFB boilers.In the present paper,the finite element analysis (FEA) method is adopted to predict the heat transfer coefficient as well as the heat flux of the membrane wall and the results are validated by direct measurement of the temperature around the tube.Studies on the horizontal heat flux distribution were conducted in three CFB boilers with different furnace size,tube dimension and water temperature.The results are useful in supercritical pressure CFB boiler design.

  5. Application of digital holography to circle flow bed boiler measurement

    Institute of Scientific and Technical Information of China (English)

    PU Shiliang; Denis Lebrun; WANG Qinghui; CEN Kefa; REN Kuanfang

    2007-01-01

    The spatial distribution of particles in the boiler is very important in the study on the circle flow bed boiler (CFB). Digital in-line holography technique was applied to obtain the spatial and diameter distribution of the particles inside the boiler. A HE-NE laser was used to illuminate the particles inside the CFB through two glass windows and the in-line diffraction pattern was recorded by a CCD camera. The diffraction can be interpreted as a convolution between a family of wavelet functions and the object function. So the three-dimensional (3D) images of the particles in the two-phase flow were reconstructed by the convolution between diffraction pattern and wavelet functions. The particle diameters and 3D coordinates were calculated from the reconstructed 3D images by a series of image-processing methods, followed by a discussion of the experimental results.

  6. Corrosion protection of condensing boilers with organic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Faller, M.; Schicker, M.; Richner, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2000-07-01

    An investigation was conducted into whether organic coatings may be used to provide protection from the corrosive condensate which occurs in condensing boilers. The suitability of various coating systems was investigated in laboratory tests. On the basis of these results, a heat curing phenolic resin was selected for field trials in boilers from various manufacturers. The boilers were operated for up to two years. The condition of the coating was investigated during operation and after completion of the trial period. It was found that the selected coating provides good corrosion protection in areas not exposed to very high temperatures, which is precisely where condensation is most severe and there is thus the greatest risk of corrosion. (orig.)

  7. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... developed to predict the combustion processes on the grate and the release rate of KCl vapor. These outputs form the boundary conditions for the CFD analysis. The bed model has been validated through comparison with experimental data obtained during batch combustion of straw. It was found that the heat...

  8. Modelling and Simulation of the 50 MWe CFBC Boiler

    Institute of Scientific and Technical Information of China (English)

    WeidouNi; ZhengLi

    1994-01-01

    A general mathematical model of CFBC boiler by taking the 50 MWe Tsinghua CFBC boiler as the object is established.the model has some distinguished features,Firstly,in order to describe the CFBC precisely,emphasis is paid to take the broad soze distribution of feeding coal and bed invertory into consideration.Secondly,the emplogying of cell model makes it possible to show the distribution of any interested vaiabled inside furnace,Thirdly,since partial aspects such as hydrodynamics,devolatilization of coal,combustion of char and the formation and reduction of harmful substances are considered in detail,therefore the emission at the outlet of the furnace can be estimated .By using the model,simulation is carried out to predict the performance of the 50 MWe Tsinghua CFBC boiler for both design and off-design operation.The results are useful for dsigners and possible improvement of design.

  9. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  10. Boiler Tube Corrosion Characterization with a Scanning Thermal Line

    Science.gov (United States)

    Cramer, K. Elliott; Jacobstein, Ronald; Reilly, Thomas

    2001-01-01

    Wall thinning due to corrosion in utility boiler water wall tubing is a significant operational concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. Unfortunately, ultrasonic inspection is very manpower intense and slow. Therefore, thickness measurements are typically taken over a relatively small percentage of the total boiler wall and statistical analysis is used to determine the overall condition of the boiler tubing. Other inspection techniques, such as electromagnetic acoustic transducer (EMAT), have recently been evaluated, however they provide only a qualitative evaluation - identifying areas or spots where corrosion has significantly reduced the wall thickness. NASA Langley Research Center, in cooperation with ThermTech Services, has developed a thermal NDE technique designed to quantitatively measure the wall thickness and thus determine the amount of material thinning present in steel boiler tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed and accuracy for large structures such as boiler water walls. A theoretical basis for the technique will be presented to establish the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of the application of this technology to actual water wall

  11. Condition monitoring, diagnostic and controlling tool for boiler feed pump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sohail [Siemens AG, Muelheim (Germany). Energy Sector; Leithner, Reinhard; Kosyna, Guenter [TU Braunschweig (Germany)

    2010-07-01

    The boiler feed pump is an important component of a thermal power generation cycle and demands high safety and unquestionable availability for flexible power plant operation. In this research paper, the methodology of a general purpose condition monitoring, diagnostic and controlling tool is presented, which can address the challenges of operational safety and availability as well as optimal operation of a boiler feed pump. This tool not only effectively records the life time consumption of both casings and rotors and monitors the small gaps between casings and rotors but also suggests appropriate actions in order to ensure that the pump operates within the allowable design limits. (orig.)

  12. Modelling of Boiler Heating Surfaces and Evaporator Circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circula......Dynamic models for simulating boiler performance have been developed. Models for the ue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate...

  13. CFD Studies on Multi Lead Rifled [MLR] Boiler Tubes

    Directory of Open Access Journals (Sweden)

    Dr T C Mohankumar

    2013-09-01

    Full Text Available This paper reports the merits of multi lead rifled [MLR] tubes in vertical water tube boiler using CFD tool. Heat transfer enhancement of MLR tubes was mainly taken in to consideration. Performance of multi lead rifled tube was studied by varying its influencing geometrical parameter like number of rifling, height of rifling, length of pitch of rifling for a particular length. The heat transfer analysis was done at operating conditions of an actual coal fired water tube boiler situated at Apollo Tyres LTD, Chalakudy, India for saturated process steam production. The results showed that the heat transfer increased when compared with existing inner plane wall water tubes.

  14. 46 CFR 53.01-3 - Adoption of section IV of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Adoption of section IV of the ASME Boiler and Pressure...) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-3 Adoption of section IV of the ASME Boiler and Pressure Vessel Code. (a) Heating boilers shall be designed, constructed, inspected,...

  15. Operator's Manual, Boiler Room Operations and Maintenance. Supplement A, Air Pollution Training Institute Self-Instructional Course SI-466.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Training Inst.

    This Operator's Manual is a supplement to a self-instructional course prepared for the United States Environmental Protection Agency. This publication is the Boiler Room Handbook for operating and maintaining the boiler and the boiler room. As the student completes this handbook, he is putting together a manual for running his own boiler. The…

  16. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  17. The real time cascade generalized predictive control and application to a boiler circuit system

    Institute of Scientific and Technical Information of China (English)

    Xu Min; Li Shaoyuan

    2005-01-01

    Boiler-circuit system in a circulating fluidized bed combustion boiler is a complex and typical industrial process with a large lag and time-delay. Conventional PID algorithm can not obtain satisfied performance, especially in the presence of disturbance. A cascade generalized predictivecontrol (CGPC) strategy, is which the inner loop can restrain the disturbance while the outer loop can eliminate the offset, is proposed in this paper. We develop cascade GPC algorithm instead of conventional PID algorithm in the boiler-circuit system. Simulation on experimental boiler-circuit models of circulating fluidized bed combustion boiler shows strong robustness.

  18. Feasibility of Combustion of Petroleum Coke in 230t/h Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    HAN Dong-tai; SONG Zheng-chang; XU Tao

    2003-01-01

    In order to reuse the high sulfur petroleum coke, the waste in chemical industry, as fuel of power plant for energy recovery, the combustion property of petroleum coke was researched experimentally in circulating fluidized bed (CFB) boiler. The performance of the boiler in burning mixed fuel with different ratios of coal to petroleum coke is obtained. Based on the experimental data, Factors influencing the stability of combustion,thermal efficiency of boiler, and emissions and desulphurisation are discussed. This study demonstrates that the combustion of petroleum coke in CFB boiler is applicable, and has great significance on the design and operation of CFB boiler to burn petroleum coke.

  19. A mathematical model for optimized operation and control in a CDQ-Boiler system

    Institute of Scientific and Technical Information of China (English)

    De Wang; Tao Yang; Zhi Wen; Junxiao Feng; Ning Kong; Qin Wang; Weimin Wang

    2005-01-01

    Based on analyzing the thermal process of a CDQ (coke dry quenching)-Boiler system, the mathematical model for optimized operation and control in the CDQ-Boiler system was developed. It includes a mathematical model for heat transferring process in the CDQ unit, a mathematical model for heat transferring process in the boiler and a combustion model for circulating gas in the CDQ-Boiler system. The model was verified by field data, then a series of simulations under several typical operating conditions of CDQ-Boiler were carried on, and in tum, the online relation formulas between the productivity and the optimal circulating gas, and the one between the productivity and the optimal second air, were achieved respectively. These relation equations have been successfully used in a CDQ-Boiler computer control system in the Baosteel, to realize online optimized guide and control, and meanwhile high efficiency in the CDQ-Boiler system has been achieved.

  20. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  1. 30 CFR 77.411 - Compressed air and boilers; general.

    Science.gov (United States)

    2010-07-01

    ... Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... standards and specifications of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code....

  2. Combustion zone investigation in fuel flexible suspension fired boilers, Experimental

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Hvid, Søren Lovmand

    The purpose of the project is to obtain data for full-scale validation of predictive models for combustion and cocombustion of biomass in utility boilers. In addition, focus was on development of innovative optical measuring techniques as a means to increase data quality by fast measurements and ...

  3. Modelling of boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2002-01-01

    Dynamic models for simulating boiler performance have been developed. Models for the flue gas side and for the evaporator circuit have been developed for the purpose of determining material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate...

  4. A burner for plasma-coal starting of a boiler

    Science.gov (United States)

    Peregudov, V. S.

    2008-04-01

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  5. A burner for plasma-coal starting of a boiler

    Energy Technology Data Exchange (ETDEWEB)

    V.S. Peregudov [Kutateladze Institute of Thermal Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2008-04-15

    Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.

  6. Critical review of kraft recovery boiler air systems

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, C.; Blackwell, B.R.

    1987-10-01

    Combustion air systems offered by major world suppliers of kraft recovery boilers are reviewed. A preliminary mathematical analysis of the air-jet trajectories in the furnace indicated that the conventional air systems leave room for improving the jet penetration into the furnace core. 9 refs., 2 figs., 1 tab.

  7. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Frandsen, Flemming; Hansen, Jørn;

    2004-01-01

    are adopted to minimize deposit problems at the two boilers. At Masnedø the final superheater steam temperature is 520 °C, no soot blowing of the superheaters is applied and a relatively large superheater area is used. At Ensted, an external wood-fired superheater is used in order to obtain a final steam...... temperature of 542 °C, while the steam exit temperature of the straw-fired boiler is 470 °C. The mature Masnedø deposit had a thickness of 2 to 15 centimeters and consisted of three distinct main layers. The thick intermediate layer was depleted in chlorine but rich in Si, K, and Ca. This Masnedø intermediate......Straw is used as fuel in relatively small-scale combined heat and power producing (CHP) grate boilers in Denmark. The large content of potassium and chlorine in straw greatly increases the deposit formation and corrosion of the superheater coils, compared to boilers firing coal. In this study...

  8. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  9. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  10. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  11. The Boiler Room and Beyond: Bridging Standards and Community.

    Science.gov (United States)

    Active Learner: A Foxfire Journal for Teachers, 2000

    2000-01-01

    Mini-field trips to the boiler room and bus garage at a South Dakota elementary school increased student interest in their school and community and resulted in increased attendance. Photographs, interviews, and a student-produced book on the trips reinforced student interest and provided the means to integrate the curriculum and incorporate…

  12. Modelling of a one pass smoke tube boiler

    DEFF Research Database (Denmark)

    Karstensen, Claus M. S.; Sørensen, Kim

    2004-01-01

    A nonlinear state-space model with five states describing a one pass smoke tube boiler has been formulated. By means of mass- and energy-balance the model describes the dynamics of the Furnace, the Convection Zone and the Water/Steam Part and the three sub models are merged into an overall model...

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2001-10-10

    This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.

  14. Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers.

    Science.gov (United States)

    Yang, Xiaoyang; Geng, Chunmei; Sun, Xuesong; Yang, Wen; Wang, Xinhua; Chen, Jianhua

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler (BB1) and one specially designed (BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography-mass spectrometry (GC-MS). The total emission factors (EFs) of PAHs ranged from 0.0064 to 0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar. The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts.

  15. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  16. Iron aluminide weld overlay coatings for boiler tube protection in coal-fired low NOx boilers

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-12-01

    Iron aluminide weld overlay coatings are currently being considered for enhanced sulfidation resistance in coal-fired low NO{sub x} boilers. The use of these materials is currently limited due to hydrogen cracking susceptibility, which generally increases with an increase in aluminum concentration of the deposit. The overall objective of this program is to attain an optimum aluminum content with good weldability and improved sulfidation resistance with respect to conventional materials presently in use. Research has been initiated using Gas Tungsten Arc Welding (GTAW) in order to achieve this end. Under different sets of GTAW parameters (wire feed speed, current), both single and multiple pass overlays were produced. Characterization of all weldments was conducted using light optical microscopy, scanning electron microscopy, and electron probe microanalysis. Resultant deposits exhibited a wide range of aluminum contents (5--43 wt%). It was found that the GTAW overlays with aluminum contents above {approximately}10 wt% resulted in cracked coatings. Preliminary corrosion experiments of 5 to 10 wt% Al cast alloys in relatively simple H{sub 2}/H{sub 2}S gas mixtures exhibited corrosion rates lower than 304 stainless steel.

  17. Advanced, Low/Zero Emission Boiler Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Babcock/Wilcox; Illinois State Geological; Worley Parsons; Parsons Infrastructure/Technology Group

    2007-06-30

    In partnership with the U.S. Department of Energy's National Energy Technology Laboratory, B&W and Air Liquide are developing and optimizing the oxy-combustion process for retrofitting existing boilers as well as new plants. The main objectives of the project is to: (1) demonstrate the feasibility of the oxy-combustion technology with flue gas recycle in a 5-million Btu/hr coal-fired pilot boiler, (2) measure its performances in terms of emissions and boiler efficiency while selecting the right oxygen injection and flue gas recycle strategies, and (3) perform technical and economic feasibility studies for application of the technology in demonstration and commercial scale boilers. This document summarizes the work performed during the period of performance of the project (Oct 2002 to June 2007). Detailed technical results are reported in corresponding topical reports that are attached as an appendix to this report. Task 1 (Site Preparation) has been completed in 2003. The experimental pilot-scale O{sub 2}/CO{sub 2} combustion tests of Task 2 (experimental test performance) has been completed in Q2 2004. Process simulation and cost assessment of Task 3 (Techno-Economic Study) has been completed in Q1 2005. The topical report on Task 3 has been finalized and submitted to DOE in Q3 2005. The calculations of Task 4 (Retrofit Recommendation and Preliminary Design of a New Generation Boiler) has been completed in 2004. In Task 6 (engineering study on retrofit applications), the engineering study on 25MW{sub e} unit has been completed in Q2, 2008 along with the corresponding cost assessment. In Task 7 (evaluation of new oxy-fuel power plants concepts), based on the design basis document prepared in 2005, the design and cost estimate of the Air Separation Units, the boiler islands and the CO{sub 2} compression and trains have been completed, for both super and ultra-supercritical case study. Final report of Task-7 is published by DOE in Oct 2007.

  18. PERFORMANCE EVALUATION OF BOILERS (80 AND 40 TPH AND 21MW STEAM TURBINE OF COGEN PLANT

    Directory of Open Access Journals (Sweden)

    D.P.TAWARE

    2014-06-01

    Full Text Available The proposed study is conducted at The Malegaon Sugar Mills, Baramati, and District Pune. Data is collected for a high pressure 80 TPH & 40TPH bagasse fired boiler. The boilers are natural circulation and bi-drum water tube type. The both boilers are equipped with super heater, air heater and economizer in order to utilize maximum available heat of flue gases. Boiler efficiency is calculated by indirect method. Also plant has 21 MW cogeneration capacity, with two turbines are installed with capacity 14MW (Back Pressure Type & 7MW (Extraction Cum Condensing Type. From the heat input given to turbines per unit of electricity generated, the turbine heat rate is calculated. Different instruments and devices are used to record the different parameters of both boilers & turbines. Steam produced per ton of bagasse is being found out for both boilers.

  19. Boiler: lossy compression of RNA-seq alignments using coverage vectors.

    Science.gov (United States)

    Pritt, Jacob; Langmead, Ben

    2016-09-19

    We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler.

  20. Utilization of coal-water fuels in fire-tube boilers

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.K.; Melick, T.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orrville, OH (United States)

    1993-12-31

    The Energy and Environmental Research Corporation (EER), in cooperation with the University of Alabama and Jim Walter Resources, was awarded a DOE contract to retrofit an existing fire-tube boiler with a coal-water slurry (CWS) firing system. Recognizing that combustion efficiency is the principle concern when firing slurry in fire-tube boilers, EER has focused the program on innovative approaches for improving carbon burnout without major modifications to the boiler. The boiler was successfully operated on coal-water slurry for 800 hours. A boiler derate of 20 percent was necessary for successful operation with slurry accounting 62 percent of the total heat input with the balance provided by natural gas. Under these boiler conditions, the carbon conversion was 90 percent. Further data evaluation, a market analysis, and final report preparation remain to be completed.

  1. Bubbling fluidized bed boiler for Vanaja power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sormunen, R.; Haermae, P.; Vessonen, K.; Ketomaeki, A. [ed.

    1998-07-01

    At the Vanaja Power Plant, on the outskirts of Haemeenlinna, there have been changes which reflect the central goals in IVO`s product development work. At Vanaja, efficiency is combined with environmental friendliness. In the early 1980s, the plant was modernized to produce district heat in addition to electricity. At that time, along with the new gas turbine at the plant, the main fuel, coal, while remaining the fuel for the old boilers, was replaced by natural gas. This year a new type of bubbling fluidized bed boiler enabling continuous use of peat and trial use of biofuels along with coal was introduced at the plant. In addition to the Nordic countries, this kind of technology is required in central eastern Europe, where modernization of ageing power plants is being planned to achieve the best possible solutions in respect of production and the environment. IVO develops a new repair technique for underwater sites

  2. Failure analyses and weld repair of boiler feed water pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vulpen, R. van [KemaPower Generation, Arnhem (Netherlands)

    1998-12-31

    During a regular inspection of the Boiler Auxiliaries at one of the Dutch Electricity Production Companies serious cracks were found in the cover and casings of the feed water circulation pumps in two units after 108.000 and 122.000 hours of boiler operation. Kema Laboratories carried out Failure analyses on boat samples at the cracked areas. Corrosion fatigue cracking was found on the inner side of the GS-24CrNiMo325 casing. Shop Weld repairs were carried out using a newly developed mechanized Plasma Welding Technique. The repaired feed water circulation pumps showed no problems alter several years of operation. The costs of repair were substantially lower than the costs of replacement. (orig.) 3 refs.

  3. INCREASING OF PRECISE ESTIMATION OF OPTIMAL CRITERIA BOILER FUNCTIONING

    Directory of Open Access Journals (Sweden)

    Y. M. Skakovsk

    2016-08-01

    Full Text Available Results of laboratory and industrial research allowed offering a way to improve the accuracy of estimation the optimal criterion of boilers' operation depending on fuel quality. Criterion is calculated continuously during boiler operation as heat ratio transmitted in production with superheated steam to the thermal energy obtained by combustion in boiler’s furnace fuel (natural gas .The non-linearity dependence of steam enthalpy from its temperature and pressure are considered when calculating, as well as changes in calorific value of natural gas, depending on variety in nitrogen content therein. The control algorithm and program for Ukrainian PLC MIC-52 are offered. The user selection program implements two searching modes for criterion maximum: automated and automatic. The results are going to be used for upgrading the existing control system on sugar factory.

  4. Shape optimization of a thick-walled power boiler component

    Directory of Open Access Journals (Sweden)

    Duda Piotr

    2017-01-01

    Full Text Available This paper presents a methodology and successful application of structural optimization of a T-pipe under transient thermal and mechanical loads. In order to find the optimal shape of a thick-walled power boiler component, a parametric FE model and the evolutionary algorithm (EA are applied. The power boiler start-up and shutdown curves are based on the TRD 301 guidelines. Maximum total stresses are assumed as optimization constraints. The obtained geometry is by about 18.6% lighter than the original one due to thinning of the walls. Maximum tensile and compressive stresses in the modified geometry are smaller than in the original one during the whole cycle. Additionally, lower total stress values are recorded during heating and cooling processes. Therefore, these transient processes can be accelerated and the shutdown and start-up losses can be reduced.

  5. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  6. A method for exergy analysis of sugar cane bagasse boilers

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, L.A.B.; Gomez, E.O. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Agricola

    1998-03-01

    This work presents a method to conduct a thermodynamic analysis of sugarcane bagasse boilers. The method is based on the standard and actual reactions which allows the calculation of the enthalpies of each process subequation and the exergies of each of the main flowrates participating in the combustion. The method is presented using an example with real data from a sugarcane bagasse boiler. A summary of the results obtained is also presented together based on the 1 st Law of Thermodynamics analysis, the exergetic efficiencies, and the irreversibility rates. The method presented is very rigorous with respect to data consistency, particularly for the flue gas composition. (author) 11 refs., 1 fig., 6 tabs.; e-mail: cortez at agr.unicamp.br

  7. Determination of Loading Capacity of a Direct Solar Boiler Dryer

    OpenAIRE

    I.A. Ikem; D. Osim-Asu; O.E. Nyong; S.A. Takim

    2016-01-01

    Thermodynamic analysis of solar boiler natural convection dryer used for drying agricultural products was employed to dry restaurant wastes. Practical steps were taken to determine the loading capacity of the dryer. Replicas of the dryer (dimensions and materials) were selected and employed but with varying loads. This dryer is made up of glass flat-plate collector which serves as the drying chamber cover. Thermodynamic properties of the working fluid were measured at input and exit points...

  8. Tuning of PID controllers for boiler-turbine units.

    Science.gov (United States)

    Tan, Wen; Liu, Jizhen; Fang, Fang; Chen, Yanqiao

    2004-10-01

    A simple two-by-two model for a boiler-turbine unit is demonstrated in this paper. The model can capture the essential dynamics of a unit. The design of a coordinated controller is discussed based on this model. A PID control structure is derived, and a tuning procedure is proposed. The examples show that the method is easy to apply and can achieve acceptable performance.

  9. Italian Residential Buildings: Economic Assessments for Biomass Boilers Plants

    OpenAIRE

    Maurizio Carlini; Sonia Castellucci; Silvia Cocchi; Elena Allegrini; Ming Li

    2013-01-01

    Biomass is increasingly used for energy generation since it represents a useful alternative to fossil fuel in order to face the pollutions and the global warming problem. It can be exploited for heating purposes and for supplying domestic hot water. The most common applications encompass wood and pellet boilers. The economic aspect is becoming an important issue in order to achieve the ambitious targets set by the European Directives on Renewable Sources. Thus, the present paper deals with th...

  10. Condensing economizers for small coal-fired boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Litzke, W.

    1994-01-01

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  11. Research on Marine Boiler's Pressurized Combustion and Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Pingjian MING; Renqiu JIANG; Yanjun LI; Baozhi SUN

    2005-01-01

    The effect of pressure on combustion and heat transfer is analyzed. The research is based on the basic combustion and heat transfer theorem. A correction for the heat calculation method for pressurized furnace is made on the basis of the normal pressure case. The correction takes the effect of pressurizing into account. The results show that the correction is reasonable and the method is applicable to combustion and heat transfer of the marine supercharged boiler.

  12. A review on biomass as a fuel for boilers

    Energy Technology Data Exchange (ETDEWEB)

    Saidur, R.; Abelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Mechanical Engineering

    2011-06-15

    Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40-50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO{sub 2} and NO emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

  13. WASTE HEAT RECOVERY FROM BOILER OF LARGE-SCALE TEXTILE INDUSTRY

    OpenAIRE

    Prateep Pattanapunt; Kanokorn Hussaro; Tika Bunnakand; Sombat Teekasap

    2013-01-01

    Many industrial heating processes generate waste energy in textile industry; especially exhaust gas from the boiler at the same time reducing global warming. Therefore, this article will present a study the way to recovery heat waste from boiler exhaust gas by mean of shell and tube heat exchanger. Exhaust gas from boiler dyeing process, which carries a large amount of heat, energy consumptions could be decrease by using of waste-heat recovery systems. In this study, using ANASYS simulation p...

  14. A review: Fly ash and deposit formation in PF fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Jappe Frandsen, Flemming; Wu, Hao;

    2016-01-01

    In recent years suspension fired boilers have been increasingly used for biomass based heat and power production in several countries. This has included co-firing of coal and straw, up to 100% firing of wood or straw and the use of additives to remedy problems with biomass firing. In parallel...... in biomass suspension fired boilers is provided. Furthermore the influence of co-firing and use of additives on ash chemistry, deposit properties and boiler operation is discussed....

  15. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    OpenAIRE

    Sobota Tomasz

    2017-01-01

    The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented me...

  16. Research on Fuzzy Diagnosis Method of Boiler Steam and Water Pipe Leakage

    Science.gov (United States)

    Yin, Xianglei; Wang, Yan

    Diagnosis pipe leakage timely and accurately is of great significance for safe and economic operation for boilers. According to the characteristics of the failure of boiler, this paper gives new function to describe fault symptoms and puts forward a new method of fault fuzzy recognition. Through simulation experiment, the new method was validated and compared with the existing fault diagnosis methods. The simulation results show that the new method for boiler failure recognition has high accuracy, and is better than other methods.

  17. An optimization model for the operations of steam production in industrial boilers

    OpenAIRE

    Rocco,Cleber Damião; Morabito, Reinaldo

    2012-01-01

    In this study, a mixed integer linear programming model is presented to support some of the key decisions in the steam production system with industrial boilers. The model approaches the fuel management decisions (fuel replenishment and its inventory control), boiler operational decisions (start-up, warm-up, and shutdown operations), and which boiler should produce steam. The model adjustments and its validation were carried out through a case study in a large food industry. In face of the go...

  18. Analisa Efisiensi Water Tube Boiler Berbahan Bakar Fiber, Cangkang Sawit dan Kulit Kayu Menggunakan Metode Langsung

    OpenAIRE

    Gaol, Dosma Putra Lumban

    2016-01-01

    Some of the factors that affect the efficiency of the boiler is a superheater pressure, water feed temperature, steam temperature, the amount of steam produced, the amount of fuel consumption and calorific value fuel combustion. Steamtab chemicallogic use companion software to calculate the value of enthalpy. The aim of this study is to get relations variations in pressure superheater with boiler efficiency, the relationship of variation of temperature feed water to the boiler efficiency, the...

  19. Energy Analysis of Baby Boiler for Steaming of Raw Cashew Nut Seeds

    OpenAIRE

    Atul Mohod; Y. P. Khandetod; S. H. Sengar; Shrirame, H. Y.

    2012-01-01

    The steaming of raw cashew seeds prior to shelling is adopted widely in small-scale cashew nut processing mills with the help of baby boiler. The wide variations in energy intensity of these mills reveal the scope for energy conservation. The baby boiler coupled with cooker commonly used for steaming of raw seeds was evaluated. The variation in steam pressure, temperature and operating time with respect to fuel was observed along with thermal efficiency of a boiler. The energy intensity to pr...

  20. STUDY ON INFLUENCE OF ENERGY EFFICIENCY OF A STEAM BOILER BENSON ON ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    Racoceanu Cristinel

    2016-12-01

    Full Text Available This paper presents a case study on the influence of the energy efficiency of a steam boiler of 330 MW energy group on the environment. The Benson boiler works with powdered lignite. We present the results of experimental measurements on immission and emissions of pollutants resulting from burning lignite: SO2, NOx, PM10, PM2,5, TSP. Experimental measurements were performed on the boilers of 330MW power units of the thermoelectric plant of Rovinari.

  1. Pulverized-coal-firing small-size boiler for coal-cartridge system

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-01

    Kawasaki Heavy Industries, Ltd. supplied a test boiler plant to the Iwakuni Experimental Station of the Coal Cartridge System (CCS) Promotion Association in September 1985; this was the first pulverized-coal-fired small industrial boiler in Japan. Tests will be performed for two years, until fiscal 1987, at the CCS Iwakuni Experimental Station to establish a method of coal-firing with a performance comparable to heavy oil firing. The boiler plant has been operating satisfactorily.

  2. The environmental impact of orimulsion combustion in large utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

    1997-07-01

    There is considerable worldwide interest in the practical use of Orimulsion as a replacement fuel in both oil and coal fired utility boilers. Practical experience of such applications has been gained in Canada, UK, Japan, Europe and USA. Fundamental work has demonstrated the different combustion characteristics of Orimulsion which has been termed the {open_quotes}fourth{close_quotes} fossil fuel to the fossil fuels normally used for power generation and how, in certain circumstances, these can be used to advantage in the application of Orimulsion in utility boiler combustion systems. Orimulsion is an emulsify ed fuel prepared from naturally occurring bitumen deposits located in the Orinoco Basin in Venezuela and comprises approximately 70% bitumen and 30% water. Compared to the heavier fuel oils the sulphur content of Orimulsion is medium to high, the ash content is high with high levels of Vanadium and Nickel. The ash content is enhanced by the addition of Magnesium compounds, to the commercial fuel, to mitigate against the potential in boiler corrosion effects arising form the Va, Na and S content in the fuel.

  3. Particle Formation in Moving Grate Boilers Fired with Wood Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology; Pagels, Joalum; Szpila, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics

    2005-07-01

    In this work the size resolved elemental particle concentration from five district heating moving grate boilers operating on different woody biofuels have been analysed in order to investigate the general formation mechanism in this kind of boiler. Aerosol particles were characterised in the five boilers operating on forest residues, pellets, or saw dust. The aerosol particles were sampled downstream of the multicyclone using a dilution system in order to decrease temperature and humidity. The proposed mechanism for formation of the fine mode is homogenous chemical reactions to form potassium sulphate, which nucleates to form the fine particle mode at high temperatures. The concentration profile of zinc indicates that zinc-containing species in some cases may form particles by gas-to particle conversion prior to the nucleation of potassium sulphate. As the flue gas temperature decrease below 650 C potassium chloride will condense on the surfaces of the previously formed particles. The proposed mechanism for inception of the coarse particle mode was fragmentation/dispersion of refractory material from the burning char or from the residual ash in the bed. The ratios of the potentially volatile elements potassium, sulphur and chlorine, were similar in the fine and the coarse mode, indicating the material had the same origin in both modes. The presence of the volatile components may be explained by non-complete vaporisation, chemical surface reactions, re-entrainment of deposited particles, and coagulation with the fine particle mode.

  4. Influence of boiler load on water tubes burnout

    Energy Technology Data Exchange (ETDEWEB)

    Said, S.A.M.; Habib, M.A.; Badr, H.M.; Mansour, R. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Mechanical Engineering

    2009-07-01

    The influence of boiler loads on water tube burnout was investigated. The in-service boiler had 2 burners at different levels located in the front of the burner's wall. Homogenous-flow and separated-flow models were designed to simulate the water circulation and combustion processes inside the boiler tubes. Heat flux calculations were derived by solving the conservation of mass, momentum, and energy equations and species concentration as well as by solving turbulence, reaction rate, and radiation model equations. Results of the study showed that heat flux during full loads ranged from close to 0 to 270 kW/m2. The right side screen wall of the burner exhibited higher heat flux values in the middle region of the wall where large areas were subjected to heat flux close to a maximum of 270 kW/m2. Results also included reductions in heat flux values at partial loads. Maximum values were reduced from 270 kW/m2 ato 230 kW/m2 at 75 per cent capacity and 200 kW/m2 at 60 per cent capacity. The rate of steam generation increased from 0.1 kg/s to 0.153 kg/s when the distance from the burner wall increased from 2 meters to 12 meters. 10 refs., 10 figs.

  5. Efficiency of Small Scale Manually Fed Boilers —Mathematical Models

    Directory of Open Access Journals (Sweden)

    Lazar Savin

    2012-05-01

    Full Text Available This study reviews test results for a biomass-fired hot water boiler with a nominal boiler thermal power of 120 kW. In the experiments, prismatic wheat straw bales were used as biomass. The impact of the quantity (220, 290, 360 and 430 m3 h−1 of inlet air fed to the boiler firebox was continuously monitored. This was to examine the influence of the quantity of inlet air and recirculation (0, 16.5 and 33% of combustion products on the boiler thermal power and boiler energy efficiency. Thus, the following mathematical models and formulas were presented: correlation between boiler thermal power and bale residence time; bale mass loss during the combustion process; correlation between boiler energy efficiency and bale residence time. Mathematical models were obtained by using experimental data and by applying nonlinear regression analysis. Adjustment evaluation of mathematical models with experimental data was performed based on the determination coefficient, t-test and F-test. Increase the amount of air throughout the firebox produced boiler thermal power increase and bale residence time decrease. It was shown that combustion products recirculation of 16.5% partly improved boiler characteristics, while the recirculation of 33% did not, comparing with the case without recirculation.

  6. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  7. On-line monitoring and control of furnace wall corrosion in pf-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, D.M.; Robbins, B.J.; Sikka, P.; Seaman, M. [Rowan Technologies Ltd., Manchester (United Kingdom)

    2004-05-15

    Corrosion, fouling and sometimes failure of heat exchanger tubing that makes up the boiler walls is a major obstacle to minimising boiler downtime. Rowan Technologies Ltd., has been developing corrosion scanners to enable the condition of these heat exchanger tubes to be assessed online. These scanners are able to monitor fireside corrosion over entire boiler walls and whilst the boiler is operational. This paper describes how the scanner systems can be used to monitor this corrosion and how the corrosion can be subsequently controlled. 8 refs., 9 figs.

  8. Model prediction of the operating behavior of a circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 骆仲泱; 倪明江; 岑可法

    2002-01-01

    An improved mathematical model for a circulating fluidized bed (CFB) boiler based on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler. The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.

  9. Model prediction of the operating behavior of a circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 骆仲泱; 倪明江; 岑可法

    2002-01-01

    An improved mathematical model for a circulating fluidized bed (CFB) boiler baaed on the model developed earlier by the authors was applied to simulate the operation of a 12 MW CFB boiler.The influences of the excess air ratio, primary air ratio, coal particle size distribution, coal properties (ash content and volatile content) and Ca/S ratio on the boiler operation were analyzed. The results showed that the model simulation may be applied to the optimum design and economic operation of the CFB boiler.

  10. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    OpenAIRE

    Atcharawadi Thong-On; Chatdanai Boonruang

    2016-01-01

    Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG) welding of F...

  11. Efficiency of Small Scale Manually Fed Boilers —Mathematical Models

    OpenAIRE

    Lazar Savin; Milan Tomic; Ondrej Ponjican; Nebojsa Dedovic; Snezana Matic-Kekic; Todor Janic; Sasa Igic

    2012-01-01

    This study reviews test results for a biomass-fired hot water boiler with a nominal boiler thermal power of 120 kW. In the experiments, prismatic wheat straw bales were used as biomass. The impact of the quantity (220, 290, 360 and 430 m3 h−1) of inlet air fed to the boiler firebox was continuously monitored. This was to examine the influence of the quantity of inlet air and recirculation (0, 16.5 and 33%) of combustion products on the boiler ther...

  12. Increasing the Performance and Reliability of Power Boiler by Monitoring Thermal and Strength Parameters

    Directory of Open Access Journals (Sweden)

    Sobota Tomasz

    2017-01-01

    Full Text Available The paper presents a method for determination of thermo-flow parameters for steam boilers. This method allows to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters allows determining the degree of the furnace chamber slagging. The calculation can be performed in online mode and use to monitoring of steam boiler. The presented method allows to the operation of steam boiler with high efficiency.

  13. Superheater corrosion in kraft recovery boilers; Korrosion hos oeverhettare i sodapannor. En oeversikt och diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, F. [AaF-IPK, Stockholm (Sweden)

    1997-02-01

    Corrosion seems to be the most essential factor limiting the life and the availability of kraft recovery boilers. The steam temperature from the kraft recovery boiler has, seen from the view of electricity production and steam turbine operation, traditionally been kept moderate, especially in comparison with steam data from normal utility power plants. So the corrosion of the superheaters has been more a limitation for the temperature of the steam produced by the boiler than a life length limitation. Both the pressure and the temperature of the steam are limited by corrosion. The temperature of the boiling water, and hence the pressure, is limited by the corrosion in the lower furnace. The temperature of the steam is limited by the corrosion in the superheater. Kraft boiler superheater corrosion is here governed not only by the boiler design, but more by the mill chemistry and boiler operation practice. This report discusses the formation and the properties of the deposits and their relation to boiler operation and the corrosion of the superheater tube material. We have tried to understand the corrosion in the kraft boiler superheaters better by comparing with the experience from the utility boilers. 86 refs, 79 figs

  14. Computational Modeling and Assessment Of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    David W. Gandy; John P. Shingledecker

    2011-04-11

    Forced outages and boiler unavailability in conventional coal-fired fossil power plants is most often caused by fireside corrosion of boiler waterwalls. Industry-wide, the rate of wall thickness corrosion wastage of fireside waterwalls in fossil-fired boilers has been of concern for many years. It is significant that the introduction of nitrogen oxide (NOx) emission controls with staged burners systems has increased reported waterwall wastage rates to as much as 120 mils (3 mm) per year. Moreover, the reducing environment produced by the low-NOx combustion process is the primary cause of accelerated corrosion rates of waterwall tubes made of carbon and low alloy steels. Improved coatings, such as the MCrAl nanocoatings evaluated here (where M is Fe, Ni, and Co), are needed to reduce/eliminate waterwall damage in subcritical, supercritical, and ultra-supercritical (USC) boilers. The first two tasks of this six-task project-jointly sponsored by EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)-have focused on computational modeling of an advanced MCrAl nanocoating system and evaluation of two nanocrystalline (iron and nickel base) coatings, which will significantly improve the corrosion and erosion performance of tubing used in USC boilers. The computational model results showed that about 40 wt.% is required in Fe based nanocrystalline coatings for long-term durability, leading to a coating composition of Fe-25Cr-40Ni-10 wt.% Al. In addition, the long term thermal exposure test results further showed accelerated inward diffusion of Al from the nanocrystalline coatings into the substrate. In order to enhance the durability of these coatings, it is necessary to develop a diffusion barrier interlayer coating such TiN and/or AlN. The third task 'Process Advanced MCrAl Nanocoating Systems' of the six-task project jointly sponsored by the Electric Power Research Institute, EPRI and the U.S. Department of Energy (DE-FC26-07NT43096)- has focused on

  15. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, B.S.; Prakash, S.

    2006-03-15

    Boiler tube steels, namely low carbon steel ASTM-SA210-Grade A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1Mo steel ASTM-SA213-T-22 (T22), were used as substrate steels. Ni-22Cr-10AI-1Y powder was sprayed as a bond coat 150 {mu}m thick before a 200 {mu}m final coating of Ni-20Cr was applied. Coatings were characterized prior to testing in the environment of a coal fired boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755{sup o}C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  16. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Science.gov (United States)

    Sidhu, Buta Singh; Prakash, S.

    2006-03-01

    Boiler tube steels, namely low carbon steel ASTM-SA-210-Grades A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1 Mo steel ASTM-SA213-T-22(T22), were used as substrate steels. Ni-22Cr-10Al-1Y powder was sprayed as a bond coat 150 μm thick before a 200 μm final coating of Ni-20Cr was applied Coatings were characterized prior to testing in the environment of a coal fire boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755°C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  17. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V.

    1997-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  18. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  19. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2004-03-31

    This is the fifteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At AEP's Gavin Plant, data from the corrosion probes showed that corrosion rate increased as boiler load was increased. During an outage at the plant, the drop in boiler load, sensor temperature and corrosion rate could all be seen clearly. Restarting the boiler saw a resumption of corrosion activity. This behavior is consistent with previous observations made at a 600MWe utility boiler. More data are currently being examined for magnitudes of corrosion rates and changes in boiler operating conditions. Considerable progress was made this quarter in BYU's laboratory study of catalyst deactivation. Surface sulfation appears to partially suppress NO adsorption when the catalyst is not exposed to NH3; NH3 displaces surface-adsorbed NO on SCR catalysts and surface sulfation increases the amount of adsorbed NH3, as confirmed by both spectroscopy and TPD experiments. However, there is no indication of changes in catalyst activity despite changes in the amount of adsorbed NH3. A monolith test reactor (MTR), completed this quarter, provided the first comparative data for one of the fresh and field-exposed monolith SCR catalysts yet developed in this project. Measurements of activity on one of the field-exposed commercial monolith catalysts do not show significant changes in catalyst activity (within experimental error) as compared to the fresh catalyst. The exposed surface of the sample contains large amounts of Ca and Na, neither of which is present in the fresh sample, even after removal of visibly obvious fouling deposits. However, these fouling compounds do

  20. Providing Boiler Inspections at US Army Installations: How to Perform Internal/Operational, Efficiency, and Emissions Testing

    Science.gov (United States)

    2013-08-01

    following manner: 1. To secure the boiler , the steam header valve is closed. At this time, the boiler is allowed time to cool down to prevent injury to...Fuel Train and the Burner, and that the steam and water lines are directly connected to the unit. 2. Perform an external inspection of the boiler ...including visual inspec- tion of the fuel train, vent piping, safety relief valves and discharge pip- ing, steam and water piping and the boiler

  1. RELIABILITY ANALYSIS OF A SYSTEM OF BOILER USED IN READYMADE GARMENT INDUSTRY

    Directory of Open Access Journals (Sweden)

    R.K. Agnihotri

    2008-01-01

    Full Text Available The present paper deals with the reliability analysis of a system of boiler used in garment industry.The system consists of a single unit of boiler which plays an important role in garment industry. Usingregenerative point technique with Markov renewal process various reliability characteristics of interest areobtained.

  2. Flexibility of a 300 MW Arch Firing Boiler Burning Low Quality Coals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Experimental investigations on the flexibility of a 300 MW Arch Firing (AF) coal-fired boiler when burning low quality coals is reported.Measurements of gas temperature and species concentration and char sampling using a water-cooled suction pyrometer were carried out along the furnace elevation.The carbon content and the size distributions of the char samples were obtained.The char morphology was examined using a field emission scanning electron microscope (FESEM).The char sampling was performed on this type of boiler for the first time.The results indicate that the flexibility of this boiler burning low quality coals under a moderate boiler load is better than its flexibility under a high boiler load.Because of the insufficient capacity of the coal pulverizers used, in case of low coal quality the pulverized coal fineness will drastically decrease under high boiler loads.This causes an increase in the loss due to incomplete mechanical and chemical combustion.This is the main cause of a low burnout degree of the pulverized coal and the decrease of the flexibility of this AF boiler under a high boiler load.

  3. Optimal Switching Control of Burner Setting for a Compact Marine Boiler Design

    DEFF Research Database (Denmark)

    Solberg, Brian; Andersen, Palle; Maciejowski, Jan M.

    2010-01-01

    This paper discusses optimal control strategies for switching between different burner modes in a novel compact  marine boiler design. The ideal behaviour is defined in a performance index the minimisation of which defines an ideal trade-off between deviations in boiler pressure and water level...

  4. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  5. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    Science.gov (United States)

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  6. FORMATION OF CHLORINATED DIOXINS AND FURANS IN A HAZARDOUS-WASTE-FIRING INDUSTRIAL BOILER

    Science.gov (United States)

    This research examined the potential for emissions of polychlorinated diebnzodioxin and dibenzofuran (PCDD/F) from industrial boilers that cofire hazardous waste. PCDD/F emissions were sampled from a 732 kW (2.5 x 106 Btu/h), 3-pass, firetube boiler using #2 fuel oil cofired wit...

  7. 40 CFR 260.32 - Variances to be classified as a boiler.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Variances to be classified as a boiler... be classified as a boiler. In accordance with the standards and criteria in § 260.10 (definition of “boiler”), and the procedures in § 260.33, the Administrator may determine on a case-by-case basis...

  8. Studying flame combustion of coal-water slurries in the furnaces of power-generating boilers

    Science.gov (United States)

    Osintsev, K. V.

    2012-06-01

    Matters concerned with organizing combustion of different types of coal-water slurries in coalfired boilers at thermal power stations are considered. Recommendations for improving the economic and environmental indicators and for achieving more reliable operation of furnace devices and boiler as a whole are given.

  9. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Science.gov (United States)

    2010-10-01

    ... which have a capacity not greater than 454 liters (120 U.S. gallons) must have a current carrying... current carrying capacity of not less than 100 percent of the current rating of the appliance. Wiring... water supply boilers. (a) Electric hot water supply boilers that have a capacity not greater than...

  10. 75 FR 65023 - Notice of Issuance of Final Determination Concerning Certain Heating Boilers

    Science.gov (United States)

    2010-10-21

    ... Heating Boilers AGENCY: U.S. Customs and Border Protection, Department of Homeland Security. ACTION... Protection (``CBP'') has issued a final determination concerning the country of origin of certain heating... country of origin of the heating boilers for purposes of U.S. Government procurement. DATES: The...

  11. Oil fired boiler/solar tank- and natural gas burner/solar tank-units

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Frederiksen, Karsten Vinkler

    1999-01-01

    During the last few years new units consisting of a solar tank and either an oil fired boiler or a natural gas burner have been introduced on the Danish market. Three different marketed units - two based on a natural gas burner and one based on an oil fired boiler - have been tested in a heat...

  12. 40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Do any boilers or process heaters have limited requirements? 63.7506 Section 63.7506 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... or process heaters have limited requirements? (a) New or reconstructed boilers and process heaters...

  13. RDF (Refuse Derived Fuel) Utilization in a Navy Oil-Fired Boiler.

    Science.gov (United States)

    1983-06-01

    Norfold, Va. Two Foster -Wheeler, 75 MBtu/hr. boilers 7.4 Economic Evaluation. Of the 30 active boilers listed with a rated capacity of 50 MBtu/hr. or...reduce the total net present costs to annual capital cost recovery charges. The cost of displaced oil ( Costo ) x DF /DF - the cost of RDF DO 0 N (CostRD

  14. 46 CFR 35.25-1 - Examination of boilers and machinery by engineer-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Examination of boilers and machinery by engineer-T/ALL. 35.25-1 Section 35.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Engine Department § 35.25-1 Examination of boilers and machinery by engineer—T/ALL. It shall be the...

  15. 46 CFR 167.65-60 - Examination of boilers and machinery by engineer.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Examination of boilers and machinery by engineer. 167.65... machinery by engineer. It shall be the duty of an engineer when he assumes charge of the boilers and machinery of a nautical school ship to examine the same forthwith and thoroughly, and if he finds any...

  16. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  17. 40 CFR 270.22 - Specific part B information requirements for boilers and industrial furnaces burning hazardous...

    Science.gov (United States)

    2010-07-01

    ... requirements for boilers and industrial furnaces burning hazardous waste. 270.22 Section 270.22 Protection of... requirements for boilers and industrial furnaces burning hazardous waste. When an owner or operator of a cement... testing or trial or operational burns of similar boilers or industrial furnaces burning similar...

  18. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers... requirements for hot water boilers (modifies HG-400.2). (a) The relief valve requirements for hot water boilers... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water...

  19. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valve requirements for steam boilers (modifies HG... requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and the safety valve requirements for steam boilers must be as indicated in HG-400 and HG-401 of section IV...

  20. Discussion on Improvement of Chain-grate Boiler to Pulverized Coal Boiler%某链条锅炉改造为煤粉锅炉的探讨

    Institute of Scientific and Technical Information of China (English)

    刘新龙; 王惠云; 杨林; 王鹏南

    2016-01-01

    对链条锅炉改造为煤粉锅炉做了系统的介绍。对改造中所涉及的各系统和设备进行了一定的分析,并证明链条炉改造为煤粉炉是可行的,其配套的烟气处理技术是有效的。%The improvement of the chain-grate boiler to pulverized coal boiler is systematically introduced. Based on the analysis of the related systems and equipments, it's proven that it's feasible to improve the chain-grate boiler to pulverized coal boiler and the corresponding flue gas treatment technology is efficient.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding; Robert Hurt

    2003-12-31

    This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.

  2. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  3. Optimal scheduling of sootblowers in power plant boilers

    Science.gov (United States)

    Vasquez-Urbano, Pedro Manuel

    1997-11-01

    Burning coal or other fossil fuels in a utility boiler fouls the surfaces of its heat exchangers with ash and soot residues. These deposits affect the performance of the power plant since they reduce heat transfer from the combustion gases to the water or steam. Fouling can be removed during the operation of the plant with the use of lances, called sootblowers, that direct high-pressure air or steam onto the fouled surfaces. Sootblowing operations are key to plant efficiency and boiler maintenance, but they also incur operating costs. A utility boiler may have a hundred or so sootblowers placed in fixed locations. Deciding which of these should be used at any moment is complicated by the lack of instrumentation that can monitor fouling levels. This dissertation studies the optimization problem of scheduling sootblowing activities at a utility plant. The objective is to develop an optimization approach to determine which sootblowers should be activated at any moment in order to maximize plant efficiency. To accomplish this, three issues are addressed. First, models are developed that can estimate fouling conditions indirectly during plant operation using commonly available data. The approach used relies on a sequential application of linear regression fits. Secondly, autoregressive exogenous (ARX) models are used to describe the dynamics of the fouling process and to estimate the consequences of fouling on plant efficiency. All the foregoing empirical models are developed using data from a power plant. Finally, using the empirical models, an optimization model is formulated for the sootblowing scheduling problem and different optimization approaches that combine nonlinear programming with heuristics methods are investigated for its solution. The applicability of dynamic programming to this optimization problem is also explored.

  4. Application of advanced technologies to ash-related problems in boilers

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Richards, G.; Harb, J. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

    1995-01-01

    Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

  5. Influence of constricted air distribution on NOx emissions in pulverized coal combustion boiler

    Institute of Scientific and Technical Information of China (English)

    WEI Feng(魏风); ZHANG Jun-ying(张军营); TANG Bi-guang(唐必光); ZHENG Chu-guang(郑楚光)

    2003-01-01

    This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NOx emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NOx emissions and the principle of boiler operation and regulation through analyzing NOx emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NOx emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.

  6. Load control and the provision of the efficiency of steam boilers equipped with an extremal governor

    Science.gov (United States)

    Sabanin, V. P.; Kormilitsyn, V. I.; Kostyk, V. I.; Smirnov, N. I.; Koroteev, A. V.; Repin, A. I.

    2014-12-01

    This paper presents an analysis of main problems of controlling small- and medium-size steam boilers. Noted are deficiencies of current normative and technical documents, as well as those of the traditional concept of the process of fuel firing, the methods for and algorithms of boiler control. There is established an approach to creation of such control systems in which a boiler is treated, as to control and load channels, as a nonlinear linked controlled objects. To control load and efficiency of a boiler, an universal schematic diagram is suggested that allows for the possibility of implementation in modern controllers of both known methods and a new method using an extremal governor, which would provide minimum fuel consumption at given thermal load of a boiler.

  7. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Science.gov (United States)

    Balicki, Adrian; Bartela, Łukasz

    2014-06-01

    Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of `zeroemission' technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  8. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  9. New source performance standards for industrial boilers. Volume 2. Review of industry operating practices

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.J.; Weisenberg, I.J.; Wilson, K.

    1980-09-01

    The applicability is evaluated of several possible versions of a revised New Source Performance Standards (NSPS) for industrial boilers to boilers that are operated according to typical industry practices. A survey of operating practices is presented, and it is concluded that an NSPS that includes too high a percent removal requirement for SO/sub 2/ (90%) might be excessively costly and cause operating problems for the industrial operator. More field evaluations of low excess air and low Btu gasification are required to validate these techniques for pollution control under industrial boiler operating conditions. The cost of two small boilers with no SO/sub 2/ controls was less than one large boiler of twice the capacity with SO/sub 2/ controls. The annual cost of operating and maintaining the control system accounted for the difference.

  10. On Propagating Requirements and Selecting Fuels for a Benson Boiler

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Wisniewski, Rafal; Mølbak, Tommy

    2008-01-01

    In this paper, the problem of optimal choice of sensors and actuators is addressed. Given a functional encapsulating information of the desired performance and production economy the objective is to choose a control instrumentation from a given set to comply with its minimum. The objective of the...... to propagate a global objective to local subsystems. Particular focus is on a boiler in a power plant operated by Dong Energy. The business objectives have been propagated to the actuator level to allow for selection of an actuator configuration....

  11. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Fabienne Chatel-Pelage

    2004-01-01

    This document reviews the work performed during the quarter October-December 2003. Task 1 (Site Preparation) had been completed in the previous reporting period. In this reporting period, one week of combustion parameters optimization has been performed in Task 2 (experimental test performance) of the project. Under full-oxy conditions (100% air replacement with O{sub 2}-enriched flue gas) in 1.5MW{sub th} coal-fired boiler, the following parameters have been varied and their impact on combustion characteristics measured: the recirculated flue gas flow rate has been varied from 80% to 95% of total flue gas flow, and the total oxygen flow rate into the primary air zone of the boiler has been set to levels ranging from 15% to 25% of the total oxygen consumption in the overall combustion. In current reporting period, significant progress has also been made in Task 3 (Techno-Economic Study) of the project: mass and energy balance calculations and cost assessment have been completed on plant capacity of 533MW{sub e} gross output while applying the methodology described in previous reporting periods. Air-fired PC Boiler and proposed Oxygen-fired PC Boiler have been assessed, both for retrofit application and new unit. The current work schedule is to review in more details the experimental data collected so far as well as the economics results obtained on the 533MWe cases, and to develop a work scope for the remainder of the project. Approximately one week of pilot testing is expected during the first quarter of 2004, including mercury emission measurement and heat transfer characterization. The project was on hold from mid-November through December 2003 due to non-availability of funds. Out of the {approx}$785k allocated DOE funds in this project, $497k have been spent to date ($480 reported so far), mainly in site preparation, test performance and economics assessment. In addition to DOE allocated funds, to date approximately $330k has been cost-shared by the

  12. Combustion zone investigation in fuel flexible suspension fired boilers, Experimental

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Hvid, Søren Lovmand;

    The purpose of the project is to obtain data for full-scale validation of predictive models for combustion and cocombustion of biomass in utility boilers. In addition, focus was on development of innovative optical measuring techniques as a means to increase data quality by fast measurements......-straw flame at conditions close to daily co-firing operation. 4 measurement ports was used for mapping of flames with a distance up to 6.72 m from burner wall using 5 m and 7 m long water-cooled probes. Gas temperatures and gas composition were measured by FTIR fibre-optic probe and extractive gas sampling...

  13. Standby cooling system for a fluidized bed boiler

    Science.gov (United States)

    Crispin, Larry G.; Weitzel, Paul S.

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  14. An alternative process to treat boiler feed water for reuse.

    Science.gov (United States)

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  15. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Eddings; Larry Baxter

    2002-04-30

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the multi-catalyst slipstream

  16. High Temperature Corrosion in Biomass-Fired Boilers

    DEFF Research Database (Denmark)

    Henriksen, Niels; Montgomery, Melanie; Hede Larsen, Ole

    2002-01-01

    condense on superheater components. This gives rise to specific corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly ascribed to the composition of the deposit and the metal surface temperature. To avoid such high corrosion rates, woodchip...... has also been utilised as a fuel. Combustion of woodchip results in a smaller amount of ash, and potassium and chlorine are present in lesser amounts. However, significant corrosion rates were still seen. A case study of a woodchip fired boiler is described. The corrosion mechanisms in both straw...

  17. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Steve [Burns & McDonnell, Inc., Kansas City, MO (United States); Knapp, David [Burns & McDonnell, Inc., Kansas City, MO (United States)

    2012-07-01

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO2) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO2 per year.

  18. Combustion of bark and wood waste in the fluidized bed boiler

    Science.gov (United States)

    Pleshanov, K. A.; Ionkin, I. L.; Roslyakov, P. V.; Maslov, R. S.; Ragutkin, A. V.; Kondrat'eva, O. E.

    2016-11-01

    In the Energy Development Strategy of Russia for the Period until 2035, special attention is paid to increased use of local fuel kinds—one of which is biofuel, in particular, bark and wood waste (BWW)— whose application at thermal power plants in Russia has been not developed due to the lack of appropriate technologies mastered by domestic energy mechanical engineering. The article describes the experience of BWW combustion in fluidized bed boilers installed on the energy objects of northern European countries. Based on this, reference points were defined (it is the section of boiler air-gas path where initially the approximate temperatures are set), making it possible to carry out a thermal design of a boiler and ensure its operation reliability. Permissible gas temperature at the furnace outlet at BWW combustion amounted to 950-1000°C. Exit gas temperature, depending on the implementation of special measures on protection of air heater from corrosion, amounted to 140-190°C. Recommended hot air temperature is within the range of 200-250°C. Recommendations for determining the boiler furnace dimensions are presented. Based on the presented reference temperatures in the main reference points, the thermal design of hot water boiler of KV-F-116-150 type with 116 MW capacity was carried out. The analysis of the results and comparison of designed boiler characteristics with operating energy boilers, in which a fuel is burned in a fluidized bed, were carried out. It is shown that, with increasing the boiler capacity, the ratio of its heating power Q to the crosssectional area of furnace chamber F rises. For power-generating boiler of thermal capacity of 100 MW, the ratio is within 1.8-2.2MW/m2. The boiler efficiency exceeds 90% in the range of changes of exit gas temperature typical for such equipment.

  19. Economic Analysis for Rebuilding of an Aged Pulverized Coal-Fired Boiler with a New Boiler in an Aged Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Burhanettin Cetin

    2013-01-01

    Full Text Available Fossil-fired thermal power plants (TPP produce a significant part of electricity in the world. Because of the aging TPPs and so their equipment (especially boiler, thermal power plants also produce less power than their installed capacities, and there has been power loss in time. This situation affects the supply and demand balance of countries. For this reason, aging equipments such as pulverized coal-fired boiler (PCB must be renewed and power loss must be recovered, instead of building new TPPs. In this study, economic analysis of rebuilding an aged pulverized coal-fired boiler with a new pulverized coal-fired boiler including flue gas desulfurization (FGD unit and a circulating fluidized bed boiler (FBB are investigated in an existing old TPP. Emission costs are also added to model, and the developed model is applied to a 200 MWe pulverized coal-fired thermal power plant in Turkey. As a result, the payback period and the net present value are calculated for different technical and economic parameters such as power loss, load factor, electricity price, discount rate, and escalation rate by using the annual value method. The outcomes of this study show that rebuilding of a pulverized coal-fired boiler with a new one is amortized itself in a very short time.

  20. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Temi Linjewile; Connie Senior; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker; Stan Harding

    2003-06-30

    This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.

  1. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Kevin Davis; Martin Denison; Connie Senior; Hong-Shig Shim; Darren Shino; Dave Swenson; Larry Baxter; Calvin Bartholomew; William Hecker

    2005-06-30

    This is the twentieth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At the beginning of this quarter, the corrosion probes were removed from Gavin Station. Data analysis and preparation of the final report continued this quarter. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ FTIR lab, and includes the first results from tests run on samples cut from the commercial plate catalysts. The SCR slipstream reactor at Plant Gadsden was removed from the plant, where the total exposure time on flue gas was 350 hours. A computational framework for SCR deactivation was added to the SCR model.

  2. MSWI boiler fly ashes: magnetic separation for material recovery.

    Science.gov (United States)

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments.

  3. METHANE de-NOX for Utility PC Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bryan; Serguei Nester; Joseph Rabovitser; Stan Wohadlo

    2005-09-30

    The overall project objective is the development and validation of an innovative combustion system, based on a novel coal preheating concept prior to combustion, that can reduce NO{sub x} emissions to 0.15 lb/million Btu or less on utility pulverized coal (PC) boilers. This NO{sub x} reduction should be achieved without loss of boiler efficiency or operating stability, and at more than 25% lower levelized cost than state-of-the-art SCR technology. A further objective is to ready technology for full-scale commercial deployment to meet the market demand for NO{sub x} reduction technologies. Over half of the electric power generated in the U.S. is produced by coal combustion, and more than 80% of these units utilize PC combustion technology. Conventional measures for NOx reduction in PC combustion processes rely on combustion and post-combustion modifications. A variety of combustion-based NO{sub x} reduction technologies are in use today, including low-NO{sub x} burners (LNBs), flue gas recirculation (FGR), air staging, and natural gas or other fuel reburning. Selective non-catalytic reduction (SNCR) and selective catalytic reduction (SCR) are post-combustion techniques. NO{sub x} reduction effectiveness from these technologies ranges from 30 to 60% and up to 90-93% for SCR. Typically, older wall-fired PC burner units produce NO{sub x} emissions in the range of 0.8-1.6 lb/million Btu. Low-NO{sub x} burner systems, using combinations of fuel staging within the burner and air staging by introduction of overfire air in the boiler, can reduce NO{sub x} emissions by 50-60%. This approach alone is not sufficient to meet the desired 0.15 lb/million Btu NO{sub x} standard with a range of coals and boiler loads. Furthermore, the heavy reliance on overfire air can lead to increased slagging and corrosion in furnaces, particularly with higher-sulfur coals, when LNBs are operated at sub-stoichiometric conditions to reduce fuel-derived NOx in the flame. Therefore, it is desirable

  4. Mathematical modeling and experimental study of biomass combustion in a thermal 108 MW grate-fired boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren K.

    2008-01-01

    on the basis of the sensitivity analysis and the measurements. The baseline results show an overall acceptable agreement with the measured data and the site observations, indicating the baseline model is applicable in optimization of the boiler and design of new grate boilers. However, at a few measuring...... computational fluid dynamics (CFD) model for an industrial biomass-fired grate boiler, which can be used for diagnosis and optimization of the grate boiler as well as design of new grate boilers. First, based on the design conditions, a thorough sensitivity analysis is done to evaluate the relative importance...... of different factors in CFD analysis of the grate boiler. In a late stage, a two-day measuring campaign is carried out to measure the gas temperatures and gas concentrations in the boiler using a fiber optic probe connected to a Fourier transform infrared (FTIR) spectrometer. A baseline model is then defined...

  5. Corrosion of oil-fired boilers caused by sour combustion products of the sulfur contained in fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-01-01

    A corrosion model helps to experimentally explain why industrial boilers are more susceptible to corrosion than smaller boilers and why vapour dew points are relevant to heating boilers while sulfuric acid dew points are relevant to steam boilers. Analyses are based on model verifications (measurement of critical boiler factors). Access is given to the sulfur trioxide measuring methods as well as to the respective tests of 30 actively operated boilers (sulfur oxide concentrations at burner outlets), the catalytic formation of sulfur oxides, and tests of the test stand boiler (sulfur oxide deposits). The paper concludes with a description of corrosion product analyses as such as well as with an account of the results obtained. Analyses and results (wet analysis, X-ray structure analysis, influence of temperatures, FeSO/sub 4/ x H/sub 2/O tracing) are presented in the form of eight brief statements. (HWJ)

  6. A Method for Determining the Usability Potential of Ship Steam Boilers

    Directory of Open Access Journals (Sweden)

    Muślewski Łukasz

    2016-12-01

    Full Text Available Ship large-power steam boiler may serve as an example of complex critical technical system. A basis for rational control of operation of such system is knowledge on its capability of fulfilling the tasks to which it was intended. In order to make it possible to apply computer aiding to operational decision-making the capability should be described analytically. In this paper it was proposed to express the capability of ship steam boiler ( considered a complex system to perform service tasks, by calculating components of its usability potential in a given instant t. To this end , was distinguished a set of steam boiler fundamental features which formulate space of its technical states. Values and characteristic intervals of the features were defined and this way sub-spaces of serviceability and non-serviceability states of the object in question were determined. Next, in the considered space, technical state of the boiler and its usability potential was determined. Owing to this it become possible to quantitatively express the steam boiler functioning capability which served as a basis for elaborating an algorithm for controlling the operational processes of a complex technical system under action. In this paper is also described a way of application of the presented method to calculation of ship steam boiler usability potential, which may be especially instrumental in the case of operational control of the boilers of the kind , equipped with interstage reheaters, i.e. those operating with high values of operational parameters.

  7. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  8. Conversion of KVGM-100-150 boilers to cyclone-swirl burning of gas

    Science.gov (United States)

    Shtym, K. A.; Solov'eva, T. A.

    2015-03-01

    Heating sources of Vladivostok with boilers reconstructed in 2011 to gas burning is presented. The historical reference of the experience of boiler conversion to cyclone-swirl technology of burning of fuel oil and gas is given. Stages of the primary furnace and boiler upgrading are shown. Taking BKZ 75-16 and BKZ-120-100 boilers as examples, the principal differences of the swirl type of fuel burning from the burner type are demonstrated. Data of the KVGM-100-150 MTs boiler with cyclone-swirl burning of gas and fuel oil is represented. The mathematical model developed for the primary furnace with the 65 MW capacity gives detailed explanations to the features of mixing in the combustion chamber of the primary furnace, which substantiate conditions and places of the fuel injection. The practical result is supported by test data obtained on the operating equipment. To enhance the effectiveness of fuel consumption on six converted KVGM-100-150 MTs boilers, the convective section was restructured and the water circulation circuit was optimized. Comparative analysis of estimated and operating characteristics showed the efficiency increment. The application of cyclone-swirl technology made it possible to increase the effectiveness of the KVGM-100-150 boiler and improve its environmental indicators.

  9. Possibility analysis of combustion of torrefied biomass in 140 t/h PC boiler

    Directory of Open Access Journals (Sweden)

    Jagodzińska Katarzyna

    2016-01-01

    Full Text Available The study attempts to evaluate the impact of combustion of torrefied willow (Latin: Salix viminalis and palm kernel shell (Latin: Elaeis guineensis on the heat exchange in a 140 t/h PC boiler through an analysis of 6 cases for different boiler loads (60 %, 75 % and 100 % and a comparison with coal combustion. The analysis is premised on a 0-dimensional model based on the method presented in [15, 16, 17] and long-standing experimental measurements. Inter alia, the following results are presented: the temperature distribution of flue gases and the working medium (water/steam in characteristic points of the boiler as well as heat transfer coefficients for each element thereof. The temperature distribution of both fluids and the heat transfer coefficients are similar for all analysed fuels for each boiler load. However, the flue gas temperature at the outlet is higher in the case of torrefied biomass combustion. Due to that, there is an increase in the stack loss, which involves a decrease in the boiler efficiency. The conclusion is that torrefied biomass combustion is possible in a PC boiler without the need to change the boiler construction. However, it would be less effective than coal combustion.

  10. Ash chemistry aspects of straw and coal-straw co-firing in utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Nielsen, H.P.; Hansen, L.A.; Hansen, P.F.B.; Andersen, K.H.; Soerensen, H.S.

    1998-12-01

    Deposits formed in straw-fired grate-boilers showed significant amounts of KCl ( 40 - 80 % (w/w)) and KCl-coated Ca-Si-rich particles. CFB co-firing of straw and coal caused deposits in the convective pass containing predominantly K{sub 2}SO{sub 4} (50 - 60 % (w/w)) with small amounts of KCl close to the metal surface. In pulverized coal-straw co-fired boilers, deposits almost free of KCl were found. Most of the potassium in these deposits is derived from K-Al-Si-rich fly ash particles and the rest occurs as K{sub 2}SO{sub 4}. The presence of K-Al-Si-rich fly ash particles indicates that solid residue quality and reuse of fly ash in cement and concrete production rather than deposit formation may be of concern when utilizing straw in pulverized fuel boilers. This paper provides a review of Danish experiences with high-temperature ash deposit formation in the following full-scale utility boilers: Slagelse CHP (31 MW{sub th}), Haslev CHP (23 MW{sub th}) and Rudkoebing CHP (10.7 MW{sub th}), all straw-fired grate-boilers; Grenaa CHP (80 MW{sub th}), a coal-straw co-fired Circulating Fluidized Bed (CFB) boiler; and the Midtkraft-Studstrup Power Station, Unit l (380 MW{sub th}), a coal-straw co-fired pf-boiler. (au)

  11. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  12. Multi-objective Optimization of Coal-fired Boiler Combustion Based on NSGA-II

    Directory of Open Access Journals (Sweden)

    Tingfang Yu

    2013-06-01

    Full Text Available NOx emission characteristics and overall heat loss model for a 300MW coal-fired boiler were established by Back Propagation (BP neural network, by which the the functional relationship between outputs (NOx emissions & overall heat loss of the boiler and inputs (operational parameters of the boiler of a coal-fired boiler can be predicted. A number of field test data from a full-scale operating 300MWe boiler were used to train and verify the BP model. The NOx emissions & heat loss predicted by the BP neural network model showed good agreement with the measured. Then, BP model and the non-dominated sorting genetic algorithm II (NSGA-II were combined to gain the optimal operating parameters which lead to lower NOx emissions and overall heat loss boiler. The optimization results showed that hybrid algorithm by combining BP neural network with NSGA-II can be a good tool to solve the problem of multi-objective optimization of a coal-fired combustion, which can reduce NOx emissions and overall heat loss effectively for the coal-fired boiler.

  13. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  14. Fuel moisture content analysis as a basis for process monitoring of a BioGrate boiler

    OpenAIRE

    Boriouchkine, Alexander; Zakharov, Alexey; Jämsä-Jounela, Sirkka-Liisa

    2010-01-01

    This paper considers the utilization of first principle models of a BioGrate boiler in a disturbance analysis study. The study focuses on the effect of fuel moisture content on the fuel combustion, since it is the most significant disturbance source in the boiler operation. The dynamic model of a BioGrate boiler, upon which the study is based, is heterogeneous, including solid and gas phases. Furthermore, the model considers chemical reactions in both gas and solid phases. In addition, fuel m...

  15. A new air-fuel WSGGM for better utility boiler simulation, design and optimization

    DEFF Research Database (Denmark)

    Yin, Chungen

    Radiation is the principal mode of heat transfer in utility boiler furnaces. Models for radiative properties play a vital role in reliable simulations of utility boilers and simulation-based design and optimization. The weighted sum of gray gases model (WSGGM) is one of the most widely used models...... and Vervisch (1983) for higher temperatures until 3000K. This paper refines the WSGGM in terms of accuracy, completeness and implementation, and demonstrates the use and impacts of the refined model in CFD simulation of a conventional air-fuel utility boiler....

  16. Experimental analysis on the use of condensing boilers for centralized production of domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, E.; Lazzarin, R.; Piccininni, F.; Caliari, R. (Bari Univ. (Italy). Ist. di Fisica Tecnica ed Impianti Termotecnici)

    1988-11-01

    The monthly performance of pulse combustion condensing boilers has been studied. The boilers are utilized in a plant for the centralized production of domestic hot water. The heating capacity is 112 kW with a daily production of 15 cubic meter of hot waters at 60 degrees centigrade. The analysis has shown the very good seasonal performance of the boilers even without a suitable plant design. The great importance of the heat distribution system has been outlined in order to reach good overall performance.

  17. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  18. Development of an Optimizing Control Concept for Fossil-Fired Boilers using a Simulation Model

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Commisso, M.B.

    1997-01-01

    of implementation and commissioning. The optimizing control system takes into account the multivariable and nonlinear characteristics of the boiler process as a gain-scheduled LQG-controller is utilized. For the purpose of facilitating the control concept development a dynamic simulation model of the boiler process......An optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms...... model when designing a new control concept are discussed....

  19. Boiler level control system based on ControlLogix5550 PLC

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>This paper is a research design based on EFPT process control device.In the design,actual industry field has been simulated and corresponding modelling has been carried on for the boiler level system.Then the appropriate PID parameter has been sorted out and ControlLogix5550 PLC has been used to control the entire boiler level system. At last,a corresponding control interface has been established and the boiler level has been under a safe and accurate control.

  20. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  1. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    K. Sujatha

    2012-05-01

    Full Text Available Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2, excess oxygen (O2, Nitrogen dioxide (NOx, Sulphur dioxide (SOx and Carbon monoxide (CO emissions plus the flame temperature at the core of the fire ball, air/fuel ratio and the combustion quality. Higher the quality of combustion less will be the flue gases at the exhaust. The flame video was captured using an infrared camera. The flame video is then split up into the frames for further analysis. The video splitter is used for progressive extraction of the flame images from the video. The images of the flame are then pre-processed to reduce noise. The conventional classification and clustering techniques include the Euclidean distance classifier (L2 norm classifier. The intelligent classifier includes the Radial Basis Function Network (RBF, Back Propagation Algorithm (BPA and parallel architecture with RBF and BPA (PRBFBPA. The results of the validation are supported with the above mentioned performance measures whose values are in the optimal range. The values of the temperatures, combustion quality, SOx, NOx, CO, CO2 concentrations, air and fuel supplied corresponding to the images were obtained thereby indicating the necessary control action taken to increase or decrease the air supply so as to ensure complete combustion. In this work, by continuously monitoring the flame images, combustion quality was inferred (complete/partial/incomplete combustion and the air/fuel ratio can be automatically varied. Moreover in the existing set-up, measurements like NOx, CO and CO2 are inferred from the samples that are collected periodically or by

  2. The boiler concept for combustion of large soya straw bales

    Energy Technology Data Exchange (ETDEWEB)

    Mladenovic, Rastko; Dakic, Dragoljub; Eric, Aleksandar; Mladenovic, Milica; Paprika, Milijana; Repic, Branislav [Institute of Nuclear Sciences ' ' Vinca' ' , Laboratory for Thermal Engineering and Energy, P.O. Box 522, 11001 Belgrade (RS)

    2009-05-15

    In one of the largest agricultural companies in Serbia, with over 2000 ha of soya plantations, there are 4000 t/year of baled soya straw produced. Soya straw biomass is planned to be used as a renewable energy source for heating the greenhouses, with 5 ha in area. Therefore, efforts have been made to develop a technology for utilizing large bales of soya straw for energy production. In the first phase, a demo energy production facility-furnace was developed and built. The facility had been tested in order to examine the quality of combustion of large soya straw bales. Since experimental results of testing of this facility have proved to be very satisfactory, in the second phase of the development, a hot water boiler of similar characteristics (burning soya straw bales, with dimensions 0.7 x 1.2 x 2.7 m{sup 3}) has been designed. (author)

  3. Computation Modeling and Assessment of Nanocoatings for Ultra Supercritical Boilers

    Energy Technology Data Exchange (ETDEWEB)

    J. Shingledecker; D. Gandy; N. Cheruvu; R. Wei; K. Chan

    2011-06-21

    Forced outages and boiler unavailability of coal-fired fossil plants is most often caused by fire-side corrosion of boiler waterwalls and tubing. Reliable coatings are required for Ultrasupercritical (USC) application to mitigate corrosion since these boilers will operate at a much higher temperatures and pressures than in supercritical (565 C {at} 24 MPa) boilers. Computational modeling efforts have been undertaken to design and assess potential Fe-Cr-Ni-Al systems to produce stable nanocrystalline coatings that form a protective, continuous scale of either Al{sub 2}O{sub 3} or Cr{sub 2}O{sub 3}. The computational modeling results identified a new series of Fe-25Cr-40Ni with or without 10 wt.% Al nanocrystalline coatings that maintain long-term stability by forming a diffusion barrier layer at the coating/substrate interface. The computational modeling predictions of microstructure, formation of continuous Al{sub 2}O{sub 3} scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. Advanced coatings, such as MCrAl (where M is Fe, Ni, or Co) nanocrystalline coatings, have been processed using different magnetron sputtering deposition techniques. Several coating trials were performed and among the processing methods evaluated, the DC pulsed magnetron sputtering technique produced the best quality coating with a minimum number of shallow defects and the results of multiple deposition trials showed that the process is repeatable. scale, inward Al diffusion, grain growth, and sintering behavior were validated with experimental results. The cyclic oxidation test results revealed that the nanocrystalline coatings offer better oxidation resistance, in terms of weight loss, localized oxidation, and formation of mixed oxides in the Al{sub 2}O{sub 3} scale, than widely used MCrAlY coatings. However, the ultra-fine grain structure in these coatings, consistent with the computational model predictions, resulted in accelerated Al

  4. Study on Cracking Process of Power Boiler Element

    Science.gov (United States)

    Mutwil, K.; Cieśla, M.

    2012-05-01

    This paper presents the study of the reasons for cracking of spray steam attemperator. The element being analysed is a temperature controller of steam for turbine; its proper functioning has considerable impact on operation of power generating set of boiler and turbine. Damage to the steam attemperator may affect the durability of neighbouring components, replacement or repair of which results in a long-term outage of power generation unit. The reason for attemperator cracking has been determined on the basis of strength calculations and micro-and macro-analysis of fracture surfaces. The conducted tests were the basis for modification of attemperator design, which will ensure reliable functioning of the analysed element.

  5. Factors controlling alkalisalt deposition in recovery boiler- release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Kylloenen, H.; Kurkela, M. [VTT Energy, Espoo (Finland). Process Technology Group

    1996-12-01

    As part of a cooperative effort to develop a model to describe the behaviour of inorganic compounds in kraft recovery boilers, an experimental investigation of the release of sulphur during black liquor pyrolysis has been undertaken. Previous to these studies, the mechanisms of sulphur release and the reasons for the observed effects of process conditions on sulphur release were very poorly understood. On the basis of the experimental results, the main reactions leading to sulphur release have been elucidated with a fair degree of certainty. Logical explanations for the variations of sulphur release with temperature and with liquor solids content have been proposed. The influence of pressure has been investigated in order to gain insights into the effects of mass transfer on the sulphur-release rate. In the near future, the research will be aimed at generating the kinetic data necessary for modelling the release of sulphur in the recovery furnace. (author)

  6. Design and development for a low emission boiler system

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The Department of Energy initiated the Combustion 2000 program to develop the next generation of coal-fired power plants. Sargent & Lundy (S&L) is working on the Low Emission Boiler System (LEBS) portion of the program led by Riley Stoker Corporation, with support from Textron Defense Systems, Tecogen, and Reaction Engineering International. Together these organizations form {open_quotes}the Riley Team.{close_quotes} There are four phases of the LEBS development program. Currently, we are working in Phase I, which involves the design of a 400 MWe unit. Phase II through IV will involve pilot scale component testing and a Proof-of-Concept facility ({approximately}40MWe) design, construction, and operation. This document comprises the Design and Development Report for the LEBS. The report describes the design basis, design uncertainties and development plan for each of the major LEBS subsystems.

  7. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Temi Linjewile; Connie Senior; Hong-Shig Shim; Bob Hurt; Eric Eddings; Larry Baxter

    2003-01-30

    This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, progress was made on the computational simulation of a full-scale boiler with the purpose of understanding the potential impacts of burner operating conditions on soot and NO{sub x} generation. Sulfation tests on both the titania support and vanadia/titania catalysts were completed using BYU's in situ spectroscopy reactor this quarter. These experiments focus on the extent to which vanadia and titania sulfate in an SO{sub 2}-laden, moist environment. Construction of the CCS reactor system is essentially complete and the control hardware and software are largely in place. A large batch of vanadia/titania catalyst in powder form has been prepared for use in poisoning tests. During this quarter, minor modifications were made to the multi-catalyst slipstream reactor and to the control system. The slipstream reactor was installed at AEP's Rockport plant at the end of November 2002. In this report, we describe the reactor system, particularly the control system, which was created by REI specifically for the reactor, as well as the installation at Rockport.

  8. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Fabienne Chatel-Pelage

    2003-10-01

    This document reviews the work performed during the quarter July--September 2003. Significant progress has been made in Task 1 (Site Preparation), Task 2 (Test performance) and Task 3 (Techno-Economic Study) of the project: the site preparation has been completed, two weeks of tests have been performed and the power generating units to be compared from an economical standpoint have been selected and accurately described. In the experimental part of this effort (task1), the partners in this project demonstrated the feasibility of 100% air replacement with O{sub 2}-enriched flue gas on 1.5MW coal-fired boiler. The air infiltration have been reduced to approximately 5% of the stoichiometry, enabling to reach around 70% of CO{sub 2} in the flue gases. Higher air in-leakage reduction is expected using alternative boiler operating procedure in order to achieve higher CO{sub 2} concentration in flue gas for further sequestration or reuse. The NO{sub x} emissions have been shown considerably lower in O{sub 2}-fired conditions than in air-baseline, the reduction rate averaging 70%. An additional week of tests is scheduled mid October 2003 for combustion parameter optimization, and some more days of operation will be dedicated to mercury emission measurement and heat transfer characterization. Out of the $485k already allocated in this project, $300k has been spent and reported to date, mainly in site preparation ({approx}$215k) and test performance ({approx}$85k). In addition to DOE allocated funds, to date approximately $240k has been cost-shared by the participants, bringing the total project cost up to $540k as on September 30, 2003.

  9. ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    Ovidiu Marin; Fabienne Chatel-Pelage

    2003-07-01

    This document reviews the work performed during the quarter April-June 2003. The main focus of this quarter has been the site preparation (task 1) for the test campaign scheduled in September/October 2003. Task 3 (Techno-economical assessment) has also been initiated while selecting the methodology to be used in the economics analysis and specifying the plants to be compared: In Task 1 (Site Preparation), the process definition and design activities have been completed, the equipment and instruments required have been identified, and the fabrication and installation activities have been initiated, to implement the required modifications on the pilot boiler. As of today, the schedule calls for completion of construction by late-July. System check-down is scheduled for the first two weeks of August. In Task 2 (Combustion and Emissions Performance Optimization), four weeks of testing are planned, two weeks starting second half of August and two weeks starting at the end of September. In Task 3 (Techno-Economic Study), the plants to be evaluated have been specified, including baseline cases (air fired PC boilers with or without CO{sub 2} capture), O{sub 2}-fired cases (with or without flue gas recirculation) and IGCC cases. Power plants ranging from 50 to 500MW have been selected and the methodology to be used has been described, both for performance evaluation and cost assessment. The first calculations will be performed soon and the first trends will be reported in the next quarter. As part of Task 5 (Project Management & Reporting), the subcontract between Babcock&Wilcox and American Air Liquide has been finalized. The subcontract between ISGS and American Air Liquide is in the final stages of completion.

  10. The oxidation mechanism of szomolnokite in intermittently fired domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.; Zimmermann, U.

    1989-06-01

    Using thermogravimetry and exposure experiments on initially formed iron (II)-sulfate hydrates the consecutive reactions of the primary corrosion product szomolnokite under the typical operating conditions of domestic boilers were investigated. The reaction mechanism thus deduced is in accordance with thermodynamic equilibrium considerations in the system Fe/sub 2/O/sub 3/-H/sub 2/SO/sub 4/-H/sub 2/O/crystalline phase. The reaction mechanism consists of the following steps: (1) H/sub 2/SO/sub 4/ (vapour) -> H/sub 2/SO/sub 4/ (liquid). (2) H/sub 2/SO/sub 4/ + Fe + H/sub 2/O -> FeSO/sub 4/xH/sub 2/O + H/sub 2/. (3) 2FeSO/sub 4/xH/sub 2/O + 0,5 O/sub 2/ -> 2Fe(OH)SO/sub 4/ + H/sub 2/O. (4a) Fe(OH)SO/sub 4/ + H/sub 2/SO/sub 4/ + 3H/sub 2/O -> FeH(SO/sub 4/)/sub 2/x4H/sub 2/O. (4b) Fe(OH)SO/sub 4/ + H/sub 2/SO/sub 4/ -> Fe(H/sub 3/O)(SO/sub 4/)/sub 2/. (5a) 2FeH(SO/sub 4/)/sub 2/x4H/sub 2/O -> Fe/sub 2/(SO/sub 4/)/sub 3/ + H/sub 2/SO/sub 4/ + 8H/sub 2/O. (5b) 2Fe(H/sub 3/O)(SO/sub 4/)/sub 2/ -> Fe/sub 2/ (SO/sub 4/)/sub 3/ + H/sub 2/SO/sub 4/ + 2 H/sub 2/O. With this reaction mechanism the most frequently occurring crystalline phases in corrosion samples from oil fired domestic boilers can be explained. (orig.).

  11. The reapplication of energetic materials as boiler fuels

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, S.G.; Sclippa, G.C.; Ross, J.R. [and others

    1997-02-01

    Decommissioning of weapons stockpiles, off-specification production, and upgrading of weapons systems results in a large amount of energetic materials (EM) such as rocket propellant and primary explosives that need to be recycled or disposed of each year. Presently, large quantities of EM are disposed of in a process known as open-burn/open-detonation (OB/OD), which not only wastes their energy content, but may release large quantities of hazardous material into the environment. Here the authors investigate the combustion properties of several types of EM to determine the feasibility of reapplication of these materials as boiler fuels, a process that could salvage the energy content of the EM as well as mitigate any potential adverse environmental impact. Reapplication requires pretreatment of the fuels to make them safe to handle and to feed. Double-base nitrocellulose and nitroglycerin, trinitrotoluene (TNT), nitroguanidine, and a rocket propellant binder primarily composed of polybutidiene impregnated with aluminum flakes have been burned in a 100-kW downfired flow reactor. Most of these fuels have high levels of fuel-bound nitrogen, much of it bound in the form of nitrate groups, resulting in high NO{sub x} emissions during combustion. The authors have measured fuel-bound nitrate conversion efficiencies to NO{sub x} of up to 80%, suggesting that the nitrate groups do not follow the typical path of fuel nitrogen through HCN leading to NO{sub x}, but rather form NO{sub x} directly. They show that staged combustion is effective in reducing NO{sub x} concentrations in the postcombustion gases by nearly a factor of 3. In the rocket binder, measured aluminum particle temperatures in excess of 1700{degrees}C create high levels of thermal NO{sub x}, and also generate concern that molten aluminum particles could potentially damage boiler equipment. Judicious selection of the firing method is thus required for aluminum-containing materials.

  12. SCENARIO OF WOOD-FUEL PROCUREMENT FOR A NEW BOILER PLANT

    Directory of Open Access Journals (Sweden)

    Gerasimov Y. Y.

    2013-11-01

    Full Text Available This article shows the results of computer simulation of wood harvesting in the North Ladoga region with wood-fuel production and delivery of its part to the new boiler plant in Suojarvi being under construction

  13. A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Directory of Open Access Journals (Sweden)

    Tomáš Dlouhý

    2012-01-01

    Full Text Available This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.

  14. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    Directory of Open Access Journals (Sweden)

    W. L. Silva

    2008-09-01

    Full Text Available The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were directly obtained from CENIBRA's data acquisition system. The resulting approach is able to predict the steady state behavior of the chemical composition of the furnace recovery boiler, - especially the reduction efficiency when different operational conditions are used. This result confirms the potential of this approach in the analysis of the daily operation of the recovery boiler.

  15. Coal-fired boiler houses in Cracow present state and possibilities to improve their efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cyklis, P. [Institute of Industrial Equipment and Power Engineering, Cracow (Poland); Butcher, T.A. [Brookhaven National Lab., Upton, NY (United States)

    1995-12-31

    A significant amount of heat energy both for heating and process purposes is generated in Cracow, Poland in small-and medium size local boiler houses. The operating procedure of these boiler houses is most often economically and ecologically ineffective because of the bad condition of boilers and lack of funds to install automation, control and measurement equipment. Within the Polish-American Program of Elimination of Low Emission Sources financed by the US Department of Energy, the ENERGOEKSPERT Co., Ltd. investigated chosen boiler houses in Cracow, commissioned by the Cracow Development Office. The results of these investigations were subject of engineering analysis carried out at the Institute of Industrial Equipment and Power Engineering, Technical University, Cracow. The analysis proved that the low-cost improvement of economic efficiency and reduction of air pollutant emission is feasible for combustion of coal fuels.

  16. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  17. Heat transfer in a large-scale circulating fluidized bed boiler

    Institute of Scientific and Technical Information of China (English)

    CHENG Leming; WANG Qinhui; SHI Zhenglun; LUO Zhongyang; NI Mingjiang; CEN Kefa

    2007-01-01

    Heat transfer of a furnace in a large-scale circulating fluidized bed (CFB) boiler was studied based on the analysis of available heat transfer coefficient data from typical industrial CFB boilers and measured data from a 12 MWe,a 50 MWe and a 135 MWe CFB boiler.The heat transfer of heat exchanger surfaces in a furnace,in a steam/water cooled cyclone,in an external heat exchanger and in the backpass was also reviewed.Empirical correlation of heat transfer coefficient was suggested after calculating the two key parameters,solids suspension density and furnace temperature.The correlation approach agrees well with the data from the large-scale CFB boilers.

  18. High-Temperature Behavior of a NiCr-Coated T91 Boiler Steel in the Platen Superheater of Coal-Fired Boiler

    Science.gov (United States)

    Chatha, Sukhpal Singh; Sidhu, Hazoor S.; Sidhu, Buta S.

    2013-06-01

    Ni-20Cr coating was deposited on T91 boiler tube steel by high-velocity oxy-fuel (HVOF) process to enhance high-temperature oxidation resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under in the platen superheater zone of coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles, each of 100-h duration followed by 1-h cooling at ambient temperature. The extent of degradation of the specimens was assessed by the thickness loss and depth of internal corrosion attack. Ni-20Cr-coated steel performed better than the uncoated steel in actual boiler environment. The improved degradation resistance of Ni-20Cr coating can be attributed to the presence of Cr2O3 in the top oxide scale and dense microstructure.

  19. Dynamic simulation model for ultra supercritical 1 000 MW unit boilers%Dynamic simulation model for ultra supercritical 1000 MW unit boilers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; XU Ershu

    2013-01-01

    On the basis of heat transfer characteristics of working fluid at different pressures inside the water wall tube and structure of the ultra supercritical 1 000 MW unit once through boiler in Jianbi Power Plant,the varying phase transformation point method was adopted to establish the moving-boundary dynamic simulation model of water wall in ultra supercritical once through boilers,especially the length variation of hot water section,evaporation section and superheat section against the load changing.On this basis,the real-time dynamic simulation model for ultra-supercritical 1 000 MW unit boiler in Jianbi Power Plant was built on the STAR-90 simulation platform.The dynamic and static characteristics test showed that,this model can simulate the unit's startup/shutdown process and some typical fault conditions accurately,and had good dynamic and static performance.

  20. Developments and operational experience with ceramic boiler wall protection systems in fluidised bed boilers; Entwicklungen und Betriebserfahrungen mit keramischen Rohrwandschutzsystemen in der Wirbelschicht

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Markus [Juenger + Graeter GmbH, Schwetzingen (Germany); Roschek, Dirk; Ipsen, Christoph [Stadtwerke Flensburg GmbH, Flensburg (Germany)

    2013-02-01

    More alternative fuels, such as biomass, refuse derived fuels, sewage sludge, meat and bone meal etc. are being used in conventional CFB power plants originally designed for coal combustion. However, co-combustion of these materials causes problems which are not always advantageous for continuous plant operation, i.e. mostly substantially higher fouling susceptibility of the plants was noticed. In some cases even a far greater tendency to boiler damage was observed as result of corrosion, erosion, and mechanical effects. Based on these constraints, the cooperation between Stadtwerke Flensburg and Juenger+Graeter (J+G) resulted in the development of a ceramic boiler wall protection system which would significantly reduce the susceptibility to boiler damage in the combustion chamber.

  1. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  2. Organization of fuel accounting and determining the efficiency of combustion of wood fuel in boiler houses

    Energy Technology Data Exchange (ETDEWEB)

    Pavlosyuk, V.A.

    1982-01-01

    A review is presented of official Soviet publications covering general principles, calorific value of wood species and waste wood, and specific fuel requirements of different boilers. Accounting is based on the concept of nominal fuel (calorific value 7000 kcal/kg). Reduced boiler efficiency when burning low-grade fuel, e.g. waste wood of 55% moisture content, results in higher fuel consumption than expected from the calorific value alone. A method of estimating normal fuel requirements is described. 3 references.

  3. Production of high quality distillate to meet a fit-for-purpose boiler feedwater specification

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions Oil and Gas, Calgary, AB (Canada); Neu, D. [Veolia Water Solutions and Technologies/HPD, Pewaukee, WI (United States); Drone, J.L. [Veolia Water Solutions and Technologies/HPD, Plainfield, IL (United States)

    2009-07-01

    Veolia Water Solutions and Technologies has significant experience managing boiler water chemistry and is the world's largest manufacturer of evaporation systems. The company has conducted extensive testing and analysis for produced water evaporation distillate from multiple facilities. In order to produce boiler feed water, evaporation of produced water is used at several steam assisted gravity drainage (SAGD) facilities. There are no official guidelines for the required quality of evaporator distillate to feed a once through steam generator (OTSG) or high pressure industrial watertube boiler (IWT) that will produce injection steam. This paper presented a basis for a fit-for-purpose specification for IWT boilers as well as data on the performance of a Vapor Washer, which produces high quality distilled water that meets fit-for-purpose specifications even during normal variations in feed conditions. Specifically, the paper discussed boiler water requirements for steam injection IWTs; the quality of distillate from a produced water evaporator; the benefits of vapour washing to maintain distillate quality; and suggested boiler chemistry limits for a fit-for-purpose specification. Oxygen, iron, and copper were discussed as being implicated with corrosion and reaction in boilers. Hardness contaminants such as calcium and magnesium were also presented. Suggested limits for boiler water in the fit-for-purpose specification were also presented for silica, total alkalinity, free OH alkalinity, and total dissolved solids in steam. It was concluded that foaming episodes can occur in produced water evaporators due to normal variations, and the distillate can fail to meet the fit-for-purpose specification during foam upsets. 3 refs., 9 figs.

  4. Reduction efficiency prediction of CENIBRA's recovery boiler by direct minimization of gibbs free energy

    OpenAIRE

    W. L. Silva; Ribeiro,J. C. T.; E. F.da Costa Jr; A. O. S.da Costa

    2008-01-01

    The reduction efficiency is an important variable during the black liquor burning process in the Kraft recovery boiler. This variable value is obtained by slow experimental routines and the delay of this measure disturbs the pulp and paper industry customary control. This paper describes an optimization approach for the reduction efficiency determination in the furnace bottom of the recovery boiler based on the minimization of the Gibbs free energy. The industrial data used in this study were...

  5. Digest of "Invariant Method of Load Independent Pressure Control in Steam Boiler"

    OpenAIRE

    Sniders, Andris; Komass, Toms

    2012-01-01

    The paper considers the possibility of steam production and supply process improvement by perfection of the steam boiler control system, applying invariance principle that makes possible preemptive compensation of the influence of steam expenditure as a disturbance on the control process quality and efficiency. For the development of invariant control system, the mathematical modeling and simulation in MATLAB - SIMULINK environment is made. The control unit is low pressure steam boiler with o...

  6. Final Report: Guided Acoustic Wave Monitoring of Corrosion in Recovery Boiler Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D J; Quarry, M J; Rose, J L

    2005-03-31

    Corrosion of tubing used in black-liquor recovery boilers is a major concern in all pulp and paper mills. Extensive corrosion in recovery boiler tubes can result in a significant safety and environmental hazard. Considerable plant resources are expended to inspect recovery boiler tubing. Currently, visual and ultrasonic inspections are primarily used during the annual maintenance shutdown to monitor corrosion rates and cracking of tubing. This Department of Energy, Office of Industrial Technologies project is developing guided acoustic waves for use on recovery boiler tubing. The feature of this acoustic technique is its cost-effectiveness in inspecting long lengths of tubes from a single inspection point. A piezoelectric or electromagnetic transducer induces guided waves into the tubes. The transducer detects fireside defects from the cold side or fireside of the tube. Cracking and thinning on recovery boiler tubes have been detected with this technique in both laboratory and field applications. This technique appears very promising for recovery boiler tube application, potentially expediting annual inspection of tube integrity.

  7. The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, G. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)], E-mail: gines@cdf.udc.es; Mateo, M.P.; Yanez, A. [Universidad de A Coruna, Departamento de Ingenieria Industrial II, E-15403 Ferrol (A Coruna) (Spain)

    2007-12-15

    The present work focuses on the characterization of boiler tube walls using laser-induced plasma spectroscopy technique with visual inspection by optical and scanning electron microscopy of the cross-sections of these tubes. In a watertube boiler, water runs through tubes that are surrounded by a heating source. As a result, the water is heated to very high temperatures, causing accumulation of deposits on the inside surfaces of the tubes. These deposits play an important role in the efficiency of the boiler tube because they produce a reduction of the boiler heat rate and an increase in the number of tube failures. The objectives are to determine the thickness and arrangement of deposits located on the highest heat area of the boiler and compare them with tube parts where the heat flux is lower. The major deposits found were copper and magnetite. These deposits come mainly from the boiler feedwater and from the reaction between iron and water, and they do not form on the tube walls at a uniform rate over time. Their amount depends on the areas where they are collected. A Nd:YAG laser operating at 355 nm has been used to perform laser-induced plasma spectra and depth profiles of the deposits.

  8. Status of combustion-modification technology for utility-boiler NO/sub x/ control

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report documents significant developments in the subject area of combustion modifications as applied to coal-fired utility boilers. The primary emphasis is on the status of NO/sub x/ control technology, but related topics, such as boiler corrosion and hazardous emissions during modified-combustion operation, are also discussed. This report is intended as a complement to the 1977 Assessment of NO/sub x/ Control Technology for Coal-Fired Utility Boilers (ANL/ECT-3, Appendix D). A synopsis of recent NO/sub x/ field-test programs undertaken by the U.S. Environmental Protection Agency (EPA) and the Electric Power Research Institute (EPRI) is presented along with a status report on the major boiler manufacturers' low-NO/sub x/ burner/boiler development efforts. Because of concerns that low-NO/sub x/ operating modes may increase boiler-tubewall corrosion and increase polycyclic-organic-matter (POM) and SO/sub 3/ emissions, discussions of recent test programs and analytical studies on these topics are also included.

  9. Fruit fly optimization algorithm based high efficiency and low NOx combustion modeling for a boiler

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenxing∗; SUN Baomin; XIN Jing

    2014-01-01

    In order to control NOx emissions and enhance boiler efficiency in coal-fired boilers,the thermal operating data from an ultra-supercritical 1 000 MW unit boiler were analyzed.On the basis of the support vector regression machine (SVM),the fruit fly optimization algorithm (FOA)was applied to optimize the penalty parameter C,ker-nel parameter g and insensitive loss coefficient of the model.Then,the FOA-SVM model was established to predict the NOx emissions and boiler efficiency,and the performance of this model was compared with that of the GA-SVM model optimized by genetic algorithm (GA).The results show the FOA-SVM model has better prediction accuracy and generalization capability,of which the maximum average relative error of testing set lies in the NOx emissions model,which is only 3 .5 9%.The above models can predict the NOx emissions and boiler efficiency accurately,so they are very suitable for on-line modeling prediction,which provides a good model foundation for further optimiza-tion operation of large capacity boilers.

  10. Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Voncken, J H L; Wilson, N

    2008-06-15

    Boiler ash generated from municipal solid waste (MSW) incinerators is usually classified as hazardous materials and requires special disposal. In the present study, the boiler ash was characterized for the chemical compositions, morphology and microstructure. The thermal chemical behavior during ash heating was investigated with thermal balance. Vitrification of the ash was conducted at a temperature of 1400 degrees C in order to generate a stable silicate slag, and the formed slag was examined with chemical and mineralogical analyses. The effect of vitrification on the leaching characteristics of various elements in the ash was evaluated with acid leaching. The study shows that the boiler ash as a heterogeneous fine powder contains mainly silicate, carbonate, sulfates, chlorides, and residues of organic materials and heavy metal compounds. At elevated temperatures, the boiler ash goes through the initial moisture removal, volatilization, decomposition, sintering, melting, and slag formation. At 1400 degrees C a thin layer of salt melt and a homogeneous glassy slag was formed. The experimental results indicate that leaching values of the vitrified slag are significantly reduced compared to the original boiler ash, and the vitrification could be an interesting alternative for a safer disposal of the boiler ash. Ash compacting, e.g., pelletizing can reduce volatilization and weight loss by about 50%, and would be a good option for the feed preparation before vitrification.

  11. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    Science.gov (United States)

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NOx), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NOx concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NOx conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NOx conditions) was 34.1%. The reduced SOA yield under high-NOx conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  12. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    Directory of Open Access Journals (Sweden)

    Todorović Milena N.

    2014-01-01

    Full Text Available In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In this paper, the energy and exergy analysis of a gas fired hot water boiler is conducted. Energy analysis gives only quantitative results, while exergy analysis provides an insight into the actually available useful energy with respect to the system environment. In this paper, a hot water boiler was decomposed into control volumes with respect to its functional components. Energy and exergy of the created physical model of the hot water boiler is performed and destruction of exergy and energy loss in each of the components is calculated. The paper describes the current state of energy and exergy efficiency of the hot water boiler. The obtained results are analyzed and used to investigate possibilities for improvement of availability and reliability of the boiler. A comparison between the actual and the proposed more reliable solution is made.

  13. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  14. Modeling energy consumption of residential furnaces and boilers in U.S. homes

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

    2004-02-01

    In 2001, DOE initiated a rulemaking process to consider whether to amend the existing energy efficiency standards for furnaces and boilers. A key factor in DOE's consideration of new standards is their cost-effectiveness to consumers. Determining cost-effectiveness requires an appropriate comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This report describes calculation of equipment energy consumption (fuel and electricity) based on estimated conditions in a sample of homes that are representative of expected furnace and boiler installations. To represent actual houses with furnaces and boilers in the United States, we used a set of houses from the Residential Energy Consumption Survey of 1997 conducted by the Energy Information Administration. Our calculation methodology estimates the energy consumption of alternative (more-efficient) furnaces, if they were to be used in each house in place of the existing equipment. We developed the method of calculation described in this report for non-weatherized gas furnaces. We generalized the energy consumption calculation for this product class to the other furnace product classes. Fuel consumption calculations for boilers are similar to those for the other furnace product classes. The electricity calculations for boilers are simpler than for furnaces, because boilers do not provide thermal distribution for space cooling as furnaces often do.

  15. Design of Boiler Welding for Improvement of Lifetime and Cost Control

    Directory of Open Access Journals (Sweden)

    Atcharawadi Thong-On

    2016-11-01

    Full Text Available Fe-2.25Cr-1Mo a widely used material for headers and steam tubes of boilers. Welding of steam tube to header is required for production of boiler. Heat affected zone of the weld can have poor mechanical properties and poor corrosion behavior leading to weld failure. The cost of material used for steam tube and header of boiler should be controlled. This study propose a new materials design for boiler welding to improve the lifetime and cost control, using tungsten inert gas (TIG welding of Fe-2.25Cr-1Mo tube to carbon steel pipe with chromium-containing filler. The cost of production could be reduced by the use of low cost material such as carbon steel pipe for boiler header. The effect of chromium content on corrosion behavior of the weld was greater than that of the microstructure. The lifetime of the welded boiler can be increased by improvement of mechanical properties and corrosion behavior of the heat affected zone.

  16. Unburned Carbon Loss in Fly Ash of CFB Boilers Burning Hard Coal

    Institute of Scientific and Technical Information of China (English)

    L(U) Junfu(吕俊复); WANG Qimin(王启民); LI Yong(黎永); YUE Guangxi(岳光溪); Yam Y.Lee; Baldur Eliasson; SHEN Jiezhong(沈解忠); YU Long(于龙)

    2003-01-01

    The unburned carbon loss in fly ash of circulating fluidized bed (CFB) boilers, most of which are burning active fuels such as lignite or peat, is normally very low. However, most CFB boilers in China usually burn hard coals such as anthracite and bituminous coal and coal wastes, so the carbon content in the fly ash from these boilers is higher than expected. This paper investigates the source of unburned carbon in the fly ash of CFB boilers burning hard coal through a series of field tests and laboratory investigations. The char behavior during combustion, including fragmentation and deactivation, which is related to the parent coal, has an important impact on the carbon burnout in CFB boilers. The research shows that char deactivation occurs during char burnout in fluidized bed combustion, especially for large particles of low rank coal. The uneven mixing of solids and air in the core region of the furnace also causes poor burnout of carbon in CFB fly ash. An index describing the volatile content (as dry ash free basis) over the heating value is proposed to present the coal rank. The coal combustion efficiency is shown to be strongly connected with this coal index. Several changes in the CFB boiler design are suggested to reduce the unburned carbon loss in the fly ash.

  17. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Lynn K [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Xu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsen, Katherine [Univ. of California, Berkeley, CA (United States); Xiangyang, Wei [National Energy Conservation Center (China); Yunpeng, Zhang [National Energy Conservation Center (China); Jian, Guan [China Special Equipment Inspection & Test Inst. (China); Rui, Hou [China Machinery Industry Conservation & Resource Utilization Center (China); Junfeng, Zhang [China National Offshore Oil Corp. (China); Yuqun, Zhuo [Tsinghua Univ., Beijing (China); Shumao, Xia [China Energy Conservation & Environmental Protection Group (China); Yafeng, Han [Xi' an Jiatong Univ. (China); Manzhi, Liu [China Univ. of Mining and Technology (China)

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  18. INCREASING OF EFFICIENCY OF NATURAL GAS COMBUSTION IN STEAM BOILERS OF SMALL AND MEDIUM CAPACITY DUE TO IMPROVED MIXTURE FORMATION

    Directory of Open Access Journals (Sweden)

    Gaponenko A. M.

    2014-12-01

    Full Text Available The article presents methods of industrial tests of the of technical device utility model designed for boilers E-1,0-0,9G-3 QL-500, D-721 of small and medium capacity. The research is aimed at improving the efficiency of fuel combustion in the boiler furnaces due to uniform distribution of airflow when supplying it to the boiler burner

  19. Biofuel Pilot at St. Juliens Creek and Proposed NAVFAC Policy on Use of Biofuel In Heating Boilers

    Science.gov (United States)

    2013-09-01

    Portsmouth. It is a “D”-type water-tube boiler with a capacity of 40,000 lbs steam per hour, which is approximately 8% less than what is considered...HEATING BOILERS Steven Guzinski Ray West Andy Gallagher Approved for public release; distribution is unlimited...NAVFAC POLICY ON USE OF BIOFUEL IN HEATING BOILERS 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  20. Analisa Kadar Silika Pada Air Umpan Ketel Dan Air Boiler Dengan Alat Lovibond Di Pks PT. Perkebunan Nusantara IV Dolok Ilir

    OpenAIRE

    Simamora, Evi Novita F.

    2016-01-01

    Analysis was performed on a silica content of boiler feed water and boiler water at the PKS PT. PTPN IV Dolok Ilir. Samples taken from the boiler feed water tank heated while the boiler water sample taken from the heating pipes in the boiler drum. Silica content in the sample is determined by comparison with a reagent Ammonium molybdat, HCL 1: 1, and oxalic acid. The determinations were performed over a period of 18 to 27 February 2015. The results showed that the silica content of boiler fee...

  1. Experience of applying the results of investigations into controlling lines of the salt ratio between the salt and pure sections of high-pressure drum boilers

    Science.gov (United States)

    Fedorov, A. I.

    2013-12-01

    Layouts of the connection of the salt ratio lines (SRLs) existing in domestic boiler building are analyzed and the main causes of their low operational efficiency are shown. The results of investigation of hydraulics and the salt mode of an internal boiler layout with the SRL of the TPE-208 boiler are presented. Recommendations on designing the SRL in internal boiler layouts of high-pressure drum boilers, which make it possible to increase the reliability of boilers and to decrease the annual consumption of phosphates, are developed.

  2. Application of the decree 2910 for coal fired boilers; Application de l`arrete 2910 aux chaudieres a charbon

    Energy Technology Data Exchange (ETDEWEB)

    Hing, K. [CDF Energie, Charbonnages de France, 92 - Rueil-Malmaison (France)

    1997-12-31

    The impacts of the new French decree 2910 concerning the classification of all combustion equipment with regards to their energy sources, energy efficiency and pollution control, on 2 to 20 MW coal-fired boilers, are discussed, with emphasis on their pollutant emissions (SO{sub 2}, NO{sub x} and ashes). The compositions of several coals is presented and the various types of coal-fired boilers adapted to the new decree are presented: automatic boilers, dense fluidized bed boilers, vibrating and chain grids with fume tubes and water tubes

  3. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly...

  4. 锅炉安装施工的质量控制%Quality Control for Boiler Installation and Construction

    Institute of Scientific and Technical Information of China (English)

    杨庆喜

    2015-01-01

    锅炉安装施工关系到锅炉的安全运行和功能发挥,对电力生产安全与运行安全有着直接的影响。因此,要重视锅炉安装施工的质量控制。要注重锅炉安装施工前、锅炉安装施工中、锅炉本体水压试验、锅炉安装施工后期的质量控制,保证锅炉安装施工的质量,提高锅炉安装施工的科学性和经济性,支持电力工程系统性建设。%The boiler ins tallation and construction related to the boiler safety operation and function, the power production safety and operation safety has a direct impact. Therefore, pay attention to the boiler installation construction quality control. To focus on boiler installation of pre construction, boiler installation construction, boiler body water pressure test, boiler during the later period of the construction quality control of the installation of the, boiler installation construction quality assurance, improve the boiler installation construction of science and economy, support system of electric power engineering construction.

  5. Assessment of the potential for conversion of TP-108 boilers to firing natural gas and fuel oil

    Science.gov (United States)

    Tugov, A. N.; Supranov, V. M.; Izyumov, M. A.; Vereshchetin, V. A.; Usman, Yu. M.; Natal'in, A. S.

    2017-03-01

    TP-108 boilers were initially designed to burn milled peat. In the 1980s, they were reconstructed for conversion to burning natural gas as well. However, operation of these boilers revealed problems due to low reheat temperature and great air inleakage in the furnace. The initial design of the boiler and its subsequent reconstruction are described in the paper. Measures are presented for further modernization of TP-108 boilers to eliminate the above-mentioned problems and enable natural gas or fuel oil only to be burned in them. Thermal design calculations made using a specially developed adapted model (AM) suggest that replacement of the existing burners with new oil/gas burners, installation of steam-to-steam heat exchangers (SSHE), and sealing of the boiler gas path to make it gas tight will allow the parameters typical of gas-and-oil fired boilers to be attained. It is demonstrated that SSHEs can yield the design secondary steam reheat temperature, although this solution is not typical for natural circulation boilers with steam reheat. The boiler equipped with SSHEs can operate on fuel oil or natural gas with flue gas recirculation or without it. Moreover, operation of the boiler with flue gas recirculation to the air duct in combination with staged combustion enables the required environmental indicators to be attained.

  6. A Model for Optimization and Analysis of Energy Flexible Boiler Plants for Building Heating Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, J.R.

    1996-05-01

    This doctoral thesis presents a model for optimization and analysis of boiler plants. The model optimizes a boiler plant with respect to the annual total costs or with respect to energy consumption. The optimum solution is identified for a given number of energy carriers and defined characteristics of the heat production units. The number of heat production units and the capacity of units related to each energy carrier or the capacity of units related to the same energy carrier can be found. For a problem comprising large variation during a defined analysis period the model gives the operating costs and energy consumption to be used in an extended optimization. The model can be used to analyse the consequences with respect to costs and energy consumption due to capacity margins and shifts in the boundary conditions. The model is based on a search approach comprising an operational simulator. The simulator is based on a marginal cost method and dynamic programming. The simulation is performed on an hourly basis. A general boiler characteristic representation is maintained by linear energy or cost functions. The heat pump characteristics are represented by tabulated performance and efficiency as function of state and nominal aggregate capacities. The simulation procedure requires a heat load profile on an hourly basis. The problem of the presence of capacity margins in boiler plants is studied for selected cases. The single-boiler, oil-fired plant is very sensitive to the magnitude of the losses present during burner off-time. For a plant comprising two oil-fired burners, the impact of a capacity margin can be dampened by the selected capacity configuration. The present incentive, in Norway, to install an electric element boiler in an oil-fired boiler plant is analysed. 77 refs., 74 figs., 12 tabs.

  7. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    Science.gov (United States)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  8. Conceptual Design of Oxygen-Based PC Boiler

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Seltzer; Zhen Fan

    2005-09-01

    Coal is presently the world's primary fuel for generating electrical power and, being more abundant and less expensive than oil or natural gas, is expected to continue its dominance into the future. Coal, however, is more carbon intensive than natural gas and oil and consequently coal-fired power plants are large point source emitters of carbon dioxide (CO{sub 2}). Since CO{sub 2} is a greenhouse gas, which may have an adverse impact on the world's climate/weather patterns, studies have been conducted to determine the feasibility and economic impact of capturing power plant CO{sub 2} emissions for pipeline transport to a sequestration/storage site. The stack gas that exhausts from a modern coal-fired power plant typically contains about 15% CO{sub 2} on a dry volume basis. Although there are numerous processes available for removing CO{sub 2} from gas streams, gas scrubbing with amine solvent is best suited for this application because of the large gas volumes and low CO{sub 2} concentrations involved. Unfortunately the energy required to regenerate the solvent for continued use as a capturing agent is large and imposes a severe energy penalty on the plant. In addition this ''back end'' or post combustion cleanup requires the addition of large vessels, which, in retrofit applications, are difficult to accommodate. As an alternative to post combustion scrubbing, Foster Wheeler (FW) has proposed that the combustion process be accomplished with oxygen rather than air. With all air nitrogen eliminated, a CO{sub 2}-water vapor rich flue gas will be generated. After condensation of the water vapor, a portion of the flue gas will be recirculated back to the boiler to control the combustion temperature and the balance of the CO{sub 2} will be processed for pipeline transport. This proposed oxygen-carbon dioxide (O{sub 2}/CO{sub 2}) combustion process eliminates the need for CO{sub 2} removal/separation and reduces the cost of supplying a CO

  9. Catalytic sensor based continuous emissions monitor in boiler applications

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, P.F.; Devita, S.P.; Budd, A. [Monitor Labs, Inc., Englewood, CO (United States)

    1997-12-31

    Until the development of reliable, solid state NO{sub x} sensors, sensor based continuous monitoring of NO{sub x} emissions was primarily by predictive or parametric methods which use data collected from other types of sensors to predict what a NO{sub x} sensor would read. While some success has been achieved using these methods, direct measurement of desired exhaust gases provides greater confidence than can be achieved using modeling approaches. The recent development of a solid state catalytic NO{sub x} sensor allowed development of an analyzer combining the advantages of sensors with the direct measurement capability of traditional continuous emissions monitors. The new sensor based analyzer, the CEMcat{trademark} continuous emissions monitor, utilizes a single, compact, sensor module containing the three sensors for NO{sub x}, CO and O{sub 2} measurement. Its development was sponsored by the Gas Research Institute (GRI), and additional support was provided by the Southern California Gas Co. The use of the CEMcat analyzer to monitor emissions from gas turbine engines and large gas-fired reciprocating engines has previously been reported. In these applications, the CEMcat analyzer demonstrated its capability to meet 40CFR60 relative accuracy requirements. This sensor based analyzer has recently been applied in boiler applications.

  10. EMISSION OF MERCURY FROM POLISH LARGE-SCALE UTILITY BOILERS

    Directory of Open Access Journals (Sweden)

    Rafał Kobyłecki

    2016-11-01

    Full Text Available The article presents the results of investigations focused on the determination of mercury content in gas and solid samples. The emission of Hg was the result of coal combustion. The investigations were carried out in the selected power generation facilities operated with pulverized coal and circulating fluidized bed boilers. Analysis was carried out for the flue gases, as well as fuel and sorbent samples and the by-products of the combustion process (fly ash, slag, bottom ash, and the products of wet desulfurization technology. The determination of mercury content in solid samples was carried out using Lumex RA-915+ spectrometer with RP-91C attachment. The measurements of the mercury concentration in the flue gases were performed according to the cold vapor technique. The analysis of the results indicated that the main source of mercury is coal, but significant concentration was also determined for the biomass co-combusted in one of the facilities. Considerable amounts were also determined in fly ash and wet FGD (flue gas desulfurization samples.

  11. Energy savings and emission reductions in industrial boilers

    Directory of Open Access Journals (Sweden)

    Saidur R.

    2011-01-01

    Full Text Available In this paper energy use of boiler fan motors has been estimated using energy audit data. Energy savings using VSD by modulating fan speed has been estimated as well. Bill savings and associated emission reductions using VSD have been estimated and presented in this paper. It has been found that 139,412 MWh, 268,866, 159,328 MWh, and 99,580 MWh electrical energy can be saved for 40%, 60%, 80% and 100% motor loadings, respectively for 60% speed reduction. Corresponding bill savings for the aforementioned energy savings have been found to be US$7,318,335, US$14,113,933, US$8,363,812, and US135,911,944 for 40%, 60%, 80% and 100% motor loadings, respectively for 60% speed reduction. Along with energy savings, 69,770,744 kg, 134,558,329 kg, 79,738,065 kg, 49,836,603 kg of CO2 emission can be avoided for the associated energy savings as a result of energy savings using VSD for 40%, 60%, 80% and 100% motor loadings. Moreover, 32,503,558 GJ of fossil fuel can be saved for the flue gas temperature reduction as a result of reducing fan motor speed reduction. Flue gas energy savings for oxegen trim system has been estimated and found to be 549,310,130 GJ for 16.9% of excess air reduction with payback period less than a day.

  12. Ash from a pulp mill boiler--characterisation and vitrification.

    Science.gov (United States)

    Ribeiro, Ana S M; Monteiro, Regina C C; Davim, Erika J R; Fernandes, M Helena V

    2010-07-15

    The physical, chemical and mineralogical characterisation of the ash resulting from a pulp mill boiler was performed in order to investigate the valorisation of this waste material through the production of added-value glassy materials. The ash had a particle size distribution in the range 0.06-53 microm, and a high amount of SiO(2) (approximately 82 wt%), which was present as quartz. To favour the vitrification of the ash and to obtain a melt with an adequate viscosity to cast into a mould, different amounts of Na(2)O were added to act as fluxing agent. A batch with 80 wt% waste load melted at 1350 degrees C resulting in a homogeneous transparent green-coloured glass with good workability. The characterisation of the produced glass by differential thermal analysis and dilatometry showed that this glass presents a stable thermal behaviour. Standard leaching tests revealed that the concentration of heavy metals in the leaching solution was lower than those allowed by the Normative. As a conclusion, by vitrification of batch compositions with adequate waste load and additive content it is possible to produce an ash-based glass that may be used in similar applications as a conventional silicate glass inclusively as a building ecomaterial.

  13. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  14. Combustion Model FOr Staged Circulating Fluidized Bed BOiler

    Institute of Scientific and Technical Information of China (English)

    FandJianhua; LuQinggang; 等

    1997-01-01

    A mathematical model for atmospheric staged circulating fluidized bed combustion,which takes fluid dynamics,combustion,heat transfer,pollutants formation and retention,into account was developed in the institute of Engineering Thermophysics(IET)recently.The model of gas solid flow at the bottom of the combustor was treated by the two-phase theory of fluidized bed and in the upper region as a core-annulus flow structure.The chemical species CO,CO2,H2,H2O,CH4,O2 and N2 were considered in the reaction process.The mathematical model consisted of sub-modeles of fluid namics,coal heterogeneous and gas homogeneous chemical reactions.heat transfer,particle fragmentation and attrition,mass and energy balance tec.The developed code was applied to simulate an operating staged circulating fluidized bed combustion boiler of early design and the results were in good agreement with the operating data.The main submodels and simulation results are given in this paoper.

  15. Factors controlling alkali salt deposition in recovery boilers. Release mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, P.; Kurkela, M.; Kylloenen, H.; Tapola, E. [VTT Energy, Espoo (Finland). Process Technology Group

    1997-10-01

    The research was part of an ongoing cooperative research effort aimed at developing a model to describe the behaviour of inorganic compounds in kraft recovery boilers. During 1996 experimental investigations of sulphur release were continued. Experiments at elevated pressures and employing larger particle sizes were performed in order to gain information about mass transfer effects. The first experiments yielding data on the rates of the sulphur-release reactions were performed. This data will be used as the basis of a drop model for sulphur release being developed in cooperation with another research group. The other part of the work during 1996 explored the possibility of using chemical equilibrium calculations to predict the release of sodium, potassium and chlorine in the recovery furnace. The approach is essentially different from that employed in earlier studies in that the effects of fume formation are taken into account. So far, the predictions of the chemical equilibrium release model have, in no way, conflicted with field measurements. (orig.)

  16. On the influence of chlorides and sulphureous compounds on the corrosion of superheater tubes in boilers with special consideration on kraft recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Fredrik [AaF-IPK AB, Stockholm (Sweden)

    1999-03-01

    This report reviews the thermochemistry of the most relevant corrosion reactions and mechanisms with chloride especially considering the kraft pulp mill recovery boiler. The flue gas side corrosion of superheater tubes is governed by the fuel constituents, and by the carryover particles and the gaseous impurities accompanying the flue gases and the local chemical conditions they cause on the superheater tube surface. A study made on coal-fired boilers in Germany has been interpreted so that the protective ability of the oxide layer on the tube surface of a superheater tube is limited, which causes a close to linear time dependence of the material loss due to corrosion. The thermochemistry of the reactions of the protective oxide layer itself with the components of the deposited carryover and the flue gas sulphur components seems thus to govern the mechanism of the corrosion. The corrosion in the recovery boiler is concluded to be more dependant on this combined action of carry-over and sulphureous oxides, so the presence of chlorides in the flue gases only influences the melting range properties of the sulphate deposits, but seems to exert less influence on the chemical reactions which attack the oxides of the passive layer. The thermochemistry also explains the formation of a sulphide layer often found between the deposits and the surface of the tube metal on superheater tubes as a result of reaction with sulpureous oxides from the flue gas and carbon in the carryover. The factors which in practice limit the superheater corrosion in the recovery boiler are interpreted as both material and process dependent. The main limiting factor for the steam temperature is still the melting range of the sulphate deposit. There seems thus to be little hope for the aim to raise the steam temperature of the kraft recovery boiler above the range which is already achievable with the presently available composite tubes 22 refs, 10 figs

  17. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  18. Life Cycle Assesment (LCA Based Environmental Impact Minimization of Solid Fuel Boilers in Lithuanian Industry

    Directory of Open Access Journals (Sweden)

    Marius Šulga

    2011-12-01

    Full Text Available Today Europe is facing unprecedented energy problems related to the EU dependence on energy imports, concerns about global supplies of fossil fuel and obvious climate change. However, despite all these problems Europe wastes at least 20 percent of energy due to its inefficient use.The EU energy efficiency policy states that one of the biggest saving potentials lies in heating of the buildings whose current consumption is ~ 1725 Mt. The EU building sector is the largest final energy consumer.This research deals with domestic solid fuel boilers that are used in buildings and their efficiency increase by applying life-cycle tools. This article analyzes the situation of manufacturing solid fuel boilers in Lithuania, the EU EuP policy, the main environmental issues of boilers production (their production and use phases. The impact of two different fuels (wood and coal on the environment is also estimated, propositions of an ecological design of boilers are presented and a new solid fuel boiler is described.

  19. An inverse method for online stress monitoring and fatigue life analysis of boiler drums

    Institute of Scientific and Technical Information of China (English)

    HU Wen-sen; LI Bin; CAO Zi-dong; YANG Dong; LI Ya-chao

    2009-01-01

    A method based on solution of the inverse heat conduction problem was presented for online stress monitoring and fatigue life analysis of boiler drums. The mathematical model of the drum temperature distribution is based on the assumptions that the difference of temperature along the longitudinal axis of the boiler drum is negligible with changes only in the radial direction and the circumferential direction, and that the outer surface of drum is thermally insulated. Combining this model with the control-volume method provides temperatures at different points on a eross-section of the drum. With the temperature data, the stresses and the life expectancy of the boiler drum are derived according to the ASME code. Applying this method to the cold start-up process of a 300 MW boiler demonswated the absence of errors caused by the boundary condition assumptions on the inner surface of the drum and testified that the method is an applicable technique for the online stress monitoring and fatigue life analysis of boiler drums.

  20. Exergy analysis of boiler of the steam power plant : case study in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Gorji, M.; Ebrahimian, V. [Mazandaran Univ., Babol (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2006-07-01

    An exergy analysis was conducted to investigate the efficiency of a power plant in Iran. The plant consisted of 4 steam cycle units and 3 turbines of varying pressures using both natural gas and diesel fuel scenarios. The boiler had natural circulation with a 3-staged superheater and 2-stage reheaters and economizers. Energy and exergy balance equations were used to calculate efficiencies. The analysis showed that the total exergy efficiency of the plant was 36.1 per cent for the natural gas scenario and 35.5 per cent for the diesel fuel scenario. Among the main elements of the plant cycle, the highest exergy losses occurred with the boiler. Internal losses of the boiler included heat transfer, combustion, and friction losses, which were estimated at 362899 kW for the natural gas scenario and 411127 MW for the diesel fuel scenario. Exergy losses were primarily due to the exiting of hot gases from the chimney. Exergy losses caused by heat transfer were greater than the exergy losses of the combustion process. The exergy analysis of the boiler elements showed that the reheater had the lowest exergy efficiency and that the evaporator had the highest exergy losses. Results suggested that natural gas was more efficient than diesel fuel for producing superheater vapor in the boiler. It was concluded that the simulation can be used for steam power plants using both natural gas and diesel fuel. 13 refs., 5 tabs., 12 figs.

  1. Thermal analysis of a solar pond power plant operated with a direct contact boiler

    Science.gov (United States)

    Sonn, A.; Letan, R.

    1981-11-01

    A solar pond power plant operated with a direct contact boiler was thermally analyzed. A binary cycle system of concentrated brine, and an organic working fluid were considered. Brine temperature of 80 C, condensation at 30 C, a 75 percent efficient turbine, and 70 percent efficient pumps were specified for the analysis. The current study involved six working fluids: butane, pentane, hexane, and freons R113, R114, R12. Each of these fluids exhibited a maximum efficiency of the system at characteristic operating conditions of the boiler. The system efficiency increased as the boiler pressure approached that of the pond. Net electrical outputs of 7-9 percent of the heat inputs were obtained for the low pressure fluids, such as pentane, hexane, and R113. Gravity flow of brine to boiler increased these values to 8-11 percent. Solute losses in brine by direct contact in boiler were estimated for pentane, as 125 kg per year per sq km of pond, or 63 kg/MWe-year. Similar orders of magnitude are obtained for the other fluids.

  2. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  3. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    Science.gov (United States)

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  4. The Principle of Super Boiler%超级锅炉工作原理

    Institute of Scientific and Technical Information of China (English)

    周江尧

    2012-01-01

    文章介绍了美国锅炉制造商和能源部共同开发的一种新型工业锅炉系统-超级锅炉,通过改善燃烧、扩展对流换热表面积、采用新型换热设备(TMC/HAH)、先进的控制系统四项措施,使得其锅炉效率达到94%,降低水和燃料的消耗,并具有轻的重量和较少的占地面积。该类型锅炉已在美国多个工厂完成了现场试验,并开始了商业化运作。%The paper described the United States manufacturer of boilers and Department of Energy to jointly develop a new system of industrial boiler system-super boiler,by improving combustion,expanding convective heat transfer surface area,using new heat exchanging equipment(TMC/HAH),advanced control system of four measures,making the boiler efficiency to achieve 94 %,reduce the consumption of water and fuel,and has a lighter weight and smaller footprint.This type of boiler have completed field tests in the United States more factories,and began commercial operation.

  5. Analysis of Boiler Operational Variables Prior to Tube Leakage Fault by Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Al-Kayiem Hussain H.

    2014-07-01

    Full Text Available Steam boilers are considered as a core of any steam power plant. Boilers are subjected to various types of trips leading to shut down of the entire plant. The tube leakage is the worse among the common boiler faults, where the shutdown period lasts for around four to five days. This paper describes the rules of the Artificial Intelligent Systems to diagnosis the boiler variables prior to tube leakage occurrence. An Intelligent system based on Artificial Neural Network was designed and coded in MATLAB environment. The ANN was trained and validated using real site data acquired from coal fired power plant in Malaysia. Ninety three boiler operational variables were identified for the present investigation based on the plant operator experience. Various neural networks topology combinations were investigated. The results showed that the NN with two hidden layers performed better than one hidden layer using Levenberg-Maquardt training algorithm. Moreover, it was noticed that hyperbolic tangent function for input and output nodes performed better than other activation function types.

  6. Experiences with the KEMA Corrosion Probe in waste incineration plants and coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.P. de; Leferink, R.G.I. [KEMA Nederland B.V. Arnhem, (Netherlands)

    2001-07-01

    Fireside corrosion is still a major cause of concern in coal- fired power plants and municipal waste incineration plants. In a highly competitive electricity market, the demand for a method to determine the quality or protectiveness of the oxide layers on evaporator walls, in boilers of power plants with low-NO{sub x} firing techniques, will increase. Moreover, co-firing of new fuels (RDF, pulverised wood and other residual fractions) has as yet unknown consequences for corrosion in evaporator walls and super heaters in boiler installations and waste incinerators. Corrosion monitoring enables operators of coal fired power plants to measure and act when corrosion problems are likely to occur. If done properly corrosion monitoring allows the plant operator to adjust the (co-) firing conditions to less corrosive conditions with the highest possible plant efficiency. Recently KEMA developed the KEMA Corrosion Probe (KEMCOP) which enables plant owners to determine fireside corrosion in different locations in their boiler. A good example is the 540 MWe E.on Maasvlakte power plant, which was recently fitted for the exposure of 144 probes simultaneously. The probes can also be used for material testing by exposing different materials under actual firing conditions. Aside from corrosion monitoring also slagging behaviour and condensation of heavy metals can be monitored. In the Netherlands KEMCOP probes are used for several purposes and are more and more becoming common practice for coal fired boilers and waste incinerators. Until now almost 300 probes have been mounted in coal fired boilers and waste incineration plants. (orig.)

  7. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  8. 600MW亚临界汽包炉炉水处理工艺优化试验%Optimized experiments on the boiler-water treatment method of 600 MW sub-critical boiler unit

    Institute of Scientific and Technical Information of China (English)

    星成霞; 王应高; 李永立; 金绪良; 周子龙

    2012-01-01

    The boiler-water treatment method of 600 MW sub-critical boiler unit has direct influence on its steam quality. It is important to optimize the boiler-water treatment method in order to improve boiler steam quality and prevent salt deposits on steam turbine. Based on experiments, the effect of phosphate concentration in the boiler water of several 600 MW sub-critical boilers of the same type on steam quality has been investigated quantitatively. The optimal boiler-water treatment process of every unit and corresponding boiler-water quality controlling scheme are determined.%600MW亚临界汽包炉炉水的处理方式影响机组的蒸汽品质,优化炉水处理工工艺对于提高锅炉蒸汽品质、预防汽轮机积盐具有重要作用.通过试验定量考察了数台同型号600 MW亚临界汽包炉炉水磷酸盐含量对蒸汽品质的影响,确定了各机组最优的炉水处理工艺及炉水水质监控指标最优控制方案.

  9. The Development and Research on the Coordinate Control Strategy Between Turbine and Boiler in Fossil Power Plant

    Institute of Scientific and Technical Information of China (English)

    WEI Shuangying

    2006-01-01

    Based on the research on domestic and international automatic technical development in fossil power plant, the paper analyses the recent situation of the coordinate control system between turbine and boiler of domestic fossil Power Plant, provides the development thought of coordinate control system between turbine and boiler, and describes the application prospect in control system of fossil power plant combining with the application experience.

  10. 40 CFR 63.1216 - What are the standards for solid fuel boilers that burn hazardous waste?

    Science.gov (United States)

    2010-07-01

    ...; (4) For arsenic, beryllium, and chromium combined, except for an area source as defined under § 63.2... boilers that burn hazardous waste? 63.1216 Section 63.1216 Protection of Environment ENVIRONMENTAL..., and Hydrochloric Acid Production Furnaces § 63.1216 What are the standards for solid fuel boilers...

  11. Quality and generation rate of solid residues in the boiler of a waste-to-energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Allegrini, E., E-mail: elia@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Boldrin, A. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark); Jansson, S. [Umeå University, Department of Chemistry, Umeå SE-901 87 (Sweden); Lundtorp, K. [Babcock and Wilcox Vølund A/S, Göteborg (Sweden); Fruergaard Astrup, T. [Technical University of Denmark, Department of Environmental Engineering, Building 115, Lyngby 2800 (Denmark)

    2014-04-01

    Highlights: • Ash was sampled at 10 different points of the boiler of a waste-to-energy plant. • Samples were analysed for the chemical composition, PCDD/F and leaching behaviour. • Enrichment trends of elements were investigated in relation to boiler conditions. • No significant differences were found between boiler ash samples. - Abstract: The Danish waste management system relies significantly on waste-to-energy (WtE) plants. The ash produced at the energy recovery section (boiler ash) is classified as hazardous waste, and is commonly mixed with fly ash and air pollution control residues before disposal. In this study, a detailed characterization of boiler ash from a Danish grate-based mass burn type WtE was performed, to evaluate the potential for improving ash management. Samples were collected at 10 different points along the boiler's convective part, and analysed for grain size distribution, content of inorganic elements, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD and PCDF), and leaching of metals. For all samples, PCDD and PCDF levels were below regulatory limits, while high pH values and leaching of e.g. Cl were critical. No significant differences were found between boiler ash from individual sections of the boiler, in terms of total content and leaching, indicating that separate management of individual ash fractions may not provide significant benefits.

  12. Safety conditions of steam boilers in companies associated with a professional risk administration company in Antioquia, 2009

    Directory of Open Access Journals (Sweden)

    Diego L. Sepúlveda M

    2011-07-01

    Full Text Available Objective: to determine the safety conditions of steam boilers in companies associated with a professional risk administra-tion company in Antioquia, Colombia. To this end, their op-eration conditions shall be characterized, the associated risks identified, and their safety level assessed. Methodology:. a descriptive crosssectional study was carried out in twenty companies whose production processes involve boilers. A survey on the conditions for operation was applied on both the maintenance managers and the boilers’ operators in each company. A hazard risk assessment matrix was made as in-structed in the GTC-45 Colombian technical guide, and an assessment instrument was applied to determine the safety level for each boiler. Results: 70% of the assessed boilers obtained a low score (less than 65 points according to the scale, which has been validated by experts; the remaining boilers obtained an acceptable score (66 to 81 points. It was also found that 85% of the boilers had no operating instructions, and 60% of them did not have any kind of alarm. Conclusions: the stud-ied boilers had poor security conditions, mainly related to the absence of operation protocols, boiler operator training, and poor supervision by competent authorities

  13. Comparative study of operation of condensing and traditional boilers equipped with the ORC module for electricity generation

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz

    2017-01-01

    Full Text Available Condensing technology applied to boilers is to make full use of thermal energy contained in the fuel. That means that additionaly the heat from condensation of exhaust gases can be used for the purposes of heating the domestic hot water and to cover the demand for central heating. The study analyzed the operation of the “traditional” boiler equipped with the ORC module as the similar arrangement but with the condensing boiler. In the case of a conventional boiler there is noted a greater fuel consumption and the greater power generated than in the case of the unit with the condensing boiler. Postulated is the indicator in the form of a ratio of turbine power to the mass flow rate of fuel, which in turn gives a higher value for the condensing boiler, thus demonstrating that the operation of condensing boiler ORC module will be more economical. Perspective domestic micro CHP with ORC should be installed in boilers with recovery of heat from condensation from the exhaust gases.

  14. 40 CFR 270.235 - Options for incinerators, cement kilns, lightweight aggregate kilns, solid fuel boilers, liquid...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Options for incinerators, cement kilns... Technology (MACT) Standards § 270.235 Options for incinerators, cement kilns, lightweight aggregate kilns... incinerator, cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or...

  15. 46 CFR 167.65-70 - Reports of accidents, repairs, and unsafe boilers and machinery by engineers.

    Science.gov (United States)

    2010-10-01

    ... machinery by engineers. 167.65-70 Section 167.65-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... of accidents, repairs, and unsafe boilers and machinery by engineers. (a) Before making repairs to a... shall be the duty of all engineers when an accident occurs to the boilers or machinery in their...

  16. NICKEL SPECIES EMISSION INVENTORY FOR OIL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Richard L. Schulz; Donald L. Toman; Carolyn M. Nyberg

    2004-01-01

    Representative duplicate fly ash samples were obtained from the stacks of 400-MW and 385-MW utility boilers (Unit A and Unit B, respectively) using a modified U.S. Environmental Protection Agency (EPA) Method 17 sampling train assembly as they burned .0.9 and 0.3 wt% S residual oils, respectively, during routine power plant operations. Residual oil fly ash (ROFA) samples were analyzed for nickel (Ni) concentrations and speciation using inductively coupled plasma-atomic emission spectroscopy, x-ray absorption fine structure (XAFS) spectroscopy, x-ray diffraction (XRD), and a water-soluble Ni extraction method. ROFA water extraction residues were also analyzed for Ni speciation using XAFS and XRD. Total Ni concentrations in the ROFAs were similar, ranging from 1.3 to 1.5 wt%; however, stack gas Ni concentrations in the Unit A were {approx}990 {micro}g/Nm{sup 3} compared to {approx}620 {micro}g/Nm{sup 3} for Unit B because of the greater residual oil feed rates employed at Unit A to attain higher load (i.e., MW) conditions with a lower heating value oil. Ni speciation analysis results indicate that ROFAs from Unit A contain about 3 wt% NiSO{sub 4} {center_dot} xH{sub 2}O (where x is assumed to be 6 for calculation purposes) and a Ni-containing spinel compound, similar in composition to (Mg,Ni)(Al,Fe){sub 2}O{sub 4}. ROFAs from Unit B contain on average 2.0 wt% NiSO{sub 4} {center_dot} 6H{sub 2}O and 1.1 wt% NiO. XAFS and XRD analyses did not detect any nickel sulfide compounds, including nickel subsulfide (Ni{sub 3}S{sub 2}) (XAFS detection limit is 5% of the total Ni concentration). In addition, XAFS measurements indicated that inorganic sulfate and organic thiophene species account for >97% of the total sulfur in the ROFAs. The presence of NiSO{sub 4} {center_dot} xH{sub 2}O and nickel oxide compound mixtures and lack of carcinogenic Ni{sub 3}S{sub 2} or nickel sulfide compounds (e.g., NiS, NiS{sub 2}) in ROFAs stack-sampled from 400- and 385-MW boilers are contrary

  17. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall be designed, constructed, and inspected in accordance with section VIII of the ASME Boiler and Pressure...

  18. Physical and chemical characterization of residential oil boiler emissions.

    Science.gov (United States)

    Hays, Michael D; Beck, Lee; Barfield, Pamela; Lavrich, Richard J; Dong, Yuanji; Vander Wal, Randy L

    2008-04-01

    The toxicity of emissions from the combustion of home heating oil coupled with the regional proximity and seasonal use of residential oil boilers (ROB) is an important public health concern. Yet scant physical and chemical information about the emissions from this source is available for climate and air quality modeling and for improving our understanding of aerosol-related human health effects. The gas- and particle-phase emissions from an active ROB firing distillate fuel oil (commonly known as diesel fuel) were evaluated to address this deficiency. Ion chromatography of impactor samples showed that the ultrafine ROB aerosol emissions were approximately 45% (w/w) sulfate. Gas chromatography-mass spectrometry detected various n-alkanes at trace levels, sometimes in accumulation mode particles, and out of phase with the size distributions of aerosol mass and sulfate. The carbonaceous matter in the ROB aerosol was primarily light-adsorbing elemental carbon. Gas chromatography-atomic emission spectroscopy measured a previously unrecognized organosulfur compound group in the ROB aerosol emissions. High-resolution transmission electron microscopy of ROB soot indicated the presence of a highly ordered primary particle nanostructure embedded in larger aggregates. Organic gas emissions were measured using EPA Methods TO-15 and TO-11A. The ROB emitted volatile oxygenates (8 mg/(kg of oil burned)) and olefins (5 mg/(kg of oil burned)) mostly unrelated to the base fuel composition. In the final analysis, the ROB tested was a source of numerous hazardous air pollutants as defined in the Clean Air Act Amendments. Approximations conducted using emissions data from the ROB tests show relatively low contributions to a regional-level anthropogenic emissions inventory for volitile organic compounds, PM2.5, and SO2 mass.

  19. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  20. Modelling of coal combustion enhanced through plasma-fuel systems in full-scale boilers

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Askarova; Z. Jankoski; E.I. Karpenko; E.I. Lavrischeva; F.C. Lockwood; V.E. Messerle; A.B. Ustimenko [al-Farabi Kazakh National University, Almaty (Kazakhstan). Department of Physics

    2005-07-01

    Plasma activation promotes more effective and environmental friendly low-rank coal combustion. This work presents numerical modelling results of plasma thermochemical preparation of pulverized coal for ignition and combustion in the furnace of a utility boiler. Two kinetic mathematical models were used in the investigation of the processes of air-fuel mixture plasma activation, ignition and combustion. A 1D kinetic code, PLASMA-COAL, calculates the concentrations of species, temperatures and velocities of treated coal-air mixtures in a burner incorporating a plasma source. It gives initial data for 3D-modeling of power boilers furnaces by the code FLOREAN. A comprehensive image of plasma activated coal combustion processes in a furnace of pulverised coal fired boiler was obtained. The advantages of the plasma technology are clearly demonstrated. 15 refs., 6 figs., 4 tabs.

  1. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    Utilization of biomass on large suspension-fired boilers is a potentially efficient method to reduce net CO2 emissions and reduce the consumption of fossil fuels. However, ash deposit formation on heat transfer surfaces may cuase operational problems and in severe cases lead to boiler stop...... and manual cleaning. Most studies on ash deposition and removal has been done on biomass grate boilers, while only limited data is available from biomass suspension-firing. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, deposit characteristics, and deposit removal...... scale experimental studies conducted by CHEC indicated that there was not a big difference regarding final deposit mass uptake during straw suspension-firing and combustion on grate. The shedding (deposit removal) events were investigated when the nearby plant sootblower was shutdown. It was identified...

  2. Occurrence of polycyclic aromatic hydrocarbons in dust emitted from circulating fluidized bed boilers.

    Science.gov (United States)

    Kozielska, B; Konieczyńiski, J

    2008-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) in granulometric fractions of dust emitted from a hard coal fired circulating fluidized bed (CFB) boiler was investigated. The dust was sampled with the use of a Mark III impactor. In each fraction of dust, by using gas chromatography (GC), 16 selected PAHs and total PAHs were determined and the toxic equivalent B(a)P (TE B(a)P) was computed. The results, recalculated for the standard granulometric fractions, are presented as concentrations and content of the determined PAHs in dust. Distributions of PAHs and their profiles in the granulometric dust fractions were studied also. The PAHs in dust emitted from the CFB boiler were compared with those emitted from mechanical grate boilers; a distinctly lower content of PAHs was found in dust emitted from the former.

  3. Effect of circulating ash from CFB boilers on NO and N20 emission

    Institute of Scientific and Technical Information of China (English)

    Xiangsong HOU; Shi YANG; Junfu LU; Hai ZHANG; Guangxi YUE

    2009-01-01

    NO and N2O emissions from circulating fluidized bed (CFB) boilers are determined by their formation and destruction rates in the furnace. The effect of circulating ash from a CFB boiler on NO and N2O emissions were investigated in a laboratory-scale fluidized bed reactor. The results show that the residue char in circulating ash and the CO generated from the char play an important role in NO reduction and N2O formation; however, active components of circulating ash such as CaO, Fe2O3 accelerate the decomposition of N2O. Experiment was also conducted on a 75 t/h CFB boiler fueled with the mixture of anthracite and biomass. The lower residue carbon content of circulating ash in this experiment is lower; therefore, the reacting rate of NO deoxidize is limited. This result verified the conclusion of laboratory research.

  4. Assessing the emission factors of low-pour-fuel-oil and diesel in steam boilers

    Directory of Open Access Journals (Sweden)

    Ohijeagbon, I.O.

    2012-12-01

    Full Text Available The purpose of this study is to examine the emissions effects resulting from the use of low pour fuel oil (LPFO and diesel fuels in industrial steam boilers operation. The method of ultimate analysis of the products of combustion and emissions of pollutant analysis were used to estimate the annual rate of emissions of boilers. The results shows that the levels of uncontrolled boiler emissions on the environment can lead to increased greenhouse effects, global warming, and pollution and toxilogical impacts on human health. Only carbon monoxide emission was found to vary with the levels of oxygen generation in the products of combustion, while other substances were generally in relation to constituents and rates of consumption of fuel.

  5. Towards a generic, reliable CFD modelling methodology for waste-fired grate boilers

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko;

    Computational Fluid Dynamics (CFD) is increasingly used in industry for detailed understanding of the combustion process and for appropriate design and optimization of Waste–to–Energy (WtE) plants. In this paper, CFD modelling of waste wood combustion in a 13 MW grate-fired boiler in a WtE plant...... is presented. To reduce the risk of slagging, optimize the temperature control and enhance turbulent mixing, part of the flue gas is recycled into the grate boiler. In the simulation, a 1D in–house bed model is developed to simulate the conversion of the waste wood in the fuel bed on the grate, which provides...... of the increased CO2 and H2O vapour concentrations on radiative heat transfer in the boiler. The impacts of full buoyancy on turbulence are also investigated. As a validation effort, the temperature profiles at different ports inside the furnace are measured and the experimental values are compared with the CFD...

  6. Optimization of Boiler Control for Improvement of Load Following Capabilities of Existing Power Plants

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Pedersen, Tom Søndergaard

    1997-01-01

    An An optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms...... of implementation and commissioning. The optimizing control system takes into account the multivariable and nonlinear characteristics of the boiler process as a gain-scheduled LQG-controller is utilized. Simulation results indicate that a reduction of steam temperature deviations of about 75% can be obtained.......optimizing control system for improving the load following capabilities of power plant units has been developed. The system is implemented as a complement producing additive control signals to the existing boiler control system, a concept which has various practical advantages in terms of implementation...

  7. Influence of Deposit Formation on Corrosion at a Straw Fired boiler

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Michelsen, Hanne Philbert; Frandsen, Flemming;

    2000-01-01

    Straw-fired boilers generally experience severe problems with deposit formation and are expected to suffer from severe superheater corrosion at high steam temperatures due to the large alkali and chlorine content in straw. In this study, deposits collected (1) on air-cooled probes and (2) directly...... at the existing heat transfer surfaces of a straw-fired boiler have been examined. Deposits collected on air-cooled probes were found to consist of an inner layer of KCl and an outer layer of sintered fly ash. Ash deposits formed on the heat transfer surfaces all had a characteristic layered structure......, with a dense layer of K2SO4 present adjacent to the metal surface. It is argued that the K2SO4 layer present adjacent to the metal surface may lead to reduced corrosion rates at this boiler. A discussion of the deposit structure, the K2SO4 layer formation mechanism, and the influence of the inner layer...

  8. PARAMETERS OF AIR FIRED BOILER FED WITH DIFFERENT TYPES OF FUEL

    Directory of Open Access Journals (Sweden)

    Katarzyna Joanna Gładyszewska-Fiedoruk

    2016-09-01

    Full Text Available The measurement and interpretation of indoor carbon dioxide CO2 concentration can provide information on building indoor air quality and ventilation. On the other hand, concentration of carbon monoxide CO can show as how combustion process run and if the boiler is safe. When there is not sufficient air available to complete the combustion process, some of the fuel is left unburned, resulting in inefficiency and undesirable emissions. An examination of the CO2 and CO concentration in boiler and interpretation results help to improve indoor air quality. The paper presents characteristics of concentration CO2 and CO depend on used fuel in tested boiler rooms. The concentration curves show how each fuel combustion affect the amount of CO2 and CO that is produced.

  9. Optimization of Boiler Blowdown and Blowdown Heat Recovery in Textile Sector

    Directory of Open Access Journals (Sweden)

    Sunudas T

    2013-09-01

    Full Text Available Boilers are widely used in most of the processing industries like textile, for the heating applications. Surat is the one of the largest textile processing area in India. In textile industries coal is mainly used for the steam generation. In a textile industry normally a 4% of heat energy is wasted through blowdown. In the study conducted in steam boilers in textile industries in surat location, 1.5% of coal of total coal consumption is wasted in an industry by improper blowdwon. This thesis work aims to prevent the wastage in the coal use by optimizing the blowdown in the boiler and maximizing the recovery of heat wasting through blowdown.

  10. Parameter Tuning via Genetic Algorithm of Fuzzy Controller for Fire Tube Boiler

    Directory of Open Access Journals (Sweden)

    Osama I. Hassanein

    2012-04-01

    Full Text Available The optimal use of fuel energy and water in a fire tube boiler is important in achieving economical system operation, precise control system design required to achieve high speed of response with no overshot. Two artificial intelligence techniques, fuzzy control (FLC and genetic-fuzzy control (GFLC applied to control both of the water/steam temperature and water level control loops of boiler. The parameters of the FLC are optimized to locating the optimal solutions to meet the required performance objectives using a genetic algorithm. The parameters subject to optimization are the width of the membership functions and scaling factors. The performance of the fire tube boiler that fitted with GFLC has reliable dynamic performance as compared with the system fitted with FLC.

  11. Robust H(infinity) tracking control of boiler-turbine systems.

    Science.gov (United States)

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach.

  12. Static and Transient Performance Prediction for CFB Boilers Using a Bayesian—Gaussian Neural Network

    Institute of Scientific and Technical Information of China (English)

    HaiwenYe; WeidouNi

    1997-01-01

    A bayesian-Gaussian Neural Network(BGNN)is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed(CFB) boilers.The advantages of this network over Back-Propagation Neural Networks(BPNNs),easier determination of topology,simpler and time saving in training process as well as self-organizing bility,make this network more practical in on-line performance prediction for complicatied processes,Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers.Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers,which are under research by the authors.

  13. Measures to reduce carbon content of fly ash in CFB boilers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.; Liu, D.C.; Zhang, S.H.; Chen, H.P. [HuaZhong Univ. of Science and Technology, National Laboratory of Coal Combustion (China); Huang, Y.P.; Liu, C.M. [Da Ye Power Plant, Hu-Bei (China); Winter, F. [Vienna Technical Univ., Vienna (Austria)

    2002-07-01

    There is a significant need to develop clean coal combustion technology in China, given that the major energy source is coal, accounting for 75 per cent of primary energy. Circulating fluidized bed (CFB) combustion offers high combustion intensity with low pollutant emissions. It also has good combustion stability and excellent fuel flexibility. However, the high carbon content of the fly ash and the low boiler heat efficiency are two problems that must be addressed, particularly for middle and small sized CFB boilers. This study examined several reasons for high carbon content of fly ash in CFB boilers, including the distribution of particle size, the heating value of the coal and the fractional return of cold material to the combustion chamber. Operating conditions of the fly ash circulating combustion system were also examined. Proven effective measures to reduce carbon content were then suggested. 4 refs., 2 tabs., 2 figs.

  14. Capital and operating costs for industrial boilers. Final report Apr-Jun 79

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, L.L.; AbrahaM, J.P.; Noe, N.D.; Forste, D.S.; Kimball, H.T.

    1979-06-01

    The report provides estimates of capital and operating costs for industrial boilers. Costs are related to the type of fuel fired, firing design and rated capacity. Both package and field-erected boilers are evaluated. Fuels considered include coal, residual oil, distillate oil and natural gas. Firing designs for coal include underfeed-stoker, spreader-stoker and pulverized. Rated capacities range from 15(10 to the 6th)Btu/hr for oil and gas to 700(10 to the 6th)Btu/hr for coal. Costs are developed on a study estimate basis. Individual boiler cost estimates were plotted and cost equations developed for total equipment, installation (direct and indirect) and operating costs (variable and fixed).

  15. Characterization of Residential Scale Biofuel Boilers and Fuels

    Science.gov (United States)

    Chandrasekaran, Sriraam R.

    The objectives of this study were to: 1) characterize commercially available wood pellets and wood chips for basic properties such as calorific, ash, moisture contents; 2) analyze elements and ions and other possible contamination during the pellet manufacturing processes; 3) characterize the chemical and thermo-chemical property of grass pellets for their combustion potential; 4) characterize the emissions from 6 different residential scale boiler/furnace appliances burning grass and wood pellets; 5) characterize the emitted particulate matter for toxic and marker species with respect to combustion appliance and combustion conditions; and 6) determine the effects of the biomass fuel properties of 5 different grass pellets on particulate and gaseous emissions from a single type of boiler. The results from characterization of wood pellets and chips indicated that the wood pellet samples generally meet the quality standards. However, there are some samples that would fail the ash content requirements. Only the German standards have extensive trace element limits. Most of the samples would meet these standards, but some samples failed to meet these standards based on their lead, arsenic, cadmium, and copper concentrations. It is likely that inclusion of extraneous materials such as painted or pressure treated lumber led to the observed high concentrations. Given increasing use of pellets and chips as a renewable fuel, standards for the elemental composition of commercial wood pellets and chips are needed in United States to avoid the inclusion of extraneous materials. Such standards would reduce the environmental impact of toxic species that would be released when the wood is burned. Grass pellets were characterized for chemical and thermochemical properties. Switch grass pellets were studied for it thermal degradation process under inert and oxidizing atmosphere using TGA. The thermal degradation of grass pellet measured the activation energy and pre

  16. Advanced modelling and testing of a 13 MWth waste wood-fired grate boiler with recycled flue gas

    DEFF Research Database (Denmark)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko;

    2016-01-01

    Numerical modelling is widely used in industry for detailed understanding of the combustion process and for appropriate design and optimization of biomass/waste-fired boilers. This paper presents a numerical study of a 13 MWth waste wood-fired grate boiler, based on the coupled in-bed fuel...... conversion modelling and freeboard combustion modelling methodology. A 1D model is developed for the conversion of the waste wood in the fuel bed on the grate, providing the appropriate grate inlet condition for the 3D simulation of the freeboard region. Since part of the flue gas is recycled into the boiler...... as an innovative attempt to improve the boiler performance, a refined weighted-sum-of-grey-gases-model of greater accuracy is developed to better address the impacts of the elevated CO2 and H2O vapour concentrations on radiative heat transfer in the boiler. The impacts of full buoyancy on the turbulent flow...

  17. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  18. The partitioning of calcium and sulfur between bottom ash and flyash in a commercial CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.L.; Pisupati, S.V.; Morrison, J.L.; Scaroni, A.W.

    1999-07-01

    As part of a program to examine the effect of sorbent properties on sulfation performance in the circulating fluidized bed (CFB) combustion process, a series of sorbents varying in chemical composition was tested under similar operating conditions in a 30 MW(e) CFB boiler. These sorbents ranged from 27.8 to 55.2 wt% CaO, and from 0.54 to 18.8 wt% MgO. The fuel used was a high ash content (68 wt%) coal refuse. Parameters of boiler operation were established from distributed control system data, used to screen test results, and data were eliminated from consideration where changes in boiler load or bed inventory levels were seen prior to sampling of bottom ash and flyash streams. This, and the development of a set of simultaneous equations for measuring individual ash stream flow rates, allowed the computation of calcium and sulfur material balances around the boiler for each sorbent test. The partitioning of calcium and sulfur to the bottom ash and flyash streams was examined. It was found that the majority of both calcium and sulfur fed to the boiler was removed with the flyash, regardless of the sorbent. It was further found that across the range of sorbent properties, the flow of sulfur as a solid with the flyash was relatively uniform (71 to 86 wt% of that fed to the boiler). Calcium to sulfur ratios in the bottom ash were uniformly higher than those found for the corresponding flyash streams, indicating that attrition may play a key role in overall sorbent performance. The calcium balance data also indicated that thermally induced fractures (TIFs) may affect attrition.

  19. Numerical studies of the combustion of fuel oil in the boiler furnace at reduced load

    Directory of Open Access Journals (Sweden)

    Ivantsov Aleksandr A.

    2014-01-01

    Full Text Available Relevance of the work due to the need to assess the effectiveness and reliability of the boiler units on reserve fuel after reconstruction associated with a change in the base fuel and approaches of numerical analysis. Analysis of physical and chemical processes in the furnace volume of boiler BKZ–210–140 operating on reserve fuel and rated load when using the Euler and Euler combined and Lagrangian modeling approaches. Results of the numerical modeling of the processes of aerodynamics, heat exchange, and combustion in the furnace volume.

  20. Modern power station practice mechanical boilers, fuel-, and ash-handling plant

    CERN Document Server

    Sherry, A; Cruddace, AE

    2014-01-01

    Modern Power Station Practice, Second Edition, Volume 2: Mechanical (Boilers, Fuel-, and Ash-Handling Plant) focuses on the design, manufacture and operation of boiler units and fuel-and ash-handling plants.This book is organized into five main topics-furnace and combustion equipment, steam and water circuits, ancillary plant and fittings, dust extraction and draught plant, and fuel-and ash-handling plant.In these topics, this text specifically discusses the influence of nature of coal on choice of firing equipment; oil-burner arrangements, ignition and control; disposition of the heating surf

  1. Laser-induced breakdown spectroscopy at high temperatures in industrial boilers and furnaces.

    Science.gov (United States)

    Blevins, Linda G; Shaddix, Christopher R; Sickafoose, Shane M; Walsh, Peter M

    2003-10-20

    Laser-induced breakdown spectroscopy (LIBS) was applied (1) near the superheater of an electric power generation boiler burning biomass, coal, or both; (2) at the exit of a glass-melting furnace burning natural gas and oxygen; and (3) near the nose arches of two paper mill recovery boilers burning black liquor. Difficulties associated with the high temperatures and high particle loadings in these environments were surmounted by use of novel LIBS probes. Echelle and linear spectrometers coupled to intensified CCD cameras were used individually and sometimes simultaneously. Elements detected include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti.

  2. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle;

    1998-01-01

    therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advantages in terms of implementation and commissioning. The optimizing control system takes account...... of the multivariable and load-de*pendent nonlinear characteristics of the boiler process, as a scheduled LQG controller with feedforward action is utilized. The LQG controller improves the control of critical pro*cess variables, making it possible to increase the load-following capability of a specific plant. Field...

  3. Gain-Scheduled Control of a Fossil-Fired Power Plant Boiler

    DEFF Research Database (Denmark)

    Hangstrup, M.; Stoustrup, Jakob; Andersen, Palle;

    1999-01-01

    In this paper the objective is to optimize the control of a coal fired 250 MW power plant boiler. The conventional control system is supplemented with a multivariable optimizing controller operating in parallel with the conventional control system. Due to the strong dependence of the gains...... and dynamics upon the load, it is beneficial to consider a gain-scheduling control approach. Optimization using complex mu synthesis results in unstable LTI controllers in some operating points of the boiler. A recent gain-scheduling approach allowing for unstable fixed LTI controllers is applied. Gain...

  4. Optimization of Boiler Control to Improve the Load-following Capability of Power-plant Units

    DEFF Research Database (Denmark)

    Mortensen, J. H.; Mølbak, T.; Andersen, Palle;

    therefore been developed. The system is implemented as a complement, producing control signals to be added to those of the existing boiler control system, a concept which has various practical advantages in terms of implementation and commissioning. The optimizing control system takes account...... of the multivariable and load-de*pendent nonlinear characteristics of the boiler process, as a scheduled LQG controller with feedforward action is utilized. The LQG controller improves the control of critical pro*cess variables, making it possible to increase the load-following capability of a specific plant. Field...

  5. Co-firing straw and coal in a 150-MWe utility boiler: in situ measurements

    DEFF Research Database (Denmark)

    Hansen, P. F.B.; Andersen, Karin Hedebo; Wieck-Hansen, K.;

    1998-01-01

    A 2-year demonstration program is carried out by the Danish utility I/S Midtkraft at a 150-MWe PF-boiler unit reconstructed for co-firing straw and coal. As a part of the demonstration program, a comprehensive in situ measurement campaign was conducted during the spring of 1996 in collaboration...... deposition propensities and high temperature corrosion during co-combustion of straw and coal in PF-boilers. Danish full scale results from co-firing straw and coal, the test facility and test program, and the potential theoretical support from the Technical University of Denmark are presented in this paper...

  6. CFD Modelling of Biomass Combustion in Small-Scale Boilers. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xue-Song Bai; Griselin, Niklas; Klason, Torbern; Nilsson, Johan [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-10-01

    This project deals with CFD modeling of combustion of wood in fixed bed boilers. A flamelet model for the interaction between turbulence and chemical reactions is developed and applied to study small-scale boiler. The flamelet chemistry employs 43 reactive species and 174 elementary reactions. It gives detailed distributions of important species such as CO and NO{sub x} in the flow field and flue gas. Simulation of a small-scale wood fired boiler measured at SP Boraas (50 KW) shows that the current flamelet model yields results agreeable to the available experimental data. A detailed chemical kinetic model is developed to study the bed combustion process. This model gives boundary conditions for the CFD analysis of gas phase volatile oxidation in the combustion chambers. The model combines a Functional Group submodel with a Depolymerisation, Vaporisation and Crosslinking submodel. The FG submodel simulates how functional groups decompose and form light gas species. The DVC submodell predicts depolymerisation and vaporisation of the macromolecular network and this includes bridge breaking and crosslinking processes, where the wood structure breaks down to fragments. The light fragments form tar and the heavy ones form metaplast. Two boilers firing wood log/chips are studied using the FG-DVC model, one is the SP Boraas small-scale boiler (50 KW) and the other is the Sydkraft Malmoe Vaerme AB's Flintraennan large-scale boiler (55 MW). The fix bed is assumed to be two zones, a partial equilibrium drying/devolatilisation zone and an equilibrium zone. Three typical biomass conversion modes are simulated, a lean fuel combustion mode, a near-stoichiometric combustion and a fuel rich gasification mode. Detailed chemical species and temperatures at different modes are obtained. Physical interpretation is provided. Comparison of the computational results with experimental data shows that the model can reasonably simulate the fixed bed biomass conversion process. CFD

  7. Processing of Egyptian boiler-ash for extraction of vanadium and nickel.

    Science.gov (United States)

    Amer, A M

    2002-01-01

    Proposed technique in this investigation is given for vanadium and nickel enrichment in the Egyptian boiler ash. Among the various concepts for recovery of vanadium and nickel from boiler ash, the pyro-metallurgical approach is technically feasible, but is not cost-effective from an operational economy standpoint. Another technically viable process which, however, needs further development and presented in this investigation, is the hydrometallurgical processing that involves acid leaching under oxygen pressure of ground ash, followed by electrolytic separation of nickel from sulphate solution and vanadium is then neutralized and precipitated by adjustment the pH value and calcined to produce V2O5.

  8. Burnout of pulverized biomass particles in large scale boiler – Single particle model approach

    DEFF Research Database (Denmark)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero

    2010-01-01

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where...... the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner...

  9. Neural network approach to the diagnosis of the boiler combustion in a coal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A.; Villar, J.; Sanz-Bobi, M.A. [Universidad Pontificia Comillas, Madrid (Spain). Instituto de Investigacion Tecnologia

    1995-08-01

    In order to optimise boiler operation some sort of monitoring system is needed. Monitors can tell the operator about heat production and inputs to heat production; however they cannot monitor the process itself, only its effects. In this example the coal quality used varied, causing the amount of heat produced from the same fuel input to vary. Where quality is very poor the boiler may shutdown. To improve monitoring, flame visualisation techniques were used linked to an automatic diagnosis system. The system was based on artificial neural networks and mathematical techniques. It was installed in the Meirama power plant in Northwest Spain. 18 refs., 17 figs.

  10. EFFICIENCY OF MULTI-MODULE SOLAR COLLECTORS AS A PREFIX TO A BOILER

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2014-12-01

    Full Text Available Influencing factors on thermal and economic efficiency of the combined of heat supply installation are established. Constructive circuits of solar heat supply "prefix" interaction with boiler installation are worked out. Mathematical models of heat exchange processes in elements of combined heat supply system with the account solar engineering characteristics are developed. The techniques of analysis of efficiency of multi-modular system of solar collectors with compulsory circulation for water heating boiler allowing calculating of efficiency factor; heat removal factor and heat transfer factor with the account of construction and operation conditions of alternative heat supply system are presented.

  11. Numerical methods application to study processes in the CFB boilers combustion chambers

    OpenAIRE

    Koksharev Oleg M.; Gil Andrey V.

    2017-01-01

    This paper presents the application of numerical calculation of a hybrid Euler–Lagrange approach to model the gas–solid flow combined with a combustion process in the CFB boiler that has been resolved by applying the ANSYS FLUENT 14.0. In this work, the numerical modelling of furnace processes at various speeds of airflow supply from below was estimated. For the design speed adopted values of 0.5, 1.5, 2.5 and 5 m/s. The research object is the combustion chamber of boiler unit with CFB, with ...

  12. Numerical methods application to study processes in the CFB boilers combustion chambers

    Directory of Open Access Journals (Sweden)

    Koksharev Oleg M.

    2017-01-01

    Full Text Available This paper presents the application of numerical calculation of a hybrid Euler–Lagrange approach to model the gas–solid flow combined with a combustion process in the CFB boiler that has been resolved by applying the ANSYS FLUENT 14.0. In this work, the numerical modelling of furnace processes at various speeds of airflow supply from below was estimated. For the design speed adopted values of 0.5, 1.5, 2.5 and 5 m/s. The research object is the combustion chamber of boiler unit with CFB, with steam capacity of 230 t/h.

  13. 浅谈锅炉微机控制技术%Boiler Computer Control Technology Introduction

    Institute of Scientific and Technical Information of China (English)

    王敏

    2001-01-01

    The composition of boiler Computer control technology is introduced herein,which is useful for saving energy,improving boiler operation level,redcing environmental pollution.%叙述了锅炉微计算机控制系统的构成。该系统能保证锅炉既可节能又可提高锅炉的运行管理水平,减轻环境污染,是一件具有意义的工作。

  14. Results from studies of furnace processes in boilers constructed on the basis of vortex combustion technology

    Science.gov (United States)

    Salomatov, V. V.

    2012-06-01

    The main results obtained from experimental and numerical simulation of furnace processes and emission of toxic substances during the firing of low-grade coals, in particular, in a steam generator equipped with the vortex furnace designed by N.V. Golovanov from the Central Boiler-Turbine Institute, are presented. A set of research works carried out at the modern level made it possible to work out recommendations for making further improvements in the design and operating characteristics of boilers equipped with a vortex furnace.

  15. NOx control in large-scale power plant boilers through superfine pulverized coal technology

    Institute of Scientific and Technical Information of China (English)

    Jie YIN; Jianxing REN; Dunsong WEI

    2008-01-01

    Superfine pulverized coal technology can effectively reduce NOx emission in coal-fired power plant boilers. It can also economize the cost of the power plant and improve the use of the ash in the flue gas. Superfine pulverized coal technology, which will be widely used in China, includes common superfine pulverized coal technology and superfine pulverized coal reburning technology. The use of superfine pulver-ized coal instead of common coal in large-scale power plants will not only reduce more than 30% of NOx emission but also improve the thermal efficiency of the boiler.

  16. Corrosion of boiler tube alloys in refuse firing: Shredded vs bulk refuse

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H.H. (Battelle, Columbus, OH (United States)); Daniel, P.L.; Blue, J.D. (Babcock Wilcox, Barberton, OH (United States))

    1994-08-01

    Results of corrosion probe exposures at two mass burning incinerators were compared with those conducted in a unit burning refuse-derived fuel. Tests were conducted with carbon steel, low-alloy steels, stainless steels, and high nickel-chromium alloys. Corrosion rates at similar metal and gas temperatures were essentially the same for both types of fuel. Boiler tube performance in the waterwalls of other incinerators confirmed these results. Boiler design and operating conditions appear to be more important factors in tube wastage than the extent of refuse processing.

  17. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D. [ABB/Combustion Engineering, Inc., Windsor, CT (United States)

    1993-10-26

    The specific goals of the program are to identify air toxic compounds that might be emmitted from the new boiler with its various Air Pollution Control device for APCD alternatives in levels of regulatory concern. For the compounds thought to be of concern, potential air toxic control methodologies will be suggested and a Test Protocol will be written to be used in the Proof of Concept and full scale tests. The following task was defined: Define Replations and Standards; Identify Air Toxic Pollutants of Interest to Interest to Utility Boilers; Assesment of Air Toxic By-Products; State of the Art Assessment of Toxic By-Product Control Technologies; and Test Protocol Definition.

  18. Reduction in nitrogen oxides emission on TGME-464 boiler of IRU power plant (Estonia)

    Science.gov (United States)

    Roslyakov, P. V.; Ionkin, I. L.

    2015-01-01

    The possibility for realization of measures on a reduction in nitrogen oxides emission on a TGME-464 (plant no. 2) boiler of the IRU power plant (Tallinn, Estonia) is investigated. Low-cost techno-logical measures, namely, nonstoichiometric burning and burning with the moderate controlled chemical underburning, are proposed and experimentally tested. Recommendations on the implementation of low-emission modes of burning natural gas into mode diagrams of the boiler are given. Nitrogen oxides emissions are reduced to the required level as a result of the implementation of the proposed measures.

  19. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim;

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...

  20. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley R. [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew R. [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance L. [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shig [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  1. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

    2012-07-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  2. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Daryl [ORNL; Papar, Riyaz [Hudson Technologies; Wright, Dr. Anthony [ALW Consulting

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  3. Improving way of boiler efficient of shell boiler%提高锅壳燃气锅炉热效率的途径

    Institute of Scientific and Technical Information of China (English)

    孙连启

    2014-01-01

    Shell boiler is widely adopted recently due to its tight seal performance,accompanied with strict environment pollutant emission standard.Gas fueled boiler has a higher exit flue gas temper-ature(higher than 180 ℃),which lost a lot of energy.This paper,take WNS gas fueled boiler for instance,presents a technique of pre-heater and water vapor condenser to recover this thermal en-ergy.%随着国家对环境保护要求的重视,锅壳燃气锅炉以其环保性能突出的优点被广泛地应用。但是,目前燃气锅炉排烟温度普遍偏高(一般在180℃以上),造成很大的能源浪费已成为亟待解决的问题。本文对提高 WNS 型燃气锅炉利用冷凝器和预热器降低排烟温度,提高热效率作了初步探讨。

  4. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  5. Analysis of selected problems of biomass combustion process in batch boilers - experimental and numerical approach

    Directory of Open Access Journals (Sweden)

    Szubel Mateusz

    2016-01-01

    Full Text Available It is possible to list numerous groups of heating units that are used in households, such as boilers, stoves and units used as supporting heat sources, namely fireplaces. In each case, however, the same operational problems may be evoked [1]. To understand the causes of energy losses in a boiler system, a proper definition of significant elements of the unit’s heat balance is necessary. In the group of energy losses, the flue gas loss and the incomplete combustion loss are the most significant factors. The problem with the loss resulting from incomplete combustion, which is related to the presence of combustible substances in the exhaust, is especially significant in case of biomass boilers [2, 3]. The paper presents results of the research and the optimisation of the biomass combustion process in the 180 kW batch boiler. The studies described have been focused on the reduction of the pollutants emission, which was primarily realised by the modifications of the air feeding system. Results of the experiments and the CFD simulations have been compared and discussed. Both in case of the model as well as the experiment, positive influence of the modifications on the emission have been observed.

  6. Characterization and Quantification of Deposits Buildup and Removal in Biomass Suspension-Fired Boilers

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2010-01-01

    Utilization of biomass as wood or straw in large suspension­fired boilers is an efficient method to reduce the use of fossil fuels consumption and to reduce the net CO2 formation. However, the presence of chlorine and alkali metals in biomass (straw) generate ash with a low melting point and indu...

  7. Development of pressurized internally circulating fluidized bed combustion technology; Kaatsu naibu junkan ryudosho boiler no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, I. [Center for Coal Utilization, Japan, Tokyo (Japan); Nagato, S.; Toyoda, S. [Ebara Corp., Tokyo (Japan)

    1996-09-01

    The paper introduced support research on element technology needed for the design of hot models of the pressurized internally circulating fluidized bed combustion boiler in fiscal 1995 and specifications for testing facilities of 4MWt hot models after finishing the basic plan. The support research was conduced as follows: (a) In the test for analysis of cold model fluidization, it was confirmed that each characteristic value of hot models is higher than the target value. Further, calculation parameters required for computer simulation were measured and data on the design of air diffusion nozzle for 1 chamber wind box were sampled. (b) In the CWP conveyance characteristic survey, it was confirmed that it is possible to produce CWP having favorable properties. It was also confirmed that favorable conveyability can be maintained even if the piping size was reduced down to 25A. (c) In the gas pressure reducing test, basic data required for the design of gas pressure reducing equipment were sampled. Specifications for the fluidized bed combustion boiler of hot models are as follows: evaporation amount: 3070kg/h, steam pressure: 1.77MPa, fuel supply amount: 600kg-coal/h, boiler body: cylinder shape water tube internally circulating fluidized bed combustion boiler. 4 refs., 4 figs.

  8. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    Energy Technology Data Exchange (ETDEWEB)

    Patel, R.; Borio, R.W.; Liljedahl, G. [Combustion Engineering, Inc., Windsor, CT (United States)] [and others

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  9. 16 CFR Appendix G8 to Part 305 - Boilers-Electric

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Electric G8 Appendix G8 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Boilers—Electric Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  10. 16 CFR Appendix G6 to Part 305 - Boilers-Gas (Steam)

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Gas (Steam) G6 Appendix G6 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix G6 to Part 305—Boilers—Gas (Steam) Manufacturer's rated heating capacities (Btu's/hr.) Range...

  11. 16 CFR Appendix G7 to Part 305 - Boilers-Oil

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Oil G7 Appendix G7 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE CONCERNING... Part 305—Boilers—Oil Manufacturer's rated heating capacities (Btu's/hr.) Range of annual...

  12. 30 CFR 57.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... vessels. 57.13001 Section 57.13001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND... the standards and specifications of the American Society of Mechanical Engineers Boiler and...

  13. 30 CFR 56.13001 - General requirements for boilers and pressure vessels.

    Science.gov (United States)

    2010-07-01

    ... vessels. 56.13001 Section 56.13001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL... standards and specifications of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code....

  14. Numerical Calculations of WR-40 Boiler Based on its Zero-Dimensional Model

    Directory of Open Access Journals (Sweden)

    Hernik Bartłomiej

    2014-06-01

    Full Text Available Generally, the temperature of flue gases at the furnace outlet is not measured. Therefore, a special computation procedure is needed to determine it. This paper presents a method for coordination of the numerical model of a pulverised fuel boiler furnace chamber with the measuring data in a situation when CFD calculations are made in regard to the furnace only. This paper recommends the use of the classical 0-dimensional balance model of a boiler, based on the use of measuring data. The average temperature of flue gases at the furnace outlet tk" obtained using the model may be considered as highly reliable. The numerical model has to show the same value of tk" . This paper presents calculations for WR-40 boiler. The CFD model was matched to the 0-dimensional tk" value by means of a selection of the furnace wall emissivity. As a result of CFD modelling, the flue gas temperature and the concentration of CO, CO2, O2 and NOx were obtained at the furnace chamber outlet. The results of numerical modelling of boiler combustion based on volumetric reactions and using the Finite-Rate/Eddy-Dissipation Model are presented.

  15. Penetration of central heating boilers. Penetratie van centrale verwarmingsketels; Energiezuinige en milieuvriendelijke ketels in woningen

    Energy Technology Data Exchange (ETDEWEB)

    Bais, J.M.; Kant, A.D.; Rouw, M.

    1990-12-01

    The project 'Penetration options for new energy efficient and environment friendly heating techniques in the housing construction' aims at the calculation of market shares of heating techniques in houses for variable conditions. These conditions can be of economic, technical and social-scientific nature. The project concerns: a literature survey of prognoses of the housing supply, the heat demand, heating types and the number of individual central heating (ICV) boilers as well as a market segmentation based on property of the houses; a quantitative market research of the market section replacement/rebuilding by owners/occupants with regard to ICV boilers by means of Discrete Choice Analysis. Based on three policy scenarios the market shares and the penetration of ICV boilers can be determined by means of the analysis of data from the quantitative market survey; and, the calculation of the market shares of ICV boilers in the section new housing and replacement/rebuilding in rented houses, based on the same three scenarios as mentioned above and by means of the so-called Internal Interest Rate (IRV). 27 figs., 22 refs., 42 tabs., 2 apps.

  16. Development of Cost Effective Oxy-Combustion Retrofitting for Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan

    2010-12-31

    The overall objective of this project is to further develop the oxy-combustion technology for commercial retrofit in existing wall-fired and Cyclone boilers by 2012. To meet this goal, a research project was conducted that included pilot-scale testing and a full-scale engineering and economic analysis.

  17. Current and advanced NO/sub x/-control technology for coal-fired industrial boilers

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    A NOx-control-technology assessment study of coal-fired industrial boilers was conducted to examine the effectiveness of combustion-modification methods, including low excess air, staged combustion, and burner modifications. Boiler types considered included overfed and underfed stokers, spreader stokers, pulverized-coal and coal-fired cyclone units. Significant variations in NOx emissions occur with boiler type, firing method, and coal type; a relative comparison of emission-control performance, cost, and operational considerations is presented for each method. Baseline (as-found) emissions from grate-fired stokers were shown to be in the range of 200 to 300 ppM. Similarly, as-found emissions from suspension-fired units were quite low (350 to 600 ppM) as compared to comparably designed utility-sized units. Low excess air was shown to be the most effective method on existing units, reducing emissions by approximately 10%. Evaluation of staged combustion and burner modification, however, were limited due to current boiler designs. Major hardware modification/design and implementation are necessary before the potential of these techniques can be fully evaluated. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion-modification program, including energy considerations, incremental capital and operating costs, corrosion, secondary pollutants, and retrofit potential.

  18. Thermal Spray Coatings for High-Temperature Corrosion Protection in Biomass Co-Fired Boilers

    Science.gov (United States)

    Oksa, M.; Metsäjoki, J.; Kärki, J.

    2015-01-01

    There are over 1000 biomass boilers and about 500 plants using waste as fuel in Europe, and the numbers are increasing. Many of them encounter serious problems with high-temperature corrosion due to detrimental elements such as chlorides, alkali metals, and heavy metals. By HVOF spraying, it is possible to produce very dense and well-adhered coatings, which can be applied for corrosion protection of heat exchanger surfaces in biomass and waste-to-energy power plant boilers. Four HVOF coatings and one arc sprayed coating were exposed to actual biomass co-fired boiler conditions in superheater area with a probe measurement installation for 5900 h at 550 and 750 °C. The coating materials were Ni-Cr, IN625, Fe-Cr-W-Nb-Mo, and Ni-Cr-Ti. CJS and DJ Hybrid spray guns were used for HVOF spraying to compare the corrosion resistance of Ni-Cr coating structures. Reference materials were ferritic steel T92 and nickel super alloy A263. The circulating fluidized bed boiler burnt a mixture of wood, peat and coal. The coatings showed excellent corrosion resistance at 550 °C compared to the ferritic steel. At higher temperature, NiCr sprayed with CJS had the best corrosion resistance. IN625 was consumed almost completely during the exposure at 750 °C.

  19. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    To study the influence of local conditions on the reaction between gaseous KCl and kaolin or coal fly ash experiments were done on CHECs electrically heated entrained flow reactor, which can simulate the local conditions in suspension fired boilers. The experimental results were compared with model...

  20. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    The properties of the ash from co-firing of coal and straw have a large influence on boiler operation, flue gas cleaning equipment and appropriate utilization of the fly ash. A study on the fuel composition and local conditions influence on fly ash properties has been done by making entrained flo...

  1. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  2. Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module

    Directory of Open Access Journals (Sweden)

    Wajs Jan

    2016-09-01

    Full Text Available The results of investigations conducted on the prototype of vapour driven micro-CHP unit integrated with a gas boiler are presented. The system enables cogeneration of heat and electric energy to cover the energy demand of a household. The idea of such system is to produce electricity for own demand or for selling it to the electric grid – in such situation the system user will became the prosumer. A typical commercial gas boiler, additionally equipped with an organic Rankine cycle (ORC module based on environmentally acceptable working fluid can be regarded as future generation unit. In the paper the prototype of innovative domestic cogenerative ORC system, consisting of a conventional gas boiler and a small size axial vapour microturbines (in-house designed for ORC and the commercially available for Rankine cycle (RC, evaporator and condenser were scrutinised. In the course of study the fluid working temperatures, rates of heat, electricity generation and efficiency of the whole system were obtained. The tested system could produce electricity in the amount of 1 kWe. Some preliminary tests were started with water as working fluid and the results for that case are also presented. The investigations showed that domestic gas boiler was able to provide the saturated/superheated ethanol vapour (in the ORC system and steam (in the RC system as working fluids.

  3. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    Directory of Open Access Journals (Sweden)

    Zhuikov Andrey V.

    2016-01-01

    Full Text Available During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  4. Assessing the Exergy Costs of a 332-MW Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Victor H. Rangel-Hernandez

    2016-08-01

    Full Text Available In this paper, we analyze the exergy costs of a real large industrial boiler with the aim of improving efficiency. Specifically, the 350-MW front-fired, natural circulation, single reheat and balanced draft coal-fired boiler forms part of a 1050-MW conventional power plant located in Spain. We start with a diagram of the power plant, followed by a formulation of the exergy cost allocation problem to determine the exergy cost of the product of the boiler as a whole and the expenses of the individual components and energy streams. We also define a productive structure of the system. Furthermore, a proposal for including the exergy of radiation is provided in this study. Our results show that the unit exergy cost of the product of the boiler goes from 2.352 to 2.5, and that the maximum values are located in the ancillary electrical devices, such as induced-draft fans and coil heaters. Finally, radiation does not have an effect on the electricity cost, but affects at least 30% of the unit exergy cost of the boiler’s product.

  5. Mixing Studies in a 1:60 scale model of a cornerfired boiler with OFA

    DEFF Research Database (Denmark)

    Matlok, Simon; Scheel Larsen, Poul; Gjernes, Erik;

    1998-01-01

    In a model of a boiler, concentration distributions of injected gas into a swirling bulk flow are determined from quantitative laser-sheet visualization. Together with LDA-measurements of velocity fields this describes the mixing process and its efficiency expressed by several measures (unmixedness...

  6. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming;

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  7. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  8. Co-firing Coal and Straw in a 150 MWe Utility Boiler: Deposition Propensities

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Hansen, Peter Farkas Binderup; Wieck-Hansen, Kate;

    1996-01-01

    In order to meet a 20 % reduction in CO2 emissions, based on 1988 levels, by the year 2005, the Danish Government has committed the power companies in Denmark to burn 1.2 million tons of straw per year from the year 2000. A conventional pf-fired boiler at the Danish Power Company Midtkraft has be...

  9. Technology of latent-heat recovery for boiler system; Boira ni okeru sennetsu kaishu gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, T. [Tokyo Gas Co. Ltd. (Japan)

    1996-08-01

    The boiler has reached the highest degree of completion among combustion equipment and is highly efficient. In order to enhance its efficiency further, it is ordinary to recover the retention heat of the combustion exhaust gas, but due to the problem of low temperature corrosion caused by the sulfur content in fuel resulted from a temperature drop of the exhaust gas, heat recovery has been done not sufficiently. In this article, an example is introduced to plan the betterment of efficiency by application of a latent heat recovering economizer to a sugar manufactory and a report is made on the energy saving effect by recovering the latent heat and a study on the quality of the material for the latent heat reclaimer. The above latent heat reclaimer is a system which takes advantage of the feature of the natural gas reportedly having no sulfur content, brings down the temperature at the outlet of a heat exchanger of the boiler exhaust gas to below the dew point, thereby recovers the condensed latent heat of the vapor in the exhaust gas and utilizes it for heating up the boiler feed water. In this example, the line of an already installed boiler has been partially modified and only a latent heat reclaimer has been installed newly. The increase of efficiency has been as high as 5.28%. 5 figs., 5 tabs.

  10. Usage of Boiler Unit Exhaust Gas Heat in Contact Heat Exchanger

    Directory of Open Access Journals (Sweden)

    G. I. Zhikhar

    2010-01-01

    Full Text Available The paper presents Results of investigations pertaining to operation of a GM-50-14/250 boiler with a contact economizer are given in the paper. The paper reveals influence of contact economizer on fuel economy and reduction of nitrogen oxide discharge.

  11. Co-Combustion of Animal Waste in a Commercial Waste-to-Energy BFB Boiler

    Directory of Open Access Journals (Sweden)

    Farzad Moradian

    2013-11-01

    Full Text Available Co-combustion of animal waste, in waste-to-energy boilers, is considered a method to produce both heat and power and to dispose of possibly infected animal wastes. This research conducted full-scale combustion tests to identify the impact of changed fuel composition on a fluidized-bed boiler. The impact was characterized by analyzing the deposit formation rate, deposit composition, ash composition, and emissions. Two combustion tests, denoted the reference case and animal waste case, were performed based on different fuel mixes. In the reference case, a normal solid waste fuel mix was combusted in the boiler, containing sorted industry and household waste. In the animal waste case, 20 wt% animal waste was added to the reference fuel mix. The collected samples, comprising sampling probe deposits, fuel mixes, bed ash, return sand, boiler ash, cyclone ash and filter ash, were analyzed using chemical fractionation, SEM-EDX and XRD. The results indicate decreased deposit formation due to animal waste co-combustion. SEM-EDX and chemical fractionation identified higher concentrations of P, Ca, S, and Cl in the bed materials in the animal waste case. Moreover, the risk of bed agglomeration was lower in the animal waste case and also a decreased rate of NOx and SO2 emissions were observed.

  12. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  13. Effect of combustion catalyst on the operation efficiency of steam boilers

    Science.gov (United States)

    Kapustyanskii, A. A.

    2014-09-01

    The state of the energy market of the Ukraine is analyzed. The priority of using local, low-grade solid fuel according to its flame combustion in power boilers of thermal power plants and heat and power plants in the short-term perspective is proven. Data of expert tests of boilers of TPP-210A, BKZ-160-100, BKZ-210-140, Ep-670-140, and TGM-84 models with the investigation of the effect of the addition of combustion catalyst into primary air duct on their operation efficiency are represented. Positive results are attained by burning the anthracite culm or its mixture with lean coal in all range of operating loads of boilers investigated. The possibility to eliminate the consumption of "backlighting" high-reactive fuel (natural gas or fuel oil) and to operate at steam loads below the technical minimum in the case of burning nonproject coal is given. Problems of the normalization of liquid slag run-out without closing the boiler taphole are solved.

  14. Influence of furnace tube shapeon thermal strain of fire-tube boilers

    Directory of Open Access Journals (Sweden)

    Gaćeša Branka

    2014-01-01

    Full Text Available The aim of this paper is to use numerical analysis and fine element method-FEM to investigate the influence of furnace tube shape on the thermal strain of fire-tube boilers. Thermal stresses in corrugated furnace tubes of different shape, i.e. with different corrugation pitch and depth, were analysed first. It was demonstrated that the thermal stresses in corrugated furnace tube are significantly reduced with the increase of corrugation depth. Than deformations and stresses in the structure of a fire-tube boiler were analysed in a real operating condition, for the cases of installed plain furnace tube and corrugated furnace tubes with different shapes. It was concluded that in this fire-tube boiler, which is of larger steam capacity, the corrugated furnace tube must be installed, as well as that the maximal stress in the construction is reduced by the installation of the furnace tube with greater corrugation depth. The analysis of stresses due to pressure and thermal loads pointed out that thermal stresses are not lower-order stresses in comparison to stresses due to pressure loads, so they must be taken into consideration for boiler strength analysis. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  15. 16 CFR Appendix G5 to Part 305 - Boilers-Gas (Except Steam)

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Boilers-Gas (Except Steam) G5 Appendix G5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix G5 to Part 305—Boilers—Gas (Except Steam) Manufacturer's rated heating capacities...

  16. Increasing of Manoeuvrability of Cogeneration Combined Cycle Power Plants Owing to the Usage of Electric Boilers

    Directory of Open Access Journals (Sweden)

    S. Kachan

    2013-01-01

    Full Text Available The paper contains the results of efficiency evaluation  of using the electric boilers to improve maneuver capabilities of the cogeneration combined cycle power plants (as an example, 230 MW combined cycle unit of Minsk CHP-3 in comparison with the traditional steam-turbine units of cogeneration power plants.

  17. Early tube leak detection system for steam boiler at KEV power plant

    Directory of Open Access Journals (Sweden)

    Ismail Firas B.

    2016-01-01

    Full Text Available Tube leakage in boilers has been a major contribution to trips which eventually leads to power plant shut downs. Training of network and developing artificial neural network (ANN models are essential in fault detection in critically large systems. This research focusses on the ANN modelling through training and validation of real data acquired from a sub-critical boiler unit. The artificial neural network (ANN was used to develop a compatible model and to evaluate the working properties and behaviour of boiler. The training and validation of real data has been applied using the feed-forward with back-propagation (BP. The right combination of number of neurons, number of hidden layers, training algorithms and training functions was run to achieve the best ANN model with lowest error. The ANN was trained and validated using real site data acquired from a coal fired power plant in Malaysia. The results showed that the Neural Network (NN with one hidden layers performed better than two hidden layer using feed-forward back-propagation network. The outcome from this study give us the best ANN model which eventually allows for early detection of boiler tube leakages, and forecast of a trip before the real shutdown. This will eventually reduce shutdowns in power plants.

  18. Theoretical Research of Coal Gasification Products Burning in Boilers at Tomsk Thermal Power Plant-3

    Directory of Open Access Journals (Sweden)

    Somov A.A.

    2015-01-01

    Full Text Available Mathematical modeling of primary fuel change into power gas in power generating boiler with productivity of steam 160 t\\h was done. Research of aggregate work on some power modes was completed. Characteristic curves of efficiency coefficient at different loads and ratio on power and natural gases burning were made. Practicability of power gas use as fuel was proved.

  19. Power Efficiency of Steam Turbine Generator Switching into Thermal Circuit of Small and Medium Boiler Houses

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2007-01-01

    Full Text Available The paper is devoted to the solution of the problem concerning power saving on the basis of small power-and-heat-supply plants.Power efficiency of power turbine generator switching into thermal circuit of small and medium boiler houses is justified in the paper.

  20. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...